WorldWideScience

Sample records for galvanized steel operating

  1. Practical uses of galvanized steel in electric utility applications

    International Nuclear Information System (INIS)

    Bueche, D.G.

    1995-01-01

    Steel corrosion has been shown to be a major problem for the electric utility industry. Galvanizing has been shown to prevent or substantially slow steel corrosion. This paper describes the galvanizing process, discusses the properties associated with the galvanized coating, and demonstrates galvanizing's durability in specific, real world applications in the electric utility industry

  2. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... subsidized imports of galvanized steel wire from China and Mexico. Accordingly, effective March 31, 2011, the...

  3. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  4. Corrosion of Galvanized Steel Under Different Soil Moisture Contents

    OpenAIRE

    Pereira,Roseana Florentino da Costa; Oliveira,Edkarlla Sousa Dantas de; Lima,Maria Alice Gomes de Andrade; Brasil,Simone Louise Delarue Cezar

    2015-01-01

    Galvanized steel has been widely applied in different applications and the industry significantly increased its production in recent years. Some galvanized structures can be completely or partially buried, such as transmission tower footings. The corrosion of these metallic structures is related to the soil chemical and physicochemical properties, which define the aggressiveness of the environment. To assess the effect of the soil moisture on galvanized steel corrosion, a comparative study wa...

  5. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for seven wire galvanized steel..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.370 RUS specification for seven wire galvanized... Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  6. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  7. Galvanic corrosion between carbon steel 1018 and Alloy 600 in crevice with boric acid solution

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Hong Pyo; Kim, Joung Soo; Machonald, Digby D.

    2005-01-01

    This work dealt with the evaluation of galvanic corrosion rate in a corrosion cell having annular gap of 0.5 mm between carbon steel 1018 and alloy 600 as a function of temperature and boron concentration. Temperature and boron concentration were ranged from 110 to 300 .deg. C and 2000∼10000 ppm, respectively. After the operating temperature of the corrosion cell where the electrolyte was injected was attained at setting temperature, galvanic coupling was made and at the same time galvanic current was measured. The galvanic corrosion rate decreased with time, which was described by corrosion product such as protective film as well as boric acid deposit formed on the carbon steel with time. From the galvanic current obtained as a function of temperature and boron concentration, it was found that the galvanic corrosion rate decreased with temperature while the corrosion rate increased with boron concentration. The experimental results obtained from galvanic corrosion measurement were explained by adhesive property of corrosion product such as protective film, boric acid deposit formed on the carbon steel wall and dehydration of boric acid to be slightly soluble boric acid phase. Moreover the galvanic corrosion rate calculated using initial galvanic coupling current instead of steady state coupling current was remarked, which could give us relatively closer galvanic corrosion rate to real pressurized water reactor

  8. 77 FR 17418 - Galvanized Steel Wire From the People's Republic of China: Final Affirmative Countervailing Duty...

    Science.gov (United States)

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... exporters of galvanized steel wire (galvanized wire) from the People's Republic of China (the PRC). For... three parties withdrew their requests for a hearing. \\1\\ See Galvanized Steel Wire From the People's...

  9. 76 FR 33242 - Galvanized Steel Wire From the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... the countervailing duty investigation of galvanized steel wire from the People's Republic of China. See Galvanized Steel Wire From the People's Republic of China: Initiation of Countervailing Duty...

  10. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    Science.gov (United States)

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 76 FR 55031 - Galvanized Steel Wire From the People's Republic of China: Preliminary Affirmative Countervailing...

    Science.gov (United States)

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... galvanized steel wire (galvanized wire) from the People's Republic of China (PRC). For information on the..., filed in proper form, concerning imports of galvanized wire from the PRC.\\1\\ The Department initiated a...

  12. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    Science.gov (United States)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  13. 76 FR 68422 - Galvanized Steel Wire From Mexico: Preliminary Determination of Sales at Less Than Fair Value and...

    Science.gov (United States)

    2011-11-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-840] Galvanized Steel Wire From... determines that galvanized steel wire (galvanized wire) from Mexico is being, or is likely to be, sold in the... investigation on galvanized wire from Mexico. See Galvanized Steel Wire from the People's Republic of China and...

  14. 76 FR 73589 - Galvanized Steel Wire From the People's Republic of China: Amended Preliminary Determination of...

    Science.gov (United States)

    2011-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... galvanized steel wire from the People's Republic of China (``PRC'').\\1\\ We are amending our Preliminary... Fair Value and Postponement of Final Determination: Galvanized Steel Wire from the People's Republic of...

  15. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    Science.gov (United States)

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  16. 76 FR 47150 - Galvanized Steel Wire From the People's Republic of China and Mexico: Postponement of Preliminary...

    Science.gov (United States)

    2011-08-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975, A-201-840] Galvanized Steel... in the Federal Register the initiation of the antidumping duty investigations of galvanized steel... is January 1, 2010, through December 31, 2010. See Galvanized Steel Wire From the People's Republic...

  17. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Science.gov (United States)

    2011-11-25

    ...)] Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty and... galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of the United... merchandise as galvanized steel wire which is a cold- drawn carbon quality steel product in coils, of solid...

  18. 76 FR 68407 - Galvanized Steel Wire From the People's Republic of China: Preliminary Determination of Sales at...

    Science.gov (United States)

    2011-11-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... galvanized steel wire from the People's Republic of China (``PRC'') is being, or is likely to be, sold in the... concerning imports of galvanized steel wire from the PRC, filed in proper form by Davis Wire Corporation...

  19. Preventing the embrittling by hydrogen when galvanizing high-grade steel

    Energy Technology Data Exchange (ETDEWEB)

    Paatsch, W.

    1987-09-01

    Galvanic precipitation of a double layer consisting of a dull nickel layer overlaid with a brilliant zinc layer on low-alloyed high-strength steel grades leads to the forming of zinc-nickel alloy layers during the subsequent heat treatment. According to traction tests carried out on high-strength steel grades, as well as to hydrogen permeability tests, this process prevents embrittling by hydrogen which might be caused by galvanic process sequences - and creates a diffusion block at the same time. The alloy layers have an excellent corrosion resistance and temperature stability.

  20. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    International Nuclear Information System (INIS)

    Cao, R.; Huang, Q.; Chen, J.H.; Wang, Pei-Chung

    2014-01-01

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal

  1. Corrosion behaviour and galvanic coupling with steel of Al-based coating alternatives to electroplated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fasuba, O.A.; Yerokhin, A., E-mail: A.Yerokhin@sheffield.ac.uk; Matthews, A.; Leyland, A.

    2013-08-15

    The galvanic corrosion behaviour of bare steel coupled to steel with an Al–Zn flake inorganic spin coating, an Al-based slurry sprayed coating, an arc sprayed Al coating and electroplated cadmium has been investigated. The sacrificial and galvanic behaviour of the coatings was studied in 3.5 wt. % NaCl solution using open-circuit potential, potentiodynamic polarisation and electrochemical noise measurements. The coatings were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Experimental results showed that the Al-based slurry sprayed coating exhibited an open-circuit potential closer to the steel substrate than other coatings, as well as a low corrosion current density and a more positive corrosion potential. In terms of the galvanic suitability of the investigated coatings for the steel substrate, both the Al–Zn flake inorganic spin coating and the Al-based slurry sprayed coating show low galvanic current, in comparison with the arc sprayed Al coating and electroplated cadmium. This behaviour confirms their superior cathodic protection capability and galvanic compatibility over other coatings tested. Electrochemical noise measurements provide accurate information on the coatings' galvanic behaviour, which can be complimented by the data obtained from superposition of potentiodynamic corrosion scans of the coating and bare steel, provided that the corrosion potential difference between the two materials does not exceed 300 mV. - Highlights: • Al-based slurry coating has best galvanic compatibility with steel. • Mg, Cr, P in Al-based slurry coating reinforce its corrosion resistance. • Ennoblement of Al–Zn flake coating compromises its cathodic protection. • Poor corrosion behaviour of arc sprayed Al coating caused by rough morphology. • Electrochemical noise provides adequate estimates of galvanic behaviour.

  2. 77 FR 17430 - Galvanized Steel Wire From the People's Republic of China: Final Determination of Sales at Less...

    Science.gov (United States)

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... Determination of sales at less than fair value (``LTFV'') in the antidumping investigation of galvanized steel... galvanized steel wire from the PRC is being, or is likely to be, sold in the United States at LTFV, as...

  3. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    Directory of Open Access Journals (Sweden)

    Elsa Vaz Pereira

    2009-10-01

    Full Text Available This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 ºC has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  4. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  5. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels

    International Nuclear Information System (INIS)

    Marashi, P.; Pouranvari, M.; Amirabdollahian, S.; Abedi, A.; Goodarzi, M.

    2008-01-01

    Resistance spot welding was used to join austenitic stainless steel and galvanized low carbon steel. The relationship between failure mode and weld fusion zone characteristics (size and microstructure) was studied. It was found that spot weld strength in the pullout failure mode is controlled by the strength and fusion zone size of the galvanized steel side. The hardness of the fusion zone which is governed by the dilution between two base metals, and fusion zone size of galvanized carbon steel side are dominant factors in determining the failure mode

  6. Corrosion protection of galvanized steels by silane-based treatments

    Science.gov (United States)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that

  7. Prevention of Crevice Corrosion of STS 304 Stainless Steel by a Mg-alloy Galvanic Anode

    International Nuclear Information System (INIS)

    Lim, U. J.; Yun, B. D.; Kim, J. J.

    2006-01-01

    Prevention of crevice corrosion was studied for STS 304 stainless steel using a Mg-alloy galvanic anode in solutions with various specific resistivity. The crevice corrosion and corrosion protection characteristics of the steel was investigated by the electrochemical polarization and galvanic corrosion tests. Experimental results show that the crevice corrosion of STS 304 stainless steel does not occur in solutions of high specific resistivity, but it occurs in solutions of low specific resistivity like in solutions with resistivities of 30, 60 and 115 Ω · m. With decreasing specific resistivity of the solution, the electrode potential of STS 304 stainless steel in the crevice is lowered. The potential of STS 304 stainless steel in the crevice after coupling is cathodically polarized more by decreasing specific resistivity indicating that the crevice corrosion of STS 304 stainless steel is prevented by the Mg-alloy galvanic anode

  8. Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan-Sungur, Esra, E-mail: esungur@istanbul.edu.tr [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Unsal-Istek, Tuba [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Cansever, Nurhan [Yıldız Technical University, Faculty of Chemistry-Metallurgy, Metallurgical and Materials Engineering Department, 34210 Esenler, Istanbul (Turkey)

    2015-07-15

    The effects of Ag–Cu ions on the microbiologically induced corrosion of galvanized steel in the presence of Desulfovibrio sp. and Desulfosporosinus sp. were investigated. The corrosion behavior of galvanized steel was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The biofilm, corrosion products and Ag–Cu ions on the surfaces were investigated by using scanning electron microscopy, energy dispersive X-ray spectrometry and elemental mapping. The biofilm layer formed by the Desulfovibrio sp. was stable covering the all surface of galvanized steel coupons, while that by Desulfosporosinus sp. was intermittent, highly porous and heterogeneous. It was found that both of the sulfate reducing bacteria species accelerated corrosion of the galvanized steel. However, it was detected that Desulfosporosinus sp. was more corrosive for galvanized steel than Desulfovibrio sp. Scanning electron microscopy images showed that Desulfovibrio sp. and Desulfosporosinus sp. in biofilm clustered into patches on the galvanized steel surface when the culture contained toxic Ag–Cu ions. The ions affected the growth of the sulfate reducing bacteria strains in different ways and hence the corrosion behaviors. It was observed that the Ag–Cu ions affected negatively growth of Desulfosporosinus sp. especially after 24 h of exposure leading to a decrease in the corrosion rate of galvanized steel. However, Desulfovibrio sp. showed more corrosive effect in the presence of the ions according to the ions-free culture. Energy dispersive X-ray spectrometry analysis showed that corrosion products on the surfaces were mainly composed of Zn, S, Na, O and P. - Highlights: • Galvanized steel was corroded by Desulfosporosinus sp. and Desulfovibrio sp. • Desulfosporosinus sp. is more corrosive than Desulfovibrio sp. • The Ag–Cu ions affected corrosion behavior of Desulfosporosinus sp. and Desulfovibrio sp. on galvanized steel.

  9. Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions

    International Nuclear Information System (INIS)

    Ilhan-Sungur, Esra; Unsal-Istek, Tuba; Cansever, Nurhan

    2015-01-01

    The effects of Ag–Cu ions on the microbiologically induced corrosion of galvanized steel in the presence of Desulfovibrio sp. and Desulfosporosinus sp. were investigated. The corrosion behavior of galvanized steel was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The biofilm, corrosion products and Ag–Cu ions on the surfaces were investigated by using scanning electron microscopy, energy dispersive X-ray spectrometry and elemental mapping. The biofilm layer formed by the Desulfovibrio sp. was stable covering the all surface of galvanized steel coupons, while that by Desulfosporosinus sp. was intermittent, highly porous and heterogeneous. It was found that both of the sulfate reducing bacteria species accelerated corrosion of the galvanized steel. However, it was detected that Desulfosporosinus sp. was more corrosive for galvanized steel than Desulfovibrio sp. Scanning electron microscopy images showed that Desulfovibrio sp. and Desulfosporosinus sp. in biofilm clustered into patches on the galvanized steel surface when the culture contained toxic Ag–Cu ions. The ions affected the growth of the sulfate reducing bacteria strains in different ways and hence the corrosion behaviors. It was observed that the Ag–Cu ions affected negatively growth of Desulfosporosinus sp. especially after 24 h of exposure leading to a decrease in the corrosion rate of galvanized steel. However, Desulfovibrio sp. showed more corrosive effect in the presence of the ions according to the ions-free culture. Energy dispersive X-ray spectrometry analysis showed that corrosion products on the surfaces were mainly composed of Zn, S, Na, O and P. - Highlights: • Galvanized steel was corroded by Desulfosporosinus sp. and Desulfovibrio sp. • Desulfosporosinus sp. is more corrosive than Desulfovibrio sp. • The Ag–Cu ions affected corrosion behavior of Desulfosporosinus sp. and Desulfovibrio sp. on galvanized steel

  10. Anticorrosive Performance of Zinc Phosphate Coatings on Mild Steel Developed Using Galvanic Coupling

    Directory of Open Access Journals (Sweden)

    M. Arthanareeswari

    2013-01-01

    Full Text Available The anticorrosive performance of zinc phosphate coatings developed by galvanic coupling technique on mild steel substrates using the cathode materials such as titanium (Ti, copper (Cu, brass (BR, nickel (Ni, and stainless steel (SS is elucidated in this study. Thermal and chemical stability tests, immersion test in 3.5% NaCl, ARE salt droplet test, and salt spray test were carried out. The study reveals that the mild steel substrates phosphated under galvanically coupled condition showed better corrosion resistance than the one coated without coupling. The open circuit potential (OCP of phosphated mild steel panels in 3.5% NaCl was found to be a function of phosphate coating weight and porosity of the coating.

  11. Corrosion of bare and galvanized steel in gypsum

    Directory of Open Access Journals (Sweden)

    Gómez, Mercedes

    1988-12-01

    Full Text Available Gypsum is a relatively low-cost building material much abounding in our country. When it is put in contact with steel, it may produce high corrosion rates due to its pH value (close to 7. This work reports the results obtained in studying the corrosion rates of bare and galvanized steel in contact with gypsum and plaster, as well as the influence curing thermal treatment applied to gypsum, enviromental relative humidity and addition of compounds with different natures and purposes may have in such process. In-situ observations, as well as the measurement of the Polarization Resistance and the weight loss have been used as measurement technics. From the results obtained it has been possible to deduce that galvanized steel has better behaviour in dry enviroments than bare steel in the same conditions and moist atmosphere induces proportionally more corrosion in galvanized steel than in bare one. Additions to gypsum do not modified these conclusions, though it may be pointed out that addition of nitrites or lime improves the behaviour of bare steel, while galvanized behaviour is not modified. The addition of lime is not recommended because phenomena of dilated along time expansion may take place.

    El yeso es un material de construcción de relativo bajo coste y que, además, es muy abundante en nuestro país. Debido a su pH cercano a la neutralidad, cuando entra en contacto con el acero, este puede corroerse a elevadas velocidades. En esta comunicación se presentan los resultados de un estudio sobre la velocidad de corrosión del acero desnudo y galvanizado en contacto con yeso y escayola y la influencia que tienen: el tratamiento térmico del curado del yeso, la humedad relativa ambiental y la adición de aditivos de diversa naturaleza y finalidad. Como técnicas de medida se han utilizado la medida de la Resistencia de Polarización y de la pérdida de peso, así como observaciones visuales. De los resultados se puede deducir que en

  12. Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M.; Pokorny, P.; Stoulil, J. [University of Chemistry and Technology, Prague (Czech Republic)

    2017-04-15

    Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

  13. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  14. Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

    International Nuclear Information System (INIS)

    Wang, K. K.; Wang, H. P.; Chang, L.; Gan, D.; Chen, T. R.; Chen, H. B.

    2012-01-01

    The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at 800 .deg. C for 60 s in N 2 -10% H 2 atmosphere with a dew point of -30 .deg. C, and were then galvanized in a bath containing 0.2%Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only Fe 2 Al 5 intermetallic phase was formed. No orientation relationship between the Fe 2 Al 5 phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from Al 3+ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of Fe 2 Al 5 and Al 2 O 3 . TEM/EDS analysis verifies the existence of Al 2 O 3 in the boundaries of Fe 2 Al 5 grains. The nucleation of Fe 2 Al 5 and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of Fe 2 Al 5

  15. Effect of hot dip galvanization on the fatigue strength of steel bolted connections

    Directory of Open Access Journals (Sweden)

    S.M.J. Razavi

    2017-07-01

    Full Text Available Hot dip galvanized steel bolted joints has been tested under fatigue loading to evaluate the effect of galvanizing coating on the fatigue strength of S355 structural steel. The experimental results showed that the decrease of the fatigue life of coated specimens in comparison with that of uncoated joints is very limited and the results are in good agreement with Eurocode detail category, without substantial reductions. The procedure for coating and preparation of the bolted joints is described in detail in this paper providing a useful tool for engineers involved in similar practical applications. The experimental results are compared with the previously published data on central hole notched galvanized and not treated specimens characterized by the same geometry.

  16. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?

    Science.gov (United States)

    Serhan, Hassan; Slivka, Michael; Albert, Todd; Kwak, S Daniel

    2004-01-01

    Surgeons are hesitant to mix components made of differing metal classes for fear of galvanic corrosion complications. However, in vitro studies have failed to show a significant potential for galvanic corrosion between titanium and stainless steel, the two primary metallic alloys used for spinal implants. Galvanic corrosion resulting from metal mixing has not been described in the literature for spinal implant systems. To determine whether galvanic potential significantly affects in vitro corrosion of titanium and stainless steel spinal implant components during cyclical compression bending. Bilateral spinal implant constructs consisting of pedicle screws, slotted connectors, 6.35-mm diameter rods and a transverse rod connector assembled in polyethylene test blocks were tested in vitro. Two constructs had stainless steel rods with mixed stainless steel (SS-SS) and titanium (SS-Ti) components, and two constructs had titanium rods with mixed stainless steel (Ti-SS) and titanium (Ti-Ti) components. Each construct was immersed in phosphate-buffered saline (pH 7.4) at 37 C and tested in cyclic compression bending using a sinusoidal load-controlling function with a peak load of 300 N and a frequency of 5 Hz until a level of 5 million cycles was reached. The samples were then removed and analyzed visually for evidence of corrosion. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to evaluate the extent of corrosion at the interconnections. None of the constructs failed during testing. Gross observation of the implant components after disassembly revealed that no corrosion had occurred on the surface of the implants that had not been in contact with another component. The Ti-Ti interfaces showed some minor signs of corrosion only detectable using SEM and EDS. The greatest amount of corrosion occurred at the SS-SS interfaces and was qualitatively less at the SS-Ti and Ti-SS interfaces. The results from this study indicate

  17. Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K. K.; Wang, H. P.; Chang, L.; Gan, D. [National Sun Yat-Sen Univ., Kaohsiung (China); Chen, T. R.; Chen, H. B. [Steel and Aluminum R and D Development, Kaohsiung (China)

    2012-01-15

    The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at 800 .deg. C for 60 s in N{sub 2}-10% H{sub 2} atmosphere with a dew point of -30 .deg. C, and were then galvanized in a bath containing 0.2%Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only Fe{sub 2}Al{sub 5} intermetallic phase was formed. No orientation relationship between the Fe{sub 2}Al{sub 5} phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from Al{sup 3+} ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of Fe{sub 2}Al{sub 5} and Al{sub 2}O{sub 3}. TEM/EDS analysis verifies the existence of Al{sub 2}O{sub 3} in the boundaries of Fe{sub 2}Al{sub 5} grains. The nucleation of Fe{sub 2}Al{sub 5} and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of Fe{sub 2}Al{sub 5}.

  18. 76 FR 19382 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION... the United States is materially retarded, by reason of [[Page 19383

  19. Development of Continuous Galvanization-compatible Martensitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y. F.; Song, T. J.; Kim, Han S.; De Cooman [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kwak, J. H. [POSCO Gwangyang Works, Gwangyang (Korea, Republic of)

    2012-01-15

    The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% H{sub 2} + N{sub 2} atmosphere with the dew point of -35 .deg. C resulted in the formation of a thin c-xMno.SiO{sub 2} (x>1) oxide film and amorphous a-xMnO.SiO{sub 2} oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin c-xMnO.SiO{sub 2} (x>1) oxide films was reduced by the Al. The a-xMnO.SiO{sub 2} (x<0.9) and a-SiO{sub 2} (x>1) oxide film was also reduced and the amorphous a-xMnO.SiO{sub 2} and a-SiO{sub 2} particles were embedded in the Fe{sub 2}Al{sub 5-x}Zn{sub x} inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline c-xMn.SiO{sub 2} (x>1) oxides but not the amorphous a-xMnO.SiO{sub 2} (x<0.9) and a-SiO{sub 2} oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

  20. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    Science.gov (United States)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  1. 76 FR 21914 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  2. CO2 laser welding of galvanized steel sheets using vent holes

    International Nuclear Information System (INIS)

    Chen Weichiat; Ackerson, Paul; Molian, Pal

    2009-01-01

    Joining of galvanized steels is a challenging issue in the automotive industry because of the vaporization of zinc at 906 deg. C during fusion welding of steel (>1530 deg. C). In this work, hot-dip galvanized steel sheets of 0.68 mm thick (24-gage) were pre-drilled using a pulsed Nd:YAG laser to form vent holes along the weld line and then seam welded in the lap-joint configuration using a continuous wave CO 2 laser. The welds were evaluated through optical and scanning electron microscopy and tensile/hardness tests. The vent holes allowed zinc vapors to escape through the weld zone without causing expulsion of molten metal, thereby eliminating the defects such as porosity, spatter, and loss of penetration. In addition, riveting of welds occurred so long as the weld width was greater than the hole diameter that in turn provided much higher strength over the traditional 'joint gap' method

  3. Reaction kinetics of the formation of intermetallic Fe – Zn during hot - dip galvanizing of steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-01-01

    Full Text Available This review article mainly describes the composition of intermetallic Fe - Zn, i.e. zeta (ζ, delta (δ1k + δ1p, gamma1 (Γ1 and gamma (Γ on galvanized steel during low temperature galvanization (t ~ 450 °C. It gives detailed the formation, growth of individual phases during galvanization and their interaction. In terms of the kinetics, the formation of the coating is defined by a parabolic kinetic equation of the growth of different intermetallic phases under ideal conditions. From the available literature the rate constants of the formation of individual intermetallic phases and also for the total coating are cited. The composition of the intermetallic phases, iron content, crystal structure, and group symmetry in which the surface of galvanized steel forms.

  4. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  5. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    Science.gov (United States)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  6. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    International Nuclear Information System (INIS)

    Rafiqul, M I; Ishak, M; Rahman, M M

    2012-01-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  7. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  8. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture

    International Nuclear Information System (INIS)

    Zin, I.M.; Lyon, S.B.; Pokhmurskii, V.I.

    2003-01-01

    The corrosion inhibition of galvanized steel was studied in artificial acid rain solution using extracts of pigments normally used in organic coatings for corrosion control. It was established that a combination of zinc phosphate/molybdate and calcium ion exchange silica has a significant synergetic anticorrosion effect in the acid rain solution compared to the pigments used alone. Further, the charge transfer resistance of galvanized steel in acid rain solution saturated by the above pigment blend approaches that of strontium chromate in artificial acid rain solution. Use of the pigment blend was found to lead to development of a protective film, which is thought to be a complex mixture of calcium phosphates and zinc phosphate

  9. Improvement of the galvanized coating quality of high strength dual phase steels by pre-electroplating nickel layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, N. [Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 200135 (China); Zhang, K. [Institute of Concrete Pumps Machinery R and D, Sany Heavy Industry Co., Ltd. 410100 (China); Li, J. [Baoshan Iron and Steel Co., Ltd, Shanghai 201900 (China); Hu, W.B. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-03-15

    Galvanized dual phase steel sheets are used extensively in the industrial applications because of their excellent mechanical properties and superior corrosion resistance, but the segregation of alloying elements and the formation of oxides on the steel surface often have a deleterious effect on coating adhesion during the galvanizing process. In order to improve the coating quality, a nickel layer was pre-electroplated on the steel substrate before galvanizing and it's found that there is an improvement in the coating quality. The coating microstructures were investigated by scanning electron microscopy together with energy dispersive X-ray spectroscope, glow discharge optical emission spectroscope and X-ray diffractions. The experimental results show that the compact Ni{sub 3}Zn{sub 22} intermetallic layer formed at the zinc/nickel interface during the galvanizing process, prohibiting the nucleation and the growth of the {zeta}-Zn phase layer and resulting in the improvement of the zinc coating adhesion. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  11. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  12. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    Whereas low-carbon (galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.

  13. Analysis of the corrosion products on galvanized steels by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Kasperek, J.

    1998-01-01

    FTIR reflectance spectroscopy has been used for the characterization of products formed by an accelerated wet ageing test on industrial hot-dip galvanized steel. Several aluminium contents are selected. Various products have been detected in this study. The kind and amount vary with the substrate, the type of ageing test used, the relative humidity level and the temperature. The galvanized coatings studied show a mixed zinc-aluminium compound, Zn 6 Al 2 (OH) 16 CO 3 .4H 2O. This phase is observed from the first exposure time on all coatings regardless of the amount of aluminium. Contrary to zinc, no basic aluminium compound has been detected. (orig.)

  14. The activation controlled galvanic corrosion of Carbon Steel/Zinc couple in deaerated stirred 0.2 N HCl

    International Nuclear Information System (INIS)

    Saeed, F. M. M.; Slaiman, Q. J. M.

    2005-01-01

    The effect of galvanic coupling of carbon steel to zinc (C.S. /Zn) in Deaerated 0.2 N HCl was studied using the multiple zero resistance technique to measure the galvanic current (Ig) and the coupling potential (Ecop,) versus time for the coupled metals. It was found that altering area ratio (AR) (Cathode/Anode) of the coupled metals and increasing temperature played an important role in the increasing corrosion rate as well as changing the galvanic factor (GF), galvanic current (Ig), and dissolution current (Id), in most of the cases. (author)

  15. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    Science.gov (United States)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  16. Thermogalvanic corrosion and galvanic effects of copper and AISI 316L stainless steel pairs in heavy LiBr brines under hydrodynamic conditions

    International Nuclear Information System (INIS)

    Sánchez-Tovar, R.; Montañés, M.T.; García-Antón, J.

    2012-01-01

    Highlights: ► Thermogalvanic corrosion results in an increase of the current densities. ► Thermogalvanic effect increases as temperature difference between tubes is higher. ► Potentials fit linearly with increase in temperature. ► ZRA shows hot cathodes for AISI 316L while cold ones for copper and galvanic pairs. ► Weight loss tests show a combined effect between thermogalvanic and galvanic effects. - Abstract: Thermogalvanic corrosion of the copper/copper and AISI 316L/AISI 316L stainless steel pairs was studied in heavy lithium bromide brines under hydrodynamic conditions. The galvanic coupling effect between copper and stainless steel was also analysed. The cold electrode (25 °C) was the stainless steel for the galvanic pair, whereas copper temperature varied (25, 50 and 75 °C). A hydrodynamic circuit was designed to study thermogalvanic corrosion by means of the zero resistance ammeter technique. Hot cathodes take place in stainless steel pairs while cold cathodes are present in copper/copper and stainless steel/copper pairs; this agrees with the thermal temperature coefficient of the potential sign. Thermogalvanic corrosion increases corrosion rates, especially working with copper. Weight loss measurements show that there is a combined effect due to the thermogalvanic and the galvanic effects.

  17. Nanoscale analysis of the influence of pre-oxidation on oxide formation and wetting behavior of hot-dip galvanized high strength steel

    International Nuclear Information System (INIS)

    Arndt, M.; Duchoslav, J.; Steinberger, R.; Hesser, G.; Commenda, C.; Samek, L.; Arenholz, E.

    2015-01-01

    Highlights: • Pre-oxidized hot-dip galvanized advanced high strength steel was examined. • The interface was analyzed in detail via high energy resolution Auger spectra. • Evidence for an aluminothermic reduction of the Mn oxide was found. • A new model for galvanizing high manganese steel was developed. - Abstract: Hot-dip galvanized (HDG) 2nd generation advanced high strength steel (AHSS), nano-TWIP (twinning induced plasticity) with 15.8 wt.% Mn, 0.79 wt.% C, was analyzed at the interface between steel and zinc by scanning Auger electron microscopy (AES) in order to confirm and improve an existing model of additional pre-oxidation treatment before annealing and immersion into the hot zinc bath. Furthermore these steel samples were fractured in the analysis chamber of the AES and analyzed without breaking vacuum. In these measurements the results of an aluminothermic reduction of the manganese and iron surface oxides on the steel could be confirmed by AES

  18. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    Science.gov (United States)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  19. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  20. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    Science.gov (United States)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  1. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  2. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  3. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  4. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Deflorian, F., E-mail: flavio.deflorian@ing.unitn.it [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Fedel, M.; Rossi, S. [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Kamarchik, P. [PPG Industries, Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, PA 15101 (United States)

    2011-09-30

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO{sub 2} alone and in combination with milled SiO{sub 2} nanoparticles was investigated. For this purpose milled CeO{sub 2}, CeO{sub 2} and SiO{sub 2} milled together and milled SiO{sub 2} particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO{sub 2} and CeO{sub 2} particles promote the formation of an effective corrosion pigment

  5. Flow-accelerated corrosion characteristics of galvanically coupled dissimilar metals

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Kim, Jnng Gu

    2001-01-01

    Flow accelerated galvanic corrosion characteristics of a carbon steel coupled to stainless steel were investigated in deaerated alkaline-chloride solutions as a function of flow velocities, pH and temperatures. The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE(Rotating Cylinder Electrode). Carbon steel showed active behavior in the deaerated alkaline-chloride solution. The galvanic current density of carbon steel increased with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at 25 deg. C, whereas the flow velocity increased galvanic current density significantly at 50 .deg. C and 75 .deg. C. This might be due to the increased solubility of magnetite at the higher temperatures

  6. Issues in recycling galvanized scrap

    Energy Technology Data Exchange (ETDEWEB)

    Koros, P.J. [LTV Steel Co., Inc., Cleveland, OH (United States); Hellickson, D.A. [General Motors Corp., Detroit, MI (United States); Dudek, F.J. [Argonne National Lab., IL (United States)

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  7. Effect of chemical composition of steel on the structure of hot – dip galvanized coating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-01-01

    Full Text Available This article describes the effect of the content of conventional steel impurity elements on the thickness and composition of the zinc layer. This article is focused primarily on low-temperature, batch hot-dip galvanizing; however, the continuous coating process is also mentioned. The main discussion covers galvanizing from pure zinc melt, and only touches on galvanizing from melts with the usual amounts of aluminium (0,2 wt. %. Silicon, phosphorus, aluminium and sulfur may have an especially negative effect on the mechanical properties of the coating and its final appearance. The content of ballast carbon and manganese has a rather limited effect on composition and coating thickness.

  8. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding

    International Nuclear Information System (INIS)

    Ma, Junjie; Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-01-01

    Highlights: • Defect-free two-pass laser partially penetrated lap joint of galvanized steel to aluminum was achieved. • The thickness of the Al-rich intermetallic compounds could be controlled by optimal parameters. • The dynamic behavior of the molten pool and keyhole were monitored by a high speed charge-coupled device camera. • The presence of zinc in the intermetallic compounds could improve the strength of the lap joints. - Abstract: A welding procedure based on using two-pass laser scans is introduced for dissimilar joining of overlapped galvanized high-strength dual-phase (DP) steel DP590 to aluminum alloy (AA) 6061 sheets. The first pass is based on a defocused laser spot that scans across the top of the two overlapped sheets and heats the zinc coating at the faying surface to be melted and partially vaporized, while the second pass is executed with a focused laser spot in order to perform the welding. Completely defect-free galvanized steel to aluminum lap joints were obtained by using this two-pass laser welding procedure. An on-line machine vision system was applied to monitor the keyhole dynamics during the laser welding process. An energy-dispersive X-ray spectroscopy (EDS) was carried out to determine the atomic percent of zinc, aluminum, and iron in the galvanized steel to aluminum lap joints. Mechanical testing and micro-hardness test were conducted to evaluate the mechanical properties of the galvanized steel to aluminum lap joints. The experimental results showed that the lap joint of galvanized steel to aluminum obtained by the two-pass laser welding approach had a higher failure value than those joints obtained when the zinc at the faying surface was mechanically removed under the same welding speed and laser power

  9. Influence of increasing phosphate/silikate contents on the pitting and general corrosion of galvanized steel tubing and the corrosion of copper in warm water mixed installation systems

    International Nuclear Information System (INIS)

    Ehreke, J.; Stichel, W.

    1989-01-01

    In hot tap water (65 0 C) the influence of a mixture of phosphate/silicate inhibitor on the general, the pitting and the galvanic corrosion of galvanized steel tubes and the general corrosion of copper in mixed installations of both metals was investigated. Increasing concentration of inhibitors descreases the general corrosion rate of galvanized steel and copper. A worth mentioning reduction of pitting and galvanic corrosion of steel could be reached only with high concentrations of 5 mg/l P 2 O 5 and 30 mg/l SiO 2 . Galvannealed tubes are much more sensitive to pitting corrosion than galvanized ones. Referring to this they could not be inhibited. (orig.) [de

  10. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  11. Laboratory studies of galvanic corrosion. I. Two-metal couples

    International Nuclear Information System (INIS)

    Mansfeld, F.; Kenkel, J.V.

    1975-01-01

    Galvanic interaction of stainless steel 304L, Ni 270, Cu, Ti--6Al--4V, Sn, 4130 steel, Cd, and Zn has been studied in 3.5 percent NaCl using galvanic current and weight loss measurements in 24-hour tests. Galvanic couples of 4130 steel and one of the Al alloys 1100, 2024, 2219, 6061, and 7075 have also been evaluated in tap water and distilled water. Galvanic current data can be used to assess both the effect of different dissimilar cathode materials as well as the relative susceptibility to galvanic corrosion of anode materials. For 3.5 percent NaCl, it has been found that the effect of the cathode material decreases in the order Cu greater than Ni greater than stainless steel greater than Ti--6Al--4V, while the relative susceptibility of anode materials decreases in the order Sn greater than Zn greater than 4130 steel greater than Cd. An analysis of data in various electrolytes shows that coupling of 4130 steel to Al alloys leads to cathodic protection of the steel in 3.5 percent NaCl, but to accelerated corrosion in tap water and distilled water. (U.S.)

  12. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    Science.gov (United States)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  13. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  14. Diversification of Intermetallic Zn Phases Growth on Steel During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Węgrzynkiewicz S.

    2016-06-01

    Full Text Available The steel substrate formed as the result of oxy-acetylene cutting (OAB was treated differently - using: softening annealing, grinding and electro-polishing. Investigations were focused on the influence of additional processing on the structure and corrosion resistance of the deposited zinc coating. The hot - dip Zn galvanizing process was conducted in industrial conditions. Parameters were fixed: temperature 457 °C, dipping time 150 s. The coating thickness diversification dependent on the sub-surface steel structure was analysed and compared to the previous results. The correlation between conducted treatment and coatings morphology was determined.

  15. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India

    International Nuclear Information System (INIS)

    Natesan, M.; Venkatachari, G.; Palaniswamy, N.

    2006-01-01

    As a part of updating Corrosion Map of India project, atmospheric corrosion behaviour of commercially available engineering materials such as mild steel, galvanized iron, zinc and aluminium metals was studied in marine, industrial, urban, and rural environments by weight loss method at 10 exposure stations in India over a period of 5 years. The results of these studies demonstrated that galvanized iron, zinc and aluminium metals were several times more durable than mild steel. Compared to galvanized iron and zinc, aluminium provided superior protection in industrial and marine environment except at Mormugao Port Trust (MPT). It also offered much better resistance to corrosion in rural environments. At certain places, galvanized iron proved to be more durable than aluminium. The results obeyed well with the empirical kinetics equation of the form C = Kt n , where K and C are the corrosion losses in μm after 1 and 't' years of the exposure, respectively, and 'n' is a constant. Based on 'n' values, the corrosion mechanisms of these metals are predicted. The corrosion products formed on the metal samples in Chennai marine atmosphere were identified by X-ray diffraction analysis

  16. Galvanic corrosion -- Effect of environmental and experimental variables

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Lum, B.Y.

    1999-01-01

    Galvanic corrosion behavior of A 516 steel (UNS K01800) coupled to UNS N06022 and UNS R53400, respectively was evaluated in an acidic brine (pH ∼ 2.75) at 30 C, 60 C and 80 C using zero resistance ammeter method. A limited number of experiments were also performed in a neutral brine involving A 516 steel/UNS N06022 couple. The steady-state galvanic current and galvanic potential were measured as functions of anode-to-cathode (A/C) area ratio and electrode distance. Results indicate that the galvanic current was gradually reduced as the A/C area ratio was increased. No systematic trend on the effect of A/C area ratio on the galvanic potential was observed. Also, no significant effect of electrode distance on the galvanic current and galvanic potential was evident. In general, increased galvanic current was noticed with increasing temperature. The limited data obtained in the neutral brine indicate that the galvanic current was reduced in this environment compared to that in the acidic brine. Optical microscopic examination was performed on all tested specimens to evaluate the extent of surface damage resulting from galvanic interaction. A 516 steel suffered from general corrosion and crevice corrosion in all environments tested. Very light crevice corrosion mark was observed with UNS N06022 and R53400 in the acidic brine at 60 C and 80 C. However, this mark appears to be a surface discoloration and no actual crevice was detected

  17. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    Science.gov (United States)

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  18. About the influence of the topography of the steel surface on faults during hot galvanizing of part loads; Zum Einfluss der Topographie der Stahloberflaeche auf Fehler beim Stueckgut-Feuerverzinken

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.D. [Institut fuer Korrosionsschutz GmbH, Dresden (Germany); Schubert, P.

    2002-03-01

    The topography of the steel surface can influence the formation of layers during hot galvanizing in many ways. Information is given on galvanizing faults caused by impressions in the steel surface (rolling and drawing ridges). Flux remainders accumulated in these impressions can be encapsulated in the zinc coating during hot galvanizing. This leads to cavities and pores in the coating or to sponge-like zinc raisings at its surface. The flux remainders from the zinc coating can boil during powder coating and lead to blisters and pimple-like rises in the coating. Therefore, steel surfaces designed for galvanizing should be even or only have flat impressions. (orig.)

  19. Influence of MAO Treatment on the Galvanic Corrosion Between Aluminum Alloy and 316L Steel

    Science.gov (United States)

    Yang, Yuanhang; Gu, Yanhong; Zhang, Lei; Jiao, Xiangdong; Che, Juntie

    2017-12-01

    To slow down the galvanic corrosion of aluminum alloy and 316L stainless steel in subsea water, a micro-arc oxidation (MAO) coating was prepared on the surface of the Al alloy, and no treatment was performed on the surface of the 316L. The surface morphology of MAO-coated Al alloy was evaluated using a scanning electron microscope (SEM) before and after corrosion. A micro-hardness tester was used to measure the micro-hardness. Corrosion behaviors were evaluated by open-circuit potential (OCP), potentiodynamic polarization (PDP) and electrode impedance spectroscopy (EIS) tests in a 3.5 g/L NaCl solution. The results of PDP testing show that the corrosion potential of the MAO-coated galvanic pair was more positive than that of the uncoated galvanic pair and that the corrosion current density was smaller than that of the uncoated galvanic pair. EIS results show that the impedance of the galvanic pair increased after MAO coating. SEM images show that the corrosion damage of the uncoated Al alloy was more severe than that of the MAO-coated one, and the post-corrosion images of the surface of the 316L connected with MAO-coated Al alloy were more compact than those of the 316L connected with uncoated Al alloy. A physical model was developed to discuss the influence of MAO treatment on the galvanic corrosion process and corrosion mechanism.

  20. Protection of Steel Corrosion in Concrete Members by the Combination of Galvanic Anode and Nitrite Penetration

    Directory of Open Access Journals (Sweden)

    Minobu Aoyama

    2014-01-01

    Full Text Available Chloride induced-corrosion of steel bars in concrete can make cracks and exfoliation in near-surface regions in reinforced concrete structures. In this paper, we described the basic concept and practice of steel bars corrosion protection method by the combination of galvanic anode (zinc wire and the penetration of nitrite ions from mortar layers containing a large amount of lithium nitrite.

  1. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Feng, E-mail: fangfeng@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Hu Xianjun [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Chen Shaohui [Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Xie Zonghan [School of Engineering, Edith Cowen University, Joondalup, WA 6027 (Australia); Jiang Jianqing [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Annealing time on microstructure and mechanical properties of cold-drawn steel wires were studied. Black-Right-Pointing-Pointer Exothermic peak in cold-drawn wire was resulting from the spheroidization of lamellar cementite. Black-Right-Pointing-Pointer Spheroidization of lamellar cementite is the main effect for torsion property of wires after annealing. - Abstract: Spheroidization of lamellar cementite often occurs in cold-drawn pearlitic steel wires during galvanizing treatment, leading to the degradation of mechanical properties. Therefore, it is important to understand effects of galvanization process on microstructure and mechanical properties of cold-drawn wires. In this paper, cold-drawn steel wires were fabricated by cold drawing pearlitic steel rods from 13 mm to 6.9 mm in diameter. Thermal annealing at 450 Degree-Sign C was used to simulate galvanizing treatment of steel wires. Tensile strength, elongation and torsion laps of steel rods and wires with, and without, annealing treatment were determined. Microstructure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, differential scanning calorimetry (DSC) was used to probe the spheroidization temperature of cementite. Experimental results showed that tensile strength of wires increased from 1780 MPa to 1940 MPa for annealing <5 min, and then decreased. Tensile strength became constant for annealing >10 min. Elongation of wires decreased for annealing <2.5 min, and then recovered slightly. It approached a constant value for annealing >5 min. Tensile strength and elongation of wires were both influenced by the strain age hardening and static recovery processes. Notably, torsion laps of wires hardly changed when annealing time was less than 2.5 min, and then decreased rapidly. Its value became constant when the hold time is greater than 10 min. Lamellar cementite began to spheroidize at annealing >2.5 min

  2. Galvanic corrosion evaluation of high activity nuclear waste container metals components

    International Nuclear Information System (INIS)

    Semino, C.J.

    1990-04-01

    The final disposal container for vitrified high-level waste is assumed to have three metallic layers: a stainless steel inner layer, and external one of a metal to be selected and a thick lead layer (10 cm) in the middle. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. Preliminary titanium-lead galvanic couple tests showed that titanium behaved always as a cathode in the galvanic couple, promoting the galvanic corrosion of lead. This corrosion study focused on the behaviour of lead-AISI 304 stainless steel and lead-carbon steel (SAE 1010 and 1020) galvanic couples with different area relationships, temperature and media composition. High purity lead (99,999%) and commercial lead (99,9%) were used for galvanic couples tests. Tests were performed at 75, 50, 45 and 40 deg. C. Test solution was either synthetic groundwater, a suspension of 10% bentonite in groundwater, or synthetic sea water. The synthetic sea water was used at 100, 50 and 25% concentration by dilution with distilled water. Tests with lead-304 stainless steel galvanic couples showed that lead always behaves as an anode, corroding preferentially. Very low lead corrosion rates were found in lead-carbon steel galvanic couple in 10% bentonite suspension in synthetic groundwater test at 75 deg. C. An increase of carbon content in steel has very little influence on steel corrosion rate. Commercial lead has a higher corrosion rate and presented a more pronounced attack than high purity lead. Its corrosion rate is at least twice when lead-carbon steel area relationship increases from 1:10 to 1:40. There are higher steel corrosion rates in sea water than in groundwater. Lead behaves as a cathode to the end of the test. 8 refs, 85 figs, 10 tabs

  3. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    Science.gov (United States)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  4. Galvanic corrosion study of aluminium alloy plates mounted to stainless and mild steel bolts by accelerated exposure test

    OpenAIRE

    MREMA, Emmanuel; ITOH, Yoshito; KANEKO, Akira; HIROHATA, Mikihito

    2016-01-01

    Despite the fact that aluminium alloy members have a proven durability over stainless steel members, their joint fasteners like bolts, nuts and washers are drawn from steel material due to aluminium alloy inferior mechanical properties. Bare contact between aluminium alloy members and stainless steel fasteners results to galvanic corrosion of aluminium alloy members. A corrosion behaviour study was carried out on different aluminium alloy types with different surface treatments mounted to sta...

  5. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  6. Determination of the forming limit diagram of zinc electro-galvanized steel sheets

    Directory of Open Access Journals (Sweden)

    W. Fracz

    2012-04-01

    Full Text Available Forming limit curves (FLC of deep drawing steel sheets have been determined experimentally and calculated on the base of the material tensile properties following the Hill, Swift, Marciniak-Kuczyński and Sing-Rao methods. Only the FLC modeled from a singly linear forming limit stress curve exhibits good consistence with experimental curve. It was established that a linearized limit stress locus describes adequately the actual localized neck conditions for the material chosen in this study. The quantitative X-ray microanalysis of the Fe contents in the sheet surface layer composition was used to determine cracking limit curve (CLC of electro-galvanized steel sheet. The change in zinc layer (and base sheet metal thickness was used as a criteria in calculation of the CLC.

  7. Characterization of organic-inorganic hybrid coatings for corrosion protection of galvanized steel and electroplated ZnFe steel

    Directory of Open Access Journals (Sweden)

    Maria Eliziane Pires de Souza

    2006-03-01

    Full Text Available The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this work organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.

  8. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    Science.gov (United States)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  9. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  10. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  11. Area effect on galvanic corrosion of condenser materials with titanium tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Uh Chul

    1993-01-01

    Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, of this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R 1 (surface area of carbon steel/surface area of Ti) and R 2 (surface area of carbon steel/surface area of Cu) are very improtant for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when this ratio is 10 -2 . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R 1 and R 2 on the polarization curve. (Author)

  12. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  13. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  14. 76 FR 23548 - Galvanized Steel Wire From the People's Republic of China and Mexico: Initiation of Antidumping...

    Science.gov (United States)

    2011-04-27

    ... Wire From the People's Republic of China and Mexico: Initiation of Antidumping Duty Investigations... Imports of Galvanized Steel Wire from the People's Republic of China (the PRC) and Mexico and... Initiation Checklist at 6-10 and Mexico Initiation Checklist at 6- 10. Export Price The PRC For the PRC...

  15. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    Science.gov (United States)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  16. Description of structure of Fe-Zn intermetalic compounds present in hot-dip galvanized coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-10-01

    Full Text Available The article is describing formation, composition, morphology and crystallographic characteristics of intermetalic compounds Fe - Zn present in the coating formed during the process of low-temperature hot-dip galvanizing of carbon steels. In mutual confrontation we introduce older bibliography and results of latest modern researches based on combination of most precise analytical methods.

  17. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    Science.gov (United States)

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  18. Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

    International Nuclear Information System (INIS)

    Yonggang, Liu; Lei, Cui

    2014-01-01

    Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area

  19. Chemical processes of galvanized steel corrosion in the post-LOCA phase of a PWR and the prevention of sump screen clogging

    International Nuclear Information System (INIS)

    Hoffmann, W.; Kryk, H.

    2012-09-01

    The Emergency Core Coolant System has to remove the decay heat in case of a Loss of Coolant Accident (LOCA). Therefore, the emergency core cooling pumps recirculate the fluid from the sump back into the primary circuit. Sump strainers are mounted at the pump inlets to retain particles and fibrous insulation material. A fiber bed formed on strainers may act as an additional debris filter. However, a critical increase of pressure drop generated by debris or corrosion products could cause a failure of emergency cooling. Problems of insulation materials NUKON R (fiberglass) or CalSil and Aluminium may appear if containment spray systems using alkaline additives are installed. In such cases, dissolution / precipitation reactions resulting from insulation materials were observed, which increase the risk of sump screen blockage. In German NPPs, there are no containments spray systems, and insulation consists of more resistant materials like mineral wool (rock wool) and stainless steel. However, large scale experiments from AREVA have shown that sump screen clogging may be initiated by boric acid containing For generic investigations of galvanized steel corrosion behaviour under post-LOCA conditions, the down-scaled test facility KorrVA was designed consisting of a loop with trickle section (location of LOCA), bath section (sump), horizontal strainer and circulation pump. The low coolant volume (60 L) permits an easy and efficient purification between the experiments including complete removal of corrosion products. About 90 experiments were carried out with galvanized steel gratings and galvanized steel coupons in boric acid media in order to determine corrosion mechanisms depending on different experimental conditions like temperature, water chemistry and hydrodynamic conditions (flow impact, simulated by different nozzles). Practically, the fiber bed was prepared during a preliminary stage with the aim to separate effects of fiber bed formation on sump strainer clogging

  20. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  1. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    Science.gov (United States)

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon

    2010-11-01

    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  2. Laboratory studies of galvanic corrosion. III. Effect of velocity in NaCl and substitute ocean water

    International Nuclear Information System (INIS)

    Mansfeld, F.; Kenkel, J.V.

    1977-01-01

    The galvanic corrosion behavior of 4340 steel coupled to Type 304 stainless steel, Cu, Ti-6Al-4V, Al 2024, Al 6061, and zinc has been studied in 3.5 percent NaCl and ASTM substitute ocean water as a function of velocity using a rotating galvanic couple electrode holder. For steel coupled to Type 304 stainless steel, Cu or Ti, the galvanic current generally increases proportional to the square root of the rotation speed in both media. The increase is, however, smaller in the substitute ocean water. For couples involving Al alloys and Zn, the galvanic current has a more complicated dependence on velocity in substitute ocean water than in 3.5 percent NaCl

  3. Corrosion by galvanic coupling on the steam generator auxiliary feedwater pumps at the level of the steam-tight boxes

    International Nuclear Information System (INIS)

    Dordonat, M.; Huet, M.

    1994-01-01

    Corrosion by galvanic coupling in steam generator auxiliary pump is coming from electroplated chromium cracks for the rotor steel, and from chemical KANIGEN nickel cracks for the steam-tight boxes black steel. To avoid galvanic coupling between Cr coating and the rotor steel, first an electrolytic Ni coating is done followed by an electrolytic Cr coating. To avoid galvanic coupling between black steel and graphite rings, black steel is replaced by 316L steel. (A.B.). 1 ref., 7 figs

  4. Corrosion Resistance of Galvanized Steel in the Environment of a Bioreactor

    Directory of Open Access Journals (Sweden)

    Šustr Michal

    2016-06-01

    Full Text Available The article deals with monitoring the corrosion resistibility of welded materials in the anaerobic fermenter (bioreactor. The main goal of this research is to assess the change of hardness after degradation. The change of hardness occurs in the corrosion environment and it correlates with the corrosion resistibility of material. The purpose of this experiment is to recognize the possibilities of using the CMT welded materials in the defined environment. As an innovative technology the acoustic emission method is used for assessment of surface layer disruption during hardness testing. Aluminium alloy with galvanized steel (AluZinc was used as an experimental material. The basic materials were welded by the filler material AlSi3.

  5. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  6. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    International Nuclear Information System (INIS)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-01-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO_4·H_2O; HA, Ca_1_0(PO_4)_6(OH)_2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO_3)_2·4H_2O and NH_4H_2PO_4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  7. Microstructure development and mechanical properties of quenching and partitioning (Q and P) steel and an incorporation of hot-dipping galvanization during Q and P process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Yu, Hao, E-mail: yhzhmr@126.com

    2013-12-01

    The “quenching and partitioning” (Q and P) process has recently been substantiated to be a unique technological route for the production of high strength steels with significant amounts of retained austenite, and thus to provide better combination of strength and ductility. In this work, intercritically annealed specimens followed by Q and P treatment have been applied to low-carbon steel with chemical composition typical for conventional TRIP-assisted steels. Microstructure of the steel treated by the Q and P process was characterized by means of optical microscope, SEM, TEM and XRD. The study suggests that microstructure is mainly composed of ferrite, lath martensite, martensite–austenite islands, retained austenite and a small amount of bainite formed during partitioning. The fraction of bainite formed during partitioning is proportional to quenching temperature. The mechanical property of specimen treated by the Q and P process exhibits an improved combination of strength and ductility than that of the Q and T process. Two schemes of hot-dipping galvanization processes were designed. The results indicate that both hot-dip galvanizing schemes present a limited reduction in tensile strength and a slight enhancement of ductility. The scheme of galvanizing and partitioning after the quenching progress shows a better combination of strength and ductility.

  8. Galvanic Corrosion among Different Combination of Orthodontic Archwires and Stainless Steel Brackets

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2014-06-01

    Full Text Available Introduction: The aim of this study was to assess the galvanic behavior of different bracket and archwire combinations that are commonly used in orthodontic treatments. Methods: Three types of orthodontic archwires with a diameter of 0.016×0.022 inch and 80 standard edgewise maxillary central incisor brackets were selected. Three groups consisted of different wire-bracket couples and one group was just brackets as a control group. Each group had five samples. Four brackets were then connected to each wire by elastic bands made from electrochemically neutral material. The samples were immersed into capped containers of Fusayama-Meyer artificial saliva. After six weeks, the released nickel ions were quantified via ion absorption technique. The mean and the standard deviation of all four groups were calculated and the data were compared together with Kruskal-Wallis non-parametric statistical test. Results: The highest concentration of released nickel ions was for bracket+ steel archwire and the least for the bracket without archwire. Conclusion: There were not significant differences among experimental groups, so it could be concluded that galvanic corrosion would not be a serious consideration through orthodontic treatment.  

  9. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  10. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  11. Surface conditioning of a cold-rolled dual-phase steel by annealing in nitriding atmospheres prior to hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Luther, F.; Beste, D.; Bleck, W. [Institute for Ferrous Metallurgy (IEHK), RWTH Aachen (Germany); Dimyati, A.; Mayer, J. [Central Facility for Electron Microscopy (GFE), RWTH Aachen (Germany)

    2007-04-15

    The development of steel grades for automotive applications in the recent years has been driven on by two trends: lightweight and improved crash safety. By using steels like DP (dual phase) the goals of passenger safety, fuel efficiency and environmental friendliness can be met at reasonable price. The favorite corrosion protection method for sheet steels in the car industry is the hot-dip galvanizing process. Here, an approach was made to reduce the surface enrichment of critical alloying elements of a dual phase steel grade by reactive annealing in ammonia containing atmospheres. The effects of this treatment on mechanical properties and hot-dip coating behavior are reported. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line

    Science.gov (United States)

    Matthews, S.; James, B.

    2010-12-01

    This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.

  13. In situ Raman identification of corrosion products on galvanized steel sheets

    International Nuclear Information System (INIS)

    Bernard, M.C.; Hugot le Goff, A.; Massinon, D.; Phillips, N.; Thierry, D.

    1992-01-01

    In situ Raman spectroscopy was used to identify corrosion products on zinc immersed in chloride solutions. In aerated 0,03 M NaCl solution, zinc carbonate was identified as the main corrosion product. Even with higher chloride concentrations, for which zinc hydroxychloride was also detected, the carbon dioxide concentration is likely to be the rate controlling factor of the corrosion process. In a confinement experiment, Raman analysis revealed that the upper face of the sample was covered with zinc carbonate, whereas hydroxychlorides were identified on the confined face. This result confirmed the hypothesis of a differential aeration mechanism responsible for the formation of zinc hydroxychloride. This is in good agreement with Raman spectroscopy results obtained in the case of painted galvanized steel

  14. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    Science.gov (United States)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  15. Investigations of phosphate coatings of galvanized steel sheets by a surface-analytical multi-method approach

    International Nuclear Information System (INIS)

    Bubert, H.; Garten, R.; Klockenkaemper, R.; Puderbach, H.

    1983-01-01

    Corrosion protective coatings on galvanized steel sheets have been studied by a combination of SEM, EDX, AES, ISS and SIMS. Analytical statements concerning such rough, poly-crystalline and contaminated surfaces of technical samples are quite difficult to obtain. The use of a surface-analytical multi-method approach overcomes, the intrinsic limitations of the individual method applied, thus resulting in a consistent picture of those technical surfaces. Such results can be used to examine technical faults and to optimize the technical process. (Author)

  16. REMOVING ZINC FROM GALVANIZED STEEL SCRAP TO FEASIBLE THE BOF SLUDGE RECYCLING

    Directory of Open Access Journals (Sweden)

    Mônica Marques Caetano de Lima

    2013-06-01

    Full Text Available Galvanized steel scraps generated at Usiminas Ipatinga are recycled in BOF converters. Although they are noble products, they contain a significant quantity of zinc that escapes from the bath due to its high vapor pressure and is captured by the gas control system, appearing in BOF sludge. As BOF sludge contains high iron content, it could be recycled to the process, but due to its zinc content, it is disposed in landfills. For this reason, this study aimed to treat these scraps to remove zinc layer using a thermal treatment process. The samples were fed to a rotative furnace in an inert ambient. It was tested the hot dip galvanized and eletrogalvanized scraps, varying the zinc coating weight between 20g/m2 and 150g/m2, temperature between 700°C and 900°C and time between 3 minutes and 10 minutes. Considering these conditions, it is verified that more than 70% of the zinc layer is removed at 700°C, in 10 minutes. Dust captured is about 60% of metallic zinc and 40% as zinc oxide. Based on these results, the recycling of BOF sludge can be feasible to the ironmaking process.

  17. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  18. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  19. An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body

    Directory of Open Access Journals (Sweden)

    Sevim, Ibrahim

    2016-09-01

    Full Text Available The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW Dual Phase (DP steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness.El objetivo de este estudio es determinar la tenacidad de fractura de los aceros dual (DP soldados por puntos de resistencia (RSW. En la máquina de soldadura por puntos se realizó la soldadura de láminas de acero DP 450 galvanizado y sin galvanizar. A partir de los ensayos de tracción-cizallamiento, se calculó la tenacidad a la fractura de las uniones del acero DP 450 galvanizado y sin galvanizar. Aplicando el método de mínimos cuadrados (LSM se desarrollaron nuevas ecuaciones empíricas entre el porcentaje de energía liberada, la tenacidad de fractura y el tamaño de grieta crítica en función de la relación entre los valores de tenacidad de fractura y de dureza. Los resultados indicaron que la tenacidad de fractura de las uniones soldadas por RSW aumentó exponencialmente, mientras que la dureza disminuyó. Además, el porcentaje de energía liberada de las láminas de acero DP 450 galvanizadas y soldadas fueron menores que en el caso de las láminas sin galvanizar a valores iguales de dureza.

  20. Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

    International Nuclear Information System (INIS)

    Kim, Seong Hwan; Huh, Joo Youl; Lee, Suk Kyu; Park, Rho Bum; Kim, Jong Sang

    2011-01-01

    The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at 800 .deg. C was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure N 2 atmosphere with a dew point -40 .deg. C promoted the selective oxidation of Mn as a crystalline Mn 2 SiO 4 phase, whereas the N 2 + 10% H 2 atmosphere with the same dew point -40 .deg. C promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the Mn 2 SiO 4 phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure N 2 atmosphere resulted in a higher formation rate of Fe 2 Al 5 particles at the Zn/steel interface and better galvanizability than the N 2 + 10% H 2 atmosphere

  1. Theoretical Investigation of the Interfacial Reactions during Hot-Dip Galvanizing of Steel

    Science.gov (United States)

    Mandal, G. K.; Balasubramaniam, R.; Mehrotra, S. P.

    2009-03-01

    In the modern galvanizing line, as soon as the steel strip enters the aluminum-containing zinc bath, two reactions occur at the strip and the liquid-zinc alloy interface: (1) iron rapidly dissolves from the strip surface, raising the iron concentration in the liquid phase at the strip-liquid interface; and (2) aluminum forms a stable aluminum-iron intermetallic compound layer at the strip-coating interface due to its greater affinity toward iron. The main objective of this study is to develop a simple and realistic mathematical model for better understanding of the kinetics of galvanizing reactions at the strip and the liquid-zinc alloy interface. In the present study, a model is proposed to simulate the effect of various process parameters on iron dissolution in the bath, as well as, aluminum-rich inhibition layer formation at the substrate-coating interface. The transient-temperature profile of the immersed strip is predicted based on conductive and convective heat-transfer mechanisms. The inhibition-layer thickness at the substrate-coating interface is predicted by assuming the cooling path of the immersed strip consists of a series of isothermal holds of infinitesimal time-step. The influence of galvanizing reaction is assessed by considering nucleation and growth mechanisms at each hold time, which is used to estimate the total effect of the immersion time on the formation mechanism of the inhibition layer. The iron- dissolution model is developed based on well established principles of diffusion taking into consideration the area fraction covered by the intermetallic on the strip surface during formation of the inhibition layer. The model can be effectively used to monitor the dross formation in the bath by optimizing the process parameters. Theoretical predictions are compared with the findings of other researchers. Simulated results are in good agreement with the theoretical and experimental observation carried out by other investigators.

  2. A study on the flow-accelerated corrosion characteristics of galvanically coupled dissimilar metals

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Kim, Jung Gu

    2002-01-01

    The flow-accelerated corrosion characteristics of a carbon steel(CS) coupled to stainless steel(SS) were investigated in deaerated alkaline-chloride solutions with velocities (0, 0.2, 0.4 and 0.6 m/s), pH (8, 9 and 10) and temperatures (25, 50 and 75 .deg. C). The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE (Rotating Cylinder Electrode). CS did not show passive behavior while SS show passive behavior in the alkaline-chloride solution. Galvanic corrosion tests were conducted as a function of flow velocities, pH and temperature. The galvanic current density increases with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at 25 .deg. C, whereas the flow velocity increased galvanic current density significantly at 50 and 75 .deg. C. This might be due to the increased solubility of magnetite at the higher temperature

  3. Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Hwan; Huh, Joo Youl [Korea University, Seoul (Korea, Republic of); Lee, Suk Kyu; Park, Rho Bum; Kim, Jong Sang [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2011-02-15

    The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at 800 .deg. C was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure N{sub 2} atmosphere with a dew point -40 .deg. C promoted the selective oxidation of Mn as a crystalline Mn{sub 2}SiO{sub 4} phase, whereas the N{sub 2} + 10% H{sub 2} atmosphere with the same dew point -40 .deg. C promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the Mn{sub 2}SiO{sub 4} phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure N{sub 2} atmosphere resulted in a higher formation rate of Fe{sub 2}Al{sub 5} particles at the Zn/steel interface and better galvanizability than the N{sub 2} + 10% H{sub 2} atmosphere.

  4. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  5. Charging system with galvanic isolation and multiple operating modes

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  6. Problems with reliability and safety of hot dip galvanized steel structures Problemas com a confiabilidade e segurança de estruturas de aço galvanizadas a quente

    Directory of Open Access Journals (Sweden)

    L. Mraz

    2009-06-01

    Full Text Available Hot dip galvanizing is very effective means of protection against corrosion. Some recommendation concerning the steel quality are generally known and accepted. The process consists of cleaning (pickling or sand blasting and dipping the structures or pieces into liquid zinc bath. The case study of hot dip galvanized steels is presented. Some recent failures of hot dip galvanized welded structures and hot dip galvanized high strength steel screws are presented. Structures were made of S355 grade steel and MIG/MAG process was applied for welding. Large cracks were observed in the vicinity of welds after hot dip galvanizing process. The presence of both hydrogen and liquid metal embrittlement was identified and associated mainly with higher hardness of HAZ or the quenched and tempered steels. Possible cracking mechanisms are discussed. The influence of chemical composition and production process (welding, heat treatment was analyzed according to data published in literature. The solutions and recommendations for avoiding the failure in hot dip galvanized structures are proposed.Galvanização a quente é um meio muito efetivo de proteção contra a corrosão. Recomendações relativas a qualidade do aço são geralmente conhecidas e aceitas. O processo consiste de limpar (decapagem ou jateamento e mergulhar as estruturas ou partes destas em um banho de zinco líquido. O presente trabalho apresenta casos de falhas recentes em estruturas soldadas e em parafusos de aços de alta resistência galvanizados a quente. As estruturas foram fabricadas com aço do grau S355 e o processo MIG/MAG foi usado para a soldagem. Os parafusos foram fabricados com aço de alto carbono. Grandes trincas foram observadas nas proximidades das soldas após o processo de galvanização a quente. A ocorrência de fragilização tanto por hidrogênio como por metal líquido foi identificada e associada com a dureza elevada tanto da ZTA como dos aços temperados e revenidos. Os

  7. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  8. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    OpenAIRE

    Marroquín de Jesús, Á.; Olivares-Ramírez, J.M.; Ramos-López, G.A.; Pless, R.C.

    2009-01-01

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198-L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m², about 20% smaller than ...

  9. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    OpenAIRE

    Á. Marroquín de Jesús; J.M. Olivares–Ramírez; G.A. Ramos–López; R.C. Pless

    2009-01-01

    Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than ...

  10. Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

    Directory of Open Access Journals (Sweden)

    Pierozynski Boguslaw

    2017-12-01

    Full Text Available This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

  11. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    International Nuclear Information System (INIS)

    Song, G.M.; Vystavel, T.; Pers, N. van der; De Hosson, J.Th.M.; Sloof, W.G.

    2012-01-01

    Highlights: ► Amorphous manganese oxides present at the steel surface impair the adhesion of the zinc coating. ► The adhesion of the various interfaces that exist in zinc coated steel is quantitatively estimated using the “Macroscopic Atom” model. ► Zinc coating delaminates along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces, which agrees the theoretical calculation. - Abstract: The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar ζ-FeZn 13 particles on top of a thin inhibition layer adjacent to the steel substrate. The inhibition layer is a thin compact and continuous layer that consists of η-Fe 2 Al 5–x Zn x fine and coarse particles. The coarse faceted particles are on top and fine faceted particles are at the bottom. The steel surface is covered with small fraction manganese oxides, which may impair adhesion of the zinc coating. The adhesion at various interfaces that exist in zinc-coated steel was quantitatively estimated using a so-called “macroscopic atom” model. In addition, the adhesion at the interfaces in zinc-coated steel was qualitatively assessed by examining the fracture and delamination behavior upon tensile testing. In accordance with this model, fracture along zinc grain boundaries preceded fracture along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces.

  12. Relationship between surface structure of silicon containing steel and adhesion of hot dip galvanized coating; Si gan'yu koban no hyomen kozo to yoyu aen mekki micchakuseino kankei

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Y.; Hashimoto, S.; Ishibashi, Y. [Kokan Keisoku K.K., Kawasaki (Japan); Inagaki, J. [NKK Corp., Tokyo (Japan); Fukuda, Y. [Shuibuoka University, Shizuoka (Japan)

    2000-06-01

    The surface of the annealed steel and the exfoliated interface of the coating for the hot dip galvanized Si containing steel sheets was characterized by using SEM (Scanning Electron Microscope), AES (Auger Electron Spectroscopy) and TEM (Transmission Electron Microscopy). The adhesion of the coatings have depended on the Si content of the steel. It have been found that MnSiO{sub 3} particles are formed at the surface of the annealed steels having high Si content and that two types of grain having different distribution of the oxide exist in the steels. Large oxide particles have been formed in one type of grain and small particles are formed in the other type of grain. The different type of Fe-Zn alloy are formed on two types of grains. It have been observed that the oxide particles exist at the interface of exfoliated coatings after the adhesion test for the steels with high Si content. The distribution of the oxide particles observed at the bottom of the exfoliated coating is quite similar to that of the surface oxide of the annealed steel. From these results, the exfoliation of the coating has initiated at the oxide particles of the steel surface that has been not reduced during the hot dip galvanizing. (author)

  13. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Mousavifard, S.M.; Attar, M.M.; Ghanbari, A.; Dadgar, M.

    2015-01-01

    Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s

  14. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Mousavifard, S.M. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, A. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dadgar, M. [Textile Engineering Department, Neyshabur University, Neyshabur (Iran, Islamic Republic of)

    2015-08-05

    Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s.

  15. Formal concept analysis applied to the prediction of additives for galvanizing process

    Directory of Open Access Journals (Sweden)

    J. Klimeš

    2010-04-01

    Full Text Available Formal concept analysis is a new mathematical approach to data analysis, data mining and to discavering patterns in data. The result of the application of the formal concept analysis method to the behavior of the galvanizing of rimmed steel is presented. Effects of additives in the galvanizing process have been correlated to the chemical element properties of the additives. This model may also help to design new alloys as additives in the galvanizing process.

  16. Processing hot-dip galvanized AHSS grades: a challenging task

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, A.; Hebesberger, T.; Tragl, E.; Traint, S.; Faderl, J.; Angeli, G.; Koesters, K. [voestalpine Stahl GmbH, Linz (Austria)

    2005-07-01

    High-strength thin sheet steel grades have gained a considerable market share. At present a very strong demand has been observed for DP (dual-phase), CP (complex phase) and TRIP grades, which are often summarized as advanced high-strength steel grades (AHSS). The potential benefits of applying AHSS grades were impressively demonstrated in the ULSAC-AVC project, in which a remarkable reduction in mass and an increase in stiffness and crash safety were achieved by using a very high share of AHSS steel grades. The present contribution concentrates on hot-dip galvanized AHSS thin sheet grades. The hot-dip galvanizeability of such grades is critically discussed after an overview is provided of the metallurgy of AHSS grades, including microstructure, mechanical properties, phase transformations and required alloy design. Based on these fundamentals, the processing of AHSS grades in the hot-dip galvanizing line is discussed and the resulting properties presented. (orig.)

  17. Micro-electrochemical characterization of galvanic corrosion of TA2/316L composite plate

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Li, X.; Dong, C.; Xiao, K. [Corrosion and Protection Center, University of Science and Technology Beijing (China)

    2011-12-15

    Galvanic corrosion behavior of TA2/316L composite plate was investigated in the solution of 3.5 wt% NaCl by galvanic potential monitoring, scanning localized electrochemical impedance spectroscopy (LEIS) and scanning vibrating micro-electrode (SVME) techniques. The results demonstrated that the pitting corrosion resistance of 316L for the galvanic combination sample is lower, and the coupled current density is higher than for the single 316L sample. It indicates that the galvanic action works on the corrosion behavior of the TA2 titanium alloy/316L stainless steel galvanic combination in sodium chloride solution. The galvanic effect width was determined as 1500 {mu}m. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    Science.gov (United States)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

  19. Imposed currents in galvanic cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Soestbergen, M.; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current

  20. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  1. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Science.gov (United States)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    Science.gov (United States)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new

  3. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, I., E-mail: ia31@msstate.edu [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, MS 39762 (United States); Li, B. [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557 (United States); Martens, R.L.; Goodwin, J.R. [Central Analytical Facility, the University of Alabama, Tuscaloosa, AL 35487 (United States); Rhee, H.J. [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, MS 39762 (United States); Goodwin, F. [International Zinc Association, Durham, NC 27713 (United States)

    2016-10-15

    Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate while no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.

  4. Simulation to coating weight control for galvanizing

    Science.gov (United States)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  5. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  6. Development of Alloy Coating Process of Steel Pipe for Seawater service

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Man; Kwon, Taeg Kyu; Lee, Sang Hyeog [Daewoo Shipbuilding and Marine Engineering Co., Ltd., Okpo (Korea)

    2001-02-01

    The new alloy coating process was developed to apply steel pipe for seawater service. This process consists of Zn-Al hot-dip coating treatment immediately following after normal galvanizing treatment. The alloy coating process formed double layer after surface treatment, and the surface layer was similar to that of Galfan steel and the intermetallic layer was also similar to that of aluminized steel. The alloy coating layer protect steel pipe galvanically and provide steel pipe with high resistance to general corrosion of seawater. This new alloy coated steel pipe had also good weldability and adhesion strength of paints compared to galvanized steel. 5 refs., 14 figs.

  7. Analysis Of Effect Of Mechanical Properties Of Aluminum Alloy Addition Of Zinc Corrosion Resistance Of Carbon Steel A325 Bolts Process Of Hot Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Ery Diniardi

    2015-08-01

    Full Text Available The world oil industry are common in offshore areas that are included in a corrosive environment so that the low-carbon steel bolts A325 will gradually corroded. Therefore an alternative that can be done to reduce the corrosion rate that is by coating with a Hot dip galvanizing method. The purpose of this study to improve the quality of products from low carbon steel bolts A325 with the addition of Zinc Aluminium alloy on the results of the Hot Dip Galvanizing. Results of testing the hardness of the lowest obtained in quenching time of 30 seconds is 162 037 HVN and the highest hardness obtained on quenching time of 60 seconds is 203 688 HVN. To microstructure shows that the phase Eta which is soft on the surface of the outermost started a little not as much time quenching 30 seconds so that the nature of its decline and violence increased the phase Zeta that are hard are widely spread meet the layer of phase resulting in hardness of the coating while quenching 45 seconds exceed the hardness of quenching time of 30 seconds. Results of analysis of the rate of corrosion that galvanized coating on each test is different and the structure of ferrite and pearlite it looks clear. For quenching time of 30 seconds obvious difference in galvanized layer thicker than quenching time of 45 and 60 seconds. This happens because of the influence of factors zinc layer that coats the base material so that decreased levels of corrosion is comparable to the time Salt Spray Test SST performed.

  8. Laser welding of galvanized steel: analytical study in view of dual-beam solution

    International Nuclear Information System (INIS)

    Iqbal, S.; Gualini, M.M.S.

    2005-01-01

    In this paper, the solution of a new dual laser beam method to lap weld galvanized steel sheets is being discussed, modeled and analyzed. This method involves a pre-cursor beam and a higher-power actual beam used on the job in tandem, generated independently or otherwise split from the same source. The pre-cursor beam cuts a slot, thus making an exit path for the zinc vapours, while the second beam performs the needed welding. After giving detailed theoretical coverage and diverse mathematical simulations, the paper also presents and discusses some experimental results of the method. Along with this, a comparison is being made with some other methods proposed till today to solve this problem including some quantitative analysis. As presented, general view in industrial perspective supports this method to be easier to implement on the production lines along with yielding desired results. (author)

  9. Contribution to the study of the influence of zinc bath composition on corrosion resistance of coatings obtained by galvanization

    International Nuclear Information System (INIS)

    Cabrillac, Claude

    1969-01-01

    This research thesis deals with the influence of zinc purity on the corrosion resistance of a coating obtained by galvanization, and on its effect on cathodic protection. This study therefore addresses methods and tests processes (notably salt spray test) aiming at assessing the efficiency of steel protection by hot galvanization, and aims at highlighting the influence of galvanization bath purity or composition on corrosion resistance of galvanized layers

  10. Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel

    International Nuclear Information System (INIS)

    Ding, Wei; Hedström, Peter; Li, Yan

    2016-01-01

    Heat treatments of a hot dip galvanizing TRIP (Transformation induced plasticity) steel with chemical composition 0.20C-1.50Mn-1.2Al-0.07P(mass%) were performed in a Gleeble 3500 laboratory equipment. The heat treatment process parameters were varied to investigate the effect of intercritical annealing temperature as well as isothermal bainitic transformation (IBT) temperature and time, on the microstructure and the mechanical properties. The microstructure was investigated using scanning electron microscopy, transmission electron microscopy and x-ray diffraction, while mechanical properties were evaluated by tensile testing. Furthermore, to generate a better understanding of the phase transformations during heat treatment, dilatometry trials were conducted. The desired microstructure containing ferrite, bainite, retained austenite and martensite was obtained after the heat treatments. It was further found that the IBT is critical in determining the mechanical properties of the steel, since it controls the fraction of bainite. With increasing bainite fraction, the fraction of retained austenite increases while the fraction of martensite decreases. The mechanical properties of the steel are excellent with a tensile strength above 780 MPa (expect in one case) and elongation above 22%.

  11. Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wei [School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Bayan Obo multimetallic resource comprehensive utilization Key lab, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Hedström, Peter [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Li, Yan [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Bayan Obo multimetallic resource comprehensive utilization Key lab, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2016-09-30

    Heat treatments of a hot dip galvanizing TRIP (Transformation induced plasticity) steel with chemical composition 0.20C-1.50Mn-1.2Al-0.07P(mass%) were performed in a Gleeble 3500 laboratory equipment. The heat treatment process parameters were varied to investigate the effect of intercritical annealing temperature as well as isothermal bainitic transformation (IBT) temperature and time, on the microstructure and the mechanical properties. The microstructure was investigated using scanning electron microscopy, transmission electron microscopy and x-ray diffraction, while mechanical properties were evaluated by tensile testing. Furthermore, to generate a better understanding of the phase transformations during heat treatment, dilatometry trials were conducted. The desired microstructure containing ferrite, bainite, retained austenite and martensite was obtained after the heat treatments. It was further found that the IBT is critical in determining the mechanical properties of the steel, since it controls the fraction of bainite. With increasing bainite fraction, the fraction of retained austenite increases while the fraction of martensite decreases. The mechanical properties of the steel are excellent with a tensile strength above 780 MPa (expect in one case) and elongation above 22%.

  12. A Noble Approach of Process Automation in Galvanized Nut, Bolt Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Akash Samanta

    2012-05-01

    Full Text Available Corrosion costs money”, The Columbus battle institute estimates that corrosion costs Americans more than $ 220 billion annually, about 4.3% of the gross natural product [1].Now a days due to increase of pollution, the rate of corrosion is also increasing day-by-day mainly in India, so, to save the steel structures, galvanizing is the best and the simplest solution. Due to this reason galvanizing industries are increasing day-by-day since mid of 1700s.Galvanizing is a controlled metallurgical combination of zinc and steel that can provide a corrosion resistance in a wide variety of environment. In fact, the galvanized metal corrosion resistance factor can be some 70 to 80 times greater that the base metal material. Keeping in mind the importance of this industry, a noble approach of process automation in galvanized nut-bolt  manufacturing plant is presented here as nuts and bolts are the prime ingredient of any structure. In this paper the main objectives of any industry like survival, profit maximization, profit satisfying and sales growth are fulfilled. Furthermore the environmental aspects i.e. pollution control and energy saving are also considered in this paper. The whole automation process is done using programmable logic controller (PLC which has number of unique advantages like being faster, reliable, requires less maintenance and reprogrammable. The whole system has been designed and tested using GE, FANUC PLC.

  13. Performance of Inductors Attached to a Galvanizing Bath

    Science.gov (United States)

    Zhou, Xinping; Yuan, Shuo; Liu, Chi; Yang, Peng; Qian, Chaoqun; Song, Bao

    2013-12-01

    By taking a galvanizing bath with inductors from an Iron and Steel Co., Ltd as an example, the distributions of Lorentz force and generated heat in the inductor are simulated. As a result, the zinc flow and the temperature distribution driven by the Lorentz force and the generated heat in the inductor of a galvanizing bath are simulated numerically, and their characteristics are analyzed. The relationship of the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet and the effective power for the inductor is studied. Results show that with an increase in effective power for the inductor, the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet increase gradually. We envisage this work to lay a foundation for the study of the performance of the galvanizing bath in future.

  14. Experiments on different materials (polyamide, stainless & galvanized steel) influencing geothermal CaCO3 scaling formation: Polymorphs & elemental incorporation

    Science.gov (United States)

    Wedenig, Michael; Dietzel, Martin; Boch, Ronny; Hippler, Dorothee

    2016-04-01

    Thermal water is increasingly used for heat and electric power production providing base-load capable renewable and virtually unlimited geothermal energy. Compared to other energy sources geothermal facilities are less harmful to the environment, i.e. chemically and visually. In order to promote the economic viability of these systems compared to other traditional and renewable energy sources, production hindering processes such as corrosion and scaling of components arising from the typically high salinity thermal waters have to be considered as important economic factors. In this context, using proper materials being in contact with the thermal water is crucial and a playground for further improvements. Aim of the study presented, are basic experiments and observations of scaling and corrosive effects from hydrothermal water interacting with different materials and surfaces (stainless steel, polyamide, galvanized steel) and in particular the nucleation and growth effects of these materials regarding the precipitation of solid carbonate phases. The incorporation of Mg, Sr and Ba cations into the carbonate scalings are investigated as environmental proxy. For this purpose, hydrothermal carbonate precipitating experiments were initialized by mixing NaHCO3 and Ca-Mg-Sr-Ba-chloride solutions at temperatures ranging from 40 to 80 °C in glass reactors hosting artificial substrates of the above mentioned materials. The experiments show a strong dependence of the precipitation behaviour of calcium carbonate polymorphs on the particular material being present. Stainless steel and polyamide seem to restrict aragonite formation, whereas galvanized steel supports aragonite nucleation. Vaterite formation is promoted by polyamide surfaces. Importantly, vaterite is more soluble (less stable) compared to the other anhydrous calcium carbonate polymorphs, i.e. vaterite can be more easily re-dissolved. Thus, the use of polyamide components might reduce the amount and durability of

  15. Effect of galvanic coupling between overpack materials for high-level nuclear waste containers

    International Nuclear Information System (INIS)

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1998-01-01

    The effect of environmental parameters and area ratio on the galvanic protection of Alloy 825 by A516 steel was studied. A simplified model was used to calculate the potential and corrosion current density of the bimetallic couple as a function of the galvanic coupling efficiency. Galvanic corrosion tests were performed to gain confidence in the calculated values. Both the calculations and laboratory testing indicate that, with highly efficient coupling, the potential of the galvanic couple is maintained below the repassivation potential for Alloy 825 in chloride-containing solutions. As a result, the initiation of localized corrosion on Alloy 825 is prevented. The formation of oxides, scales, and corrosion product layers between the barriers is shown to reduce the efficiency of the galvanic couple, which may result in conditions under which the localized corrosion of the inner corrosion resistant barrier can occur

  16. Analysis of Electrochemical Porosity of Phosphatized Coatings on Galvanized Steel Substrate

    Directory of Open Access Journals (Sweden)

    Ponte Haroldo de Araújo

    2002-01-01

    Full Text Available This work refers to the application of a Voltammetric Anodic Dissolution (VAD Technique in the analysis of coating discontinuities, focusing on pores and cracks that exposed the substrate. An evaluation was made of the influence of several parameters, such as the concentration of the passivation solution and sweep rate (SR, on the substrate passivation process and on the porosity indexes of tricationic phosphate coatings of Fe/Zn/Mn. The phosphatization process used was a commercial tricationic Fe/Zn/Mn phosphate bath applied on a galvanized steel (GS substrate. Once the best experimental conditions for the use of the VAD technique had been defined, the grain size and layer weight were related to porosity indexes. The porosity was found to show a tendency to decrease with increasing grain size. The VAD technique consists of the anodic polarization of the substrate/coating system and measurement of the charge density involved in the substrate passivation process. A quantitative porosity index was obtained by comparing the passivation charge density of the substrate without coating (standard passivation charge density and the passivation charge of the coated substrate.

  17. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    Science.gov (United States)

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  18. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    Directory of Open Access Journals (Sweden)

    Yunze Xu

    2016-09-01

    Full Text Available In this paper, a new kind of carbon steel (CS and stainless steel (SS galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER method and zero resistance ammeter (ZRA technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.

  19. ENVIRONMENTAL AND ECONOMIC ASPECTS OF ANTICORROSION PROTECTION BY HOT-DIP GALVANIZED METHOD REBARS IN CONCRETE

    Directory of Open Access Journals (Sweden)

    Hegyi Andreea

    2015-05-01

    Full Text Available The implementation of the sustainable development concept is nowadays a key issue in almost all human activities. For the constructions domain an European strategy has already been elaborated. Among its goals are also the use of long lasting materials and the reduction of repair costs. This paper presents an interdisciplinary study concerning the efficiency of the use of hot-dip galvanized rebar for concrete structures. Experimental results about corrosion kinetics of coated and usual steel reinforcement embedded in concrete, subjected to chlorine ions attack, are analyzed. Electrochemical methods as chronoamperometry and linear polarization have been used. Corrosion potential values recorded for galvanized steel embedded in concrete indicate an uncertain corrosion activation process up to a rate of 2.5 % calcium chloride relative to concrete. For rates of 5% CaCl2 and more the corrosion process is activated. For unprotected steel bars embedded in concrete the corrosion activation process started at all calcium chloride studied rates and higher corrosion potential values has been registered than for the hot-dip galvanized ones, at the same rates. Economical assessments have been done using entire lifetime cost analysis of the reinforced concrete structures. Despite that the hotdip galvanization is a rather expansive procedure, when taking into account the whole expected life span, the use of zinc coating proves to be efficient both from structural and financial approaches.

  20. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    Energy Technology Data Exchange (ETDEWEB)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  1. Simulation of galvanic corrosion using boundary element method

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamaruddin; Nur Ubaidah Saidin; Abdul Aziz Mohamed; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2011-01-01

    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure. (Author)

  2. An environmentally acceptable primer for galvanized steel: Formulation and evaluation by SVET

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.M.P., E-mail: alda.simoes@ist.utl.p [CIDEPINT - Centro de Investigacion y Desarrollo en Tecnologia de Pinturas (CIC-CONICET), Calle 52 e/121 y 122, 1900 La Plata (Argentina); TULisbon, Instituto Superior Tecnico, DEQB, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carbonari, R.O.; Di Sarli, A.R.; Amo, B. del [CIDEPINT - Centro de Investigacion y Desarrollo en Tecnologia de Pinturas (CIC-CONICET), Calle 52 e/121 y 122, 1900 La Plata (Argentina); TULisbon, Instituto Superior Tecnico, DEQB, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Romagnoli, R., E-mail: estelectro@cidepint.gov.a [CIDEPINT - Centro de Investigacion y Desarrollo en Tecnologia de Pinturas (CIC-CONICET), Calle 52 e/121 y 122, 1900 La Plata (Argentina); TULisbon, Instituto Superior Tecnico, DEQB, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-01-15

    Research highlights: {yields} Chromates can be replaced successfully by aluminium phosphosilicate in paint systems. {yields} The solvents of the primer are eco-friendly ones. {yields} The primer adheres on galvanized steel and allows top-coating. {yields} The binder of the primer is compatible with other binders for top-coating. - Abstract: The object of this paper was to formulate a two-pack wash primer employing aluminium phosphosilicate as active anticorrosive pigment instead of basic zinc chromate. The anticorrosive action of the primer was evaluated by the polarization technique and the scanning vibrating electrode technique (SVET). The exposed surface was then examined by scanning electron microscopy (SEM) and the surface composition determined by energy dispersive X-ray (EDX) analysis. The primer was finally integrated in a complete paint scheme whose anticorrosive performance was evaluated by the salt spray chamber and electrochemical impedance spectroscopy. The adhesion of the primer plus a painting system was also evaluated by standard ASTM D 3359-90 test method. The wash primer pigmented with zinc chromate was used as reference. Results indicated that basic zinc chromate could be replaced by the more eco-friendly wash-primer containing aluminium phosphosilicate.

  3. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    Science.gov (United States)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  4. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    Science.gov (United States)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  5. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  6. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  7. Localized corrosion of carbon steel in a CO{sub 2}-saturated oilfield formation water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Cheng, Y.F., E-mail: fcheng@ucalgary.c [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2011-01-01

    In this work, corrosion and localized corrosion behavior of X65 pipeline steel were studied in a simulated, CO{sub 2}-saturated oilfield formation water by various electrochemical measurement techniques, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curves, galvanic current and localized EIS (LEIS). The morphology and composition of the formed corrosion scale were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. A conceptual model was developed to illustrate the occurrence of localized corrosion of the steel under scale. Both galvanic current and LEIS measurements showed that a galvanic effect existed between the bare steel and the scale-covered region. The scale-covered region served as cathode and the bare steel site as the anode. The big cathode vs. small anode geometry accelerated the local corrosion reaction. At an elevated temperature, a compact, crystalline scale was formed on the steel surface, enhancing the galvanic effect. Moreover, the stability of the scale was increased with time, and localized corrosion of the steel under scale experienced mechanistic changes with time.

  8. Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data

    International Nuclear Information System (INIS)

    Debón, A.; Carlos Garcia-Díaz, J.

    2012-01-01

    Advanced statistical models can help industry to design more economical and rational investment plans. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing. Increasingly stringent quality requirements in the automotive industry also require ongoing efforts in process control to make processes more robust. Robust methods for estimating the quality of galvanized steel coils are an important tool for the comprehensive monitoring of the performance of the manufacturing process. This study applies different statistical regression models: generalized linear models, generalized additive models and classification trees to estimate the quality of galvanized steel coils on the basis of short time histories. The data, consisting of 48 galvanized steel coils, was divided into sets of conforming and nonconforming coils. Five variables were selected for monitoring the process: steel strip velocity and four bath temperatures. The present paper reports a comparative evaluation of statistical models for binary data using Receiver Operating Characteristic (ROC) curves. A ROC curve is a graph or a technique for visualizing, organizing and selecting classifiers based on their performance. The purpose of this paper is to examine their use in research to obtain the best model to predict defective steel coil probability. In relation to the work of other authors who only propose goodness of fit statistics, we should highlight one distinctive feature of the methodology presented here, which is the possibility of comparing the different models with ROC graphs which are based on model classification performance. Finally, the results are validated by bootstrap procedures.

  9. The corrosion behavior of mild steel in molten NaNO3-KNO3 salt and its evaluation

    International Nuclear Information System (INIS)

    Tsujino, Bunzo; Oki, Takeo.

    1992-01-01

    The galvanic behavior of mild steel in molten NaNO 3 -KNO 3 salt (equivalent molar fraction) and its evaluation have been investigated by the amount of galvanic current with zero impedance ammeter. The galvanic currents in a galvanic couple consisting of mild steel and platinum so obtained corresponded approximately to the information for dissolution reaction of iron in molten NaNO 3 KNO 3 salt. Further, the galvanic currents proved to be an effective means for evaluating corrosion rate of metals in molten NaNO 3 KNO 3 salt. The effect of NaCl on galvanic behavior of mild steel couple to platinum in molten NaNO 3 -KNO 3 salt did not appear at the NaCl concentration up to 0.05 molar fraction, but the effect appeared as localized corrosion at the NaCl concentration of 0.05 molar fraction or more. The coloration for mild steel due to the oxide film was well controlled by adjusting amount of electricity rather than the temperature. (author)

  10. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    International Nuclear Information System (INIS)

    Jin, Chung Keun; Lim, Sung Hyung

    2015-01-01

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU

  11. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  12. Heteroepitaxial growth of Fe{sub 2}Al{sub 5} inhibition layer in hot-dip galvanizing of an interstitial-free steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kuang-Kuo [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chang, Liuwen, E-mail: lwchang@mail.nsysu.edu.t [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Gan, Dershin; Wang, Hung-Ping [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2010-02-01

    This work presents characterization results on inhibition layers formed on a TiNb-stabilized interstitial-free steel after short time galvanizing. The Fe-Al and steel interface was free from oxide, so that the Fe-Al intermetallic compound could directly nucleate on ferrite grains. Electron diffraction performed in a transmission electron microscope showed that only Fe{sub 2}Al{sub 5} was formed and it had a well-defined orientation relationship of [110]{sub Fe(sub/2)Al(sub/5)}// [111]{sub Fe}, (001){sub Fe(sub/2)Al(sub/5)}//(011){sub Fe} and (110){sub Fe(sub/2)Al(sub/5)}//(211){sub Fe} with Fe substrate. The structure of the interfaces between Fe{sub 2}Al{sub 5} and Fe is discussed. The epitaxially nucleated Fe{sub 2}Al{sub 5} grains on Fe substrate had very small grain size, 20 nm or less, and several variants were intimately mixed. The grains grew rapidly to hundreds of nanometers toward the Zn side.

  13. Comparison of Galvanic Currents Generated Between Different Combinations of Orthodontic Brackets and Archwires Using Potentiostat: An In Vitro Study.

    Science.gov (United States)

    Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V

    2015-07-01

    Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel

  14. Overall model of the dynamic behaviour of the steel strip in an annealing heating furnace on a hot-dip galvanizing line

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de-Pison, F.J.; Pernia, A.; Jimenez-Macias, E.; Fernandez, R.

    2010-07-01

    Predicting the temperature of the steel strip in the annealing process in a hot-dip galvanizing line (HDGL) is important to ensure the physical properties of the processed material. The development of an accurate model that is capable of predicting the temperature the strip will reach according to the furnaces variations in temperature and speed, its dimensions and the steels chemical properties, is a requirement that is being increasingly called for by industrial plants of this nature. This paper presents a comparative study made between several types of algorithms of Data Mining and Artificial Intelligence for the design of an efficient and overall prediction model that will allow determining the strips variation in temperature according to the physico-chemical specifications of the coils to be processed, and fluctuations in temperature and speed that are recorded within the annealing process. The ultimate goal is to find a model that is effectively applicable to coils of new types of steel or sizes that are being processed for the first time. This model renders it possible to fine-tune the control model in order to standardise the treatment in areas of the strip in which there is a transition between coils of different sizes or types of steel. (Author).

  15. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  16. Application of Boundary Element Method in Galvanic Corrosion Analysis for Metallic Materials used in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamarudin

    2011-01-01

    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. This paper presents the application of boundary element method for galvanic corrosion analysis between two different metallic materials. Aluminium (Al), and zinc (Zn) alloys were used separately coupled with the Carbon Steel (CS) in natural seawater. The measured conductivity of sea water is 30,800 μS/ cm at ambient temperature. Computer software system based on boundary element likes BEASY and ABAQUS can be used to accurately model and simulate the galvanic corrosion. However, the BEM based BEASY program will be used reasonably for predicting the galvanic current density distribution of coupled Al-CS and Zn-CS in this study. (author)

  17. The possibilities for reuse of steel scrap in order to obtain blades for knives

    International Nuclear Information System (INIS)

    Štrbaca, N.; Markovića, I.; Mitovskia, A.; Balanovića, L.; Živkovića, D.; Grekulović, V.

    2017-01-01

    The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW) Dual Phase (DP) steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM) between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness. [es

  18. Characterization of Sludge from the Process of Steel Tubes Chemical Treatment for Hot Galvanizing

    Directory of Open Access Journals (Sweden)

    Sofilić, U.

    2009-10-01

    Full Text Available Inadequate industrial waste management in Croatia is reflected in the non-sanitary waste disposal, low recycling levels, negligible share of waste processing technologies, insufficient control of its flows, etc.Generated industrial wastes are most frequently disposed of at producers’ own, mostly illegal landfills. There are many such landfills on the Croatian territory, and the disposed types of waste often include those that can be hazardous and represent a considerable source of environmental pollution.Past waste management in all industrial branches can be characterized in this way, which at the same time may result in the harmful impact on human health and the environment. It also represents economic loss due to low utilisation of material and energy potential of some industrial wastes. The metallurgical industry collects its production waste separately. Only a part of the generated waste is returned to the production process and some waste is occasionally used by other industries as secondary raw materials, but the largest part of it ends at producers' own landfills on site. Hazardous wastes (dust containing heavy metals, waste oils etc. are mostly disposed of in a controlled and lawful manner. Past handling of metallurgical waste was unacceptable both from the environmental and economic point of view. Therefore a systematic resolving of this important issue was initiated at the beginning of this decade. Sisak Steelworks galvanized steel pipes in the hot-dip galvanizing procedure by immersing in molten zinc. Between 1970 and 2000 Sisak Steelworks produced approximately 900 000 tonnes of galvanized pipes this way and generated around 70 000 m3 of neutralisation sludge, which was subsequently disposed of in the landfill on site. The paper presents the results of examination of physical-chemical properties of neutralisation sludge generated as waste material in the process of neutralisation of waste sulphate acid bath used in Sisak

  19. Contribution to Kinetics of Formation of White Rust on Galvanized Steel

    International Nuclear Information System (INIS)

    Han, D. J.; Pyun, Su Il; Hahn, Y. D.

    1981-01-01

    Kinetics of formation of white rust on galvanized steel coated with various chromating solutions was studied. White rust occurs as a mixture of zinc oxide and zinc hydroxide. White rust formation rate was measured with a salt spray test as related to Cr 3+ ion amount, ratio of Cr 3+ to Cr 6+ ion(by weight) and surface roughness of the chromate film. Incubation time of white rust formation increased as the ratio of Cr 3+ to Cr 6+ ion in the chromate film increased. White rust propagation rate decreased as the amount of Cr 3+ ion increased. Surface roughness had no detectable relationship with incubation time and white rust propagation rate. Experimental results showed that kinetics of white rust formation was as follows: chromate film consists of insoluble Cr 3+ ion and soluble Cr 6+ ion, the latter act: as a corrosion inhibitor. Leaching rate of Cr 6+ ion from the film decreases with an increase of the ratio of Cr 3+ to Cr 6+ ion in the chromate film. When Cr 6+ ion is leached from the film, a bare zine layer is exposed to air and discontinuities occur in the film where white rust formation is initiated. Further white rust formation occurs due to destruction of the chromate film by chlorine ion. It is concluded that two stages of white rust formation are present and can be ascribed to Cr 6+ ion leaching and destruction of the chromate film by chlorine ion

  20. Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young Sool; Kim, Myung Soo; Kim, Su Young [POSCO Technical Research Labs., Gwangyang (Korea, Republic of); Paik, Doo Jin [POSCO Kwangyang Steel Works, Gwangyang (Korea, Republic of)

    2011-02-15

    The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic Galvanizing{sup TR} system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.

  1. Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

    International Nuclear Information System (INIS)

    Jin, Young Sool; Kim, Myung Soo; Kim, Su Young; Paik, Doo Jin

    2011-01-01

    The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic Galvanizing TR system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted

  2. Influence of some additives to the kinetics of Zn-crystal growth onto continuous hot dip galvanized steel

    International Nuclear Information System (INIS)

    Arsovski, Angel; Sekuloski, Predrag; Georgievski, Mile; Mickovski, Jovan

    2003-01-01

    In this work we made attempt on determination of the gefree, of influence, of the different types of additives on zinc spangle growth during forming of zinc coating, at the process of continues hot deep galvanizing of steel strip. All investigations were made at cold rolling mill plant 'Ladna Valavnica'-Skopje - HDG line, Additives were implied manually using hand pump directly on full hard strip, just before annealing furnace. Three types of additives were used in unchanged state as well as their mixtures. Analysis of the results included macro photograph of the surface, microphotograph of the zinc coating as well as different attempts of mathematical models. During investigation all technological parameters (cleanness of the strip from the emulsion marks, temperatures of the different zones of the furnace, temperature of the molten zinc and chemical composition of the zinc pot) remained at their constant values. (Original)

  3. Influence of stainless steel Internals on Corrosion of tower wall materials

    Science.gov (United States)

    Chen, Bing; Ren, Ke

    2017-12-01

    In view of the galvanic corrosion of the tower wall material in the tower of a refinery atmospheric vacuum distillation unit, the electrochemical behavior of Q345R steel, stainless steel (201, 304 cold-rolled plate, 304 hot rolled plate and 316L) in 3.5%NaCl solution was studied by electrochemical method. The results show that the corrosion potential of Q345R is much lower than that of stainless steel, and the corrosion rate of Q345R is higher than that of stainless steel. As the anode is etched as the anode corrosion, the anode polarizability of stainless steel shows strong polarization ability, which is anodic polarization control, and Q345R is anode Active polarization control; Q345R / 201 galvanic pair may be the most serious corrosion, and Q345R/316L galvanic couple may be relatively slight. Therefore, in the actual production of tower equipment, material design or tower to upgrade the replacement, it are recommended to use the preferred anode and cathode potential difference with the use of materials.

  4. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    Science.gov (United States)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  5. Synthesis and electrochemical properties of composite galvanic Ni with carbon nanomaterials and PVD Mo coatings

    International Nuclear Information System (INIS)

    Drozdovich, V.B.; Chayeuski, V.V.; Zhdanok, S.A.; Barkovskaya, M.M.

    2011-01-01

    Double layer coatings Ni – Mo were obtained by electrolytic deposition of galvanic Ni and following arc PVD deposition of molybdenum. The ion plating coatings Mo on Ni foil and composition electrolytic Ni coatings with carbon nanomaterials (CNM) deposited on mild steel has been also investigated. Composite galvanic Ni coatings with CNM and ion plating coatings Mo contain separately obtained cubic α-Mo phase as well as fragmentary solid solution Mo in Ni. Such coatings exclude hydrogenation of Ni foundation in alkaline solution and possess enlarged electrocatalytic properties while emitting hydrogen and oxygen. Availability of carbon based nanomaterials in combined coatings is cause of an active absorption hydrogen after cathodic polarization. A formation on the surface layer of nanostructure solid solution (Ni, Mo) after compression plasma flows treatment with fixed parameters of patterns Mo/Ni/ mild steel take place. (authors)

  6. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  7. Oxidation Phenomena in Advanced High Strength Steels : Modelling and Experiment

    NARCIS (Netherlands)

    Mao, W.

    2018-01-01

    Galvanized advanced high strength steels (AHSS) will be the most competitive structural material for automotive applications in the next decade. Oxidation of AHSS during the recrystalization annealing process in a continuous galvanizing line to a large extent influences the quality of zinc coating

  8. Characterization of Coatings on Steel Self-Piercing Rivets for Use with Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Forsmark, Joy H.; Upadhyay, Vinod; Battocchi, Dante

    Incorporation of magnesium alloys in self-pierce rivet (SPR) joints poses several unique challenges among which are the creation of spurious galvanic cells and aggravated corrosion of adjacent magnesium when coated steel rivets are employed. This work firstly reviews efforts on development of coatings to steel fasteners for the diminution of galvanic corrosion when used with magnesium alloys. Secondly, approaches, based on several electrochemical methods, for the measurement of the galvanic-limiting effect of a number of commercially-available coatings to hardened 10B37 steel self-piercing rivets inserted into alloy couples incorporating several grades of magnesium are reported. Electrochemical impedance spectroscopy (EIS), zero-resistance ammeter (ZRA), corrosion potential and potential-mapping visualization methods (e.g. scanning vibrating electrode technique — SVET) are illustrated for the several rivet coatings considered.

  9. Deformation and fatigue behavior of hot dip galvanized coatings

    International Nuclear Information System (INIS)

    Camurri, Carlos P.; Benavente, Raul G.; Roa, Isidoro S.; Carrasco, Claudia C.

    2005-01-01

    This paper reports on the results of a study of the effect of static and dynamic stresses on hot dip galvanized coatings on SAE 1020 steel substrates. Galvanizing was performed using baths maintained at 450 deg. C, the zinc containing 0.16% Ti and 0.02% Fe and with Al and Ni in the ranges 0-0.20% and 0-0.30%, respectively. Static three-point bend tests were conducted with applied stresses in the range 428-790 MPa. Dynamic bend-fatigue tests involved stresses in the range 228-578 MPa at a cyclic frequency of 0.25 Hz for up to 700 cycles. The total crack density in the coatings was measured before and after the tests using light optical and electron microscopy. The results showed that the crack density increased as the applied stress increased and crack propagation was promoted perpendicular to the substrate. The number of cycles had no effect on the crack density and propagation at stresses lower than 386 MPa. At higher stresses the number of applied cycles contributed only to crack propagation. It was concluded that the best bath composition for preventing fatigue crack propagation is one that minimized the formation of thinner brittle layers in the galvanized coatings

  10. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Science.gov (United States)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  11. Pseudarthrosis due to galvanic corrosion presenting as subarachnoid hemorrhage

    Directory of Open Access Journals (Sweden)

    Rosemary Noel Beavers

    2017-01-01

    Full Text Available Two unlike metals near one another can break down as they move toward electrochemical equilibrium resulting in galvanic corrosion. We describe a case of electrochemical corrosion resulting in pseudarthrosis, followed by instrumentation failure leading to subarachnoid hemorrhage. A 53-year-old female with a history of cervical instability and two separate prior cervical fusion surgery with sublaminar cables presented with new onset severe neck pain. Restricted range of motion in her neck and bilateral Hoffman's was noted. X-ray of her cervical spine was negative. A noncontrast CT scan of her head and neck showed subarachnoid hemorrhage in the prepontine and cervicomedullary cisterns. Neurosurgical intervention involved removal of prior stainless steel and titanium cables, repair of cerebrospinal fluid leak, and nonsegmental C1–C3 instrumented fusion. She tolerated the surgery well and followed up without complication. Galvanic corrosion of the Brook's fusion secondary to current flow between dissimilar metal alloys resulted in catastrophic instrumentation failure and subarachnoid hemorrhage.

  12. Stability of Retained Austenite in High-Al, Low-Si TRIP-Assisted Steels Processed via Continuous Galvanizing Heat Treatments

    Science.gov (United States)

    McDermid, J. R.; Zurob, H. S.; Bian, Y.

    2011-12-01

    Two galvanizable high-Al, low-Si transformation-induced plasticity (TRIP)-assisted steels were subjected to isothermal bainitic transformation (IBT) temperatures compatible with the continuous galvanizing (CGL) process and the kinetics of the retained austenite (RA) to martensite transformation during room temperature deformation studied as a function of heat treatment parameters. It was determined that there was a direct relationship between the rate of strain-induced transformation and optimal mechanical properties, with more gradual transformation rates being favored. The RA to martensite transformation kinetics were successfully modeled using two methodologies: (1) the strain-based model of Olsen and Cohen and (2) a simple relationship with the normalized flow stress, ( {{{σ_{{flow}} - σ_{YS} }/{σ_{YS }}}} ) . For the strain-based model, it was determined that the model parameters were a strong function of strain and alloy thermal processing history and a weak function of alloy chemistry. It was verified that the strain-based model in the present work agrees well with those derived by previous workers using TRIP-assisted steels of similar composition. It was further determined that the RA to martensite transformation kinetics for all alloys and heat treatments could be described using a simple model vs the normalized flow stress, indicating that the RA to martensite transformation is stress-induced rather than strain-induced for temperatures above the Ms^{σ }.

  13. Annealing treatments for producing cold-rolled low-silicon multi-phase steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrieze, J.; Vortrefflich, W.; Winter, L. de [Applied Physical Metallurgy, Hoogovens Research and Development, Ijmuiden (Netherlands)

    2000-07-01

    Laboratory simulations of a hot-dip galvanizing line have been carried out on a 0.16%C-1.5%Mn-0.4%Si steel. It has been demonstrated that based on this steel composition materials with typical multi-phase properties can be produced on hot-dip galvanizing lines. By varying the process conditions a tensile strength between 570 and 650 MPa has been obtained. In addition, tensile tests at high strain rates have been carried out and the results have been compared with those of other non-multi-phase steel grades. (orig.)

  14. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    Science.gov (United States)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  15. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2010-02-01

    Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al-low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

  16. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    International Nuclear Information System (INIS)

    Yasakau, K.A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M.G.S.; Zheludkevich, M.L.

    2016-01-01

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn_2 phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N_2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N_2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  17. Zn-10.2% Fe coating over carbon steel atmospheric corrosion resistance. Comparison with zinc coating

    International Nuclear Information System (INIS)

    Arnau, G.; Gimenez, E.; Rubio, M.V.; Saura, J.J.; Suay, J.J.

    1998-01-01

    Zn-10.2% Fe galvanized coating versus hot galvanized coating over carbon steel corrosion performance has been studied. Different periods of atmospheric exposures in various Valencia Community sites, and salt spray accelerated test have been done. Carbon steel test samples have been used simultaneously in order to classify exposure atmosphere corrosivity, and environmental exposure atmosphere characteristics have been analyzed. Corrosion Velocity versus environmental parameters has been obtained. (Author) 17 refs

  18. Effect of confinement on bond strength of hot-dip galvanized lap splices in concrete structures

    International Nuclear Information System (INIS)

    Fakhran, Mazen

    2004-01-01

    Galvanizing the reinforcing steel is one of the methods used to protect bars against corrosion. Galvanizing is a hot dip process where the reinforcing bars are immersed in an aqueous pre flux solution of zinc ammonium chloride at a controlled temperature between 840 and 850 degrees F. In 2001, a research program was started at AUB to evaluate experimentally the effect of hot dip galvanizing on the bond capacity of tension lap splices anchored in full-scale beam specimens designed to fail in bond splitting mode. The test results indicated that the use of galvanized bars had a negligible effect on bond strength of reinforcement in normal strength. However, galvanizing caused an average of 20 percent decrease in bond strength of reinforcement in high strength concrete. The primary objective of research reported in this thesis, is the need to find a solution to eliminate the bond reduction of galvanized bars in high strength concrete. It is significant to evaluate the positive effect of the addition of transverse reinforcement in the splice region. The hypothesis to be tested is that such transverse reinforcement will insure uniform bond stress distribution over the entire splice region, thus mobilizing all bar lugs along the splice in the stress transfer mechanism between the bar and the surrounding concrete. Such mechanism might reduce the significant decrease in bond strength in high strength concrete due to galvanizing. To achieve this objective, eighteen full-scale beam specimens were tested in positive bending. Each beam was reinforced with bars spliced in a constant moment region at midspam. The splice length was chosen in such a way that the beams failed in bond splitting of the concrete cover in the splice region. The main variables were type of coating (black or galvanized bars), bar size (20, 25 and 32 mm), and amount of transverse reinforcement in the splice region (0, 2 or 4 stirrups). The test results indicated that confinement did not have a significant

  19. LongerLife products increase the sustainability. Is corrosion protection ecologically useful for steel components?; LongerLife-Produkte erhoehen die Nachhaltigkeit. Ist Korrosionsschutz von Stahlbauteilen oekologisch sinnvoll?

    Energy Technology Data Exchange (ETDEWEB)

    Rogall, Armin Dietmar [Fachhochschule Dortmund (Germany). Fachbereich Architektur

    2011-07-01

    The installation of hot-dip galvanized construction units means sustainable acting. Since corrosion protection by hot-dip galvanizing can be particularly named sustainable due to its longevity, its environmental careful production, its recycling ability and life extension of steel components. Particularly the reduction of the maintenance cycles and utilization costs accompanying with a slightly higher initial investment makes the hot-dip galvanizing a sustainable system. Steel components which are treated with galvanization and colour coating, have a maintenance-free life span of more than 80 years.

  20. Atmospheric corrosion performance of different steels in early exposure in the coastal area region West Java, Indonesia

    Science.gov (United States)

    Nuraini, Lutviasari; Prifiharni, Siska; Priyotomo, Gadang; Sundjono, Gunawan, Hadi; Purawiardi, Ibrahim

    2018-05-01

    The performance of carbon steel, galvanized steel and aluminium after one month exposed in the atmospheric coastal area, which is in Limbangan and Karangsong Beach, West Java, Indonesia was evaluated. The corrosion rate was determined by weight loss method and the morphology of the steel after exposed was observed by Scanning Electron Microscopy(SEM)/Energy Dispersive X-Ray Analysis(EDX). The site was monitored to determine the chloride content in the marine atmosphere. Then, the corrosion products formed at carbon steel were characterized by X-Ray diffraction (XRD). The result showed the aggressively corrosion in Karangsong beach, indicated from the corrosion rate of carbon steel, galvanized steel and aluminium were 38.514 mpy; 4.7860 mpy and 0.5181 mpy, respectively. While in Limbangan Beach the corrosion rate of specimen carbon steel, galvanized steel and aluminium were 3.339; 0.219 and 0.166 mpy, respectively. The chloride content was found to be the main factor that influences in the atmospheric corrosion process in this area. Chloride content accumulated in Karangsong and Limbangan was 497 mg/m2.day and 117 mg/m2.day, respectively. The XRD Analysis on each carbon steel led to the characterization of a complex mixture of iron oxides phases.

  1. Imposed currents in galvanic cells

    International Nuclear Information System (INIS)

    Biesheuvel, P.M.; Soestbergen, M. van; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current against an external load, but also operation in two modes which require a net input of electrical energy: (i) the electrolytic charging mode, where a negative current is imposed to generate a voltage exceeding the open-circuit voltage, and (ii) the 'super-galvanic' discharging mode, where a positive current exceeding the short-circuit current is imposed to generate a negative voltage. Analysis of the various (dis-)charging modes of galvanic cells is important to predict the efficiency of electrical to chemical energy conversion and to provide sensitive tests for experimental validation of fuel cell models. In the model, we consider effects of diffuse charge on electrochemical charge-transfer rates by combining a generalized Frumkin-Butler-Volmer equation for reaction kinetics across the compact Stern layer with the full Poisson-Nernst-Planck transport theory, without assuming local electroneutrality. Since this approach is rare in the literature, we provide a brief historical review. To illustrate the general theory, we present results for a monovalent binary electrolyte, consisting of cations, which react at the electrodes, and non-reactive anions, which are either fixed in space (as in a solid electrolyte) or are mobile (as in a liquid electrolyte). The full model is solved numerically and compared to analytical results in the limit of thin diffuse layers, relative to the membrane thickness. The spatial profiles of the ion concentrations and electrostatic potential reveal a complex dependence on the kinetic parameters and the imposed current, in which the diffuse charge at each electrode and the total membrane charge can have either sign, contrary perhaps to intuition

  2. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    Science.gov (United States)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  3. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  4. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yasakau, K.A., E-mail: kyasakau@ua.pt [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Giner, I. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Vree, C. [Salzgitter Mannesmann Forschung, GmbH Division Surface Technology, Eisenhüttenstrasse 99, 38239 Salzgitter (Germany); Ozcan, O.; Grothe, R. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Oliveira, A. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Grundmeier, G. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Ferreira, M.G.S. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Zheludkevich, M.L. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Corrosion and Surface Technology, Institute of Materials Research Helmholtz-Zentrum Geesthacht, Max-Planck Str. 1, 21502 Geesthacht (Germany)

    2016-12-15

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn{sub 2} phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N{sub 2}) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N{sub 2} contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  5. Rapid cooling in continuous annealing and galvanizing lines; Refroidissement rapide dans les lignes de recuit continu et de galvanisation

    Energy Technology Data Exchange (ETDEWEB)

    Renard, M. [DREVER International SA, Angleur (Belgium); Gouriet, J.B.; Planquart, Ph.; Van Beeck, J.; Buchlin, J.M. [Von Karman Institute for Fluid Dynamics Brussels (Belgium)

    2003-08-01

    The production of new steel grades - such as dual phase and TRIP steels - requires improvements to both process and equipment of continuous galvanizing lines. In particular, progress has to be obtained in cooling technology in order to get the desired mechanical properties. This paper presents a study of design parameters allowing the optimization of fast gas multi-jet cooling systems. The thermal study involves the application of infrared thermography and three-dimensional numerical simulations. Furthermore, a dynamic study is performed in order to reduce steel strip vibration. (authors)

  6. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  7. Local strain energy density for the fatigue assessment of hot dip galvanized welded joints: some recent outcomes

    Directory of Open Access Journals (Sweden)

    M. Peron

    2017-10-01

    Full Text Available Since in literature only data about the effect of the hot-dip galvanizing coating on fatigue behavior of unnotched specimens are available, whereas very few for notched components and none for welded joints, the aim of this paper is to partially fill this lack of knowledge comparing fatigue strength of uncoated and hot-dip galvanized fillet welded cruciform joints made of structural steel S355 welded joints, subjected to a load cycle R = 0. 34. The results are shown in terms of stress range ?s and of the averaged strain energy density range DW in a control volume of radius R0 = 0.28 mm

  8. The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 pair in aqueous LiBr solutions

    International Nuclear Information System (INIS)

    Montanes, M.T.; Sanchez-Tovar, R.; Garcia-Anton, J.; Perez-Herranz, V.

    2009-01-01

    The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 stainless steel pair in a concentrated lithium bromide solution was investigated according to the mixed potential theory. A hydraulic circuit was designed to study dynamic corrosion processes in situ. A potential relation between corrosion current density (i corr ) and Reynolds number (Re) was found for copper, showing a mixed control of a chemical step and mass transport through the corrosion products film with the predominance of the former. No dependence of i corr on Re could be established for AISI 304, showing a chemical step control. Moreover, under stagnant conditions, partial passivation may occur in AISI 304; however, under flowing conditions passivation is not possible. Copper is the anodic element of the pair under all flowing conditions analysed. The galvanic phenomenon is more important as Re increases, but the results show compatibility of both materials at all Re values analysed. Similarly, a potential relation between galvanic current density (i G ) and Re was found, showing a mixed control of a chemical step and mass transport with the predominance of the latter. Copper corrosion resistance decreases more rapidly as Re increases due to the AISI 304 galvanic effect: there is a synergy between the galvanic effect and the hydrodynamic conditions. Under stagnant conditions, the galvanic behaviour of the materials is close to the compatibility limit and an inversion of the anodic element of the galvanic pair takes place.

  9. Selective Oxidation and Reactive Wetting During Hot-Dip Galvanizing of a 1.0 pct Al-0.5 pct Si TRIP-Assisted Steel

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2012-07-01

    Selective oxidation and reactive wetting during continuous galvanizing were studied for a low-alloy transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, 1.0 pct Al and 0.5 pct Si. Three process atmospheres were tested during annealing prior to galvanizing: 220 K (-53 °C) dew point (dp) N2-20 pct H2, 243 K (-30 °C) dp N2-5 pct H2 and 278 K (+5 °C) dp N2-5 pct H2. The process atmosphere oxygen partial pressure affected the oxide chemistry, morphology and thickness. For the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres, film and nodule-type manganese, silicon and aluminum containing oxides were observed at the surface. For the 278 K (+5 °C) dp atmosphere, MnO was observed at the grain boundaries and as thicker localized surface films. Oxide morphology, thickness and chemistry affected reactive wetting, with complete wetting being observed for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres and incomplete reactive wetting being observed for the 278 K (+5 °C) dp atmosphere. Complete reactive wetting for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres was attributed to a combination of zinc bridging of oxides, aluminothermic reduction of surface oxides and wetting of the oxides. Incomplete wetting for the 278 K (+5 °C) dp atmosphere was attributed to localized thick MnO films.

  10. Electrodeposition, characterization and corrosion investigations of galvanic tin-zinc layers from pyrophosphate baths

    OpenAIRE

    STOPIC MILENA D.; FRIEDRICH BERND G.

    2016-01-01

    Tin-zinc alloy deposits are recognized as a potential alternative to toxic cadmium as corrosion resistant coatings. Tin-zinc alloy layers offer outstanding corrosion protection for steel by combining the barrier protection of tin with the galvanic protection of zinc. Tin-zinc coatings have been used on the chassis of electrical and electronic apparatus and on critical automotive parts such as fuel and brake line components. In this study, tin-zinc alloy deposits were successfully prepared fro...

  11. Very High Frequency Galvanic Isolated Offline Power Supply

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf

    During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...... inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...... are described together with the possibility of using capacitors as the power galvanic isolation, both methods of creating galvanic isolation are implemented in converters. Regarding EMC a series of converters with different filter implementations are examined. The results from the conducted mea-surement from 150...

  12. A Flat Solar Collector Built from Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions

    Directory of Open Access Journals (Sweden)

    Á. Marroquín de Jesús

    2009-07-01

    Full Text Available Design, construction, and testing of the thermal performance of a flat solar collector for domestic water heating are described. The absorbing plate is built from readily available materials: two sheets of galvanized steel, one of the channelled type, the other one flat, which are joined by electric welding. The absorber is connected to a 198–L thermotank, insulated with polyurethane foam. In terms of receiving surface, the prototype tested here has an area of 1.35 m2, about 20% smaller than comparable copper–tube–based collectors offered in the market. Temperature measurements conducted over a 30–day period gave values which were a few degrees lower than the theoretically calculated water temperatures. Momentary thermal efficiency values between 35% and 77% were observed. The water temperature achieved in the tank at the end of the day aver ages 65°C in winter weather conditions in the central Mexican highland. This design of solar water heater is well suited to Mexican conditions, as it makes use of the high local intensity of the solar radiation, and as the channel shape of the ducts minimizes bursting during the rare occurrences of freezing temperatures in the region; it also has the advantage of being manufacturable at low cost from simple materials.

  13. Characterization of solid wastes from two different hot-dip galvanizing processes; Caracterizacion de residuos solidos procedentes de dos procesos distintos de galvanizado en caliente por inmersion

    Energy Technology Data Exchange (ETDEWEB)

    Delvasto, P.; Casal-Ramos, J. a.; Gonzalez-Jordan, O.; Duran-Rodriguez, N. C.; Dominguez, J. R.; Moncada, P.

    2012-11-01

    Zinc dust and zinc ash from hot-dip galvanizing industries located in Venezuela were characterized using atomic spectroscopy, scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Dust was formed during the high-pressure drying process of the galvanized pieces, in a plant that uses a steel kettle to hold the molten zinc. Ash identified as A came from the same plant as the dust, while ash identified as B came from a hot-dip galvanizing plant which use a ceramic lined galvanizing furnace. Dust contained 98 wt % Zn, in metallic form. Both ash samples contained: Zn and ZnO, while Zn{sub 5}(OH){sub 8}Cl{sub 2}×H{sub 2}O and ZnCl{sub 2} were only found in ash B. Globally, ash “A” and ash “B” contain 71 and 75 wt % Zn, respectively. (Author)

  14. Interface fracture behavior of zinc coatings on steel : Experiments and finite element calculations

    NARCIS (Netherlands)

    Song, G.M.; Sloof, W.G.; Pei, Y.T.; de Hosson, J.T.M.

    2006-01-01

    Hot-dipped galvanized steels are widely used in the automotive industry. The formability and damage resistance of zinc coatings depend strongly on their microstructure and adhesion to the steel substrate. In order to improve the mechanical performance of zinc coatings, the influence of their

  15. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    Science.gov (United States)

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  16. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique

    International Nuclear Information System (INIS)

    Dong Zehua; Shi Wei; Ruan Hongmei; Zhang Guoan

    2011-01-01

    Highlights: → Highly conductive SRB-biofilm can shield the potential differences of mild steel. → Potential maps fail to indicate the localised corrosion of steel under SRB-biofilm. → Galvanic current maps can detect the location of localised corrosion under biofilm. → SRB-biofilm is super-capacitive due to the conductive sulphide micropores. - Abstract: Heterogeneous corrosion of mild steel under sulphate reducing bacteria (SRB)-biofilm was characterised by wire beam electrode (WBE) technique and electrochemical impedance spectrum. The potential/current distributions of the WBE under SRB-biofilm showed that the potential maps could not indicate the localised corrosion of steels beneath biofilm due to the fact that all wire electrodes were short-circuited by the highly conductive sulphide precipitates embedded in SRB-biofilm. Instead, the galvanic current maps may give a good indication. The characteristic of super-capacitance (0.21 F/cm 2 ) of SRB-biofilm was attributed to the huge specific surface area of conductive pore walls inside biofilm.

  17. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  18. Effects of Niobium Microalloying on Microstructure and Properties of Hot-Dip Galvanized Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Mohrbacher, Hardy [NiobelCon bvba, Brussels (Belgium)

    2010-04-15

    Niobium microalloying is effective in hot-rolled and cold-rolled steels by providing a fine-grained microstructure resulting in increased strength. To optimize the strengthening effect, alloy design and hot-rolling conditions have to be adapted. As a key issue the dissolution and precipitation characteristics of Nb are discussed in particular with regard to the run-out table conditions. It is then considered how the hot-rolled microstructure and the solute state of Nb interact with the hot-dip galvanizing cycle. The adjusted conditions allow controlling the morphology and distribution of phases in the cold-rolled annealed material. Additional precipitation hardening can be achieved as well. The derived options can be readily applied to produce conventional HSLA and IF high strength steels as well as to modem multiphase steels. It will be explained how important application properties such as strength, elongation, bendability, weldability and delayed cracking resistance can be influenced in a controlled and favorable way. Examples of practical relevance and experience are given.

  19. Recent Developments in On-Line Assessment of Steel Strip Properties

    International Nuclear Information System (INIS)

    Meilland, P.; Kroos, J.; Buchholtz, O. W.; Hartmann, H.-J.

    2006-01-01

    On-line non-destructive assessment of steel strip properties is a subject of growing interest amongst European manufacturers, as it provides information all along the products length, without slowing down the production. Arcelor, Salzgitter and TKS recently undertook a collective effort to assess the performance of 3 systems for flat carbon steel strips mechanical properties at the exit of galvanizing lines

  20. The effects of zinc bath temperature on the coating growth behavior of reactive steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianhua, E-mail: super_wang111@hotmail.com [School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan, 411105 (China); Tu Hao; Peng Bicao; Wang Xinming; Yin, Fucheng [School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan, 411105 (China); Su Xuping, E-mail: xuping@xtu.edu.cn [School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan, 411105 (China)

    2009-11-15

    The purpose of this work is to identify the influence of zinc bath temperature on the morphology and the thickness of reactive steel (Fe-0.1 wt.%Si alloy) coatings. The Fe-0.1 wt.%Si samples were galvanized for 3 min at temperatures in the range of 450-530 deg. C in steps of 10 deg. C. The coatings were characterized by using scanning electron microscopy/energy dispersive X-rays analysis. It was found that the coating thickness reaches the maximum at 470 deg. C and the minimum at 500 deg. C, respectively. When the reactive steel is galvanized at temperatures in the range of 450-490 deg. C, the coatings have a loose {zeta} layer on the top of a compact {delta} layer. With the increase of the galvanizing temperature, the {zeta} layer becomes looser. When the temperature is at 500 deg. C, the {zeta} phase disappears. With the increase of temperature, the coatings change to be a diffuse-{Delta} layer ({delta}+ liquid zinc).

  1. Dissolved oxygen detection by galvanic displacement-induced

    Indian Academy of Sciences (India)

    Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite ... dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles ... Current Issue

  2. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    Science.gov (United States)

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).

  3. Numerical Analysis of Edge Over Coating and Baffle Effect on Hot-Dip Galvanizing

    Science.gov (United States)

    Bao, Chengren; Kang, Yonglin; Li, Yan

    2017-06-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to determine the coating thickness and uniformity of the zinc layer on the steel strip. A numerical simulation of gas-jet wiping in hot-dip galvanizing was conducted to minimize the occurrence of edge over coating (EOC). The causes of EOC were identified by contrasting and analyzing the airflow fields on the strip edge with and without a baffle. The factors influencing the airflow field on the strip edge during the change in the gap between the baffle and the strip edge were also analyzed. The effect of the distance between the air knife and the strip was evaluated. Technological parameters with on-site guidance role were obtained by combining them with the actual production to elucidate the role of the baffle in restraining the occurrence of EOC. The uniform distribution of pressure and coating thickness on the strip is achieved when the distance of the baffle from the strip edge is about 0.3 times of the jetting distance.

  4. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples

    Science.gov (United States)

    Eder, M. A.; Haselbach, P. U.; Mishin, O. V.

    2018-05-01

    In this work, high-cycle fatigue is studied for threaded cylindrical high-strength steel samples coated using three different industrial processes: black oxidation, normal-temperature galvanization and high-temperature galvanization. The fatigue performance in air is compared with that of uncoated samples. Microstructural characterization revealed the abundant presence of small cracks in the zinc coating partially penetrating into the steel. This is consistent with the observation of multiple crack initiation sites along the thread in the galvanized samples, which led to crescent type fracture surfaces governed by circumferential growth. In contrast, the black oxidized and uncoated samples exhibited a semicircular segment type fracture surface governed by single-sided growth with a significantly longer fatigue life. Numerical fatigue life prediction based on an extended Paris-law formulation has been conducted on two different fracture cases: 2D axisymmetric multisided crack growth and 3D single-sided crack growth. The results of this upper-bound and lower-bound approach are in good agreement with experimental data and can potentially be used to predict the lifetime of bolted components.

  5. Galvanic manifestation of spontaneous coherence in the negative glow

    International Nuclear Information System (INIS)

    Zhechev, D; Parvanova, N

    2002-01-01

    Both the magnetic depolarization of the spontaneous emission from self-aligned states and the discharge galvanic reaction are measured simultaneously in a magnetic field. The observed galvanic peak is ascribed to magnetic destruction of self-aligned ensembles of atoms. This presents galvanic manifestation of coherent conductivity. (letter to the editor)

  6. About the effect of melted zinc mass additives on the formation on layers during hot galvanizing; Zur Wirkung von Zusaetzen zur Zinkschmelze auf die Schichtbildung beim Feuerverzinken

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, P.; Schulz, W.D. [Institut fuer Korrosionsschutz Dresden GmbH, Gostritzer Str. 61-63, D-01217 Dresden (Germany)

    2002-09-01

    The influence of various melted zinc mass additives on the galvanizing behaviour of steels is examined by way of comparison. The mechanisms influencing the formation of layers are very different. In case tin is added, a material barrier of enriched tin develops in the zinc coating, which inhibits the iron transport. The mechanisms of Ni, Ti and Al in the melted zinc mass are explained by means of a new theory on the formation of layers, which is based on the influence of the growth of layers via hydrogen escaping from the steel surface during hot galvanizing. This behaviour makes it clear why the single melted mass additives only have a layer-thickness reducing effect on steels with very definite Si contents. The different inhibitions of the growth of the layer during hot galvanizing are discussed. (Abstract Copyright[2002], Wiley Periodicals, Inc.) [German] Der Einfluss unterschiedlicher Zinkschmelzezusaetze auf das Verzinkungsverhalten der Staehle wird vergleichend untersucht. Die Mechanismen der Einflussnahme auf die Schichtbildung sind sehr unterschiedlich. Bei Zusatz von Zinn entsteht im Zinkueberzug eine Materialbarriere aus angereichertem Zinn, die den Eisentransport hemmt. Die Wirkungsweise von Ni, Ti und Al in der Zinkschmelze wird mit Hilfe einer neuen Theorie der Schichtbildung erklaert. Diese beruht auf der Beeinflussung des Schichtwachstums durch Wasserstoff, der waehrend des Feuerverzinkens aus der Stahloberflaeche austritt. Diese Erklaerung macht verstaendlich, warum die einzelnen Schmelzezusaetze nur bei Staehlen mit ganz bestimmten Si-Gehalten schichtdickenreduzierend wirken. Die unterschiedlichen Hemmungen des Schichtwachstums beim Feuerverzinken werden diskutiert. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  7. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)

    2006-09-15

    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  8. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  9. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    Science.gov (United States)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  10. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    International Nuclear Information System (INIS)

    Liu Liming; Xu Rongzheng

    2012-01-01

    Highlights: ► Galvanic corrosion increases the corrosion rate of the Mg-steel joint. ► Fe splashes lower the corrosion resistance of the joint greatly. ► The effect of grain refinement on the corrosion behavior of the joint is slight. ► Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. ► The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  11. Selective surface oxidation and segregation upon short term annealing of model alloys and industrial steel grades

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.

    2007-07-01

    Segregation and selective oxidation phenomena of minor alloying elements during annealing of steel sheets lead to the formation of bare spots after hot-dip galvanizing. This thesis highlights the influence of annealing conditions and the effect of alloying elements on the selective oxidation in model alloys and some industrial steel grades. Model alloys of binary (Fe-2Si, Fe-2Mn, Fe-0.8Cr), ternary (Fe-2Mn-2Si, Fe-2Mn-0.8Cr, Fe-1Mn-0.8Cr, Fe-1Si-0.8Cr, Fe-2Si-0.8Cr) and quarternary (Fe-2Mn-2Si-0.8Cr) systems were studied. In the case of steels, standard grade interstitial free (IF) steels and experimental grade tensile strength 1000 MPa steel were investigated. All specimens were annealed at 820 C in N{sub 2}-5%H{sub 2} gas atmospheres with the wide range of dew points (i.e. -80 to 0 C). The surface chemistry after annealing and its wettability with liquid Zn have been correlated as a function of dew points by simulating the hot-dip galvanizing process at laboratory scale. (orig.)

  12. Development and optimization of operational parameters of a gas-fired baking oven

    OpenAIRE

    Afolabi Tunde MORAKINYO; Babatunde OMIDIJI; Hakeem OWOLABI

    2017-01-01

    This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The ph...

  13. Galvanic cell for processing of used nuclear fuel

    Science.gov (United States)

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  14. Electrochemical Determination of Hydrogen Entry to HSLA Steel during Pickling

    Directory of Open Access Journals (Sweden)

    Jari Aromaa

    2018-01-01

    Full Text Available Pickling with hydrochloric acid is a standard method to clean steel surfaces before hot-dip galvanizing. When normal low strength steels are pickled, hydrogen formed in pickling reactions does not have any significant harmful effect on the mechanical properties of steel. However, in pickling of steels with higher strength, the penetration of hydrogen into the steel may cause severe damages. The effect of pickling of high-strength low-alloy (HSLA steels was investigated using a cell construction based on the Devanathan-Stachurski method with modified anodic surface treatment and hydrogen production using acid. The penetration and the permeability of hydrogen were measured using an electrochemical cell with hydrochloric acid on the one side of the steel sample and a solution of NaOH on the other side. No protective coating, for example, palladium on the anodic side of the sample, is needed. The penetration rate of hydrogen into the steel and exit rate from the steel were lower for higher strength steel.

  15. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Riesgo, O.; Bianchi, G.L.; Duffo, G.S.

    1993-01-01

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  16. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-04-01

    Full Text Available The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2, titanium alloy (TA2, and 316L stainless steel (316L SS. The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  17. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    Science.gov (United States)

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  18. Galvanic corrosion of copper-cast iron couples

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Cast Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water would enter the annulus between the inner and outer canister and at points of contact between the two metals there would be the possibility of galvanic interactions. Although this subject has been considered previously from both a theoretical standpoint and by experimental investigations there was a need for further experimental studies in support of information provided by SKB to the Swedish regulators (SKI). In the work reported here copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial porewaters at 30 deg C and 50 deg C, under aerated and deaerated conditions. Tests were also carried out in a 30 wt% bentonite slurry made up in artificial groundwater. The potential of the couples and the currents passing between the coupled electrodes were monitored for several months. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was investigated. In addition, some crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg C, galvanic corrosion rates as low as 0.02 μm/year for iron were observed after deaeration, but

  19. Failure analysis of edge discoloration of galvanized fuel tank

    Directory of Open Access Journals (Sweden)

    Jitendra Mathur

    2015-10-01

    Full Text Available A peculiar type of edge discoloration defect on the surface of some galvanized fuel tank was observed, causing significant appearance problems. In the present study, the surface defect was characterized by visual inspection, optical microscopy, scanning electron microscopy and energy dispersive spectroscopic analysis to understand the source and mechanism of the defect. In the visual inspection, these peculiar surface appearances were observed in fuel tank at three distinct locations. The SEM examination exhibited two distinct regions on the surface apart from the normal galvanized surface: (1 galvannealed, (2 mixture of galvanized and galvannealed texture. The energy dispersive spectroscopic analysis of galvannealed region indicated enrichment of Zn and Al whereas in the region of galvanized majorly Zn was observed. Surface texture of galvannealed region showed majorly zeta crystals along with skin pass marks; whereas no such zeta crystals were observed in case of galvanized regions. Based on the preliminary results, the following hypothesis was made: Coil processed during galvanizing to galvannealing transition. Thickness and width changed to wider and thicker section, which resulted into lower line speed. Due to the lower Al content, lower speed and thicker section combination resulted in formation of partial GA in the coil owing to the internal heat content of the coil. This paper presents the results of the investigation.

  20. Influence of Gas Atmosphere Dew Point on the Selective Oxidation and the Reactive Wetting During Hot Dip Galvanizing of CMnSi TRIP Steel

    Science.gov (United States)

    Cho, Lawrence; Lee, Seok Jae; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-01-01

    The selective oxidation and reactive wetting of intercritically annealed Si-bearing CMnSi transformation-induced plasticity steels were investigated by high-resolution transmission electron microscopy. In a N2 + 10 pct H2 gas atmosphere with a dew point (DP) ranging from 213 K to 278 K (-60 °C to 5 °C), a continuous layer of selective oxides was formed on the surface. Annealing in a higher DP gas atmosphere resulted in a thinner layer of external oxidation and a greater depth of internal oxidation. The hot dipping was carried out in a Zn bath containing 0.22 mass pct Al, and the bath temperature was 733 K (460 °C). Coarse and discontinuous Fe2Al5- x Zn x grains and Fe-Zn intermetallics (ζ and δ) were observed at the steel/coating interface after the hot dip galvanizing (HDG) of panels were annealed in a low DP atmosphere 213 K (-60 °C). The Fe-Zn intermetallics were formed both in areas where the Fe2Al5- x Zn x inhibition layer had not been formed and on top of non-stoichiometric Fe-Al-Zn crystals. Poor wetting was observed on panels annealed in a low DP atmosphere because of the formation of thick film-type oxides on the surface. After annealing in higher DP gas atmospheres, i.e., 263 K and 278 K (-10 °C and 5 °C), a continuous and fine-grained Fe2Al5- x Zn x layer was formed. No Fe-Zn intermetallics were formed. The small grain size of the inhibition layer was attributed to the nucleation of the Fe2Al5- x Zn x grains on small ferrite sub-surface grains and the presence of granular surface oxides. A high DP atmosphere can therefore significantly contribute to the decrease of Zn-coating defects on CMnSi TRIP steels processed in HDG lines.

  1. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liming, E-mail: liulm@dlut.edu.cn [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Xu Rongzheng [Key Laboratory of Liaoning Advanced Welding and Joining Technology, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Galvanic corrosion increases the corrosion rate of the Mg-steel joint. Black-Right-Pointing-Pointer Fe splashes lower the corrosion resistance of the joint greatly. Black-Right-Pointing-Pointer The effect of grain refinement on the corrosion behavior of the joint is slight. Black-Right-Pointing-Pointer Ni or Cu interlayer could not improve the corrosion resistance of fusion zone. Black-Right-Pointing-Pointer The arc-sprayed coating could enhance the reliability of weld joint. - Abstract: The paper investigates the corrosion behavior of the lap joint of AZ31 magnesium alloy to Q235 steel with salt solution immersion testing and electrochemical testing. It is demonstrated that grain refinement resulting from the welding process has little effect on the corrosion behavior of the lap joint. However, the cathodic phases formed in the welding process and the galvanic corrosion between magnesium alloy and steel decrease the corrosion resistance of the joint greatly. Besides, neither Cu nor Ni, as filler material, could improve the corrosion resistance of the joint, but the arc-sprayed Al coating acting as a protective layer could.

  2. Development of low-temperature galvanizing and its application for corrosion protection of high-strength steels; Entwicklung einer niedrigschmelzenden Legierung und deren Applikation zum Korrosionsschutz hochfester Staehle

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Lampke, T.; Steinhaeuser, S. [Technische Universitaet Chemnitz (Germany). Institut fuer Werkstoffwissenschaft und Werkstofftechnik; Strobel, C. [Fachhochschule Ingolstadt (Germany); Merklinger, V.

    2008-12-15

    Apart from reliability and quality, vehicle safety and cost efficiency are the decisive criteria for automobile manufacturers. Corrosion protection plays a decisive role because it increases the service life. The ultra-high-strength steels are materials which exhibit high lightweight potential as well as a very good energy absorption capacity because of their mechanical properties. In connection with the possibility of hot forming, they are predestined for the fabrication of complicated, load-compatible shapes in the crash-relevant frame and body construction. The application of these steel qualities has been carried out in structural parts which are protected from corrosion by a hot-dip coat of FeAl7 - the so-called Usibor. However, at the moment there is no ready-for-production solution for later corrosion protection of already hot-formed parts. Therefore, a corrosion protection system on the basis of conventional low-temperature galvanizing processes has been developed and utilized. First, the softening behavior of the highly-resistant 22MnB5 substrate was analyzed. Afterwards, a galvanizing system was developed and applied. The corrosion protection coatings were characterized with regard to their structure and corrosion protection potential. As a result, a significant improvement of the corrosion behaviour has occurred. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] Neben Zuverlaessigkeit und Qualitaet sind vor allem Fahrzeugsicherheit und Wirtschaftlichkeit entscheidende Kriterien fuer den Automobilhersteller. Der Korrosionsschutz spielt dabei eine herausragende Rolle, da hierdurch die Lebens- und Gebrauchsdauer erhoeht wird. Mit der Bereitstellung hoechstfester Stahlqualitaeten stehen Werkstoffe zur Verfuegung, die auf Grund ihrer mechanischen Eigenschaften ein hohes Leichtbaupotenzial sowie ein sehr gutes Energieabsorptionsvermoegen aufweisen. In Verbindung mit der Moeglichkeit der Warmformgebung sind sie damit praedestiniert fuer die

  3. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  4. Galvanic Corrosion between Alloy 690 and Magnetite in Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2015-12-01

    Full Text Available The galvanic corrosion behavior of Alloy 690 coupled with magnetite has been investigated in an alkaline solution at 30 °C and 60 °C using a potentiodynamic polarization method and a zero resistance ammeter. The positive current values were recorded in the galvanic couple and the corrosion potential of Alloy 690 was relatively lower. These results indicate that Alloy 690 behaves as the anode of the pair. The galvanic coupling between Alloy 690 and magnetite increased the corrosion rate of Alloy 690. The temperature increase led to an increase in the extent of galvanic effect and a decrease in the stability of passive film. Galvanic effect between Alloy 690 and magnetite is proposed as an additional factor accelerating the corrosion rate of Alloy 690 steam generator tubing in secondary water.

  5. 40 CFR 465.20 - Applicability; description of the galvanized basis material subcategory.

    Science.gov (United States)

    2010-07-01

    ... galvanized basis material subcategory. 465.20 Section 465.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COIL COATING POINT SOURCE CATEGORY Galvanized Basis Material Subcategory § 465.20 Applicability; description of the galvanized basis material...

  6. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  7. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  8. Galvanic manufacturing in the cities of Russia: potential source of ambient nanoparticles.

    Directory of Open Access Journals (Sweden)

    Kirill S Golokhvast

    Full Text Available Galvanic manufacturing is widely employed and can be found in nearly every average city in Russia. The release and accumulation of different metals (Me, depending on the technology used can be found in the vicinities of galvanic plants. Under the environmental protection act in Russia, the regulations for galvanic manufacturing do not include the regulations and safety standards for ambient ultrafine and nanosized particulate matter (PM. To assess whether Me nanoparticles (NP are among environmental pollutants caused by galvanic manufacturing, the level of Me NP were tested in urban snow samples collected around galvanic enterprises in two cities. Employing transmission electronic microscopy, energy-dispersive X-ray spectroscopy, and a laser diffraction particle size analyzer, we found that the size distribution of tested Me NP was within 10-120 nm range. This is the first study to report that Me NP of Fe, Cr, Pb, Al, Ni, Cu, and Zn were detected around galvanic shop settings.

  9. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    Henriksson, S.

    1981-06-01

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  10. Measurements of residual deformations of steel-aluminum conductors in operating overhead lines

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.V.; Kesel' man, L.M.; Treiger, A.S.

    1982-12-01

    Experience in the operation of overhead power lines using steel-aluminum conductors is presented. Measurements were taken on the residual deformation of the steel-aluminum lines to determine the amount of sag increase and to forecast this increase for the entire period of operation. It is recommended that the work on measuring the residual deformation in the power lines be extended to a broader range of operating conditions such as conductors, spans, and climate conditions.

  11. Selective oxidation of dual phase steel after annealing at different dew points

    Science.gov (United States)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  12. Studies into the Factors that Affects the Service Integrity of Galvanizing Kettle

    OpenAIRE

    Muhammed Olawale Hakeem AMUDA; Ayisat Adebukunola LAWAL; Olakunle Wasiu SUBAIR; Ganiyu Ishola LAWAL

    2008-01-01

    The finding of studies into the factors that affects optimal performance of galvanizing kettle is presented in this paper. The production schedule and history of a failed galvanizing kettle for 3-consecutively years in a hot-dip galvanizing industry was collated and analyzed. The analysis of the collated data revealed that average galvanizing temperatures for the 3-year under review were 483.9°C (2003), 482.25°C (2004) and 482°C (2005) respectively. The amount of flux, and dross produced in t...

  13. Studies into the Factors that Affects the Service Integrity of Galvanizing Kettle

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The finding of studies into the factors that affects optimal performance of galvanizing kettle is presented in this paper. The production schedule and history of a failed galvanizing kettle for 3-consecutively years in a hot-dip galvanizing industry was collated and analyzed. The analysis of the collated data revealed that average galvanizing temperatures for the 3-year under review were 483.9°C (2003, 482.25°C (2004 and 482°C (2005 respectively. The amount of flux, and dross produced in the corresponding years were 169.15kg and 31.6 tons, 56.31kg and 10.5 tons and 101.14 and 18.91 tonnes for 2003, 2004 and 2005 respectively. During these years, zinc consumed averaged 647, 334 and 446 tonnes respectively.Stochiometry evaluation of flux, and dross in a hot-dip galvanizing process determined flux required as 60 kg/year and dross produced as 90 slabs / month.The study revealed that the lifespan of galvanizing kettle is greatly reduced by temperature fluctuation, dross formation, excess flux additions and combinations of these factors.It is recommended that improved service integrity of galvanizing kettle is assured at galvanizing temperature of 460°C, flux consumption of 0.15 –0.20kg daily and constant removal of dross at 3-5 slabs per day. This reduces the formation of skim lines, which leads to pits on the walls of the kettle.

  14. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  15. Corrosion of welded steel piping in domestic hot water: A case history. Corrosion de una instalacion de tubos soldados de acero galvanizado para agua caliente

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, E J; Soria, L; Gallardo, J M

    1993-01-01

    Many leaks had occurred after seven years of service in the hot sanitary water system of building. The results of the failure analysis have led to the conclusion that the reduced life of the piping system was primarily promoted by the use of a dissimilar metal (galvanized steel-copper) installation and by an excessive service temperature. Through precuations were taking to electrically insulate both types of tubing by employing dielectric fittings and water flow followed the ''rule of flow'' (zinc[yields] copper), an indirect galvanic attach on galvanized steel took place. Localized corrosion was originated by microcells formed by plating out of soluble copper. Corrosive attack was most severe at weld seams. The microstructure of the weld zone was very different from that of the surrounding pipe. In addition, some pipes presented signs of incomplete fusion (welding without filling metal) and others had protruding weld seams which produced crevice attack and erosion-corrosion, respectively. Author (10 refs.)

  16. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  17. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  18. About neutralization of the toxic waste of galvanic production

    International Nuclear Information System (INIS)

    Akhmetzhanova, Z.Kh.; Samatov, I.B.

    1996-01-01

    The nature of heavy metals ions migration to environment from the galvanic production is considered in the article. The method of toxic precipitations transformation to non-toxic ones is proposed. The essence of stabilization method of heavy metals hydroxides precipitations consists in transformation of galvanic precipitations mixture to same metals ferrites mixture. The reaction has followed in oxygen medium under heating of galvanic precipitations from 70 up 90 deg C. Before heating the precipitation have acid medium, after temperature treatment the medium turn to the neutral one. These compounds are presented as ferrite class and can be serve as base for various pigments. (author)

  19. Formation of Outburst Structure in Hot Dip Galvannealed Coatings on IF Steels

    Directory of Open Access Journals (Sweden)

    Kollárová, M.

    2007-01-01

    Full Text Available Outburst structure in two industrially produced hot dip galvanized interstitial free steel sheets for automotive industry after additional annealing has been examined. Ti IF steel was found to form weak outburst structure in the early stage of annealing, followed by frontal growth of Fe-Zn phases during further heating. The high reactivity of this steel was confirmed by rapid G-phase formation. Under the same conditions, Ti-Nb-P IF steel exhibited frontal growth of Fe-Zn compounds without G-phase formation due to relatively high phosphorous content, which is known as inhibitor of Fe-Zn reaction, but simultaneously significant occurrence of undesired outburst structures was recorded. It was assumed that the phosphorous content was insufficient and/or ferrite grain was very fine.

  20. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 1: formative years, naturphilosophie, and galvanism.

    Science.gov (United States)

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    During the 1790s, Alexander von Humboldt (1769-1859), who showed an early interest in many facets of natural philosophy and natural history, delved into the controversial subject of galvanism and animal electricity, hoping to shed light on the basic nature of the nerve force. He was motivated by his broad worldview, the experiments of Luigi Galvani, who favored animal electricity in more than a few specialized fishes, and the thinking of Alessandro Volta, who accepted specialized fish electricity but was not willing to generalize to other animals, thinking Galvani's frog experiments flawed by his use of metals. Differing from many German Naturphilosophen, who shunned "violent" experiments, the newest instruments, and detailed measurement, Humboldt conducted thousands of galvanic experiments on animals and animal parts, as well as many on his own body, some of which caused him great pain. He interpreted his results as supporting some but not all of the claims made by both Galvani and Volta. Notably, because of certain negative findings and phenomenological differences, he remained skeptical about the intrinsic animal force being qualitatively identical to true electricity. Hence, he referred to a "galvanic force," not animal electricity, in his letters and publications, a theoretical position he would abandon with Volta's help early in the new century.

  1. Study on the wiping gas jet in continuous galvanizing line

    Science.gov (United States)

    Kweon, Yong-Hun; Kim, Heuy-Dong

    2011-09-01

    In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

  2. Numerical Simulation of Galvanic Corrosion Caused by Shaft Grounding Systems in Steel Ship Hulls

    National Research Council Canada - National Science Library

    Wang, Y

    2005-01-01

    .... This led to the accelerated corrosion of the exposed steel ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel...

  3. Welded repair joints of boiler steels following operation in creep conditions exceeding the design time of operation

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, J.; Paszkowska, H.; Zielinski, A. [Institute for Ferrous Metallurgy, Gliwice (Poland)

    2010-07-01

    The assessment of suitability for further operation for materials and welded repair joints of thick-walled main steam pipeline components, made of steel 14MoV63, as well as steam superheater outlet headers made of steel X20CrMoV121 following operation in creep conditions in time periods considerably longer than the specified calculated time of operation. Strength properties, impact strength and transition temperature into brittle condition, as well as structure condition have been evaluated. On the basis of shortened creep tests, the residual life and disposable residual life of materials and welded joints have been determined. Material properties following operation and those of fabricated circumferential welded repair joints have been compared. The condition of examined components and suitability of the fabricated welded repair joints for further operation have been assessed. (orig.)

  4. Cold laminar galvanizing: a new anti-corrosion concept

    International Nuclear Information System (INIS)

    Bagnulo, L.H.

    1984-01-01

    Cold laminar galvanizing, a recent anticorrosion technology, now combines the most positive characteristics of the hot galvanizing protective systems. This patented technology has a zinc laminated foil (obtained by processing 99.9% pure zinc ingots) that is homogeneous and isotropic, with a standard thickness of 80-100μm. This foil is backed with an electro-conductive, selfadhesive glue prepared under an original formula. The zinc laminated foil offers excellent anchorage and elevated resistance to the main atmospheric agents

  5. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    International Nuclear Information System (INIS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-01-01

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH − ligand generates and adsorbs in a certain scale because of abundant OH − on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  6. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces

    International Nuclear Information System (INIS)

    Ke, Baolin; Li, Yuqiong; Chen, Jianhua; Zhao, Cuihua; Chen, Ye

    2016-01-01

    Graphical abstract: - Highlights: • Galvanic interaction is weakened with the increase of contact distance. • Electronic transfer mainly occurs on the contact layers. • Galvanic effect enhances nucleophilicity of galena and electrophilicity of pyrite. • Presence of H_2O increases the galvanic interaction. - Abstract: The galvanic interaction between pyrite and galena surface has been investigated using density functional theory (DFT) method. The calculated results show that galvanic interactions between pyrite and galena surface are decreased with the increase of contact distance. The galvanic interactions still occurs even the distance larger than the sum of two atoms radius (≈2.8 Å), and the limit distance of galvanic interaction between galena and pyrite surface is about 10 Å, which is consistent with the quantum tunneling effect. Through Mulliken charge population calculation, it is found that electrons transfer from galena to pyrite. For galena surface, Pb 6s and 6p states lose electrons and S 3p state loses a small amount of electrons, which causes the electron loss of galena. For pyrite surface, Fe 4p state obtains large numbers of electrons, resulting in the decrease of positive charge of Fe atom. However, the 3p state of S atom loses a small numbers of electrons. The reactivity of mineral surface has also been studied by calculating the frontier orbitals of minerals. Results suggest that the highest occupied molecular orbital (HOMO) coefficients of galena are increased whereas those of pyrite are decreased with the enhancing galvanic interaction, indicating that the oxidation of galena surface would be enhanced due to the galvanic interaction. The Fukui indices and dual descriptor values of surface atoms suggest that the nucleophilicity of the galena surface increases, meanwhile, the electrophilicity of pyrite surface increases with the decrease of the contact distance. In addition, the density of states (DOS) of atoms results show that the

  7. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  8. Opto-galvanic effect on degenerate magnetic states of sputtered atoms in a glow discharge

    International Nuclear Information System (INIS)

    Zhechev, D; Steflekova, V

    2014-01-01

    The opto-galvanic response of some degenerate states of sputtered atoms to linearly- and circularly polarize light is studied. On the same optical transition both time-resolved- and amplitude opto-galvanic signals are found depending on the polarizations of light absorbed. The latter induces galvanic responses differing in opto-galvanic efficiency, time-evolution and sensitivity to discharge current and laser power. The differences are ascribed to the rate constants of the decay processes, characterizing aligned and oriented atoms

  9. Methods for protection of high-strength welded stainless steel from corrosion cracking

    International Nuclear Information System (INIS)

    Lashchevskij, V.B.; Gurvich, L.Ya.; Batrakov, V.P.; Kozheurova, N.S.; Molotova, V.A.; Shvarts, M.M.

    1978-01-01

    The efficiency of protection from corrosion cracking under a bending stress of 100 kgf/mm 2 in a salt mist and in a sulphur dioxide atmosphere, of welded joints of steel 08Kh15N5D2T with metallizing, galvanic and varnish coatings and lubricants, and of steel 1Kh15N4AM3 with sealing compounds has been investigated. Metallization of welded joints with aluminium and zinc efficiently increases corrosion resistance in a salt mist. Galvanic coatings of Cd, Zn, and Cr increase the time to cracking in a salt mist from 2-3 to 60-80 days. The protective properties of varnishes under the effect of a salt mist decrease in the following sequence: epoxy-polyamide enamel EP-140, acrylic enamel C-38, silicone enamels KO-834, KO-811, and KO-814. In an atmosphere containing SO 2 0.15 vol.% at 100% relative humidity, the varnishes investigated, with the exception of the inhibited coating XC-596, show lower protective properties than in a salt mist. The high efficiency of protection from corrosion cracking in a salt mist of slots of steel 1Kh15N4AM3 when using organic sealing compounds U4-21 and U5-21, and also slushing lubricants and oils PVK, TsIATIM-201, K17, and AMS3 was established

  10. Galvanic corrosion of metals and coatings when coupled to uranium in severe environments

    International Nuclear Information System (INIS)

    Winkle, J.R.; Childs, E.L.

    1982-01-01

    The results of galvanic testing were varied in each environment. The position of metals in the galvanic series was not fixed, but changed with environment. In all cases where high general and galvanic corrosion rates were observed, the conditions of potential, pH, and impurity content could be correlated with regions of oxide surface film instability outlined by Pourbaix Diagrams. The majority of the severe corrosion reactions were observed in the acidic environment, although a few were noted in the caustic environment. The presence of chlorides tended to enhance galvanic corrosion rates at the neutral environment. 10 tables

  11. DEPOSITION OF NICKEL ON CARBON FIBRES BY GALVANIC METHOD

    Directory of Open Access Journals (Sweden)

    Pavol Štefánik

    2012-01-01

    Full Text Available The investigation of coating parameters in quasi-static coating of Ni layer on carbon fibre tow by galvanic method is presented. The tow of fibres was immersed in typical galvanic bath based on NiSO4, NiCl2, Na2SO4 and H3BO3 and current to carbon fibres was supplied by two leading metal rolls which are parts of continuous coating apparatus. The main parameters were current of 1 A, electrolyte temperature of 50 °C and the distance from power contacts to level of galvanic bath (8 or 13 cm. The amount and structure of deposited Ni layer at coating time 15 and 90 seconds of exposure in electrolyte and depth of immersion of tow into bath were discussed.

  12. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  13. Galvanic corrosion of laser weldments of AA6061 aluminium alloy

    International Nuclear Information System (INIS)

    Rahman, A.B.M. Mujibur; Kumar, S.; Gerson, A.R.

    2007-01-01

    Galvanic corrosion of laser welded AA6061 aluminium alloy, arising from the varying rest potentials of the various weldment regions, was examined. The weld fusion zone is found to be the most cathodic region of the weldment while the base material is the most anodic region. The rate of galvanic corrosion, controlled by the cathodic process at the weld fusion zone, increases with time until a steady state maximum is reached. On galvanic corrosion the corrosion potential of the weld fusion zone shifts in the positive direction and the free corrosion current increases. It is proposed that the cathodic process at the weld fusion zone causes a local increase in pH that in turn causes dissolution of the surface film resulting in the loss of Al to solution and the increase of intermetallic phases. The increase in galvanic corrosion may result from either the build up of the intermetallic phases in the surface layer and/or significant increase in surface area of the weld fusion zone due to the porous nature of the surface layer

  14. New developments in tribomechanical modeling of automotive sheet steel forming

    Science.gov (United States)

    Khandeparkar, Tushar; Chezan, Toni; van Beeck, Jeroen

    2018-05-01

    Forming of automotive sheet metal body panels is a complex process influenced by both the material properties and contact conditions in the forming tooling. Material properties are described by the material constitutive behavior and the material flow into the forming die can be described by the tribological system. This paper investigates the prediction accuracy of the forming process using the Tata Steel state of the art description of the material constitutive behavior in combination with different friction models. A cross-die experiment is used to investigate the accuracy of local deformation modes typically seen in automotive sheet metal forming operations. Results of advanced friction models as well as the classical Coulomb friction description are compared to the experimentally measured strain distribution and material draw-in. Two hot-dip galvanized coated steel forming grades were used for the investigations. The results show that the accuracy of the simulation is not guaranteed by the advanced friction models for the entire investigated blank holder force range, both globally and locally. A measurable difference between the calculated and measured local strains is seen for both studied models even in the case where the global indicator, i.e. the draw-in, is well predicted.

  15. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  16. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  17. Standard guide for conducting and evaluating galvanic corrosion tests in electrolytes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1981-01-01

    1.1 This guide covers conducting and evaluating galvanic corrosion tests to characterize the behavior of two dissimilar metals in electrical contact in an electrolyte under low-flow conditions. It can be adapted to wrought or cast metals and alloys. 1.2 This guide covers the selection of materials, specimen preparation, test environment, method of exposure, and method for evaluating the results to characterize the behavior of galvanic couples in an electrolyte. Note 1—Additional information on galvanic corrosion testing and examples of the conduct and evaluation of galvanic corrosion tests in electrolytes are given in Refs (1) through (7). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicabil...

  18. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  19. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  20. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  1. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  2. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  3. 46 CFR 58.50-10 - Diesel fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... the steel or iron shall not be galvanized on the interior. 5 Anodic to most common metals. Avoid... provided. (9) Iron or steel tanks shall not be galvanized on the interior. Galvanizing paint or other...

  4. Effects of supporting electrolyte on galvanic deposition of Cu2O crystals

    International Nuclear Information System (INIS)

    Wang Lida; Liu Guichang; Xue Dongfeng

    2011-01-01

    Highlights: → The effects of electrolyte on the galvanic deposition of Cu 2 O crystals have been investigated. → The chemical nature of supporting electrolyte plays important roles in the galvanic deposition of Cu 2 O crystals. → Cubic Cu 2 O crystals are formed in chloride electrolytes. → Truncated octahedral Cu 2 O crystals are produced in nitrate, sulfate and fluoride electrolytes. - Abstract: The effects of introduced supporting electrolyte on the galvanic deposition of Cu 2 O crystals have been investigated using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD). The results show that the chemical nature of supporting electrolytes plays very important roles in the galvanic deposition of Cu 2 O crystals. The chloride stabilizes the (1 0 0) planes of Cu 2 O crystals, resulting in the formation of cubic crystals, while nitrate, sulfate and fluoride stabilize the (1 1 1) planes of Cu 2 O crystals, leading to the deposition of truncated octahedral and octahedral Cu 2 O crystals. It provides a facile way to control the morphology of galvanically obtained Cu 2 O crystals by indirectly adjusting the inorganic adsorption agents.

  5. Sulphide stress corrosion behaviour of a nickel coated high-strength low-alloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Salvago, G; Fumagalli, G; Cigada, A; Scolari, P

    1987-01-01

    The sulphide stress corrosion cracking (SSCC) of the quenched and tempered AISI 4137 H steel either bare or coated with nickel alloys was examined. Both traditional electrochemical and linear elastic fracture mechanics methods were used to examine cracking in the NACE environment and in environments simulating the geothermal fluids found in the area of Larderello in Italy. Some tests were carried out on a geothermal well in Ferrara. High nickel content coatings seem to increase the SSCC resistance of the AISI 4137-H steel. Galvanic couplings effects are possible factors responsible for the behaviour in SSCC.

  6. 78 FR 14361 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Science.gov (United States)

    2013-03-05

    ... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, PA; Notice of Initiation of Investigation To Terminate Certification of Eligibility Pursuant to... Tubular Products, McKeesport Tubular Operations Division, Subsidiary of United States Steel Corporation...

  7. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  8. Thin film galvanic cell with RbAg4I5 solid electrolyte

    International Nuclear Information System (INIS)

    Bodnaruk, L.I.; Danilov, A.V.; Kulinkovich, V.E.; Aleskovskij, V.B.

    1975-01-01

    In order to decrease the size and weight and to increase the specific capacity and energy of galvanic cells, some solid electrolytes in the form of thin films are proposed. The galvanic cells were prepared by a combined method: the cathodic and anodic materials (Te and Ag) were evaporated under vacuo to cover an electrolyte layer, the latter being obtained by impregnating the porous materials with RbAg 4 I 5 acetonic solution. The most specific charge curves of the galvanic cells at various current densities are given: specific energy of the samples was 0.2 to 0.7 watt-h/kg, their capacity being 0.1 to 0.2 mah. Behaviour of the cells when stored (that of Ag(RbAg 4 I 5 ) interface in particular) was investigated, namely, the effect of the storage time on the capacity and internal resistance of the galvanic cell

  9. Potentiometric titration of zinc and cadmium in electrolytes of in galvanic baths

    International Nuclear Information System (INIS)

    Kosyuga, E.A.; Kalugin, A.A.; Gur'ev, I.A.

    1979-01-01

    The method of potentiometric titration of zinc and cadmium by complexone 3 in electrolytes of galvanic baths using sulphide - silver electrode for determining the finite point of titration is suggested. Copper (2) ions are proposed as indicator ions. The potentiometric determination should be performed at pH=10. The method is verified on model electrolyte solutions and on the electrolyte solutions of operating baths.The technique can be used for automatic control. The time for analysis is 10 minutes

  10. Overall model of the dynamic behaviour of the steel strip in an annealing heating furnace on a hot-dip galvanizing line

    Directory of Open Access Journals (Sweden)

    Fernández, R.

    2010-10-01

    Full Text Available Predicting the temperature of the steel strip in the annealing process in a hot-dip galvanizing line (HDGL is important to ensure the physical properties of the processed material. The development of an accurate model that is capable of predicting the temperature the strip will reach according to the furnace’s variations in temperature and speed, its dimensions and the steel’s chemical properties, is a requirement that is being increasingly called for by industrial plants of this nature. This paper presents a comparative study made between several types of algorithms of Data Mining and Artificial Intelligence for the design of an efficient and overall prediction model that will allow determining the strip’s variation in temperature according to the physico-chemical specifications of the coils to be processed, and fluctuations in temperature and speed that are recorded within the annealing process. The ultimate goal is to find a model that is effectively applicable to coils of new types of steel or sizes that are being processed for the first time. This model renders it possible to fine-tune the control model in order to standardise the treatment in areas of the strip in which there is a transition between coils of different sizes or types of steel.La predicción de la temperatura de la banda de acero dentro del proceso de recocido de una planta de galvanizado continuo en caliente es importante para garantizar las propiedades físicas del material procesado. El desarrollo de un modelo preciso que sea capaz de predecir la temperatura que va a alcanzar la banda según las variaciones de temperaturas y velocidades del horno, y sus dimensiones y propiedades químicas del acero, es una necesidad cada vez más demandada por este tipo de plantas industriales. En el presente estudio se muestra una comparativa realizada entre diversos tipos de algoritmos deMinería de Datos e Inteligencia Artificial para el desarrollo de un modelo de predicci

  11. Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

    International Nuclear Information System (INIS)

    Jo, Duhwan; Kwon, Moonjae; Kim, Jongsang

    2012-01-01

    Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances

  12. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  13. A microfluidic galvanic cell on a single layer of paper

    Science.gov (United States)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  14. Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-12-01

    Full Text Available This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.

  15. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory.

  16. Hydrogen embrittlement and galvanic corrosion of titanium alloys

    International Nuclear Information System (INIS)

    Soh, Jeong Ryong; Jeong, Y. H.; Choi, B. K.; Baek, J. H.; Hwang, D. Y.; Choi, B. S.; Lee, D. J.

    2000-06-01

    The material properties including the fracture behavior of titanium alloys used as a steam generator tube in SMART can be degraded de to the hydrogen embrittlement and the galvanic corrosion occurring as a result of other materials in contact with titanium alloys in a conducting corrosive environment. In this report the general concepts and trends of hydrogen embrittlement are qualitatively described to adequately understand and expect the fracture behavior from hydrogen within the bulk of materials and under hydrogen containing environments because hydrogen embrittlement may be very complicated process. And the characteristics of galvanic corrosion closely related to hydrogen embrittlement is qualitatively based on wimple electrochemical theory

  17. Maize Storage in Termite Mound Clay, Concrete, and Steel Silos in the Humid Tropics: Comparison and Effect on Bacterial and Fungal Counts

    Science.gov (United States)

    This study investigated the functional suitability of using the readily-available termite mound clay (TMC) for grain silo construction in comparison to conventional reinforced concrete (RC) and galvanized steel (GS) silos for maize storage in the humid tropics. The extent to which temperature and r...

  18. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhao [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Sidhar, Harpreet [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Mishra, Rajiv S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Hovanski, Yuri [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Upadhyay, Piyush [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Carlson, Blair [General Motors Technical Center, Warren, MI, USA

    2017-10-04

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore, in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position

  19. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  20. Factors affecting the hot-dip zinc coatings structure

    International Nuclear Information System (INIS)

    Sere, P.R.; Cuclcasi, J.D.; Elsner, C.I.; Sarli, A.R.

    1997-01-01

    Coating solidification during hot-dip galvanizing is a very complex process due to Al-Fe, Al-Fe-Zn and Fe-Zn intermetallic compounds development . Fe-Zn intermetallics are brittle and detrimental for the coating ductility, while the diffusion towards the surface of a segregated insoluble alloying such as antimonium causes the sheet darkness. Steel of different roughness were hot-dip galvanized under different operation conditions using a laboratory scale simulator. The effect of steel roughness and process parameters upon coating characteristics were analysed. Experimental results showed that the steel roughness affects the coating thickness, zinc grain size and texture as well as the out-bursts development, while the process parameters affects the Fe 2 Al 5 morphology and antimonium segregation. (Author) 11 refs

  1. Spontaneous passivation observations during scale formation on mild steel in CO{sub 2} brines

    Energy Technology Data Exchange (ETDEWEB)

    Han Jiabin, E-mail: jhan@lanl.gov [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States); Nesic, Srdjan, E-mail: nesic@ohio.edu [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States); Yang Yang; Brown, Bruce N. [Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, 342 West State Street, Athens, OH 45701 (United States)

    2011-06-01

    Highlights: > We observed spontaneous passivation was at pH > 7. A higher open circuit potential was achieved comparing to bare surface or FeCO{sub 3} scaled surface. > Effects of pH, temperature, CO{sub 2}/FeCO{sub 3} on spontaneous passivation were systematically investigated. > TEM analysis determined the structure and chemistry of the passive film is Fe{sub 3}O{sub 4} instead of FeCO{sub 3}. > Root cause of the galvanic mechanism of localized CO{sub 2} corrosion is clarified. - Abstract: Previous study revealed localized corrosion in CO{sub 2} environments was driven by a galvanic cell established between pit surfaces and scaled surrounding area. In order to underpin the understanding of the galvanic mechanism of localized corrosion, the root cause of potential differences between these two surfaces, passivation of mild steel, in CO{sub 2} environments was investigated using transmission electron microscopy technique and electrochemical techniques including potentiodynamic polarization, cyclic polarization and open circuit potential techniques. Potentiodynamic polarization experiments showed that the passivation of the carbon steel surface favorably occurred at pH > 7 and facilitated with the presence of FeCO{sub 3} scale. Cyclic polarization tests showed that polarization rate had an important influence on passivation behavior. At a slower polarization rate, lower passivation potential and current density were observed. Spontaneous passivation was evidenced by a significant increase of corrosion resistance and an open circuit potential without any externally applied current or potential during electrode immersion. This process is affected by pH, temperature, presence of CO{sub 2} and iron carbonate. Nevertheless, iron carbonate film is not the only one responsible for passivation, as demonstrated from depassivation tests where passivity was lost without losing the existing iron carbonate film. Transmission electron microscopy technique was used to determine

  2. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  3. Complex approach mechanical properties and formability assessment of selected deep-drawing steels

    OpenAIRE

    J. Štaba; M. Buršák

    2009-01-01

    The paper analyses the properties of deep-drawing sheets of three grades (Re = 320 to 475 MPa), surface-treated with hot-dip galvanizing, made of microalloyed steels. Deformation properties are assessed using tensile tests, technological Erichsen or cupping tests. These characteristics, as well as the behaviour of the surface layer, are also investigated under dynamic conditions (modified Erichsen test using a drop tester), or using flat bending fatigue tests. Using microscopic analysis the d...

  4. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    Science.gov (United States)

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  5. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  6. [Exposure to metal compounds in occupational galvanic processes].

    Science.gov (United States)

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  7. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  8. TEXTURE AND MECHANICAL BEHAVIOUR OF Ti AND Nb-Ti STABILIZED IF STEELS

    Directory of Open Access Journals (Sweden)

    Fabio Moreira da Silva Dias

    2013-12-01

    Full Text Available An analysis of the crystallographic texture and mechanical behavior of two types of IF steels is presented. Two steels, Ti and Nb-Ti, were submitted to different thermal annealing cycles in a continuous hot-dip galvanizing line, heat treated at temperatures of 860°C and 760°C. The more relevant characteristics of mechanical properties are evaluated. The crystallographic texture of the samples is determined by electron diffraction technique of back-scattering (SEM-EBSD. The intensity of orientation //ND is evaluated and compared. Metallographic characterization is done, and the ferritic grain size is measured with optical microscopy. The mechanical behavior of materials is characterized in the tensile test with 80 mm gauge length.

  9. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  10. 75 FR 28316 - Notice of Buy America Waiver Request by Oregon Department of Transportation for Steel Roof Tiles...

    Science.gov (United States)

    2010-05-20

    ...). ACTION: Notice of Buy America waiver request and request for comment. SUMMARY: The FRA is issuing this...'') Galvanized ``Non-Fluting'' Steel Stock with Kynar PPG 5LR82411 or L/G Rodda Red II Paint finish color. ODOT... available amount or are not of a satisfactory quality; (C) rolling stock or power train equipment cannot be...

  11. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  12. Quench and partitioning steel: a new AHSS concept for automotive anti-intrusion applications

    Energy Technology Data Exchange (ETDEWEB)

    De Cooman, B.C. [Graduate Inst. for Ferrous Technology, Pohang Univ. of Science and Technology, Pohang (Korea); Speer, J.G. [Advanced Steel Processing and Products Research Centre, Colorado School of Mines, Golden, CO (United States)

    2006-09-15

    A new type of high strength, high toughness, martensitic steel, based on a newly proposed quench and partitioning (Q and P) process, is presented. This high strength martensitic grade is produced by the controlled low temperature partitioning of carbon from as-quenched martensite laths to retained inter-lath austenite under conditions where both low temperature transition carbide formation and cementite precipitation are suppressed. The contribution focuses on both the current understanding of the fundamental processes involved and includes a discussion of the technical feasibility of large-scale industrial production of these steels as sheet products. The Q and P process, which is carried out on steels with a lean composition, should be implemented easily on some current industrial continuous annealing and galvanizing lines. In addition, martensitic Q and P sheet steel is characterized by very favourable combinations of strength, ductility and toughness, which are particularly relevant for high strength anti-intrusion automotive parts. (orig.)

  13. Prognostic investigation of galvanic corrosion precursors in aircraft structures and their detection strategy

    Science.gov (United States)

    James, Robin; Kim, Tae Hee; Narayanan, Ram M.

    2017-04-01

    Aluminum alloys have been the dominant materials for aerospace construction in the past fifty years due to their light weight, forming and alloying, and relative low cost in comparison to titanium and composites. However, in recent years, carbon fiber reinforced polymers (CFRPs) and honeycomb materials have been used in aircrafts in the quest to attain lower weight, high temperature resistance, and better fuel efficiency. When these two materials are coupled together, the structural strength of the aircraft is unparalleled, but this comes at a price, namely galvanic corrosion. Previous experimental results have shown that when CFRP composite materials are joined with high strength aluminum alloys (AA7075-T6 or AA2024-T3), galvanic corrosion occurs at the material interfaces, and the aluminum is in greater danger of corroding, particularly since carbon and aluminum are on the opposite ends of the galvanic series. In this paper, we explore the occurrence of the recognizable precursors of galvanic corrosion when CFRP plate is coupled to an aluminum alloy using SS-304 bolts and exposed to environmental degradation, which creates significant concerns for aircraft structural reliability. The galvanic corrosion software package, BEASY, is used to simulate the growth of corrosion in the designed specimen after which a microwave non-destructive testing (NDT) technique is explored to detect corrosion defects that appear at the interface of this galvanic couple. This paper also explores a loaded waveguide technique to determine the dielectric constant of the final corrosion product at the Q-band millimeter-wave frequency range (33-50 GHz), as this can be an invaluable asset in developing early detection strategies.

  14. Electrochemical Degradation of Phenol and Resorcinol Molecules through the Dissolution of Sacrificial Anodes of Macro-Corrosion Galvanic Cells

    Directory of Open Access Journals (Sweden)

    Boguslaw Pierozynski

    2018-06-01

    Full Text Available This paper reports on the processes of phenol and resorcinol electrodegradation carried-out through continuous anodic dissolution of aluminum alloy and carbon steel sacrificial anodes for artificially aerated Cu-Al alloy and Cu-Fe-based galvanic (macro-corrosion cells and synthetically prepared wastewater solutions. Electrochemical experiments were carried-out by means of a laboratory size, PMMA (Poly-methyl methacrylate-made electrolyser unit, where significant degrees of phenol (10–89% and resorcinol (13–37% decomposition were obtained and visualized through the respective chemical/spectroscopy analyses. In addition, quantitative determination of phenol, as well as resorcinol (and possible electrodegradation products for the selected experimental conditions was performed by means of instrumental high-performance liquid chromatography/mass spectrometry analysis.

  15. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel.

    Science.gov (United States)

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to : long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The b...

  16. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  17. Electrocatalysts Prepared by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Athanasios Papaderakis

    2017-03-01

    Full Text Available Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases hydrogen evolution too, both oxygen levels and the pH must be optimized. The resulting bimetallic material can in principle have a Mnoble-rich shell and M-rich core (denoted as Mnoble(M leading to a possible decrease in noble metal loading and the modification of its properties by the underlying metal M. This paper reviews a number of bimetallic or ternary electrocatalytic materials prepared by galvanic replacement for fuel cell, electrolysis and electrosynthesis reactions. These include oxygen reduction, methanol, formic acid and ethanol oxidation, hydrogen evolution and oxidation, oxygen evolution, borohydride oxidation, and halide reduction. Methods for depositing the precursor metal M on the support material (electrodeposition, electroless deposition, photodeposition as well as the various options for the support are also reviewed.

  18. Efeito do tipo de revestimento na soldagem a ponto de aços galvanizados Effect of coating type on spot welding of galvanized steel

    Directory of Open Access Journals (Sweden)

    Tarcélio Anício da Silva

    2010-09-01

    -Cu (brass. Spot welding tests were carried out in IF steels coated in an industrial hot-dip galvanizing line with pure zinc (GI and a Zn-Fe alloy (GA. Three welding joints were evaluated: GA/GA, GI/GI and GA/GI. Dynamic weldability diagrams and electrode life were determined for each kind of joint. The results indicated that welding current increased more quickly with the number of welds for the GI/ GI joints. This result was associated with the fastest contamination of the electrode by zinc. For the GA/GI joints, welding current levels for adequate welding increased faster than for GA/GA joints but slower than for GI/GI joints. In general, the spot welding tests with GA/GI joints presented results closer to that of the GA/GA joints than to the spot welding tests with GI/GI joints. Such results showed the positive influence of the GA coating, even for joints including both coatings to improve the spot weldability of zinc coated steels.

  19. EVALUATION AND ACTIONS OF CLEANER PRODUCTION IN GALVANIC INDUSTRY OF THE VILLA CLARA PROVINCE

    Directory of Open Access Journals (Sweden)

    Petra G. Velazco Pedroso

    2015-10-01

    Full Text Available In this paper, the assessment results accomplished in different processes of the galvanic industry are presented and it is taking into account the application of good practices and measures of Cleaner Production. The main critical points in the processes of metallic coating were identified; and the characterization of the effluents generated by the installation is done. A number of technological changes in the processes are proposed, as well as the introduction of cleaner production measures which contribute to increase the efficiency and safety of processes, reduce risks and improvements to internal operations. It provides advantages of economic, environmental and social nature for the galvanic industry due to the minimizing of the impacts on environment, because the sewage and its pollutant load are reduced. Besides, we can save water, energy and raw materials. The economic evaluation showed the feasibility of applying the Cleaner Production (PML measures proposed with a Net Present Value (NPV of $109 696.26, and an Internal Rate of Return (IRR of 64 % value and payback period lower than two years.

  20. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  1. Corrosion in PWR stainless steel components: a TSO perspective based on operating experience and expertises

    International Nuclear Information System (INIS)

    Curieres, I. de

    2015-01-01

    Stainless steels are used commonly in many circuits of a nuclear power plant. Particularly, they are the prime materials for the inside surface of the primary circuit. Their operating experience has been good, though a number of cases of degradations due to corrosion have been reported the last ten years. This number of events is increasing and many studies of damaged parts become available. Based on the operating experience and these studies, IRSN will provide its perspective on the safety-related issues associated with the corrosion of stainless steel components. It appears that today's knowledge is not sufficient to define relevant criteria or to determine the exact set of parameters which leads to SCC (Stress Corrosion Cracking) of stainless steels. As a consequence, the best strategy remains an inspection and repair/replacement one. Moreover many cases show the influence of pollutants in the SCC events. This emphasizes the fact that chemistry parameters are strongly connected to safety issues, with respect to the stainless steels integrity

  2. Development of an electrically operated cassava slicing machine

    Directory of Open Access Journals (Sweden)

    I. S. Aji

    2013-08-01

    Full Text Available Labor input in manual cassava chips processing is very high and product quality is low. This paper presents the design and construction of an electrically operated cassava slicing machine that requires only one person to operate. Efficiency, portability, ease of operation, corrosion prevention of slicing component of the machine, force required to slice a cassava tuber, capacity of 10 kg/min and uniformity in the size of the cassava chips were considered in the design and fabrication of the machine. The performance of the machine was evaluated with cassava of average length and diameter of 253 mm and 60 mm respectively at an average speed of 154 rpm. The machine produced 5.3 kg of chips of 10 mm length and 60 mm diameter in 1 minute. The efficiency of the machine was 95.6% with respect to the quantity of the input cassava. The chips were found to be well chipped to the designed thickness, shape and of generally similar size. Galvanized steel sheets were used in the cutting section to avoid corrosion of components. The machine is portable and easy to operate which can be adopted for cassava processing in a medium size industry.

  3. Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel

    Science.gov (United States)

    Jo, Kyoung Rae; Cho, Lawrence; Oh, Jong Han; Kim, Myoung Soo; Kang, Ki Cheol; De Cooman, Bruno C.

    2017-08-01

    Third generation advanced high-strength steels achieve an excellent strength-ductility balance using a cost-effective alloy composition. During the continuous annealing of medium Mn steel, the formation of an external selective oxide layer of MnO has a negative impact on the coating quality after galvanizing. A procedure to reduce the selective oxide was therefore developed. It involves annealing in the temperature range of 1073 K to 1323 K (800 °C to 1050 °C) in a HNx gas atmosphere. Annealing at higher temperatures and the use of larger H2 volume fractions are shown to make the gas atmosphere reducing with respect to MnO. The reduction of the surface MnO layer was observed by SEM, GDOES, and cross-sectional TEM analysis.

  4. Phosphate coating on stainless steel 304 sensitized;Recubrimiento fosfatado sobre acero inoxidable 304 sensibilizado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, J. P. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Km. 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamaulipas (Mexico); Vite T, J. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Castillo S, M.; Vite T, M., E-mail: jpcruz@ipn.m [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Unidad Profesional -Adolfo Lopez Mateos-, Zacatenco, 07738 Mexico, D. F. (Mexico)

    2009-07-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  5. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Koenig, M.

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  6. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Koenig, M. [Studsvik Nuclear AB, Nykoeping (Sweden)

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  7. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  8. Galvanic high energy cells with molten electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.

    1981-01-01

    To develop a galvanic cell with molten salt electrolyte for electric vehicle propulsion and load leveling as well as to fabricate ten prototype cells with a capacity of at least 150 Ah (5 hour rate) and an energy density of 80 Wh/kg was the objective of this project.

  9. A Galvanic Coupling Method for Assessing Hydration Rates

    Directory of Open Access Journals (Sweden)

    Clement Ogugua Asogwa

    2016-07-01

    Full Text Available Recent advances in biomedical sensors, data acquisition techniques, microelectronics and wireless communication systems opened up the use of wearable technology for ehealth monitoring. We introduce a galvanic coupled intrabody communication for monitoring human body hydration. Studies in hydration provide the information necessary for understanding the desired fluid levels for optimal performance of the body’s physiological and metabolic processes during exercise and activities of daily living. Current measurement techniques are mostly suitable for laboratory purposes due to their complexity and technical requirements. Less technical methods such as urine color observation and skin turgor testing are subjective and cannot be integrated into a wearable device. Bioelectrical impedance methods are popular but mostly used for estimating total body water with limited accuracy and sensitive to 800 mL–1000 mL change in body fluid levels. We introduce a non-intrusive and simple method of tracking hydration rates that can detect up to 1.30 dB reduction in attenuation when as little as 100 mL of water is consumed. Our results show that galvanic coupled intrabody signal propagation can provide qualitative hydration and dehydration rates in line with changes in an individual’s urine specific gravity and body mass. The real-time changes in galvanic coupled intrabody signal attenuation can be integrated into wearable electronic devices to evaluate body fluid levels on a particular area of interest and can aid diagnosis and treatment of fluid disorders such as lymphoedema.

  10. A study on vestibular-evoked myogenic potentials via galvanic vestibular stimulation in normal people

    Directory of Open Access Journals (Sweden)

    Ying Cheng

    2018-03-01

    Discussions: Galvanic vestibular stimulation could elicit biphasic EMG responses from SCM via the vestibular nerve but not from the otolith organs. Galvanic stimulation together with air conducted sound (ACS or bone conducted vibration (BCV can elicit VEMPs and may enable the differentiation of retrolabyrinthine lesions from labyrinthine lesions in vestibular system.

  11. 78 FR 37584 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Science.gov (United States)

    2013-06-21

    ... make the following certification: All workers of U.S. Steel Tubular Products, McKeesport Tubular... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, Pennsylvania; Notice of Amended Certification Pursuant to Section 221 of the Trade Act of 1974...

  12. IMPACT OF STRAIN RATE ON MICROALLOYED STEEL SHEET BREAKING

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2014-08-01

    Full Text Available Strain rate is a significant external factor and its influence on material behavior in forming process is a function of its internal structure. The contribution is analysis of the impact of loading rate from 1.6 x 10-4 ms-1 to 24 ms-1 to changes in the fracture of steel sheet used for bodywork components in cars. Experiments were performed on samples taken from HC420LA grade strips produced by cold rolling and hot dip galvanizing. Material strength properties were compared based on measured values, and changes to fracture surface character were observed.

  13. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...

  14. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test

    International Nuclear Information System (INIS)

    Lyon, S.B.; Thompson, G.E.; Johnson, J.E.; Wood, G.C.

    1989-01-01

    Aluminum corrosion is important in overhead electrical conductors constructed from aluminum wire centrally reinforced by galvanized steel strands. Inspection of conductor after long service has implicated rubber bushing material, on the outside, and the galvanized strands, on the inside, as providing potential galvanic sites for the initiation of rapid aluminum corrosion. Therefore, the galvanic corrosion of aluminum in contact with graphite-loaded neoprene rubber, hot-dip galvanized steel and steel was assessed in a cyclic wet/dry exposure test using mixed-salts spray solutions containing appropriate ratios of sulfate and chloride ion. Aluminum was found to corrode at between 3 to 6 times its uncoupled rate when associated with the rubber material. While the eta-phase, relatively pure Zn, galvanized layer remained intact, galvanic corrosion of aluminum was slow. However, on exposure of the zeta-phase, Zn/Fe intermetallic layer, aluminum corroded about 35 times faster than expected in a solution with a high level of Cl - ion. The importance of these data to conductor lifetime is discussed

  15. Effects of Mg on corrosion resistance of Al galvanically coupled to Fe

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik Univ., Sejong (Korea, Republic of)

    2013-01-15

    Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [Cl{sup -}] around 0.025 M of [Cl{sup -}] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

  16. Effects of Mg on corrosion resistance of Al galvanically coupled to Fe

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2013-01-01

    Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [Cl - ] around 0.025 M of [Cl - ] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions

  17. Study of reactions between nuclear fuel and cladding (316 stainless steel) in reactors. Influence of oxygen

    International Nuclear Information System (INIS)

    Otter, Monique.

    1980-12-01

    We have studied oxidation of 316 steel in close contact with oxides (Usub(0,74)Pusub(0,26)O 2 or UO 2 ), the stoichiometry of oxygen ranging from 2.00 to 2.5. Experiments are carried out either in a closed isothermal system or in an opened isothermal system with a fixed oxygen potential of uranium oxide. We have realized a potentiostatic device using a solid state electrotyte galvanic cell. In a closed system, the sensitized austenitic steel shows intergranular and volume oxidation probably enhanced by migration of steel components towards the fuel. Evidence of the usefulness of passivation have been obtained. We conclude that in a fast reactor sensitized cladding steel is oxydized by the constant potential of oxygen of UPuO 2 . Deposits observed in fuel can be explain by evaporation and cyclic transport phenomena that can be differents from VAN-ARKEL mechanism taking place through fission products [fr

  18. Galvanic Vestibular Stimulation in Hemi-Spatial Neglect

    Directory of Open Access Journals (Sweden)

    David eWilkinson

    2014-01-01

    Full Text Available Hemi-spatial neglect is an attentional disorder in which the sufferer fails to acknowledge or respond to stimuli appearing in contralesional space. In recent years, it has become clear that a measurable reduction in contralesional neglect can occur during galvanic vestibular stimulation, a technique by which transmastoid, small amplitude current induces lateral, attentional shifts via asymmetric modulation of the left and right vestibular nerves. However, it remains unclear whether this reduction persists after stimulation is stopped. To estimate longevity of effect, we therefore conducted a double-blind, randomized, dose-response trial involving a group of stroke patients suffering from left-sided neglect (n=52, mean age=66 years. To determine whether repeated sessions of galvanic vestibular stimulation more effectively induce lasting relief than a single session, participants received 1, 5, or 10 sessions, each lasting 25mins, of sub-sensory, left-anodal right-cathodal noisy direct current (mean amplitude=1mA. Ninety five percent confidence intervals indicated that all three treatment arms showed a statistically significant improvement between the pre-stimulation baseline and the final day of stimulation on the primary outcome measure, the conventional tests of the Behavioural Inattention Test. More remarkably, this change (mean change=28%, SD=18 was still evident 1month later. Secondary analyses indicated an allied increase of 20% in median Barthel Index score, a measure of functional capacity, in the absence of any adverse events or instances of participant non-compliance. Together these data suggest that galvanic vestibular stimulation, a simple, cheap technique suitable for home-based administration, may produce lasting reductions in neglect that are clinically important. Further protocol optimization is now needed ahead of a larger effectiveness study.

  19. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    Science.gov (United States)

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  20. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  1. Comparative life cycle cost assessment of painted and hot-dip galvanized bridges.

    Science.gov (United States)

    Rossi, B; Marquart, S; Rossi, G

    2017-07-15

    The study addresses the life cycle cost assessment (LCCA) of steel bridges, focusing on the maintenance activities and the maintenance scenario. Firstly, the unit costs of maintenance activities and their durability (i.e. the time between two activities) are evaluated. Pragmatic data are provided for the environment category C4 and for three activities: Patch Up, Overcoating and Remove & Replace. A comparative LCCA for a typical hypothetic steel girder bridge is carried out, either painted or hot-dip galvanized (HDG), in the environmental class C4. The LCC versus the cumulated life is provided for both options. The initial cost of the steel unpainted option is only 50.3% of the HDG option. It is shown that after 'Overcoating' occurring at 18.5 years, the total Net Present Value (NPV) of the painted option surpasses that of the HDG option. A sensitivity analysis of the NPV to the cost and service life parameters, the escalation and discount rates is then performed. The discount and escalation rates, considerably influences the total LCC, following a non-linear trend. The total LCC decreases with the discount rate increasing and, conversely, increases with the escalation rate increasing. Secondly, the influence of the maintenance scenario on the total LCC is assessed based on a probabilistic approach. A permutation of the three independent maintenance activities assumed to occur six times over the life of the bridge is considered and a probability of occurrence is associated to each unique scenario. The most probable scenarios are then classified according to their NPV or achieved service life. This approach leads to the definition of a cost-effective maintenance scenario i.e. the scenario, within all the considered permutations, that has the minimum LCC in a range of lifespan. Besides, the probabilistic analysis also shows that, whatever the scenario, the return on investment period ranges between 18.5 years and 24.2 years. After that period, the HDG option becomes

  2. Effects of galvanic distortions on magnetotelluric data: Interpretation ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    But in the case of field data the problem is ... The distorted data set is corrected using the MT response for DRS model and further ... ments, the apparent resistivity and phase at differ- ... from the telluric field, which is of galvanic or inductive ...

  3. The kinetics of zinc coating growth on hyper-sandelin steels and ductile cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2007-12-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent E = (Si+2.5P.103, and coating thickness dependences were obtained.

  4. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  5. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    International Nuclear Information System (INIS)

    Larsen, G.

    2017-01-01

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  6. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions

    International Nuclear Information System (INIS)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D.

    2007-01-01

    Corrosion resistance and galvanic coupling of Grade 2 commercially pure titanium in its welded and non-welded condition were systematically analyzed in LiBr solutions. Galvanic corrosion was evaluated through two different methods: anodic polarization (according to the Mixed Potential Theory) and electrochemical noise (using a zero-resistance ammeter). Samples have been etched to study the microstructure. The action of lithium chromate as corrosion inhibitor has been evaluated. Titanium and welded titanium showed extremely low corrosion current densities and elevated pitting potential values (higher than 1 V). The results of both methods, anodic polarization and electrochemical noise, showed that the welded titanium was always the anodic element of the pair titanium-welded titanium, so that its corrosion resistance decreases due to the galvanic effect

  7. Galvanic interactions of HE15 /MDN138 & HE15 /MDN250 alloys in natural seawater

    Science.gov (United States)

    Parthiban, G. T.; Subramanian, G.; Muthuraman, K.; Ramakrishna Rao, P.

    2017-06-01

    HE15 is a heat treatable high strength alloy with excellent machinability find wide applications in aerospace and defence industries. In view of their excellent mechanical properties, workability, machinability, heat treatment characteristics and good resistance to general and stress corrosion cracking, MDN138 & MDN250 have been widely used in petrochemical, nuclear and aerospace industries. The galvanic corrosion behaviour of the metal combinations HE15 /MDN138 and HE15 /MDN250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI's Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN138, MDN250 and HE15 of the individual metal, the galvanic potential and galvanic current of the couples HE15 /MDN138 and HE15 /MDN250 were periodically monitored throughout the study period. The calcareous deposits on MDN138 and MDN250 in galvanic contact with HE15 were analyzed using XRD. The electrochemical behaviors of MDN138, MDN250 and HE15 in seawater have been studied using an electrochemical work station. The surface characteristics of MDN138 and MDN250 in galvanic contact with HE15 have been examined with scanning electron microscope. The results of the study reveal that HE15 offered required amount of protection to MDN138 & MDN250.

  8. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    Science.gov (United States)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  9. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  10. Enhancement of opto-galvanic signals in the hollow cathode dark space: application to single colour 3-photon ionization of uranium

    International Nuclear Information System (INIS)

    Pradhan, S.; Manohar, K.G.; Marathe, A.; Rawat, V.S.; Sridhar, G.; Singh, S.; Jagatap, B.N.; Gantayet, L.M.

    1999-01-01

    Opto-galvanic effect in a hollow cathode lamp offers a very convenient method of spectroscopy of many elements of interest including refractory elements like uranium. The dependence of opto-galvanic signals on various discharge parameters like buffer gas pressure, buffer gas type, discharge current, diameter of the hollow cavity of the cathode etc. have been studied. Various mechanisms for the generation of opto-galvanic signals based on electron impact ionization and super elastic collisions have been proposed. It appears that both these processes do contribute to the opto-galvanic signals simultaneously, under specific discharge conditions

  11. Effect of radiation damage on operating safety of steel pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Vacek, M.; Havel, S.; Stoces, B.; Brumovsky, M.

    1980-01-01

    The effects are assessed of the environment upon mechanical properties of steel used generally for pressure vessels of light water nuclear reactors. Changes caused by radiation affect the reliability of vessels. Deterioration of steel properties is mainly due to neutron radiation. The article deals with factors bearing upon damage and with methods allowing to evaluate the reliability of vessels and predict their service life. Operating reliability of vessels is very unfavourably affected by planned and accidental reactor transients. (author)

  12. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z., E-mail: zuojia.liu@gmail.com; Curioni, M.; Jamshidi, P.; Walker, A.; Prengnell, P.; Thompson, G.E.; Skeldon, P.

    2014-09-30

    Highlights: • Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation in NaCl electrolyte. • The exposed carbon fibres on the side and front regions are responsible for a high cathodic current density. • The NaCl + CuSO{sub 4} electrolyte was used to investigate the cathodic polarization behaviour of the exposed carbon fibres. • Galvanic coupling behaviour between the composite and aluminium alloys (AA7075-T6 and AA1050) was measured in NaCl electrolyte. • The higher galvanic current density measured on AA1050 alloy introduced a higher dissolution rate than the AA7075-T6 alloy. - Abstract: The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO{sub 4} electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions.

  13. The possibilities for reuse of steel scrap in order to obtain blades for knives; Posibilidades de reutilización de la chatarra de acero para la obtención de cuchillas para cortar

    Energy Technology Data Exchange (ETDEWEB)

    Štrbaca, N.; Markovića, I.; Mitovskia, A.; Balanovića, L.; Živkovića, D.; Grekulović, V.

    2017-09-01

    The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW) Dual Phase (DP) steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM) between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness. [Spanish] El trabajo presenta los resultados de la caracterización de diversos tipos de aceros que han llegado al final de su ciclo de vida útil, y de los que se desconocía su composición química, propiedades mecánicas y tratamiento termomecánico aplicado previamente. El estudio se realizó con el objetivo de analizar las posibilidades de reutilización de algunos de estos materiales en aplicaciones agrícolas e industriales, obteniendo hojas de corte. Las formas exigidas a las hojas de corte se consiguieron aplicando diversos tipos de tratamientos termomecánicos. El análisis químico de la chatarra de acero de acero se realizó utilizando Energías Dispersivas de Rayos X. La microestructura se estudió utilizando Microscopía Óptica y Microscopía Electrónica de Barrido. La dureza de la chatarra de acero y de las cuchillas obtenidas se midió utilizando la escala Rockwell C. Los valores de dureza de las cuchillas obtenidas indican una buena selección de los productos finales de acero.

  14. Intracavity OptoGalvanic Spectroscopy not suitable for ambient level radiocarbon detection.

    Science.gov (United States)

    Paul, Dipayan; Meijer, Harro A J

    2015-09-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

  15. Zinc coated sheet steel for press hardening

    Science.gov (United States)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  16. Passive Resonant Bidirectional Converter with Galvanic Barrier

    Science.gov (United States)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  17. Fiber Finishes for Improving Galvanic Resistance of Imide-Based Composites

    National Research Council Canada - National Science Library

    Allred, R. E

    1998-01-01

    The objective of this program is the development and demonstration of galvanic corrosion resistant carbon/ BMI composites through the use of reactive finishes to form coatings that isolate the carbon...

  18. Corrosion and protection of metals in the rural atmosphere of El Pardo Spain (PATINA/CYTED project)

    International Nuclear Information System (INIS)

    Simancas, J.; Castano, J. G.; Morcillo, M.

    2003-01-01

    Atmospheric corrosion tests of metallic and organic coatings on steel, zinc and aluminium have been conducted in el Pardo (Spain) as part of the PATINA/CYTED project Anticorrosive Protection of Metals in the Atmosphere. This is a rural atmosphere with the following ISO corrosivity categories: C2 (Fe), C'' (Zn), Cu (Cu) and C1 (Al). Its average temperature and relative humidity is 13 degree centigrade and 62.8, respectively, and it has low SO 2 and C1''- contents. Results of 42 months exposure are discussed. Atmospheric exposure tests were carried out for the following types of coatings: conventional paint coatings for steel and hot-dip galvanized steel (group 1), new painting technologies for steel and galvanized steel (group 2), zinc-base metallic coatings (group 3), aluminium-base metallic coatings (group 4), coatings on aluminium (group 5) and coil-coatings on steel, hot-dip galvanized steel and 55% Al-Zn coated steel (group 6). (Author) 9 refs

  19. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2015-02-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  20. Corrosion protection pays off for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  1. Analysis of Postural Control Adaptation During Galvanic and Vibratory Stimulation

    National Research Council Canada - National Science Library

    Fransson, P

    2001-01-01

    The objective for this study was to investigate whether the postural control adaptation during galvanic stimulation of the vestibular nerve were similar to that found during vibration stimulation to the calf muscles...

  2. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    Directory of Open Access Journals (Sweden)

    Anping Dong

    2017-08-01

    Full Text Available The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM. The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products.

  3. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    Lugo-Lugo, Violeta; Barrera-Diaz, Carlos; Bilyeu, Bryan; Balderas-Hernandez, Patricia; Urena-Nunez, Fernando; Sanchez-Mendieta, Victor

    2010-01-01

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm -2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm -2 . The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  4. Galvanic Cells and the Determination of Equilibrium Constants

    Science.gov (United States)

    Brosmer, Jonathan L.; Peters, Dennis G.

    2012-01-01

    Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…

  5. Solid Oxide Galvanic Cell to determine thermochemical data of Dy6UO12(s)

    International Nuclear Information System (INIS)

    Sahu, Manjulata; Dash, Smruti; Sen, B.K.; Venugopal, V.

    2010-01-01

    The rare earth elements such as Sm, Eu, Gd, and Dy have very high thermal neutron absorption cross sections and their oxides are utilized as burnable poisons in nuclear reactor to maintain constant reactivity of the core. These oxides form solid solution with urania as their ionic radii are within 20% of that of urania. Rare earth oxides-urania solid solutions are also beneficial in preventing oxidation of UO 2 (s). RE 6 UO I2 (s) (RE = rare earth) type of compounds are known to exist in RE-U-O system and their formation cannot be ruled out under transient conditions. The data on Gibbs energy of formation of compounds in RE-U-O system is therefore essential to predict the feasibility. Theoretically, the measurement of the e.m.f. of a suitable galvanic cell is one of the most accurate methods to obtain Gibbs energy of formation of compounds if e.m.f cell operates reversibly. In this study, the standard molar Gibbs energy of formation of Dy 6 UO I2 (s) was determined using solid oxide galvanic cell technique. The Gibbs energy of formation of Dy 6 UO 12 (s) is reported for the first time

  6. Importance of crevices formed between tubes and tube plate for the operational behaviour of heat exchangers

    International Nuclear Information System (INIS)

    Achten, N.; Herbsleb, G.; Wieling, N.

    1986-01-01

    It must be guaranteed by construction and manufacture of heat exchangers that primary and secondary medium are completely separated from each other. When this requirement is fullfilled, the operational use of heat exchangers can be impaired by corrosion reactions within the crevice formed between tube and tube plate which may result in corrosion damage. The various techniques which are in use to connect tubes and tube plate and which are described in the present report, must be valued with respect to the tightness of the connection as well as to the formation of crevices between tubes and tube plate. Corrosion resistant copperbase alloys and stainless steels are the most important materials which are in use for the construction of heat exchangers. The mechanisms of crevice corrosion with unalloyed and low alloy carbon steels, stainless steels, and mixed connections between tube and tube plate with these materials are described in detail. Crevice corrosion may be caused also by the formation of galvanic cells between materials of differing electrochemical response. Furthermore, the concentration of aggressive media in crevices between tubes and tube plate can lead to corrosion damage of heat exchanger tubes. For the service operation of heat exchangers without any hazard of corrosion damage in crevices between tubes and tube plate, such crevices must be avoided by proper construction and manufacture. As a model for suitable measures to avoid crevices, the manufacture of steam generators for PWR's is described. (orig.) [de

  7. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    International Nuclear Information System (INIS)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do

    2016-01-01

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E_o_c_p), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  8. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do, E-mail: sdp.mari@gmail.com, E-mail: marciamg@uerj.br, E-mail: monickcruz@yahoo.com.br, E-mail: dijmaciel@gmail.com, E-mail: lsenna@uerj.br, E-mail: dalva@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Quimica

    2016-10-15

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E{sub ocp}), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  9. Galvanizing industry: evaluation of exposure levels using biomonitors

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Sabino, Claudia de V.S.; Amaral, Angela Maria; Mattos, Silvania V. de M.; S. Filho, Serafim; Maia, Elene Cristina P.

    1999-01-01

    In Brazil, statistical surveys concerning occupational diseases refer to accidents and damages. The surveys do not refer to the occupational diseases developed through long exposures to hazardous work conditions, involving physical risk and toxic chemical substances. The Program of Medical Control of Occupational Health determines the Maximum Biological Levels Allowed and the Values of Normality References. But concerning metal and toxic inorganic, values of only few elements are established. In Belo Horizonte and surroundings areas, which is an important industrial centre in the country, there are different industries distributed over various areas. There are about 80 galvanizing industries which are responsible for the majority of the metal contamination hospitalities. A preliminary sampling was performed in order to conduct a survey of the exposures to elements related to occupational diseases in galvanizing industry. The preliminary results for toxic and non-toxic elements obtained using hair and fingernails as biomonitors are shown. The K 0 parametric neutron activation analysis method was applied and the elements determined were: Ag, Al, Au, Cl, Co, Cr, Cu, Fe, I, Mn, Na, Ti, V, Ta, and Zn. (author)

  10. Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates

    International Nuclear Information System (INIS)

    Yang, Chia-Jung; Tsai, Di-You; Chan, Pei-Hsuan; Wu, Chu-Tsun; Lu, Fu-Hsing

    2013-01-01

    BaTiO 3 films were synthesized on TiN-coated Si substrate below 100 °C by a hydrothermal–galvanic couple technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction results show that the BaTiO 3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111) BaTiO 3 over (111) TiN. The surface morphologies revealed that BaTiO 3 nucleated and grew over the TiN surface with a single layer. From kinetic analyses, the growth rates of BaTiO 3 films prepared by the hydrothermal–galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by investigating the induced currents and energies. The galvanic currents were generated and controlled by both the dissolution of TiN and the formation of BaTiO 3 . The output electric energies increased rapidly with the reaction time and leveled off at the full coverage of BaTiO 3 . - Highlights: • Cubic BaTiO 3 films are synthesized by a hydrothermal–galvanic couple method (HT–GC). • Growth rates of BaTiO 3 films made by HT–GC are faster than a hydrothermal method. • BaTiO 3 films are directionally oriented grown on the TiN/Si substrates. • Galvanic currents are controlled by dissolution of TiN and formation of BaTiO 3

  11. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    Kogo, A. A.. Department of Integrated Science, Federal College of Education, Kano, Nigeria. ... The corrosion rate of the galvanized steel pipe was measured using the gravimetric ... Key words: Liquid waste, galvanized steel, weight loss, gravimetric, corrosion, leaking ... the side of the test tubes, so that each side would be.

  12. Digitally Controlled Offline Converter with Galvanic Isolation Based on an 8-bit Microcontroller

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents an offline AC/DC converter with digital control and galvanic isolation that can be implemented using cheap commercially available components. An ATMEL ATTiny26 8-bit microcontroller is used to control the converter. The microcontroller is placed on the secondary side of the co......This paper presents an offline AC/DC converter with digital control and galvanic isolation that can be implemented using cheap commercially available components. An ATMEL ATTiny26 8-bit microcontroller is used to control the converter. The microcontroller is placed on the secondary side...

  13. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    Science.gov (United States)

    2007-09-30

    Polyimide Insulated Electrical Wire", SAMPE pp.16, Jan/Feb 1984. 11. Brown, S. R.; Deluccia, J.J., " Galvanic Corrosion Fatigue Testing of 7075-T6...Modified Microporous Aluminosilicate" Development of Adsorbents for Air and Water Treatment Conference, 226th American Chemical Society (ACS) National

  14. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    International Nuclear Information System (INIS)

    Jeon, Sun Ho; Chin, Kwang Geun; Kim, Dai Ryong

    2008-01-01

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer

  15. Surface characteristics of the galvannealed coating in Interstitial-free high strengthen steels containing Si and Mn

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sun Ho; Chin, Kwang Geun [Pohang Iron and Steel Co. Technical Research Laboratories, Gwangyang (Korea, Republic of); Kim, Dai Ryong [Kyungpook National University, Daegu (Korea, Republic of)

    2008-02-15

    Surface-void defects observed on the Galvannealed (GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

  16. Effect of operational conditions of electroerosion machining on the surface microgeometry parameters of steels and alloys

    International Nuclear Information System (INIS)

    Foteev, N.K.

    1976-01-01

    Studies the influence of pulse duration and a series of operating conditions of a ShGI-40-440 spark-machining generator on changes in the basic surface microgeometry characteristics of components of stainless steel 1Kh18N10T, steel St 45 and hard alloy T14K8. The microgeometry characteristics of spark-machined surfaces differ significantly from the corresponding characteristics of surfaces machined by cutting and vibro-rolling

  17. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  18. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  19. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on 'smart' coatings applied to galvanized steel

    International Nuclear Information System (INIS)

    Taryba, M.; Lamaka, S.V.; Snihirova, D.; Ferreira, M.G.S.; Montemor, M.F.; Wijting, W.K.; Toews, S.; Grundmeier, G.

    2011-01-01

    Research highlights: → Weldable primers were modified with submicron containers loaded with corrosion inhibitors. → SVET and micro-potentiometry were used to study the corrosion inhibition ability. → Submicron containers do not damage the barrier properties of model primers. → Artificial defects of 50μm x 50 μm in a coating can be easily analyzed by SVET and SIET. → Inhibiting dissolution of sacrificial Zn may result in detrimental dissolution of Fe. - Abstract: Model weldable primer coatings for galvanized steel were modified with submicron containers loaded with corrosion inhibitors. This procedure aims at introducing a new functionality in the thin coatings self-repair ability. The assessment of this property demands new protocols and new approaches, combining conventional electrochemical methods with electrochemical and analytical techniques of micrometer spatial resolution. Thus, in this work model defects were created in the coatings by using a focused ion beam (FIB). The coated samples, containing the model defects, were immersed in a NaCl 0.05 M solution and the corrosion inhibition ability was studied using the scanning vibrating electrode technique (SVET) and the scanning ion-selective electrode technique (SIET). SVET-SIET measurements were performed quasi-simultaneously. Qualitative chemical analysis was performed by SEM combined with EDS. Complementary studies were carried out by electrochemical impedance spectroscopy (EIS) to assess the effect of the containers filled with corrosion inhibitors on the barrier properties of the coatings. The electrochemical results highlight the importance of the combined use of integral and localized electrochemical techniques to extract information for a better understanding of the corrosion processes and corresponding repair of active microscopic defects formed on thin coatings containing inhibitor filled containers.

  20. Photo-galvanic effect in Bi2Se3 thin films with ionic liquid gating

    Science.gov (United States)

    Pan, Yu; Richardella, Anthony; Lee, Joon Sue; Flanagan, Thomas; Samarth, Nitin

    2013-03-01

    A key challenge in three dimensional (3D) topological insulators (TIs) is to reveal the helical spin-polarized surface states via electrical transport measurements. A recent study [Nature Nanotech. 7, 96 (2012)] showed that circularly polarized light can be used to generate and control photocurrents in the 3D TI Bi2Se3, even at photon energies that are well above the bulk band gap. Symmetry considerations suggest that this ``photo-galvanic effect'' arises purely from photo-currents induced in the surface Dirac states. To gain insights into this phenomenon, we have carried out systematic measurements of the photo-galvanic effect in electrically gated MBE-grown Bi2Se3 thin films of varying thickness. By using an ionic liquid as an optically transparent gate, we map out the behavior of the photo-galvanic effect as a function of Fermi energy over a temperature range 5 K <= T <= 300 K. Supported by ONR and NSF.

  1. An Easy-to-Assemble Three-Part Galvanic Cell

    Science.gov (United States)

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  2. Galvanically Isolated Quasi-Z-Source DC–DC Converter With a Novel ZVS and ZCS Technique

    DEFF Research Database (Denmark)

    Husev, Oleksandr; Liivik, Liisa; Blaabjerg, Frede

    2015-01-01

    This paper focuses on the galvanically isolated quasi-Z-source dc-dc converter with a novel zero voltage and zero current switching technique. The unique feature of the impedance network lies in combining the buck-boost operation capability with the short- and open-circuit immunity of transistors......; at the same time, it can perform zero voltage and zero current switching on the primary side. The boundary conduction mode of the current in the second inductor of the quasi-Z-source network was used along with snubber capacitors in the two out of four transistors and a special control algorithm to achieve...

  3. Influence of dipping time on cracking during bending of hot dip galvanized coatings with Sn and Ti contents

    Directory of Open Access Journals (Sweden)

    L. Zortea

    2010-10-01

    Full Text Available In the last years, the attention to environmental topics led a new approach solution in classical protection techniques, introducing innovative way oriented to optimize different coating properties. Hot-dip galvanizing is a classical process aimed to generate coatings on iron-based surfaces, used unchanged since 200 years: some chemical elements are added in the bath with different aims (e.g., Pb is really important for its fluidizing properties, sometimes replaced by Sn but sometimes these elements are dangerous for human health (e.g. … Pb!.In this work, the influence of dipping time and coatings chemical compositions on damaging micromechanisms was investigated considering different Sn and Ti contents. Main damaging micromechanisms in hot dip zinc coated ipersandelin steel specimens were investigated by means of bending tests. Longitudinal sections of bended specimens were observed by means of a LOM (Light Optical Microscope: main damage micromechanisms were identified as longitudinal and radial cracks.

  4. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    Science.gov (United States)

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  5. Galvanic element. Galvanisches Element

    Energy Technology Data Exchange (ETDEWEB)

    Sprengel, D.; Haelbig, H.

    1980-01-03

    The invention concerns a gas-tight sealed accumulator with positive and negative electrode plates and an auxillary electrode electroconductively bound to the latter for suppressing oxygen pressure. The auxillary electrode is an intermediate film electrode. The film catalysing oxygen reduction is hydrophilic in character and the other film is hydrophobic. A double coated foil has proved to be advantageous, the hydrophilic film being formed from polymer-bound activated carbon and the hydrophrobic film from porous polytetrafluoroethylene. A metallic network of silver or nickel is rolled into the outer side of the activated carbon film. This auxillary electrode can be used to advantage in all galvanic elements. Even primary cells fall within the scope of application for auxillary electrodes because many of these contain a highly oxidized electrodic material which tends to give off oxygen.

  6. 78 FR 24803 - Hilco SP Rail, LLC-Acquisition and Operation Exemption-RG Steel Railroad Holding, LLC

    Science.gov (United States)

    2013-04-26

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35734] Hilco SP Rail, LLC--Acquisition and Operation Exemption--RG Steel Railroad Holding, LLC Hilco SP Rail, LLC (Hilco), a noncarrier... Holding, LLC, and operate as a common carrier over an approximately 12-mile line of railroad in Sparrows...

  7. Galvanizing industry: evaluation of exposure levels using biomonitors

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Sabino, Claudia de V.S.; Amaral, Angela Maria [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Mattos, Silvania V. de M. [FUNED, Belo Horizonte, MG (Brazil). Div. de Bromatologia e Toxicologia; S. Filho, Serafim [Secretaria Municipal de Saude de Belo Horizonte, MG (Brazil). Coordenacao de Saude do Trabalhador; Maia, Elene Cristina P. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    1999-11-01

    In Brazil, statistical surveys concerning occupational diseases refer to accidents and damages. The surveys do not refer to the occupational diseases developed through long exposures to hazardous work conditions, involving physical risk and toxic chemical substances. The Program of Medical Control of Occupational Health determines the Maximum Biological Levels Allowed and the Values of Normality References. But concerning metal and toxic inorganic, values of only few elements are established. In Belo Horizonte and surroundings areas, which is an important industrial centre in the country, there are different industries distributed over various areas. There are about 80 galvanizing industries which are responsible for the majority of the metal contamination hospitalities. A preliminary sampling was performed in order to conduct a survey of the exposures to elements related to occupational diseases in galvanizing industry. The preliminary results for toxic and non-toxic elements obtained using hair and fingernails as biomonitors are shown. The K{sub 0} parametric neutron activation analysis method was applied and the elements determined were: Ag, Al, Au, Cl, Co, Cr, Cu, Fe, I, Mn, Na, Ti, V, Ta, and Zn. (author) 8 refs., 3 figs., 2 tabs.; e-mail: menezes at urano.cdtn.br

  8. Galvannealing of (high-)manganese-alloyed TRIP- and X-IP registered -steel

    Energy Technology Data Exchange (ETDEWEB)

    Blumenau, M. [ThyssenKrupp Steel Europe AG, Bamenohler Strasse 211, D-57402 Finnentrop (Germany); Norden, M. [DOC Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, D-44145 Dortmund (Germany); Friedel, F.; Peters, K. [ThyssenKrupp Steel Europe AG, Kaiser-Wilhelm-Strasse 100, D-47166 Duisburg (Germany)

    2010-12-15

    In this study the influence of Mn on galvannealed coatings of 1.7% Mn-1.5% Al TRIP- and 23% Mn X-IP registered -steels was investigated. It is shown that the external selective oxides like Mn, Al and Si of the TRIP steel which occur after annealing at 800 C for 60 s at a dew point (DP) of -25 C (5% H{sub 2}) hamper the Fe/Zn-reaction during subsequent galvannealing. Preoxidation was beneficially utilized to increase the surface-reactivity of the TRIP steel under the same dew point conditions. The influence of Mn on the steel alloy was investigated by using a 23% Mn containing X-IP registered -steel which was bright annealed at 1100 C for 60 s at DP -50 C (5% H{sub 2}) to obtain a mainly oxide free surface prior to hot dip galvanizing (hdg) and subsequent galvannealing. As well known from the literature Mn alloyed to the liquid zinc melt stabilizes {delta}-phase at lower temperatures by participating in the Fe-Zn-phase reactions, it was expected that the metallic Mn of the X-IP registered -steel increases the Fe/Zn-reactivity in the same manner. The approximation of the effective diffusion coefficient (D{sub eff}(Fe)) during galvannealing was found to be higher than compared to a low alloyed steel reference. Contrary to the expectation no increased Fe/Zn-reaction was found by microscopic investigations. Residual {eta}- and {zeta}-phase fractions prove a hampered Fe/Zn-reaction. As explanation for the observed hampered Fe/Zn-reaction the lower Fe-content of the high-Mn-alloyed X-IP registered -steel was suggested as the dominating factor for galvannealing. (Copyright copyright 2010 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  10. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.

    Science.gov (United States)

    Ghare, N Y; Wani, K S; Patil, V S

    2013-04-01

    Pickling is the process of removal of oxide layer and rust formed on metal surface. It also removes sand and corrosion products from the surface of metal. Acids such as sulfuric acid, hydrochloric acid are used for pickling. Hydrofluoric acid-Nitric acid mixture is used for stainless steel pickling. Pickling solutions are spent when acid concentration in pickling solutions decreases by 75-85%, which also has metal content up to 150-250 g/ dm3. Spent pickling liquor (SPL) should be dumped because the efficiency of pickling decreases with increasing content of dissolved metal in the bath. The SPL content depends on the plant of origin and the pickling method applied there. SPL from steel pickling in hot-dip galvanizing plants contains zinc(II), iron, traces of lead, chromium. and other heavy metals (max. 500 mg/dm3) and hydrochloric acid. Zinc(II) passes tothe spent solution after dissolution of this metal from zinc(II)-covered racks, chains and baskets used for transportation of galvanized elements. Unevenly covered zinc layers are usually removed in another pickling bath. Due to this, zinc(II) concentration increases even up to 110 g/dm3, while iron content may reach or exceed even 80 g/dm3 in the same solution. This review presents an overview on different aspects of generation and treatment of SPL with recourse to recovery of acid for recycling. Different processes are described in this review and higher weightage is given to membrane processes.

  11. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training.

    Science.gov (United States)

    Dilda, Valentina; MacDougall, Hamish G; Moore, Steven T

    2011-08-01

    We have developed an analogue of postflight sensorimotor dysfunction in astronauts using pseudorandom galvanic vestibular stimulation (GVS). To date there has been no study of the effects of extended GVS on human subjects and our aim was to determine optimal exposure for astronaut training based on tolerance to intermittent and continuous galvanic stimulation. There were 60 subjects who were exposed to a total of 10.5 min of intermittent GVS at a peak current of 3.5 mA or 5 mA. A subset of 24 subjects who tolerated the intermittent stimulus were subsequently exposed to 20-min continuous stimulation at 3.5 mA or 5 mA. During intermittent GVS the large majority of subjects (78.3%) reported no or at most mild motion sickness symptoms, 13.3% reported moderate symptoms, and 8.3% experienced severe nausea and requested termination of the stimulus. During 20-min continuous exposure, 83.3% of subjects reported no or at most mild motion sickness symptoms and 16.7% (all in the 5-mA group) experienced severe nausea. Based on these results, we propose two basic modes of GVS application to minimize the incidence of motion sickness: intermittent high (5 mA) amplitude, suited to simulation of intensive operator tasks requiring a high-fidelity analogue of postflight sensorimotor dysfunction such as landing or docking maneuvers; and continuous low (3.5 mA) amplitude stimulation, for longer simulation scenarios such as extra vehicular activity. Our results suggest that neither mode of stimulation would induce motion sickness in the large majority of subjects for up to 20 min exposure.

  12. Experimental study and calculation of boiling heat transfer on steel plates during runout table operation

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.

    2002-01-01

    Within a hot strip steel mill, red hot steel is hot rolled into a long continuous slab that is led onto what is called the runout table. Temperatures of the steel at the beginning of this table are around 900 o C. Above and below the runout table are banks of water jets, sprays or water curtains that rapidly cool the steel slab. The heat transfer process itself may be considered one of the most complicated in the industrial world. The cooling process that occurs on the runout table is crucial and governs the final mechanical properties and flatness of a steel strip. However, very limited data of industrial conditions has been available and that which is available is poorly understood. To study heat transfer during runout table cooling, an industrial scale pilot runout table facility was constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement cooling by one circular water jet from industrial headers. The effect of cooling water temperature and initial steel plate temperature as well as varying water jet diameters on heat transfer was systematically investigated. A two-dimensional finite element scheme based inverse heat conduction model was developed to calculate surface heat transfer coefficients along the impinging surface. Heat flux curves at the stagnation area were obtained for selected tests. A quantitative relationship between adjustable processing parameters and heat transfer coefficients along the impinging surface during runout table operation is discussed. The results of the study were used to upgrade an extensive process model developed at UBC. The model ties in the cooling rate and hence two dimensional temperature gradients to the resulting microstructure and final mechanical properties of the steel. This process model is widely used by major steel industries in Canada and the United States. (author)

  13. Reprocessing of zinc galvanic waste sludge by selective precipitation

    Czech Academy of Sciences Publication Activity Database

    Jandová, J.; Maixner, J.; Grygar, Tomáš

    2002-01-01

    Roč. 46, č. 2 (2002), s. 52-55 ISSN 0862-5468 R&D Projects: GA AV ČR IBS4032004; GA ČR GA203/99/0067 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 223100002 Keywords : galvanic sludge * recovery * zinc Subject RIV: CA - Inorganic Chemistry Impact factor: 0.354, year: 2002

  14. Investigation of field corrosion performance and bond/development length of galvanized reinforcing steel : [tech transfer summary].

    Science.gov (United States)

    2014-12-01

    In reinforced concrete systems, ensuring that a good bond between the : concrete and the embedded reinforcing steel is critical to long-term structural : performance. Without good bond between the two, the system simply cannot : behave as intended. :...

  15. Corrosion of Steel in Concrete – Potential Monitoring and Electrochemical Impedance Spectroscopy during Corrosion Initiation and Propagation

    DEFF Research Database (Denmark)

    Küter, Andre; Mason, Thomas O.; Geiker, Mette Rica

    2005-01-01

    wires. The wires can act as both reference and counter electrode during EIS and, thus, no external electrode is required. The defined geometry solves reproducibility problems involved with application of an external reference electrode for EIS. Changes of the electromotive force (EMF) between rebar...... and titanium wires can be monitored immediately after preparation. The wire arrangement also allows investigation of local changes in the bulk mortar by EIS or by measuring the potential development of the titanium wires versus an external standard electrode. The specimen design was evaluated...... in an investigation on the effect of the steel quality and the steel surface properties on initiation and propagation of chloride-induced reinforcement corrosion. Besides untreated (as received) carbon rebars and stainless rebars, selected surface treatments and galvanization were investigated. The surface treatments...

  16. 77 FR 70390 - Lifesaving Equipment: Production Testing and Harmonization With International Standards

    Science.gov (United States)

    2012-11-26

    ... components within the system to be made of corrosion-resistant materials without the need for galvanizing... resistant in the marine environment without the need for coatings or galvanizing,'' the current ASTM.... This standard would no longer be appropriate because these steels require coatings or galvanizing to be...

  17. Kinetics of fatigue crack growth and crack paths in the old puddled steel after 100-years operating time

    Directory of Open Access Journals (Sweden)

    G. Lesiuk

    2015-10-01

    Full Text Available The goal of the authors’ investigations was determination of the fatigue crack growth in fragments of steel structures (of the puddled steel and its cyclic behavior. Tested steel elements coming from the turn of the 19th and 20th were gained from still operating ancient steel construction (a main hall of Railway Station, bridges etc.. This work is a part of investigations devoted to the phenomenon of microstructural degradation and its potential influence on their strength properties. The analysis of the obtained results indicated that those long operating steels subject to microstructure degradation processes consisting mainly in precipitation of carbides and nitrides inside ferrite grains, precipitation of carbides at ferrite grain boundaries and degeneration of pearlite areas [1, 2]. It is worth noticing that resistance of the puddled steel to fatigue crack propagation in the normalized state was higher. The authors proposed the new kinetic equation of fatigue crack growth rate in such a steel. Thus the relationship between the kinetics of degradation processes and the fatigue crack growth rate also have been shown. It is also confirmed by the materials research of the viaduct from 1885, which has not shown any significant changes in microstructure. The non-classical kinetic fatigue fracture diagrams (KFFD based on deformation ( or energy (W approach was also considered. In conjunction with the results of low- and high-cycle fatigue and gradual loss of ductility as a consequence (due to the microstructural degradation processes - it seems to be a promising construction of the new kinetics fatigue fracture diagrams with the energy approach.

  18. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  19. Setup of Galvanic Sensors for the Monitoring of Gilded Bronzes

    Directory of Open Access Journals (Sweden)

    Sara Goidanich

    2014-04-01

    Full Text Available Traditional electrochemical techniques, such as linear polarization resistance (Rp, and electrochemical impedance spectroscopy (EIS, cannot be applied to gilded bronzes, as it may not be possible to interpret the results obtained due to the bimetallic nature of the studied material. The measurement of the macrocouple current generated by the gold/bronze galvanic couple can be used as an indicator of degradation processes. Nevertheless, this measurement cannot be performed directly on the original artifacts due to the systematic presence of short-circuits between the two metals. In the present work the use of galvanic sensors is proposed as a possible solution for the monitoring of gilded bronze artefacts. The sensors have been designed to simulate real gilded bronze surfaces in terms of composition and stratigraphy and have proved to be a reliable diagnostic tool for the in situ monitoring of the rates of deterioration of gilded bronze surfaces and to test new conservation treatments. Their set-up and application is reported and their performances discussed.

  20. Fire tests to study heat insulation scenario of galvanized rolling shutters sprayed with intumescent coatings

    International Nuclear Information System (INIS)

    Chuang, Ying-Ji; Chuang, Ying-Hung; Lin, Ching-Yuan

    2009-01-01

    The purpose of this study, through standard furnace fire tests and a natural fire test, is to analyze the heat insulation behavior of galvanized rolling shutters sprayed with intumescent coatings. The following experiments and associated estimations demonstrated that in the 1-h standard fire-resisting tests, the radiant heat flux at a measuring point horizontally 1 m away from the center of an unexposed surface the radiation could reach 4.64 W/cm 2 for the traditional uninsulated galvanized rolling shutter, and that the radiant heat flux would be substantially decreased to 0.22 W/cm 2 for one with intumescent coating of 0.3 mm target thickness, which, during the heating process, expanded about 100 times in volume and then generated a certain insulation effect. Therefore the intumescent coatings on galvanized rolling shutters have been proved by this study to be a feasible method of insulation, which can be applied in the future fire compartment design of buildings.

  1. Galvanic Vestibular Stimulation (GVS) as an Analogue of Post-flight Sensorimotor Dysfunction

    Data.gov (United States)

    National Aeronautics and Space Administration — Aim 1A (complete): Tolerance to GVS. Dilda, V, MacDougall HG, Moore, ST. Tolerance to extended Galvanic vestibular stimulation: optimal exposure for astronaut...

  2. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. © 2013 Elsevier Inc. All rights reserved.

  3. Interfacial Microstructure and Properties of Steel/Aluminum Powder Additive

    Directory of Open Access Journals (Sweden)

    YUAN Jiang

    2017-09-01

    Full Text Available Based on first-principles density functional theory, the Fe/Al interface model of steel/aluminum laser welding was constructed by layer technique. The Fe/Al interface was studied by metal atom X (X=Sn, Sr, Zr, Ce, La.The results show that Sn, Sr and Ce preferentially displace the Al atoms at the Fe/Al interface, while La and Zr preferentially displace the Fe atoms at the Fe/Al interface. Alloying promotes the transfer of Fe/Al interfacial electrons between different orbits, enhances the ionic bond properties of Fe-Al, improves the Fe/Al interface binding capacity, improves the brittle fracture of Fe/Al interface, and the alloying effect of Sn most notable. On the basis of this, the laser lap welding test of Sn and Zr powder was carried out on 1.4mm thick DC51D+ZF galvanized steel and 1.2mm thick 6016 aluminum alloy specimen. The results show that the addition of powder can promote the flowability of the molten bath and change the composition and microstructure of the joint interface. The tensile strength of the steel/aluminum joint is 327.41MPa and the elongation is 22.93% with the addition of Sn powder, which is obviously improved compared with the addition of Zr powder and without the addition of powder.

  4. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  5. Gold recovery from organic solvents using galvanic stripping

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; O`Keefe, T.J. [Univ. of Missouri, Rolla, MO (United States). Dept. of Metallurgical Engineering

    1995-08-01

    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  6. Intracavity OptoGalvanic Spectroscopy Not Suitable for Ambient Level Radiocarbon Detection

    NARCIS (Netherlands)

    Paul, Dipayan; Meijer, Harro

    2015-01-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research.

  7. New hypotheses for hydrogenase implication in the corrosion of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Mehanna, Maha; Basseguy, Regine; Delia, Marie-Line [Laboratoire de Genie Chimique (LGC) CNRS-INPT, 5 rue Paulin Talabot BP 1301, 31106 Toulouse (France); Girbal, Laurence; Demuez, Marie [Laboratoire d' Ingenierie des Systemes Biologiques et des Procedes (LISBP) CNRS-INSA, 135 Avenue de Rangueil, 31077 Toulouse (France); Bergel, Alain [Laboratoire de Genie Chimique (LGC) CNRS-INPT, 5 rue Paulin Talabot BP 1301, 31106 Toulouse (France)], E-mail: Alain.Bergel@ensiacet.fr

    2008-12-01

    The influence of [Fe]-hydrogenase from Clostridium acetobutylicum was studied on the anaerobic corrosion of mild steel. Two short-circuited mild steel electrodes were exposed to the same solution and hydrogenase was retained on the surface of only one electrode thanks to a dialysis membrane. The galvanic current and the electrode potential were measured as a function of time in order to monitor the difference in electrochemical behaviour induced by the presence of hydrogenase. A sharp potential decrease of around 500 mV was controlled by the deoxygenating phase. When hydrogenase was introduced after complete deoxygenation, significant heterogeneous corrosion was observed under the vivianite deposit on the electrode in contact with hydrogenase, while the other electrode only showed the vivianite deposit, which was analysed by MEB and EDX. The effect of hydrogenase was then confirmed by monitoring the free potential of single coupons exposed or not to the enzyme in a classical cell after complete deoxygenating. In both phosphate and Tris-HCl buffers, the presence of hydrogenase increased the free potential around 60 mV and induced marked general corrosion. It was concluded that [Fe]-hydrogenase acts in the absence of any final electron acceptor by catalysing direct proton reduction on the mild steel surface.

  8. New hypotheses for hydrogenase implication in the corrosion of mild steel

    International Nuclear Information System (INIS)

    Mehanna, Maha; Basseguy, Regine; Delia, Marie-Line; Girbal, Laurence; Demuez, Marie; Bergel, Alain

    2008-01-01

    The influence of [Fe]-hydrogenase from Clostridium acetobutylicum was studied on the anaerobic corrosion of mild steel. Two short-circuited mild steel electrodes were exposed to the same solution and hydrogenase was retained on the surface of only one electrode thanks to a dialysis membrane. The galvanic current and the electrode potential were measured as a function of time in order to monitor the difference in electrochemical behaviour induced by the presence of hydrogenase. A sharp potential decrease of around 500 mV was controlled by the deoxygenating phase. When hydrogenase was introduced after complete deoxygenation, significant heterogeneous corrosion was observed under the vivianite deposit on the electrode in contact with hydrogenase, while the other electrode only showed the vivianite deposit, which was analysed by MEB and EDX. The effect of hydrogenase was then confirmed by monitoring the free potential of single coupons exposed or not to the enzyme in a classical cell after complete deoxygenating. In both phosphate and Tris-HCl buffers, the presence of hydrogenase increased the free potential around 60 mV and induced marked general corrosion. It was concluded that [Fe]-hydrogenase acts in the absence of any final electron acceptor by catalysing direct proton reduction on the mild steel surface

  9. A dual-electrochemical cell to study the biocorrosion of stainless steel.

    Science.gov (United States)

    Lopes, F A; Perrin, S; Féron, D

    2007-01-01

    The presence of microorganisms on metal surfaces can alter the local physical/chemical conditions and lead to microbiologically influenced corrosion (MIC). The goal of the present work was to study the effect of a mixed aerobic-anaerobic biofilm on the behaviour of stainless steel (316 L) in underground conditions. Rather than testing different bacteria or consortia, investigations were based on the mechanisms of MIC. Mixed biofilms were simulated by the addition of glucose oxidase to reproduce the aerobic conditions and by sulphide or sulphate-reducing bacteria (SRB) for the anaerobic conditions. A double thermostated electrochemical cell has been developed to study the coupling between aerobic and anaerobic conditions. Results suggested a transfer of electrons from the stainless steel sample of the anaerobic cell to the stainless steel sample of the aerobic one. Inorganic sulphide was replaced by SRB in the anaerobic cell revealing an increase of the galvanic current which may be explained by an effect of lactate and/or acetate on the anodic reaction or by a high sulphide concentration in the biofilm. The results of this study underline that the dual-electrochemical cell system is representative of phenomena present in natural environments and should be considered as an option when studying MIC.

  10. The mechanisms underlying corrosion product formation and deposition in nuclear power plant circuits through the action of galvanic and thermal electromotive forces

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Brusov, K.N.; Razmashkin, N.V.; Versin, V.V.; Rybalchenko, I.L.

    1983-01-01

    From a theoretical standpoint, the processes of formation of corrosion products in nuclear power plant circuits, deposition of corrosion products on the circuit surfaces, formation of an equilibrium concentration of corrosion products in the coolant, and distribution of radionuclides resulting from corrosion in different parts of the circuit are considered. It is shown that the main driving forces for the mass-transfer processes in the circuits are the thermal and galvanic electromotive forces (EMF) of the microcouples. On the basis of the theoretical concepts developed the authors have obtained analytical dependences for calculating the individual stages of the process of corrosion product transfer in the circuits. The mechanisms underlying the processes which occur as a result of thermal and galvanic EMFs are considered, together with the factors influencing these processes. The results of verification of the dependences by computational methods are given and they are compared with operational data from nuclear and conventional thermal power plants and with experimental data. (author)

  11. Corrosion analysis of decommissioned carbon steel waste water tanks at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Soo, P.; Roberts, T.C.

    1995-07-01

    A corrosion analysis was carried out on available sections of carbon steels taken from two decommissioned radioactive waste water tanks at Brookhaven National Laboratory. One of the 100,000 gallon tanks suffered from a pinhole failure in the wall which was subsequently patched. From the analysis it was shown that this leak, and two adjacent leaks were initiated by a discarded copper heating coil that had been dropped into the tank during service. The failure mechanism is postulated to have been galvanic attack at points of contact between the tank structure and the coil. Other leaks in the two tanks are also described in this report

  12. Evaluation criteria of structural steel reliability

    International Nuclear Information System (INIS)

    Zav'yalov, A.S.

    1980-01-01

    Different low-carbon and medium-carbon structural steels are investigated. It is stated that steel reliability evaluation criteria depend on the fracture mode, steel suffering from the brittle fracture under the influence of the stresses (despite their great variety) arising in articles during the production and operation. Fibrous steel fracture at the given temperature and article thickness says about its high ductility and toughness and brittle fractures are impossible. Brittle fractures take place in case of a crystalline and mixed fracture with a predominant crystalline component. Evaluation methods of article and sample steel structural strength differing greatly from real articles in a thickness (diameter) or used at temperatures higher than possible operation temperatures cannot be reliability evaluation criteria because at a great thickness (diameter) and lower operation temperatures steel fracture and its strain mode can change resulting in a sharp reliability degradation

  13. In situ 2D maps of pH shifts across brass–lead galvanic joints using microelectrodes

    International Nuclear Information System (INIS)

    Ma, Xiangmeng; Lee, Woo Hyoung; Lytle, Darren A

    2017-01-01

    Galvanic corrosion in drinking water distribution systems, such as conditions following partial lead service line replacement, can be a significant source of lead in tap water. The objective of this work was to measure the pH directly near metal surfaces using a novel experimental tool in order to understand the water chemistry at a lead-containing galvanic couple in drinking water. Specifically, pH microprofiles in the proximity of corroding metal surfaces were measured using a microelectrode to construct detailed in situ 2D spatial maps of the pH across a galvanic couple at 100 µ m above the metal’s surface under flowing and stagnation conditions. The opposite pH trend was directly observed across the galvanic couple under flow and stagnation conditions. Water stagnation resulted in a pH at the anode (leaded solder) of 1.5 pH units lower than the bulk water pH (9.0) and as much as 2.5 pH units lower than the cathode (brass). These conditions can enhance lead release at the anode, which reflects different anodic–cathodic relationships of coupled metals primarily controlled by water flow. Most importantly, this work has demonstrated the ability to make real pH measurement at the surface of corroding metals using a novel microelectrode approach. (paper)

  14. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on 'smart' coatings applied to galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Taryba, M. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Lamaka, S.V., E-mail: sviatlana.lamaka@ist.utl.p [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Snihirova, D. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ferreira, M.G.S. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); CICECO, Dep. Ceramics and Glass Eng., University of Aveiro, 3810-193 Aveiro (Portugal); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Wijting, W.K.; Toews, S.; Grundmeier, G. [Institute for Polymer Materials and Processes, University of Paderborn, 33098 Paderborn (Germany)

    2011-04-30

    Research highlights: {yields} Weldable primers were modified with submicron containers loaded with corrosion inhibitors. {yields} SVET and micro-potentiometry were used to study the corrosion inhibition ability. {yields} Submicron containers do not damage the barrier properties of model primers. {yields} Artificial defects of 50{mu}m x 50 {mu}m in a coating can be easily analyzed by SVET and SIET. {yields} Inhibiting dissolution of sacrificial Zn may result in detrimental dissolution of Fe. - Abstract: Model weldable primer coatings for galvanized steel were modified with submicron containers loaded with corrosion inhibitors. This procedure aims at introducing a new functionality in the thin coatings self-repair ability. The assessment of this property demands new protocols and new approaches, combining conventional electrochemical methods with electrochemical and analytical techniques of micrometer spatial resolution. Thus, in this work model defects were created in the coatings by using a focused ion beam (FIB). The coated samples, containing the model defects, were immersed in a NaCl 0.05 M solution and the corrosion inhibition ability was studied using the scanning vibrating electrode technique (SVET) and the scanning ion-selective electrode technique (SIET). SVET-SIET measurements were performed quasi-simultaneously. Qualitative chemical analysis was performed by SEM combined with EDS. Complementary studies were carried out by electrochemical impedance spectroscopy (EIS) to assess the effect of the containers filled with corrosion inhibitors on the barrier properties of the coatings. The electrochemical results highlight the importance of the combined use of integral and localized electrochemical techniques to extract information for a better understanding of the corrosion processes and corresponding repair of active microscopic defects formed on thin coatings containing inhibitor filled containers.

  15. A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Xin He

    2016-01-01

    Full Text Available We demonstrated a general strategy to fabricate silver-coated copper nanowires by a galvanic replacement, which is guided by the chemical principle that metal ions (silver ions with a relatively high reduction potential can galvanically etch nanostructure made from a less metal (copper. Well-dispersed and high-yielded copper nanowires were initially synthesized and then introduced into silver-ammonia solution for the growth of silver nanocrystals on the nanowire surfaces under vigorous oscillation. The results of X-ray diffraction, scanning electron microscope, and transmission electron microscope revealed that the silver nanocrystals were uniformly distributed on the copper nanowire surfaces to form Cu-Ag heterostructures. The concentration of silver-ammonia solution and the time of replacement reaction determine the size and density of the silver nanocrystals. Our investigation might pave the way to the synthesis of other bimetallic nanostructures via a facile, fast, and economical route.

  16. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    Science.gov (United States)

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  17. Characterization of surface defects in high strength galvannealed steels; Charakterisierung der Oberflaechendefekte in hochfesten, nach dem Verzinken waermebehandelten Staehlen

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.H. [Automotive Steels Research Center, Technical Research Labs., POSCO, Gwangyang (Korea)

    2004-03-01

    Hot-dip galvannealed steel sheets, in which Fe of the substrate steel diffused into upper coating layer so as to be alloyed with Zn through a galvannealing above 450 C followed by hot-dip galvanizing process, generally show superior corrosion resistance, weldability and paintability. They have been widely used in automobile, construction, appliance industries and others. In particular, many researches have been carrying out to produce defect-free coating for an exposed automotive body panel. In the present study, high strength interstitial-free steel sheets containing Mn and P were galvannealed in an industrial continuous galvanizing line and defects on the coating surface were investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. It is clear that the quality of the substrate strongly affects galvannealed coating and it is essential to keep clean surface just before immediately dipping into molten Zn pot. (orig.) [German] Feuerverzinkte und danach waermebehandelte Stahlbleche, wo Fe aus dem Substratstahl in die obere Beschichtungsschicht diffundiert wie bei Legieren mit Zn und einer Waermebehandlung von ueber 450 C, gefolgt von einem Feuerverzinkverfahren, zeigen im Allgemeinen hervorragende Korrosionsbestaendigkeit, Schweissbarkeit und Anstreichbarkeit. Sie finden ein breites Einsatzgebiet bei Automobilen, im Bauwesen, in Werkzeugindustrien und anderen. Insbesondere wurde von vielen Forschern versucht, eine fehlerfreie Beschichtung fuer ein ungeschuetztes Karosserieteil herzustellen. In der vorliegenden Arbeit wurden hochfeste porenfreie Stahlbleche mit Mn- und P-Gehalt nach dem Verzinken in einer industriellen Endlos-Verzinkungslinie (CGL) waermebehandelt, wobei die Defekte auf der Schichtoberflaeche lichtmikroskopisch, rasterund transmissionselektronenmikroskopisch untersucht wurden. Klar ist, dass die Qualitaet des Substrats die nach dem Verzinken waermebehandelten Schichten beeinflusst und es ist von grosser

  18. Complex approach mechanical properties and formability assessment of selected deep-drawing steels

    Directory of Open Access Journals (Sweden)

    J. Štaba

    2009-07-01

    Full Text Available The paper analyses the properties of deep-drawing sheets of three grades (Re = 320 to 475 MPa, surface-treated with hot-dip galvanizing, made of microalloyed steels. Deformation properties are assessed using tensile tests, technological Erichsen or cupping tests. These characteristics, as well as the behaviour of the surface layer, are also investigated under dynamic conditions (modified Erichsen test using a drop tester, or using flat bending fatigue tests. Using microscopic analysis the deformation properties of the surface layer are evaluated. The results show the compactness of the surface layer, high deformation characteristics, as well as fatigue properties of the investigated deep-drawing materials, suitable for application in the automotive industry.

  19. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    Science.gov (United States)

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  20. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  1. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    Bohusova, O.; Brumovsky, M.; Cukr, B.; Hatle, Z.; Protiva, K.; Stefec, R.; Urban, A.; Zidek, M.

    1976-01-01

    The principles are listed of nuclear reactor operation and the reactors are classified by neutron energy, fuel and moderator designs, purpose and type of moderator. The trend and the development of light-water reactor applications are described. The fundamental operating parameters of the WWER type reactors are indicated. The effect is discussed of neutron radiation on reactor structural materials. The characteristics are described of steel corrosion due to the contact of the steel with steam or sodium in the primary coolant circuit. The reasons for stress corrosion are given and the effects of radiation on corrosion are listed. The requirements and criteria are given for the choice of low-alloy steel for the manufacture of pressure vessels, volume compensators, steam generators, cooling conduits and containment. A survey is given of most frequently used steels for pressure vessels and of the mechanical and structural properties thereof. The basic requirements for the properties of steel used in the primary coolant circuit are as follows: sufficient strength in operating temperature, toughness, good weldability, resistance to corrosion and low brittleness following neutron irradiation. The materials are listed used for the components of light-water and breeder reactors. The production of corrosion-resistant steels is discussed with a view to raw materials, technology, steel-making processes, melting processes, induction furnace steel-making, and to selected special problems of the chemical composition of steels. The effects are mainly discussed of lead, bismuth and tin as well as of some other elements on hot working of high-alloy steels and on their structure. The problems of corrosion-resistant steel welding and of pressure vessel cladding are summed up. Also discussed is the question of the concept and safeguards of the safety of nuclear installation operation and a list is presented of most commonly used nondestructive materials testing methods. The current

  2. Immobilization of heavy metals arising sludge galvanic, in glass ceramic material

    International Nuclear Information System (INIS)

    Felisberto, R.; Santos, M.C.; Basegio, T.; Bergmann, C.P.

    2016-01-01

    The use of galvanic sludge in the glass-ceramic formulation for immobilizing environmentally harmful materials is consolidated in more developed countries as raw material in the formulation of new materials. In this work, we have used galvanic sludge provided by a metallurgical company located in Vale dos Sinos, RS. The sludge was dried at 105°C and mixed with soda-lime glass in proportions of 1, 5, 10 and 20%, relative to the glass mass. Its composition was determined by FRX, and evaluated for leaching (NBR 10005) and solubilization (NBR 10006). The specimens (CPs) were burned at temperatures 750, 800 and 850°C, also submitted to the tests. The sludge, Class I - dangerous, presented Se content greater than provisions of NBR 10004. It was possible to immobilize the heavy metals at a temperature of 850°C for specimens of the F1 formulation, having been thus classified as Class II B Inert Residue. (author)

  3. Large-scale synthesis of Tellurium nanostructures via galvanic displacement of metals

    Science.gov (United States)

    Kok, Kuan-Ying; Choo, Thye-Foo; Ubaidah Saidin, Nur; Rahman, Che Zuraini Che Ab

    2018-01-01

    Tellurium (Te) is an attractive semiconductor material for a wide range of applications in various functional devices including, radiation dosimeters, optical storage materials, thermoelectric or piezoelectric generators. In this work, large scale synthesis of tellurium (Te) nanostructures have been successfully carried out in different concentrations of aqueous solutions containing TeO2 and NaOH, by galvanic displacements of Zn and Al which served as the sacrificial materials. Galvanic displacement process is cost-effective and it requires no template or surfactant for the synthesis of nanostructures. By varying the concentrations of TeO2 and NaOH, etching temperatures and etching times, Te nanostructures of various forms of nanostructures were successfully obtained, ranging from one-dimensional needles and rod-like structures to more complex hierarchical structures. Microscopy examinations on the nanostructures obtained have shown that both the diameters and lengths of the Te nanostructures increased with increasing etching temperature and etching time.

  4. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  5. Effect of welding processes on corrosion resistance of UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    Chiu, Liu Ho; Hsieh, Wen Chin

    2003-01-01

    An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to 250 .deg. C is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as σ, γ 2 and Cr 2 N may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% FeCl 3 solution at 47.5 .deg. C for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of σ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution

  6. Optimal design of galvanic corrosion protection systems for offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Abrahamsen, Asger Bech; Stolpe, Mathias

    2018-01-01

    the optimized anodes on the support structure, and finally evaluating the protective potential on the structure during the lifetime by calling the finite element (FE) software COMSOL. An algorithm based on Sequential Quadratic Programming (SQP) is used for optimizing the number and dimensions of the anodes...... the electrical isolation degradation of the structure coating as well as the mass reduction of the anodes during the CP lifetime. The performance of the proposed optimization process is examined on a mono bucket inspired (with some simplifications) by the Dogger Bank metrological mast in England. The optimized......The current work addresses a mass/cost optimization procedure for galvanic anode cathodic protection (GACP) systems based on both cathodic protection (CP) standards and numerical simulation. An approach is developed for optimizing the number and dimensions of the galvanic anodes, distributing...

  7. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  8. Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles.

    Science.gov (United States)

    Polavarapu, Lakshminarayana; Zanaga, Daniele; Altantzis, Thomas; Rodal-Cedeira, Sergio; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Bals, Sara; Liz-Marzán, Luis M

    2016-09-14

    Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core-shell NPs (nanorods and nanocubes) into octahedral nanorattles via room-temperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.

  9. High-strength maraging steels

    International Nuclear Information System (INIS)

    Grachev, S.V.; Shejn, A.S.

    1989-01-01

    Analysis of data on technological and operation properties of maraging steels on Fe-Cr-Ni, Fe-Ni, Fe-Cr-Co-Mo bases is given. Their advantages and drawbacks are pointed out. The scheme of strengthening heat treatment is considered. The fields of the most effective application of maraging steels for instance, for products operating under conditions of low-cycle and shock cyclic loading are mentioned

  10. Photocatalytic activity of galvanically synthesized nanostructure SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta, E-mail: sumantajana85@gmail.com [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mitra, Bibhas Chandra [Department of Physics, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Bera, Pulakesh [Department of Chemistry, Panskura Banamali College, Purba Medinipur, Panskura 721152, WB (India); Sikdar, Moushumi [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India)

    2014-07-25

    Graphical abstract: Nanostructured porous tin dioxide (SnO{sub 2}) thin films have been synthesized by simple and cost effective galvanic technique. The synthesized porous SnO{sub 2} thin films show excellent photocatalytic activity for degrading methyl orange (MO) dye under light irradiation. The porous morphological grain growth due to annealing is likely to play an active role for this degradation. - Highlights: • SnO{sub 2} thin films have been successfully synthesized by galvanic technique. • A drastic morphological change occurs after annealing as deposited SnO{sub 2} thin films. • Morphological advantage results enhanced photodegradation of dye. - Abstract: The study demonstrates an approach to synthesize nanostructure SnO{sub 2} thin films on TCO (transparent conducting oxide) coated glass substrates by galvanic technique. Aqueous solution of hydrated stannic chloride (SnCl{sub 4}⋅5H{sub 2}O) in potassium nitrate (KNO{sub 3}) solution was used as the working solution. The process involves no sophisticated reactor or toxic chemicals, and proceeds continuously under ambient condition; it provides an economic way of synthesizing nanostructure SnO{sub 2} semiconductor thin films. The influence of sintering temperature on crystalline structure, morphology, electrical and dielectric properties has been studied. A detail analysis of I−V, C−V and dielectrics for annealed SnO{sub 2} thin films have been carried out. The morphological advantage i.e. nanoporous flake like structure allows more efficient transport of reactant molecules to the active interfaces and results a strong photocatalytic activity for degrading methyl orange (MO) dye.

  11. Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2018-01-01

    Full Text Available This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.

  12. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    Science.gov (United States)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  13. Development and Application of Coating Weight Control Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hyoung [Dongbu Steel, Incheon (Korea, Republic of)

    2010-08-15

    Precise coating weight control is very important issue on quality and minimizing operating costs on continuous galvanizing line. These days, many steel making companies are having a new understanding of cost importance by rise raw material prices and customers requirement for cost reduction. Dongbu steel also meets these situations and decided to develop the technologies. Dongbu Steel developed Integrated coating weight control system jointly with Objective Control Ltd. and installed 2CGL and 4CGL. Several technological functions were developed and realized to achieve true hands-off operation and maximum cost benefit by combining model-based preset and dynamic prediction models. We also installed it on 1 CGL on April, 2008. This paper will present the interface, functions and application result of the integrated coating weight control system including Zn saving and coating weight uniformity.

  14. Galvanically Decoupled Current Source Modules for Multi-Channel Bioimpedance Measurement Systems

    Directory of Open Access Journals (Sweden)

    Roman Kusche

    2017-10-01

    Full Text Available Bioimpedance measurements have become a useful technique in the past several years in biomedical engineering. Especially, multi-channel measurements facilitate new imaging and patient monitoring techniques. While most instrumentation research has focused on signal acquisition and signal processing, this work proposes the design of an excitation current source module that can be easily implemented in existing or upcoming bioimpedance measurement systems. It is galvanically isolated to enable simultaneous multi-channel bioimpedance measurements with a very low channel-coupling. The system is based on a microcontroller in combination with a voltage-controlled current source circuit. It generates selectable sinusoidal excitation signals between 0.12 and 1.5 mA in a frequency range from 12 to 250 kHz, whereas the voltage compliance range is ±3.2 V. The coupling factor between two current sources, experimentally galvanically connected with each other, is measured to be less than −48 dB over the entire intended frequency range. Finally, suggestions for developments in the future are made.

  15. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash

    Directory of Open Access Journals (Sweden)

    Soodeh Tahmasbi

    2015-09-01

    Full Text Available Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various man-ufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022” Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye. These brackets along with stainless steel (SS or nickel-titanium (NiTi orthodontic wires (0.016", round were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP difference of each bracket-wire couple was measured with a Satu-rated Calomel Reference Electrode (Ag/AgCl saturated with KCl via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and speci-mens with corrosion were analyzed with scanning electron microscopy (SEM. Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05. Corrosion rate of brackets coupled with NiTi wires was higher than that of brack-ets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recom-mended when using them.

  16. Inspection of steel poles; ultrasonic testing of anchor ground rods and cathodic reactions : Corrosion detection : an emerging problem in buried steel structures

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.K.; Randle, R.E.; Stewart, A.H. [EDM International Inc., Fort Collins, CO (United States)

    2002-07-01

    A typical inspection of steel utility poles routinely overlooks what is below ground, such as anchor rods, stub angles in lattice towers, and direct embedded steel poles. Stub angles are lap or butt spliced to the tower leg and extend several feet below ground line. A case study concerning stub angles (Oberst 1998) is discussed. An inspection of steel poles erected in 1929 revealed that 40 per cent of legs had complete loss of galvanizing, 10 per cent of legs had greater than 10 per cent loss of cross-section, and 2 per cent of legs had greater than 80 per cent loss of cross-section. All corrosion was found within one foot of ground line. A relatively new concept is direct embedded steel poles. An emerging problem concerns tree induced anchor rod corrosion. A corrosion technique for anchor rods was developed and has been commercially available for the past three years. Its effectiveness was verified at the Montana Power Company 500 kV Colstrip Project, where 3 anchor failures were detected in 1995 due to corrosion wastage. The rods are classified as being in good condition up to 10 per cent loss of cross-section, moderate corrosion for losses between 10 and 25 per cent, and excessive corrosion for losses greater than 25 per cent. The results obtained at the Montana Power Company indicated the technique was 98 per cent accurate. The authors discuss the capabilities and limitations of the technique. It was also applied for the Anchor Rod Inspection Project of the Georgia Power Company (GPC). The technique is evaluated in the laboratory, then optimized. Field prototypes are developed, followed by an evaluation at different test sites. figs.

  17. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  18. 77 FR 61738 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-10-11

    ... regard to the cost of production, we subtracted the cost of galvanizing in the instances where our methodology resulted in the selection of a galvanized product as the substitute for a non- galvanized product and added galvanizing where our methodology selected non-galvanized products as a substitute for...

  19. Galvanic Corrosion of Lead by Iron (Oxyhydr)Oxides: Potential Impacts on Drinking Water Quality.

    Science.gov (United States)

    Trueman, Benjamin F; Sweet, Gregory A; Harding, Matthew D; Estabrook, Hayden; Bishop, D Paul; Gagnon, Graham A

    2017-06-20

    Lead exposure via drinking water remains a significant public health risk; this study explored the potential effects of upstream iron corrosion on lead mobility in water distribution systems. Specifically, galvanic corrosion of lead by iron (oxyhydr)oxides was investigated. Coupling an iron mineral cathode with metallic lead in a galvanic cell increased lead release by 531 μg L -1 on average-a 9-fold increase over uniform corrosion in the absence of iron. Cathodes were composed of spark plasma sintered Fe 3 O 4 or α-Fe 2 O 3 or field-extracted Fe 3 O 4 and α-FeOOH. Orthophosphate immobilized oxidized lead as insoluble hydroxypyromorphite, while humic acid enhanced lead mobility. Addition of a humic isolate increased lead release due to uniform corrosion by 81 μg L -1 and-upon coupling lead to a mineral cathode-release due to galvanic corrosion by 990 μg L -1 . Elevated lead in the presence of humic acid appeared to be driven by complexation, with 208 Pb and UV 254 size-exclusion chromatograms exhibiting strong correlation under these conditions (R 2 average = 0.87). A significant iron corrosion effect was consistent with field data: lead levels after lead service line replacement were greater by factors of 2.3-4.7 at sites supplied by unlined cast iron distribution mains compared with the alternative, lined ductile iron.

  20. Novel enhancement of thin-form-factor galvanic cells: Probing halogenated organic oxidizers and metal anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M.; Adornato, Lori; Short, R. Timothy; Langebrake, Larry [SRI International, Engineering and Systems Division, Marine Technology Program, 140 Seventh Avenue South, St Petersburg, FL 33701 (United States)

    2008-09-15

    The work reported herein demonstrates a novel method to improve the overall performance of thin-form-factor galvanic cells, fabricated via micro-electromechanical systems (MEMS) processes. Use of solid, low cost, cyclic-halogenated, organic catholyte materials permits water activation of cells consisting of metal anode and catalytic platinum positive electrodes. Similar cells, employing aluminum and zinc anodes, have been activated using sodium hypochlorite (NaClO) solutions, i.e. bleach, in the past. The oxidizers chosen for this study (bromo-, chloro- and iodo-succinimides, and sodium dichloroisocyanuric acid) supply the cathode's oxy-halogenated ions when in contact with water. Zinc, magnesium and aluminum anodes are utilized to fabricate galvanic cells. A comparison between these anodes, coupled with various oxidizers, is included herein. Results using aluminum anode cells show that, even though the utilization efficiency of the catholyte reagents is low (faradic efficiencies between 16 and 19%), the performance of the new water-activated cells (6 cm x 6 cm x 0.25 cm) is superior when compared to those activated with bleach. For instance, operational lives of 6 h (activation with 10% NaClO solution) increase to more than 30 h using the new approach, with a 100-ohm-load. It is also shown that specific energies of 90-110 Wh kg{sup -1} (calculated to include both reagent and packaging mass) could be obtained using the described approach with current draws between 10 and 20 mA. The specific energies obtained suggest that novel MEMS-type cells could have much broader application than low-current, bleach-activated cells. (author)

  1. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  2. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  3. Galvanic corrosion of Al 1S and Al 57S in demineralised water

    International Nuclear Information System (INIS)

    Chouthai, S.S.; Shibad, P.R.; Gadiyar, H.S.

    1987-01-01

    Experiments were conducted on A1-1S and A1-57S to investigate the effect of galvanic coupling between the two on the corrosion rates, on exposure to demineralised water at room temperature. The results indicated that such galvanic effects were not observed. Specimens pretreated in 2 per cent sodium oxalate and also in 3 per cent oxalic acid showed lower corrosion rates as compared to specimens without any treatment. AES studies carried out on A1-1S and A1-57S both untreated and treated in 2 per cent sodium oxalate and in 3 per cent oxalic acid solution revealed bulk of the passive film to be an oxide of aluminium with differences in thicknesses for the two materials. Thinner films were seen on A1-57S as compared to A1-1S. (author). 5 tables, 7 figures

  4. Effects of dew point on selective oxidation of TRIP steels containing Si, Mn, and B

    Science.gov (United States)

    Lee, Suk-Kyu; Kim, Jong-Sang; Choi, Jin-Won; Kang, Namhyun; Cho, Kyung-Mox

    2011-04-01

    The selective oxidation of Si, Mn, and B on TRIP steel surfaces is a widely known phenomenon that occurs during heat treatment. However, the relationship between oxide formation and the annealing factors is not completely understood. This study examines the effect of the annealing conditions (dew point and annealing temperature) on oxide formation. A low dew point of -40 °C leads to the formation of Si-based oxides on the surface. A high dew point of -20 °C changes the oxide type to Mn-based oxides because the formation of Si oxides on the surface is suppressed by internal oxidation. Mn-based oxides exhibit superior wettability due to aluminothermic reduction during galvanizing.

  5. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

    Science.gov (United States)

    Kaboli, Shirin; McDermid, Joseph R.

    2014-08-01

    A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall

  6. A new method for the compensation of ohmic drop in galvanic cells

    NARCIS (Netherlands)

    Kooijman, D.J.; Sluyters, J.H.

    Generally the ohmic potential drop in a galvanic cell that occurs if a rectangular pulse is led through the cell, is compensated by means of a well-known bridge circuit. A better method making use of a phase reverter is described and its features are discussed. Exchange current densities up to 1200

  7. Growth and galvanic replacement of silver nanocubes in organic media

    Science.gov (United States)

    Polavarapu, Lakshminarayana; Liz-Marzán, Luis M.

    2013-05-01

    Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the silver ion precursor on the morphology and monodispersity of the nanoparticles were systematically investigated. Additionally, the galvanic replacement reaction with HAuCl4 in an organic medium was implemented to prepare hydrophobic hollow Au-Ag nanocages with tunable localized surface plasmon resonances.Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the

  8. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  9. First stages of zinc runoff in humid tropical climate

    International Nuclear Information System (INIS)

    Meraz, E.; Veleva, L.; Acosta, M.

    2007-01-01

    Frequently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relatively good atmospheric resistance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runoff. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdoor atmosphere (rural and urban). The data reveal high annual values of zinc runoff (8,20-12,40±0.30 g/m''2 ano), being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed. (Author) 48 refs

  10. Corrosion Degradation of Coated Aluminum Alloy Systems through Galvanic Interactions

    Science.gov (United States)

    2017-07-19

    REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...19b. TELEPHONE NUMBER (Include area code) Corrosion  Degradation  of  Coated  Aluminum  Alloy  Systems  through  Galvanic...their  low  density  and  relatively  high  strength.   While  exhibiting  significant  general   corrosion  resistance,  these

  11. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  12. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  13. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  14. Interfacial interactions between some La-based perovskite thick films and ferritic steel substrate with regard to the operating conditions of SOFC

    International Nuclear Information System (INIS)

    Przybylski, K.; Brylewski, T.; Morgiel, J.

    2004-01-01

    An overview is presented on the oxidation kinetics, electrical properties and microstructure investigations of the oxide products formed on Fe-25 wt.-%Cr steel uncoated and coated with electrical conducting films of (La,Ca)CrO 3 or (La,Sr)CoO 3 in air and H 2 /H 2 O gas mixture at 1023-1173 K for up to 480 hrs with regard to their application as the SOFC metallic interconnect. The application of the Fe-25Cr steel in SOFC operating at 1073 K requires its surface modification to improve the electrical conductivity of chromia scale forming on the uncoated steel surface. The thick films of (La,Ca)CrO 3 and (La,Sr)CoO 3 with the thickness range of 20-100 μm, coated on the Fe-25Cr steel by screen-printing method helped solve this problem. TEM-SAD, SEM-EDS and impedance spectroscopy investigations have shown significant influence of the multilayer products formation at the substrate steel/coating films interfacial zone on the electrical properties of the metallic interconnect. (orig.)

  15. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    Science.gov (United States)

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.

  16. On the contribution of electrochemical methods in the study of corrosion mechanisms in automotive body steel sheets

    International Nuclear Information System (INIS)

    Massinon, D.; Dauchelle, D.; Charbonnier, J.C.

    1989-01-01

    Complex mechanisms and interactions seem to govern the degradation of automotive body panels. The multimaterial nature of the system (steel, coating, conversion layer and paint), together with the variety of agressions it can encounter makes it a difficult task to characterize the corrosion mechanism(s). To this aim, physical analysis of corroded surfaces have recently yielded new insights on the role of some parameters and especially the quality of the interfaces, i.e. paint/coating and coating/steel. Electrochemistry, on the other hand, has given much information on phenomena such as selective dissolution, galvanic protection of steel by a coating, or oxygen diffusion through an organic coating. More and more is being known about the role of the paint and the mechanisms of its adhesion on a metallic substrate. However, a link between those theories is still missing and a full understanding of the corrosion phenomenon has not been achieved yet. We have developed original techniques in order to look into the corroded specimens with the most sophisticated physical analysis tools. The observed phenomena can be simulated and, whenever possible, quantified. This approach requires the use of different electrochemical techniques which will be presented in this paper. (author) 8 refs., 15 figs

  17. Effect of strip temperature on the formation of an Fe{sub 2}Al{sub 5} inhibition layer during hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Monojit [R and D Division, Tata Steel Ltd., Jamshedpur 831001 (India)], E-mail: monoron@yahoo.com; Singh, Shiv Brat [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-04-15

    The theory of nucleation has been employed to derive expressions for the formation of an Fe{sub 2}Al{sub 5} layer during commercial strip galvanizing. This is then used to show the effect of the strip entry temperature on the nucleation of the Fe{sub 2}Al{sub 5} layer. An attempt was also made to verify this effect through controlled experiments in a hot-dip galvanizing simulator and electron microscopic characterization of a few samples.

  18. Operational reliability of high pressure steam lines of pearlitic steels after 150-200 thousand h service

    International Nuclear Information System (INIS)

    Veksler, E.Ya.; Chajkovskij, V.M.; Osasyuk, V.V.

    1980-01-01

    Usage of both calculational and physical methods is recommended to estimate a service operating life of long-term working steam line materials. Application of these methods is demonstrated when studying steam line bends made of 12MKh and 12Kh1MF pearlitic steels. Good coincidence of results for the determination of residual durability of steam lines is obtained using these two methods [ru

  19. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  20. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  1. Report on best available techniques (BAT) at Finnish hot dip galvanizing plants in 2001; Selvitys parhaasta kaeytettaevissae olevasta tekniikasta (BAT) Suomen kuumasinkityslaitoksissa vuonna 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, I.

    2002-02-01

    Report presents hot dip (batch) galvanizing process and its emissions as well as measures to prevent and control them. Report has been prepared in cooperation with industry representatives and environmental authorities. Reference Document on Best Available Techniques in the Ferrous Metals Processing Industry and especially its part concerning batch galvanizing has been utilized. Also background information from the existing environmental permits as well as information collected by the questionnaires has been used. In year 2001 there were 18 hot dip (batch) galvanizing plants in Finland. Branch can be considered quite homogenous as there are only few variations in processes used. Waste management and recovery and as well as waste water treatment are well taken care of. At many plants treated process water is recycled back to the galvanizing process. Air emissions from hot dipping pot (dust, zinc, ammonium compounds, chlorides) are filtrated only at few plants. Therefore most of the environmental load at many plants is caused by air emissions as they can indirectly cause pollution also into soil and nearby water bodies. Instead of specific emission and consumption data and comparison between different techniques, report presents choice of measures and actions to be taken into account when applying best available techniques (BAT) at an installation level. Galvanizers can use the report as background information when assessing implementation of BAT at their own plants. Permitting authorities can utilize the report in the environmental permitting of the plants. (orig.)

  2. 46 CFR 160.035-3 - Construction of steel oar-propelled lifeboats.

    Science.gov (United States)

    2010-10-01

    ... apparatus shall have a minimum factor of safety of six. (2) For construction and capacity of disengaging... shall be galvanized by the hot dipped process. All fabricated pieces or sections are to be galvanized...

  3. Evaluation of Radiation Exposure during Construction and Operation of Concrete Bridge Reinforced with Very Low Level Radioactive Steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    A lot of nuclear power plants are approaching the end of their lifetime and they will be phased out. Decommissioning of these nuclear power plants involve complete dismantling of technologies and demolition of buildings. During this process it is produced plenty of waste material of different categories. Significant portion of decommissioning materials comprise radionuclides what is caused by contamination and activation processes mostly from the operational period of nuclear power plant. Attention in this paper is paid to waste steel from the decommissioning of nuclear power plants with the specific activity just slightly exceeding legislation limits for the unconditional release into the environment. From the traditional point of view this material should be treated, conditioned and disposed on the radioactive waste repository. Second possibility is to release this material conditionally and reuse it in chosen industrial application. Very low level radioactive steel scrap should be melted and melting products should be processed into products that can be applied in industry. First option requires considerable financial investment, human resources and repository capacity. Second option saves some financial funds and it enables to reuse and save potentially valuable material for the future. Paper comprises evaluation of external and internal exposure during construction and operation of concrete bridges that utilize very low level radioactive steel as part of their reinforcement. Two models of representative concrete bridges were created. External gamma exposure and exposure from inhalation and ingestion of radionuclides were calculated using suitable computational tools. VISIPLAN 3D ALARA planning tool was chosen for the calculation of external gamma exposure. Software GOLDSIM enables to calculate transport of radionuclides initially contained in conditionally released reinforcement steel through subsoil and sequential exposure of people caused by inhalation of

  4. Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu

    2006-01-18

    The process of continuous galvanizing of rolled sheet steel includes immersion into a bath of molten zinc/aluminum alloy. The steel strip is dipped in the molten bath through a series of driving motors and rollers which control the speed and tension of the strip, with the ability to modify both the amount of coating applied to the steel as well as the thickness and width of the sheet being galvanized. There are three rolls used to guide the steel strip through the molten metal bath. The rolls that operate in the molten Zn/Al are subject to a severely corrosive environment and require frequent changing. The performance of this equipment, the metallic hardware submerged in the molten Zn/Al bath, is the focus of this research. The primary objective of this research is to extend the performance life of the metallic hardware components of molten Zn/Al pot hardware by an order of magnitude. Typical galvanizing operations experience downtimes on the order of every two weeks to change the metallic hardware submerged in the molten metal bath. This is an expensive process for industry which takes upwards of 3 days for a complete turn around to resume normal operation. Each roll bridle consists of a sink, stabilizer, and corrector roll with accompanying bearing components. The cost of the bridle rig with all components is as much as $25,000 dollars just for materials. These inefficiencies are of concern to the steel coating companies and serve as a potential market for many materials suppliers. This research effort served as a bridge between the market potential and industry need to provide an objective analytical and mechanistic approach to the problem of wear and corrosion of molten metal bath hardware in a continuous sheet galvanizing line. The approach of the investigators was to provide a means of testing and analysis that was both expeditious and cost effective. The consortium of researchers from West Virginia University and Oak Ridge National Laboratory developed

  5. Investigation of thin film deposition on stainless steel 304 substrates under different operating conditions

    International Nuclear Information System (INIS)

    Chowdhury, M A; Nuruzzaman, D M

    2016-01-01

    In recent times, friction and wear in relation to the deposited carbon films on the steel substrates are important issues for industrial applications. In this research study, solid thin films were deposited on the stainless steel 304 (SS 304) substrates under different operating conditions. In the experiments, natural gas (97.14% methane) was used as a precursor gas in a hot filament thermal chemical vapor deposition (CVD) reactor. Deposition rates on SS 304 substrates were investigated under gas flow rates 0.5 - 3.0 l/min, pressure 20 - 50 torr, gap between activation heater and substrate 3.0 - 6.0 mm and deposition duration 30 - 120 minutes. The obtained results show that there are significant effects of these parameters on the deposition rates on SS 304 within the observed range. Friction coefficient of SS 304 sliding against SS 314 was also investigated under normal loads 5 - 10 N and sliding velocities 0.5 - m/s before and after deposition. The experimental results reveal that in general, frictional values are lower after deposition than that of before deposition. (paper)

  6. EFFECT OF DEW POINT OF ATMOSPHERE OF CGL’S ANNEALING FURNACES ON THE QUALITY OF GA COATING ON BAKE HARDENABLE STEEL

    Directory of Open Access Journals (Sweden)

    Juliana Porto Guimarães

    2013-10-01

    Full Text Available The strip steel surface condition after continuous annealing of strip is extremely important to the quality of galvannealed coating (GA. The presence of oxides or precipitated can affect the reactions at the coating/substrate interface and decrease the zinc wettability on the steel surface, leading to various defects in the final product. To avoid oxidation of the material during continuous annealing, a protective atmosphere is used in the furnaces. Despite this atmosphere, it is possible the selective oxidation or precipitation of second phase particles, being the dew point of atmosphere one of the leading factors to reduce this occurrence. This study aims to evaluate the effect of the dew point on the quality of GA coatings applied to a bake hardenable steel. The continuous annealing under dew points of –60°C, 30°C and 0°C, as well as hot dip galvanizing, were performed in a Hot Dip Process Simulator. It is found that the dew point has a decisive influence on the amount, distribution and type of oxides formed, and the condition of –30°C provided the coating with less failures and better adhesion.

  7. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  8. Examination of the Mg-Zn phase formation in hot-dip galvanized steel sheet; Untersuchung der Mg-Zn-Phasenbildung in feuerverzinktem Stahlblech

    Energy Technology Data Exchange (ETDEWEB)

    Zywitzki, Olaf; Modes, Thomas; Scheffel, Bert; Metzner, Christoph [Fraunhofer-Institut fuer Elektronenstrahl- und Plasmatechnik, Dresden (Germany)

    2012-07-01

    Zinc-magnesium layers have been produced by a combination of conventional hot-dip galvanizing and PVD magnesium coating. A subsequent short heat treatment causes the diffusion of magnesium into the zinc layer. The influence of the maximum temperature of the heat treatment on the diffusion of magnesium and on the type and distribution of the formed intermetallic Mg-Zn phases has been examined in detail in a temperature range from 300 to 400 C by means of X-ray phase analyses and metallographic cross sections. With increasing temperature a sequential intermetallic Mg-Zn phase formation has been detected. At 300 C, an initial magnesium rich, intermetallic MgZn{sub 2} surface layer is formed, which, at higher temperatures from 335 to 379 C, is progressively transformed into a zinc rich Mg{sub 2}Zn{sub 11} layer by interdiffusion. In this context, the nucleation of the Mg{sub 2}Zn{sub 11} phase takes place on the interface between the MgZn{sub 2} and the Zn phase. Above the peritectic temperature of 381 C, the microstructure is composed of a zinc matrix in which precipitated MgZn{sub 2} is dispersed. (orig.)

  9. Expectancy, False Galvanic Skin Response Feedback, and Systematic Desensitization in the Modification of Phobic Behavior

    Science.gov (United States)

    Lick, John

    1975-01-01

    This study compared systematic desensitization and two pseudotherapy manipulations with and without false galvanic skin response feedback after every session suggesting improvement in the modification of intense snake and spider fear. The results indicated no consistent differences between the three treatment groups. (Author)

  10. Challenges in Special Steel Making

    Science.gov (United States)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  11. Personal reflections on a galvanizing trail.

    Science.gov (United States)

    O'Dell, B L

    1998-01-01

    This article encompasses my perception of, and experience in, an exciting segment of the trace element era in nutrition research: the role of zinc in the nutrition of animals and humans. Zinc has been a major player on the stage of trace element research, and it has left a trail that galvanized the attention of many researchers, including myself. It is ubiquitous in biological systems, and it plays a multitude of physiologic and biochemical functions. A brief historical overview is followed by a discussion of the contributions the work done in my laboratory has made toward understanding the physiological and biochemical functions of zinc. The effort of 40 years has led to the belief that one of zinc's major roles, and perhaps its first limiting role, is to preserve plasma-membrane function as regards ion channels and signal transduction. Although substantial knowledge has been gained relating to the importance of zinc in nutrition, much remains to be discovered.

  12. Design basis for the copper/steel canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1996-02-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs

  13. The development of EUROFER reduced activation steel

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, B. van der E-mail: vanderschaaf@nrg-nl.com; Tavassoli, F.; Fazio, C.; Rigal, E.; Diegele, E.; Lindau, R.; LeMarois, G

    2003-09-01

    Ferritic martensitic steels show limited swelling and susceptibility to helium effects and can be made with low activation chemical compositions. These properties make them the reference steel for the development of breeding blankets in fusion power plants. EUROFER97 is the European implementation of such a steel, where experience gained from an IEA co-operation with Japan and the US is also implemented. Results obtained so far show that EUROFER steel has attractive mechanical properties even after long ageing times. Compatibility tests in water and PbLi17 are in progress. Oxidised aluminium is the most effective protective layer in PbLi17. The displacement damage and helium formation strongly influence the hydrogen transport in the steel. Present experiments should be backed by tests in a more fusion relevant environment, e.g. IFMIF. The 2.5 dpa neutron irradiations at low temperatures result in a higher DBTT. High dose irradiations, up to 80 dpa, are underway. The early results of ODS grades with EUROFER steel composition show potential of these grades for increasing the operating temperature with 100-150 K.

  14. Ecological and economic assessment and optimisation of measures for in-house recycling in hot galvanizing plants; Oekologische und oekonomische Beurteilung und Optimierung von Massnahmen zur innerbetrieblichen Stoffkreislaufschliessung beim Feuerverzinken von Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, R.; Fleischer, G. [TU Berlin, Inst. fuer Technischen Umweltschutz, Lehrstuhl Abfallvermeidung und Sekundaerrohstoffwirtschaft, Berlin (Germany)

    2003-07-01

    Exemplary strategies for materials use and recycling in a plant for hot galvanizing of steel are reviewed from an ecological and economic viewpoint and optimized. The changes resulting from the optimization measures are assessed in terms of cost and potential ecological effects. The results of this assessment, which is based on the methodology published in DIN EN ISO 14040 ff, illustrate the potential contained in the recycling option. (orig.) [German] Fuer das Feuerverzinken von Stahlbauteilen werden beispielhaft Strategien zur innerbetrieblichen Stoffkreislaufschliessung oekologisch und oekonomisch beurteilt und optimiert. Die sich hinsichtlich der betrieblichen Stoff- und Energiefluesse durch Optimierungsmassnahmen ergebenden Veraenderungen werden in Bezug auf die Kostensituation des Unternehmens und die oekologischen potentiellen Auswirkungen beurteilt. Die Ergebnisse der Oekologischen Betriebsoptimierung, die unter Nutzung methodischer Elemente der Oekobilanzierung (DIN EN ISO 14040 ff) erzielt werden, verdeutlichen, welche Potentiale in einer weitgehenden Schliessung des Stoffkreislaufs liegen. (orig.)

  15. Media Research with a Galvanic Skin Response Biosensor: Some Kids Work Up a Sweat!

    Science.gov (United States)

    Clariana, Roy B.

    This study considers the galvanic skin response (GSR) of sixth-grade students (n=20) using print, video, and microcomputer segments. Subjects received all three media treatments, in randomized order. Data for analysis consisted of standardized test scores and GSR measures; a moderate positive relationship was shown between cumulative GSR and…

  16. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  17. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  18. A Review of Galvanically Isolated Impedance-Source DC–DC Converters

    DEFF Research Database (Denmark)

    Chub, Andrii; Vinnikov, Dmitri; Blaabjerg, Frede

    2016-01-01

    Impedance-source converters, an emerging technology in electric energy conversion, overcome limitations of conventional solutions by the use of specific impedance-source networks. Focus of this paper is on the topologies of galvanically isolated impedance-source dc-dc converters. These converters...... isolated dc-dc converters according to the element that transfers energy from the input to the output: a transformer, a coupled inductor, or their combination. This classification reveals advantages and disadvantages, as well as a wide space for further research. This paper also outlines the most promising...

  19. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    International Nuclear Information System (INIS)

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  20. Corrosion of weldments in orthodontic appliances

    International Nuclear Information System (INIS)

    Vazquez, S.M.; Riesgo, O.; Duffo, G.S.

    1997-01-01

    The study of corrosion-related problems of dental materials has undergone a considerable development in recent years in order to avoid the use of materials with insufficient corrosion resistance in patients mouth. The subject of the present work was to study a particular type of corrosion: galvanic corrosion. One of the most common case of galvanic couples in patients mouth are the orthodontic appliances. The materials studied in the present work were stainless steel strips and silver-copper wires, isolated and welded between them. The electrochemical tests were performed in a NaCl 0.1M and Lactic Acid 0.1 M solution (pH2.3), and after test, the specimens were observed using the optical and scanning electron microscope. The results show that when stainless steel is coupled with a silver solder, the last is the anode of the galvanic couple. As a consequence of this, the silver solder undergone a severe attack. Stainless steel orthodontic appliances with silver solder are feasibly destroyed due to a severe attack on the filler metal disjoining the welded parts. (author) 9 refs

  1. Characterization Of Oxide Layers Formed On 13CrMo4-5 Steel Operated For A Long Time At An Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Gwoździk M.

    2015-09-01

    Full Text Available The paper contains results of studies into the formation of oxide layers on 13CrMo4-5 (15HM steel long-term operated at an elevated temperature. The oxide layer was studied on a surface and a cross-section at the inner and outer surface of the tube wall. The 13CrMo4-5 steel operated at the temperature of 470°C during 190,000 hours was investigated. X-ray structural examinations (XRD were carried out, microscope observation s using an optical, scanning microscope were performed. The native material chemical composition was analysed by means of emission spark spectroscopy, while that of oxide layers on a scanning microscope (EDS. The studies on the topography of the oxide layers comprised studies on the roughness plane, which were carried out using a AFM microscope designed for 2D and 3D studies on the surface. Mechanical properties of the oxide layer – steel (substrate were characterised on the basis of scratch test. The adhesion of oxide layers, friction force, friction coefficient, scratching depth were determined as well as the force at which the layer was delaminated.

  2. Development and optimization of operational parameters of a gas-fired baking oven

    Directory of Open Access Journals (Sweden)

    Afolabi Tunde MORAKINYO

    2017-12-01

    Full Text Available This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The physical properties of the baked breads were measured and analyzed using Duncan multiple range test of one way ANOVA at significant level of p<0.05. These properties were optimized to determine the optimum baking temperature using 3D surface response plot of Statistical Release 7. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 12.5 kg/hr, 87.8%, 12.5 g, 200-220oC, respectively. The physical properties of baked bread dough were found to correspond with the imported product (control sample. These results showed that, the developed gas-fired baking oven can be adopted for baking of bread at domestic and commercial levels.

  3. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: the electric eel, animal electricity, and later years.

    Science.gov (United States)

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    After extensive experimentation during the 1790s, Alexander von Humboldt remained skeptical about "animal electricity" (and metallic electricity), writing instead about an ill-defined galvanic force. With his worldview and wishing to learn more, he studied electric eels in South America just as the new century began, again using his body as a scientific instrument in many of his experiments. As had been the case in the past and for many of the same reasons, some of his findings with the electric eel (and soon after, Italian torpedoes) seemed to argue against biological electricity. But he no longer used galvanic terminology when describing his electric fish experiments. The fact that he now wrote about animal electricity rather than a different "galvanic" force owed much to Alessandro Volta, who had come forth with his "pile" (battery) for multipling the physical and perceptable effects of otherwise weak electricity in 1800, while Humboldt was deep in South America. Humboldt probably read about and saw voltaic batteries in the United States in 1804, but the time he spent with Volta in 1805 was probably more significant in his conversion from a galvanic to an electrical framework for understanding nerve and muscle physiology. Although he did not continue his animal electricity research program after this time, Humboldt retained his worldview of a unified nature and continued to believe in intrinsic animal electricity. He also served as a patron to some of the most important figures in the new field of electrophysiology (e.g., Hermann Helmholtz and Emil du Bois-Reymond), helping to take the research that he had participated in to the next level.

  4. The galvanic nature of synapse and the physicochemical aspects of nerve action.

    Science.gov (United States)

    Ghouri, M S; Shibata, S

    1984-04-01

    All electrode reactions are either electrochemical oxidation or electrochemical reduction reactions and therefore membrane potentials are produced by redox reactions. Postsynaptic potentials are the result of spontaneous galvanic electrochemical changes produced by neurotransmitters. Action potentials denote microelectrolysis along the axon length. Threshold is proportional to charge and the higher the threshold the greater the potential energy. Resting membrane potential is thermodynamically controlled whereas action potential is kinetically controlled phenomenon.

  5. Development and testing of an electrochemical separation process for cutting activated steel components

    International Nuclear Information System (INIS)

    Stang, W.; Fischer, A.; Pott, P.

    1991-01-01

    Electrochemical decontamination has a great importance for the decommissioning works at KRB A. By this method the metal surface is slightly removed due to a galvanic process in an electrolytic solution. Using the same principle it is also possible to remove material locally (ECM-technique). Many advantages of this method indicated that it could be used for cutting activated steel during decommissioning of nuclear power plants. In the frame of this research contract, experiments with non-active material from a reactor pressure vessel were investigated. The essential results demonstrated - which procedures and cathodes are suitable for high cutting velocities - and which amount of sludge (waste) will be produced in the electrolyte. The research programme has been carried out in cooperation with AEG-Elotherm, Remscheid. The test facility, the execution as well as the evaluation of the experiments were made by AEG-Elotherm

  6. Effect of dissolved oxygen, hydrazine and pH outside the crevice on the galvanic corrosion of support plate alloys

    International Nuclear Information System (INIS)

    McKubre, M.C.H.

    1985-01-01

    A study has been performed of the initial corrosion of support structure alloys in crevices of various geometries, when galvanically coupled to alloy 600. Corrosion rates were monitored continuously by measuring the galvanic current flowing in each couple, transduced by a zero impedance ammeter. Experiments were performed in a single-pass flowing electrolyte system, with AVT water pumped through alloy 600 tubing past the orifice of each crevice. Fourteen crevices were studied simultaneously in two parallel flow arms containing seven specimens each. The steady state AVT water pH/hydrazine/oxygen concentrations were controlled by microcomputer, allowing the effect of secondary water chemistry on the corrosion rate to be studied easily. Control of the crevice electrolyte composition was achieved by separately pumping electrolyte, at a low rate, directly into the crevices of the seven specimens in the lower flow arm. In addition, a high pressure syringe was used to introduce chemicals directly into the secondary or crevice electrolyte flow streams, in order to rapidly evaluate the influence of potential corrodent or corrosion control agents on the galvanic corrosion rates. Specimens were studied in the five basic geometries

  7. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Henrikson, S.

    1988-01-01

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  8. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    Science.gov (United States)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  9. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  10. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  11. A corrosion detection system for buried pipeline (II)

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Shin, Dong Ho; Kim, Sang Hyun; Kim, Jung Gu

    2005-01-01

    In order to develop a new corrosion sensor for detecting and monitoring the corrosion of buried pipeline, the electrochemical property of sensors and the correlation of its output to corrosion rate of steel pipe, were evaluated by electrochemical methods in synthetic groundwater, two soils of varying resistivity (5,000 ohm-cm, 10,000 ohm-cm), and synthetic tap water. In this paper, two types of electrochemical probes were used: galvanic cells containing of pipeline steel-copper and pipeline steel-stainless steel (Type 304). The results of EIS measurement indicated that the sensor current was inversely related to sensor resistance, which was governed by the corrosion behavior of cathode. In galvanic corrosion tests, the galvanic current of Cu-CS probe was higher than that of SS-CS probe. The comparison of the sensor output and corrosion rates revealed that a linear relationship was found between the probe current and the corrosion rates. A good linear quantitative relationship was found between the Cu-CS probe current and the corrosion rate of pipeline steel coupons in the soil resistivity of 5,000 ohm-cm, and synthetic tap water. In the case of the soil resistivity of 10,000 ohm-cm, although the SS-CS probe showed a better linear correlation than that of Cu-CS probe, the Cu-CS probe is more suitable than SS-CS probe, due to the high current output

  12. Effects of Solution Annealing Temperature on the Galvanic Corrosion Behavior of the Super Duplex Stainless Steels

    Science.gov (United States)

    Lee, Jun-Seob; Jeon, Soon-Hyeok; Park, Yong-Soo

    2013-02-01

    This study investigated the active dissolution of super duplex stainless steel (SDSS) at various solution annealing temperatures. The active dissolutions of the α-phase and γ-phase were compared, and the effects of the surface area ratio on the active dissolutions of both phases were investigated. There were two peaks in the active-passive transition region in the potentiodynamic test in the modified green-death solution. The two peaks changed as the solution annealing temperature was increased from 1050 to 1150 °C. The solution annealing temperature difference affected the critical anodic current densities. This provides useful information for determining the appropriate solution annealing temperature in the modified green-death solution for SDSS.

  13. Less-Conventional Low-Consumption Galvanic Separated MOSFET-IGBT Gate Drive Supply

    Directory of Open Access Journals (Sweden)

    Jean Marie Vianney Bikorimana

    2017-01-01

    Full Text Available A simple half-bridge, galvanic separated power supply which can be short circuit proof is proposed for gate driver local supplies. The supply is made while hacking a common mode type filter as a transformer, as the transformer shows a good insulation, it has a very low parasitic capacitance between primary and secondary coils, and it is cost-effective. Very low standby losses were observed during lab experiments. This makes it compatible with energy efficient drives and solar inverters.

  14. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Science.gov (United States)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  15. Effect of Process Parameters on the Structure and Properties of Galvanized Sheets

    Science.gov (United States)

    Shukla, S. K.; Saha, B. B.; Triathi, B. D.; Avtar, Ram

    2010-07-01

    The effect of galvanizing parameters on the structure (spangle size and coating microstructure) and properties (formability and corrosion resistance) of galvanized sheets was studied in a hot dip process simulator (HDPS) in a conventional Pb bearing (0.08-0.10%) zinc bath by varying zinc bath Al level (0.10-0.28%), bath temperature (718-743 K), dipping time (1.5-3.5 s), wiping gas flow rate (200-450 lpm), nozzle distance (15-17 mm) and wiping delay time (0.1-2.1 s). Al level in the range of 0.18-0.24% in combination with dipping time of 1.5-2.5 s and bath temperature of 718-733 K results in superior formability ( E cv: ~9.3 mm) of the composite (thickness: 0.8 mm). High post-dip cooling rates (~25 K/s) suppress spangle growth (spangle size: ~2 mm). The spangle size of the GI sheet strongly influences the corrosion rate which increases from 5.8 to 9.2 mpy with a decrease in spangle size from 17.5 to 3 mm. By controlling the Al level (0.20%) in zinc bath and bath temperature (733 K), the corrosion rate of mini-spangle GI sheet can be controlled to a level of 5.5 mpy.

  16. Galvanic detection of sulfur dioxide in ambient air at trace levels by anodic oxidation

    NARCIS (Netherlands)

    Lindqvist, F.

    1978-01-01

    A continuous method for the measurement of SO2 in ambient air at trace levels is described. The principle of detection is based on the anodic oxidation of SO2 in a galvanic cell. A differential measuring technique with a cell with two anodes and one cathode is used; background and noise current are

  17. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  18. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    Science.gov (United States)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  19. Study of the Reaction Rate of Gold Nanotube Synthesis from Sacrificial Silver Nanorods through the Galvanic Replacement Method

    Directory of Open Access Journals (Sweden)

    Sunil Kwon

    2010-01-01

    Full Text Available An investigation was carried out about the gold nanotube synthesis via a galvanic replacement reaction. The progress of the gold nanotube synthesis was investigated using electron microscopy and UV-Vis spectroscopy. In addition, the reaction rates of gold nanotube formation in the early stage of the reaction were studied. The chlorine ion concentration linearly increased with the gold precursor concentration but deviated from the stoichiometric amounts. This deviation was probably due to AgCl precipitates formed by the reaction of chlorine ions with dissolved silver ions. The replacement reaction was promoted with increased temperature and was nonlinearly proportional to the gold ion concentration. The outcomes of this research will enhance the current understanding of the galvanic replacement reaction.

  20. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    Science.gov (United States)

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767