WorldWideScience

Sample records for galapagoensis host genetic

  1. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies

    NARCIS (Netherlands)

    Whiteman, N.K.; Matson, K.D.; Bollmer, J.L.; Parker, P.G.

    2006-01-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity

  2. The status of Rhionaeschna galapagoensis (Currie, 1901) with notes on its biology and a description of its ultimate instar larva (Odonata, Aeshnidae)

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Rivera, A.; Encalada, A.C.; Sanchez-Guillen, R.A.; Santolamazza-Carbone, S.; Ellenrieder, N. von

    2016-07-01

    A morphological, molecular, and behavioural characterization of Rhionaeschna galapagoensis is presented, based on a series of specimens and observations from San Cristóbal Island, Galápagos, including both adults and larvae. Several of the characters proposed earlier to distinguish between the adults of this species and its closest relative, R. elsia, are found to be variable, but the presence of a black band over the fronto–clypeal suture is confirmed as a good diagnostic character. The ultimate instar larvae of R. galapagoensis is described for the first time, and diagnosed from its closest relatives by a combination of characters, including the acute angle between the prothoracic apophyses, absence of lateral spines on abdominal segment 6, and length of cerci relative to paraprocts. Molecular analysis confirmed that R. galapagoensis and R. elsia are sister species, and showed that their genetic distance is the closest among the analyzed species, which is to be expected given the young age of the Galápagos Islands. The larvae of R. galapagoensis were very common and widespread in the mountain streams and a pond in the southwest of San Cristóbal. Swarms of tens of individuals formed at sunrise in the coastal vegetation, together with adults of Tramea cf. cophysa, feeding on small flying insects. Males showed patrolling behaviour on small sections of the streams and at a pond. Only one copulation was observed, lasting 10 minutes. Females oviposited alone on floating vegetation in running and standing waters. Our observations corroborate that R. galapagoensis and R. elsia are two parapatric species, morphologically and genetically close. In San Cristóbal, R. galapagoensis had large populations, apparently not threatened. (Author)

  3. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  4. Some laelapine mites (Acari: Laelapidae) ectoparasitic on small mammals in the Galapagos Islands, including a new species of Gigantolaelaps from Aegialomys galapagoensis.

    Science.gov (United States)

    Gettinger, Donald; Martins-Hatano, Fernanda; Gardner, Scott L

    2011-08-01

    A collection of laelapine mites from small mammals in the Galapagos Islands are identified and their host distributions reviewed. Two species of native rodents, Aegialomys galapagoensis and Nesoryzomys narboroughii, were infested only with laelapine species typical of Neotropical oryzomyine rodents; Rattus rattus was infested with Laelaps nuttalli, a host-specific ectoparasite endemic to Old World Rattus. A synopsis of Gigantolaelaps Fonseca is provided and we describe a new laelapine mite, Gigantolaelaps aegialomys n. sp., from the pelage of the rodent A. galapagoensis on Santa Fe Island. The new species has strong morphological affinities with a subgroup of Gigantolaelaps associated with a group of semiaquatic oryzomyine rodents ( Holochilus, Nectomys, Sooretamys, Pseudoryzomys , Oryzomys palustris). The other nominal species of this group, Gigantolaelaps mattogrossensis (Fonseca, 1935) and Gigantolaelaps goyanensis Fonseca, 1939 , are characterized by 10 setae on Tibia IV, large metapodal shields, and spiniform setae on Coxae I. Gigantolaelaps aegialomys is distinguished from these species by a lack of clearly spiniform setae on Coxa I, with setiform distal seta longer than the proximal; metapodal shields about the same size as the stigma; less than 100 µm separating the first pair of sternal setae.

  5. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  6. Giardia duodenalis genetic assemblages and hosts

    Directory of Open Access Journals (Sweden)

    Heyworth Martin F.

    2016-01-01

    Full Text Available Techniques for sub-classifying morphologically identical Giardia duodenalis trophozoites have included comparisons of the electrophoretic mobility of enzymes and of chromosomes, and sequencing of genes encoding β-giardin, triose phosphate isomerase, the small subunit of ribosomal RNA and glutamate dehydrogenase. To date, G. duodenalis organisms have been sub-classified into eight genetic assemblages (designated A–H. Genotyping of G. duodenalis organisms isolated from various hosts has shown that assemblages A and B infect the largest range of host species, and appear to be the main (or possibly only G. duodenalis assemblages that undeniably infect human subjects. In at least some cases of assemblage A or B infection in wild mammals, there is suggestive evidence that the infection had resulted from environmental contamination by G. duodenalis cysts of human origin.

  7. Correlations of host genetic and gut microbiome composition

    Directory of Open Access Journals (Sweden)

    Krystyna Dabrowska

    2016-08-01

    Full Text Available The human gut microbiome has a considerable impact on host health. The long list of microbiome-related health disorders raises the question of what in fact determines microbiome composition. In this review we sought to understand how the host itself impacts the structure of the gut microbiota population, specifically by correlations of host genetics and gut microbiome composition.Host genetic profile has been linked to differences in microbiome composition, thus suggesting that host genetics can shape the gut microbiome of the host. However, cause-consequence mechanisms behind these links are still unclear. A survey of the possible mechanisms allowing host genetics to shape microbiota composition in the gut demonstrated the major role of metabolic functions and the immune system. A considerable impact of other factors, such as diet, may outweigh the effects of host genetic background. More studies are necessary for good understanding of the relations between the host genetic profile, gut microbiome composition, and host health. According to the idea of personalized medicine, patient-tailored management of microbiota content remains a fascinating area for further inquiry.

  8. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    Directory of Open Access Journals (Sweden)

    Bisgaard Magne

    2011-02-01

    Full Text Available Abstract Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprising strains isolated from horses and infected wounds of humans bitten by horses and another consisting of strains isolated from bovine and ovine hosts. The present data indicate a comparatively higher degree of genetic diversity among strains isolated from equine hosts and confirm the existence of a separate genomospecies for A. lignieresi-like isolates from horses. Among the isolates from bovine and ovine hosts some clonal lines appear to be genetically stable over time and could be detected at very distant geographic localities. Although all ovine strains investigated grouped in a single cluster, the existence of distinct genetic lineages that have evolved specificity for ovine hosts is not obvious and needs to be confirmed in other studies.

  9. Host genetic factors in susceptibility to HIV-1 infection and ...

    Indian Academy of Sciences (India)

    A lot of investigations have been targeted towards the ex- ploration of the viral genetics of HIV-1, associated with the progression to AIDS in HIV-1 infected individuals. How- ever, very little is known about the host genetic aspects in the pathogenesis of the infection (Michael 1999; Carrington et al. 2001; Kumar et al. 2006 ...

  10. Drastic effects of El Nino on Galapagos pinnipeds. [Arctocephalus galapagoensis; Zalophus californianus wollerbaeki

    Energy Technology Data Exchange (ETDEWEB)

    Trillmich, F.; Limberger, D.

    1985-01-01

    Population dynamics of pinnipeds living in the tropical upwelling ecosystem of the Galapagos were strongly influenced by the 1982-1983 Southern Oscillation - El Nino (EN) event which was the strongest recorded in this century. The Galapagos fur seal (Arctocephalus galapagoensis) population lost the four youngest year classes (1980-1983) almost entirely and approximately 30% of the adult females and non-territorial males. Mortality of large territorial males was almost 100%. Most of the 1982 year class of Galapagos sea lions (Zalophus californianus wollebaeki) died and there was a much lower pup production in the breeding season following EN. Recurrent EN events must strongly influence age structure and average population size of these and other otariid species depending on tropical upwelling ecosystems.

  11. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James H [ORNL; Foster, Carmen M [ORNL; Vishnivetskaya, Tatiana A [ORNL; Campbell, Alisha G [ORNL; Yang, Zamin Koo [ORNL; Wymore, Ann [ORNL; Palumbo, Anthony Vito [ORNL; Podar, Mircea [ORNL

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  12. Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host.

    Science.gov (United States)

    Marston, Denise A; Horton, Daniel L; Nunez, Javier; Ellis, Richard J; Orton, Richard J; Johnson, Nicholas; Banyard, Ashley C; McElhinney, Lorraine M; Freuling, Conrad M; Fırat, Müge; Ünal, Nil; Müller, Thomas; de Lamballerie, Xavier; Fooks, Anthony R

    2017-07-01

    Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV. No evidence was observed for genetic adaptation to foxes at consensus sequence level and dN/dS analysis suggested purifying selection. Therefore, the deep sequence data were analysed to investigate the sub-viral population during a host shift event. Viral heterogeneity was measured in all RABV samples; viruses from the early period after the host shift exhibited greater sequence variation in comparison to those from the later stage, and to those not involved in the host shift event, possibly indicating a role in establishing transmission within a new host. The transient increase in variation observed in the new host species may represent virus replication within a new environment, perhaps due to increased replication within the CNS, resulting in a larger population of viruses, or due to the lack of host constraints present in the new host reservoir.

  13. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs) of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprisin...

  14. Health evaluation of Galapagos Hawks (Buteo galapagoensis) on Santiago Island, Galapagos.

    Science.gov (United States)

    Deem, Sharon L; Rivera-Parra, Jose Luis; Parker, Patricia G

    2012-01-01

    Galapagos Hawks (Buteo galapagoensis), the only endemic, diurnal raptor species in Galapagos, are currently distributed on eight Galapagos Islands having been extirpated from three of the human-inhabited islands. In January 2009, we performed health assessments of 89 Galapagos Hawks on Santiago Island, Galapagos. Four of the 89 Galapagos Hawks (4%) evaluated had physical abnormalities. Blood parameters did not differ between males and females, except for aspartate transaminase values, which were significantly higher in females than males. No Galapagos Hawks tested positive for antibodies to avian encephalitis virus, Marek virus, and paramyxovirus-1 or to haemosporidian antigen. Chlamydophila psittaci antigen was detected in 2 of 86 Galapagos Hawks (2%), with 24 of 43 Galapagos Hawks (56%) antibody-positive for avian adenovirus-1 and 1 of 48 Galapagos Hawks (2%) antibody positive for Toxoplasma gondii. There were no significant differences in infectious disease results based on sex. This study contributes to the understanding of the health status of the Galapagos Hawk and to the establishment of baseline information for the species.

  15. DMPD: The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10669111 The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Qur...e The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Authors Qur

  16. Host Genetic Variants in the Pathogenesis of Hepatitis C

    Directory of Open Access Journals (Sweden)

    Monika Rau

    2012-11-01

    Full Text Available Direct-acting antiviral drugs (DAAs are currently replacing antiviral therapy for Hepatitis C infection. Treatment related side effects are even worse and the emergence of resistant viruses must be avoided because of the direct-antiviral action. Altogether it remains a challenge to take treatment decisions in a clinical setting with cost restrictions. Genetic host factors are hereby essential to implement an individualized treatment concept. In recent years results on different genetic variants have been published with a strong association with therapy response, fibrosis and treatment-related side effects. Polymorphisms of the IL28B gene were identified as accurate predictors for therapy response and spontaneous clearance of HCV infection and are already used for diagnostic decisions. For RBV-induced side effects, such as hemolytic anemia, associations to genetic variants of inosine triphosphatase (ITPA were described and different SLC28 transporters for RBV-uptake have been successfully analyzed. Fibrosis progression has been associated with variants of Vitamin D receptor (VDR and ABCB11 (bile salt export pump. Cirrhotic patients especially have a high treatment risk and low therapy response, so that personalized antiviral treatment is mandatory. This review focuses on different host genetic variants in the pathogenesis of Hepatitis C at the beginning of a new area of treatment.

  17. Host genetic factors predisposing to HIV-associated neurocognitive disorder.

    Science.gov (United States)

    Kallianpur, Asha R; Levine, Andrew J

    2014-09-01

    The success of combination antiretroviral therapy (cART) in transforming the lives of HIV-infected individuals with access to these drugs is tempered by the increasing threat of HIV-associated neurocognitive disorders (HAND) to their overall health and quality of life. Intensive investigations over the past two decades have underscored the role of host immune responses, inflammation, and monocyte-derived macrophages in HAND, but the precise pathogenic mechanisms underlying HAND remain only partially delineated. Complicating research efforts and therapeutic drug development are the sheer complexity of HAND phenotypes, diagnostic imprecision, and the growing intersection of chronic immune activation with aging-related comorbidities. Yet, genetic studies still offer a powerful means of advancing individualized care for HIV-infected individuals at risk. There is an urgent need for 1) longitudinal studies using consistent phenotypic definitions of HAND in HIV-infected subpopulations at very high risk of being adversely impacted, such as children, 2) tissue studies that correlate neuropathological changes in multiple brain regions with genomic markers in affected individuals and with changes at the RNA, epigenomic, and/or protein levels, and 3) genetic association studies using more sensitive subphenotypes of HAND. The NIH Brain Initiative and Human Connectome Project, coupled with rapidly evolving systems biology and machine learning approaches for analyzing high-throughput genetic, transcriptomic and epigenetic data, hold promise for identifying actionable biological processes and gene networks that underlie HAND. This review summarizes the current state of understanding of host genetic factors predisposing to HAND in light of past challenges and suggests some priorities for future research to advance the understanding and clinical management of HAND in the cART era.

  18. Host dispersal as the driver of parasite genetic structure: a paradigm lost?

    Science.gov (United States)

    Mazé-Guilmo, Elise; Blanchet, Simon; McCoy, Karen D; Loot, Géraldine

    2016-03-01

    Understanding traits influencing the distribution of genetic diversity has major ecological and evolutionary implications for host-parasite interactions. The genetic structure of parasites is expected to conform to that of their hosts, because host dispersal is generally assumed to drive parasite dispersal. Here, we used a meta-analysis to test this paradigm and determine whether traits related to host dispersal correctly predict the spatial co-distribution of host and parasite genetic variation. We compiled data from empirical work on local adaptation and host-parasite population genetic structure from a wide range of taxonomic groups. We found that genetic differentiation was significantly lower in parasites than in hosts, suggesting that dispersal may often be higher for parasites. A significant correlation in the pairwise genetic differentiation of hosts and parasites was evident, but surprisingly weak. These results were largely explained by parasite reproductive mode, the proportion of free-living stages in the parasite life cycle and the geographical extent of the study; variables related to host dispersal were poor predictors of genetic patterns. Our results do not dispel the paradigm that parasite population genetic structure depends on host dispersal. Rather, we highlight that alternative factors are also important in driving the co-distribution of host and parasite genetic variation. © 2016 John Wiley & Sons Ltd/CNRS.

  19. The genetics of non-host resistance to the lettuce pathogen Bremia lactucae in Lactuca saligna

    NARCIS (Netherlands)

    Jeuken, M.J.W.

    2002-01-01

    Plants are continuously exposed to a wide variety of pathogens. However, all plant species are non-hosts for the majority of the potential plant pathogens. The genetic dissection of non-host resistance is hampered by the lack of segregating population from crosses between host and non-host

  20. Continuous Influx of Genetic Material from Host to Virus Populations.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2016-02-01

    Full Text Available Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86 can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69 belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.

  1. High diversity and low genetic structure of feather mites associated with a phenotypically variable bird host.

    Science.gov (United States)

    Fernández-González, Sofía; Pérez-Rodríguez, Antón; Proctor, Heather C; De la Hera, Iván; Pérez-Tris, Javier

    2018-01-17

    Obligate symbionts may be genetically structured among host individuals and among phenotypically distinct host populations. Such processes may in turn determine within-host genetic diversity of symbionts, which is relevant for understanding symbiont population dynamics. We analysed the population genetic structure of two species of feather mites (Proctophyllodes sylviae and Trouessartia bifurcata) in migratory and resident blackcaps Sylvia atricapilla that winter sympatrically. Resident and migratory hosts may provide mites with habitats of different qualities, what might promote specialization of mite populations. We found high genetic diversity of within-host populations for both mite species, but no sign of genetic structure of mites between migratory and resident hosts. Our results suggest that, although dispersal mechanisms between hosts during the non-breeding season are unclear, mite populations are not limited by transmission bottlenecks that would reduce genetic diversity among individuals that share a host. Additionally, there is no evidence that host phenotypic divergence (associated with the evolution of migration and residency) has promoted the evolution of host-specialist mite populations. Unrestricted dispersal among host types may allow symbiotic organisms to avoid inbreeding and to persist in the face of habitat heterogeneity in phenotypically diverse host populations.

  2. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics.

    Science.gov (United States)

    Vertacnik, Kim L; Linnen, Catherine R

    2017-02-01

    Adaptation to different host taxa is a key driver of insect diversification. Herbivorous insects are classic models for ecological and evolutionary research, but it is recent advances in sequencing, statistics, and molecular technologies that have cleared the way for investigations into the proximate genetic mechanisms underlying host shifts. In this review, we discuss how genome-scale data are revealing-at resolutions previously unimaginable-the genetic architecture of host-use traits, the causal loci underlying host shifts, and the predictability of host-use evolution. Collectively, these studies are providing novel insights into longstanding questions about host-use evolution. On the basis of this synthesis, we suggest that different host-use traits are likely to differ in their genetic architecture (number of causal loci and the nature of their genetic correlations) and genetic predictability (extent of gene or mutation reuse), indicating that any conclusions about the causes and consequences of host-use evolution will depend heavily on which host-use traits are investigated. To draw robust conclusions and identify general patterns in host-use evolution, we argue that investigation of diverse host-use traits and identification of causal genes and mutations should be the top priorities for future studies on the evolutionary genetics of host shifts. © 2017 New York Academy of Sciences.

  3. The Evolution and Genetics of Virus Host Shifts

    OpenAIRE

    Longdon, Ben; Brockhurst, Michael A.; Russell, Colin A.; Welch, John J.; Jiggins, Francis M.

    2014-01-01

    Emerging viral diseases are often the product of a host shift, where a pathogen jumps from its original host into a novel species. Phylogenetic studies show that host shifts are a frequent event in the evolution of most pathogens, but why pathogens successfully jump between some host species but not others is only just becoming clear. The susceptibility of potential new hosts can vary enormously, with close relatives of the natural host typically being the most susceptible. Often, pathogens m...

  4. HCV tumor promoting effect is dependent on host genetic background.

    Directory of Open Access Journals (Sweden)

    Naama Klopstock

    Full Text Available BACKGROUND: The hepatitis C virus (HCV is one of the major risk factors for the development of hepatocellular carcinoma (HCC. Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We crossed HCV-Tg mice that do not develop HCC with the Mdr2-knockout (Mdr2-KO mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and investigated the potential contributing factors for the generated phenotype by gene expression and protein analyses. The Mdr2-KO/HCV-Tg females from the N2 generation of this breeding (having 75% of the FVB/N genome and 25% of the C57BL/6 genome produced significantly larger tumors in comparison with Mdr2-KO mice. In parallel, the Mdr2-KO/HCV-Tg females had an enhanced inflammatory gene expression signature. However, in the N7 generation (having 99.2% of the FVB/N genome and 0.8% of the C57BL/6 genome there was no difference in tumor development between Mdr2-KO/HCV-Tg and Mdr2-KO animals of both sexes. The HCV transgene was similarly expressed in the livers of Mdr2-KO/HCV-Tg females of both generations, as revealed by detection of the HCV transcript and the core protein. CONCLUSION: These findings suggest that the HCV transgene accelerated inflammation-associated hepatocarcinogenesis in a host genetic background-dependent manner.

  5. The evolution and genetics of virus host shifts.

    Science.gov (United States)

    Longdon, Ben; Brockhurst, Michael A; Russell, Colin A; Welch, John J; Jiggins, Francis M

    2014-11-01

    Emerging viral diseases are often the product of a host shift, where a pathogen jumps from its original host into a novel species. Phylogenetic studies show that host shifts are a frequent event in the evolution of most pathogens, but why pathogens successfully jump between some host species but not others is only just becoming clear. The susceptibility of potential new hosts can vary enormously, with close relatives of the natural host typically being the most susceptible. Often, pathogens must adapt to successfully infect a novel host, for example by evolving to use different cell surface receptors, to escape the immune response, or to ensure they are transmitted by the new host. In viruses there are often limited molecular solutions to achieve this, and the same sequence changes are often seen each time a virus infects a particular host. These changes may come at a cost to other aspects of the pathogen's fitness, and this may sometimes prevent host shifts from occurring. Here we examine how these evolutionary factors affect patterns of host shifts and disease emergence.

  6. The evolution and genetics of virus host shifts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2014-11-01

    Full Text Available Emerging viral diseases are often the product of a host shift, where a pathogen jumps from its original host into a novel species. Phylogenetic studies show that host shifts are a frequent event in the evolution of most pathogens, but why pathogens successfully jump between some host species but not others is only just becoming clear. The susceptibility of potential new hosts can vary enormously, with close relatives of the natural host typically being the most susceptible. Often, pathogens must adapt to successfully infect a novel host, for example by evolving to use different cell surface receptors, to escape the immune response, or to ensure they are transmitted by the new host. In viruses there are often limited molecular solutions to achieve this, and the same sequence changes are often seen each time a virus infects a particular host. These changes may come at a cost to other aspects of the pathogen's fitness, and this may sometimes prevent host shifts from occurring. Here we examine how these evolutionary factors affect patterns of host shifts and disease emergence.

  7. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  8. Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Nason, John D; Heard, Stephen B; Williams, Frederick R

    2002-07-01

    Careful study of apparently generalist phytophagous insects often reveals that they instead represent complexes of genetically differentiated host races or cryptic species. The goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis, attacks two goldenrods in the Solidago canadensis complex: S. altissima and S. gigantea (Asteraceae). We tested for host-associated genetic differentiation in G. gallaesolidaginis via analysis of variation at 12 allozyme loci among larvae collected at six sites in Iowa, Minnesota, and Nebraska. Gnorimoschema gallaesolidaginis from each host are highly polymorphic (3.6-4.7 alleles/locus and expected heterozygosity 0.28-0.38 within site-host combinations). Although there were no fixed differences between larvae from S. altissima and S. gigantea at any site, these represent well differentiated host forms, with 11 of 12 loci showing significantly different allele frequencies between host-associated collections at one or more sites. Host plant has a larger effect on genetic structure among populations than does location (Wright's FST = 0.16 between host forms vs. F(ST) = 0.061 and 0.026 among altissima and gigantea populations, respectively). The estimated F(ST) between host forms suggests that the historical effective rate of gene flow has been low (N(e)m approximately 1.3). Consistent with this historical estimate is the absence of detectable recombinant (hybrid and introgressant between host form) individuals in contemporary populations (none of 431 genotyped individuals). Upper 95% confidence limits for the frequency of recombinant individuals range from 5% to 9%. Host association is tight, but imperfect, with only one likely example of a host mismatch (a larva galling the wrong host species). Our inferences about hybridization and host association are based on new maximum-likelihood methods for estimating frequencies of genealogical classes (in this case, two parental classes, F1 and F2 hybrids, and backcrosses) in a population

  9. Transfer of genetic information between parasite and its host

    OpenAIRE

    Soukal, Petr

    2011-01-01

    Horizontal gene transfer (HGT) is considered a rare evolutionary event. It can take place between unrelated organisms that coexist in an intimate symbiotic relationship. Such relationship have some parasites with its host. HGT between eukaryotic parasite and its host was identified in some holoparazitic and hemiparazitic plants, the most important human protozoan parasites, microsporidias, human blood-flukes, parasitoids and fruit flies.

  10. Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts.

    Science.gov (United States)

    Sobrinho, Roberto Ramos; Xavier, César Augusto Diniz; Pereira, Hermano Monteiro de Barros; Lima, Gaus Silvestre de Andrade; Assunção, Iraíldes Pereira; Mizubuti, Eduardo Seiti Gomide; Duffy, Siobain; Zerbini, Francisco Murilo

    2014-11-01

    Begomoviruses are whitefly-transmitted, ssDNA plant viruses and are among the most damaging pathogens causing epidemics in economically important crops worldwide. Wild/non-cultivated plants play a crucial epidemiological role, acting as begomovirus reservoirs and as 'mixing vessels' where recombination can occur. Previous work suggests a higher degree of genetic variability in begomovirus populations from non-cultivated hosts compared with cultivated hosts. To assess this supposed host effect on the genetic variability of begomovirus populations, cultivated (common bean, Phaseolus vulgaris, and lima bean, Phaseolus lunatus) and non-cultivated (Macroptilium lathyroides) legume hosts were sampled from two regions of Brazil. A total of 212 full-length DNA-A genome segments were sequenced from samples collected between 2005 and 2012, and populations of the begomoviruses Bean golden mosaic virus (BGMV) and Macroptilium yellow spot virus (MaYSV) were obtained. We found, for each begomovirus species, similar genetic variation between populations infecting cultivated and non-cultivated hosts, indicating that the presumed genetic variability of the host did not a priori affect viral variability. We observed a higher degree of genetic variation in isolates from MaYSV populations than BGMV populations, which was explained by numerous recombination events in MaYSV. MaYSV and BGMV showed distinct distributions of genetic variation, with the BGMV population (but not MaYSV) being structured by both host and geography. © 2014 The Authors.

  11. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  12. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype

    Science.gov (United States)

    Chaston, John M.; Dobson, Adam J.; Newell, Peter D.

    2015-01-01

    A wealth of studies has demonstrated that resident microorganisms (microbiota) influence the pattern of nutrient allocation to animal protein and energy stores, but it is unclear how the effects of the microbiota interact with other determinants of animal nutrition, including animal genetic factors and diet. Here, we demonstrate that members of the gut microbiota in Drosophila melanogaster mediate the effect of certain animal genetic determinants on an important nutritional trait, triglyceride (lipid) content. Parallel analysis of the taxonomic composition of the associated bacterial community and host nutritional indices (glucose, glycogen, triglyceride, and protein contents) in multiple Drosophila genotypes revealed significant associations between the abundance of certain microbial taxa, especially Acetobacteraceae and Xanthamonadaceae, and host nutritional phenotype. By a genome-wide association study of Drosophila lines colonized with a defined microbiota, multiple host genes were statistically associated with the abundance of one bacterium, Acetobacter tropicalis. Experiments using mutant Drosophila validated the genetic association evidence and reveal that host genetic control of microbiota abundance affects the nutritional status of the flies. These data indicate that the abundance of the resident microbiota is influenced by host genotype, with consequent effects on nutrient allocation patterns, demonstrating that host genetic control of the microbiome contributes to the genotype-phenotype relationship of the animal host. PMID:26567306

  13. Galba truncatula and Fasciola hepatica: Genetic costructures and interactions with intermediate host dispersal.

    Science.gov (United States)

    Correa, Ana C; De Meeûs, Thierry; Dreyfuss, Gilles; Rondelaud, Daniel; Hurtrez-Boussès, Sylvie

    2017-11-01

    Antagonistic interactions between hosts and parasites are key structuring forces in natural populations. Demographic factors like extinction, migration and the effective population size shape host-parasite metapopulational dynamics. Therefore, to understand the evolution of host-parasite systems it is necessary to study the distribution of the genetic variation of both entities simultaneously. In this paper, we investigate the population genetics co-structure of parasites and hosts within a metapopulation of the liver fluke, Fasciola hepatica, and two of its intermediate hosts, the main intermediate host in Europe, Galba truncatula, and a new intermediate host, Omphiscola glabra, in Central France. Our results reveal an absence of specificity of flukes as regard to the two alternative hosts though O. glabra shows higher prevalence of F. hepatica. Host and parasites displayed contrasting population genetics structure with very small, highly inbred (selfing) and strongly isolated G. truncatula populations and much bigger, panmictic and more dispersive F. hepatica. This could indicate a local adaptation of the parasite and a local maladaptation of the host. We also unveil a parasite-mediated biased population genetics structure suggesting that infected G. truncatula disperse more; have higher dispersal survival than uninfected snails or, more likely, that immigrant snails are infected more often than local snails (local parasites are less adapted to local hosts). Finally, an absence, or at least an ambiguous signature of isolation by distance was observed in both host and parasite population. A very weak migration rate for G. truncatula provides a reasonable explanation for this ambiguous result. Alternatively, smaller sample sizes combined with modest migration rates might explain the difficulties to unveil the signal in F. hepatica. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Genetics of host-parasite relationships and the stability of resistance

    International Nuclear Information System (INIS)

    Eenink, A.H.

    1977-01-01

    Between host and parasite there is an intimate relationship controlled by matching gene systems. Stability of resistance is determined by the genetics of this relationship and not by the genetics of resistance. Both monogenic and polygenic resistances can be stable or unstable. Research on the backgrounds of stable resistances is of great importance. (author)

  15. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla R.; Huang, Yurong; Karpen, Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  16. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis

    NARCIS (Netherlands)

    Trujillo, M.; Troeger, M.; Niks, R.E.; Kogel, K.H.; Huckelhoven, R.

    2004-01-01

    Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of

  17. Host behaviour drives parasite genetics at multiple geographic scales: population genetics of the chewing louse, Thomomydoecus minor.

    Science.gov (United States)

    Harper, Sheree E; Spradling, Theresa A; Demastes, James W; Calhoun, Courtney S

    2015-08-01

    Pocket gophers and their symbiotic chewing lice form a host-parasite assemblage known for a high degree of cophylogeny, thought to be driven by life history parameters of both host and parasite that make host switching difficult. However, little work to date has focused on determining whether these life histories actually impact louse populations at the very fine scale of louse infrapopulations (individuals on a single host) at the same or at nearby host localities. We used microsatellite and mtDNA sequence data to make comparisons of chewing-louse (Thomomydoecus minor) population subdivision over time and over geographic space where there are different potential amounts of host interaction surrounding a zone of contact between two hybridizing pocket-gopher subspecies. We found that chewing lice had high levels of population isolation consistent with a paucity of horizontal transmission even at the very fine geographic scale of a single alfalfa field. We also found marked genetic discontinuity in louse populations corresponding with host subspecies and little, if any, admixture in the louse genetic groups even though the lice are closely related. The correlation of louse infrapopulation differentiation with host interaction at multiple scales, including across a discontinuity in pocket-gopher habitat, suggests that host behaviour is the primary driver of parasite genetics. This observation makes sense in light of the life histories of both chewing lice and pocket gophers and provides a powerful explanation for the well-documented pattern of parallel cladogenesis in pocket gophers and chewing lice. © 2015 John Wiley & Sons Ltd.

  18. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis.

    Science.gov (United States)

    Trujillo, Marco; Troeger, Marcus; Niks, Rients E; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2004-09-01

    SUMMARY Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of single attacked cells. Penetration resistance and HR are also typical features of race-non-specific and race-specific resistance of barley to the appropriate Blumeria graminis f.sp. hordei (Bgh), raising the question of whether genotypic differences in the cellular response of barley to Bgt are detectable. First, we analysed fungal penetration frequencies and HR in different barley accessions known to show altered non-host resistance. In genotypes with limited resistance to inappropriate cereal rust fungi, we concomitantly detected low penetration resistance to Bgt and significant differences of HR rates during attack from Bgt. Second, we tested barley mutants known to show altered host responses to Bgh. The rar1-mutation that suppresses many types of race-cultivar-specific resistances did not influence the non-host response of the Bgt-isolate used in this study. However, mutants of Ror1 and Ror2, two genes required for full race non-specific penetration resistance of mlo-barley to barley powdery mildew fungus, exhibited altered defence response to Bgt, including higher frequencies of fungal penetration. On these mutants, growth of the inappropriate fungus was arrested subsequent to penetration by HR. Together, the data show that barley defence response to the wheat powdery mildew fungus is determined by similar factors as race-specific and race-non-specific resistance to appropriate Bgh.

  19. Host-plant dependent population genetics of the invading weevil Hypera postica.

    Science.gov (United States)

    Iwase, S-I; Nakahira, K; Tuda, M; Kagoshima, K; Takagi, M

    2015-02-01

    Population genetics of invading pests can be informative for understanding their ecology. In this study, we investigated population genetics of the invasive alfalfa weevil Hypera postica in Fukuoka Prefecture, Japan. We analyzed mitochondrial tRNALeu-COII, nuclear EF-1α gene fragments, and Wolbachia infection in relation to three leguminous host plants: Vicia angustifolia, Vicia villosa, and a new host Astragalus sinicus cultivated as a honey source and green manure crop. A parsimony network generated from mitochondrial gene sequences uncovered two major haplotypic groups, Western and Egyptian. In contrast to reported Wolbachia infection of the Western strain in the United States, none of our analyzed individuals were infected. The absence of Wolbachia may contribute to the stable coexistence of mitochondrial strains through inter-strain reproductive compatibility. Hypera postica genetic variants for the mitochondrial and nuclear genes were associated neither with host plant species nor with two geographic regions (Hisayama and Kama) within Fukuoka. Mitochondrial haplogroups were incongruent with nuclear genetic variants. Genetic diversity at the nuclear locus was the highest for the populations feeding on V. angustifolia. The nuclear data for A. sinicus-feeding populations indicated past sudden population growth and extended Bayesian skyline plot analysis based on the mitochondrial and nuclear data showed that the growth of A. sinicus-feeding population took place within the past 1000 years. These results suggest a shorter history of A. sinicus as a host plant compared with V. angustifolia and a recent rapid growth of H. postica population using the new host A. sinicus.

  20. Genetic relationship between the Echinococcus granulosus sensu stricto cysts located in lung and liver of hosts.

    Science.gov (United States)

    Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda

    2016-10-01

    G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Disturbance induced decoupling between host genetics and composition of the associated microbiome.

    Science.gov (United States)

    Wegner, Karl Mathias; Volkenborn, Nils; Peter, Hannes; Eiler, Alexander

    2013-11-09

    Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.

  2. Genetic Diversity and Distribution Patterns of Host Insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau

    OpenAIRE

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotid...

  3. Genetic Variability and Host Specialization in the Latin American Clade of Ceratocystis fimbriata.

    Science.gov (United States)

    Baker, Christine J; Harrington, Thomas C; Krauss, Ulrike; Alfenas, Acelino C

    2003-10-01

    ABSTRACT The Ceratocystis fimbriata complex includes many undescribed species that cause wilt and canker diseases of many economically important plants. Phylogenetic analyses of DNA sequences have delineated three geographic clades within Ceratocystis fimbriata. This study examined host specialization in the Latin American clade, in which a number of lineages were identified using sequences of the internal transcribed spacer (ITS) region of the rDNA. Three host-associated lineages were identified from cacao (Theobroma cacao), sweet potato (Ipomoea batatas), and sycamore (Platanus spp.), respectively. Isolates from these three lineages showed strong host specialization in reciprocal inoculation experiments on these three hosts. Six cacao isolates from Ecuador, Trinidad, and Columbia differed genetically from other cacao isolates and were not pathogenic to cacao in inoculation tests. Further evidence of host specialization within the Latin American clade of Ceratocystis fimbriata was demonstrated in inoculation experiments in growth chambers using sweet potato, sycamore, Colocasia esculenta, coffee (Coffea arabica), and mango (Mangifera indica) plants; inoculation experiments in Brazil using Brazilian isolates from cacao, Eucalyptus spp., mango, and Gmelina arborea; and inoculation experiments in Costa Rica using Costa Rican isolates from cacao, coffee, and Xantho-soma sp. Hosts native to the Americas appeared to be colonized by only select pathogen genotypes, whereas nonnative hosts were colonized by several genotypes. We hypothesize that local populations of Ceratocystis fimbriata have specialized to different hosts; some of these populations are nascent species, and some host-specialized genotypes have been moved to new areas by humans.

  4. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens.

    Science.gov (United States)

    Douam, Florian; Gaska, Jenna M; Winer, Benjamin Y; Ding, Qiang; von Schaewen, Markus; Ploss, Alexander

    2015-01-01

    Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens.

  5. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    Science.gov (United States)

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Host traits explain the genetic structure of parasites: a meta-analysis

    Czech Academy of Sciences Publication Activity Database

    Blasco-Costa, Maria Isabel; Poulin, R.

    2013-01-01

    Roč. 140, č. 10 (2013), s. 1316-1322 ISSN 0031-1820 EU Projects: European Commission(XE) 252124 - PARAPOPGENE Institutional support: RVO:60077344 Keywords : meta - analysis * host traits * parasite traits * F-statistics * population genetic structure * dispersal * autogenic life cycle * allogenic life cycle Subject RIV: EH - Ecology, Behaviour Impact factor: 2.350, year: 2013

  7. Host genetics and outcome in meningococcal disease: a systematic review and meta-analysis

    NARCIS (Netherlands)

    Brouwer, Matthijs C.; Read, Robert C.; van de Beek, Diederik

    2010-01-01

    Various genes regulate the intensity of the inflammatory and coagulation response to infection and therefore might determine the severity and outcome of meningococcal disease. We systematically reviewed the published work for case control studies on the influence of host genetics on severity and

  8. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li

    2015-03-15

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  9. Brucella Genetic Variability in Wildlife Marine Mammals Populations Relates to Host Preference and Ocean Distribution.

    Science.gov (United States)

    Suárez-Esquivel, Marcela; Baker, Kate S; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R; Moreno, Edgardo; Guzmán-Verri, Caterina

    2017-07-01

    Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97-99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  11. The interaction between host genetics and the microbiome in the pathogenesis of spondyloarthropathies.

    Science.gov (United States)

    Asquith, Mark; Rosenbaum, James T

    2016-07-01

    The intestinal microbiome is increasingly implicated in the pathogenesis of ankylosing spondylitis, reactive arthritis, and other diseases collectively known as the spondyloarthropathies (SpAs). In common with other complex inflammatory diseases, SpAs have both a strong genetic and environmental component. Recent genetic studies have highlighted host pathways that may intersect the host-microbiota interaction and offer novel paradigms to understand the pathophysiology of these diseases. Genetic association studies have identified genes such as RUNX3, PTPEN2, and IL-33 as susceptibility loci for SpAs. Functional studies in humans have extended knowledge of established genetic risk factors for ankylosing spondylitis that include ERAP1, ERAP2, and interleukin-23R. Recent basic research has identified new mechanisms that regulate host immune responses to the microbiota that conceivably may be dysregulated in SpA. Intestinal barrier function, deletional tolerance, Th17 signature response, and endoplasmic reticulum stress pathways have been recently linked to SpA. Dysregulated immune responses to the gut microbiota and an altered microbial community structure are shared features of SpA. Although the cause-effect dynamic of this relationship remains equivocal, it nonetheless has major implications for both intestinal and extra-intestinal pathology observed in SpA.

  12. Virus-host co-evolution under a modified nuclear genetic code

    Directory of Open Access Journals (Sweden)

    Derek J. Taylor

    2013-03-01

    Full Text Available Among eukaryotes with modified nuclear genetic codes, viruses are unknown. However, here we provide evidence of an RNA virus that infects a fungal host (Scheffersomyces segobiensis with a derived nuclear genetic code where CUG codes for serine. The genomic architecture and phylogeny are consistent with infection by a double-stranded RNA virus of the genus Totivirus. We provide evidence of past or present infection with totiviruses in five species of yeasts with modified genetic codes. All but one of the CUG codons in the viral genome have been eliminated, suggesting that avoidance of the modified codon was important to viral adaptation. Our mass spectroscopy analysis indicates that a congener of the host species has co-opted and expresses a capsid gene from totiviruses as a cellular protein. Viral avoidance of the host’s modified codon and host co-option of a protein from totiviruses suggest that RNA viruses co-evolved with yeasts that underwent a major evolutionary transition from the standard genetic code.

  13. Temporal isolation explains host-related genetic differentiation in a group of widespread mycoparasitic fungi.

    Science.gov (United States)

    Kiss, Levente; Pintye, Alexandra; Kovács, Gábor M; Jankovics, Tünde; Fontaine, Michael C; Harvey, Nick; Xu, Xiangming; Nicot, Philippe C; Bardin, Marc; Shykoff, Jacqui A; Giraud, Tatiana

    2011-04-01

    Understanding the mechanisms responsible for divergence and specialization of pathogens on different hosts is of fundamental importance, especially in the context of the emergence of new diseases via host shifts. Temporal isolation has been reported in a few plants and parasites, but is probably one of the least studied speciation processes. We studied whether temporal isolation could be responsible for the maintenance of genetic differentiation among sympatric populations of Ampelomyces, widespread intracellular mycoparasites of powdery mildew fungi, themselves plant pathogens. The timing of transmission of Ampelomyces depends on the life cycles of the powdery mildew species they parasitize. Internal transcribed spacer sequences and microsatellite markers showed that Ampelomyces populations found in apple powdery mildew (Podosphaera leucotricha) were genetically highly differentiated from other Ampelomyces populations sampled from several other powdery mildew species across Europe, infecting plant hosts other than apple. While P. leucotricha starts its life cycle early in spring, and the main apple powdery mildew epidemics occur before summer, the fungal hosts of the other Ampelomyces cause epidemics mainly in summer and autumn. When two powdery mildew species were experimentally exposed to Ampelomyces strains naturally occurring in P. leucotricha in spring, and to strains naturally present in other mycohost species in autumn, cross-infections always occurred. Thus, the host-related genetic differentiation in Ampelomyces cannot be explained by narrow physiological specialization, because Ampelomyces were able to infect powdery mildew species they were unlikely to have encountered in nature, but instead appears to result from temporal isolation. © 2011 Blackwell Publishing Ltd.

  14. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Lim, Mi Young; You, Hyun Ju; Yoon, Hyo Shin; Kwon, Bomi; Lee, Jae Yoon; Lee, Sunghee; Song, Yun-Mi; Lee, Kayoung; Sung, Joohon; Ko, GwangPyo

    2017-06-01

    Metabolic syndrome (MetS) arises from complex interactions between host genetic and environmental factors. Although it is now widely accepted that the gut microbiota plays a crucial role in host metabolism, current knowledge on the effect of host genetics on specific gut microbes related to MetS status remains limited. Here, we investigated the links among host genetic factors, gut microbiota and MetS in humans. We characterised the gut microbial community composition of 655 monozygotic (n=306) and dizygotic (n=74) twins and their families (n=275), of which approximately 18% (121 individuals) had MetS. We evaluated the association of MetS status with the gut microbiota and estimated the heritability of each taxon. For the MetS-related and heritable taxa, we further investigated their associations with the apolipoprotein A-V gene ( APOA5 ) single nucleotide polymorphism (SNP) rs651821, which is known to be associated with triglyceride levels and MetS. Individuals with MetS had a lower gut microbiota diversity than healthy individuals. The abundances of several taxa were associated with MetS status; Sutterella , Methanobrevibacter and Lactobacillus were enriched in the MetS group, whereas Akkermansia , Odoribacter and Bifidobacterium were enriched in the healthy group. Among the taxa associated with MetS status, the phylum Actinobacteria, to which Bifidobacterium belongs, had the highest heritability (45.7%). Even after adjustment for MetS status, reduced abundances of Actinobacteria and Bifidobacterium were significantly linked to the minor allele at the APOA5 SNP rs651821. Our results suggest that an altered microbiota composition mediated by a specific host genotype can contribute to the development of MetS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

    Science.gov (United States)

    Luna, Ana P.; Bejarano, Eduardo R.

    2011-01-01

    Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies. PMID:21818318

  16. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    Science.gov (United States)

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  17. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  18. Host use evolution in Chrysochus milkweed beetles: evidence from behaviour, population genetics and phylogeny.

    Science.gov (United States)

    Dobler, S; Farrell, B D

    1999-08-01

    In two sister species of leaf beetles with overlapping host associations, Chrysochus auratus and C. cobaltinus, we established diet breadth and food preference of local populations for evaluation together with genetic differentiation between populations. While C. auratus turned out to be monophagous on the same plant wherever we collected the beetles, the studied populations of C. cobaltinus fed on three different plant species in the field. Plant preference and ranking of the potential host plants significantly differed between these populations. The amount of genetic differentiation between populations was measured by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay of a 1300 bp mitochondrial DNA (mtDNA) sequence. In addition, the dominant genotypes of all populations were sequenced. No genetic differentiation between the populations of C. auratus could be detected in the RFLP assay and sequence divergence was low (= 0.3%). In C. cobaltinus, on the other hand, genetic differentiation between populations was high, revealing a lack of gene flow over a much smaller scale and a maximum of 1.3% sequence divergence. C. cobaltinus thereby has the prerequisites for host race formation on different plants from the original host spectrum. Our sequence-based phylogeny estimate allows us to reconstruct historical diet evolution in Chrysochus. Starting from an original association with Asclepiadaceae, the common ancestor of C. auratus and C. cobaltinus included Apocynaceae in its diet. The strict specialization on Apocynum and the loss of acceptance of Asclepiadaceae observed in C. auratus could have resulted from a process similar to that displayed by C. cobaltinus populations.

  19. Host-range phylogenetic grouping of capripoxviruses. Genetic typing of CaPVs

    International Nuclear Information System (INIS)

    Le Goff, C.; Chadeyras, A.; Libeau, G.; Albina, E.; Fakhfakh, E.; Hammami, S.; Elexpeter Aba Adulugba; Diallo, A.

    2005-01-01

    Because of their close relationship, specific identification of the CaPVs genus inside the Poxviridae family relies mainly on molecular tools rather than on classical serology. We describe the suitability of the G protein-coupled chemokine receptor (GPCR), for host range phylogenetic grouping. The analysis of 26 CaPVs shows 3 tight genetic clusters consisting of goatpox virus (GPV), lumpy skin disease virus (LSDV), and sheeppox virus (SPV). (author)

  20. Canine echinococcosis: genetic diversity of Echinococcus granulosus sensu stricto (s.s.) from definitive hosts.

    Science.gov (United States)

    Boufana, B; Lett, W; Lahmar, S; Griffiths, A; Jenkins, D J; Buishi, I; Engliez, S A; Alrefadi, M A; Eljaki, A A; Elmestiri, F M; Reyes, M M; Pointing, S; Al-Hindi, A; Torgerson, P R; Okamoto, M; Craig, P S

    2015-11-01

    Canids, particularly dogs, constitute the major source of cystic echinococcosis (CE) infection to humans, with the majority of cases being caused by Echinococcus granulosus (G1 genotype). Canine echinococcosis is an asymptomatic disease caused by adult tapeworms of E. granulosus sensu lato (s.l.). Information on the population structure and genetic variation of adult E. granulosus is limited. Using sequenced data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) we examined the genetic diversity and population structure of adult tapeworms of E. granulosus (G1 genotype) from canid definitive hosts originating from various geographical regions and compared it to that reported for the larval metacestode stage from sheep and human hosts. Echinococcus granulosus (s.s) was identified from adult tapeworm isolates from Kenya, Libya, Tunisia, Australia, China, Kazakhstan, United Kingdom and Peru, including the first known molecular confirmation from Gaza and the Falkland Islands. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype previously described for the metacestode stage from sheep and humans, and the neutrality indices indicated population expansion. Low Fst values suggested that populations of adult E. granulosus were not genetically differentiated. Haplotype and nucleotide diversities for E. granulosus isolates from sheep and human origin were twice as high as those reported from canid hosts. This may be related to self-fertilization of E. granulosus and/or to the longevity of the parasite in the respective intermediate and definitive hosts. Improved nuclear single loci are required to investigate the discrepancies in genetic variation seen in this study.

  1. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  2. Host genetic variation and its microbiome interactions within the Human Microbiome Project.

    Science.gov (United States)

    Kolde, Raivo; Franzosa, Eric A; Rahnavard, Gholamali; Hall, Andrew Brantley; Vlamakis, Hera; Stevens, Christine; Daly, Mark J; Xavier, Ramnik J; Huttenhower, Curtis

    2018-01-29

    Despite the increasing recognition that microbial communities within the human body are linked to health, we have an incomplete understanding of the environmental and molecular interactions that shape the composition of these communities. Although host genetic factors play a role in these interactions, these factors have remained relatively unexplored given the requirement for large population-based cohorts in which both genotyping and microbiome characterization have been performed. We performed whole-genome sequencing of 298 donors from the Human Microbiome Project (HMP) healthy cohort study to accompany existing deep characterization of their microbiomes at various body sites. This analysis yielded an average sequencing depth of 32x, with which we identified 27 million (M) single nucleotide variants and 2.3 M insertions-deletions. Taxonomic composition and functional potential of the microbiome covaried significantly with genetic principal components in the gastrointestinal tract and oral communities, but not in the nares or vaginal microbiota. Example associations included validation of known associations between FUT2 secretor status, as well as a variant conferring hypolactasia near the LCT gene, with Bifidobacterium longum abundance in stool. The associations of microbial features with both high-level genetic attributes and single variants were specific to particular body sites, highlighting the opportunity to find unique genetic mechanisms controlling microbiome properties in the microbial communities from multiple body sites. This study adds deep sequencing of host genomes to the body-wide microbiome sequences already extant from the HMP healthy cohort, creating a unique, versatile, and well-controlled reference for future studies seeking to identify host genetic modulators of the microbiome.

  3. Accidental genetic engineers: horizontal sequence transfer from parasitoid wasps to their Lepidopteran hosts.

    Directory of Open Access Journals (Sweden)

    Sean E Schneider

    Full Text Available We show here that 105 regions in two Lepidoptera genomes appear to derive from horizontally transferred wasp DNA. We experimentally verified the presence of two of these sequences in a diverse set of silkworm (Bombyx mori genomes. We hypothesize that these horizontal transfers are made possible by the unusual strategy many parasitoid wasps employ of injecting hosts with endosymbiotic polydnaviruses to minimize the host's defense response. Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host. Two transferred sequences code for a BEN domain, known to be associated with polydnaviruses and transcriptional regulation. These findings represent the first documented cases of horizontal transfer of genes between two organisms by a polydnavirus. This presents an interesting evolutionary paradigm in which host species can acquire new sequences from parasitoid wasps that attack them. Hymenoptera and Lepidoptera diverged ∼300 MYA, making this type of event a source of novel sequences for recipient species. Unlike many other cases of horizontal transfer between two eukaryote species, these sequence transfers can be explained without the need to invoke the sequences 'hitchhiking' on a third organism (e.g. retrovirus capable of independent reproduction. The cellular machinery necessary for the transfer is contained entirely in the wasp genome. The work presented here is the first such discovery of what is likely to be a broader phenomenon among species affected by these wasps.

  4. Host genetics role in the pathogenesis of periodontal disease and caries.

    Science.gov (United States)

    Nibali, Luigi; Di Iorio, Anna; Tu, Yu-Kang; Vieira, Alexandre R

    2017-03-01

    This study aimed to produce the latest summary of the evidence for association of host genetic variants contributing to both periodontal diseases and caries. Two systematic searches of the literature were conducted in Ovid Medline, Embase, LILACS and Cochrane Library for large candidate gene studies (CGS), systematic reviews and genome-wide association studies reporting data on host genetic variants and presence of periodontal disease and caries. A total of 124 studies were included in the review (59 for the periodontitis outcome and 65 for the caries outcome), from an initial search of 15,487 titles. Gene variants associated with periodontitis were categorized based on strength of evidence and then compared with gene variants associated with caries. Several gene variants showed moderate to strong evidence of association with periodontitis, although none of them had also been associated with the caries trait. Despite some potential aetiopathogenic similarities between periodontitis and caries, no genetic variants to date have clearly been associated with both diseases. Further studies or comparisons across studies with large sample size and clear phenotype definition could shed light into possible shared genetic risk factors for caries and periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Genetic and virulence variability among Erwinia tracheiphila strains recovered from different cucurbit hosts.

    Science.gov (United States)

    Rojas, E Saalau; Dixon, P M; Batzer, J C; Gleason, M L

    2013-09-01

    The causal agent of cucurbit bacterial wilt, Erwinia tracheiphila, has a wide host range in the family Cucurbitaceae, including economically important crops such as muskmelon (Cucumis melo), cucumber (C. sativus), and squash (Cucurbita spp.). Genetic variability of 69 E. tracheiphila strains was investigated by repetitive-element polymerase chain reaction (rep-PCR) using BOXA1R and ERIC1-2 primers. Fingerprint profiles revealed significant variability associated with crop host; strains isolated from Cucumis spp. were clearly distinguishable from Cucurbita spp.-isolated strains regardless of geographic origin. Twelve E. tracheiphila strains isolated from muskmelon, cucumber, or summer squash were inoculated onto muskmelon and summer squash seedlings, followed by incubation in a growth chamber. Wilt symptoms were assessed over 3 weeks, strains were reisolated, and rep-PCR profiles were compared with the inoculated strains. Wilting occurred significantly faster when seedlings were inoculated with strains that originated from the same crop host genus (P<0.001). In the first run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon seedlings at a median of 7.8 and 5.6 days after inoculation (dai), respectively. Summer squash seedlings wilted 18.0, 15.7, and 5.7 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. In a second run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon at 7.0 and 6.9 dai, respectively, whereas summer squash seedlings wilted at 23.6, 29.0 and 9.0 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. Our results provide the first evidence of genetic diversity within E. tracheiphila and suggest that strain specificity is associated with plant host. This advance is a first step toward understanding the genetic and population structure of E. tracheiphila.

  6. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    Science.gov (United States)

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (mellifera worldwide population is a recent event. PMID:26720131

  7. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, Pinsects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host

  8. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    Science.gov (United States)

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    Science.gov (United States)

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  10. Broad-scale Population Genetics of the Host Sea Anemone, Heteractis magnifica

    KAUST Repository

    Emms, Madeleine

    2015-12-01

    Broad-scale population genetics can reveal population structure across an organism’s entire range, which can enable us to determine the most efficient population-wide management strategy depending on levels of connectivity. Genetic variation and differences in genetic diversity on small-scales have been reported in anemones, but nothing is known about their broad-scale population structure, including that of “host” anemone species, which are increasingly being targeted in the aquarium trade. In this study, microsatellite markers were used as a tool to determine the population structure of a sessile, host anemone species, Heteractis magnifica, across the Indo-Pacific region. In addition, two rDNA markers were used to identify Symbiodinium from the samples, and phylogenetic analyses were used to measure diversity and geographic distribution of Symbiodinium across the region. Significant population structure was identified in H. magnifica across the Indo-Pacific, with at least three genetic breaks, possibly the result of factors such as geographic distance, geographic isolation and environmental variation. Symbiodinium associations were also affected by environmental variation and supported the geographic isolation of some regions. These results suggests that management of H. magnifica must be implemented on a local scale, due to the lack of connectivity between clusters. This study also provides further evidence for the combined effects of geographic distance and environmental distance in explaining genetic variance.

  11. Parallel Patterns of Host-Specific Morphology and Genetic Admixture in Sister Lineages of a Commensal Barnacle.

    Science.gov (United States)

    Ewers-Saucedo, Christine; Chan, Benny K K; Zardus, John D; Wares, John P

    2017-06-01

    Symbiotic relationships are often species specific, allowing symbionts to adapt to their host environments. Host generalists, on the other hand, have to cope with diverse environments. One coping strategy is phenotypic plasticity, defined by the presence of host-specific phenotypes in the absence of genetic differentiation. Recent work indicates that such host-specific phenotypic plasticity is present in the West Pacific lineage of the commensal barnacle Chelonibia testudinaria (Linnaeus, 1758). We investigated genetic and morphological host-specific structure in the genetically distinct Atlantic sister lineage of C. testudinaria. We collected adult C. testudinaria from loggerhead sea turtles, horseshoe crabs, and blue crabs along the eastern U.S. coast between Delaware and Florida and in the Gulf of Mexico off Mississippi. We find that shell morphology, especially shell thickness, is host specific and comparable in similar host species between the Atlantic and West Pacific lineages. We did not detect significant genetic differentiation related to host species when analyzing data from 11 nuclear microsatellite loci and mitochondrial sequence data, which is comparable to findings for the Pacific lineage. The most parsimonious explanation for these parallel patterns between distinct lineages of C. testudinaria is that C. testudinaria maintained phenotypic plasticity since the lineages diverged 4-5 mya.

  12. Genetic diversity, temporal dynamics, and host specificity in blood parasites of passerines in north China.

    Science.gov (United States)

    Huang, Xi; Dong, Lu; Zhang, Chenglin; Zhang, Yanyun

    2015-12-01

    Avian blood parasites have been preliminarily studied in East Asia, but no data are available from long-term monitoring. The aim of this study was to evaluate the prevalence, genetic diversity, and temporal dynamics of Plasmodium, Haemoproteus, and Leucocytozoon in two passerine communities (one forest and one urban) in north China from 2008 to 2013, as well as the association between infected lineages and host specificities. Out of 633 birds from 40 species, 157 individuals (24.8 %) were infected; overall prevalence was 26.7 % and 16.8 % in two sites, respectively. The dominant avian blood parasite genus in the forest park changed yearly between Plasmodium and Haemoproteus, while the Leucocytozoon maintained a low infection level. Forty-four haplotypes were identified by sequencing a 432-bp fragment of the cytochrome b (cyt b) gene; more than 70 % were novel (six Plasmodium lineages, 16 Haemoproteus lineages, and nine Leucocytozoon lineages). Based on our data gathered over consecutive years, we found that the highly observed lineages of Haemoproteus showed higher host diversities than those of Plasmodium, and the most infected lineage EMEL01 (100 % identity with SGS1) take on the highest host diversity but low temporal diversity of the two genera, implying that this lineage infected a great diversity of species in certain years, but maintained a lower infection level or even disappeared in other years. The results suggest that genetic diversity of avian blood parasites in East Asia is high and provides scope for further research. In addition, compared with overall analysis, yearly prevalence monitoring is important in uncovering the temporal dynamic and host specificity variations over time.

  13. Genetic determinism and evolutionary reconstruction of a host jump in a plant virus

    DEFF Research Database (Denmark)

    Vassilakos, Nikon; Simon, Vincent; Tzima, Aliki

    2016-01-01

    In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection...... analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates...

  14. History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (Neodiprion lecontei).

    Science.gov (United States)

    Bagley, Robin K; Sousa, Vitor C; Niemiller, Matthew L; Linnen, Catherine R

    2017-02-01

    Divergent host use has long been suspected to drive population differentiation and speciation in plant-feeding insects. Evaluating the contribution of divergent host use to genetic differentiation can be difficult, however, as dispersal limitation and population structure may also influence patterns of genetic variation. In this study, we use double-digest restriction-associated DNA (ddRAD) sequencing to test the hypothesis that divergent host use contributes to genetic differentiation among populations of the redheaded pine sawfly (Neodiprion lecontei), a widespread pest that uses multiple Pinus hosts throughout its range in eastern North America. Because this species has a broad range and specializes on host plants known to have migrated extensively during the Pleistocene, we first assess overall genetic structure using model-based and model-free clustering methods and identify three geographically distinct genetic clusters. Next, using a composite-likelihood approach based on the site frequency spectrum and a novel strategy for maximizing the utility of linked RAD markers, we infer the population topology and date divergence to the Pleistocene. Based on existing knowledge of Pinus refugia, estimated demographic parameters and patterns of diversity among sawfly populations, we propose a Pleistocene divergence scenario for N. lecontei. Finally, using Mantel and partial Mantel tests, we identify a significant relationship between genetic distance and geography in all clusters, and between genetic distance and host use in two of three clusters. Overall, our results indicate that Pleistocene isolation, dispersal limitation and ecological divergence all contribute to genomewide differentiation in this species and support the hypothesis that host use is a common driver of population divergence in host-specialized insects. © 2016 John Wiley & Sons Ltd.

  15. Genetics of graft-versus-host disease: the major histocompatibility complex.

    Science.gov (United States)

    Petersdorf, Effie W

    2013-01-01

    Graft-versus-host disease (GVHD) is a potentially life-threatening complication of allogeneic hematopoietic cell transplantation. Many genes are presumed to be involved in GVHD, but the best characterized genetic system is that of the human major histocompatibility complex (MHC) located on chromosome 6. Among the hundreds of genes located within the MHC region, the best known and characterized are the classical HLA genes, HLA-A, C, B, DRB1, DQB1, and DPB1. They play a fundamental role in T cell immune responses, and HLA-A, C, and B also function as ligands for the natural killer cell immunoglobulin-like receptors involved in innate immunity. This review highlights the state-of-the art in the field of histocompatibility and immunogenetics of the MHC with respect to genetic risk factors for GVHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Genome Analyses of Icelandic Strains of Sulfolobus islandicus, Model Organisms for Genetic and Virus-Host Interaction Studies

    DEFF Research Database (Denmark)

    Guo, Li; Brügger, Kim; Liu, Chao

    2011-01-01

    The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad h...

  17. Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection

    NARCIS (Netherlands)

    Anche, M.T.

    2016-01-01

    Mahlet Teka Anche. (2016). Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection. PhD thesis, Wageningen University, the Netherlands

    Genetic approaches aiming to reduce the prevalence of an infection in a

  18. Genetic variability and identification of the intermediate snail hosts of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Teofânia HDA Vidigal

    1998-01-01

    Full Text Available Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.

  19. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  20. Host and viral genetic correlates of clinical definitions of HIV-1 disease progression.

    Directory of Open Access Journals (Sweden)

    Concepción Casado

    Full Text Available BACKGROUND: Various patterns of HIV-1 disease progression are described in clinical practice and in research. There is a need to assess the specificity of commonly used definitions of long term non-progressor (LTNP elite controllers (LTNP-EC, viremic controllers (LTNP-VC, and viremic non controllers (LTNP-NC, as well as of chronic progressors (P and rapid progressors (RP. METHODOLOGY AND PRINCIPAL FINDINGS: We re-evaluated the HIV-1 clinical definitions, summarized in Table 1, using the information provided by a selected number of host genetic markers and viral factors. There is a continuous decrease of protective factors and an accumulation of risk factors from LTNP-EC to RP. Statistical differences in frequency of protective HLA-B alleles (p-0.01, HLA-C rs9264942 (p-0.06, and protective CCR5/CCR2 haplotypes (p-0.02 across groups, and the presence of viruses with an ancestral genotype in the "viral dating" (i.e., nucleotide sequences with low viral divergence from the most recent common ancestor support the differences among principal clinical groups of HIV-1 infected individuals. CONCLUSIONS: A combination of host genetic and viral factors supports current clinical definitions that discriminate among patterns of HIV-1 progression. The study also emphasizes the need to apply a standardized and accepted set of clinical definitions for the purpose of disease stratification and research.

  1. Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment.

    Science.gov (United States)

    Doeschl-Wilson, Andrea B; Davidson, R; Conington, J; Roughsedge, T; Hutchings, M R; Villanueva, B

    2011-07-01

    Previous studies have shown that host genetic heterogeneity in the response to infectious challenge can affect the emergence risk and the severity of diseases transmitted through direct contact between individuals. However, there is substantial uncertainty about the degree and direction of influence owing to different definitions of genetic variation, most of which are not in line with the current understanding of the genetic architecture of disease traits. Also, the relevance of previous results for diseases transmitted through environmental sources is unclear. In this article a compartmental genetic-epidemiological model was developed to quantify the impact of host genetic diversity on epidemiological characteristics of diseases transmitted through a contaminated environment. The model was parameterized for footrot in sheep. Genetic variation was defined through continuous distributions with varying shape and degree of dispersion for different disease traits. The model predicts a strong impact of genetic heterogeneity on the disease risk and its progression and severity, as well as on observable host phenotypes, when dispersion in key epidemiological parameters is high. The impact of host variation depends on the disease trait for which variation occurs and on environmental conditions affecting pathogen survival. In particular, compared to homogeneous populations with the same average susceptibility, disease risk and severity are substantially higher in populations containing a large proportion of highly susceptible individuals, and the differences are strongest when environmental contamination is low. The implications of our results for the recording and analysis of disease data and for predicting response to selection are discussed.

  2. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    Science.gov (United States)

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  3. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium.

    Directory of Open Access Journals (Sweden)

    Elena Kondratieva

    2010-05-01

    Full Text Available Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i characteristics of susceptibility to two infections in vivo; (ii architecture of lung granulomata assessed by immune staining; and (iii expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.

  4. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    Science.gov (United States)

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. No Major Host Genetic Risk Factor Contributed to A(H1N12009 Influenza Severity.

    Directory of Open Access Journals (Sweden)

    Koldo Garcia-Etxebarria

    Full Text Available While most patients affected by the influenza A(H1N1 pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10-8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.

  6. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans?

    Science.gov (United States)

    Ruimy, Raymond; Angebault, Cécile; Djossou, Félix; Dupont, Claire; Epelboin, Loïc; Jarraud, Sophie; Lefevre, Laurence Armand; Bes, Michèle; Lixandru, Brandusa Elena; Bertine, Mélanie; El Miniai, Assiya; Renard, Magaly; Bettinger, Régis Marc; Lescat, Mathilde; Clermont, Olivier; Peroz, Gilles; Lina, Gerard; Tavakol, Mehri; Vandenesch, François; van Belkum, Alex; Rousset, François; Andremont, Antoine

    2010-09-15

    Staphylococcus aureus nasal carriage is influenced by multifactorial interactions which are difficult to study in open populations. Therefore, we concomitantly assessed the epidemiological, microbiological, and human-genetic carriage-related factors in a nearly closed population. In 2006 and 2008, we collected nasal S. aureus strains, human DNA, and epidemiological data from 154 adult Wayampi Amerindians living in an isolated village in the Amazonian forest. The genetics of the strains (multilocus sequence type, spa type, and toxin-content type), epidemiological risk factors, antibiotic exposure, and allelic polymorphism of human genes putatively involved in carriage of the persistent carriers were compared with those of other volunteers. Overall carriage prevalence was 41.7% in 2006 and 57.8% in 2008, but the overall prevalence of persistent carriage was only 26%. The rare and phylogenetically distant multilocus sequence type ST1223 was present in 18.5% of the carriers in 2006 and 34.8% in 2008. No epidemiological factors or antibiotic exposure were significantly associated with persistent carriage, but single nucleotide polymorphism distribution in C-reactive proteins C2042T and C1184T and interleukin-4 C524T genes was significantly associated (P=.02, by global test). Host genetic factors appeared to be the predominant determinant for S. aureus persistent nasal carriage in humans.

  7. Influence of Host Genetics and Environment on Nasal Carriage of Staphylococcus aureus in Danish Middle-Aged and Elderly Twins

    DEFF Research Database (Denmark)

    Andersen, Paal Skytt; Pedersen, Jacob Krabbe; Fode, Peder

    2012-01-01

    Background. Nasal carriage is a major risk factor for Staphylococcus aureus infection. Approximately, one-quarter of adults carry S. aureus. However, the role of host genetics on S. aureus nasal carriage is unknown. Methods. Nasal swabs were obtained from a national cohort of middle-aged and elde......Background. Nasal carriage is a major risk factor for Staphylococcus aureus infection. Approximately, one-quarter of adults carry S. aureus. However, the role of host genetics on S. aureus nasal carriage is unknown. Methods. Nasal swabs were obtained from a national cohort of middle.......4%-34.5%), and opposite sex (21.4%; 95% CI, 12.0%-33.4%) dizygotic twins. Despite shared childhoods, only 1 of 617 pairs was concordant with respect to lineage. Although heritability increased for S. aureus and lineage persistency, no significant heritability was detected. Conclusion. In this study, host genetic factors...

  8. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    OpenAIRE

    Wessels, Michael; Holden, Matthew; Heather, Zoe; Paillot, Romain; Steward, Karen; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie; Holroyd, Nancy; Mungall, Karen; Quail, Michael; Sanders, Mandy; Simmonds, Mark; Willey, David

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Strepto...

  9. The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors.

    Science.gov (United States)

    Murphy, Kiera; O' Shea, Carol Anne; Ryan, C Anthony; Dempsey, Eugene M; O' Toole, Paul W; Stanton, Catherine; Ross, R Paul

    2015-01-01

    Monozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual's gut microbiota, unless an antibiotic intervention is given, but by month 12 environmental

  10. The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors.

    Directory of Open Access Journals (Sweden)

    Kiera Murphy

    Full Text Available Monozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual's gut microbiota, unless an antibiotic intervention is given, but by

  11. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  12. Host specificity and genetic differentiation of Melampsora epitea (rust on willows)

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado Pasten, Sergio [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Plant Pathology and Biocontrol Unit

    2001-07-01

    Rust caused by Melampsora epitea is considered the most serious and widespread disease on willows. When severe, rust can defoliate willows prematurely leading to serious yield losses and rootstock death. Studying the infection process, we found that M. epitea requires no specific recognition signals to germinate, grow, or penetrate the host stomata, regardless of whether interaction with the host plant is compatible or incompatible; instead, plant defense mechanisms are determined by substomatal events. Isolates of the Swedish rust population were classified (pathotyped) by their virulence patterns on a standard set of willow clones (willow differential). Thirty-seven pathotypes of M. epitea were identified and grouped into three formae speciales. For global monitoring of the virulence of M. epitea, an internationally useful naming system was proposed. Partly to confirm the value of such a naming system, the pathotype compositions of two distant M. epitea populations (from Sweden and Chile) were compared using the willow differential. The results indicated that long-distance inocula exchange likely plays an active role in the population dynamics and evolution of pathotype structure for M. epitea. To study the genetics underlying pathotype dynamics, molecular tools, such as AFLP, were used. The resulting dendrogram revealed no clustering based on geographic origin, and because geographic distance among pathogen populations correlated poorly with genetic distance, apparently geographically distant populations have developed collectively as a metapopulation instead of separately. However, the result shows that M. epitea has high levels of gene and genotypic variation within populations, which is consistent with the occurrence of sexual reproduction. The low between-population variation, despite variation in local selection pressures, accords with massive long-distance migration of rust spores.

  13. Using host-associated genetic markers to investigate sources of fecal contamination in two Vermont streams

    Science.gov (United States)

    Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.

    2011-01-01

    The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans

  14. Effects of Genetic Variation on the E. coli Host-Circuit Interface

    Directory of Open Access Journals (Sweden)

    Stefano Cardinale

    2013-07-01

    Full Text Available Predictable operation of engineered biological circuitry requires the knowledge of host factors that compete or interfere with designed function. Here, we perform a detailed analysis of the interaction between constitutive expression from a test circuit and cell-growth properties in a subset of genetic variants of the bacterium Escherichia coli. Differences in generic cellular parameters such as ribosome availability and growth rate are the main determinants (89% of strain-specific differences of circuit performance in laboratory-adapted strains but are responsible for only 35% of expression variation across 88 mutants of E. coli BW25113. In the latter strains, we identify specific cell functions, such as nitrogen metabolism, that directly modulate circuit behavior. Finally, we expose aspects of carbon metabolism that act in a strain- and sequence-specific manner. This method of dissecting interactions between host factors and heterologous circuits enables the discovery of mechanisms of interference necessary for the development of design principles for predictable cellular engineering.

  15. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis.

    Science.gov (United States)

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M; Kreppel, Katharina S; Kihonda, Anicet; Govella, Nicodem J; Collier, Travis C; Cornel, Anthony J; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C; Weakley, Allison M; Lanzaro, Gregory C

    2016-09-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  16. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis.

    Directory of Open Access Journals (Sweden)

    Bradley J Main

    2016-09-01

    Full Text Available Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002, but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465. A principal component analysis (PCA segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted of 3Ra among cattle-fed mosquitoes (N = 129 versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007. Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to

  17. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    Science.gov (United States)

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  18. Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hubner. II: assortative mating and host-plant preferences for oviposition.

    Science.gov (United States)

    Bethenod, M-T; Thomas, Y; Rousset, F; Frérot, B; Pélozuelo, L; Genestier, G; Bourguet, D

    2005-02-01

    The European corn borer, Ostrinia nubilalis Hubner, colonized maize (Zea mays L.) after its introduction into Europe about 500 years ago and is now considered one of the main pests of this crop. In northern France, two sympatric host races have been described: one feeding on maize and the other on mugwort (Artemisia vulgaris L.) and hop (Humulus lupulus L.). In a previous study, we showed that mating between the two races may be impeded by differences in the timing of moth emergence and in the composition of the sex pheromone produced by the females. In this study, we further investigated the genetic isolation of these two races using strains from the maize (Z strain) and mugwort (E strain) races selected for diagnostic alleles at two allozyme loci. In a cage containing maize and mugwort plants and located in natural conditions, mating between individuals of the same strain occurred more often than mating between males and females of the E and Z strains. In particular, we obtained no evidence for crosses between Z females and E males. We also found that females of the Z strain laid their eggs almost exclusively on maize, whereas females of the E strain laid their eggs preferentially, but not exclusively, on mugwort. These results suggest that the genetic differentiation between the two host races may also be favored by host-plant preference, one of the first steps toward sympatric speciation.

  19. Genetic variation and host-parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding.

    Science.gov (United States)

    Rodenburg, Jonne; Cissoko, Mamadou; Kayongo, Nicholas; Dieng, Ibnou; Bisikwa, Jenipher; Irakiza, Runyambo; Masoka, Isaac; Midega, Charles A O; Scholes, Julie D

    2017-05-01

    The parasitic weeds Striga asiatica and Striga hermonthica cause devastating yield losses to upland rice in Africa. Little is known about genetic variation in host resistance and tolerance across rice genotypes, in relation to virulence differences across Striga species and ecotypes. Diverse rice genotypes were phenotyped for the above traits in S. asiatica- (Tanzania) and S. hermonthica-infested fields (Kenya and Uganda) and under controlled conditions. New rice genotypes with either ecotype-specific or broad-spectrum resistance were identified. Resistance identified in the field was confirmed under controlled conditions, providing evidence that resistance was largely genetically determined. Striga-resistant genotypes contributed to yield security under Striga-infested conditions, although grain yield was also determined by the genotype-specific yield potential and tolerance. Tolerance, the physiological mechanism mitigating Striga effects on host growth and physiology, was unrelated to resistance, implying that any combination of high, medium or low levels of these traits can be found across rice genotypes. Striga virulence varies across species and ecotypes. The extent of Striga-induced host damage results from the interaction between parasite virulence and genetically determined levels of host-plant resistance and tolerance. These novel findings support the need for predictive breeding strategies based on knowledge of host resistance and parasite virulence. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Genetic variation in Asterionella formosa (Bacillariophyceae) is it linked to frequent epidemics of host-specific parasitic fungi?

    NARCIS (Netherlands)

    De Bruin, A.; Ibelings, B.W.; Rijkeboer, M.; Brehm, Michaela; Van Donk, E.

    2004-01-01

    Understanding of the genetic basis for susceptibility and resistance is still lacking for most aquatic host-parasite systems, for instance, for phytoplankton and their fungal parasites. Fungal parasites can have significant effects on phytoplankton populations, mainly through their ability to

  1. Genetic Factors in Rhizobium Affecting the Symbiotic Carbon Costs of N2 Fixation and Host Plant Biomass Production

    DEFF Research Database (Denmark)

    Skøt, L.; Hirsch, P. R.; Witty, J. F.

    1986-01-01

    The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different...

  2. Host genetic background impacts disease outcome during intrauterine infection with Ureaplasma parvum.

    Directory of Open Access Journals (Sweden)

    Maria von Chamier

    Full Text Available Ureaplasma parvum, an opportunistic pathogen of the human urogenital tract, has been implicated in contributing to chorioamnionitis, fetal morbidity, and fetal mortality. It has been proposed that the host genetic background is a critical factor in adverse pregnancy outcome as sequela to U. parvum intra-amniotic infection. To test this hypothesis we assessed the impact of intrauterine U. parvum infection in the prototypical TH1/M1 C57BL/6 and TH2/M2 BALB/c mouse strain. Sterile medium or U. parvum was inoculated into each uterine horn and animals were evaluated for intra-amniotic infection, fetal infection, chorioamnionitis and fetal pathology at 72 hours post-inoculation. Disease outcome was assessed by microbial culture, in situ detection of U. parvum in fetal and utero-placental tissues, grading of chorioamnionitis, and placental gene expression of IL-1α, IL-1β, IL-6, TNF-α, S100A8, and S100A9. Placental infection and colonization rates were equivalent in both strains. The in situ distribution of U. parvum in placental tissues was also similar. However, a significantly greater proportion of BALB/c fetuses were infected (P<0.02. C57BL/6 infected animals predominantly exhibited mild to moderate chorioamnionitis (P<0.0001, and a significant reduction in placental expression of IL-1α, IL-1β, IL-6, TNF-α, S100A8, and S100A9 compared to sham controls (P<0.02. Conversely, severe protracted chorioamnionitis with cellular necrosis was the predominant lesion phenotype in BALB/c mice, which also exhibited a significant increase in placental expression of IL-1α, IL-1β, IL-6, TNF-α, S100A8, and S100A9 (P<0.01. Fetal pathology in BALB/c was multi-organ and included brain, lung, heart, liver, and intestine, whereas fetal pathology in C57BL/6 was only detected in the liver and intestines. These results confirm that the host genetic background is a major determinant in ureaplasmal induced chorioamnionitis with fetal infection and fetal inflammatory

  3. Development of Microsatellite Markers in the Branched Broomrape Phelipanche ramosa L. (Pomel and Evidence for Host-Associated Genetic Divergence

    Directory of Open Access Journals (Sweden)

    Valérie Le Corre

    2014-01-01

    Full Text Available Phelipanche ramosa is a parasitic plant that infects numerous crops worldwide. In Western Europe it recently expanded to a new host crop, oilseed rape, in which it can cause severe yield losses. We developed 13 microsatellite markers for P. ramosa using next-generation 454 sequencing data. The polymorphism at each locus was assessed in a sample of 96 individuals collected in France within 6 fields cultivated with tobacco, hemp or oilseed rape. Two loci were monomorphic. At the other 11 loci, the number of alleles and the expected heterozygosity ranged from 3 to 6 and from 0.31 to 0.60, respectively. Genetic diversity within each cultivated field was very low. The host crop from which individuals were collected was the key factor structuring genetic variation. Individuals collected on oilseed rape were strongly differentiated from individuals collected on hemp or tobacco, which suggests that P. ramosa infecting oilseed rape forms a genetically diverged race. The microsatellites we developed will be useful for population genetics studies and for elucidating host-associated genetic divergence in P. ramosa.

  4. Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds.

    Directory of Open Access Journals (Sweden)

    Tomo Ehashi

    Full Text Available To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate (PMB and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic

  5. Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt.

    Science.gov (United States)

    Zein-Eddine, Rima; Djuikwo-Teukeng, Félicité F; Dar, Yasser; Dreyfuss, Gilles; Van den Broeck, Frederik

    2017-08-01

    The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation.

    Science.gov (United States)

    Gompert, Zachariah; Jahner, Joshua P; Scholl, Cynthia F; Wilson, Joseph S; Lucas, Lauren K; Soria-Carrasco, Victor; Fordyce, James A; Nice, Chris C; Buerkle, C Alex; Forister, Matthew L

    2015-06-01

    The genetic and ecological factors that shape the evolution of animal diets remain poorly understood. For herbivorous insects, the expectation has been that trade-offs exist, such that adaptation to one host plant reduces performance on other potential hosts. We investigated the genetic architecture of alternative host use by rearing individual Lycaeides melissa butterflies from two wild populations in a crossed design on two hosts (one native and one introduced) and analysing the genetic basis of differences in performance using genomic approaches. Survival during the experiment was highest when butterfly larvae were reared on their natal host plant, consistent with local adaptation. However, cross-host correlations in performance among families (within populations) were not different from zero. We found that L. melissa populations possess genetic variation for larval performance and variation in performance had a polygenic basis. We documented very few genetic variants with trade-offs that would inherently constrain diet breadth by preventing the optimization of performance across hosts. Instead, most genetic variants that affected performance on one host had little to no effect on the other host. In total, these results suggest that genetic trade-offs are not the primary cause of dietary specialization in L. melissa butterflies. © 2015 John Wiley & Sons Ltd.

  7. Oral Microbiota: Microbial Biomarkers of Metabolic Syndrome Independent of Host Genetic Factors

    Directory of Open Access Journals (Sweden)

    Jiyeon Si

    2017-12-01

    Full Text Available The oral microbiota plays a critical role in both local and systemic inflammation. Metabolic syndrome (MetS is characterized by low-grade inflammation, and many studies have been conducted on the gut microbiota from stool specimens. However, the etiological role of the oral microbiota in the development of MetS is unclear. In this study, we analyzed the oral and gut microbiome from 228 subgingival plaque and fecal samples from a Korean twin-family cohort with and without MetS. Significant differences in microbial diversity and composition were observed in both anatomical niches. However, a host genetic effect on the oral microbiota was not observed. A co-occurrence network analysis showed distinct microbiota clusters that were dependent on the MetS status. A comprehensive analysis of the oral microbiome identified Granulicatella and Neisseria as bacteria enriched in subjects with MetS and Peptococcus as bacteria abundant in healthy controls. Validation of the identified oral bacteria by quantitative PCR (qPCR showed that healthy controls possessed significantly lower levels of G. adiacens (p = 0.023 and a higher ratio of Peptococcus to Granulicatella (p < 0.05 than MetS subjects. Our results support that local oral microbiota can be associated with systemic disorders. The microbial biomarkers identified in this study would aid in determination of which individuals develop chronic diseases from their MetS and contribute to strategic disease management.

  8. Impact of CCR5delta32 Host Genetic Background and Disease Progression on HIV-1 Intrahost Evolutionary Processes: Efficient Hypothesis Testing through Hierarchical Phylogenetic Models

    NARCIS (Netherlands)

    Edo-Matas, Diana; Lemey, Philippe; Tom, Jennifer A.; Serna-Bolea, Cèlia; van den Blink, Agnes E.; van 't Wout, Angélique B.; Schuitemaker, Hanneke; Suchard, Marc A.

    2011-01-01

    The interplay between C-C chemokine receptor type 5 (CCR5) host genetic background, disease progression, and intrahost HIV-1 evolutionary dynamics remains unclear because differences in viral evolution between hosts limit the ability to draw conclusions across hosts stratified into clinically

  9. Forms of Melanoplus bowditchi (Orthoptera: Acrididae collected from different host plants are indistinguishable genetically and in aedeagal morphology

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Ullah

    2014-06-01

    Full Text Available The sagebrush grasshopper, Melanoplus bowditchi Scudder (Orthoptera: Acrididae, is a phytophilous species that is widely distributed in the western United States on sagebrush species. The geographical distribution of M. bowditchi is very similar to the range of its host plants and its feeding association varies in relation to sagebrush distribution. Melanoplus bowditchi bowditchi Scudder and M. bowditchi canus Hebard were described based on their feeding association with different sagebrush species, sand sagebrush and silver sagebrush, respectively. Recently, M. bowditchi have been observed feeding on other plant species in western Nebraska. We collected adult M. bowditchi feeding on four plant species, sand sagebrush, Artemisia filifolia, big sagebrush, A. tridentata, fringed sagebrush, A. frigidus, and winterfat, Krascheninnikovia lanata. We compared the specimens collected from the four plant species for their morphological and genetic differences. We observed no consistent differences among the aedeagal parameres or basal rings among the grasshoppers collected from different host plants. Amplified Fragment Length Polymorphism markers were used to test the genetic relationships among the grasshoppers. Analysis of Molecular Variance and distance-based Unweighted Pair Group Method with Arithmetic mean dendrogram failed to reveal significant differences. Although the forms showed behavioral and minor color and size differences, the genetic data suggest all forms under study likely interbreed, which indicates they are a single species instead of four species or subspecies. These results indicate that host plant use may influence melanopline phenotype and suggest the need of further genetic analysis of subspecies recognized based on morphology, distribution, and ecology.

  10. The genetic architecture of ecological adaptation: intraspecific variation in host plant use by the lepidopteran crop pest Chloridea virescens.

    Science.gov (United States)

    Oppenheim, Sara J; Gould, Fred; Hopper, Keith R

    2018-03-01

    Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.

  11. Forms of Melanoplus bowditchi (Orthoptera: Acrididae) collected from different host plants are indistinguishable genetically and in aedeagal morphology

    Science.gov (United States)

    Ullah, Muhammad Irfan; Mustafa, Fatima; Kneeland, Kate M.; Brust, Mathew L.; Kamble, Shripat T.; Foster, John E.

    2014-01-01

    The sagebrush grasshopper, Melanoplus bowditchi Scudder (Orthoptera: Acrididae), is a phytophilous species that is widely distributed in the western United States on sagebrush species. The geographical distribution of M. bowditchi is very similar to the range of its host plants and its feeding association varies in relation to sagebrush distribution. Melanoplus bowditchi bowditchi Scudder and M. bowditchi canus Hebard were described based on their feeding association with different sagebrush species, sand sagebrush and silver sagebrush, respectively. Recently, M. bowditchi have been observed feeding on other plant species in western Nebraska. We collected adult M. bowditchi feeding on four plant species, sand sagebrush, Artemisia filifolia, big sagebrush, A. tridentata, fringed sagebrush, A. frigidus, and winterfat, Krascheninnikovia lanata. We compared the specimens collected from the four plant species for their morphological and genetic differences. We observed no consistent differences among the aedeagal parameres or basal rings among the grasshoppers collected from different host plants. Amplified Fragment Length Polymorphism markers were used to test the genetic relationships among the grasshoppers. Analysis of Molecular Variance and distance-based Unweighted Pair Group Method with Arithmetic mean dendrogram failed to reveal significant differences. Although the forms showed behavioral and minor color and size differences, the genetic data suggest all forms under study likely interbreed, which indicates they are a single species instead of four species or subspecies. These results indicate that host plant use may influence melanopline phenotype and suggest the need of further genetic analysis of subspecies recognized based on morphology, distribution, and ecology. PMID:24949237

  12. Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce.

    Science.gov (United States)

    Velmala, S M; Rajala, T; Haapanen, M; Taylor, A F S; Pennanen, T

    2013-01-01

    A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H(2) = 0.04-0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H(2) = 0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.

  13. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors

    OpenAIRE

    Hauser, Kurt F.; Knapp, Pamela E.

    2014-01-01

    Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome (neuroAIDS) and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individua...

  14. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon

    DEFF Research Database (Denmark)

    Tartally, András; Kelager, Andreas; Fürst, Matthias Alois

    2016-01-01

    The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms...... on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow....

  15. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens.

    Directory of Open Access Journals (Sweden)

    Matthew T G Holden

    2009-03-01

    Full Text Available The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus. These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.

  16. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens.

    Science.gov (United States)

    Holden, Matthew T G; Heather, Zoe; Paillot, Romain; Steward, Karen F; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C; Holroyd, Nancy E; Mungall, Karen; Quail, Michael A; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M; Spratt, Brian G; Jolley, Keith A; Maiden, Martin C J; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D; Robinson, Carl; Maskell, Duncan J; Parkhill, Julian; Waller, Andrew S

    2009-03-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2) toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.

  17. Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts: empirical evidence from Iberian ibex-derived mites.

    Science.gov (United States)

    Alasaad, S; Soglia, D; Sarasa, M; Soriguer, R C; Pérez, J M; Granados, J E; Rasero, R; Zhu, X Q; Rossi, L

    2008-12-01

    The objective of the present study was to examine the extent of genetic diversity among Sarcoptes scabiei individuals belonging to different skin subunits of the body from individual mangy hosts. Ten microsatellite primers were applied on 44 individual S. scabiei mites from three mangy Iberian ibexes from Sierra Nevada Mountain in Spain. Dendrograms of the mites from the individual Iberian ibexes, showing the proportion of shared alleles between pairs of individual mites representing three skin subpopulations (head, back, and abdomen subunits), allowed the clustering of some mite samples up to their skin subunits. This genetic diversity of S. scabiei at skin-scale did not have the same pattern in all considered hosts: for the first Iberian ibex (Cp1), only mites from the head subunit were grouped together; in the second individual (Cp2), the clustering was detected only for mites from the abdomen subunit; and for the third one (Cp3), only mites from the back subunit were clustered together. Our results suggest that the local colonization dynamics of S. scabiei would have influenced the nonrandom distribution of this ectoparasite, after a single infestation. Another presumable explanation to this skin-scale genetic structure could be the repeated infestations. To our knowledge, this is the first documentation of genetic structuring among S. scabiei at individual host skin-scale. Further studies are warranted to highlight determining factors of such trend, but the pattern underlined in the present study should be taken into account in diagnosis and monitoring protocols for studying the population genetic structure and life cycle of this neglected but important ectoparasite.

  18. Variation in attraction to host plant odors in an invasive moth has a genetic basis and is genetically negatively correlated with fecundity.

    Science.gov (United States)

    Najar-Rodriguez, A; Schneeberger, M; Bellutti, N; Dorn, S

    2012-07-01

    Lepidopteran insects are major pests of agricultural crops, and mated female moths exploit plant volatiles to locate suitable hosts for oviposition. We investigated the heritability of odor-guided host location behavior and fecundity in the cosmopolitan oriental fruit moth Grapholita (Cydia) molesta, an oligophagous herbivore that attacks fruit trees. We used a full-sib/half-sib approach to estimate the heritability and the genetic correlation between these two traits. Results document a considerable genetic basis for olfactory attraction of females (h ( 2 ) = 0.37 ± 0.17) and their fecundity (h ( 2 ) = 0.32 ± 0.13), as well as a genetic trade-off between female attraction and fecundity (r ( g ) = -0.85 ± 0.21). These estimations were empirically corroborated by comparing two strains maintained in the laboratory for different numbers of generations. The long-term reared strain lost its olfactory discrimination ability but achieved significantly higher fecundity compared with the short-term reared strain. Our results highlight that genetic studies are relevant for understanding the evolution of odor-guided behavior in herbivore insects and for judging the promise of pest management strategies involving behavioral manipulation with plant volatiles.

  19. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Directory of Open Access Journals (Sweden)

    Lyza Johnston

    Full Text Available Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp. and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  20. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Science.gov (United States)

    Johnston, Lyza; Miller, Margaret W; Baums, Iliana B

    2012-01-01

    Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp.) and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  1. Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co-evolution.

    Science.gov (United States)

    Wyand, Rebecca A; Brown, James K M

    2003-05-01

    SUMMARY The grass powdery mildew fungus, Blumeria graminis is classified into eight formae speciales (ff.spp.) based on strict host specialization. However, evidence suggests that host ranges extend to more than one genus and are particularly diverse among samples from the Middle East, the proposed centre of origin and diversification of crop plants. This study investigated whether geographical origin, host species or both determine the genetic variation in B. graminis that is found in cereals, sampled from Europe, Asia and North America, and whether there is any evidence for co-evolution between pathogen and host. Phylogenetic analysis of nucleotide sequence variation within the ribosomal DNA Internal Transcribed Spacer (ITS) regions and the beta-tubulin (tub2) gene gives rise to two dendrograms with different topologies. In both trees, isolates of B. graminis from cultivated cereals are grouped according to their principal host genus. This grouping was supported by amplified fragment length polymorphism (AFLP) analysis and cross-infectivity tests. However, there was no evidence of co-evolution. There was far greater divergence between ff.spp. in tub2 sequences than ITS regions and a faster rate of mutation of tub2, especially in the third base position of exons. It is proposed that variation in the rDNA-ITS regions is constrained either by their functional role in the processing of rDNA precursor molecules or by concerted evolution, hence limiting their use in phylogenetic studies. AFLP data suggests an overall lack of correlation between geographical and genetic distances. This may be related to the long distance dispersal exhibited by B. graminis.

  2. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts

    International Nuclear Information System (INIS)

    Honig, Jessica E.; Osborne, Jane C.; Nichol, Stuart T.

    2004-01-01

    The genus Nairovirus (family Bunyaviridae) contains seven serogroups consisting of 34 predominantly tick-borne viruses, including several associated with severe human and livestock diseases [e.g., Crimean Congo hemorrhagic fever (CCHF) and Nairobi sheep disease (NSD), respectively]. Before this report, no comparative genetic studies or molecular detection assays had been developed for this virus genus. To characterize at least one representative from each of the seven serogroups, reverse transcriptase-polymerase chain reaction (RT-PCR) primers targeting the L polymerase-encoding region of the RNA genome of these viruses were successfully designed based on conserved amino acid motifs present in the predicted catalytic core region. Sequence analysis showed the nairoviruses to be a highly diverse group, exhibiting up to 39.4% and 46.0% nucleotide and amino acid identity differences, respectively. Virus genetic relationships correlated well with serologic groupings and with tick host associations. Hosts of these viruses include both the hard (family Ixodidae) and soft (family Argasidae) ticks. Virus phylogenetic analysis reveals two major monophyletic groups: hard tick and soft tick-vectored viruses. In addition, viruses vectored by Ornithodoros, Carios, and Argas genera ticks also form three separate monophyletic lineages. The striking similarities between tick and nairovirus phylogenies are consistent with possible coevolution of the viruses and their tick hosts. Fossil and phylogenetic data placing the hard tick-soft tick divergence between 120 and 92 million years ago suggest an ancient origin for viruses of the genus Nairovirus

  3. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    Science.gov (United States)

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage.

    Science.gov (United States)

    Miller, N J; Birley, A J; Overall, A D J; Tatchell, G M

    2003-09-01

    Microsatellite markers were used to examine the population structure of Pemphigus bursarius, a cyclically parthenogenetic aphid. Substantial allele frequency differences were observed between populations on the primary host plant (collected shortly after sexual reproduction) separated by distances as low as 14 km. This suggested that migratory movements occur over relatively short distances in this species. However, the degree of allele frequency divergence between populations was not correlated with their geographical separation, indicating that isolation by distance was not the sole cause of spatial genetic structuring. Significant excesses of homozygotes were observed in several populations. Substantial allele frequency differences were also found between aphids on the primary host and those sampled from a secondary host plant after several parthenogenetic generations at the same location in two successive years. This could have been due to the existence of obligately parthenogenetic lineages living on the secondary host or genetically divergent populations confined to different secondary host plant species but sharing a common primary host.

  5. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease.

    Science.gov (United States)

    Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan; Fu, Jingyuan; Gevers, Dirk; Visschedijk, Marijn C; Spekhorst, Lieke M; Alberts, Rudi; Franke, Lude; van Dullemen, Hendrik M; Ter Steege, Rinze W F; Huttenhower, Curtis; Dijkstra, Gerard; Xavier, Ramnik J; Festen, Eleonora A M; Wijmenga, Cisca; Zhernakova, Alexandra; Weersma, Rinse K

    2018-01-01

    Patients with IBD display substantial heterogeneity in clinical characteristics. We hypothesise that individual differences in the complex interaction of the host genome and the gut microbiota can explain the onset and the heterogeneous presentation of IBD. Therefore, we performed a case-control analysis of the gut microbiota, the host genome and the clinical phenotypes of IBD. Stool samples, peripheral blood and extensive phenotype data were collected from 313 patients with IBD and 582 truly healthy controls, selected from a population cohort. The gut microbiota composition was assessed by tag-sequencing the 16S rRNA gene. All participants were genotyped. We composed genetic risk scores from 11 functional genetic variants proven to be associated with IBD in genes that are directly involved in the bacterial handling in the gut: NOD2 , CARD9 , ATG16L1 , IRGM and FUT2 . Strikingly, we observed significant alterations of the gut microbiota of healthy individuals with a high genetic risk for IBD: the IBD genetic risk score was significantly associated with a decrease in the genus Roseburia in healthy controls (false discovery rate 0.017). Moreover, disease location was a major determinant of the gut microbiota: the gut microbiota of patients with colonic Crohn's disease (CD) is different from that of patients with ileal CD, with a decrease in alpha diversity associated to ileal disease (p=3.28×10 -13 ). We show for the first time that genetic risk variants associated with IBD influence the gut microbiota in healthy individuals. Roseburia spp are acetate-to-butyrate converters, and a decrease has already been observed in patients with IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis.

    Science.gov (United States)

    Bartaula, Radhika; Melo, Arthur T O; Connolly, Bryan A; Jin, Yue; Hale, Iago

    2018-02-26

    Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat; and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here we demonstrate that Pg's far less-studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis (B×o), an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B×o accessions, verified via genotyping-by-sequencing to be first generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B×o full-sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture's most studied pathogens.

  7. Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.X.; Kosier, B.; Priefer, U.B. [Rheinisch-Westfaelische TH Aachen, Aachen (Germany)

    2001-09-01

    A total of 360 Rhizobium leguminosarum bv. viciae strains was isolated from three brown-coal mining restoration fields of different age and plant cover (without and in the first and second year of alfalfa, Medicago sativa, cultivation) using two host species (Vicia hirsuta and Pisum sativum) as capture plants. The strains were genetically typed by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-generated 16S-23S ribosomal DNA intergenic spacer regions (IGS-RFLP) and characterized by plasmid profiles and RFLP analysis of amplified nodABC genes. The R. leguminosarum bv. viciae population was dominated by the same group of strains (irrespective of the trap plant used). According to type richness, the genetic diversity of indigenous R. leguminosarum in the second year of restoration was lower than in the first year and it resembled that of the fallow field, except for plasmid types, in which it was higher than that of the fallow field. Some of the less frequent nodABC genotypes were associated with distinct chromosomal IGS genotypes and symbiotic plasmids (pSyms) of different sizes, indicating that horizontal transfer and rearrangements of pSym can occur in natural environments. However, the dominant pSym and chromosomal genotypes were strictly correlated suggesting a genetically stable persistence of the prevailing R. leguminosarum bv, viciae genotypes in the absence of its host plant.

  8. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    Science.gov (United States)

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals. © 2013 Blackwell Publishing Ltd.

  9. First detection of Sarcoptes scabiei from domesticated pig (Sus scrofa) and genetic characterization of S. scabiei from pet, farm and wild hosts in Israel.

    Science.gov (United States)

    Erster, Oran; Roth, Asael; Pozzi, Paolo S; Bouznach, Arieli; Shkap, Varda

    2015-08-01

    In this report we describe for the first time the detection of Sarcoptes scabiei type suis mites on domestic pigs in Israel and examine its genetic variation compared with S. sabiei from other hosts. Microscopic examination of skin samples from S. scabiei-infested pigs (Sus scrofa domesticus) revealed all developmental stages of S. scabiei. To detect genetic differences between S. scabiei from different hosts, samples obtained from pig, rabbits (Orictolagus cuniculus), fox (Vulpes vulpes), jackal (Canis aureus) and hedgehog (Erinaceus concolor) were compared with GenBank-annotated sequences of three genetic markers. Segments from the following genes were examined: cytochrome C oxidase subunit 1 (COX1), glutathione-S-transferase 1 (GST1), and voltage-sensitive sodium channel (VSSC). COX1 analysis did not show correlation between host preference and genetic identity. However, GST1 and VSSC had a higher percentage of identical sites within S. scabiei type suis sequences, compared with samples from other hosts. Taking into account the limited numbers of GST1 and VSSC sequences available for comparison, this high similarity between sequences of geographically-distant, but host-related populations, may suggest that different host preference is at least partially correlated with genetic differences. This finding may help in future studies of the factors that drive host preferences in this parasite.

  10. Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites

    Czech Academy of Sciences Publication Activity Database

    Blasco-Costa, Maria Isabel; Waters, J. M.; Poulin, R.

    2012-01-01

    Roč. 21, č. 1 (2012), s. 207-217 ISSN 0962-1083 Institutional support: RVO:60077344 Keywords : freshwater * genetic diversity loss * linear ecosystems * population genetic structure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 6.275, year: 2012 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2011.05374.x/pdf

  11. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Directory of Open Access Journals (Sweden)

    Lisbeth Ramirez-Carvajal

    Full Text Available Foot-and-mouth disease (FMD is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  12. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    Science.gov (United States)

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  13. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors.

    Science.gov (United States)

    Hauser, Kurt F; Knapp, Pamela E

    2014-01-01

    Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions. © 2014 Elsevier Inc. All rights reserved.

  14. Genetics of Pathogen Fitness: Correlations with Virulence and Effects of Host Genotype

    Science.gov (United States)

    In plant pathology, a large body of work has focused on changes in virulence, the traits allowing infection of otherwise resistant hosts, while relatively few studies have examined changes in quantitative fitness traits, those affecting the reproductive success of the pathogen after infection has oc...

  15. Distinct genetic diversity of Oncomelania hupensis, intermediate host of Schistosoma japonicum in mainland China as revealed by ITS sequences.

    Directory of Open Access Journals (Sweden)

    Qin Ping Zhao

    Full Text Available BACKGROUND: Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum, which causes schistosomiasis endemic in the Far East, and especially in mainland China. O. hupensis largely determines the parasite's geographical range. How O. hupensis's genetic diversity is distributed geographically in mainland China has never been well examined with DNA sequence data. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigate the genetic variation among O. hupensis from different geographical origins using the combined complete internal transcribed spacer 1 (ITS1 and ITS2 regions of nuclear ribosomal DNA. 165 O. hupensis isolates were obtained in 29 localities from 7 provinces across mainland China: lake/marshland and hill regions in Anhui, Hubei, Hunan, Jiangxi and Jiangsu provinces, located along the middle and lower reaches of Yangtze River, and mountainous regions in Sichuan and Yunnan provinces. Phylogenetic and haplotype network analyses showed distinct genetic diversity and no shared haplotypes between populations from lake/marshland regions of the middle and lower reaches of the Yangtze River and populations from mountainous regions of Sichuan and Yunnan provinces. The genetic distance between these two groups is up to 0.81 based on Fst, and branch time was estimated as 2-6 Ma. As revealed in the phylogenetic tree, snails from Sichuan and Yunnan provinces were also clustered separately. Geographical separation appears to be an important factor accounting for the diversification of the two groups of O. hupensis in mainland China, and probably for the separate clades between snails from Sichuan and Yunnan provinces. In lake/marshland and hill regions along the middle and lower reaches of the Yangtze River, three clades were identified in the phylogenetic tree, but without any obvious clustering of snails from different provinces. CONCLUSIONS: O. hupensis in mainland China may have considerable genetic diversity, and a more

  16. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species.

    Science.gov (United States)

    Alexandre, Hermine; Ponsard, Sergine; Bourguet, Denis; Vitalis, Renaud; Audiot, Philippe; Cros-Arteil, Sandrine; Streiff, Réjane

    2013-01-01

    The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.

  17. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection.

    Directory of Open Access Journals (Sweden)

    Krishna P Kota

    Full Text Available The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor, wortmannin (a PI3K inhibitor, and parthenolide (an IκB kinase inhibitor, inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist, E. coli LPS (a TLR4 agonist or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.

  18. Simultaneous infection of human host with genetically distinct isolates of Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    João Batista Júnior

    2010-02-01

    Full Text Available This study is the first report on genetic differences between isolates of Paracoccidioides brasiliensis from a single patient. We describe a simultaneous infection with genetically distinct isolates of P. brasiliensis in a patient with chronic paracoccidioidomycosis. The clinical isolates were obtained from lesions in different anatomical sites and were characterised by random amplified polymorphic DNA (RAPD analysis. The RAPD technique can be helpful for distinguishing between clinical isolates. Different random primers were used to characterise these clinical isolates. The RAPD patterns allowed for differentiation between isolates and the construction of a phenetic tree, which showed more than 28% genetic variability in this fungal species, opening new possibilities for clinical studies of P. brasiliensis. Based on these results and preliminary clinical findings, we suggest that different genotypes of P. brasiliensis might infect the same patient, inducing the active form of the disease.

  19. Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids.

    Science.gov (United States)

    Suzuki, Hirokazu; Yoshida, Ken-ichi

    2012-09-01

    We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, 10(-5)-10(-3) recipient(-1)). pSTE33T showed lower efficiency (10(-7)-10(-6) recipient(-1)) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.

  20. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans▿ †

    Science.gov (United States)

    Kovács, Ákos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    2010-01-01

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous d-lactate dehydrogenase expression. PMID:20400555

  1. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans

    NARCIS (Netherlands)

    Kovacs, Akos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene

  2. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity

    Science.gov (United States)

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course. PMID:26379185

  3. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity.

    Science.gov (United States)

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10-8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.

  4. Genetic diversity and host specificity varies across three genera of blood parasites in ducks of the Pacific Americas Flyway

    Science.gov (United States)

    Reeves, Andrew B.; Smith, Matthew M.; Meixell, Brandt W.; Fleskes, Joseph P.; Ramey, Andrew M.

    2015-01-01

    Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus andLeucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodiumparasites infecting North American waterfowl as compared to those of the generaHaemoproteus and Leucocytozoon.

  5. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    Directory of Open Access Journals (Sweden)

    Dennis Hanke

    2016-07-01

    Full Text Available There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV lineage (arctic-3, but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4 with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population

  6. Coevolutionary fine-tuning: evidence for genetic tracking between a specialist wasp parasitoid and its aphid host in a dual metapopulation interaction.

    Science.gov (United States)

    Nyabuga, F N; Loxdale, H D; Heckel, D G; Weisser, W W

    2012-04-01

    In the interaction between two ecologically-associated species, the population structure of one species may affect the population structure of the other. Here, we examine the population structures of the aphid Metopeurum fuscoviride, a specialist on tansy Tanacetum vulgare, and its specialist primary hymenopterous parasitoid Lysiphlebus hirticornis, both of which are characterized by multivoltine life histories and a classic metapopulation structure. Samples of the aphid host and the parasitoid were collected from eight sites in and around Jena, Germany, where both insect species co-occur, and then were genotyped using suites of polymorphic microsatellite markers. The host aphid was greatly differentiated in terms of its spatial population genetic patterning, while the parasitoid was, in comparison, only moderately differentiated. There was a positive Mantel test correlation between pairwise shared allele distance (DAS) of the host and parasitoid, i.e. if host subpopulation samples were more similar between two particular sites, so were the parasitoid subpopulation samples. We argue that while the differences in the levels of genetic differentiation are due to the differences in the biology of the species, the correlations between host and parasitoid are indicative of dependence of the parasitoid population structure on that of its aphid host. The parasitoid is genetically tracking behind the aphid host, as can be expected in a classic metapopulation structure where host persistence depends on a delay between host and parasitoid colonization of the patch. The results may also have relevance to the Red Queen hypothesis, whereupon in the 'arms race' between parasitoid and its host, the latter 'attempts' to evolve away from the former.

  7. Evaluation of Genetic Diversity and Host Resistance to Stem Rust in USDA NSGC Durum Wheat Accessions.

    Science.gov (United States)

    Chao, Shiaoman; Rouse, Matthew N; Acevedo, Maricelis; Szabo-Hever, Agnes; Bockelman, Harold; Bonman, J Michael; Elias, Elias; Klindworth, Daryl; Xu, Steven

    2017-07-01

    The USDA-ARS National Small Grains Collection (NSGC) maintains germplasm representing global diversity of small grains and their wild relatives. To evaluate the utility of the NSGC durum wheat ( L. ssp. ) accessions, we assessed genetic diversity and linkage disequilibrium (LD) patterns in a durum core subset containing 429 lines with spring growth habit originating from 64 countries worldwide. Genetic diversity estimated using wheat single-nucleotide polymorphism (SNP) markers showed considerable diversity captured in this collection. Average LD decayed over a genetic distance to within 3 cM at = 0.2, with a fast LD decay for markers linked at >5 cM. We evaluated accessions for resistance to wheat stem rust, caused by a fungal pathogen, Pers. Pers. f. sp. Eriks. and E. Henn (), using races from both eastern Africa and North America, at seedling and adult plant stages. Five accessions were identified as resistant to all stem rust pathogen races evaluated. Genome-wide association analysis detected 17 significant associations at the seedling stage with nine likely corresponding to , , and and the remaining potentially being novel genes located on six chromosomes. A higher frequency of resistant accessions was found at the adult plant stage than at the seedling stage. However, few significant associations were detected possibly a result of strong G × E interactions not properly accounted for in the mixed model. Nonetheless, the resistant accessions identified in this study should provide wheat breeders with valuable resources for improving stem rust resistance. Copyright © 2017 Crop Science Society of America.

  8. The chemical interactome space between the human host and the genetically defined gut metabotypes

    DEFF Research Database (Denmark)

    Jacobsen, Ulrik Plesner; Nielsen, Henrik Bjørn; Hildebrand, Falk

    2013-01-01

    symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microiome based solely on metagenomics sequencing data derived from...... of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein...... complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural...

  9. Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations.

    Science.gov (United States)

    Dogimont, Catherine; Bendahmane, Abdelhafid; Chovelon, Véronique; Boissot, Nathalie

    2010-01-01

    Host plant resistance is an efficient and environmentally friendly means of controlling insects, including aphids, but resistant-breaking biotypes have occurred in several plant-aphid systems. Our review of the genetic and molecular bases of aphid resistance in crop species emphasizes the limited number of aphid resistance genes and alleles. Inheritance of aphid resistance may be monogenic (dominant or recessive genes) or polygenic. Two dominant, aphid resistance genes have been isolated to date. They both encode NBS-LRR proteins involved in the specific recognition of aphids. Strategies to ensure aphid resistance effectiveness and durability are discussed. Innovative research activities are proposed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Comparative Genomics of Campylobacter iguaniorum to Unravel Genetic Regions Associated with Reptilian Hosts.

    Science.gov (United States)

    Gilbert, Maarten J; Miller, William G; Yee, Emma; Kik, Marja; Zomer, Aldert L; Wagenaar, Jaap A; Duim, Birgitta

    2016-10-05

    Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by waa genes, is absent from C iguaniorum Instead, multiple predicted glycosylation regions were identified in C iguaniorum One of these regions is > 50 kb with deviant G + C content, suggesting acquisition via lateral transfer. These similar, but non-homologous glycosylation regions were located at the same position on the genome in both strains. Multiple genes encoding respiratory enzymes not identified to date within the C. fetus clade were present. C iguaniorum shared highest homology with C hyointestinalis and C fetus. As in reptile-associated C fetus subsp. testudinum, a putative tricarballylate catabolism locus was identified. However, despite colonizing a shared host, no recent recombination between both taxa was detected. This genomic study provides a better understanding of host adaptation, virulence, phylogeny, and evolution of C iguaniorum and related Campylobacter taxa. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  12. Identification of genetic loci that contribute to Campylobacter resistance to fowlicidin-1, a chicken host defense peptide.

    Science.gov (United States)

    Hoang, Ky Van; Wang, Ying; Lin, Jun

    2012-01-01

    Antimicrobial peptides (AMPs) are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food-borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TN™ Transposome) in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c) that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB) significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  13. Host genetic influences on the anthelmintic efficacy of papaya-derived cysteine proteinases in mice.

    Science.gov (United States)

    Luoga, Wenceslaus; Mansur, Fadlul; Stepek, Gillian; Lowe, Ann; Duce, Ian R; Buttle, David J; Behnke, Jerzy M

    2015-06-01

    Eight strains of mice, of contrasting genotypes, infected with Heligmosomoides bakeri were studied to determine whether the anthelmintic efficacy of papaya latex varied between inbred mouse strains and therefore whether there is an underlying genetic influence on the effectiveness of removing the intestinal nematode. Infected mice were treated with 330 nmol of crude papaya latex or with 240 nmol of papaya latex supernatant (PLS). Wide variation of response between different mouse strains was detected. Treatment was most effective in C3H (90·5-99·3% reduction in worm counts) and least effective in CD1 and BALB/c strains (36·0 and 40·5%, respectively). Cimetidine treatment did not improve anthelmintic efficacy of PLS in a poor drug responder mouse strain. Trypsin activity, pH and PLS activity did not differ significantly along the length of the gastro-intestinal (GI) tract between poor (BALB/c) and high (C3H) drug responder mouse strains. Our data indicate that there is a genetic component explaining between-mouse variation in the efficacy of a standard dose of PLS in removing worms, and therefore warrant some caution in developing this therapy for wider scale use in the livestock industry, and even in human medicine.

  14. Genetically based polymorphisms in morphology and life history associated with putative host races of the water lily leaf beetle, Galerucella nymphaeae.

    Science.gov (United States)

    Pappers, Stephanie M; van der Velde, Gerard; Ouborg, N Joop; van Groenendael, Jan M

    2002-08-01

    A host race is a population that is partially reproductively isolated from other conspecific populations as a direct consequence of adaptation to a specific host. The initial step in host race formation is the establishment of genetically based polymorphisms in, for example, morphology, preference, or performance. In this study we investigated whether polymorphisms observed in Galerucella nymphaeae have a genetic component. Galerucella nymphaeae, the water lily leaf beetle, is a herbivore which feeds and oviposits on the plant hosts Nuphar lutea and Nymphaea alba (both Nymphaeaceae) and Rumex hydrolapathum and Polygonum amphibium (both Polygonaceae). A full reciprocal crossing scheme (16 crosses, each replicated 10 times) and subsequent transplantation of 1,001 egg clutches revealed a genetic basis for differences in body length and mandibular width. The heritability value of these traits, based on midparent-offspring regression, ranged between 0.53 and 0.83 for the different diets. Offspring from Nymphaeaceae parents were on average 12% larger and had on average 18% larger mandibles than offspring from Polygonaceae parents. Furthermore, highly significant correlations were found between feeding preference of the offspring and the feeding preference of their parents. Finally, two fitness components were measured: development time and survival. Development time was influenced by diet, survival both by cross type and diet, the latter of which suggest adaptation of the beetles. This suggestion is strengthened by a highly significant cross x diet interaction effect for development time as well as for survival, which is generally believed to indicate local adaptation. Although no absolute genetic incompatibility among putative host races was observed, survival of the between-host family offspring, on each diet separately, was lower than the survival of the within-host family offspring on that particular host. Survival of offspring of two Nymphaeaceae parents was about

  15. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

    NARCIS (Netherlands)

    Baarlen, van P.; Woltering, E.J.; Staats, M.; Kan, van J.A.L.

    2007-01-01

    Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea.

  16. A Population Genomics Approach to Assessing the Genetic Basis of Within-Host Microevolution Underlying Recurrent Cryptococcal Meningitis Infection

    Directory of Open Access Journals (Sweden)

    Johanna Rhodes

    2017-04-01

    Full Text Available Recurrence of meningitis due to Cryptococcus neoformans after treatment causes substantial mortality in HIV/AIDS patients across sub-Saharan Africa. In order to determine whether recurrence occurred due to relapse of the original infecting isolate or reinfection with a different isolate weeks or months after initial treatment, we used whole-genome sequencing (WGS to assess the genetic basis of infection in 17 HIV-infected individuals with recurrent cryptococcal meningitis (CM. Comparisons revealed a clonal relationship for 15 pairs of isolates recovered before and after recurrence showing relapse of the original infection. The two remaining pairs showed high levels of genetic heterogeneity; in one pair we found this to be a result of infection by mixed genotypes, while the second was a result of nonsense mutations in the gene encoding the DNA mismatch repair proteins MSH2, MSH5, and RAD5. These nonsense mutations led to a hypermutator state, leading to dramatically elevated rates of synonymous and nonsynonymous substitutions. Hypermutator phenotypes owing to nonsense mutations in these genes have not previously been reported in C. neoformans, and represent a novel pathway for rapid within-host adaptation and evolution of resistance to first-line antifungal drugs.

  17. A Population Genomics Approach to Assessing the Genetic Basis of Within-Host Microevolution Underlying Recurrent Cryptococcal Meningitis Infection.

    Science.gov (United States)

    Rhodes, Johanna; Beale, Mathew A; Vanhove, Mathieu; Jarvis, Joseph N; Kannambath, Shichina; Simpson, John A; Ryan, Anthea; Meintjes, Graeme; Harrison, Thomas S; Fisher, Matthew C; Bicanic, Tihana

    2017-04-03

    Recurrence of meningitis due to Cryptococcus neoformans after treatment causes substantial mortality in HIV/AIDS patients across sub-Saharan Africa. In order to determine whether recurrence occurred due to relapse of the original infecting isolate or reinfection with a different isolate weeks or months after initial treatment, we used whole-genome sequencing (WGS) to assess the genetic basis of infection in 17 HIV-infected individuals with recurrent cryptococcal meningitis (CM). Comparisons revealed a clonal relationship for 15 pairs of isolates recovered before and after recurrence showing relapse of the original infection. The two remaining pairs showed high levels of genetic heterogeneity; in one pair we found this to be a result of infection by mixed genotypes, while the second was a result of nonsense mutations in the gene encoding the DNA mismatch repair proteins MSH2 , MSH5 , and RAD5 These nonsense mutations led to a hypermutator state, leading to dramatically elevated rates of synonymous and nonsynonymous substitutions. Hypermutator phenotypes owing to nonsense mutations in these genes have not previously been reported in C. neoformans , and represent a novel pathway for rapid within-host adaptation and evolution of resistance to first-line antifungal drugs. Copyright © 2017 Rhodes et al.

  18. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host.

    Directory of Open Access Journals (Sweden)

    John P Jerome

    2011-01-01

    Full Text Available The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10(-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64 Mb genome to 200-500 X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.

  19. Host genetic factors in American cutaneous leishmaniasis: a critical appraisal of studies conducted in an endemic area of Brazil

    Directory of Open Access Journals (Sweden)

    Léa Cristina Castellucci

    2014-06-01

    Full Text Available American cutaneous leishmaniasis (ACL is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA, northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.

  20. IL-17 Genetic and Immunophenotypic Evaluation in Chronic Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Resende

    2014-01-01

    Full Text Available Although interleukin-17 (IL-17 is a recently discovered cytokine associated with several autoimmune diseases, its role in the pathogenesis of chronic graft-versus-host disease (cGVHD was not established yet. The objective of this study was to investigate the association of IL17A and IL17F genes polymorphisms and IL-17A and IL-17F levels with cGVHD. IL-17A expression was also investigated in CD4+ T cells of patients with systemic cGVHD. For Part I of the study, fifty-eight allo-HSCT recipients and donors were prospectively studied. Blood samples were obtained to determine IL17A and IL17F genes polymorphisms. Cytokines levels in blood and saliva were assessed by ELISA at days +35 and +100 after HSCT. In Part II, for the immunophenotypic evaluation, eight patients with systemic cGVHD were selected and the expression of IL-17A was evaluated. We found association between recipient AA genotype with systemic cGVHD. No association was observed between IL-17A levels and cGVHD. Lower IL-17A levels in the blood were associated with AA genotype. In flow cytometry analysis, decreased expression of IL-17A was observed in patients with cGVHD after stimulation. In conclusion, IL-17A may have an important role in the development of systemic cGVHD.

  1. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies.

    Directory of Open Access Journals (Sweden)

    Tolulope A Agunbiade

    Full Text Available Maruca vitrata Fabricius (Lepidoptera: Crambidae is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1 sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp., and alternative host plants Pueraria phaseoloides (Roxb. Benth. var. javanica (Benth. Baker, Loncocarpus sericeus (Poir, and Tephrosia candida (Roxb.. Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001. The program STRUCTURE estimated 2 genotypic clusters (co-ancestries on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68% or F-statistics (FSTLoc = -0.01; P = 0.62. These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92. In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01, which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27. Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM for M. vitrata in West Africa.

  2. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    Science.gov (United States)

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis

  3. Genetic Diversity and Population Structure of Busseola segeta Bowden (Lepidoptera; Noctuidae: A Case Study of Host Use Diversification in Guineo-Congolian Rainforest Relic Area, Kenya

    Directory of Open Access Journals (Sweden)

    Jean-Francois Silvain

    2012-11-01

    Full Text Available Habitat modification and fragmentation are considered as some of the factors that drive organism distribution and host use diversification. Indigenous African stem borer pests are thought to have diversified their host ranges to include maize [Zea mays L.] and sorghum [Sorghum bicolor (L. Moench] in response to their increased availability through extensive cultivation. However, management efforts have been geared towards reducing pest populations in the cultivated fields with few attempts to understand possible evolution of "new" pest species. Recovery and growing persistence of Busseola segeta Bowden on maize (Zea mays L. in Kakamega called for studies on the role of wild host plants on the invasion of crops by wild borer species. A two-year survey was carried out in a small agricultural landscape along the edge of Kakamega forest (Kenya to assess host range and population genetic structure of B. segeta. The larvae of B. segeta were found on nine different plant species with the majority occurring on maize and sorghum. Of forty cytochrome b haplotypes identified, twenty-three occurred in both wild and cultivated habitats. The moths appear to fly long distances across the habitats with genetic analyses revealing weak differentiation between hosts in different habitats (FST = 0.016; p = 0.015. However, there was strong evidence of variation in genetic composition between growing seasons in the wild habitat (FST = 0.060; p < 0.001 with emergence or disappearance of haplotypes between habitats. Busseola segeta is an example of a phytophagous insect that utilizes plants with a human induced distribution range, maize, but does not show evidence of host race formation or reduction of gene flow among populations using different hosts. However, B. segeta is capable of becoming an important pest in the area and the current low densities may be attributed to the general low infestation levels and presence of a wide range of alternative hosts in the area.

  4. Weaker HLA Footprints on HIV in the Unique and Highly Genetically Admixed Host Population of Mexico.

    Science.gov (United States)

    Soto-Nava, Maribel; Avila-Ríos, Santiago; Valenzuela-Ponce, Humberto; García-Morales, Claudia; Carlson, Jonathan M; Tapia-Trejo, Daniela; Garrido-Rodriguez, Daniela; Alva-Hernández, Selma N; García-Tellez, Thalía A; Murakami-Ogasawara, Akio; Mallal, Simon A; John, Mina; Brockman, Mark A; Brumme, Chanson J; Brumme, Zabrina L; Reyes-Teran, Gustavo

    2018-01-15

    HIV circumvents HLA class I-restricted CD8 + T-cell responses through selection of escape mutations that leave characteristic mutational "footprints," also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation. IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We

  5. Genetically programmed differences in epidermal host defense between psoriasis and atopic dermatitis patients.

    Directory of Open Access Journals (Sweden)

    Patrick L J M Zeeuwen

    Full Text Available In the past decades, chronic inflammatory diseases such as psoriasis, atopic dermatitis, asthma, Crohn's disease and celiac disease were generally regarded as immune-mediated conditions involving activated T-cells and proinflammatory cytokines produced by these cells. This paradigm has recently been challenged by the finding that mutations and polymorphisms in epithelium-expressed genes involved in physical barrier function or innate immunity, are risk factors of these conditions. We used a functional genomics approach to analyze cultured keratinocytes from patients with psoriasis or atopic dermatitis and healthy controls. First passage primary cells derived from non-lesional skin were stimulated with pro-inflammatory cytokines, and expression of a panel of 55 genes associated with epidermal differentiation and cutaneous inflammation was measured by quantitative PCR. A subset of these genes was analyzed at the protein level. Using cluster analysis and multivariate analysis of variance we identified groups of genes that were differentially expressed, and could, depending on the stimulus, provide a disease-specific gene expression signature. We found particularly large differences in expression levels of innate immunity genes between keratinocytes from psoriasis patients and atopic dermatitis patients. Our findings indicate that cell-autonomous differences exist between cultured keratinocytes of psoriasis and atopic dermatitis patients, which we interpret to be genetically determined. We hypothesize that polymorphisms of innate immunity genes both with signaling and effector functions are coadapted, each with balancing advantages and disadvantages. In the case of psoriasis, high expression levels of antimicrobial proteins genes putatively confer increased protection against microbial infection, but the biological cost could be a beneficial system gone awry, leading to overt inflammatory disease.

  6. Genetic Characterization of Sarcoptes scabiei from Black Bears (Ursus americanus) and Other Hosts in the Eastern United States.

    Science.gov (United States)

    Peltier, Sarah K; Brown, Justin D; Ternent, Mark; Niedringhaus, Kevin D; Schuler, Krysten; Bunting, Elizabeth M; Kirchgessner, Megan; Yabsley, Michael J

    2017-10-01

    Since the early 1990s there has been an increase in the number of cases and geographic expansion of severe mange in the black bear (Ursus americanus) population in Pennsylvania. Although there are 3 species of mites associated with mange in bears, Sarcoptes scabiei has been identified as the etiologic agent in these Pennsylvania cases. Historically, S. scabiei-associated mange in bears has been uncommon and sporadic, although it is widespread and relatively common in canid populations. To better understand this recent emergence of sarcoptic mange in bears in Pennsylvania and nearby states, we genetically characterized S. scabiei samples from black bears in the eastern United States. These sequences were compared with newly acquired S. scabiei sequences from wild canids (red fox [Vulpes vulpes] and coyote [Canis latrans]) and a porcupine (Erethizon dorsatum) from Pennsylvania and Kentucky and also existing sequences in GenBank. The internal transcribed spacer (ITS)-2 region and cytochrome c oxidase subunit 1 (cox1) gene were amplified and sequenced. Twenty-four ITS-2 sequences were obtained from mites from bears (n = 16), red fox (n = 5), coyote (n = 2), and a porcupine. The sequences from bear samples were identical to each other or differed only at polymorphic bases, whereas S. scabiei from canids were more variable, but 2 were identical to S. scabiei sequences from bears. Eighteen cox1 sequences obtained from mites from bears represented 6 novel haplotypes. Phylogenetic analysis of cox1 sequences revealed 4 clades: 2 clades of mites of human origin from Panama or Australia, a clade of mites from rabbits from China, and a large unresolved clade that included the remaining S. scabiei sequences from various hosts and regions, including sequences from the bears from the current study. Although the cox1 gene was more variable than the ITS-2, phylogenetic analyses failed to detect any clustering of S. scabiei from eastern U.S. hosts. Rather, sequences from black bears

  7. Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene.

    Science.gov (United States)

    Ning, Hong-Rui; Huang, Si-Yang; Wang, Jin-Lei; Xu, Qian-Ming; Zhu, Xing-Quan

    2015-06-01

    Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii.

  8. Genetics, Host Range, and Molecular and Pathogenic Characterization of Verticillium dahliae From Sunflower Reveal Two Differentiated Groups in Europe

    Directory of Open Access Journals (Sweden)

    Alberto Martín-Sanz

    2018-03-01

    Full Text Available Verticillium wilt and leaf mottle of sunflower, caused by the fungus Verticillium dahliae (Vd has become a major constraint to sunflower oil production in temperate European countries. Information about Vd from sunflower is very scarce despite genetics, molecular traits and pathogenic abilities of fungal strains affecting many other crops being widely known. Understanding and characterizing the diversity of Vd populations in those countries where sunflowers are frequent and severely affected by the fungus are essential for efficient breeding for resistance. In this study, we have analyzed genetic, molecular and pathogenic traits of Vd isolates affecting sunflower in European countries. When their genetics was investigated, almost all the isolates from France, Italy, Spain, Argentina, and Ukraine were assigned to vegetative compatibility group (VCG 2B. In Bulgaria, Turkey, Romania, and Ukraine, some isolates were assigned to VCG6, but some others could not be assigned to any VCG. Genotyping markers used for Vd affecting crops other than sunflower showed that all the isolates were molecularly identified as race 2 and that markers of defoliating (D and non-defoliating (ND pathotypes distinguished two well-differentiated clusters, one (E grouping those isolates from Eastern Europe and the other (W all those from the Western Europe and Argentina. All the isolates in cluster W were VCG2B, while the isolates in cluster E belonged to an unknown VCG or to VCG6. When the host range was investigated in the greenhouse, the fungus was highly pathogenic to artichoke, showing the importance of farming alternatives in the management of Verticillium attacks. Sunflower genotypes were inoculated with a selection of isolates in two experiments. Two groups were identified, one including the isolates from Western Europe, Argentina, and Ukraine, and the other including isolates from Bulgaria, Romania, and Turkey. Three pathogenic races were differentiated: V1, V2-EE

  9. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon.

    Science.gov (United States)

    Yishay, Moran; Burdman, Saul; Valverde, Angel; Luzzatto, Tal; Ophir, Ron; Yedidia, Iris

    2008-10-01

    The capability of Pectobacterium carotovorum isolates to infect monocotyledonous plants has been previously reported; however, no full consideration was given to characterize the association between such isolates and their monocot hosts. To assess differences in aggressiveness among P. carotovorum ssp. carotovorum isolates originating from monocotyledonous or dicotyledonous plants, we used as model plants two susceptible monocot hosts, the ornamentals Zantedeschia aethiopica and Ornithogalum dubium, as well as two common dicot hosts, Solanum tuberosum and Brassica oleracea. Using virulence assays and different genetic analyses we characterized P. carotovorum ssp. carotovorum isolates from diverse geographical locations which originated from plants belonging to four unrelated orders of monocots and five orders of dicots. Invariably, isolates originating from monocots exhibited higher virulence towards the tested monocot plants than dicot isolates, independently of their geographical source. Moreover, monocot and dicot isolates were clearly differentiated by various genetic analyses, such as 16S rRNA sequence clustering, intergenic transcribed spacer-PCR (ITS-PCR) banding pattern and amplified fragment length polymorphism (AFLP). We propose that the observed relationship between pathogenicity and genetic diversity among P. carotovorum ssp. carotovorum isolates reveals a co-evolutionary specialization trend in the interaction between this pathogen and its hosts.

  10. A forward phenotypically driven unbiased genetic analysis of host genes that moderate herpes simplex virus virulence and stromal keratitis in mice.

    Directory of Open Access Journals (Sweden)

    Richard L Thompson

    Full Text Available Both viral and host genetics affect the outcome of herpes simplex virus type 1 (HSV-1 infection in humans and experimental models. Little is known about specific host gene variants and molecular networks that influence herpetic disease progression, severity, and episodic reactivation. To identify such host gene variants we have initiated a forward genetic analysis using the expanded family of BXD strains, all derived from crosses between C57BL/6J and DBA/2J strains of mice. One parent is highly resistant and one highly susceptible to HSV-1. Both strains have also been fully sequenced, greatly facilitating the search for genetic modifiers that contribute to differences in HSV-1 infection. We monitored diverse disease phenotypes following infection with HSV-1 strain 17syn+ including percent mortality (herpes simplex encephalitis, HSE, body weight loss, severity of herpetic stromal keratitis (HSK, spleen weight, serum neutralizing antibody titers, and viral titers in tear films in BXD strains. A significant quantitative trait locus (QTL on chromosome (Chr 16 was found to associate with both percent mortality and HSK severity. Importantly, this QTL maps close to a human QTL and the gene proposed to be associated with the frequency of recurrent herpetic labialis (cold sores. This suggests that a single host locus may influence these seemingly diverse HSV-1 pathogenic phenotypes by as yet unknown mechanisms. Additional suggestive QTLs for percent mortality were identified--one on Chr X that is epistatically associated with that on Chr 16. As would be anticipated the Chr 16 QTL also modulated weight loss, reaching significance in females. A second significant QTL for maximum weight loss in male and female mice was mapped to Chr 12. To our knowledge this is the first report of a host genetic locus that modulates the severity of both herpetic disease in the nervous system and herpetic stromal keratitis.

  11. Genetic Evidence of Contemporary Dispersal of the Intermediate Snail Host of Schistosoma japonicum: Movement of an NTD Host Is Facilitated by Land Use and Landscape Connectivity.

    Directory of Open Access Journals (Sweden)

    Jennifer R Head

    2016-12-01

    Full Text Available While the dispersal of hosts and vectors-through active or passive movement-is known to facilitate the spread and re-emergence of certain infectious diseases, little is known about the movement ecology of Oncomelania spp., intermediate snail host of the parasite Schistosoma japonicum, and its consequences for the spread of schistosomiasis in East and Southeast Asia. In China, despite intense control programs aimed at preventing schistosomiasis transmission, there is evidence in recent years of re-emergence and persistence of infection in some areas, as well as an increase in the spatial extent of the snail host. A quantitative understanding of the dispersal characteristics of the intermediate host can provide new insights into the spatial dynamics of transmission, and can assist public health officials in limiting the geographic spread of infection.Oncomelania hupensis robertsoni snails (n = 833 were sampled from 29 sites in Sichuan, China, genotyped, and analyzed using Bayesian assignment to estimate the rate of recent snail migration across sites. Landscape connectivity between each site pair was estimated using the geographic distance distributions derived from nine environmental models: Euclidean, topography, incline, wetness, land use, watershed, stream use, streams and channels, and stream velocity. Among sites, 14.4% to 32.8% of sampled snails were identified as recent migrants, with 20 sites comprising >20% migrants. Migration rates were generally low between sites, but at 8 sites, over 10% of the overall host population originated from one proximal site. Greater landscape connectivity was significantly associated with increased odds of migration, with the minimum path distance (as opposed to median or first quartile emerging as the strongest predictor across all environmental models. Models accounting for land use explained the largest proportion of the variance in migration rates between sites. A greater number of irrigation channels

  12. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    Science.gov (United States)

    2011-01-01

    Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141

  13. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    Directory of Open Access Journals (Sweden)

    Rossi Luca

    2011-07-01

    Full Text Available Abstract Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica in Asturias (Spain, using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus, roe deer (Capreolus capreolus and red fox (Vulpes vulpes. Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity. The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species.

  14. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain.

    Science.gov (United States)

    Alasaad, Samer; Oleaga, Álvaro; Casais, Rosa; Rossi, Luca; Min, Annarita Molinar; Soriguer, Ramón C; Gortázar, Christian

    2011-07-27

    Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. © 2011 Alasaad et al; licensee BioMed Central Ltd.

  15. Genetic covariation of the marine fungal symbiont Haloguignardia irritans (Ascomycota, Pezizomycotina) with its algal hosts Cystoseira and Halidrys (Phaeophyceae, Fucales) along the west coast of North America.

    Science.gov (United States)

    Harvey, J B J; Goff, Lynda J

    2010-01-01

    The fungal endophyte Haloguignardia irritans induces gall formation on the brown algal genera Cystoseira and Halidrys occurring from Oregon to Baja California, Mexico. Here we examine genetic covariation and compare rDNA phylogenies to investigate the coevolutionary histories of H. irritans and its algal hosts. Despite recognition of H. irritans as a single morphological species, internal transcribed spacer rDNA sequences representative of its geographic range are characterized by sequence variation at the intraspecific to intrageneric levels. An assessment of parallel cladogenesis between endophyte and host phylogenies provides evidence for a combination of independent fungal divergence and host jumping, similar to that observed in terrestrial lichens. Our results suggest that reduced gene flow due to geographic isolation is a major contributing factor to more concerted covariation observed at one island site, rather than to differences among algal host species alone. Because geography and its effects on gene flow can create heterogeneous mosaics of coevolution for symbioses in terrestrial environments, our results support the notion that conservation efforts toward the maintenance of genetic diversity in marine environments should likewise consider geographic complexity and its effects on coevolving marine species. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Fu Linglin, E-mail: full1103@yahoo.com.cn [Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Shuai Jiangbing [Zhejiang Entry and Exit Inspection and Quarantine Bureau, Hangzhou 310012 (China); Wang Yanbo; Ma Hongjia [Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Li Jianrong, E-mail: lijianrong@mail.zjgsu.edu.cn [Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China)

    2011-10-15

    This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG){sub 5} primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG){sub 5}-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish. - Highlights: > The host-origin library developed by (GTG){sub 5}-PCR could be used to shellfish water MST. > Fecal pollution of Xiangshan Bay arose from multiple sources of agricultural wastes. > High level of E. coli concentration in shellfish water increases the health risk. > Annual changes of E. coli host sources affect distribution of zoonotic pathogens. - The temporal genetic variability and dominant host sources of E. coli in fecal contaminated shellfish growing waters of Xiangshan Bay was characterized.

  17. Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea

    International Nuclear Information System (INIS)

    Fu Linglin; Shuai Jiangbing; Wang Yanbo; Ma Hongjia; Li Jianrong

    2011-01-01

    This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG) 5 primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG) 5 -PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish. - Highlights: → The host-origin library developed by (GTG) 5 -PCR could be used to shellfish water MST. → Fecal pollution of Xiangshan Bay arose from multiple sources of agricultural wastes. → High level of E. coli concentration in shellfish water increases the health risk. → Annual changes of E. coli host sources affect distribution of zoonotic pathogens. - The temporal genetic variability and dominant host sources of E. coli in fecal contaminated shellfish growing waters of Xiangshan Bay was characterized.

  18. Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization.

    Science.gov (United States)

    Lewandowski, Mariusz; Skoracka, Anna; Szydło, Wiktoria; Kozak, Marcin; Druciarek, Tobiasz; Griffiths, Don A

    2014-08-01

    Eriophyoid species belonging to the genus Trisetacus are economically important as pests of conifers. A narrow host specialization to conifers and some unique morphological characteristics have made these mites interesting subjects for scientific inquiry. In this study, we assessed morphological and genetic variation of seven Trisetacus species originating from six coniferous hosts in Poland by morphometric analysis and molecular sequencing of the mitochondrial cytochrome oxidase subunit I gene and the nuclear D2 region of 28S rDNA. The results confirmed the monophyly of the genus Trisetacus as well as the monophyly of five of the seven species studied. Both DNA sequences were effective in discriminating between six of the seven species tested. Host-dependent genetic and morphological variation in T. silvestris and T. relocatus, and habitat-dependent genetic and morphological variation in T. juniperinus were detected, suggesting the existence of races or even distinct species within these Trisetacus taxa. This is the first molecular phylogenetic analysis of the Trisetacus species. The findings presented here will stimulate further investigations on the evolutionary relationships of Trisetacus as well as the entire Phytoptidae family.

  19. Phylogeography of two parthenogenetic sawfly species (Hymenoptera: Tenthredinidae): relationship of population genetic differentiation to host plant distribution

    NARCIS (Netherlands)

    Müller, C.; Barker, A.; Boevé, J.L.; Jong, de P.W.; Vos, de H.; Brakefield, P.M.

    2004-01-01

    This study compares the population genetic structure of two obligate parthenogenetic sawfly species, Aneugmenus padi (L.) Zhelochovtsev and Eurhadinoceraea ventralis (Panzer) Enslin (Hymenoptera: Tenthredinidae). Allozymes were used to detect genetic differences in larvae collected at different

  20. Genetic divergence and evidence for sympatric host-races in the highly polyphagous brown tail moth, Euproctis chrysorrhoea (Lepidoptera: Erebidae)

    NARCIS (Netherlands)

    Marques, J.F.; Wang, H.L.; Svensson, G.P.; Frago Clols, E.; Anderbrant, O.

    2014-01-01

    The brown tail moth (BTM) Euproctis chrysorrhoea (Linnaeus 1758) (Lepidoptera: Erebidae) is a forest and ornamental pest in Europe and the United States. Its extreme polyphagy, and documented phenological shift associated with host use suggest the presence of distinct host-races. To test this

  1. Genetic differentiation associated with host plants and geography among six widespread lineages of South American Blepharoneura fruit flies (Tephritidae)

    Science.gov (United States)

    Tropical herbivorous insects are astonishingly diverse and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host-plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most lineages of herbivorous fruit f...

  2. EXPERIMENTAL EVIDENCE FOR GENETIC VARIATION IN COMPATIBILITY BETWEEN THE FUNGUS ATKINSONELLA HYPOXYLON AND ITS THREE HOST GRASSES.

    Science.gov (United States)

    Leuchtmann, Adrian; Clay, Keith

    1989-07-01

    Variation in compatibility has been documented within and among several natural plant populations infected by fungal pathogens. In this study, seeds and isolates of the fungus Atkinsonella hypoxylon (Ascomycetes, Clavicipitaceae) were collected from three populations of the grass Danthonia spicata, two populations of D. compressa, and four populations of Stipa leucotricha. Each fungal strain was reciprocally inoculated into seedlings grown in aseptic culture from its original host population, into seedlings from other conspecific host populations, and into seedlings from the other two host species. There were three distinct patterns of compatibility, as evidenced by the ability of the fungus to grow on the seedling and to colonize new tillers. Fungal strains from one host genus were incompatible with seedlings from the other host genus. Strains from the two Danthonia species were broadly compatible among Danthonia populations and had very high rates of infection, while strains from Stipa also were broadly compatible among Stipa populations but had relatively low rates of infection. Literature surveys indicate that, in contrast to pathogenic microorganisms, mutualistic microorganisms typically exhibit broad patterns of compatibility among hosts, which lack resistance to infection. The effect of A. hypoxylon on host fitness is most detrimental in Stipa, where the fewest seedlings became infected, and most beneficial in Danthonia, where most seedlings became infected. © 1989 The Society for the Study of Evolution.

  3. Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata.

    Science.gov (United States)

    Harrington, Thomas C; Thorpe, Daniel J; Alfenas, Acelino C

    2011-05-01

    Ceratocystis fimbriata is a complex of many species that cause wilt and cankers on woody plants and rot of storage roots or corms of many economically important crops worldwide. In Brazil, C. fimbriata infects different cultivated crop plants that are not native to Brazil, including Gmelina arborea, Eucalyptus spp., Mangifera indica (mango), Ficus carica (fig), and Colocasia esculenta (inhame). Phylogenetic analyses and inoculation studies were performed to test the hypothesis that there are host-specialized lineages of C. fimbriata in Brazil. The internal transcribed spacer region ribosomal DNA sequences varied greatly but there was little resolution of lineages based on these sequences. A portion of the MAT1-2 mating type gene showed less variation, and this variation corresponded more closely with host of origin. However, mango isolates were found scattered throughout the tree. Inoculation experiments on the five exotic hosts showed substantial variation in aggressiveness within and among pathogen populations. Native hosts from the same families as the exotic hosts tended to be less susceptible than the cultivated hosts, but there was little correlation between aggressiveness to the cultivated and native hosts of the same family. Cultivation and vegetative propagation of exotic crops may select for strains that are particularly aggressive on those crops.

  4. Host-associated genetic differentiation in a seed parasitic weevil Rhinusa antirrhini (Coleptera: Curculionidae) revealed by mitochondrial and nuclear sequence data.

    Science.gov (United States)

    Hernández-Vera, Gerardo; Mitrović, Milana; Jović, Jelena; Tosevski, Ivo; Caldara, Roberto; Gassmann, Andre; Emerson, Brent C

    2010-06-01

    Plant feeding insects and the plants they feed upon represent an ecological association that is thought to be a key factor for the diversification of many plant feeding insects, through differential adaptation to different plant selective pressures. While a number of studies have investigated diversification of plant feeding insects above the species level, relatively less attention has been given to patterns of diversification within species, particularly those that also require plants for oviposition and subsequent larval development. In the case of plant feeding insects that also require plant tissues for the completion of their reproductive cycle through larval development, the divergent selective pressure not only acts on adults, but on the full life history of the insect. Here we focus attention on Rhinusa antirrhini (Curculionidae), a species of weevil broadly distributed across Europe that both feeds on, and oviposits and develops within, species of the plant genus Linaria (Plantaginaceae). Using a combination of mtDNA (COII) and nuclear DNA (EF1-alpha) sequencing and copulation experiments we assess evidence for host associated genetic differentiation within R. antirrhini. We find substantial genetic variation within this species that is best explained by ecological specialisation on different host plant taxa. This genetic differentiation is most pronounced in the mtDNA marker, with patterns of genetic variation at the nuclear marker suggesting incomplete lineage sorting and/or gene flow between different host plant forms of R. antirrhini, whose origin is estimated to date to the mid-Pliocene (3.77 Mya; 2.91-4.80 Mya).

  5. Genetic 'budget' of viruses and the cost to the infected host: a theory on the relationship between the genetic capacity of viruses, immune evasion, persistence and disease.

    Science.gov (United States)

    Chaston, T B; Lidbury, B A

    2001-02-01

    The nature of the pathogen-host relationship is recognized as being a dynamic coevolutionary process where the immune system has required ongoing adaptation and improvement to combat infection. Under survival pressure from sophisticated immune responses, adaptive processes for microbes, including viruses, have manifested as immune evasion strategies. This paper proposes a theory that virus immune evasion can be broadly classified into 'acquisition' or 'erroneous replication' strategies. Acquisition strategies are characteristic of large genome dsDNA viruses, which (i) replicate in the cell nucleus; (ii) have acquired host genes that can be used to directly manipulate responses to infection; (iii) are often latent for the lifetime of the host; and (iv) have little or no serious impact on health. Alternatively, erroneous replication strategies are characteristic of small genome RNA viruses, which are recognized as being the cause of many serious diseases in humans. It is proposed that this propensity for disease is due to the cytoplasmic site of replication and truncated temporal relationship with the host, which has limited or removed the evolutionary opportunity for RNA viruses to have acquired host genes. This has resulted in RNA viruses relying on error-prone replication strategies which, while allowing survival and persistence, are more likely to lead to disease due to the lack of direct viral control over potentially host-deleterious inflammatory and immune responses to infection.

  6. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.

    2015-01-01

    Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  7. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.

  8. The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host

    Science.gov (United States)

    Harrison, Joshua G.; Gompert, Zachariah; Fordyce, James A.; Buerkle, C. Alex; Grinstead, Rachel; Jahner, Joshua P.; Mikel, Scott; Nice, Christopher C.; Santamaria, Aldrin; Forister, Matthew L.

    2016-01-01

    From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa) onto an exotic host plant (alfalfa, Medicago sativa). We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history. PMID:26836490

  9. The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host.

    Directory of Open Access Journals (Sweden)

    Joshua G Harrison

    Full Text Available From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa onto an exotic host plant (alfalfa, Medicago sativa. We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history.

  10. The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host.

    Science.gov (United States)

    Harrison, Joshua G; Gompert, Zachariah; Fordyce, James A; Buerkle, C Alex; Grinstead, Rachel; Jahner, Joshua P; Mikel, Scott; Nice, Christopher C; Santamaria, Aldrin; Forister, Matthew L

    2016-01-01

    From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa) onto an exotic host plant (alfalfa, Medicago sativa). We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history.

  11. Genetic Population Structure of Dastarcus helophoroides (Coleoptera: Bothrideridae) From Different Long-Horned Beetle Hosts Based on Complete Sequences of Mitochondrial COI.

    Science.gov (United States)

    Zhang, Zhengqing; Chang, Yong; Li, Menglou

    2017-06-01

    Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is an important natural enemy of long-horned beetles in China, Japan, and Korea. In this study, the genetic sequence of cytochrome oxidase subunit Ι was used to investigate the genetics and relationships within and among D. helophoroides populations collected from five different geographic locations. We used principal component analysis, heatmap, and Venn diagram results to determine the relationship between haplotypes and populations. In total, 26 haplotypes with 51 nucleotide polymorphic sites were defined, and low genetic diversity was found among the different populations. Significant genetic variations were observed mainly within populations, and no correlation was found between genetic distribution and geographical distance. Low pairwise fixation index values (-0.01424 to 0.04896) and high gene flows show that there was high gene exchange between populations. The codistributed haplotype DH01 was suggested to be the most ancestral haplotype, and other haplotypes were thought to have evolved from it through several mutations. In four of the populations, both common haplotypes (DH01, DH03, and DH22) and unique haplotypes were found. Low genetic diversity among different populations is related to a relatively high flight capacity, host movement, and human-aided dispersal of D. helophoroides. The high gene exchange and typically weak population genetic structure among five populations, especially among populations of Anoplophora glabripennis (Motschulsky), Monochamus alternatus (Hope), and Massicus raddei (Blessig), may suggest that these populations cross naturally in the field. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Genetic gradient of a host-parasite pair along a river persisted ten years against physical mobility: Baltic Salmo salar vs. Gyrodactylus salaris.

    Science.gov (United States)

    Lumme, Jaakko; Anttila, Pasi; Rintamäki, Päivi; Koski, Perttu; Romakkaniemi, Atso

    2016-11-01

    The Atlantic salmon, Salmo salar L., in the Tornio River in the Northern Baltic Sea basin accommodates a monogenean ectoparasite, Gyrodactylus salaris. The aim of the study was to understand the population structure of apparently co-adapted host-parasite system: no parasite-associated mortality has been reported. The parasite burden among salmon juveniles (parr) was monitored along 460km of the river in 2000-2009. Among the parr, 33.0% were infected (n fish =1913). The genetic structure of the parasite population was studied by sequencing an anonymous nuclear DNA marker (ADNAM1, three main genotypes) and mitochondrial CO1 (three clades, six haplotypes). During the ten years, the parasite population was strongly and stably genetically differentiated among up- and downstream nurseries (n ADNAM1 =411, F ST =0.579; n CO1 =443, F ST =0.534). Infection prevalence among the smolts migrating to sea was higher than in the sedentary parr populations (82.2%, n fish =129). The spatial differentiation observed among the sedentary juveniles was reflected temporally in the smolt run: parasite genotypes dominating the upper part of the river arrived later than downstream dwellers (medians June 4 and June 2) to the trap 7km from the river mouth. The nuclear and mitochondrial markers were in stable disequilibrium which was not relaxed in the contact zone or among the smolts where the parasite clones often met on individual fish. Only five parasite specimens on smolts (n worms =217) were putative recent sexual recombinants. The contribution of extant salmon hatcheries into the infection was negligible. The host salmon population in Tornio River is known to show significant spatial differentiation (F ST =0.022). The stable spatial genetic structure of the parasite against the high physical mobility suggested a possibility of local co-adaptation of the host-parasite subpopulations. Copyright © 2016. Published by Elsevier B.V.

  13. Host range and genetic relatedness of Colletotrichum acutatum isolates from fruit crops and leatherleaf fern in Florida.

    Science.gov (United States)

    MacKenzie, S J; Peres, N A; Barquero, M P; Arauz, L F; Timmer, L W

    2009-05-01

    Isolates of Colletotrichum acutatum were collected from anthracnose-affected strawberry, leatherleaf fern, and Key lime; ripe-rot-affected blueberry; and postbloom fruit drop (PFD)-affected sweet orange in Florida. Additional isolates from ripe-rot-affected blueberry were collected from Georgia and North Carolina and from anthracnose-affected leatherleaf fern in Costa Rica. Pathogenicity tests on blueberry and strawberry fruit; foliage of Key lime, leatherleaf fern, and strawberry; and citrus flowers showed that isolates were highly pathogenic to their host of origin. Isolates were not pathogenic on foliage of heterologous hosts; however, several nonhomologous isolates were mildly or moderately pathogenic to citrus flowers and blueberry isolates were pathogenic to strawberry fruit. Based on sequence data from the internal transcribed spacer (ITS)1-5.8S rRNA-ITS2 region of the rDNA repeat, the glutaraldehyde-3-phosphate dehydrogenase intron 2 (G3PD), and the glutamine synthase intron 2 (GS), isolates from the same host were identical or very similar to each other and distinct from those isolated from other hosts. Isolates from leatherleaf fern in Florida were the only exception. Among these isolates, there were two distinct G3PD and GS sequences that occurred in three of four possible combinations. Only one of these combinations occurred in Costa Rica. Although maximum parsimony trees constructed from genomic regions individually displayed little or no homoplasy, there was a lack of concordance among genealogies that was consistent with a history of recombination. This lack of concordance was particularly evident within a clade containing PFD, Key lime, and leatherleaf fern isolates. Overall, the data indicated that it is unlikely that a pathogenic strain from one of the hosts examined would move to another of these hosts and produce an epidemic.

  14. Genetic transformation of an obligate anaerobe, P. gingivalis for FMN-green fluorescent protein expression in studying host-microbe interaction.

    Directory of Open Access Journals (Sweden)

    Chul Hee Choi

    Full Text Available The recent introduction of "oxygen-independent" flavin mononucleotide (FMN-based fluorescent proteins (FbFPs is of major interest to both eukaryotic and prokaryotic microbial biologists. Accordingly, we demonstrate for the first time that an obligate anaerobe, the successful opportunistic pathogen of the oral cavity, Porphyromonas gingivalis, can be genetically engineered for expression of the non-toxic green FbFP. The resulting transformants are functional for studying dynamic bacterial processes in living host cells. The visualization of the transformed P. gingivalis (PgFbFP revealed strong fluorescence that reached a maximum emission at 495 nm as determined by fluorescence microscopy and spectrofluorometry. Human primary gingival epithelial cells (GECs were infected with PgFbFP and the bacterial invasion of host cells was analyzed by a quantitative fluorescence microscopy and antibiotic protection assays. The results showed similar levels of intracellular bacteria for both wild type and PgFbFP strains. In conjunction with organelle specific fluorescent dyes, utilization of the transformed strain provided direct and accurate determination of the live/metabolically active P. gingivalis' trafficking in the GECs over time. Furthermore, the GECs were co-infected with PgFbFP and the ATP-dependent Clp serine protease-deficient mutant (ClpP- to study the differential fates of the two strains within the same host cells. Quantitative co-localization analyses displayed the intracellular PgFbFP significantly associated with the endoplasmic reticulum network, whereas the majority of ClpP- organisms trafficked into the lysosomes. Hence, we have developed a novel and reliable method to characterize live host cell-microbe interactions and demonstrated the adaptability of FMN-green fluorescent protein for studying persistent host infections induced by obligate anaerobic organisms.

  15. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae).

    Science.gov (United States)

    Lozier, Jeffrey D; Roderick, George K; Mills, Nicholas J

    2007-06-01

    Over the past several decades biologists' fascination with plant-herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.

  16. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach

    Czech Academy of Sciences Publication Activity Database

    Heneberg, P.; Faltýnková, Anna; Bizos, J.; Mala, M.; Žiak, J.; Literák, I.

    2015-01-01

    Roč. 8, FEB 8 2015 (2015), s. 85 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : cercariae * DNA analysis * fluke * host -parasite interaction * Hydrobiidae * life cycle * Littorinimorpha Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.234, year: 2015

  17. Innate and adaptive host responses and their genetic control in tuberculosis : studies in Indonesia, a highly TB endemic setting

    NARCIS (Netherlands)

    Sahiratmadja, Edhyana Kusumastuti

    2007-01-01

    Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis. MTB infection does not necessarily progress to TB. Only 5-10% of exposed individuals develop clinical signs and symptoms of TB. Given the impact of mycobacterial exposure and the immunoregulatory consequences for host

  18. Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions.

    NARCIS (Netherlands)

    Limmer, S.; Quintin, J.; Hetru, C.; Ferrandon, D.

    2011-01-01

    To gain an in-depth grasp of infectious processes one has to know the specific interactions between the virulence factors of the pathogen and the host defense mechanisms. A thorough understanding is crucial for identifying potential new drug targets and designing drugs against which the pathogens

  19. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.

    Directory of Open Access Journals (Sweden)

    Nathaniel D Maynard

    2010-07-01

    Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.

  20. Genetic diversity and host associations in Campylobacter jejuni from human cases and broilers in 2000 and 2008.

    Science.gov (United States)

    Griekspoor, Petra; Engvall, Eva Olsson; Åkerlind, Britt; Olsen, Björn; Waldenström, Jonas

    2015-07-09

    Campylobacter jejuni is an important food-borne pathogen, with a global distribution. It can colonize numerous host species, including both domestic and wild animals, but is particularly associated with birds (poultry and wild birds). For human campylobacteriosis, poultry products are deemed the most significant risk factor for acquiring infection. We conducted a genotyping and host attribution study of a large representative collection of C. jejuni isolated from humans and broilers in Sweden in the years 2000 and 2008. In total 673 broiler and human isolates from 10 different abattoirs and 6 different hospitals were genotyped with multilocus sequence typing. Source attribution analyses confirmed the strong linkage between broiler C. jejuni and domestic human cases, but also indicated a significant association to genotypes more commonly found in wild birds. Genotype distributions did not change dramatically between the two study years, suggesting a stable population of infecting bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation.

    Directory of Open Access Journals (Sweden)

    Waraporn Noikong

    2014-04-01

    Full Text Available Echinostome metacercariae are the infective stage for humans and animals. The identification of echinostomes has been based until recently on morphology but molecular techniques using sequences of ribosomal RNA and mitochondrial DNA have indicated major clades within the group. In this study we have used the ITS2 region of ribosomal RNA and the ND1 region of mitochondrial DNA to identify metacercariae from snails collected from eight well-separated sites from an area of 4000 km2 in Lamphun Province, Thailand. The derived sequences have been compared to those collected from elsewhere and have been deposited in the nucleotide databases. There were two aims of this study; firstly, to determine the species of echinostome present in an endemic area, and secondly, to assess the intra-specific genetic diversity, as this may be informative with regard to the potential for the development of anthelmintic resistance and with regard to the spread of infection by the definitive hosts. Our results indicate that the most prevalent species are most closely related to E. revolutum, E. trivolvis, E. robustum, E. malayanum and Euparyphium albuferensis. Some sites harbour several species and within a site there could be considerable intra-species genetic diversity. There is no significant geographical structuring within this area. Although the molecular techniques used in this study allowed the assignment of the samples to clades within defined species, however, within these groupings there were significant differences indicating that cryptic speciation may have occurred. The degree of genetic diversity present would suggest the use of targeted regimes designed to minimise the selection of anthelmintic resistance. The apparent lack of geographic structuring is consistent with the transmission of the parasites by the avian hosts.

  2. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation.

    Directory of Open Access Journals (Sweden)

    Marion A L Picard

    2016-09-01

    Full Text Available Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner.We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae and after (in adults the phenotypic sexual dimorphism appearance. In this paper we present (i candidate determinants of the sexual differentiation, (ii sex-biased players of the interaction with the vertebrate host, and (iii different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes.Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not

  3. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina)▿ †

    Science.gov (United States)

    Estrella, María Julia; Muñoz, Socorro; Soto, María José; Ruiz, Oscar; Sanjuán, Juan

    2009-01-01

    A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin. PMID

  4. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Reactivation of dormant "non-culturable" Mycobacterium tuberculosis developed in vitro after injection in mice: both the dormancy depth and host genetics influence the outcome.

    Science.gov (United States)

    Shleeva, Margarita; Kondratieva, Tatiana; Rubakova, Elvira; Vostroknutova, Galina; Kaprelyants, Arseny; Apt, Alexander

    2015-01-01

    Three stocks of Mycobacterium tuberculosis H37Rv were cultured in vitro under prolonged hypoxic or acidified conditions until partial or complete loss of the capacity to form colonies on agar medium was achieved. Such dormant "non-culturable" mycobacteria were assessed for the growth resuscitation after intra-tracheal injection into mice of the two inbred strains with different genetic susceptibility to M. tuberculosis-triggered disease: hyper-susceptible I/St and relatively resistant B6. The results indicate that bacteria which are able to resuscitate spontaneously in liquid medium in vitro started to multiply in organs of infected mice, and that the outcome of such infection strongly depended upon the level of genetic TB susceptibility. However, dormant bacteria required inducers for resuscitation in vitro lost the capacity to multiply even in genetically susceptible mice. The established model of dormancy/reactivation is suitable for the studying host-pathogen interactions and testing vaccine and drug candidates specifically targeting latent TB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A possible correlation between the host genetic background in the epidemiology of Hepatitis B virus in the Amazon region of Brazil

    Directory of Open Access Journals (Sweden)

    A. K. C. R. Santos

    1995-08-01

    Full Text Available The Amazon region of Brazil is an area of great interest because of the large distribution of hepatitis B virus in specific Western areas. Seven urban communities and 24 Indian groups were visited in a total of 4,244 persons. Each individual was interviewed in order to obtain demographic and familial information. Whole blood was collected for serology and genetic determinations. Eleven genetic markers and three HBV markers were tested. Among the most relevant results it was possible to show that (i there was a large variation of previous exposure to HBV in both urban and non-urban groups ranging from 0 to 59.2%; (ii there was a different pattern of epidemiological distribution of HBV that was present even among a same linguistic Indian group, with mixed patterns of correlation between HBsAg and anti-HBs and (iii the prevalence of HBV markers (HBsAg and anti-HBs were significantly higher (P=0.0001 among the Indian population (18.8% than the urban groups (12.5%. Its possible that the host genetic background could influence and modulate the replication of the virus in order to generate HB carrier state.

  7. Geography and host specificity: Two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae)

    Czech Academy of Sciences Publication Activity Database

    Bouzid, W.; Štefka, Jan; Hypša, Václav; Lek, S.; Scholz, Tomáš; Legal, L.; Ben Hassine, O. K.; Loot, G.

    2008-01-01

    Roč. 38, č. 12 (2008), s. 1465-1479 ISSN 0020-7519 R&D Projects: GA MŠk LC522; GA ČR GA524/04/0342; GA MŠk LC06073 Grant - others:GA ČR(CZ) GA206/08/1019 Institutional research plan: CEZ:AV0Z60220518 Keywords : genealogy * coevolution * genetic structure * tapeworms Subject RIV: EG - Zoology Impact factor: 3.752, year: 2008

  8. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV using amplicon next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Wycliff M Kinoti

    Full Text Available PCR amplicon next generation sequencing (NGS analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.

  9. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Science.gov (United States)

    De Simone, Maura; Spagnuolo, Lorenza; Lorè, Nicola Ivan; Rossi, Giacomo; Cigana, Cristina; De Fino, Ida; Iraqi, Fuad A; Bragonzi, Alessandra

    2014-01-01

    Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P

  10. A population-based study to investigate host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population

    Directory of Open Access Journals (Sweden)

    O'Brien Stephen J

    2008-01-01

    Full Text Available Abstract Background Hepatitis B virus (HBV infection is a significant public health problem that may lead to chronic liver disease, cirrhosis, and hepatocellular carcinoma (HCC. Approximately 30% of the world's population has been infected with HBV and approximately 350 million (5–6% are persistent carriers. More than 120 million Chinese are infected with HBV. The role of host genetic factors and their interactions with environmental factors leading to chronic HBV infection and its complications are not well understood. We believe that a better understanding of these factors and interactions will lead to more effective diagnostic and therapeutic options. Methods/Design This is a population-based, case-control study protocol to enroll 2200 Han Chinese from medical centers in northern and western China. Adult subjects in the following groups are being enrolled: healthy donors (n = 200, HBV infected persons achieving virus clearance (n = 400, asymptomatic HBV persistent carriers (n = 400, chronic hepatitis B cases (n = 400, decompensated liver cirrhosis with HBV infection cases (n = 400, and hepatocellular carcinoma with HBV infection cases (n = 400. In addition, for haplotype inference and quality control of sample handling and genotyping results, children of 1000 cases will be asked to provide a buccal sample for DNA extraction. With the exception of adult patients presenting with liver cirrhosis or HCC, all other cases and controls will be 40 years or older at enrollment. A questionnaire is being administered to capture dietary and environmental risk factors. Both candidate-gene and genome-wide association approaches will be used to assess the role of single genetic factors and higher order interactions with other genetic or environmental factors in HBV diseases. Conclusion This study is designed and powered to detect single gene effects as well as gene-gene and environmental-gene interactions. The identification of allelic polymorphisms in

  11. Genetic tools link long-term demographic and life-history traits of anemonefish to their anemone hosts

    KAUST Repository

    Salles, Océane C.

    2016-07-26

    The life-history traits and population dynamics of species are increasingly being attributed to the characteristics of their preferred habitats. While coral reef fish are often strongly associated with particular habitats, long-term studies establishing the demographic and life-history consequences of occupying different reef substrata are rare and no studies have monitored individuals in situ over their lifetime and determined the fate of their offspring. Here, we documented a quasi-turnover and local reproductive success for an entire population of orange clownfish (Amphiprion percula) from Kimbe Island, Papua New Guinea, by taking bi-annual samples of DNA over a 10-yr period (2003–2013). We compared demographic and life-history traits of individuals living on two host anemone species, Heteractis magnifica and Stichodactyla gigantea, including female size, adult continued presence (a proxy for relative longevity range), early post-settlement growth, the number of eggs per clutch and ‘local’ reproductive success (defined for each adult as the number of offspring returning to the natal population). Our results indicate that while the relative longevity of adults was similar on both host anemone species, females living in H. magnifica were larger than females in S. gigantea. However, despite females growing larger and producing more eggs on H. magnifica, we found that local reproductive success was significantly higher for clownfish living in S. gigantea. Life-history traits also exhibited local spatial variation, with higher local reproductive success recorded for adults living on S. gigantea on the eastern side of the island. Our findings support a ‘silver-spoon’ hypothesis that predicts individuals that are fortunate enough to recruit into good habitat and location will be rewarded with higher long-term reproductive success and will make a disproportionate contribution to population renewal. © 2016 Springer-Verlag Berlin Heidelberg

  12. Host genetic factors in susceptibility to herpes simplex type 1 virus infection: contribution of polymorphic genes at the interface of innate and adaptive immunity.

    Science.gov (United States)

    Moraru, Manuela; Cisneros, Elisa; Gómez-Lozano, Natalia; de Pablo, Rosario; Portero, Francisca; Cañizares, María; Vaquero, Mercedes; Roustán, Gastón; Millán, Isabel; López-Botet, Miguel; Vilches, Carlos

    2012-05-01

    HSV-1 establishes life-long latency that can result in clinical relapses or in asymptomatic virus shedding. Although virtually all adults have been exposed to HSV-1, the clinical course varies remarkably. Genetic host variability could be related to this clinical diversity. In this study, we analyzed the contribution of gene families in chromosomes 1, 6, 12, and 19, which encode key regulators of the innate and adaptive immunity, in a cohort of 302 individuals. Class I and class II alleles of the HLA system, the copy-number variation of NK cell receptor genes (KIR and NKG2C), the combinations of killer cell Ig-like receptor and their HLA ligands, and CD16A and CD32A allotypes of variable affinity for IgG subclasses were all studied. Although no major susceptibility locus for HSV-1 was identified, our results show that the risk of suffering clinical HSV-1 infection is modified by MHC class I allotypes (B*18, C*15, and the group of alleles encoding A19), the high-affinity receptor/ligand pair KIR2DL2/HLA-C1, and the CD16A-158V/F dimorphism. Conversely, HLA class II and CD32A polymorphisms and NKG2C deletion did not seem to influence the clinical course of herpetic infection. Collectively, these findings support an important role in host defense against herpetic infection for several polymorphic genes implicated in adaptive immunity and in surveillance of its subversion. They confirm the crucial role of cytotoxic cells (CTL and NK) and the contribution of genetic diversity to the clinical course of HSV-1 infection.

  13. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  14. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration.

    Directory of Open Access Journals (Sweden)

    Martin Korn

    Full Text Available We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H(+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1, which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.

  15. Association among genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatory bowel disease.

    Science.gov (United States)

    Basso, P J; Fonseca, M T C; Bonfá, G; Alves, V B F; Sales-Campos, H; Nardini, V; Cardoso, C R B

    2014-09-01

    Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder that affects thousands of people around the world. These diseases are characterized by exacerbated uncontrolled intestinal inflammation that leads to poor quality of life in affected patients. Although the exact cause of IBD still remains unknown, compelling evidence suggests that the interplay among immune deregulation, environmental factors, and genetic polymorphisms contributes to the multifactorial nature of the disease. Therefore, in this review we present classical and novel findings regarding IBD etiopathogenesis. Considering the genetic causes of the diseases, alterations in about 100 genes or allelic variants, most of them in components of the immune system, have been related to IBD susceptibility. Dysbiosis of the intestinal microbiota also plays a role in the initiation or perpetuation of gut inflammation, which develops under altered or impaired immune responses. In this context, unbalanced innate and especially adaptive immunity has been considered one of the major contributing factors to IBD development, with the involvement of the Th1, Th2, and Th17 effector population in addition to impaired regulatory responses in CD or UC. Finally, an understanding of the interplay among pathogenic triggers of IBD will improve knowledge about the immunological mechanisms of gut inflammation, thus providing novel tools for IBD control.

  16. Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field.

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Palloix, Alain; Castagnone-Sereno, Philippe

    2015-12-01

    Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability. © 2015 Society of Chemical Industry.

  17. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater

  18. Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area

    Directory of Open Access Journals (Sweden)

    Hauswald Anne-Kathrin

    2011-10-01

    Full Text Available Abstract Background Oncomelania hupensis robertsoni is the sole intermediate host for Schistosoma japonicum in western China. Given the close co-evolutionary relationships between snail host and parasite, there is interest in understanding the distribution of distinct snail phylogroups as well as regional population structures. Therefore, this study focuses on these aspects in a re-emergent schistosomiasis area known to harbour representatives of two phylogroups - the Deyang-Mianyang area in Sichuan Province, China. Based on a combination of mitochondrial and nuclear DNA, the following questions were addressed: 1 the phylogeography of the two O. h. robertsoni phylogroups, 2 regional and local population structure in space and time, and 3 patterns of local dispersal under different isolation-by-distance scenarios. Results The phylogenetic analyses confirmed the existence of two distinct phylogroups within O. h. robertsoni. In the study area, phylogroups appear to be separated by a mountain range. Local specimens belonging to the respective phylogroups form monophyletic clades, indicating a high degree of lineage endemicity. Molecular clock estimations reveal that local lineages are at least 0.69-1.58 million years (My old and phylogeographical analyses demonstrate that local, watershed and regional effects contribute to population structure. For example, Analyses of Molecular Variances (AMOVAs show that medium-scale watersheds are well reflected in population structures and Mantel tests indicate isolation-by-distance effects along waterways. Conclusions The analyses revealed a deep, complex and hierarchical structure in O. h. robertsoni, likely reflecting a long and diverse evolutionary history. The findings have implications for understanding disease transmission. From a co-evolutionary standpoint, the divergence of the two phylogroups raises species level questions in O. h. robertsoni and also argues for future studies relative to the

  19. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Raheleh eSheibani-Tezerji

    2015-05-01

    Full Text Available The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7 and S8, which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7, commensal (S8, to a beneficial, growth-promoting effect (S6 in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.

  20. The Recently Discovered Bokeloh Bat Lyssavirus: Insights Into Its Genetic Heterogeneity and Spatial Distribution in Europe and the Population Genetics of Its Primary Host.

    Science.gov (United States)

    Eggerbauer, Elisa; Troupin, Cécile; Passior, Karsten; Pfaff, Florian; Höper, Dirk; Neubauer-Juric, Antonie; Haberl, Stephanie; Bouchier, Christiane; Mettenleiter, Thomas C; Bourhy, Hervé; Müller, Thomas; Dacheux, Laurent; Freuling, Conrad M

    2017-01-01

    In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a Natterer's bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same country and in France in recent years, all from the same bat species and all found in moribund or dead bats. Here we report the description and the full-length genome sequence of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of them were isolated from the Natterer's bat, except one from Germany, which was found in a common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in Europe. The latter represents the first case of transmission of BBLV to another bat species. Phylogenetic analysis clearly demonstrated the presence of two different lineages among this lyssavirus species: lineages A and B. The spatial distribution of these two lineages remains puzzling, as both of them comprised isolates from France and Germany; although clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer's bat did not suggest a circulation of the respective BBLV sublineages in specific Natterer's bat subspecies, as all of them were shown to belong to the M. nattereri sensu stricto clade/subspecies and were closely related (German and French positive bats). At the bat host level, we demonstrated that the distribution of BBLV at the late stage of the disease seems large and massive, as viral RNA was detected in many different organs. © 2017 Elsevier Inc. All rights reserved.

  1. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background.

    Science.gov (United States)

    Benoit, Patrick; Sigounas, Vaia Yioula; Thompson, Jenna L; van Rooijen, Nico; Poynter, Matthew E; Wargo, Matthew J; Boyson, Jonathan E

    2015-06-01

    Pseudomonas aeruginosa is an important human opportunistic pathogen, accounting for a significant fraction of hospital-acquired lung infections. CD1d-restricted NKT cells comprise an unusual innate-like T cell subset that plays important roles in both bacterial and viral infections. Previous reports have differed in their conclusions regarding the role of NKT cells in clearance of P. aeruginosa from the lung. Since there is significant strain-dependent variation in NKT cell number and function among different inbred strains of mice, we investigated whether the role of NKT cells was dependent on the host genetic background. We found that NKT cells did indeed play a critical role in the clearance of P. aeruginosa from the lungs of BALB/c mice but that they played no discernible role in clearance from the lungs of C57BL/6 mice. We found that the strain-dependent role of NKT cells was associated with significant strain-dependent differences in cytokine production by lung NKT cells and that impaired clearance of P. aeruginosa in BALB/c CD1d(-/-) mice was associated with an increase in neutrophil influx to the lung and increased levels of proinflammatory cytokines and chemokines after infection. Finally, we found that the role of alveolar macrophages was also dependent on the genetic background. These data provide further support for a model in which the unusually high level of variability in NKT cell number and function among different genetic backgrounds may be an important contributor to infectious-disease susceptibility and pathology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. The population genetics of Pseudomonas aeruginosa isolates from different patient populations exhibits high-level host specificity.

    Directory of Open Access Journals (Sweden)

    Rosa van Mansfeld

    Full Text Available OBJECTIVE: To determine whether highly prevalent P. aeruginosa sequence types (ST in Dutch cystic fibrosis (CF patients are specifically linked to CF patients we investigated the population structure of P. aeruginosa from different clinical backgrounds. We first selected the optimal genotyping method by comparing pulsed-field gel electrophoresis (PFGE, multilocus sequence typing (MLST and multilocus variable number tandem-repeat analysis (MLVA. METHODS: Selected P. aeruginosa isolates (n = 60 were genotyped with PFGE, MLST and MLVA to determine the diversity index (DI and congruence (adjusted Rand and Wallace coefficients. Subsequently, isolates from patients admitted to two different ICUs (n = 205, from CF patients (n = 100 and from non-ICU, non-CF patients (n = 58, of which 19 were community acquired were genotyped with MLVA to determine distribution of genotypes and genetic diversity. RESULTS: Congruence between the typing methods was >79% and DIs were similar and all >0.963. Based on costs, ease, speed and possibilities to compare results between labs an adapted MLVA scheme called MLVA9-Utrecht was selected as the preferred typing method. In 363 clinical isolates 252 different MLVA types (MTs were identified, indicating a highly diverse population (DI  = 0.995; CI  = 0.993-0.997. DI levels were similarly high in the diverse clinical sources (all >0.981 and only eight genotypes were shared. MTs were highly specific (>80% for the different patient populations, even for similar patient groups (ICU patients in two distinct geographic regions, with only three of 142 ICU genotypes detected in both ICUs. The two major CF clones were unique to CF patients. CONCLUSION: The population structure of P. aeruginosa isolates is highly diverse and population specific without evidence for a core lineage in which major CF, hospital or community clones co-cluster. The two genotypes highly prevalent among Dutch CF patients appeared unique to CF patients

  3. A Statistical Framework for Microbial Source Attribution: Measuring Uncertainty in Host Transmission Events Inferred from Genetic Data (Part 2 of a 2 Part Report)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Velsko, S

    2009-11-16

    This report explores the question of whether meaningful conclusions can be drawn regarding the transmission relationship between two microbial samples on the basis of differences observed between the two sample's respective genomes. Unlike similar forensic applications using human DNA, the rapid rate of microbial genome evolution combined with the dynamics of infectious disease require a shift in thinking on what it means for two samples to 'match' in support of a forensic hypothesis. Previous outbreaks for SARS-CoV, FMDV and HIV were examined to investigate the question of how microbial sequence data can be used to draw inferences that link two infected individuals by direct transmission. The results are counter intuitive with respect to human DNA forensic applications in that some genetic change rather than exact matching improve confidence in inferring direct transmission links, however, too much genetic change poses challenges, which can weaken confidence in inferred links. High rates of infection coupled with relatively weak selective pressure observed in the SARS-CoV and FMDV data lead to fairly low confidence for direct transmission links. Confidence values for forensic hypotheses increased when testing for the possibility that samples are separated by at most a few intermediate hosts. Moreover, the observed outbreak conditions support the potential to provide high confidence values for hypothesis that exclude direct transmission links. Transmission inferences are based on the total number of observed or inferred genetic changes separating two sequences rather than uniquely weighing the importance of any one genetic mismatch. Thus, inferences are surprisingly robust in the presence of sequencing errors provided the error rates are randomly distributed across all samples in the reference outbreak database and the novel sequence samples in question. When the number of observed nucleotide mutations are limited due to characteristics of the

  4. Primary alveolar echinococcosis: course of larval development and antibody responses in intermediate host rodents with different genetic backgrounds after oral infection with eggs of Echinococcus multilocularis.

    Science.gov (United States)

    Matsumoto, Jun; Kouguchi, Hirokazu; Oku, Yuzaburo; Yagi, Kinpei

    2010-09-01

    We investigated parasite establishment, subsequent larval development and antibody responses in gerbils, cotton rats and 4 inbred mouse strains until 16 weeks post inoculation (p.i.) with 200 eggs of Echinococcus multilocularis. The rate of parasite establishment in the liver determined at 4 weeks p.i. was highest in DBA/2, followed by AKR/N, C57BL/10 and C57BL/6 mice, whereas gerbils harboured few parasite foci. The accurate number of liver lesions in cotton rats could not be determined due to rapid growth and advanced multivesiculation of the parasite observed at 2 weeks p.i. The course of larval development was most advanced in DBA/2 mice with mature protoscolex formation at 16 weeks p.i., followed by AKR/N harbouring metacestodes with sparsely distributed immature protoscoleces. On the other hand, C57BL/6 and C57BL/10 mice had infertile metacestodes without any protoscolex formation. The parasite growth in mice was totally slower than those in gerbils and cotton rats. Specific IgG and IgM responses against 3 types of native crude antigens of larval E. multilocularis were evaluated using somatic extracts of and vesicle fluid of metacestode, and somatic extracts from purified protoscoleces. The 4 mouse strains demonstrated basically similar kinetics with apparent IgG and IgM increases at 9 weeks p.i. and thereafter, except C57BL/10, exhibited higher levels of IgM against crude antigens at some time point of infection. On the other hand, a follow-up determination of specific IgG and IgM levels against recombinant antigens from larval E. multilocularis revealed that each mouse strain showed different antibody-level kinetics. The findings in the present study demonstrate that the course of host-parasite interactions in primary alveolar echinococcosis, caused by larval E. multilocularis, clearly varies among intermediate host rodents with different genetic backgrounds.

  5. Genetic characterization of oropharyngeal trichomonad isolates from wild birds indicates that genotype is associated with host species, diet and presence of pathognomonic lesions.

    Science.gov (United States)

    Martínez-Herrero, M C; Sansano-Maestre, J; López Márquez, I; Obón, E; Ponce, C; González, J; Garijo-Toledo, M M; Gómez-Muñoz, M T

    2014-01-01

    Oropharyngeal trichomonad isolates of wild birds from Spain were studied. A total of 1688 samples (1214 of predator birds and 474 of prey species) from wildlife recovery centres and scientific bird-ringing campaigns were analysed from 2011 to 2013. The overall infection prevalence was 20.3% (11.4% in predator birds and 43.3% in prey species). Pathognomonic lesions were present in 26% of the infected birds (57.3% in predator birds and 4.9% in prey species). The most commonly parasitized species were the goshawk (Accipiter gentilis, 74.5%) and the rock pigeon (Columba livia, 79.4%). Host species in which the parasite has not been previously analysed by polymerase chain reaction and sequencing in Spain are also reported: Columba palumbus, Streptopelia turtur, Pica pica, A. gentilis, Accipiter nisus, Asio otus, Bubo bubo, Buteo buteo, Circus aeruginosus, Circus cyaneus, Falco naumanni, Falco peregrinus, Neophron percnopterus, Otus scops, Pernis apivorus and Strix aluco. Sequence analysis of the ITS1/5.8S/ITS2 region revealed five different genotypes and also some mixed infections. A relationship between genotype and host species was observed, but only two genotypes (ITS-OBT-Tg-1and ITS-OBT-Tg-2) were widely distributed. Genotype ITS-OBT-Tg-1 was most frequently found in predator birds and statistically associated with pathognomonic lesions. Non-strict ornithophagous species were at higher risk to develop disease than ornithophagous ones. Genotypes ITS-OBT-Tcl-1 and ITS-OBT-Tcl-2 are new reports, and ITS-OBT-Tvl-5 is reported for the first time in Spain. They showed higher genetic homology to Trichomonas canistomae and Trichomonas vaginalis than to Trichomonas gallinae, indicating the possibility of new species within this genus.

  6. Genetics

    Science.gov (United States)

    ... Likelihood of getting certain diseases Mental abilities Natural talents An abnormal trait (anomaly) that is passed down ... one of them has a genetic disorder. Information Human beings have cells with 46 chromosomes . These consist ...

  7. Molecular Characterization of Staphylococcus aureus Isolated from Bovine Mastitis and Close Human Contacts in South African Dairy Herds: Genetic Diversity and Inter-Species Host Transmission

    Science.gov (United States)

    Schmidt, Tracy; Kock, Marleen M.; Ehlers, Marthie M.

    2017-01-01

    Staphylococcus aureus is one of the most common etiological agents of contagious bovine mastitis worldwide. The purpose of this study was to genetically characterize a collection of S. aureus isolates (bovine = 146, human = 12) recovered from cases of bovine mastitis and nasal swabs of close human contacts in the dairy environment. Isolates were screened for a combination of clinically significant antimicrobial and virulence gene markers whilst the molecular epidemiology of these isolates and possible inter-species host transmission was investigated using a combination of genotyping techniques. None of the isolates under evaluation tested positive for methicillin or vancomycin resistance encoding genes. Twenty seven percent of the bovine S. aureus isolates tested positive for one or more of the pyrogenic toxin superantigen (PTSAg) genes with the sec and sell genes predominating. Comparatively, 83% of the human S. aureus isolates tested positive for one or more PTSAg genes with a greater variety of genes being detected. Genomic DNA macrorestriction followed by pulsed-field gel electrophoresis (PFGE) of the bovine isolates generated 58 electrophoretic patterns which grouped into 10 pulsotypes at an 80% similarity level. The majority of the bovine isolates, 93.2% (136/146), clustered into four major pulsotypes. Seven sequence types (ST) were identified among the representative bovine S. aureus isolates genotyped, including: ST8 (CC8), ST97 (CC97), ST351 (CC705), ST352 (CC97), ST508 (CC45), ST2992 (CC97) and a novel sequence type, ST3538 (CC97). Based on PFGE analysis, greater genetic diversity was observed among the human S. aureus isolates. Bovine and human isolates from three sampling sites clustered together and were genotypically indistinguishable. Two of the isolates, ST97 and ST352 belong to the common bovine lineage CC97, and their isolation from close human contacts suggests zoonotic transfer. In the context of this study, the third isolate, ST8 (CC8), is

  8. Multi-locus genotypes of Enterocytozoon bieneusi in captive Asiatic black bears in southwestern China: High genetic diversity, broad host range, and zoonotic potential.

    Directory of Open Access Journals (Sweden)

    Lei Deng

    Full Text Available Enterocytozoon bieneusi is an obligate eukaryotic intracellular parasite that infects a wide variety of vertebrate and invertebrate hosts. Although considerable research has been conducted on this organism, relatively little information is available on the occurrence of E. bieneusi in captive Asiatic black bears. The present study was performed to determine the prevalence, genetic diversity, and zoonotic potential of E. bieneusi in captive Asiatic black bears in zoos in southwestern China. Fecal specimens from Asiatic black bears in four zoos, located in four different cities, were collected and analyzed for the prevalence of E. bieneusi. The average prevalence of E. bieneusi was 27.4% (29/106, with the highest prevalence in Guiyang Zoo (36.4%, 16/44. Altogether, five genotypes of E. bieneusi were identified among the 29 E. bieneusi-positive samples, including three known genotypes (CHB1, SC02, and horse2 and two novel genotypes named ABB1 and ABB2. Multi-locus sequence typing using three microsatellites (MS1, MS3, and MS7 and one minisatellite (MS4 revealed V, III, V, and IV genotypes at these four loci, respectively. Phylogenetic analysis showed that the genotypes SC02 and ABB2 were clustered into group 1 of zoonotic potential, the genotypes CHB1 and ABB1 were clustered into a new group, and the genotype horse2 was clustered into group 6 of unclear zoonotic potential. In conclusion, this study identified two novel E. bieneusi genotypes in captive Asiatic black bears, and used microsatellite and minisatellite markers to reveal E. bieneusi genetic diversity. Moreover, our findings show that genotypes SC02 (identified in humans and ABB2 belong to group 1 with zoonotic potential, suggesting the risk of transmission of E. bieneusi from Asiatic black bears to humans and other animals.

  9. Multi-locus genotypes of Enterocytozoon bieneusi in captive Asiatic black bears in southwestern China: High genetic diversity, broad host range, and zoonotic potential.

    Science.gov (United States)

    Deng, Lei; Li, Wei; Zhong, Zhijun; Gong, Chao; Cao, Xuefeng; Song, Yuan; Wang, Wuyou; Huang, Xiangming; Liu, Xuehan; Hu, Yanchun; Fu, Hualin; He, Min; Wang, Ya; Zhang, Yue; Wu, Kongju; Peng, Guangneng

    2017-01-01

    Enterocytozoon bieneusi is an obligate eukaryotic intracellular parasite that infects a wide variety of vertebrate and invertebrate hosts. Although considerable research has been conducted on this organism, relatively little information is available on the occurrence of E. bieneusi in captive Asiatic black bears. The present study was performed to determine the prevalence, genetic diversity, and zoonotic potential of E. bieneusi in captive Asiatic black bears in zoos in southwestern China. Fecal specimens from Asiatic black bears in four zoos, located in four different cities, were collected and analyzed for the prevalence of E. bieneusi. The average prevalence of E. bieneusi was 27.4% (29/106), with the highest prevalence in Guiyang Zoo (36.4%, 16/44). Altogether, five genotypes of E. bieneusi were identified among the 29 E. bieneusi-positive samples, including three known genotypes (CHB1, SC02, and horse2) and two novel genotypes named ABB1 and ABB2. Multi-locus sequence typing using three microsatellites (MS1, MS3, and MS7) and one minisatellite (MS4) revealed V, III, V, and IV genotypes at these four loci, respectively. Phylogenetic analysis showed that the genotypes SC02 and ABB2 were clustered into group 1 of zoonotic potential, the genotypes CHB1 and ABB1 were clustered into a new group, and the genotype horse2 was clustered into group 6 of unclear zoonotic potential. In conclusion, this study identified two novel E. bieneusi genotypes in captive Asiatic black bears, and used microsatellite and minisatellite markers to reveal E. bieneusi genetic diversity. Moreover, our findings show that genotypes SC02 (identified in humans) and ABB2 belong to group 1 with zoonotic potential, suggesting the risk of transmission of E. bieneusi from Asiatic black bears to humans and other animals.

  10. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity?

    Science.gov (United States)

    Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.

    2010-01-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.

  11. Characterization and Genetic Analysis of Rice Mutantcrr1Exhibiting Compromised Non-host Resistance toPuccinia striiformisf. sp.tritici(Pst).

    Science.gov (United States)

    Zhao, Jing; Yang, Yuheng; Yang, Donghe; Cheng, Yulin; Jiao, Min; Zhan, Gangming; Zhang, Hongchang; Wang, Junyi; Zhou, Kai; Huang, Lili; Kang, Zhensheng

    2016-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most devastating diseases of wheat in China. Rapid change to virulence following release of resistant cultivars necessitates ongoing discovery and exploitation of new resistance resources. Considerable effort has been directed at non-host resistance (NHR) which is believed to be durable. In the present study we identified rice mutant crr1 (compromised resistance to rust 1) that exhibited compromised NHR to Pst . Compared with wild type rice variety Nipponbare, crr1 mutant displayed a threefold increase in penetration rate by Pst , and enhanced hyphal growth. The pathogen also developed haustoria in crr1 mesophyll cells, but failed to sporulate. The response to the adapted rice pathogen Magnaporthe oryzae was unchanged in crr1 relative to the wild type. Several defense-related genes involved in the SA- and JA-mediated defense pathways response and in phytoalexin synthesis (such as OsPR1a , OsLOX1 , and OsCPS4 ) were more rapidly and strongly induced in infected crr1 leaves than in the wild type, suggesting that other layers of defense are still in effect. Genetic analysis and mapping located the mutant loci at a region between markers ID14 and RM25792, which cover about 290 kb genome sequence on chromosome 10. Further fine mapping and cloning of the locus should provide further insights into NHR to rust fungi in rice, and may reveal new strategies for improving rust resistance in wheat.

  12. Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea.

    Science.gov (United States)

    Fu, Ling-Lin; Shuai, Jiang-Bing; Wang, Yanbo; Ma, Hong-Jia; Li, Jian-Rong

    2011-10-01

    This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG)(5) primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG)(5)-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2.

    Science.gov (United States)

    Khan, R; Sancho-Shimizu, V; Prendergast, C; Roy, M-F; Loredo-Osti, J-C; Malo, D

    2012-02-01

    Typhoid fever, which is caused by Salmonella typhi and paratyphi, is a severe systemic disease that remains a major public health issue in several areas of the world. We can model the human disease using mice infected with a related bacterium, Salmonella typhimurium. This model recapitulates several clinical aspects of the human disease and allows for the study of the host response to Salmonella typhimurium infection in vivo. Previous work in our laboratory has identified three Immunity to typhimurium loci (Ity, Ity2 and Ity3) in the wild-derived MOLF/Ei mice, influencing survival after infection with Salmonella typhimurium. The MOLF/Ei alleles at Ity and Ity2 are protective, while the MOLF/Ei allele at Ity3 confers susceptibility. In this paper, we have generated a novel cross combination between the highly susceptible strain, MOLF/Ei, and the resistant strain, 129S6, to better define the genetic architecture of susceptibility to infection in MOLF/Ei. Using this cross, we have replicated the locus on chr 11 (Ity2) and identified a novel locus on chr 13 (Ity13). Using microarrays and transcriptional profiling, we examined the response of uninfected and infected Ity2 congenic mice. These analyses demonstrate a role for both type-1-interferon (IFN) and TRP53 signaling in the pathogenesis of Salmonella infection.

  14. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity?

    Science.gov (United States)

    Barshis, D J; Stillman, J H; Gates, R D; Toonen, R J; Smith, L W; Birkeland, C

    2010-04-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (F(ST) = 0.146 P understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes.

  15. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  16. The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host

    OpenAIRE

    Harrison, Joshua G.; Gompert, Zachariah; Fordyce, James A.; Buerkle, C. Alex; Grinstead, Rachel; Jahner, Joshua P.; Mikel, Scott; Nice, Christopher C.; Santamaria, Aldrin; Forister, Matthew L.

    2016-01-01

    From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa) onto an exotic host plant (alfalfa, Medicago sativa). We examine variation among seven alfalfa populations that ...

  17. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  18. Do host genetic traits in the bacterial sensing system play a role in the development of Chlamydia trachomatis-associated tubal pathology in subfertile women?

    Directory of Open Access Journals (Sweden)

    Ito James I

    2006-07-01

    Full Text Available Abstract Background In women, Chlamydia (C. trachomatis upper genital tract infection can cause distal tubal damage and occlusion, increasing the risk of tubal factor subfertility and ectopic pregnancy. Variations, like single nucleotide polymorphisms (SNPs, in immunologically important host genes are assumed to play a role in the course and outcome of a C. trachomatis infection. We studied whether genetic traits (carrying multiple SNPs in different genes in the bacterial sensing system are associated with an aberrant immune response and subsequently with tubal pathology following a C. trachomatis infection. The genes studied all encode for pattern recognition receptors (PRRs involved in sensing bacterial components. Methods Of 227 subfertile women, serum was available for C. trachomatis IgG antibody testing and genotyping (common versus rare allele of the PRR genes TLR9, TLR4, CD14 and CARD15/NOD2. In all women, a laparoscopy was performed to assess the grade of tubal pathology. Tubal pathology was defined as extensive peri-adnexal adhesions and/or distal occlusion of at least one tube. Results Following a C. trachomatis infection (i.e. C. trachomatis IgG positive, subfertile women carrying two or more SNPs in C. trachomatis PRR genes were at increased risk of tubal pathology compared to women carrying less than two SNPs (73% vs 33% risk. The differences were not statistically significant (P = 0.15, but a trend was observed. Conclusion Carrying multiple SNPs in C. trachomatis PRR genes tends to result in an aberrant immune response and a higher risk of tubal pathology following a C. trachomatis infection. Larger studies are needed to confirm our preliminary findings.

  19. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  20. One Shroom to Rule Them All: Identifying the mechanisms employed in ectomycorrhizal mutualisms for the generalist fungus Thelephora terrestris and seven genetically diverse host tree species

    Science.gov (United States)

    Francis, N.; Laura, B.; Peay, K.

    2016-12-01

    This summer, through the Stanford EARTH Young Investigators Internship, I worked in the Peay fungal ecology lab to set up an experiment to identify what fungal mechanisms are at work in ectomycorrhizal mutualisms between seven phylogenetically distinct tree species and the generalist fungus Thelephora terrestris. Ectomycorrhizal fungi occupy an important niche in terrestrial ecology through their symbiotic mutualisms with plant hosts that allow for the exchange of carbon and nitrogen. However, very little is known about what determines partner choice for ectomycorrhizal fungal mutualists. Among pathogenic fungi, specialization on particular hosts is common, likely because the pathogen must work in specialized ways with the host's immune system. Ectomycorrhizal mutualists, however, tend to be generalists, even though their associations with plants are physically intimate and chemically complex. In order to understand how ectomycorrhizal fungi maintain a broad host range, I grew and planted seedlings and cuttings of Pinus muricata (bishop pine), Pseudotsuga menziesii (Douglas fir), Salix lasiolepis (arroyo willow), Populus trichocarpa (black cottonwood), Quercus agrifolia (coastal live oak), Eucalyptus globulus (blue gum), and Arbutus menziesii (Pacific madrone). Within each pot, the seven seedlings was planted around a previously planted donor bishop pine in potting mixture inoculated with Thelephora terrestris so that the fungus could spread from the donor pine to the others. I also helped analyze the extent of Thelephora terrestris growth on the plant roots from a preliminary round of the experiment in order to refine the data collection protocol for the coming experiment. Several months from now, my research mentor will label the carbon and nitrogen moving between the fungus and the plant to find out how well the symbiosis is working for each partner, and will sequence the RNA from the fungus to see if it uses different genes to communicate and associate with

  1. The role of symbiont genetic distance and potential adaptability in host preference towards Pseudonocardia symbionts in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Maynard, Janielle; Roland, Damien L.

    2011-01-01

    Fungus-growing ants display symbiont preference in behavioral assays, both towards the fungus they cultivate for food and Actinobacteria they maintain on their cuticle for antibiotic production against parasites. These Actinobacteria, genus Pseudonocardia Henssen (Pseudonocardiacea: Actinomycetales......), help defend the ants’ fungal mutualist from specialized parasites. In Acromyrmex Mayr (Hymenoptera: Formicidae) leaf-cutting ants, individual colonies maintain either a single or a few strains of Pseudonocardia, and the symbiont is primarily vertically transmitted between generations by colony...... with two non-native strains, elucidating the role of genetic distance on preference between strains and Pseudonocardia origin. Our findings suggest that ants tend to prefer bacteria more closely related to their native bacterium and that genetic similarity is probably more important than whether symbionts...

  2. Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and iInvasion into spleen and liver

    Czech Academy of Sciences Publication Activity Database

    Kobets, Tetyana; Havelková, Helena; Grekov, Igor; Volkova, Valeriya; Vojtíšková, Jarmila; Slapničková, Martina; Kurey, Irina; Sohrabi, Yahya; Svobodová, M.; Demant, P.; Lipoldová, Marie

    2012-01-01

    Roč. 6, č. 6 (2012), e1667 ISSN 1935-2735 R&D Projects: GA ČR GA310/08/1697; GA ČR GD310/08/H077; GA MŠk(CZ) LC06009 Institutional support: RVO:68378050 Keywords : leishmaniasis * Leishmania tropica * Leishmania major Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.569, year: 2012

  3. Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver.

    Directory of Open Access Journals (Sweden)

    Tetyana Kobets

    Full Text Available BACKGROUND: Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. METHODS: We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem recombinant congenic (RC strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. PRINCIPAL FINDINGS: Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. CONCLUSION: Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.

  4. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    Directory of Open Access Journals (Sweden)

    Brunner Sylvia

    2008-05-01

    Full Text Available Abstract Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.

  5. Host cell invasion and oral infection by Trypanosoma cruzi strains of genetic groups TcI and TcIV from chagasic patients.

    Science.gov (United States)

    Maeda, Fernando Yukio; Clemente, Tatiana Mordente; Macedo, Silene; Cortez, Cristian; Yoshida, Nobuko

    2016-04-01

    Outbreaks of acute Chagas disease by oral infection have been reported frequently over the last ten years, with higher incidence in northern South America, where Trypanosoma cruzi lineage TcI predominates, being responsible for the major cause of resurgent human disease, and a small percentage is identified as TcIV. Mechanisms of oral infection and host-cell invasion by these parasites are poorly understood. To address that question, we analyzed T. cruzi strains isolated from chagasic patients in Venezuela, Guatemala and Brazil. Trypanosoma cruzi metacyclic trypomastigotes were orally inoculated into mice. The mouse stomach collected four days later, as well as the stomach and the heart collected 30 days post-infection, were processed for histological analysis. Assays to mimic parasite migration through the gastric mucus layer were performed by counting the parasites that traversed gastric mucin-coated transwell filters. For cell invasion assays, human epithelial HeLa cells were incubated with metacyclic forms and the number of internalized parasites was counted. All TcI and TcIV T. cruzi strains were poorly infective by the oral route. Parasites were either undetectable or were detected in small numbers in the mouse stomach four days post oral administration. Replicating parasites were found in the stomach and/or in the heart 30 days post-infection. As compared to TcI lineage, the migration capacity of TcIV parasites through the gastric mucin-coated filter was higher but lower than that exhibited by TcVI metacyclic forms previously shown to be highly infective by the oral route. Expression of pepsin-resistant gp90, the surface molecule that downregulates cell invasion, was higher in TcI than in TcIV parasites and, accordingly, the invasion capacity of TcIV metacyclic forms was higher. Gp90 molecules spontaneously released by TcI metacyclic forms inhibited the parasite entry into host cells. TcI parasites exhibited low intracellular replication rate. Our findings

  6. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    Science.gov (United States)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  7. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    International Nuclear Information System (INIS)

    Mahony, Jennifer; Ainsworth, Stuart; Stockdale, Stephen; Sinderen, Douwe van

    2012-01-01

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  8. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, Jennifer, E-mail: j.mahony@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Ainsworth, Stuart; Stockdale, Stephen [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Sinderen, Douwe van, E-mail: d.vansinderen@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Western Road, Cork (Ireland)

    2012-12-20

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  9. A genetic variant in the IL-17 promoter is functionally associated with acute graft-versus-host disease after unrelated bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    J Luis Espinoza

    Full Text Available Interleukin IL-17 is a proinflammatory cytokine that has been implicated in the pathogenesis of various autoimmune diseases. The single nucleotide polymorphism (SNP, rs2275913, in the promoter region of the IL-17 gene is associated with susceptibility to ulcerative colitis. When we examined the impact of rs2275913 in a cohort consisting of 438 pairs of patients and their unrelated donors transplanted through the Japan Marrow Donor Program, the donor IL-17 197A allele was found to be associated with a higher risk of acute graft-versus-host disease (GVHD; hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.00 to 2.13; P = 0.05. Next, we investigated the functional relevance of the rs2275913 SNP. In vitro stimulated T cells from healthy individuals possessing the 197A allele produced significantly more IL-17 than those without the 197A allele. In a gene reporter assay, the 197A allele construct induced higher luciferase activity than the 197G allele, and the difference was higher in the presence of T cell receptor activation and was abrogated by cyclosporine treatment. Moreover, the 197A allele displayed a higher affinity for the nuclear factor activated T cells (NFAT, a critical transcription factor involved in IL-17 regulation. These findings substantiate the functional relevance of the rs2275913 polymorphism and indicate that the higher IL-17 secretion by individuals with the 197A allele likely accounts for their increased risk for acute GVHD and certain autoimmune diseases.

  10. Establishment of Besnoitia darlingi from opossums (Didelphis virginiana) in experimental intermediate and definitive hosts, propagation in cell culture, and description of ultrastructural and genetic characteristics.

    Science.gov (United States)

    Dubey, J P; Lindsay, D S; Rosenthal, B M; Sreekumar, C; Hill, D E; Shen, S K; Kwok, O C H; Rickard, L G; Black, S S; Rashmir-Raven, A

    2002-07-01

    Besnoitia darlingi from naturally infected opossums (Didelphis virginiana) from Mississippi, USA, was propagated experimentally in mice, cats, and cell culture and was characterised according to ultrastructural, genetic, and life-history characteristics. Cats fed tissue cysts from opossums shed oocysts with a prepatent period of nine or 11 days. Oocysts, bradyzoites, or tachyzoites were infective to outbred and interferon-gamma gene knockout mice. Tachyzoites were successfully cultivated and maintained in vitro in bovine monocytes and African green monkey cells and revived after an 18-month storage in liquid nitrogen. Schizonts were seen in the small intestinal lamina propria of cats fed experimentally-infected mouse tissues. These schizonts measured up to 45 x 25 microm and contained many merozoites. A few schizonts were present in mesenteric lymph nodes and livers of cats fed tissue cysts. Ultrastructurally, tachyzoites and bradyzoites of B. darlingi were similar to other species of Besnoitia. A close relationship to B. besnoiti and an even closer relationship to B. jellisoni was indicated for B. darlingi on the basis of the small subunit and ITS-1 portions of nuclear ribosomal DNA.

  11. Characterization of the Sorbitol Utilization Cluster of the Probiotic Pediococcus parvulus 2.6: Genetic, Functional and Complementation Studies in Heterologous Hosts

    Directory of Open Access Journals (Sweden)

    Adrian Pérez-Ramos

    2017-12-01

    Full Text Available Pediococcus parvulus 2.6 secretes a 2-substituted (1,3-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA, whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i P. parvulus 2.6 is able to metabolize sorbitol, (ii sorbitol utilization is repressed in the presence of glucose and (iii sorbitol supports the synthesis of 2-substituted (1,3-β-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (Pgut and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of Pgut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for Pgut functionality. This demonstrates that: (i Pgut is required for expression of the gut cluster, (ii Pgut is subjected to catabolic repression in lactobacilli, (iii GutR is an activator, and (iv in the presence of sorbitol, trans

  12. Phenylketonuria Genetic Screening Simulation

    Science.gov (United States)

    Erickson, Patti

    2012-01-01

    After agreeing to host over 200 students on a daylong genetics field trip, the author needed an easy-to-prepare genetics experiment to accompany the DNA-necklace and gel-electrophoresis activities already planned. One of the student's mothers is a pediatric physician at the local hospital, and she suggested exploring genetic-disease screening…

  13. Urinary tract infection pathogenesis: host factors.

    Science.gov (United States)

    Stapleton, Ann E

    2014-03-01

    Clinically, host factors in the pathogenesis of urinary tract infection (UTI) may be considered as modifiable (eg, behaviors associated with increased risk of UTI, anatomic and functional problems of the urinary tract) and thus potentially amenable to a change in patient behavior or treatment approach, or as intrinsic and nonmodifiable host factors that neither the patient nor the clinician can influence (eg, gender and genetic influences associated with UTI). Although considering nonmodifiable host factors may be discouraging to patients and clinicians at present, some genetic associations have the potential for future predictive value and may interface with future treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Molecular and Morphological Characterization of a Brazilian Lineage of Plasmodium ( Novyella) Unalis in Turdus Spp. (Passeriformes) of the Atlantic Forest, with Remarks on New Hosts and High Genetic Variation.

    Science.gov (United States)

    Tostes, Raquel; Dias, Roberto J P; de Oliveira, Luísa; Senra, Marcus V X; Massard, Carlos L; D'Agosto, Marta

    2018-02-01

    Plasmodium spp. are haemosporidian protozoans that alternate their live cycles between bloodsucking Culicidae dipterans and vertebrate hosts (mammals, reptiles, and birds). In birds, these parasites are the causative agents of the so-called avian malaria, a disease associated with considerable declines and extinctions in the avifauna in different geographical regions. In this work, we applied a multidisciplinary approach, light microscopy and cytochrome oxidase b (cyt b) gene sequence analysis, for characterization of Plasmodium spp. found in association with wild birds of the genus Turdus, collected in Atlantic forest fragments of southeastern Brazil. From the total 90 analyzed birds, 58 (47 Turdus rufiventris, 9 Turdus leucomelas, 1 Turdus albicollis, and 1 Turdus flavipes) were positively infected with Plasmodium unalis, a haemosporidian that was previously detected in Turdus fuscater in Colombia and in penguins in Brazil, but has never been found in association with these Turdus species of this present work. Moreover, all 7 new sequences of P. unalis cyt b gene clustered into a monophyletic clade with previously characterized P. unalis sequences with a mean genetic divergence of 1.6% and with a maximum divergence of 3.1%, indicating for a high degree of intraspecific polymorphism within this parasitic species. Together, our data highlight the existence a high degree of intraspecific variation within P. unalis and highlight the importance of integrative taxonomy to an accurate identification and characterization of avian haemosporidian parasites.

  15. Lack of host specialization on winter annual grasses in the fungal seed bank pathogen Pyrenophora semeniperda

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...

  16. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  17. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    Science.gov (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  18. A genetic model based on evapoconcentration for sediment-hosted exotic-Cu mineralization in arid environments: the case of the El Tesoro Central copper deposit, Atacama Desert, Chile

    Science.gov (United States)

    Fernández-Mort, A.; Riquelme, R.; Alonso-Zarza, A. M.; Campos, E.; Bissig, T.; Mpodozis, C.; Carretier, S.; Herrera, C.; Tapia, M.; Pizarro, H.; Muñoz, S.

    2017-12-01

    Although the formation of exotic-Cu deposits is controlled by multiple factors, the role of the sedimentary environment has not been well defined. We present a case study of the El Tesoro Central exotic-Cu deposit located in the Atacama Desert of northern Chile. This deposit consists of two mineralized bodies hosted within Late Cenozoic gravels deposited in an arid continental environment dominated by alluvial fans with sub-surficial ponded water bodies formed at the foot of these fans or within the interfan areas. Both exotic-Cu orebodies mostly consist of chrysocolla, copper wad, atacamite, paratacamite, quartz, opal, and calcite. The most commonly observed paragenesis comprises chrysocolla, silica minerals, and calcite and records a progressive increase in pH, which is notably influenced by evaporation. The results of stable isotope analyses (δ13C and δ18O) and hydrogeochemical simulations confirm that evapoconcentration is the main controlling factor in the exotic-Cu mineralization at El Tesoro Central. This conclusion complements the traditional genetic model based on the gradual neutralization of highly oversaturated Cu-bearing solutions that progressively cement the gravels and underlying bedrock regardless of the depositional environment. This study concludes that in exotic-Cu deposits formed relatively far from the source, a favorable sedimentary environment and particular hydrologic and climatic conditions are essential to trap, accumulate, evapoconcentrate, neutralize and saturate Cu-bearing solutions to trigger mineralization. Thus, detailed sedimentological studies should be incorporated when devising exploration strategies in order to discover new exotic-Cu resources, particularly if they are expected to have formed relatively far from the metal sources.

  19. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  20. Population growth of the floricolous yeast Metschnikowia reukaufii: effects of nectar host, yeast genotype, and host × genotype interaction.

    Science.gov (United States)

    Herrera, Carlos M

    2014-05-01

    Genetic diversity and genotypic diversity of wild populations of the floricolous yeast Metschnikowia reukaufii exhibit a strong host-mediated component, with genotypes being nonrandomly distributed among flowers of different plant species. To unravel the causal mechanism of this pattern of host-mediated genetic diversity, this paper examines experimentally whether floral nectars of different host plants differ in their quality as a growing substrate for M. reukaufii and also whether genetically distinct yeast strains differ in their relative ability to thrive in nectars of different species (host × genotype interaction). Genetically distinct M. reukaufii strains were grown in natural nectar of different hosts under controlled conditions. Population growth varied widely among nectar hosts, revealing that different host plants provided microhabitats of different quality for M. reukaufii. Different M. reukaufii strains responded in different ways to interspecific nectar variation, and variable growth responses were significantly associated with genetic differences between strains, thus leading to a significant host × genotype interaction. Results of this study provide support for the diversifying selection hypothesis as the underlying mechanism preserving high genetic diversity in wild M. reukaufii populations and also suggest that consequences of functional plant-pollinator diversity may surpass the domain of the mutualistic organisms to implicate associated microorganisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Genetics: modes of reproduction and genetic analysis.

    Science.gov (United States)

    Streit, Adrian

    2017-03-01

    Classical and reverse genetics remain invaluable tools for the scientific investigation of model organisms. Genetic analysis of endoparasites is generally difficult because the sexual adults required for crossing and other manipulations are usually hidden within their host. Strongyloides spp. and Parastrongyloides spp. are notable exceptions to this and their free-living adults offer unique opportunities to manipulate these parasites experimentally. Here I review the modes of inheritance in the two generations of Strongyloides/Parastrongyloides and I discuss the opportunities and the limitations of the currently available methodology for the genetic analysis of these two genera.

  2. Strong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics.

    Science.gov (United States)

    Couchoux, C; Seppä, P; van Nouhuys, S

    2016-07-01

    The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full-siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co-evolution of host resistance and parasite virulence. © 2016 John Wiley & Sons Ltd.

  3. Ectoparasite infestation and sex-biased local recruitment of hosts

    NARCIS (Netherlands)

    Heeb, P.; Werner, I.; Mateman, A.C.; Kolliker, M.; Brinkhof, M.W.G.; Lessells, C.M.; Richner, H.

    1999-01-01

    Dispersal patterns of organisms are a fundamental aspect of their ecology, modifying the genetic and social structure of local populations(1-4). Parasites reduce the reproductive success and survival of hosts and thereby exert selection pressure on host life-history traits(4-6), possibly affecting

  4. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  5. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  6. Host-race formation: promoted by phenology, constrained by heritability.

    Science.gov (United States)

    Whipple, A V; Abrahamson, W G; Khamiss, M A; Heinrich, P L; Urian, A G; Northridge, E M

    2009-04-01

    Host-race formation is promoted by genetic trade-offs in the ability of herbivores to use alternate hosts, including trade-offs due to differential timing of host-plant availability. We examined the role of phenology in limiting host-plant use in the goldenrod gall fly (Eurosta solidaginis) by determining: (1) whether phenology limits alternate host use, leading to a trade-off that could cause divergent selection on Eurosta emergence time and (2) whether Eurosta has the genetic capacity to respond to such selection in the face of existing environmental variation. Experiments demonstrated that oviposition and gall induction on the alternate host, Solidago canadensis, were the highest on young plants, whereas the highest levels of gall induction on the normal host, Solidago gigantea, occurred on intermediate-age plants. These findings indicate a phenological trade-off for host-plant use that sets up the possibility of divergent selection on emergence time. Heritability, estimated by parent-offspring regression, indicated that host-race formation is impeded by the amount of genetic variation, relative to environmental, for emergence time.

  7. Host-specific functional significance of Caenorhabditis gut commensals

    Directory of Open Access Journals (Sweden)

    Maureen Berg

    2016-10-01

    Full Text Available The gut microbiota is an important contributor to host health and fitness. Given its importance, microbiota composition should not be left to chance. However, what determines this composition is far from clear, with results supporting contributions of both environmental factors and host genetics. To gauge the relative contributions of host genetics and environment, specifically the microbial diversity, we characterized the gut microbiotas of Caenorhabditis species spanning 200-300 million years of evolution, and raised on different composted soil environments. Comparisons were based on 16S rDNA deep sequencing data, as well as on functional evaluation of gut isolates. Worm microbiotas were distinct from those in their respective soil environment, and included bacteria previously identified as part of the C. elegans core microbiota. Microbiotas differed between experiments initiated with different soil communities, but within each experiment, worm microbiotas clustered according to host identity, demonstrating a dominant contribution of environmental diversity, but also a contribution of host genetics. The dominance of environmental contributions hindered identification of host-associated microbial taxa from 16S data. Characterization of gut isolates from C. elegans and C. briggsae, focusing on the core family Enterobacteriaceae, were also unable to expose phylogenetic distinctions between microbiotas of the two species. However, functional evaluation of the isolates revealed host-specific contributions, wherein gut commensals protected their own host from infection, but not a non-host. Identification of commensal host-specificity at the functional level, otherwise overlooked in standard sequence-based analyses, suggests that the contribution of host genetics to shaping of gut microbiotas may be greater than previously realized.

  8. Sympatric host races of the European corn borer: adaptation to host plants and hybrid performance.

    Science.gov (United States)

    Calcagno, V; Thomas, Y; Bourguet, D

    2007-09-01

    The European corn borer (ECB), Ostrinia nubilalis, is a major pest of maize crops. In Europe, two sympatric host races are found: one feeds on maize (Zea mays) and the other mainly on mugwort (Artemisia vulgaris). The two host races are genetically differentiated, seldom crossing in the laboratory or in the field, and females preferentially lay eggs on their native host species. We conducted two independent experiments, in field and greenhouse conditions, to determine whether the two host races are locally adapted to their host species. The effect of larval density and the performance of hybrids were also investigated. Despite some differences in overall larval feeding performance, both experiments revealed consistent patterns of local adaptation for survival and for larval weight in males. In females the same trend was observed but with weaker statistical support. F1 hybrids did not seem to be disadvantaged compared with the two parental races. Overall, our results showed that both host races are physiologically adapted to their native host. The fitness trade-off between the two host plants provides a potential driving force for ecological speciation in this species.

  9. On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Mather, Barry

    2017-07-01

    This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of the proposed approach on increasing PV hosting capacity is demonstrated.

  10. Host Plant Specialization in the Sugarcane Aphid Melanaphis sacchari.

    Directory of Open Access Journals (Sweden)

    Samuel Nibouche

    Full Text Available Most aphids are highly specialized on one or two related plant species and generalist species often include sympatric populations adapted to different host plants. Our aim was to test the hypothesis of the existence of host specialized lineages of the aphid Melanaphis sacchari in Reunion Island. To this end, we investigated the genetic diversity of the aphid and its association with host plants by analyzing the effect of wild sorghum Sorghum bicolor subsp. verticilliflorum or sugarcane as host plants on the genetic structuring of populations and by performing laboratory host transfer experiments to detect trade-offs in host use. Genotyping of 31 samples with 10 microsatellite loci enabled identification of 13 multilocus genotypes (MLG. Three of these, Ms11, Ms16 and Ms15, were the most frequent ones. The genetic structure of the populations was linked to the host plants. Ms11 and Ms16 were significantly more frequently observed on sugarcane, while Ms15 was almost exclusively collected in colonies on wild sorghum. Laboratory transfer experiments demonstrated the existence of fitness trade-offs. An Ms11 isofemale lineage performed better on sugarcane than on sorghum, whereas an Ms15 lineage developed very poorly on sugarcane, and two Ms16 lineages showed no significant difference in performances between both hosts. Both field and laboratory results support the existence of host plant specialization in M. sacchari in Reunion Island, despite low genetic differentiation. This study illustrates the ability of asexual aphid lineages to rapidly undergo adaptive changes including shifting from one host plant to another.

  11. Host response in aggressive periodontitis.

    Science.gov (United States)

    Kulkarni, Cyelee; Kinane, Denis F

    2014-06-01

    It is critical to understand the underlying host responses in aggressive periodontitis to provide a better appreciation of the risk and susceptibility to this disease. Such knowledge may elucidate the etiology and susceptibility to aggressive periodontitis and directly influence treatment decisions and aid diagnosis. This review is timely in that several widely held tenets are now considered unsupportable, namely the concept that Aggregatibacter actinomycetemycomitans is the key pathogen and that chemotactic defects in polymorphonuclear leukocytes are part of the etiopathology. This review also serves to put into context key elements of the host response that may be implicated in the genetic background of aggressive periodontitis. Furthermore, key molecules unique to the host response in aggressive periodontitis may have diagnostic utility and be used in chairside clinical activity tests or as population screening markers. It is becoming increasingly appreciated that the microbial etiology of aggressive periodontitis and the histopathology of this disease are more similar to than different from that of chronic periodontitis. An important therapeutic consideration from the lack of support for A. actinomycetemycomitans as a critical pathogen here is that the widely held belief that tetracycline had a role in aggressive periodontitis therapy is now not supported and that antibiotics such as those used effectively in chronic periodontitis (metronidazole and amoxicillin) are not contraindicated. Furthermore, A. actinomycetemycomitans-related molecules, such as cytolethal distending toxin and leukotoxin, are less likely to have utility as diagnosis agents or as therapeutic targets. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Host Identity Protocol Proxy

    Science.gov (United States)

    Salmela, Patrik; Melén, Jan

    The Host Identity Protocol (HIP) is one of the more recent designs that challenge the current Internet architecture. The main features of HIP are security and the identifier-locator split, which solves the problem of overloading the IP address with two separate tasks. This paper studies the possibility of providing HIP services to legacy hosts via a HIP proxy. Making a host HIP enabled requires that the IP-stack of the host is updated to support HIP. From a network administrator's perspective this can be a large obstacle. However, by providing HIP from a centralized point, a HIP proxy, the transition to begin using HIP can be made smoother. This and other arguments for a HIP proxy will be presented in this paper along with an analysis of a prototype HIP proxy and its performance.

  13. Paper Genetic Engineering.

    Science.gov (United States)

    MacClintic, Scott D.; Nelson, Genevieve M.

    Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…

  14. Genetic causes of bronchiectasis.

    Science.gov (United States)

    Gould, Christine M; Freeman, Alexandra F; Olivier, Kenneth N

    2012-06-01

    Our understanding of the pathologic cycle leading to the development of bronchiectasis is enhanced by greater understanding of the genetic influences contributing to its development. Genome-wide linkage analysis, family-based genetic linkage studies, and the testing of candidate genes have all greatly advanced our understanding of the complexity of the genetic basis of bronchiectasis. This article discusses how allelic variations, gene modifiers, HLA associations, and the interplay of developmental, host, and environmental factors all contribute in lesser and greater degrees, depending on the specific disease, toward the development of bronchiectasis in a spectrum of disease processes. Published by Elsevier Inc.

  15. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  16. Host?pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies

    OpenAIRE

    Streicker, Daniel G.; Winternitz, Jamie C.; Satterfield, Dara A.; Condori-Condori, Rene Edgar; Broos, Alice; Tello, Carlos; Recuenco, Sergio; Velasco-Villa, Andr?s; Altizer, Sonia; Valderrama, William

    2016-01-01

    Anticipating how epidemics will spread across landscapes requires understanding host dispersal events that are notoriously difficult to measure. Here, we contrast host and virus genetic signatures to resolve the spatiotemporal dynamics underlying geographic expansions of vampire bat rabies virus (VBRV) in Peru. Phylogenetic analysis revealed recent viral spread between populations that, according to extreme geographic structure in maternally inherited host mitochondrial DNA, appeared complete...

  17. On the role of host phenotypic plasticity in host shifting by parasites.

    Science.gov (United States)

    Mason, Peri Alexandra

    2015-12-22

    Ecological speciation appears to contribute to the diversification of insect herbivores and other parasites, which together comprise a major component of Earth's biodiversity. Host shifts are likely an important step in ecological speciation, and understanding how such shifts occur is critical to forming and testing hypotheses explaining parasite diversity. In this article, I argue that phenotypic variation in hosts arising from environmental variation (phenotypic plasticity) can promote shifts in parasites by bridging both spatiotemporal and phenotypic gaps between ancestral and novel hosts. This hypothesis, which I call the 'plastic-bridge hypothesis', is conceptually distinct from those invoking genetic variation in bridging these gaps. I describe the mechanistic basis of plastic bridges, review circumstantial evidence in support of the hypothesis and suggest strategies for testing it. I use herbivorous insects and their host plants as a model, but the proposed ideas apply to any system fitting a broad definition of a host-parasite relationship. The plastic-bridge perspective suggests that parasite diversity is not only due to divergent selection provided by hosts, but also to the intraspecific variation that facilitates shifts between them. This view is timely, as biological invasion and range shifts associated with climate change foster novel interactions between parasites and hosts. © 2015 John Wiley & Sons Ltd/CNRS.

  18. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    DEFF Research Database (Denmark)

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.

    2015-01-01

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme...... with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype...... was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production...

  19. Host-Specific Patterns of Genetic Diversity among IncI1-Iγ and IncK Plasmids Encoding CMY-2 β-Lactamase in Escherichia coli Isolates from Humans, Poultry Meat, Poultry, and Dogs in Denmark.

    Science.gov (United States)

    Hansen, Katrine Hartung; Bortolaia, Valeria; Nielsen, Christine Ahl; Nielsen, Jesper Boye; Schønning, Kristian; Agersø, Yvonne; Guardabassi, Luca

    2016-08-01

    CMY-2 is the most common plasmid-mediated AmpC β-lactamase in Escherichia coli isolates of human and animal origin. The aim of this study was to elucidate the epidemiology of CMY-2-producing E. coli in Denmark. Strain and plasmid relatedness was studied in 93 CMY-2-producing clinical and commensal E. coli isolates collected from 2006 to 2012 from humans, retail poultry meat, broilers, and dogs. Multilocus sequence typing (MLST), antimicrobial susceptibility testing, and conjugation were performed in conjunction with plasmid replicon typing, plasmid multilocus sequence typing (pMLST), restriction fragment length polymorphism (RFLP), and sequencing of selected blaCMY-2-harboring plasmids. MLST revealed high strain diversity, with few E. coli lineages occurring in multiple host species and sample types. blaCMY-2 was detected on plasmids in 83 (89%) isolates. Most (75%) of the plasmids were conjugative and did not (96%) cotransfer resistance to antimicrobials other than cephalosporins. The main replicon types identified were IncI1-Iγ (55%) and IncK (39%). Isolates from different host species mainly carried distinct plasmid subtypes. Seven of the 18 human isolates harbored IncI1-Iγ/sequence type 2 (ST2), IncI1-Iγ/ST12, or IncK plasmids highly similar to those found among animal isolates, even though highly related human and animal plasmids differed by nonsynonymous single nucleotide polymorphisms (SNPs) or insertion sequence elements. This study clearly demonstrates that the epidemiology of CMY-2 can be understood only by thorough plasmid characterization. To date, the spread of this β-lactam resistance determinant in Denmark is mainly associated with IncK and IncI1-Iγ plasmids that are generally distributed according to host-specific patterns. These baseline data will be useful to assess the consequences of the increasing human exposure to CMY-2-producing E. coli via animal sources. CMY-2 is the most common plasmid-mediated AmpC β-lactamase in Escherichia coli

  20. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites.

    Science.gov (United States)

    Niu, Jing; Arentshorst, Mark; Nair, P Deepa S; Dai, Ziyu; Baker, Scott E; Frisvad, Jens C; Nielsen, Kristian F; Punt, Peter J; Ram, Arthur F J

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations. Copyright © 2016 Niu et al.

  1. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Jing Niu

    2016-01-01

    Full Text Available The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402 and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  2. Host-Pathogen Coupled Interactions

    Science.gov (United States)

    2015-01-04

    describe bacterial proliferation in the host (and the host’s immune response), and molecular-level models describing the subversion of the molecular...the pathogen is endocytosed by host immune cells, and in the course of infection can escape back into the tissue or bloodstream of the host. During...host’s overall ( immune ) response. 15. SUBJECT TERMS Mathematical model, signaling pathways, bacterial infection, macrophage, immune system 16. SECURITY

  3. Host Range Specificity in Verticillium dahliae.

    Science.gov (United States)

    Bhat, R G; Subbarao, K V

    1999-12-01

    ABSTRACT Verticillium dahliae isolates from artichoke, bell pepper, cabbage, cauliflower, chili pepper, cotton, eggplant, lettuce, mint, potato, strawberry, tomato, and watermelon and V. albo-atrum from alfalfa were evaluated for their pathogenicity on all 14 hosts. One-month-old seedlings were inoculated with a spore suspension of about 10(7) conidia per ml using a root-dip technique and incubated in the greenhouse. Disease incidence and severity, plant height, and root and shoot dry weights were recorded 6 weeks after inoculation. Bell pepper, cabbage, cauliflower, cotton, eggplant, and mint isolates exhibited host specificity and differential pathogenicity on other hosts, whereas isolates from artichoke, lettuce, potato, strawberry, tomato, and watermelon did not. Bell pepper was resistant to all Verticillium isolates except isolates from bell pepper and eggplant. Thus, host specificity exists in some isolates of V. dahliae. The same isolates were characterized for vegetative compatibility groups (VCGs) through complementation of nitrate nonutilizing (nit) mutants. Cabbage and cauliflower isolates did not produce nit mutants. The isolate from cotton belonged to VCG 1; isolates from bell pepper, eggplant, potato, and tomato, to VCG 4; and the remaining isolates, to VCG 2. These isolates were also analyzed using the random amplified polymorphic DNA (RAPD) method. Forty random primers were screened, and eighteen of them amplified DNA from Verticillium. Based on RAPD banding patterns, cabbage and cauliflower isolates formed a unique group, distinct from other V. dahliae and V. albo-atrum groups. Minor genetic variations were observed among V. dahliae isolates from other hosts, regardless of whether they were host specific or not. There was no correlation among pathogenicity, VCGs, and RAPD banding patterns. Even though the isolates belonged to different VCGs, they shared similar RAPD profiles. These results suggest that management of Verticillium wilt in some crops

  4. Patterns of host adaptation in fly infecting Entomophthora species

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Jensen, Annette Bruun; Eilenberg, Jørgen

    .g. Entomophthora, Strongwellsea and Entomophaga). Species diversification of the obligate IPF within Entomophthoromycota thus seems to be primarily driven by co-evolutionary host adaptation to specific insect families, genera or species-complexes, but the underlying genetic factors of host adaptation......Insect pathogenic fungi (IPF) differ widely in their capability to infect different hosts. Some are generalists and will, given a sufficient number of infectious spores are present, infect almost any species of insect (e.g. Hypocrealean Metarhizium and Beauveria). Members of a different main IPF...... phylum Entomophthoromycota generally have more narrow host-ranges where some species for example only infect aphids or only locusts. Certain species (or strains) are even more host specific and are only known to infect a single or very few taxonomically related insect species under natural conditions (e...

  5. Patterns of host adaptation in fly infecting Entomophthora species

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Jensen, Annette Bruun; Eilenberg, Jørgen

    phylum Entomophthoromycota generally have more narrow host-ranges where some species for example only infect aphids or only locusts. Certain species (or strains) are even more host specific and are only known to infect a single or very few taxonomically related insect species under natural conditions (e...... in this fungal order are largely unknown and leave many unanswered questions. For example are the number of virulence factors increasing, or decreasing when fungal pathogens adapt to a narrow range of potential hosts? And, are host specialization based on many genetic changes with small effect or few with large......Insect pathogenic fungi (IPF) differ widely in their capability to infect different hosts. Some are generalists and will, given a sufficient number of infectious spores are present, infect almost any species of insect (e.g. Hypocrealean Metarhizium and Beauveria). Members of a different main IPF...

  6. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The genetic architecture of susceptibility to parasites.

    Science.gov (United States)

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  8. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  9. A parasitic selfish gene that affects host promiscuity

    Science.gov (United States)

    Giraldo-Perez, Paulina; Goddard, Matthew R.

    2013-01-01

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1–2% in ‘natural’ niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially. PMID:24048156

  10. What Can Phages Tell Us about Host-Pathogen Coevolution?

    Directory of Open Access Journals (Sweden)

    John J. Dennehy

    2012-01-01

    Full Text Available The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled, well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies, we can better understand the perplexing array of interactions that characterize organismal diversity in the wild.

  11. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  12. THE EVOLUTION OF PARASITES FROM THEIR HOSTS: A CASE STUDY IN THE PARASITIC RED ALGAE.

    Science.gov (United States)

    Goff, Lynda J; Ashen, Jon; Moon, Debra

    1997-08-01

    Morphological similarities of many parasites and their hosts have led to speculation that some groups of plant, animal, fungal, and algal parasites may have evolved directly from their hosts. These parasites, which have been termed adelphoparasites in the botanical literature, and more recently, agastoparasites in the insect literature, may evolve monophyletically from one host and radiate secondarily to other hosts or, these parasites may arise polyphyletically, each arising from its own host. In this study we compare the internal transcribed spacer regions of the nuclear ribosomal repeats of species and formae specialis (host races) included in the red algal parasite genus Asterocolax with its hosts, which all belong to the Phycodrys group of the Delesseriaceae and with closely related nonhost taxa of the Delesseriaceae. These analyses reveal that species of Asterocolax have evolved polyphyletically. Asterocolax erythroglossi from the North Atlantic host Erythroglossum laciniatum appears to have evolved from its host, whereas taxa included in the north Pacific species Asterocolax gardneri have had two independent origins. Asterocolax gardneri from the host Polyneura latissima probably arose directly from this host. In contrast, all other A. gardneri formae specialis appear to have originated from either Phycodrys setchellii or P. isabelliae and radiated secondarily onto other closely related taxa of the Phycodrys group, including Nienburgia andersoniana and Anisocladella pacifica. Gamete crossing experiments confirm that A. gardneri from each host is genetically isolated from both its host, and from other A. gardneri and their hosts. Cross-infection experiments reveal that A. gardneri develops normally only on its natural host, although some abberrant growth may occur on alternate hosts. The ability of red algal parasites to radiate secondarily to other red algal taxa, where they may become isolated genetically and speciate, suggests that this process of

  13. Host microsatellite alleles in malaria predisposition?

    Directory of Open Access Journals (Sweden)

    Trivedi Rajni

    2005-10-01

    Full Text Available Abstract Background Malaria is a serious, sometimes fatal, disease caused by Plasmodium infection of human red blood cells. The host-parasite co-evolutionary processes are well understood by the association of coding variations such as G6PD, Duffy blood group receptor, HLA, and beta-globin gene variants with malaria resistance. The profound genetic diversity in host is attributed to polymorphic microsatellites loci. The microsatellite alleles in bacterial species are known to have aided their survival in fatal environmental conditions. The fascinating question is whether microsatellites are genomic cushion in the human genome to combat disease stress and has cause-effect relationships with infections. Presentation of the hypothesis It is hypothesized that repeat units or alleles of microsatellites TH01 and D5S818, located in close proximity to beta-globin gene and immune regulatory region in human play a role in malaria predisposition. Association of alleles at aforesaid microsatellites with malaria infection was analysed. To overrule the false association in unrecognized population stratification, structure analysis and AMOVA were performed among the sampled groups. Testing of hypothesis Associations of microsatellite alleles with malaria infection were verified using recombination rate, Chi-square, and powerful likelihood tests. Further investigation of population genetic structure, and AMOVA was done to rule out the confounding effects of population stratification in interpretation of association studies. Implication of the hypothesis Lower recombination rate (θ between microsatellites and genes implicated in host fitness; positive association between alleles -13 (D5S818, 9 (TH01 and strong susceptibility to Plasmodium falciparum; and alleles-12 (D5S818 and 6 (TH01 rendering resistance to human host were evident. The interesting fact emerging from the study was that while predisposition to malaria was a prehistoric attribute, among TH01

  14. Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    Directory of Open Access Journals (Sweden)

    Dominique Angèle Vuitton

    2010-01-01

    Full Text Available Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.

  15. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing; Arentshorst, Mark; Nair, Deepa; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F.

    2016-01-11

    Rapid acidification of the culture medium by the production of organic acids and the production of acid-induced proteases are key characteristics of the filamentous fungus Aspergillus niger. The D15 mutant of A. niger is non-acidifying mutant and used often for the expression of recombinant proteins in A. niger, because of its reduced production of extracellular proteases under non-acidic conditions. In this study, the D15 mutant is characterized in detail. Strongly reduced levels of citric and oxalic acid were observed in the D15 mutant both in shake flask cultures and in controlled batch cultivations. To identify the mutation in the D15 mutant, we successfully combined high-throughput sequencing (Illumina) with bulk segregant analysis. Because of the lack of a sexual cycle for A. niger, the parasexual cycle was used to generate a pool of segregants. From the 52 single nucleotide polymorphisms (SNPs) between the parental strains, three SNPs were homozygous in the genomic DNA of pool of segregants. These three SNPs mapped to all the right arm of chromosome II, indicating that this region contains the genetic locus affecting the phenotype related to acid production. Of the three SNPs, one mutation resulted in a missense mutation in the gene encoding the A. niger homologue of the A. nidulans methyltransferase gene laeA. Complementation analysis of the original mutant with the laeA gene and targeted disruption of laeA further confirmed that LaeA is involved in citric acid production in A. niger lab (N402) and citric acid production strains (ATCC 11414). Analysis of the secondary metabolite (SM) profile of the laeA mutants indicate that LaeA is required for the production of several SMs (asperrubrol, atromentin and JBIR86), but deletion of laeA also resulted in the presence of SMs (aspernigrin A/B and BMS-192548) that were not detected in the wild-type strain. The levels of ten other SMs were not strongly affected as a result of laeA deletion indicating that only a

  16. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  17. Comparing mechanisms of host manipulation across host and parasite taxa

    Science.gov (United States)

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  18. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    Science.gov (United States)

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  19. New constitutive vectors: useful genetic engineering tools for biocatalysis.

    Science.gov (United States)

    Xu, Youqiang; Tao, Fei; Ma, Cuiqing; Xu, Ping

    2013-04-01

    Constitutive vectors are useful tools for genetic engineering. Two constitutive vectors with high levels of expression and broad host ranges were developed and used in a range of Pseudomonas hosts. The vectors showed superior characteristics compared to the inducible vectors as well as the potential to be used as improved genetic tools for biocatalysis.

  20. Genetic anaylsis of a disease resistance gene from loblolly pine

    Science.gov (United States)

    Yinghua Huang; Nili Jin; Alex Diner; Chuck Tauer; Yan Zhang; John Damicone

    2003-01-01

    Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens....

  1. Pseudomonas aeruginosa host-adaptation in cystic fibrosis patients

    DEFF Research Database (Denmark)

    Rau, Martin Holm

    Pseudomonas aeruginosa is an opportunistic pathogen capable of transition from an environmental lifestyle to a host-associated lifestyle, as exemplified in the life-long airway infection of cystic fibrosis (CF) patients. Long-term infection is associated with extensive genetic adaptation of P...

  2. Symbiotic specificity of tropical tree rhizobia for host legumes

    NARCIS (Netherlands)

    Bala, A.; Giller, K.E.

    2001-01-01

    The host range and specificity is reported of a genetically diverse group of rhizobia isolated from nodules of Calliandra calothyrsus, Gliricidia sepium, Leucaena leucocephala and Sesbania sesban. Nodule number and nitrogen content was measured in seedlings of herbaceous and woody legume species

  3. Studies of archaeal virus-host systems in thermal environments

    DEFF Research Database (Denmark)

    Erdmann, Susanne

    of the host. Biochemical characterizations of viral proteins were performed to gain a better understanding of the persistence of these viruses under the harsh conditions of their habitats and the relationship with their hosts. In particular proteins of ATV (Acidianus two-tailed virus) were investigated...... system of Sulfolobus species was investigated when challenged by different genetic elements. This adaptive immune system has a major impact on virus-host interactions. The adaptation mechanism, involving the uptake of fragments of genetic elements as spacer regions in CRISPR arrays was induced using...... an environmental virus mixture and, subsequently, by isolated viruses. Two distinct mechanisms of spacer acquisition were identified. Possible lines of future research into the adaptive immune systems are considered....

  4. Host specialization and phylogenetic diversity of Corynespora cassiicola.

    Science.gov (United States)

    Dixon, L J; Schlub, R L; Pernezny, K; Datnoff, L E

    2009-09-01

    The fungus Corynespora cassiicola is primarily found in the tropics and subtropics, and is widely diverse in substrate utilization and host association. Isolate characterization within C. cassiicola was undertaken to investigate how genetic diversity correlates with host specificity, growth rate, and geographic distribution. C. cassiicola isolates were collected from 68 different plant species in American Samoa, Brazil, Malaysia, and Micronesia, and Florida, Mississippi, and Tennessee within the United States. Phylogenetic analyses using four loci were performed with 143 Corynespora spp. isolates, including outgroup taxa obtained from culture collections: C. citricola, C. melongenae, C. olivacea, C. proliferata, C. sesamum, and C. smithii. Phylogenetic trees were congruent from the ribosomal DNA internal transcribed spacer region, two random hypervariable loci (caa5 and ga4), and the actin-encoding locus act1, indicating a lack of recombination within the species and asexual propagation. Fifty isolates were tested for pathogenicity on eight known C. cassiicola crop hosts: basil, bean, cowpea, cucumber, papaya, soybean, sweet potato, and tomato. Pathogenicity profiles ranged from one to four hosts, with cucumber appearing in 14 of the 16 profiles. Bootstrap analyses and Bayesian posterior probability values identified six statistically significant phylogenetic lineages. The six phylogenetic lineages correlated with host of origin, pathogenicity, and growth rate but not with geographic location. Common fungal genotypes were widely distributed geographically, indicating long-distance and global dispersal of clonal lineages. This research reveals an abundance of previously unrecognized genetic diversity within the species and provides evidence for host specialization on papaya.

  5. The evolution of mutualism in gut microbiota via host epithelial selection.

    Directory of Open Access Journals (Sweden)

    Jonas Schluter

    Full Text Available The human gut harbours a large and genetically diverse population of symbiotic microbes that both feed and protect the host. Evolutionary theory, however, predicts that such genetic diversity can destabilise mutualistic partnerships. How then can the mutualism of the human microbiota be explained? Here we develop an individual-based model of host-associated microbial communities. We first demonstrate the fundamental problem faced by a host: The presence of a genetically diverse microbiota leads to the dominance of the fastest growing microbes instead of the microbes that are most beneficial to the host. We next investigate the potential for host secretions to influence the microbiota. This reveals that the epithelium-microbiota interface acts as a selectivity amplifier: Modest amounts of moderately selective epithelial secretions cause a complete shift in the strains growing at the epithelial surface. This occurs because of the physical structure of the epithelium-microbiota interface: Epithelial secretions have effects that permeate upwards through the whole microbial community, while lumen compounds preferentially affect cells that are soon to slough off. Finally, our model predicts that while antimicrobial secretion can promote host epithelial selection, epithelial nutrient secretion will often be key to host selection. Our findings are consistent with a growing number of empirical papers that indicate an influence of host factors upon microbiota, including growth-promoting glycoconjugates. We argue that host selection is likely to be a key mechanism in the stabilisation of the mutualism between a host and its microbiota.

  6. Host-associated populations in the lettuce root aphid, Pemphigus bursarius (L.).

    Science.gov (United States)

    Miller, N J; Kift, N B; Tatchell, G M

    2005-05-01

    Pemphigus bursarius is a host-alternating aphid in which annual rounds of sexual reproduction on its primary host, Populus nigra, are interspersed with parthenogenesis on a range of secondary hosts. Evidence was sought for the existence of genetically distinct populations, associated with different secondary hosts, in P. bursarius. Microsatellite markers revealed that genetically distinct populations were present on three different secondary host species. Microsatellites were also used, in conjunction with mitochondrial DNA sequence variation, to investigate the relationships between aphids on Populus, following sexual reproduction, and those on the secondary hosts. Evidence was found for a distinct, cyclically parthenogenetic population that exploited Lactuca sativa as its secondary host. In contrast, populations associated with Matricaria inodora appeared to be largely composed of obligate parthenogens or may even have been another species of Pemphigus. Populations on Lapsana communis appeared to be a mixture of cyclical and obligate parthenogens and were more genetically heterogeneous than those on other secondary hosts, possibly due to founder effects. Experiments to measure the performance of P. bursarius clones on different secondary hosts were inconclusive, failing to demonstrate either the presence or absence of adaptations to secondary hosts.

  7. Ancient host specificity within a single species of brood parasitic bird.

    Science.gov (United States)

    Spottiswoode, Claire N; Stryjewski, Katherine Faust; Quader, Suhel; Colebrook-Robjent, John F R; Sorenson, Michael D

    2011-10-25

    Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms.

  8. Experimental test of host specificity in a behaviour-modifying trematode

    DEFF Research Database (Denmark)

    Hernandez, R.N.; Fredensborg, Brian Lund

    2015-01-01

    Host behavioural modification by parasites is a common and well-documented phenomenon. However, knowledge on the complexity and specificity of the underlying mechanisms is limited, and host specificity among manipulating parasites has rarely been experimentally verified. We tested the hypothesis ...... controls. Euhaplorchis sp. A was able to infect and manipulate fish belonging to two different families, suggesting that ecological similarity rather than genetic relatedness determines host range in this species.......Host behavioural modification by parasites is a common and well-documented phenomenon. However, knowledge on the complexity and specificity of the underlying mechanisms is limited, and host specificity among manipulating parasites has rarely been experimentally verified. We tested the hypothesis...... that the ability to infect and manipulate host behaviour is restricted to phylogenetically closely related hosts. Our model system consisted of the brain-encysting trematode Euhaplorchis sp. A and six potential fish intermediate hosts from the Order Cyprinodontiformes. Five co-occurring cyprinids were examined...

  9. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    Polyandry is often difficult to explain because benefits of the behaviour have proved elusive. In social insects, polyandry increases the genetic diversity of workers within a colony and this has been suggested to improve the resistance of the colony to disease. Here we examine the possible impact...... of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness...... upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed...

  10. Tomato resistance to Alternaria stem canker : localization in host genotypes and functional expression compared to non-host resistance

    NARCIS (Netherlands)

    Witsenboer, H.M.A.; Griend, E.G. van de; Tiersma, J.B.; Nijkamp, H.J.J.; Hille, J.

    1989-01-01

    The Alternaria stem canker resistance locus (Asc-locus), involved in resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici and in insensitivity to host-specific toxins (AAL-toxins) produced by the pathogen, was genetically mapped on the tomato genome. Susceptibility and

  11. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz-Montoya

    Full Text Available Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size on B. campestris, and on PC1 and PC2 (body length relative to body size on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  12. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation

    Directory of Open Access Journals (Sweden)

    Yockteng Roxana

    2008-03-01

    each species was retained, cospeciation events were not more frequent than expected under a random distribution, and many host shifts were inferred. Current geographic distributions of host species seemed to be of little relevance for understanding the putative historical host shifts, because most fungal species had overlapping geographic ranges. We did detect some ecological similarities, including shared pollinators and habitat types, between host species that were diseased by closely related anther smut species. Overall, genetic similarity underlying the host-parasite interactions appeared to have the most important influence on specialization and host-shifts: generalist multi-host parasite species were found on closely related plant species, and related species in the Microbotryum phylogeny were associated with members of the same host clade. Conclusion We showed here that Microbotryum species have evolved through frequent host shifts to moderately distant hosts, and we show further that accurate delimitation of parasite species is essential for interpreting cophylogeny studies.

  13. Fungal sensing of host environment.

    Science.gov (United States)

    Braunsdorf, C; Mailänder-Sánchez, D; Schaller, M

    2016-09-01

    To survive inside a host, fungi have to adapt to a changing and often hostile environment and therefore need the ability to recognize what is going on around them. To adapt to different host niches, they need to sense external conditions such as temperature, pH and to recognize specific host factors. The ability to respond to physiological changes inside the host, independent of being in a commensal, pathogenic or even symbiotic context, implicates mechanisms for sensing of specific host factors. Because the cell wall is constantly in contact with the surrounding, fungi express receptors on the surface of their cell wall, such as pheromone receptors, which have important roles, besides mediating chemotropism for mating. We are not restricting the discussion to the human host because the receptors and mechanisms used by different fungal species to sense their environment are often similar even for plant pathogens. Furthermore, the natural habitat of opportunistic pathogenic fungi with the potential to cause infection in a human host is in soil and on plants. While the hosts' mechanisms of sensing fungal pathogens have been addressed in the literature, the focus of this review is to fill the gap, giving an overview on fungal sensing of a host-(ile) environment. Expanding our knowledge on host-fungal interactions is extremely important to prevent and treat diseases of pathogenic fungi, which are important issues in human health and agriculture but also to understand the delicate balance of fungal symbionts in our ecosystem. © 2016 John Wiley & Sons Ltd.

  14. HybHyp--hybridizing the host: the long reach of parasite genes. A new hypothesis to explain host-parasite interrelationships in plant hybrid complexes.

    Science.gov (United States)

    Wissemann, Volker

    2010-12-01

    Ever since existence of sexuality in plants was accepted in around 1700, questions centred about the role and maintenance of sexual reproduction in general, leading to a number of hypotheses like the Vicar of Bray, the Ratchet or the Hitch-hiker theory. Bell (The masterpiece of nature. The evolution and genetics of sexuality. University of California Press, Berkeley, LA, 1982) formulated the Red Queen Hypothesis (RQH) which explains the persistence of sexual reproduction as an outcome of a coevolutionary arms race between hosts and parasites. By sexual recombination and genetic diversification hosts minimize the risk of pathogen infection. Since virulence of pathogens is genetically determined and often species specific, parasites are mostly adapted to common host genotypes, whereas rare and divergent genotypes are less infected and therefore have a selective advantage. Employing Dawkins (The extended phenotype. The long reach of the gene, 1999) central theorem of the extended phenotype to the RQH, mating systems in hosts might be a result of the long reach of the parasites genes. Here now the hypothesis is proposed, that evolution by hybridisation and polyploidy in host plants is an extended phenotype of parasites, a response of hosts triggered by the parasites genes to slow down the effects of the Red Queen strategy of plants. Thus, hybridisation and polyploidy might have evolved by parasite pressure and not by host strategy. This hypothesis is called the "hybridisation-of-the-host-hypothesis".

  15. Host City Contract operational requirements

    OpenAIRE

    2015-01-01

    The Host City Contract - Operational Requirements (the “HCC Operational Requirements”) are an important part of the Host City Contract, detailing a set of core elements for the project, which provide Olympic quality conditions for the athletes and all participants, while at the same time allowing potential host cities to responsibly match their Games concepts to their own sport, economic, social, and environmental long-term planning needs.

  16. Positive selection of HIV host factors and the evolution of lentivirus genes

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2010-06-01

    Full Text Available Abstract Background Positive selection of host proteins that interact with pathogens can indicate factors relevant for infection and potentially be a measure of pathogen driven evolution. Results Our analysis of 1439 primate genes and 175 lentivirus genomes points to specific host factors of high genetic variability that could account for differences in susceptibility to disease and indicate specific mechanisms of host defense and pathogen adaptation. We find that the largest amount of genetic change occurs in genes coding for cellular membrane proteins of the host as well as in the viral envelope genes suggesting cell entry and immune evasion as the primary evolutionary interface between host and pathogen. We additionally detect the innate immune response as a gene functional group harboring large differences among primates that could potentially account for the different levels of immune activation in the HIV/SIV primate infection. We find a significant correlation between the evolutionary rates of interacting host and viral proteins pointing to processes of the host-pathogen biology that are relatively conserved among species and to those undergoing accelerated genetic evolution. Conclusions These results indicate specific host factors and their functional groups experiencing pathogen driven evolutionary selection pressures. Individual host factors pointed to by our analysis might merit further study as potential targets of antiretroviral therapies.

  17. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi.

    Science.gov (United States)

    Gürtler, Ricardo E; Cardinal, M V

    2015-11-01

    We review the epidemiological role of domestic and commensal hosts of Trypanosoma cruzi using a quantitative approach, and compiled >400 reports on their natural infection. We link the theory underlying simple mathematical models of vector-borne parasite transmission to the types of evidence used for reservoir host identification: mean duration of infectious life; host infection and infectiousness; and host-vector contact. The infectiousness of dogs or cats most frequently exceeded that of humans. The host-feeding patterns of major vectors showed wide variability among and within triatomine species related to their opportunistic behavior and variable ecological, biological and social contexts. The evidence shows that dogs, cats, commensal rodents and domesticated guinea pigs are able to maintain T. cruzi in the absence of any other host species. They play key roles as amplifying hosts and sources of T. cruzi in many (peri)domestic transmission cycles covering a broad diversity of ecoregions, ecotopes and triatomine species: no other domestic animal plays that role. Dogs comply with the desirable attributes of natural sentinels and sometimes were a point of entry of sylvatic parasite strains. The controversies on the role of cats and other hosts illustrate the issues that hamper assessing the relative importance of reservoir hosts on the basis of fragmentary evidence. We provide various study cases of how eco-epidemiological and genetic-marker evidence helped to unravel transmission cycles and identify the implicated hosts. Keeping dogs, cats and rodents out of human sleeping quarters and reducing their exposure to triatomine bugs are predicted to strongly reduce transmission risks. Copyright © 2015. Published by Elsevier B.V.

  18. HOST liner cyclic facilities

    Science.gov (United States)

    Schultz, D.

    1983-01-01

    The HOST Liner Cyclic Program is utilizing two types of test apparatus, rectangular box rigs and a full annular rig. To date two quartz lamp cyclic box rigs have been tested and a third is to begin testing in late October 1983. The box rigs are used to evaluate 5x8 inch rectangular linear samples. A 21 inch diameter outer liner simulator is also being built up for testing beginning in April 1984. All rigs are atmospheric rigs. The first box rig, a three 6-kVA lamp installation, was operated under adverse conditions to determine feasibility of using quartz lamps for cyclic testing. This work was done in December 1981 and looked promising. The second box rig, again using three 6-kVA lamps, was operated to obtain instrumentation durability information and initial data input to a Finite Element Model. This limited test program was conducted in August 1983. Five test plates were run. Instrumentation consisted of strain gages, thermocouples and thermal paint. The strain gages were found to fail at 1200 F as expected though plates were heated to 1700 F. The third box rig, containing four 6-kVA lamps, is in build up for testing to begin in late October 1983. In addition to 33 percent greater power input, this rig has provision for 400 F backside line cooling air and a viewing port suitable for IR camera viewing. The casing is also water cooled for extended durability.

  19. Of genes and microbes: solving the intricacies in host genomes.

    Science.gov (United States)

    Wang, Jun; Chen, Liang; Zhao, Na; Xu, Xizhan; Xu, Yakun; Zhu, Baoli

    2018-04-02

    Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.

  20. Complex Host Genetics Influence the Microbiome in Inflammatory Bowel Disease

    Science.gov (United States)

    2016-09-09

    of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA 2Broad Institute of Harvard and MIT, Cambridge...association [28], we performed these tests using bacterial taxa at all taxonomic levels from phylum to genus , collapsing those with redundant signals. In...RJX, CH, DG). JK is the Joanne Murphy Professor in Behavioural Science . Author details 1Department of Computer Science and Engineering, University of

  1. Host Genetics and Gut Microbiome : Challenges and Perspectives

    NARCIS (Netherlands)

    Kurilshikov, Alexander; Wijmenga, Cisca; Fu, Jingyuan; Zhernakova, Alexandra

    The mammalian gut is colonized by trillions of microorganisms collectively called the microbiome. It is increasingly clear that this microbiome has a critical role of in many aspects of health including metabolism and immunity. While environmental factors such as diet and medications have been shown

  2. Host genetic factors in susceptibility to HIV-1 infection and ...

    Indian Academy of Sciences (India)

    Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa. Abstract ..... with AIDS progression or susceptibility to HIV-1 infection in a. French AIDS cohort. Biomed. Pharmacother. 60, 569–577. Doherty P. C. and Zinkernagel R. M. 1975 Enhanced immunologi-.

  3. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  4. Castrating parasites and colonial hosts.

    Science.gov (United States)

    Hartikainen, H; Okamura, B

    2012-04-01

    Trajectories of life-history traits such as growth and reproduction generally level off with age and increasing size. However, colonial animals may exhibit indefinite, exponential growth via modular iteration thus providing a long-lived host source for parasite exploitation. In addition, modular iteration entails a lack of germ line sequestration. Castration of such hosts by parasites may therefore be impermanent or precluded, unlike the general case for unitary animal hosts. Despite these intriguing correlates of coloniality, patterns of colonial host exploitation have not been well studied. We examined these patterns by characterizing the responses of a myxozoan endoparasite, Tetracapsuloides bryosalmonae, and its colonial bryozoan host, Fredericella sultana, to 3 different resource levels. We show that (1) the development of infectious stages nearly always castrates colonies regardless of host condition, (2) castration reduces partial mortality and (3) development of transmission stages is resource-mediated. Unlike familiar castrator-host systems, this system appears to be characterized by periodic rather than permanent castration. Periodic castration may be permitted by 2 key life history traits: developmental cycling of the parasite between quiescent (covert infections) and virulent infectious stages (overt infections) and the absence of germ line sequestration which allows host reproduction in between bouts of castration.

  5. Identification of the host determinant of two prolate-headed phages infecting lactococcus lactis

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Birgitte; Janzen, Thomas; Schnabl, Jannie; Johansen, Eric

    2003-01-01

    A gene responsible for host determination was identified in two prolate-headed bacteriophages of the c2 species infecting strains of Lactococcus lactis. The identification of the host determinant gene was based on low DNA sequence homology in a specific open reading frame (ORF) between prolate-headed phages with different host ranges. When a host carrying this ORF from one phage on a plasmid was infected with another phage, we obtained phages with an altered host range at a frequency of 10 -6 to 10 -7 . Sequencing of phage DNA originating from 10 independent single plaques confirmed that a genetic recombination had taken place at different positions between the ORF on the plasmid and the infecting phage. The adsorption of the recombinant phages to their bacterial hosts had also changed to match the phage origin of the ORF. Consequently, it is concluded that this ORF codes for the host range determinant

  6. Intercultural Competence in Host Students?

    DEFF Research Database (Denmark)

    Egekvist, Ulla Egidiussen; Lyngdorf, Niels Erik; Du, Xiangyun

    2016-01-01

    Although substantial work in intercultural education has been done on the intercultural competences of mobile students engaging in international study visits, there is a need to explore intercultural competences in host students. This chapter seeks to answer questions about the challenges and pos...... experience. The study suggests that challenges and possibilities are found within the following categories: (1) Experiential learning, (2) Stereotypes and (3) Coping strategies and support.......Although substantial work in intercultural education has been done on the intercultural competences of mobile students engaging in international study visits, there is a need to explore intercultural competences in host students. This chapter seeks to answer questions about the challenges......-secondary students hosting same-age Chinese students in homestays during a four-day study visit to Denmark in 2012. Qualitative data from student portfolios and focus group interviews are analysed with a focus on host students’ pre-understandings, experiences during the visit and overall reflections on the host...

  7. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer...... transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural...... the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness....

  8. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Takayuki eKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  9. Genetic Mapping

    Science.gov (United States)

    ... Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers Genomic ... genetic mapping? Among the main goals of the Human Genome Project (HGP) was to develop new, better and cheaper ...

  10. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  11. Genetic Testing

    Science.gov (United States)

    ... risk factor for the development of celiac disease, genetic predisposition. Without this factor, it is impossible that the ... with antibody testing in the future. When the genetic predisposition for celiac disease was detected (on Chromosome 6) ...

  12. Genetic counseling

    Science.gov (United States)

    ... have a high risk of having babies with Tay-Sachs or Canavan's disease. African-Americans, who may risk ... yours to make. Images Genetic counseling and prenatal diagnosis References Simpson JL, Holzgreve W, Driscoll DA. Genetic ...

  13. Host plant use by competing acacia-ants: mutualists monopolize while parasites share hosts.

    Science.gov (United States)

    Kautz, Stefanie; Ballhorn, Daniel J; Kroiss, Johannes; Pauls, Steffen U; Moreau, Corrie S; Eilmus, Sascha; Strohm, Erhard; Heil, Martin

    2012-01-01

    Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers--regardless of the route to achieve this social structure--enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants.

  14. Genetic risk

    OpenAIRE

    ten Kate, Leo P.

    2012-01-01

    In this paper I will review different aspects of genetic risk in the context of preconception care. I restrict myself to the knowledge of risk which is relevant for care and/or enables reproductive choice. The paper deals with chromosomes, genes and the genetic classification of diseases, and it explains why Mendelian disorders frequently do not show the expected pattern of occurrence in families. Factors that amplify genetic risk are also discussed. Of the two methods of genetic risk assessm...

  15. Sex-specific effects of a parasite evolving in a female-biased host population

    Directory of Open Access Journals (Sweden)

    Duneau David

    2012-12-01

    Full Text Available Abstract Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration, which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  16. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  17. Genotype-specific interactions and the trade-off between host and parasite fitness

    Directory of Open Access Journals (Sweden)

    Shykoff Jacqui A

    2007-10-01

    Full Text Available Abstract Background Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica, a natural pathogen of the Brassicaceae Arabidopsis thaliana. Results We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb, although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. Conclusion These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions

  18. THE EFFECTS OF HOST GENOTYPE AND SPATIAL DISTRIBUTION ON TREMATODE PARASITISM IN A BIVALVE POPULATION.

    Science.gov (United States)

    Grosholz, Edwin D

    1994-10-01

    A basic assumption underlying models of host-parasite coevolution is the existence of additive genetic variation among hosts for resistance to parasites. However, estimates of additive genetic variation are lacking for natural populations of invertebrates. Testing this assumption is especially important in view of current models that suggest parasites may be responsible for the evolution of sex, such as the Red Queen hypothesis. This hypothesis suggests that the twofold reproductive disadvantage of sex relative to parthenogenesis can be overcome by the more rapid production of rare genotypes resistant to parasites. Here I present evidence of significant levels of additive genetic variance in parasite resistance for an invertebrate host-parasite system in nature. Using families of the bivalve mollusc, Transennella tantilla, cultured in the laboratory, then exposed to parasites in the field, I quantified heritable variation in parasite resistance under natural conditions. The spatial distribution of outplanted hosts was also varied to determine environmental contributions to levels of parasite infection and to estimate potential interactions of host genotype with environment. The results show moderate but significant levels of heritability for resistance to parasites (h 2 = 0.36). The spatial distribution of hosts also significantly influenced parasite prevalence such that increased host aggregation resulted in decreased levels of parasite infection. Family mean correlations across environments were positive, indicating no genotype-environment interaction. Therefore, these results provide support for important assumptions underlying coevolutionary models of host-parasite systems. © 1994 The Society for the Study of Evolution.

  19. Expression differences in Aphidius ervi (Hymenoptera: Braconidae females reared on different aphid host species

    Directory of Open Access Journals (Sweden)

    Gabriel I. Ballesteros

    2017-08-01

    Full Text Available The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222. As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid but originating from different host plants (pea versus alfalfa were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts. We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if

  20. Host Genotype and Microbiota Contribute Asymmetrically to Transcriptional Variation in the Threespine Stickleback Gut

    Science.gov (United States)

    Small, Clayton M.; Milligan-Myhre, Kathryn; Bassham, Susan; Guillemin, Karen

    2017-01-01

    Recent studies of interactions between hosts and their resident microbes have revealed important ecological and evolutionary consequences that emerge from these complex interspecies relationships, including diseases that occur when the interactions go awry. Given the preponderance of these interactions, we hypothesized that effects of the microbiota on gene expression in the developing gut—an important aspect of host biology—would be pervasive, and that these effects would be both comparable in magnitude to and contingent on effects of the host genetic background. To evaluate the effects of the microbiota, host genotype, and their interaction on gene expression in the gut of a genetically diverse, gnotobiotic host model, the threespine stickleback (Gasterosteus aculeatus), we compared RNA-seq data among 84 larval fish. Surprisingly, we found that stickleback population and family differences explained substantially more gene expression variation than the presence of microbes. Expression levels of 72 genes, however, were affected by our microbiota treatment. These genes, including many associated with innate immunity, comprise a tractable subset of host genetic factors for precise, systems-level study of host–microbe interactions in the future. Importantly, our data also suggest subtle signatures of a statistical interaction between host genotype and the microbiota on expression patterns of genetic pathways associated with innate immunity, coagulation and complement cascades, focal adhesion, cancer, and peroxisomes. These genotype-by-environment interactions may prove to be important leads to the understanding of host genetic mechanisms commonly at the root of sometimes complex molecular relationships between hosts and their resident microbes. PMID:28391321

  1. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  2. Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants.

    Science.gov (United States)

    Thorogood, C J; Rumsey, F J; Hiscock, S J

    2009-05-01

    Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided. A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host-parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host-parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts. Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity. It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates.

  3. Adaptation of the pathogen, Pseudomonas syringae, during experimental evolution on a native vs. alternative host plant.

    Science.gov (United States)

    Meaden, Sean; Koskella, Britt

    2017-04-01

    The specialization and distribution of pathogens among species has substantial impact on disease spread, especially when reservoir hosts can maintain high pathogen densities or select for increased pathogen virulence. Theory predicts that optimal within-host growth rate will vary among host genotypes/species and therefore that pathogens infecting multiple hosts should experience different selection pressures depending on the host environment in which they are found. This should be true for pathogens with broad host ranges, but also those experiencing opportunistic infections on novel hosts or that spill over among host populations. There is very little empirical data, however, regarding how adaptation to one host might directly influence infectivity and growth on another. We took an experimental evolution approach to examine short-term adaptation of the plant pathogen, Pseudomonas syringae pathovar tomato, to its native tomato host compared with an alternative host, Arabidopsis, in either the presence or absence of bacteriophages. After four serial passages (20 days of selection in planta), we measured bacterial growth of selected lines in leaves of either the focal or alternative host. We found that passage through Arabidopsis led to greater within-host bacterial densities in both hosts than did passage through tomato. Whole genome resequencing of evolved isolates identified numerous single nucleotide polymorphisms based on our novel draft assembly for strain PT23. However, there was no clear pattern of clustering among plant selection lines at the genetic level despite the phenotypic differences observed. Together, the results emphasize that previous host associations can influence the within-host growth rate of pathogens. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  4. Effect of oligonucleotide primers in determining viral variability within hosts

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2004-12-01

    Full Text Available Abstract Background Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. Results To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient. Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Conclusions Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  5. Effect of oligonucleotide primers in determining viral variability within hosts.

    Science.gov (United States)

    Bracho, Maria Alma; García-Robles, Inmaculada; Jiménez, Nuria; Torres-Puente, Manuela; Moya, Andrés; González-Candelas, Fernando

    2004-12-09

    Genetic variability in viral populations is usually estimated by means of polymerase chain reaction (PCR) based methods in which the relative abundance of each amplicon is assumed to be proportional to the frequency of the corresponding template in the initial sample. Although bias in template-to-product ratios has been described before, its relevance in describing viral genetic variability at the intrapatient level has not been fully assessed yet. To investigate the role of oligonucleotide design in estimating viral variability within hosts, genetic diversity in hepatitis C virus (HCV) populations from eight infected patients was characterised by two parallel PCR amplifications performed with two slightly different sets of primers, followed by cloning and sequencing (mean = 89 cloned sequences per patient). Population genetics analyses of viral populations recovered by pairs of amplifications revealed that in seven patients statistically significant differences were detected between populations sampled with different set of primers. Genetic variability analyses demonstrates that PCR selection due to the choice of primers, differing in their degeneracy degree at some nucleotide positions, can eclipse totally or partially viral variants, hence yielding significant different estimates of viral variability within a single patient and therefore eventually producing quite different qualitative and quantitative descriptions of viral populations within each host.

  6. About Genetic Counselors

    Science.gov (United States)

    ... clinical care in many areas of medicine. Assisted Reproductive Technology/Infertility Genetics Cancer Genetics Cardiovascular Genetics Cystic Fibrosis Genetics Fetal Intervention and Therapy Genetics Hematology Genetics Metabolic Genetics ...

  7. Evolution and genetic diversity of Theileria.

    Science.gov (United States)

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mistletoe ecophysiology: Host-parasite interactions

    Science.gov (United States)

    G. Glatzel; B. W. Geils

    2009-01-01

    Mistletoes are highly specialized perennial flowering plants adapted to parasitic life on aerial parts of their hosts. In our discussion on the physiological interactions between parasite and host, we focus on water relations, mineral nutrition, and the effect of host vigour. When host photosynthesis is greatest, the xylem water potential of the host is most negative....

  9. Digbeth hosts the Big Bang

    CERN Multimedia

    2002-01-01

    Birminham museum of science and discovery, Thinktank, is hosting 'Building The Universe', a free exhibition about the work undertaken at the European Laboratory for Particle Physics, in Geneva (3 paragraphs).

  10. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission.

    Science.gov (United States)

    Pucciarelli, M Graciela; García-Del Portillo, Francisco

    2017-07-01

    More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.

  11. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Streptococcus equi: a pathogen restricted to one host.

    Science.gov (United States)

    Waller, Andrew S; Paillot, Romain; Timoney, John F

    2011-09-01

    Strangles caused by the host adapted Lancefield group C Streptococcus equi subspecies equi (S. equi) is a frequently diagnosed infectious disease of horses worldwide. Critical to the global success of S. equi is its ability to establish persistent infections within the guttural pouches of recovered apparently healthy horses that can result in transmission to in-contact animals. Recent research has identified key events in the S. equi genome, which occurred during its evolution from an ancestral strain of S. equi subspecies zooepidemicus, that may enhance its ability to evade host innate immune responses and rapidly multiply in the tonsillar complex and draining lymph nodes. This review discusses the role of these genetic events on the evolution and emergence of this important host-restricted pathogen.

  13. Molecular crosstalks in Leishmania-sandfly-host relationships

    Directory of Open Access Journals (Sweden)

    Volf P.

    2008-09-01

    Full Text Available Sandflies (Diptera: Phlebotominae are vectors of Leishmania parasites, causative agents of important human and animal diseases with diverse manifestations. This review summarizes present knowledge about the vectorial part of Leishmania life cycle and parasite transmission to the vertebrate host. Particularly, it focuses on molecules that determine the establishment of parasite infection in sandfly midgut. It describes the concept of specific versus permissive sandfly vectors, explains the epidemiological consequences of broad susceptibility of permissive sandflies and demonstrates that genetic exchange may positively affect Leishmania fitness in the vector. Last but not least, the review describes recent knowledge about circulating antibodies produced by hosts in response to sandfly bites. Studies on specificity and kinetics of antibody response revealed that anti-saliva IgG could be used as a marker of host exposure to sandflies, i.e. as a useful tool for evaluation of vector control.

  14. Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark

    DEFF Research Database (Denmark)

    Als, Thomas Damm; Nash, David Richard; Boomsma, J. J.

    2002-01-01

    1. Maculinea alcon uses three different species of Myrmica host ants along a north-south gradient in Europe. Based on this geographical variation in host ant use, Elmes et al. (1994) suggested that M. alcon might consist of three or more cryptic species or host races, each using a single and diff......1. Maculinea alcon uses three different species of Myrmica host ants along a north-south gradient in Europe. Based on this geographical variation in host ant use, Elmes et al. (1994) suggested that M. alcon might consist of three or more cryptic species or host races, each using a single...... and different host-ant species.2. Population-specific differences in allozyme genotypes of M. alcon in Denmark (Gadeberg Boomsma, 1997) have suggested that genetically differentiated forms may occur in a gradient across Denmark, possibly in relation to the use of different host ants.3. It was found that two....... The geographical mosaic of host specificity and demography of M. alcon in Denmark probably reflects the co-evolution of M. alcon with two alternative host species. This system therefore provides an interesting opportunity for studying details of the evolution of parasite specificity and the dynamics of host-race...

  15. Forward Genetic Approaches for Elucidation of Novel Regulators of Lyme Arthritis Severity

    Directory of Open Access Journals (Sweden)

    Kenneth K.C. Bramwell

    2014-06-01

    Full Text Available Patients experiencing natural infection with Borrelia burgdorferi display a spectrum of associated symptoms and severity, strongly implicating the impact of genetically determined host factors in the pathogenesis of Lyme disease. Herein, we provide a summary of the host genetic factors that have been demonstrated to influence the severity and chronicity of Lyme arthritis symptoms, and a review of the resources available, current progress, and added value of a forward genetic approach for identification of novel genetic regulators.

  16. Selective factors associated with the evolution of codon usage in natural populations of arboviruses and their practical application to infer possible hosts for emerging viruses

    Science.gov (United States)

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for the...

  17. Interactions of inbreeding and stress by poor host quality in a root hemiparasite.

    Science.gov (United States)

    Sandner, Tobias Michael; Matthies, Diethart

    2017-01-01

    Populations of many hemiparasitic plants are fragmented and threatened by inbreeding depression (ID). In addition, they may also be strongly affected by a lack of suitable host species. However, nothing is known about possible interactive effects of inbreeding and host quality for parasitic plants. Poor host quality represents a special type of biotic stress and the magnitude of ID is often expected to be higher in more stressful environments. We studied the effects of inbreeding and the quality of host species for the declining root hemiparasite Rhinanthus alectorolophus Selfed and open-pollinated parasites from two natural populations were grown (1) with 13 potential host species and (2) with 15 four-species mixtures. ID differed among host species and mixtures. In the first experiment, ID was highest in parasites grown with good hosts and declined with stress intensity. In the second experiment, ID was not influenced by stress intensity, but was highest in mixtures of hosts from only one functional group and lowest in mixtures containing three functional groups. Both parasite performance with individual host species and the damage to these host species differed between parasites from the two study populations. Our results contradict the common assumption that ID is generally higher in more stressful environments. In addition, they support the importance of diverse host communities for hemiparasitic plants. The differences in host quality between the two parasite populations indicate genetic variation in the adaptation to individual hosts and in host-specific virulence. However, inbreeding did not affect specific host-parasite interactions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Genetic barcodes

    Science.gov (United States)

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  19. Evidence for mating between isolates of Colletotrichum gloeosporioides with different host specificities.

    Science.gov (United States)

    Cisar, C R; Spiegel, F W; TeBeest, D O; Trout, C

    1994-04-01

    Individual isolates of the ubiquitous plant pathogen Colletotrichum gloeosporioides (teleomorph Glomerella cingulata) can have very restricted host ranges. Isolates that share the same host range are considered to be genetically discrete units, and sexual compatibility has been reported to be limited to individuals that share the same host range. However, we have recently observed that some isolates of C. gloeosporioides that are specifically pathogenic to different, distantly-related hosts are sexually compatible. Ascospore progeny from one such cross were randomly isolated and outcrossing was verified by the reassortment of several RFLP markers among the progeny. In addition, the progeny were analyzed for pathogenicity to parental hosts. The implications of sexual compatibility between C. gloeosporioides isolates with different host specificities on the evolution of Colletotrichum species are discussed.

  20. The metabolic pathways utilized by Salmonella Typhimurium during infection of host cells.

    Science.gov (United States)

    Thompson, Arthur; Fulde, Marcus; Tedin, Karsten

    2018-04-01

    Only relatively recently has research on the metabolism of intracellular bacterial pathogens within their host cells begun to appear in the published literature. This reflects in part the experimental difficulties encountered in separating host metabolic processes from those of the resident pathogen. One of the most genetically tractable and thoroughly studied intracellular bacterial pathogens, Salmonella enterica serovar Typhimurium (S. Typhimurium), has been at the forefront of metabolic studies within eukaryotic host cells. In this review, we offer a synthesis of what has been discovered to date regarding the metabolic adaptation of S. Typhimurium to survival and growth within the infected host. We discuss many studies in the context of techniques used, types of host cells, how host metabolites contribute to intracellular survival and proliferation of the pathogen and how bacterial metabolism affects the virulence and persistence of the pathogen. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  3. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST...

  4. Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles.

    Science.gov (United States)

    Feldmeyer, B; Elsner, D; Alleman, A; Foitzik, S

    2017-12-04

    The transition to a parasitic lifestyle entails comprehensive changes to the selective regime. In parasites, genes encoding for traits that facilitate host detection, exploitation and transmission should be under selection. Slavemaking ants are social parasites that exploit the altruistic behaviour of their hosts by stealing heterospecific host brood during raids, which afterwards serve as slaves in slavemaker nests. Here we search for evidence of selection in the transcriptomes of three slavemaker species and three closely related hosts. We expected selection on genes underlying recognition and raiding or defense behaviour. Analyses of selective forces in species with a slavemaker or host lifestyle allowed investigation into whether or not repeated instances of slavemaker evolution share the same genetic basis. To investigate the genetic basis of host-slavemaker co-evolution, we created orthologous clusters from transcriptome sequences of six Temnothorax ant species - three slavemakers and three hosts - to identify genes with signatures of selection. We further tested for functional enrichment in selected genes from slavemakers and hosts respectively and investigated which pathways the according genes belong to. Our phylogenetic analysis, based on more than 5000 ortholog sequences, revealed sister species status for two slavemakers as well as two hosts, contradicting a previous phylogeny based on mtDNA. We identified 309 genes with signs of positive selection on branches leading to slavemakers and 161 leading to hosts. Among these were genes potentially involved in cuticular hydrocarbon synthesis, thus species recognition, and circadian clock functionality possibly explaining the different activity patterns of slavemakers and hosts. There was little overlap of genes with signatures of positive selection among species, which are involved in numerous different functions and different pathways. We identified different genes, functions and pathways under positive

  5. Salmonella Populations inside Host Cells

    Directory of Open Access Journals (Sweden)

    Sónia Castanheira

    2017-10-01

    Full Text Available Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.

  6. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  7. Agrobacterium: nature's genetic engineer.

    Science.gov (United States)

    Nester, Eugene W

    2014-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun's old observations and also explain why Agrobacterium is nature's genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering.

  8. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  9. Genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Grefenstette, J.J.

    1994-12-31

    Genetic algorithms solve problems by using principles inspired by natural population genetics: They maintain a population of knowledge structures that represent candidate solutions, and then let that population evolve over time through competition and controlled variation. GAs are being applied to a wide range of optimization and learning problems in many domains.

  10. Genetic Counseling.

    Science.gov (United States)

    Exceptional Parent, 1987

    1987-01-01

    Information is presented on a number of tests used in genetic counseling (e.g., genetic evaluation, chromosome evaluation, consideration of multifactorial conditions, prenatal testing, and chorionic villus sampling) which help parents with one disabled child make family planning decisions. (CB)

  11. Genetic risk

    NARCIS (Netherlands)

    ten Kate, L.P.

    2012-01-01

    In this paper I will review different aspects of genetic risk in the context of preconception care. I restrict myself to the knowledge of risk which is relevant for care and/or enables reproductive choice. The paper deals with chromosomes, genes and the genetic classification of diseases, and it

  12. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization

    Directory of Open Access Journals (Sweden)

    Juliana Benevenuto

    2018-04-01

    Full Text Available Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice, Echinochloa colona (a wild grass, and Persicaria sp. (a wild dicot plant. We assembled two new genomes: Ustilago hordei (strain Uhor01 isolated from oats and U. tritici (strain CBS 119.19 isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.

  13. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  14. Genetic Romanticism

    DEFF Research Database (Denmark)

    Tupasela, Aaro

    2016-01-01

    . This article compares and contrasts the work of two doctors in Finland, Elias Lönnrot and Reijo Norio, working over a century and a half apart, to examine the ways in which they have contributed to the formation of national identity and unity. The notion of genetic romanticism is introduced as a term...... to complement the notion of national romanticism that has been used to describe the ways in which nineteenth-century scholars sought to create and deploy common traditions for national-romantic purposes. Unlike national romanticism, however, strategies of genetic romanticism rely on the study of genetic...... inheritance as a way to unify populations within politically and geographically bounded areas. Thus, new genetics have contributed to the development of genetic romanticisms, whereby populations (human, plant, and animal) can be delineated and mobilized through scientific and medical practices to represent...

  15. Host-pathogen interactions in Campylobacter infections: the host perspective

    NARCIS (Netherlands)

    Janssen, R.; Krogfelt, K.A.; Cawthraw, S.A.; Pelt, van W.; Wagenaar, J.A.; Owen, R.J.

    2008-01-01

    Campylobacter is a major cause of acute bacterial diarrhea in humans worldwide. This study was aimed at summarizing the current understanding of host mechanisms involved in the defense against Campylobacter by evaluating data available from three sources: (i) epidemiological observations, (ii)

  16. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region

    Science.gov (United States)

    Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.

  17. The Inflammasome in Host Defense

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2009-12-01

    Full Text Available Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  18. On the evolution of sexual reproduction in hosts coevolving with multiple parasites.

    Science.gov (United States)

    Mostowy, Rafal; Salathé, Marcel; Kouyos, Roger D; Bonhoeffer, Sebastian

    2010-06-01

    Host-parasite coevolution has been studied extensively in the context of the evolution of sex. Although hosts typically coevolve with several parasites, most studies considered one-host/one-parasite interactions. Here, we study population-genetic models in which hosts interact with two parasites. We find that host/multiple-parasite models differ nontrivially from host/single-parasite models. Selection for sex resulting from interactions with a single parasite is often outweighed by detrimental effects due to the interaction between parasites if coinfection affects the host more severely than expected based on single infections, and/or if double infections are more common than expected based on single infections. The resulting selection against sex is caused by strong linkage-disequilibria of constant sign that arise between host loci interacting with different parasites. In contrast, if coinfection affects hosts less severely than expected and double infections are less common than expected, selection for sex due to interactions with individual parasites can now be reinforced by additional rapid linkage-disequilibrium oscillations with changing sign. Thus, our findings indicate that the presence of an additional parasite can strongly affect the evolution of sex in ways that cannot be predicted from single-parasite models, and that thus host/multiparasite models are an important extension of the Red Queen Hypothesis.

  19. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  20. Genomic RNAi screening in Drosophila S2 cells: What have we learned about host-pathogen interactions?

    OpenAIRE

    Cherry, Sara

    2008-01-01

    The détente between pathogen and host has been of keen interest to researchers in spite of being exceedingly difficult to probe. Recently, new RNA interference (RNAi) technologies, in particular in Drosophila tissue culture cells, have made it possible to interrogate the genetics of host organisms rapidly, with nearly complete genomic coverage and high fidelity. Therefore, it is not surprising that the applications of RNAi to the study of host-pathogen interactions were amongst the first to b...

  1. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts

    Science.gov (United States)

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. ?? 2005 The Royal Society.

  2. What do spring migrants reveal about sex and host selection in the melon aphid?

    Directory of Open Access Journals (Sweden)

    Thomas Sophie

    2012-04-01

    Full Text Available Abstract Background Host plants exert considerable selective pressure on aphids because the plants constitute their feeding, mating and oviposition sites. Therefore, host specialisation in aphids evolves through selection of the behavioural and chemical mechanisms of host-plant location and recognition, and through metabolic adaptation to the phloem content of the host plant. How these adaptive traits evolve in an aphid species depends on the complexity of the annual life cycle of that species. The purpose of this field study was to determine how winged spring-migrant populations contribute to the evolution and maintenance of host specialisation in Aphis gossypii through host-plant choice and acceptance. We also assessed whether host-specialised genotypes corresponded exclusively to anholocyclic lineages regardless of the environmental conditions. Results The spring populations of cotton-melon aphids visiting newly planted melon crops exhibited an unexpectedly high level of genetic diversity that contrasted with the very low diversity characterising the host-specialised populations of this aphid species. This study illustrated in natura host-plant-selection pressure by showing the great differences in genetic diversity between the spring-migrant populations (alate aphids and the melon-infesting populations (the apterous offspring of the alate aphids. Moreover, an analysis of the genetic composition of these alate and apterous populations in four geographic regions suggested differences in life-history strategies, such as host choice and reproductive mode, and questioned the common assertion that A. gossypii is an anholocyclic species throughout its distribution area, including Europe. Conclusions Our results clearly demonstrate that the melon plant acts as a selective filter against the reproduction of non-specialised individuals. We showed that olfactory cues are unlikely to be decisive in natura for host recognition by spring-migrant aphid

  3. Host pathogen interactions in Helicobacter pylori related gastric cancer

    Science.gov (United States)

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  4. Genetic analysis of tolerance to infections using random regressions: a simulation study

    NARCIS (Netherlands)

    Kause, A.

    2011-01-01

    Tolerance to infections is the ability of a host to limit the impact of a given pathogen burden on host performance. This simulation study demonstrated the merit of using random regressions to estimate unbiased genetic variances for tolerance slope and its genetic correlations with other traits,

  5. The molecular pathways underlying host resistance and tolerance to pathogens.

    Science.gov (United States)

    Glass, Elizabeth J

    2012-01-01

    Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  6. Population genetics of fungal diseases of plants

    OpenAIRE

    Giraud, Tatiana; Enjalbert, Jerome; Fournier, Elisabeth; Delmotte, François; Dutech, Christian Cyril

    2008-01-01

    Although parasitism is one of the most common lifestyles among eukaryotes, population genetics on parasites lag far behind those on free-living organisms. Yet, the advent of molecular markers offers great tools for studying important processes, such as dispersal, mating systems, adaptation to host and speciation. Here we highlight some studies that used molecular markers to address questions about the population genetics of fungal (including oomycetes) plant pathogens. We conclude that popula...

  7. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  8. Host Defence to Pulmonary Mycosis

    Directory of Open Access Journals (Sweden)

    Christopher H Mody

    1999-01-01

    Full Text Available OBJECTIVE: To provide a basic understanding of the mechanisms of host defense to pathogenic fungi. This will help physicians understand why some patients are predisposed to fungal infections and update basic scientists on how microbial immunology applies to fungal disease.

  9. Parasite performance and host alternation: is there a negative effect in host-specific and host-opportunistic parasites?

    Science.gov (United States)

    VAN DER Mescht, Luther; Khokhlova, Irina S; Warburton, Elizabeth M; Krasnov, Boris R

    2017-07-01

    Environmental fluctuations are expected to require special adaptations only if they are associated with a decrease in fitness. We compared reproductive performance between fleas fed on alternating (preferred and non-preferred) hosts and fleas fed solely on either a preferred or a non-preferred host to determine whether (1) host alternation incurs an immediate negative effect, and, if yes, then (2) whether this effect is greater in a host specialist (Parapulex chephrenis) than in host generalists (Xenopsylla conformis and Synosternus cleopatrae). We also compared flea performance under alternating host regimes with different host order (initial feeding on either a preferred or a non-preferred host). An immediate negative effect of alternating hosts on reproductive performance was found in P. chephrenis only. These fleas produced 44·3% less eggs that were 3·6% smaller when they fed on alternating hosts as compared with a preferred host. In contrast, X. conformis and S. cleopatrae appeared to be able to adapt their reproductive strategy to host alternation by producing higher quality offspring (on average, 3·1% faster development and 2·1% larger size) without compromising offspring number. However, the former produced eggs that were slightly, albeit significantly, smaller when it fed on alternating hosts as compared with a preferred host. Moreover, host order affected reproductive performance in host generalists (e.g. 2·8% larger eggs when the first feeding was performed on a non-preferred host), but not in a host specialist. We conclude that immediate effects of environmental fluctuation on parasite fitness depend on the degree of host specialization.

  10. Environmental disruption of Host-Microbe co-adaptation as a potential driving force in evolution

    Directory of Open Access Journals (Sweden)

    Yoav eSoen

    2014-06-01

    Full Text Available The microbiome is known to have a profound effect on the development, physiology and health of its host. Whether and how it also contributes to evolutionary diversification of the host is, however, unclear. Here we hypothesize that disruption of the microbiome by new stressful environments interferes with host-microbe co-adaption, contributes to host destabilization, and can drive irreversible changes in the host prior to its genetic adaptation. This hypothesis is based on 3 presumptions: (1 The microbiome consists of heritable partners which contribute to the stability (canalization of host development and physiology in frequently encountered environments, (2 Upon encountering a stressful new environment, the microbiome adapts much faster than the host, and (3 This differential response disrupts cooperation, contributes to host destabilization and promotes reciprocal changes in the host and its microbiome. This dynamic imbalance relaxes as the host and its microbiome establish a new equilibrium state in which they are adapted to one another and to the altered environment. Over long time in this new environment, the changes in the microbiome contribute to the canalization of the altered state. This scenario supports stability of the adapted patterns, while promoting variability which may be beneficial in new stressful conditions, thus allowing the organism to balance stability and flexibility based on contextual demand. Additionally, interaction between heritable microbial (and/or epigenetic changes can promote new outcomes which persist over a wide range of timescales. A sufficiently persistent stress can further induce irreversible changes in the microbiome which may permanently alter the organism prior to genetic changes in the host. Epigenetic and microbial changes therefore provide a potential infrastructure for causal links between immediate responses to new environments and longer-term establishment of evolutionary adaptations.

  11. Reverse Genetics of Influenza B Viruses.

    Science.gov (United States)

    Nogales, Aitor; Perez, Daniel R; Santos, Jefferson; Finch, Courtney; Martínez-Sobrido, Luis

    2017-01-01

    Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. Initially established for the generation of recombinant influenza A viruses, plasmid-based reverse genetics techniques have allowed researchers the generation of wild type and mutant viruses from full-length cDNA copies of the influenza viral genome. These reverse genetics approaches have allowed researchers to answer important questions on the biology of influenza viruses by genetically engineering infectious recombinant viruses. This has resulted in a better understanding of the molecular biology of influenza viruses, including both viral and host factors required for genome replication and transcription. With the ability to generate recombinant viruses containing specific mutations in the viral genome, these reverse genetics tools have also allowed the identification of viral and host factors involved in influenza pathogenesis, transmissibility, host-range interactions and restrictions, and virulence. Likewise, reverse genetics techniques have been used for the implementation of inactivated or live-attenuated influenza vaccines and the identification of anti-influenza drugs and their mechanism of antiviral activity. In 2002, these reverse genetics approaches allowed also the recovery of recombinant influenza B viruses entirely from plasmid DNA. In this chapter we describe the cloning of influenza B/Brisbane/60/2008 viral RNAs into the ambisense pDP-2002 plasmid and the experimental procedures for the successful generation of recombinant influenza B viruses.

  12. Genetic Discrimination

    Science.gov (United States)

    Skip to main content Genetic Discrimination Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions ...

  13. Genetic Testing

    Science.gov (United States)

    ... on to their children Screening embryos for disease Testing for genetic diseases in adults before they cause ... provide information about the pros and cons of testing. NIH: National Human Genome Research Institute

  14. Genetic GIScience

    DEFF Research Database (Denmark)

    Jacquez, Geoffrey; Sabel, Clive E; Shi, Chen

    2015-01-01

    The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic geograp....... These methodological developments and exemplar provide the basis for a new synthesis in health geography: genetic GIScience.......The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic...... geographic information science (genetic GIScience), that is founded on the exposome, genome+, and behavome. It provides an improved understanding of human health in relation to biology (the genome+), environmental exposures (the exposome), and their social, societal, and behavioral determinants (the behavome...

  15. Arthropod Genetics.

    Science.gov (United States)

    Zumwalde, Sharon

    2000-01-01

    Introduces an activity on arthropod genetics that involves phenotype and genotype identification of the creature and the construction process. Includes a list of required materials and directions to build a model arthropod. (YDS)

  16. Insect mating signal and mate preference phenotypes covary among host plant genotypes.

    Science.gov (United States)

    Rebar, Darren; Rodríguez, Rafael L

    2015-03-01

    Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal-preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal-preference phenotypic covariance in a host-specific, plant-feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field-collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal-preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin. © 2015 The Author(s).

  17. A latitudinal cline in disease resistance of a host tree

    Science.gov (United States)

    Hamilton, M G; Williams, D R; Tilyard, P A; Pinkard, E A; Wardlaw, T J; Glen, M; Vaillancourt, R E; Potts, B M

    2013-01-01

    The possible drivers and implications of an observed latitudinal cline in disease resistance of a host tree were examined. Mycosphaerella leaf disease (MLD) damage, caused by Teratosphaeria species, was assessed in five Eucalyptus globulus (Tasmanian blue gum) common garden trials containing open-pollinated progeny from 13 native-forest populations. Significant population and family within population variation in MLD resistance was detected, which was relatively stable across different combinations of trial sites, ages, seasons and epidemics. A distinct genetic-based latitudinal cline in MLD damage among host populations was evident. Two lines of evidence argue that the observed genetic-based latitudinal trend was the result of direct pathogen-imposed selection for MLD resistance. First, MLD damage was positively associated with temperature and negatively associated with a prediction of disease risk in the native environment of these populations; and, second, the quantitative inbreeding coefficient (QST) significantly exceeded neutral marker FST at the trial that exhibited the greatest MLD damage, suggesting that diversifying selection contributed to differentiation in MLD resistance among populations. This study highlights the potential for spatial variation in pathogen risk to drive adaptive differentiation across the geographic range of a foundation host tree species. PMID:23211794

  18. Host-Pathogen Interactions in Campylobacter Infections: the Host Perspective

    Science.gov (United States)

    Janssen, Riny; Krogfelt, Karen A.; Cawthraw, Shaun A.; van Pelt, Wilfrid; Wagenaar, Jaap A.; Owen, Robert J.

    2008-01-01

    Campylobacter is a major cause of acute bacterial diarrhea in humans worldwide. This study was aimed at summarizing the current understanding of host mechanisms involved in the defense against Campylobacter by evaluating data available from three sources: (i) epidemiological observations, (ii) observations of patients, and (iii) experimental observations including observations of animal models and human volunteer studies. Analysis of available data clearly indicates that an effective immune system is crucial for the host defense against Campylobacter infection. Innate, cell-mediated, and humoral immune responses are induced during Campylobacter infection, but the relative importance of these mechanisms in conferring protective immunity against reinfection is unclear. Frequent exposure to Campylobacter does lead to the induction of short-term protection against disease but most probably not against colonization. Recent progress in the development of more suitable animal models for studying Campylobacter infection has opened up possibilities to study the importance of innate and adaptive immunity during infection and in protection against reinfection. In addition, advances in genomics and proteomics technologies will enable more detailed molecular studies. Such studies combined with better integration of host and pathogen research driven by epidemiological findings may truly advance our understanding of Campylobacter infection in humans. PMID:18625685

  19. Specialization for resistance in wild host-pathogen interaction networks

    Directory of Open Access Journals (Sweden)

    Luke eBarrett

    2015-09-01

    Full Text Available Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale and pathogen (Melampsora lini populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1 overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2 that specific network architecture can emerge under different evolutionary scenarios; and (3 network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions.

  20. Bird hosts, blood parasites and their vectors--associations uncovered by molecular analyses of blackfly blood meals.

    Science.gov (United States)

    Hellgren, O; Bensch, S; Malmqvist, B

    2008-03-01

    The level of host specificity of blood-sucking invertebrates may have both ecological and evolutionary implications for the parasites they are transmitting. We used blood meals from wild-caught blackflies for molecular identification of parasites and hosts to examine patterns of host specificity and how these may affect the transmission of avian blood parasites of the genus Leucocytozoon. We found that five different species of ornithophilic blackflies preferred different species of birds when taking their blood meals. Of the blackflies that contained avian blood meals, 62% were infected with Leucocytozoon parasites, consisting of 15 different parasite lineages. For the blackfly species, there was a significant association between the host width (measured as the genetic differentiation between the used hosts) and the genetic similarity of the parasites in their blood meals. The absence of similar parasite in blood meals from blackflies with different host preferences is interpreted as a result of the vector-host associations. The observed associations between blackfly species and host species are therefore likely to hinder parasites to be transmitted between different host-groups, resulting in ecologically driven associations between certain parasite lineages and hosts species.

  1. Host-driven divergence in the parasitic plant Orobanche minor Sm. (Orobanchaceae).

    Science.gov (United States)

    Thorogood, C J; Rumsey, F J; Harris, S A; Hiscock, S J

    2008-10-01

    Many parasitic angiosperms have a broad host range and are therefore considered to be host generalists. Orobanche minor is a nonphotosynthetic root parasite that attacks a range of hosts from taxonomically disparate families. In the present study, we show that O. minor sensu lato may comprise distinct, genetically divergent races isolated by the different ecologies of their hosts. Using a three-pronged approach, we tested the hypothesis that intraspecific taxa O. minor var. minor and O. minor ssp. maritima parasitizing either clover (Trifolium pratense) or sea carrot (Daucus carota ssp.gummifer), respectively, are in allopatric isolation. Morphometric analysis revealed evidence of divergence but this was insufficient to define discrete, host-specific taxa. Intersimple sequence repeat (ISSR) marker-based data provided stronger evidence of divergence, suggesting that populations were isolated from gene flow. Phylogenetic analysis, using sequence-characterized amplified region (SCAR) markers derived from ISSR loci, provided strong evidence for divergence by clearly differentiating sea carrot-specific clades and mixed-host clades. Low levels of intrapopulation SCAR marker sequence variation and floral morphology suggest that populations on different hosts are probably selfing and inbreeding. Morphologically cryptic Orobanche taxa may therefore be isolated from gene flow by host ecology. Together, these data suggest that host specificity may be an important driver of allopatric speciation in parasitic plants.

  2. Evidence of sexual selection in Neoleucinodes elegantalis (Lepidoptera: Crambidae): correlation of female moth genitalia and Solanaceae host fruit size

    Science.gov (United States)

    Neoleucinodes elegantalis is a Neotropical moth considered a quarantine pest in the family Solanaceae. In previous studies, this species has shown population genetic structure FST =0.57 (P<0.0001) based on host plant associations. This genetic differentiation is further demonstrated here based on ad...

  3. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  4. J. Genet. classic 37

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  5. J. Genet. classic 125

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 2, August 2004. 125. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 126. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 127. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 2, August 2004. 128. Page 5. J. Genet. classic.

  6. Host modulation by therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sugumari Elavarasu

    2012-01-01

    Full Text Available Periodontal disease susceptible group present advanced periodontal breakdown even though they achieve a high standard of oral hygiene. Various destructive enzymes and inflammatory mediators are involved in destruction. These are elevated in case of periodontal destruction. Host modulation aims at bringing these enzymes and mediators to normal level. Doxycycline, nonsteroidal anti-inflammatory drugs (NSAIDs, bisphosphonates, nitrous oxide (NO synthase inhibitors, recombinant human interleukin-11 (rhIL-11, omega-3 fatty acid, mouse anti-human interleukin-6 receptor antibody (MRA, mitogen-activated protein kinase (MAPK inhibitors, nuclear factor-kappa B (NF-kb inhibitors, osteoprotegerin, and tumor necrosis factor antagonist (TNF-α are some of the therapeutic agents that have host modulation properties.

  7. The influence of climatic niche preferences on the population genetic structure of a mistletoe species complex.

    Science.gov (United States)

    Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco

    2017-06-01

    The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Hosting the first EDRS payload

    Science.gov (United States)

    Poncet, D.; Glynn, S.; Heine, F.

    2017-11-01

    The European Data Relay System (EDRS) will provide optical and microwave data relay services between Low Earth Orbit (LEO) satellites at altitudes up to 2000 km and the ground through geostationary (GEO) satellite nodes. Currently, two such nodes have been procured as part of a Public Private Partnership (PPP) between Astrium (now Airbus Defence and Space) and ESA. The first node (EDRS-A) is a hosted payload embarked upon the Eutelsat 9B satellite and scheduled for launch in early 2015.

  9. Graft versus host disease prophylaxis

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Graft versus host disease prophylaxis. Cyclosporine -2.5mg/KG IV over 4 hrs q12h. - 5mg/Kg BD orally for 6 months - taper- stop at one year if no GVHD. Methotrexate :INITIAL. day +1- 15mg/m2; day + 3, 6, 11- 10 mg/m2; :CURRENT; day +1-10mg/m2; day + 3,6,11 ...

  10. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores.

    Science.gov (United States)

    Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B

    2015-10-01

    A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. © 2015 The Author(s).

  11. Antagonistic experimental coevolution with a parasite increases host recombination frequency

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2012-02-01

    Full Text Available Abstract Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.

  12. Diet dominates host genotype in shaping the murine gut microbiota

    Science.gov (United States)

    Carmody, Rachel N.; Gerber, Georg K.; Luevano, Jesus M.; Gatti, Daniel M.; Somes, Lisa; Svenson, Karen L.; Turnbaugh, Peter J.

    2014-01-01

    SUMMARY Mammals exhibit marked inter-individual variations in their gut microbiota, but it remains unclear if this is primarily driven by host genetics or by extrinsic factors like dietary intake. To address this, we examined the effect of dietary perturbations on the gut microbiota of five inbred mouse strains, mice deficient for genes relevant to host-microbial interactions (MyD88−/−, NOD2−/−, ob/ob, and Rag1−/−), and >200 outbred mice. In each experiment, consumption of a high-fat, high-sugar diet reproducibly altered the gut microbiota despite differences in host genotype. The gut microbiota exhibited a linear dose response to dietary perturbations, taking an average of 3.5 days for each diet-responsive bacterial groups to reach a new steady state. Repeated dietary shifts demonstrated that most changes to the gut microbiota are reversible, while also uncovering bacteria whose abundance depends on prior consumption. These results emphasize the dominant role that diet plays in shaping inter-individual variations in host-associated microbial communities. PMID:25532804

  13. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  14. Immune response to Echinococcus infection: parasite avoidance and host protection.

    Science.gov (United States)

    Wakelin, D

    1997-12-01

    The life cycles of Echinococcus spp, involve two phases that have quite different immunological relationships with the host--the parenteral metacestode and the enteral adult. Immune control of the metacestode (at least of E. granulosus) by vaccination is now a real possibility, but there seems little prospect of similar control of the adult worms. Vaccination against metacestodes must not only induce effective responses but also prevent the parasite modulating these in such a way as to render them ineffective. This requires a much fuller understanding of the basis of parasite avoidance mechanisms, in particular an understanding of the balance of parasite- and host-protective mechanisms that involve the activity of T lymphocyte subsets. Protective responses against adult worms in the intestine appear weak and ineffective, although it is clear that the worms are immunogenic and there is some evidence that the host can become immune. Again, a more complete insight into the nature of the worm's association with the mucosal immune system is required, and a fuller understanding of the variables that influence this association; host genetic variation may prove to be an important factor that determines the outcome of adult worm infections.

  15. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    Science.gov (United States)

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  16. Genetic structure of Pseudococcus microcirculus (Hemiptera ...

    Indian Academy of Sciences (India)

    Genetic diversity and mean pairwise relatedness were highly variable among plants with multiple individuals; however, plants from sites F and M tend to have collections of ... plant pests that use stylets to tap into the phloem of their host. ..... Miller D. R., Miller G. L. and Watson G. W. 2002 Invasive species of mealybugs ...

  17. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Inbreeding in stochastic subdivided mating systems: the genetic consequences of host spatial structure, aggregated transmission dynamics and life history ... processes utilizing a backward–forward branching Markov process embedded within a flexible statistical framework, the logarithmic-poisson mixture model. My results ...

  18. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Distribution of genes associated with yield potential and water-saving in Chinese Zone II wheat detected by developed functional markers ... in stochastic subdivided mating systems: the genetic consequences of host spatial structure, aggregated transmission dynamics and life history characteristics in parasite populations.

  19. Transmissibility of intra-host hepatitis C virus variants.

    Science.gov (United States)

    Campo, David S; Zhang, June; Ramachandran, Sumathi; Khudyakov, Yury

    2017-12-06

    Intra-host hepatitis C virus (HCV) populations are genetically heterogeneous and organized in subpopulations. With the exception of blood transfusions, transmission of HCV occurs via a small number of genetic variants, the effect of which is frequently described as a bottleneck. Stochasticity of transmission associated with the bottleneck is usually used to explain genetic differences among HCV populations identified in the source and recipient cases, which may be further exacerbated by intra-host HCV evolution and differential biological capacity of HCV variants to successfully establish a population in a new host. Transmissibility was formulated as a property that can be measured from experimental Ultra-Deep Sequencing (UDS) data. The UDS data were obtained from one large hepatitis C outbreak involving an epidemiologically defined source and 18 recipient cases. k-Step networks of HCV variants were constructed and used to identify a potential association between transmissibility and network centrality of individual HCV variants from the source. An additional dataset obtained from nine other HCV outbreaks with known directionality of transmission was used for validation. Transmissibility was not found to be dependent on high frequency of variants in the source, supporting the earlier observations of transmission of minority variants. Among all tested measures of centrality, the highest correlation of transmissibility was found with Hamming centrality (r = 0.720; p = 1.57 E-71). Correlation between genetic distances and differences in transmissibility among HCV variants from the source was found to be 0.3276 (Mantel Test, p = 9.99 E-5), indicating association between genetic proximity and transmissibility. A strong correlation ranging from 0.565-0.947 was observed between Hamming centrality and transmissibility in 7 of the 9 additional transmission clusters (p < 0.05). Transmission is not an exclusively stochastic process. Transmissibility, as

  20. Large bottleneck size in Cauliflower Mosaic Virus populations during host plant colonization.

    OpenAIRE

    Baptiste Monsion; Rémy Froissart; Yannis Michalakis; Stéphane Blanc

    2008-01-01

    The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notab...

  1. Host exploitation strategies of the social parasite Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias Alois

    into the nest where it will feed on ant regurgitations and ant brood. It is thus crucial for the caterpillar's survival to attract the host ant, get picked up and brought back to the ant's colony. My study shows that 3rd and 4th instar caterpillars are distinct from each other not only morphologically but also...... in their surface chemistry. 3rd instars are passively gaining parts of their surface chemistry from the food plant, while 4th instar caterpillars are actively mimicking the cuticular hydrocarbons of the host ant's brood, ensuring their adoption and integration into the ants nest. As the caterpillar constitutes...... factors including genetic-, chemical- and physical-distance, queen number, and whether they are from an area where the social parasite is present. Ants rely on chemical cues to discriminate nestmates from non-nestmates. The recognition cues are not static though and ants have evolved to adapt to the ever...

  2. Dual oxidase in mucosal immunity and host-microbe homeostasis.

    Science.gov (United States)

    Bae, Yun Soo; Choi, Myoung Kwon; Lee, Won-Jae

    2010-07-01

    Mucosal epithelia are in direct contact with microbes, which range from beneficial symbionts to pathogens. Accordingly, hosts must have a conflicting strategy to combat pathogens efficiently while tolerating symbionts. Recent progress has revealed that dual oxidase (DUOX) plays a key role in mucosal immunity in organisms that range from flies to humans. Information from the genetic model of Drosophila has advanced our understanding of the regulatory mechanism of DUOX and its role in mucosal immunity. Further investigations of DUOX regulation in response to symbiotic or non-symbiotic bacteria and the in vivo consequences in host physiology will give a novel insight into the microbe-controlling system of the mucosa. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Community impacts of anthropogenic disturbance: natural enemies exploit multiple routes in pursuit of invading herbivore hosts

    Directory of Open Access Journals (Sweden)

    Tavakoli Majid

    2010-10-01

    Full Text Available Abstract Background Biological invasions provide a window on the process of community assembly. In particular, tracking natural enemy recruitment to invading hosts can reveal the relative roles of co-evolution (including local adaptation and ecological sorting. We use molecular data to examine colonisation of northern Europe by the parasitoid Megastigmus stigmatizans following invasions of its herbivorous oak gallwasp hosts from the Balkans. Local host adaptation predicts that invading gallwasp populations will have been tracked primarily by sympatric Balkan populations of M. stigmatizans (Host Pursuit Hypothesis. Alternatively, ecological sorting allows parasitoid recruitment from geographically distinct populations with no recent experience of the invading hosts (Host Shift Hypothesis. Finally, we test for long-term persistence of parasitoids introduced via human trade of their hosts' galls (Introduction Hypothesis. Results Polymorphism diagnostic of different southern refugial regions was present in both mitochondrial and nuclear microsatellite markers, allowing us to identify the origins of northern European invaded range M. stigmatizans populations. As with their hosts, some invaded range populations showed genetic variation diagnostic of Balkan sources, supporting the Host Pursuit Hypothesis. In contrast, other invading populations had an Iberian origin, unlike their hosts in northern Europe, supporting the Host Shift Hypothesis. Finally, both British and Italian M. stigmatizans populations show signatures compatible with the Introduction Hypothesis from eastern Mediterranean sources. Conclusions These data reveal the continental scale of multi-trophic impacts of anthropogenic disturbance and highlight the fact that herbivores and their natural enemies may face very different constraints on range expansion. The ability of natural enemies to exploit ecologically-similar hosts with which they have had no historical association supports a

  4. The molecular pathways underlying host resistance and tolerance to pathogens

    Directory of Open Access Journals (Sweden)

    Elizabeth Janet Glass

    2012-12-01

    Full Text Available Breeding livestock that are better able to withstand the onslaught of endemic and exotic pathogens is high on the wish list of breeders and farmers world-wide. However the defence systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host’s ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  5. Transcriptome analyses of Anguillicola crassus from native and novel hosts

    Directory of Open Access Journals (Sweden)

    Emanuel Heitlinger

    2014-11-01

    Full Text Available Anguillicola crassus is a swim bladder nematode of eels. The parasite is native to the Asian eel Anguilla japonica, but was introduced to Europe and the European eel Anguilla anguilla in the early 1980s. A Taiwanese source has been proposed for this introduction. In the new host in the recipient area, the parasite appears to be more pathogenic. As a reason for these differences, genetically fixed differences in infectivity and development between Taiwanese and European A.crassus have been described and disentangled from plasticity induced by different host environments. To explore whether transcriptional regulation is involved in these lifecycle differences, we have analysed a “common garden”, cross infection experiment, using deep-sequencing transcriptomics. Surprisingly, in the face of clear phenotypic differences in life history traits, we identified no significant differences in gene expression between parasite populations or between experimental host species. From 120,000 SNPs identified in the transcriptome data we found that European A. crassus were not a genetic subset of the Taiwanese nematodes sampled. The loci that have the major contribution to the European-Taiwanese population differentiation show an enrichment of synonymous and non-coding polymorphism. This argues against positive selection in population differentiation. However, genes involved in protein processing in the endoplasmatic reticulum membrane and genes bearing secretion signal sequences were enriched in the set of genes most differentiated between European and Taiwanese A. crassus. These genes could be a source for the phenotypically visible genetically fixed differences between European and Taiwanese A. crassus.

  6. Desktop Genetics.

    Science.gov (United States)

    Hough, Soren H; Ajetunmobi, Ayokunmi; Brody, Leigh; Humphryes-Kirilov, Neil; Perello, Edward

    2016-11-01

    Desktop Genetics is a bioinformatics company building a gene-editing platform for personalized medicine. The company works with scientists around the world to design and execute state-of-the-art clustered regularly interspaced short palindromic repeats (CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental intent, single-guide RNA design and data from international genomics projects into a novel CRISPR artificial intelligence system. We believe that machine learning techniques can transform this information into a cognitive therapeutic development tool that will revolutionize medicine.

  7. Granite-hosted molybdenite mineralization from Archean ...

    Indian Academy of Sciences (India)

    hosted molybdenite mineralization from Archean Bundelkhand cratonmolybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz. J K Pati M K Panigrahi M Chakarborty. Volume 123 ...

  8. PERCEPTION OF HOST COMMUNITIES TOWARD THE ...

    African Journals Online (AJOL)

    DORCAS

    PERCEPTION OF HOST COMMUNITIES TOWARD THE IMPLEMENTATION OF. PARK LAWS IN OKOMU NATIONAL ... Keywords; Perception, Host communities, Park laws, Implementation, Wildilife conservation. INTRODUCTION. The contributions ... which were not taken into account at the time these national parks were ...

  9. Genome Evolution and Host Adaptation in Bartonella

    OpenAIRE

    Berglund, Eva Caroline

    2009-01-01

    Bacteria of the genus Bartonella infect the red blood cells of a wide range of wild and domestic mammals and are transmitted between hosts by blood-sucking insects. Although most Bartonella infections are asymptomatic, the genus contains several human pathogens. In this work, host adaptation and host switches in Bartonella have been studied from a genomic perspective, with special focus on the acquisition and evolution of genes involved in host interactions. As part of this study, the complet...

  10. Broad-Host-Range Expression Reveals Native and Host Regulatory Elements That Influence Heterologous Antibiotic Production in Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Jia Jia Zhang

    2017-09-01

    Full Text Available Heterologous expression has become a powerful tool for studying microbial biosynthetic gene clusters (BGCs. Here, we extend the transformation-associated recombination cloning and heterologous expression platform for microbial BGCs to include Gram-negative proteobacterial expression hosts. Using a broad-host-range expression platform, we test the implicit assumption that biosynthetic pathways are more successfully expressed in more closely related heterologous hosts. Cloning and expression of the violacein BGC from Pseudoalteromonas luteoviolacea 2ta16 revealed robust production in two proteobacterial hosts, Pseudomonas putida KT2440 and Agrobacterium tumefaciens LBA4404, but very little production of the antibiotic in various laboratory strains of Escherichia coli, despite their closer phylogenetic relationship. We identified a nonclustered LuxR-type quorum-sensing receptor from P. luteoviolacea 2ta16, PviR, that increases pathway transcription and violacein production in E. coli by ∼60-fold independently of acyl-homoserine lactone autoinducers. Although E. coli harbors the most similar homolog of PviR identified from all of the hosts tested, overexpression of various E. coli transcription factors did not result in a statistically significant increase in violacein production, while overexpression of two A. tumefaciens PviR homologs significantly increased production. Thus, this work not only introduces a new genetic platform for the heterologous expression of microbial BGCs, it also challenges the assumption that host phylogeny is an accurate predictor of host compatibility.

  11. Acute graft versus host disease

    Directory of Open Access Journals (Sweden)

    Vogelsang Georgia B

    2007-09-01

    Full Text Available Abstract Acute graft-versus-host disease (GVHD occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. Activated donor T cells damage host epithelial cells after an inflammatory cascade that begins with the preparative regimen. About 35%–50% of hematopoietic stem cell transplant (HSCT recipients will develop acute GVHD. The exact risk is dependent on the stem cell source, age of the patient, conditioning, and GVHD prophylaxis used. Given the number of transplants performed, we can expect about 5500 patients/year to develop acute GVHD. Patients can have involvement of three organs: skin (rash/dermatitis, liver (hepatitis/jaundice, and gastrointestinal tract (abdominal pain/diarrhea. One or more organs may be involved. GVHD is a clinical diagnosis that may be supported with appropriate biopsies. The reason to pursue a tissue biopsy is to help differentiate from other diagnoses which may mimic GVHD, such as viral infection (hepatitis, colitis or drug reaction (causing skin rash. Acute GVHD is staged and graded (grade 0-IV by the number and extent of organ involvement. Patients with grade III/IV acute GVHD tend to have a poor outcome. Generally the patient is treated by optimizing their immunosuppression and adding methylprednisolone. About 50% of patients will have a solid response to methylprednisolone. If patients progress after 3 days or are not improved after 7 days, they will get salvage (second-line immunosuppressive therapy for which there is currently no standard-of-care. Well-organized clinical trials are imperative to better define second-line therapies for this disease. Additional management issues are attention to wound infections in skin GVHD and fluid/nutrition management in gastrointestinal GVHD. About 50% of patients with acute GVHD will eventually have manifestations of chronic GVHD.

  12. Genetic effects

    International Nuclear Information System (INIS)

    Kato, Hiroo

    1975-01-01

    In 1948-1953 a large scale field survey was conducted to investigate the possible genetic effects of A-bomb radiation on over 70,000 pregnancy terminations in the cities of Hiroshima and Nagasaki. The indices of possible genetic effect including sex ratio, birth weight, frequency of malformation, stillbirth, neonatal death, deaths within 9 months and anthropometric measurements at 9 months of age for these children were investigated in relation to their parent's exposure status to the A-bomb. There were no detectable genetic effects in this sample, except for a slight change in sex ratio which was in the direction to be expected if exposure had induced sex-linked lethal mutations. However, continued study of the sex ratio, based upon birth certificates in Hiroshima and Nagasaki for 1954-1962, did not confirm the earlier trend. Mortality in these children of A-bomb survivors is being followed using a cohort of 54,000 subjects. No clearly significant effect of parental exposure on survival of the children has been demonstrated up to 1972 (age 17 on the average). On the basis of the regression data, the minimal genetic doubling dose of this type of radiation for mutations resulting in death is estimated at 46 rem for the father and 125 rem for the mother. (auth.)

  13. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  14. Melanoma genetics

    DEFF Research Database (Denmark)

    Read, Jazlyn; Wadt, Karin A W; Hayward, Nicholas K

    2015-01-01

    Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence of herita......Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence...... in a combined total of approximately 50% of familial melanoma cases, the underlying genetic basis is unexplained for the remainder of high-density melanoma families. Aside from the possibility of extremely rare mutations in a few additional high penetrance genes yet to be discovered, this suggests a likely...... polygenic component to susceptibility, and a unique level of personal melanoma risk influenced by multiple low-risk alleles and genetic modifiers. In addition to conferring a risk of cutaneous melanoma, some 'melanoma' predisposition genes have been linked to other cancers, with cancer clustering observed...

  15. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    Horizontal transfer of mobile genetic elements facilitates adaptive and evolutionary processes in bacteria. Among the known mobile genetic elements, plasmids can confer their hosts with accessory adaptive traits, such as antibiotic or heavy metal resistances, or additional metabolic pathways...... and potentially cultivation biased image of the extent of plasmid transfer. In this thesis, I investigated the extent of plasmid transfer in microbial communities at an unprecedented level of resolution and not reliant on cultivation. I focused on soil microbial communities. Their potential role as a reservoir...... of the transconjugal pools remained similar. The underlying mechanisms remain unclear. Subsequently, I focused on the effect of metal cations - Cu, Ni, Zn, and Cd – on community permissiveness. These cations are common environmental stressors associated with manure application to agricultural soils. I postulate...

  16. J. Genet. classic 235

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  17. Genetic effects

    International Nuclear Information System (INIS)

    Bender, M.A.; Abrahamson, S.; Denniston, C.; Schull, W.J.

    1989-01-01

    In this chapter, we present a comprehensive analysis of the major classes of genetic diseases that would be increased as a result of an increased gonadal radiation exposure to a human population. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The major classes of genetic disease will be induced at different frequencies, and will also impact differentially in terms of survivability and fertility on the affected individuals and their descendants. Some classes of disease will be expected to persist for only a few generations at most. Other types of genetic disease will persist through a longer period. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. For each of these classes we have derived the general equations of mutation induction for the male and female germ cells of critical importance in the mutation process. The frequency of induced mutations will be determined initially by the dose received, the type of radiation and, to some extent at high dose, by the manner in which the dose is received. We have used the modeling analyses to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population receives a chronic dose of 0.1 Gy (10 rad) over a 50-year period, the second in which an equivalent population receives an acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations

  18. Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants.

    Science.gov (United States)

    Cui, Na; Yang, Peng-Cheng; Guo, Kun; Kang, Le; Cui, Feng

    2017-06-01

    Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme-copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR-1-like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Damped long-term host-parasite Red Queen coevolutionary dynamics: a reflection of dilution effects?

    Science.gov (United States)

    Decaestecker, Ellen; De Gersem, Herbert; Michalakis, Yannis; Raeymaekers, Joost A M

    2013-12-01

    An increase in biological diversity leads to a greater stability of ecosystem properties. For host-parasite interactions, this is illustrated by the 'dilution effect': a negative correlation between host biodiversity and disease risk. We show that a similar mechanism might stabilise host-parasite dynamics at a lower level of diversity, i.e. at the level of genetic diversity within host species. A long-term time shift experiment, based on a historical reconstruction of a Daphnia-parasite coevolution, reveals infectivity cycles with more stable amplitude in experienced than in naive hosts. Coevolutionary models incorporating an increase in host allelic diversity over time explain the detected asymmetry. The accumulation of resistance alleles creates an opportunity for the host to stabilise Red Queen dynamics. It leads to a larger arsenal enhancing the host performance in its coevolution with the parasite in which 'it takes all the running both antagonists can do to keep in the same place'. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Fengping Chen

    2017-06-01

    Full Text Available Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen’s abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.

  1. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    Science.gov (United States)

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  2. J. Genet. classic 9

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 88, No. 1, April 2009. 9. Page 2. J. Genet. classic. 10. Journal of Genetics, Vol. 88, No. 1, April 2009. Page 3. J. Genet. classic. Journal of Genetics, Vol. 88, No. 1, April 2009. 11. Page 4. J. Genet. classic. 12. Journal of Genetics, Vol. 88, No. 1, April 2009. Page 5. J. Genet. classic. Journal of Genetics ...

  3. Microbial Pathogenesis and Host Defense.

    Science.gov (United States)

    1998-03-01

    The bvrS-bvrR system showed high homology with the chvl-chvG two-component regulatory system described for Agrobacterium . tumefaciens (a plant...systems in other pathogens include the virB operon in Agrobacterium and the ptl operon in Bordetella. 13 GENETIC ANALYSIS OF MOUSE SUSCEPTIBILITY TO...address these questions, our lab employs the interaction between the crucifer Arabidopis thaliana and Pseudomonas syringae pv. tomato , the causitive agent

  4. FGF treatment of host embryos injected with ES cells increases rates of chimaerism

    NARCIS (Netherlands)

    Dupont, C. (Cathérine); F. Loos (Friedemann); J. Kong-a-San (John); J.H. Gribnau (Joost)

    2017-01-01

    textabstractIn spite of the emergence of genome editing tools, ES cell mediated transgenesis remains the most controllable way of creating genetically modified animals. Although tetraploid (4N) complementation of 4N host embryos and ES cells, is the only method guaranteeing that offspring are

  5. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    NARCIS (Netherlands)

    Mojica, K.D.A.; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host

  6. Virus-host interplay in hepatitis B virus infection and epigenetic treatment strategies

    NARCIS (Netherlands)

    Hensel, Kai O.; Rendon, Julio C.; Navas, Maria-Cristina; Rots, Marianne G.; Postberg, Jan

    2017-01-01

    Worldwide, chronic hepatitis B virus (HBV) infection is a major health problem and no cure exists. Importantly, hepatocyte intrusion by HBV particles results in a complex deregulation of both viral and host cellular genetic and epigenetic processes. Among the attempts to develop novel therapeutic

  7. Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses

    NARCIS (Netherlands)

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Coutinho, Felipe H; Dutilh, Bas E; Casjens, Sherwood R; Goel, Ramesh K

    2017-01-01

    Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through

  8. Host genotype and age have no effect on rejection of parasitic eggs

    Czech Academy of Sciences Publication Activity Database

    Procházka, Petr; Konvičková-Patzenhauerová, Hana; Požgayová, Milica; Trnka, A.; Jelínek, Václav; Honza, Marcel

    2014-01-01

    Roč. 101, č. 5 (2014), s. 417-426 ISSN 0028-1042 R&D Projects: GA AV ČR IAA600930903; GA ČR(CZ) GAP506/12/2404 Institutional support: RVO:68081766 Keywords : Avian brood parasitism * Cuckoo * Egg recognition * Genetic association * Host responses * Microsatellites Subject RIV: EG - Zoology Impact factor: 2.098, year: 2014

  9. Host defences against Giardia lamblia.

    Science.gov (United States)

    Lopez-Romero, G; Quintero, J; Astiazarán-García, H; Velazquez, C

    2015-08-01

    Giardia spp. is a protozoan parasite that inhabits the upper small intestine of mammals and other species and is the aetiological agent of giardiasis. It has been demonstrated that nitric oxide, mast cells and dendritic cells are the first line of defence against Giardia. IL-6 and IL-17 play an important role during infection. Several cytokines possess overlapping functions in regulating innate and adaptive immune responses. IgA and CD4(+) T cells are fundamental to the process of Giardia clearance. It has been suggested that CD4(+) T cells play a double role during the anti-Giardia immune response. First, they activate and stimulate the differentiation of B cells to generate Giardia-specific antibodies. Second, they act through a B-cell-independent mechanism that is probably mediated by Th17 cells. Several Giardia proteins that stimulate humoral and cellular immune responses have been described. Variant surface proteins, α-1 giardin, and cyst wall protein 2 can induce host protective responses to future Giardia challenges. The characterization and evaluation of the protective potential of the immunogenic proteins that are associated with Giardia will offer new insights into host-parasite interactions and may aid in the development of an effective vaccine against the parasite. © 2015 John Wiley & Sons Ltd.

  10. Microbial lysate upregulates host oxytocin

    Science.gov (United States)

    Varian, Bernard J.; Poutahidis, Theofilos; DiBenedictis, Brett T.; Levkovich, Tatiana; Ibrahim, Yassin; Didyk, Eliska; Shikhman, Lana; Cheung, Harry K.; Hardas, Alexandros; Ricciardi, Catherine E.; Kolandaivelu, Kumaran; Veenema, Alexa H.; Alm, Eric J.; Erdman, Susan E.

    2017-01-01

    Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals. PMID:27825953

  11. Prenatal Genetic Screening Tests

    Science.gov (United States)

    ... FAQs Prenatal Genetic Screening Tests Page Navigation ▼ ACOG Pregnancy Book Prenatal Genetic Screening Tests Patient Education FAQs Prenatal Genetic Screening Tests Patient Education Pamphlets - ...

  12. Comparative Analysis of Drosophila melanogaster Gut Microbiota with Respect to Host Strain, Sex, and Age.

    Science.gov (United States)

    Han, Gangsik; Lee, Hyo Jung; Jeong, Sang Eun; Jeon, Che Ok; Hyun, Seogang

    2017-07-01

    Microbiota has a significant impact on the health of the host individual. The complexity of the interactions between mammalian hosts and their microbiota highlights the value of using Drosophila melanogaster as a model organism, because of its relatively simple microbial community and ease of physiological and genetic manipulation. However, highly variable and sometimes inconsistent results regarding the microbiota of D. melanogaster have been reported for host samples collected from different geographical locations; discrepancies that may be because of the inherent physiological conditions of the D. melanogaster host. Here, we conducted a comparative analysis of the gut microbiota of two D. melanogaster laboratory strains, w 1118 and Canton S, with respect to the sex and age of the host, by pyrosequencing of the 16S rRNA gene. In addition to the widespread and abundant commensal bacterial genera Lactobacillus and Acetobacter, we identified Enterococcus and Leuconostoc as major host-strain-specific bacterial genera. The relative proportions of these bacterial genera, and those of the species within each, were found to differ markedly with respect to strain, sex, and age of the host, even though host individuals were reared under the same nutritional conditions. By using various bioinformatic tools, we uncovered several characteristic features of microbiota corresponding to specific categories of the flies: host-sex-bias association of specific bacteria, age-dependent alteration of microbiota across host species and sex, and uniqueness of the microbiota of female w 1118 flies. Our results, thus, help to further our understanding of host-microbe interactions in the D. melanogaster model.

  13. Host feeding in insect parasitoids: why destructively feed upon a host that excretes an alternative?

    NARCIS (Netherlands)

    Burger, J.S.M.; Reijnen, T.M.; Van Lenteren, J.C.; Vet, L.E.M.

    2004-01-01

    Host feeding is the consumption of host tissue by the adult female parasitoid. We studied the function of destructive host feeding and its advantage over non-destructive feeding on host-derived honeydew in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We allowed

  14. Unravelling mummies: cryptic diversity, host specificity, trophic and coevolutionary interactions in psyllid - parasitoid food webs.

    Science.gov (United States)

    Hall, Aidan A G; Steinbauer, Martin J; Taylor, Gary S; Johnson, Scott N; Cook, James M; Riegler, Markus

    2017-06-06

    Parasitoids are hyperdiverse and can contain morphologically and functionally cryptic species, making them challenging to study. Parasitoid speciation can arise from specialisation on niches or diverging hosts. However, which process dominates is unclear because cospeciation across multiple parasitoid and host species has rarely been tested. Host specificity and trophic interactions of the parasitoids of psyllids (Hemiptera) remain mostly unknown, but these factors are fundamentally important for understanding of species diversity, and have important applied implications for biological control. We sampled diverse parasitoid communities from eight Eucalyptus-feeding psyllid species in the genera Cardiaspina and Spondyliaspis, and characterised their phylogenetic and trophic relationships using a novel approach that forensically linked emerging parasitoids with the presence of their DNA in post-emergence insect mummies. We also tested whether parasitoids have cospeciated with their psyllid hosts. The parasitoid communities included three Psyllaephagus morphospecies (two primary and, unexpectedly, one heteronomous hyperparasitoid that uses different host species for male and female development), and the hyperparasitoid, Coccidoctonus psyllae. However, the number of genetically delimited Psyllaephagus species was three times higher than the number of recognisable morphospecies, while the hyperparasitoid formed a single generalist species. In spite of this, cophylogenetic analysis revealed unprecedented codivergence of this hyperparasitoid with its primary parasitoid host, suggesting that this single hyperparasitoid species is possibly diverging into host-specific species. Overall, parasitoid and hyperparasitoid diversification was characterised by functional conservation of morphospecies, high host specificity and some host switching between sympatric psyllid hosts. We conclude that host specialisation, host codivergence and host switching are important factors driving

  15. A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts.

    Directory of Open Access Journals (Sweden)

    Gabriel G Perron

    Full Text Available The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.

  16. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  17. Host-Directed Therapies for Tuberculosis.

    Science.gov (United States)

    Tobin, David M

    2015-05-18

    Host-directed therapies are a relatively new and promising approach to treatment of tuberculosis. Modulation of specific host immune pathways, including those that impact inflammation and immunopathology, can limit mycobacterial infection and pathology, both in cell culture and in animal models. This review explores a range of host pathways and drugs, some already approved for clinical use that have the potential to provide new adjunctive therapies for tuberculosis. Drugs targeting host processes may largely avoid the development of bacterial antibiotic resistance, a major public health concern for tuberculosis. However, these drugs may also have generally increased risk for side effects on the host. Understanding the specific mechanisms by which these drugs act and the relationship of these mechanisms to Mycobacterium tuberculosis pathogenesis will be critical in selecting appropriate host-directed therapy. Overall, these host-directed compounds provide a novel strategy for antituberculosis therapy. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Macroevolution of insect–plant associations: The relevance of host biogeography to host affiliation

    Science.gov (United States)

    Becerra, Judith X.; Venable, D. Lawrence

    1999-01-01

    Identifying the factors that have promoted host shifts by phytophagous insects at a macroevolutionary scale is critical to understanding the associations between plants and insects. We used molecular phylogenies of the beetle genus Blepharida and its host genus Bursera to test whether these insects have been using hosts with widely overlapping ranges over evolutionary time. We also quantified the importance of host range coincidence relative to host chemistry and host phylogenetic relatedness. Overall, the evolution of host use of these insects has not been among hosts that are geographically similar. Host chemistry is the factor that best explains their macroevolutionary patterns of host use. Interestingly, one exceptional polyphagous species has shifted among geographically close chemically dissimilar plants. PMID:10535973

  19. Genetic effects

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.; Denniston, C.; Schull, W.

    1985-01-01

    Modeling analyses are used to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population received a chronic dose of 0.1 Gy (10 rad) over a 50 year period, the second in which an equivalent population receives acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. 28 references, 3 figures, 5 tables

  20. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy.

    Science.gov (United States)

    Verin, Mélissa; Tellier, Aurélien

    2018-04-20

    Seed (egg) banking is a common bet-hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene-for-gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching-allele interaction, both hosts' genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host-parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet-hedging strategy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Adaptation to human populations is revealed by within-host polymorphisms in HIV-1 and hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Art F Y Poon

    2007-03-01

    Full Text Available CD8(+ cytotoxic T-lymphocytes (CTLs perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1 and hepatitis C virus (HCV. As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately "toggle" in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1- (n > or = 3,000 and HCV-infected patients (n > or = 2,600 by screening bulk RT-PCR sequences for sequencing "mixtures" (i.e., ambiguous nucleotides, which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design.

  2. Genetic Prediction.

    Science.gov (United States)

    Turkheimer, Eric

    2015-01-01

    The fundamental reason that the genetics of behavior has remained so controversial for so long is that the layer of theory between data and their interpretation is thicker and more opaque than in more established areas of science. The finding that variations in tiny snippets of DNA have small but detectable relations to variation in behavior surprises no one, at least no one who was paying attention to the twin studies. How such snippets of DNA are related to differences in behavior-known as the gene-to-behavior pathway-is the great theoretical problem of modern behavioral genetics. Given that intentional human breeding is a horrific prospect, what kind of technology might we want (or fear) out of human behavioral genetics? One possibility is a technology that could predict important behavioral characteristics of humans based on their genomes alone. A moment's thought suggests significant benefits and risks that might be associated with such a possibility, but for the moment, just consider how convincing it would be if on the day of a baby's birth we could make meaningful predictions about whether he or she would become a concert pianist or an alcoholic. This article will consider where we are right now as regards that possibility, using human height and intelligence as the primary examples. © 2015 The Hastings Center.

  3. Phylogeography and virulence structure of the powdery mildew population on its 'new' host triticale

    Directory of Open Access Journals (Sweden)

    Troch Veronique

    2012-06-01

    Full Text Available Abstract Background Powdery mildew, caused by the obligate biotrophic fungus Blumeria graminis, is a major problem in cereal production as it can reduce quality and yield. B. graminis has evolved eight distinct formae speciales (f.sp. which display strict host specialization. In the last decade, powdery mildew has emerged on triticale, the artificial intergeneric hybrid between wheat and rye. This emergence is probably triggered by a host range expansion of the wheat powdery mildew B. graminis f.sp. tritici. To gain more precise information about the evolutionary processes that led to this host range expansion, we pursued a combined pathological and genetic approach. Results B. graminis isolates were sampled from triticale, wheat and rye from different breeding regions in Europe. Pathogenicity tests showed that isolates collected from triticale are highly pathogenic on most of the tested triticale cultivars. Moreover, these isolates were also able to infect several wheat cultivars (their previous hosts, although a lower aggressiveness was observed compared to isolates collected from wheat. Phylogenetic analysis of nuclear gene regions identified two statistically significant clades, which to a certain extent correlated with pathogenicity. No differences in virulence profiles were found among the sampled regions, but the distribution of genetic variation demonstrated to be geography dependent. A multilocus haplotype network showed that haplotypes pathogenic on triticale are distributed at different sites in the network, but always clustered at or near the tips of the network. Conclusions This study reveals a genetic structure in B. graminis with population differentiation according to geography and host specificity. In addition, evidence is brought forward demonstrating that the host range expansion of wheat isolates to the new host triticale occurred recently and multiple times at different locations in Europe.

  4. Phylogeography and virulence structure of the powdery mildew population on its 'new' host triticale

    Science.gov (United States)

    2012-01-01

    Background Powdery mildew, caused by the obligate biotrophic fungus Blumeria graminis, is a major problem in cereal production as it can reduce quality and yield. B. graminis has evolved eight distinct formae speciales (f.sp.) which display strict host specialization. In the last decade, powdery mildew has emerged on triticale, the artificial intergeneric hybrid between wheat and rye. This emergence is probably triggered by a host range expansion of the wheat powdery mildew B. graminis f.sp. tritici. To gain more precise information about the evolutionary processes that led to this host range expansion, we pursued a combined pathological and genetic approach. Results B. graminis isolates were sampled from triticale, wheat and rye from different breeding regions in Europe. Pathogenicity tests showed that isolates collected from triticale are highly pathogenic on most of the tested triticale cultivars. Moreover, these isolates were also able to infect several wheat cultivars (their previous hosts), although a lower aggressiveness was observed compared to isolates collected from wheat. Phylogenetic analysis of nuclear gene regions identified two statistically significant clades, which to a certain extent correlated with pathogenicity. No differences in virulence profiles were found among the sampled regions, but the distribution of genetic variation demonstrated to be geography dependent. A multilocus haplotype network showed that haplotypes pathogenic on triticale are distributed at different sites in the network, but always clustered at or near the tips of the network. Conclusions This study reveals a genetic structure in B. graminis with population differentiation according to geography and host specificity. In addition, evidence is brought forward demonstrating that the host range expansion of wheat isolates to the new host triticale occurred recently and multiple times at different locations in Europe. PMID:22658131

  5. Chlamydia trachomatis infections and subfertility: opportunities to translate host pathogen genomic data into public health.

    Science.gov (United States)

    Lal, J A; Malogajski, J; Verweij, S P; de Boer, P; Ambrosino, E; Brand, A; Ouburg, S; Morré, S A

    2013-01-01

    Chlamydia trachomatis (CT) infections in women can result in tubal pathology (TP). Worldwide 10-15% of all couples are subfertile, meaning they did not get pregnant after 1 year. Part of the routine subfertility diagnostics is the Chlamydia Antibody Test (CAT) to decide for laparoscopy or not in order to diagnose TP. The CAT positive and negative predictive value is such that many unneeded laparoscopies are done and many TP cases are missed. Addition of host genetic markers related to infection susceptibility and severity could potentially improve the clinical management of couples who suffer from subfertility. In the present study, the potential translational and clinical value of adding diagnostic host genetic marker profiles on the basis of infection and inflammation to the current clinical management of subfertility was investigated. This review provides an overview of the current state of the art of host genetic markers in relation to CT infection, proposes a new clinical diagnostic approach, and investigates how the Learning-Adapting-Leveling model (LAL, a public health genomic (PHG) model) can be of value and provide insight to see whether these host genetic markers can be translated into public health. This review shows that the preliminary basis of adding host genetic marker profiles to the current diagnostic procedures of subfertility is present but has to be further developed before implementation into health care can be achieved. CT infection is an example in the field of PHG with potential diagnostic to be taken up in the future in the field of subfertility diagnosis with a time line for integration to be dependent on enhanced participation of many stakeholders in the field of PHG which could be advanced through the LAL model. Copyright © 2013 S. Karger AG, Basel.

  6. Cancer Genetics Services Directory

    Science.gov (United States)

    ... Services Directory Cancer Prevention Overview Research NCI Cancer Genetics Services Directory This directory lists professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, ...

  7. Host response mechanisms in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Nora SILVA

    2015-06-01

    a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.

  8. Host response mechanisms in periodontal diseases

    Science.gov (United States)

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors. PMID:26221929

  9. Dissecting host-associated communities with DNA barcodes

    Science.gov (United States)

    Pierce, Naomi E.

    2016-01-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes. Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481780

  10. Insights from human studies into the host defense against candidiasis.

    Science.gov (United States)

    Filler, Scott G

    2012-04-01

    Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    Science.gov (United States)

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  12. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gene expression plasticity across hosts of an invasive scale insect species

    DEFF Research Database (Denmark)

    Christodoulides, Nicholas; Van Dam, Alex; Peterson, Daniel A.

    2017-01-01

    For plant-eating insects, we still have only a nascent understanding of the genetic basis of host-use promiscuity. Here, to improve that situation, we investigated host-induced gene expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata (Hemiptera: Keriidae). We...... were particularly interested in the differential expression of detoxification and effector genes, which are thought to be critical for overcoming a plant’s chemical defenses. We collected RNA samples from P. pseudolobata on three different host plant species, assembled transcriptomes de novo...... of several recently published studies of other plant-eating insect species. Thus, across plant-eating insect species, there may be a common set of gene expression changes that enable host-use promiscuity....

  14. Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding.

    Science.gov (United States)

    Kroll, Samuel; Agler, Matthew T; Kemen, Eric

    2017-04-01

    Agriculture faces many emerging challenges to sustainability, including limited nutrient resources, losses from diseases caused by current and emerging pathogens and environmental degradation. Microorganisms have great importance for plant growth and performance, including the potential to increase yields, nutrient uptake and pathogen resistance. An urgent need is therefore to understand and engineer plants and their associated microbial communities. Recent massive genomic sequencing of host plants and associated microbes offers resources to identify novel mechanisms of communal assembly mediated by the host. For example, host-microbe and microbe-microbe interactions are involved in niche formation, thereby contributing to colonization. By leveraging genomic resources, genetic traits underlying those mechanisms will become important resources to design plants selecting and hosting beneficial microbial communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Host genotype is an important determinant of the cereal phyllosphere mycobiome

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2015-01-01

    The phyllosphere mycobiome in cereals is an important determinant of crop health. However, an understanding of the factors shaping this community is lacking. Fungal diversity in leaves from a range of cultivars of winter wheat (Triticum aestivum), winter and spring barley (Hordeum vulgare...... treatment (13%) and location (4%). Indicator species, including plant pathogens, responding to factors such as crop species, location and treatment were identified. Host genotype at both the species and cultivar level is important in shaping phyllosphere fungal communities, whereas fungicide treatment...... and location have minor effects. We found many host-specific fungal pathogens, but also a large diversity of fungi that were relatively insensitive to host genetic background, indicating that host-specific pathogens live in a 'sea' of nonspecific fungi....

  16. Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species.

    Science.gov (United States)

    Duar, Rebbeca M; Frese, Steven A; Lin, Xiaoxi B; Fernando, Samodha C; Burkey, Thomas E; Tasseva, Guergana; Peterson, Daniel A; Blom, Jochen; Wenzel, Cory Q; Szymanski, Christine M; Walter, Jens

    2017-06-15

    The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs. IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We

  17. Alterations in gp37 expand the host range of a T4-like phage.

    Science.gov (United States)

    Chen, Mianmian; Zhang, Lei; Abdelgader, Sheikheldin A; Yu, Li; Xu, Juntian; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2017-09-22

    The use of phages as antibacterial agents is limited by their generally narrow host range. The aim of this study was to make a T4-like phage, WG01, obtain the host range of another T4-like phage, QL01, by replacing its host determinant gene region with that of QL01. This process triggered a direct expansion of the WG01 host range. The offspring of WG01 obtained the host ranges of both QL01 and WG01, as well as the ability to infect eight additional host bacteria in comparison to the wildtype strains. WQD had the widest host range; therefore, the corresponding QD fragments could be used for constructing a homologous sequence library. Moreover, after a sequencing analysis of gene37, we identified two different mechanisms responsible for the expanded