WorldWideScience

Sample records for galactic cosmic-ray particles

  1. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  2. Solar modulation of galactic cosmic rays: techniques and applications

    International Nuclear Information System (INIS)

    Perko, J.S.

    1984-01-01

    This thesis covers four topics in the theory of interplanetary cosmic-ray propagation: the first part involves the time-dependent, spherically-symmetric, solar modulation of galactic cosmic rays. A numerical technique was introduced for the solution of this problem. A model for the solar cycle variation in cosmic-ray intensity illustrated this method using enhanced particle scattering regions. The second section contains an attempt to explain recent observations which show that cosmic-ray electrons are returning to higher intensities, characteristic of solar minimum, faster than cosmic-ray protons of about the same energy, the reverse of the previous eleven-year cycle. The third section involves the solar modulation of galactic antiprotons. Using a steady-state, spherically-symmetric, numerical modulation code, a solution that reasonably fits the observed 1980 galactic proton spectrum at 1 AU implied that the modulation used for the data interpretation has been significantly underestimated. The final section contains a spherically-symmetric steady-state calculation of the effects of a strong termination shock in the heliosphere. In the end, high-energy particles cooling down in the upstream solar wind overwhelmed any accelerated low-energy particles

  3. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Gabici, Stefano

    2011-01-01

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  4. Cosmic ray injection spectrum at the galactic sources

    Science.gov (United States)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  5. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  6. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  7. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  8. Cosmic Ray Origin: Lessons from Ultra-High-Energy Cosmic Rays and the Galactic/Extragalactic Transition

    Energy Technology Data Exchange (ETDEWEB)

    Parizot, Etienne

    2014-11-15

    We examine the question of the origin of the Galactic cosmic-rays (GCRs) in the light of the data available at the highest energy end of the spectrum. We argue that the data of the Pierre Auger Observatory and of the KASCADE-Grande experiment suggest that the transition between the Galactic and the extragalactic components takes place at the energy of the ankle in the all-particle cosmic-ray spectrum, and at an energy of the order of 10{sup 17} eV for protons. Such a high energy for Galactic protons appears difficult to reconcile with the general view that GCRs are accelerated by the standard diffusive shock acceleration process at the forward shock of individual supernova remnants (SNRs). We also review various difficulties of the standard SNR-GCR connection, related to the evolution of the light element abundances and to significant isotopic anomalies. We point out that most of the power injected by the supernovæ in the Galaxy is actually released inside superbubbles, which may thus play an important role in the origin of cosmic-rays, and could solve some persistent problems of the standard SNR-GCR scenario in a rather natural way.

  9. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    Science.gov (United States)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Esources for energies Esource luminosity in units of 10^{44} erg/s.

  10. Galactic cosmic ray iron composition

    International Nuclear Information System (INIS)

    Scherzer, R.; Enge, W.; Beaujean, R.

    1980-11-01

    We have studied the isotopic compostition of galactic cosmic ray iron in the energy interval 500-750 MeV/nucleon with a visual track detector system consisting of nuclear emulsion and cellulose-nitrate platic. Stopping iron nuclei were identified from ionization - range measurements in the two detector parts. Cone lengths were measured in the plastic sheets and the residual ranges of the particles were measured in plastic and in emulsion. We have determined the mass of 17 iron nuclei with an uncertainty of about 0.3 amu. The isotopic composition at the detector level was found to be 52 Fe: 53 Fe: 54 Fe: 55 Fe: 56 Fe: 57 Fe: 58 Fe = 0:1: 4:3:8:1:0. These numbers are not in conflict with the assumption that the isotopic composition of cosmic ray iron at the source is similar to the solar system composition. (author)

  11. Galactic cosmic rays and tropical ozone asymmetries

    International Nuclear Information System (INIS)

    Kilifarska, Natalya; Bakhmutov, Volodymyr; Melnyk, Galyna

    2017-01-01

    Lower stratospheric ozone O_3 is of special interest to climatic studies due to its direct influence on the tropopause temperature, and correspondingly on Earth’s radiation balance. By reason of the suppressed dissociation of molecular oxygen by solar UV radiation and the long life span of the lower stratospheric O_3 , its temporal variability is usually attributed to atmospheric circulation. Here we report about latitudinal-longitudinal differences in a centennial evolution of the tropical O_3 at 70 hPa. These asymmetries are hardly explicable within the concept of the ozone’s dynamical control alone. Analysis of ozone, energetic particles and the geomagnetic records from the last 111 years has revealed that they all evolve synchronously with time. This coherence motivates us to propose a mechanism explaining the geomagnetic and galactic cosmic ray influence on the near tropopause O_3 , allowing for an understanding of its spatial-temporal variability during the past century. Key words: galactic cosmic rays, asymmetries of tropical ozone distribution, geomagnetic filed

  12. Impact of Cosmic-Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  13. Propagation of Galactic Cosmic Rays and Dark Matter indirect Detection

    International Nuclear Information System (INIS)

    Delahaye, Timur

    2010-07-01

    This thesis is dedicated to the study of propagation of cosmic electrons and positrons in the Milky Way and to the indirect detection of dark matter. The existence of dark matter is a hypothesis considered as reasonable from the point of view of cosmology, astrophysics and even particle physics. Nevertheless its detection still eludes us and it is not possible to verify this hypothesis by other means than gravitational one. A possible way to detect dark matter is to look for its annihilation or decay products among Galactic cosmic rays. During the last three years, data concerning cosmic ray electrons and positrons have been accumulated and have reached a remarkable precision. Such a precision requires from us to refine the theoretical models and to quantify the errors. This thesis addresses the study of all the sources of uncertainties affecting predictions of cosmic electrons and positron fluxes, primary and secondary, classical or from exotic origin. The greatest care has been dedicated to the sources and the propagation in the Galactic halo. Moreover a study of gamma and radio emissions associated to these cosmic rays is presented, again with the will of sizing uncertainties. Finally a status of the research for detection of annihilation or decay of Galactic dark matter is presented. (author)

  14. Geneva University: Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 28 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11h15 - Science III, Auditoire 1S081 Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays Prof. Pasquale BLASI INAF, Arcetri Observatory, Firenze The process of cosmic ray energization in supernova remnant shocks is described by the theory of non linear diffusive shock acceleration (NLDSA). Such theory is able to describe the acceleration itself, the dynamical reaction of accelerated particles on the shock, and the crucial phenomenon of the magnetic field amplification, the very key to generate high energy cosmic rays. I will illustrate the basic aspects of this theoretical framework, as well as its successes and problems. I will then discuss the observations, in X-rays an...

  15. Acceleration of galactic cosmic rays in shock waves

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1981-06-01

    The old problem of the origin of cosmic rays has triggered off fresh interest owing to the discovery of a new model which enables a lot of energy to be transferred to a small number of particles on the one hand and the discovery of the coronal environment in which this transfer occurs, on the other. In this paper, interest is taken in the galactic cosmic rays and an endeavour is made to find out if the model can reveal the existence of cosmic rays over a wide energy range. The existence of an energy break, predicted by the model, was recognized fairly early but, in the literature, it varies from 30 GeV ro 10 6 GeV according to the authors. A study has been made of the two main causes of an energy break: the sphericity of the shock and the life time of the shock wave [fr

  16. Particle spectra and mass composition in the ultra-high energy region in the framework of the Galactic origin of cosmic rays

    Directory of Open Access Journals (Sweden)

    Lagutin A.A.

    2017-01-01

    Full Text Available The possibility for a self-consistent description of all the basic features of the observed cosmic ray spectra and primary composition variations in the energy range of 1015 ÷ 1020 eV within the Galactic origin scenario is examined. We assume the existence of Galactic sources that accelerate particles up to ∼ 3 · 1018Z eV and take into account a highly inhomogeneous (fractal-like distribution of matter and magnetic fields in the Galaxy that leads to extremely large free paths of particles (“Lévy flights”, along with an overwhelming contribution to the cosmic ray fluxes observed above ∼1018 eV from particles reaching the Solar System without scattering. Our scenario was refined on the basis of recent experimental results on primary mass composition. Model predictions, which could be verified with the improved high-precision measurements in the nearest future are discussed.

  17. Ultrahigh energy cosmic rays and new particle physics

    CERN Document Server

    Kachelriess, M.

    2001-02-28

    The current status of the ultrahigh energy cosmic ray (UHE CR) enigma and several proposed solutions involving particle physics beyond the standard model are discussed. Emphasis is given to top--down models, and as a main example, supermassive dark matter as galactic source for UHE CR and the status of its experimental signatures (galactic anisotropy, chemical composition and clustering) is reviewed. Then different approaches to calculate fragmentation spectra of supermassive particles are discussed. Finally, it is argued that UHE neutrinos cannot be - neither directly or indirectly - responsible for the observed vertical air showers.

  18. The propagation of galactic cosmic rays

    International Nuclear Information System (INIS)

    Hall, A.N.

    1981-01-01

    Large scale (approximately 15 pc) turbulence in the interstellar medium (ISM) causes the firehose and mirror instabilities to occur. These produce small scale (approximately 10 -7 pc) magnetic irregularities, which scatter cosmic rays. We use pulsar scintillation data, and a model of the origin of these scintillations, to construct a slab model of the turbulent ISM. Then we find the amplitudes and wavelengths of the magnetic irregularities that arise, and we calculate the coefficients for the diffusion of cosmic rays along the interstellar magnetic fields. We incorporate this diffusion into our model of the turbulent ISM, and show that it can account naturally for both the lifetime of low energy cosmic rays, and the variation of their mean pathlength with energy. Our model has no galactic halo, and contains no scattering by Alfven waves. (author)

  19. Supernova Remnants as the Sources of Galactic Cosmic Rays

    NARCIS (Netherlands)

    Vink, J.

    2013-01-01

    The origin of cosmic rays holds still manymysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate

  20. MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton [Max-Planck-Institut für Kernphysik, D-69117 Heidelberg (Germany); Chang, Xiao-Chuan, E-mail: ruoyu@mpi-hd.mpg.de, E-mail: xywang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-12-20

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays from the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.

  1. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  2. Photon losses in cosmic ray acceleration in active galactic nuclei

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1984-01-01

    The usual assumption of the acceleration of ultrahigh energy cosmic rays, greater than or equal to 10 18 eV in quasars, Seyfert galaxies, and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10 20 eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10 13 . Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultrahigh energy cosmic ray 10 20 eV by greater than 10 4 times its energy. Hence, it is unlikely that any reasonable configuration of acceleration can avoid disastrous photon energy loss. A different site for ultrahigh energy cosmic ray acceleration must be found

  3. The end of the galactic cosmic ray spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2007-03-15

    We discuss the region of transition between galactic and extragalactic cosmic rays. The exact shapes and compositions of these two components contains information about important parameters of powerful astrophysical sources and the conditions in extragalactic space as well as for the cosmological evolution of the sources of high energy cosmic rays. Several types of experimental data, including the exact shape of the ultrahigh energy cosmic rays, their chemical composition and their anisotropy, and the fluxes of cosmogenic neutrinos have to be included in the solution of this problem.

  4. Exploring Ultra-Heavy Cosmic Rays with the Trans-Iron Galactic Element Recorder (TIGER)

    Science.gov (United States)

    Link, Jason; Supertiger Collaboration

    2017-01-01

    Elements heavier than iron are primarily synthesized by neutron capture. These elements can be accelerated as cosmic-rays and measuring their abundances at Earth can yield information about galactic cosmic-rays' sources, the acceleration processes and the composition of the universe beyond the boundaries of our solar system. The Trans-Iron Galactic Element Recorder (TIGER) and its larger successor SuperTIGER was designed to measure the abundance of these ultra-heavy cosmic rays between Z=10 and Z=60. These detectors utilize scintillators with a wavelength shifter bar and PMT readout system as well as aerogel and acrylic Cherenkov detectors to identify the charge and energy of a particle and utilize a scintillating fiber hodoscope to provide trajectory information. In this talk I will review the results from this highly successful program, give the status for the next SuperTIGER flight planned for a December 2017 launch from Antarctica, and discuss the future direction of the program.

  5. Energy spectrum of galactic cosmic ray modulation and dependence of modulation parameters on distance

    International Nuclear Information System (INIS)

    Erkhov, V.I.; Kolomeets, E.V.; Likhoded, V.A.; Sevast'yanov, V.N.; Stekol'nikov, N.V.

    1981-01-01

    The paper presents the results of numerical calculation of galactic cosmic ray modulation by solar wind. Calculations were carried out on the basis of diffusion model taking into account convection and adiabatic loss of particles in interplanetary space. Both isotropic and anisotropic models were used in calculations. Modulation coefficient was calculated using the data on intensity of neutron component of cosmic rays and primary cosmic rays in the stratosphere for the period 1958-1979. The form of modulation function was determined. Obtained results allow to determine the size of modulation region and dependence of solar wind speed and diffusion coefficient on distance

  6. The transition from galactic to extragalactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2007-06-15

    We discuss the region of transition between galactic and extragalactic cosmic rays. The exact shapes and compositions of these two components contain information about important parameters of powerful astrophysical sources and the conditions in extragalactic space. Several types of experimental data, including the exact shape of the ultrahigh energy cosmic rays, their chemical composition and their anisotropy, and the fluxes of cosmogenic neutrinos have to be included in the solution of this problem.

  7. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    Science.gov (United States)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  8. The problems of cosmic ray particle simulation for the near-Earth orbital and interplanetary flight conditions

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes

  9. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    Science.gov (United States)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; hide

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  10. Balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    International Nuclear Information System (INIS)

    Zumberge, J.F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu -1 , using a balloon-borne instrument at an atmospheric depth of approx. 5 g cm -2 . The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approx. 0.3 amu at boron to approx. 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements

  11. Photon damping in cosmic-ray acceleration in active galactic nuclei

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The usual assumption of the acceleration of ultra high energy cosmic rays, greater than or equal to 10 18 eV in quasars, Seyfert galaxies and other active galactic nuclei is challenged on the basis of the photon interactions with the accelerated nucleons. This is similar to the effect of the black body radiation on particles > 10 20 eV for times of the age of the universe except that the photon spectrum is harder and the energy density greater by approx. = 10 15 . Hence, a single traversal, radial or circumferential, of radiation whose energy density is no greater than the emitted flux will damp an ultra high energy. Hence, it is unlikely that any reasonable configuration of acceleration can void disastrous photon energy loss. A different site for ultra high energy cosmic ray acceleration must be found

  12. Dark matter and galactic cosmic rays

    International Nuclear Information System (INIS)

    Taillet, R.

    2010-12-01

    Dark matter is one of the major problems encountered by modern cosmology and astrophysics, resisting the efforts of both theoreticians and experimentalists. The problem itself is easy to state: many indirect astrophysical measurements indicate that the mass contained in the Universe seems to be dominated by a new type of matter which has never been directly seen yet, this is why it is called dark matter. This hypothesis of dark matter being made of new particles is of great interest for particle physicists, whose theories provide many candidates: dark matter is one of the major topics of astro-particle physics. This work focuses on searching dark matter in the form of new particles, more precisely to indirect detection, i.e. the search of particles produced by dark matter annihilation rather than dark matter particles themselves. In this framework, I will present the studies I have been doing in the field of cosmic rays physics (particularly cosmic ray sources), in several collaborations. In particular, the study of the antimatter component of cosmic rays can give relevant information about dark matter. The last chapter is dedicated to my teaching activities

  13. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    Science.gov (United States)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  14. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  15. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Pohl, Martin

    2011-01-01

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10 18 eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10 -3 of the average. Difficulties with these avoidance scenarios are noted.

  16. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    Science.gov (United States)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  17. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  18. Identifying Galactic Cosmic Ray Origins With Super-TIGER

    Science.gov (United States)

    deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; hide

    2009-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.

  19. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    International Nuclear Information System (INIS)

    Westphal, Andrew J.

    2000-01-01

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ∼3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station

  20. Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?

    International Nuclear Information System (INIS)

    Hillas, A M

    2005-01-01

    Diffusive shock acceleration at the outer front of expanding supernova remnants has provided by far the most popular model for the origin of galactic cosmic rays, and has been the subject of intensive theoretical investigation. But several problems loomed at high energies-how to explain the smooth continuation of the cosmic-ray spectrum far beyond 10 14 eV, the very low level of TeV gamma-ray emission from several supernova remnants, and the very low anisotropy of cosmic rays (seeming to conflict with the short trapping times needed to convert a E -2 source spectrum into the observed E -2.7 spectrum of cosmic rays). However, recent work on the cosmic ray spectrum (especially at KASCADE) strongly indicates that about half of the flux does turn down rather sharply near 3 x 10 15 V rigidity, with a distinct tail extending to just beyond 10 17 V rigidity; whilst a plausible description (Bell and Lucek) of the level of self-generated magnetic fields at the shock fronts of young supernova remnants implies that many SNRs in varying environments might very well generate spectra extending smoothly to just this 'knee' position, and a portion of the exploding red supergiants could extend the spectrum approximately as needed. At low energies, recent progress in relating cosmic ray compositional details to modified shock structure also adds weight to the belief that the model is working on the right lines, converting energy into cosmic rays very efficiently where injection can occur. The low level of TeV gamma-ray flux from many young SNRs is a serious challenge, though it may relate to variations in particle injection efficiency with time. The clear detection of TeV gamma rays from SNRs has now just begun, and predictions of a characteristic curved particle spectrum give a target for new tests by TeV observations. However, the isotropy seriously challenges the assumed cosmic-ray trapping time and hence the shape of the spectrum of particles released from SNRs. There is

  1. Measurements of the isotopic composition of galactic cosmic rays

    International Nuclear Information System (INIS)

    Herrstroem, N.Y.

    1985-01-01

    The galactic cosmic-ray boron and carbon isotopic composition has been measured. The boron measurement is the first ever made in nuclear emulsion. The carbon measurement has substantially improved the statistical assuracy in the determination of the 13 C abundance as compared to an earlier measurement using the same technique. Mass-spectra of cosmic-ray carbon and oxygen in different zenith angle intervals have been compared with calculated spectra. The method makes it possible to study experimentally the atmospheric influence on the primary cosmic-ray isotopic composition. Photometric measurements on fragments from oxygen-induced interactions in nuclear emulsion have been made. Accurate charge assignments have been made on all heavy fragments which has made it possible to study the interaction exclusively event-by-event. Measurements on the isotopic composition of primary cosmic-ray neom have been made. The data are from the Danish-French instrument on the HEAO-3 satellite. The rigidity dependent filtering of the cosmic rays by the Earth's magnetic field has been used. The energy dependence of the 22 Ne/ 20 Ne-ratio and its astrophysical implications are discussed. (Author)

  2. Nucleosynthesis in Wolf-Rayet stars and galactic cosmic-ray isotopic composition

    International Nuclear Information System (INIS)

    Prantzos, N.

    1984-01-01

    An explanation of the isotopic composition of galactic cosmic rays could provide some clues to the mystery of their origin. It seems now that the strong stellar winds of Wolf-Rayet stars could account for most of the isotopic anomalies that have been observed in cosmic rays. Some results are presented, obtained by detailed nucleosynthesis computations. 25 references

  3. Cosmic-ray electrons and galactic radio emission - a conflict

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Daniel, R.R.; Stephens, S.A.

    1977-01-01

    Reference is made to attempts in the past to deduce information of astrophysical importance from a study of the galactic non-thermal continuum in relation to cosmic ray electrons observed in the neighbourhood of the Earth. Such investigations were carried out using the cosmic ray electron data obtained from a single experiment or by making use of an average spectrum derived from world data, although it was known that the flux values observed by different investigators in any energy band differed by as much as a factor of 4. This has led to conflicting conclusions being drawn from the analysis of data of different observers. The present authors used a different approach for analysing the observational data, based on arguments of internal consistency between each measured electron spectrum and the magnetic field strength and the dimension of the radio-emitting region required to explain the radio observations. Such an approach makes it possible to highlight the inconsistencies associated with some of the electron measurements and permits certain inferences of cosmic ray and astrophysical interest. From the discussion it is concluded that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic ray electron measurements; also that the absolute intensities of cosmic ray electrons as measured in some experiments are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk, and it is likely that the field strength derived from Faraday rotation measurements gives only a lower limit to the local magnetic field in the Galaxy. (U.K.)

  4. Cosmic-ray acceleration and the radio evolution of Cassiopeia A

    International Nuclear Information System (INIS)

    Chevalier, R.A.; Robertson, J.W.; Scott, J.S.

    1976-01-01

    A more detailed analysis of the Scott and Chevalier model for production of galactic cosmic rays in supernova remnants is presented. Particles are accelerated by second-order Fermi acceleration with turbulent vortices (produced by the motions of the supernova ejecta through the remnant) acting as moving scattering centers. The time-dependent equation of continuity in particle energy space is solved numerically. The results of the calculations are in substantial agreement with all time-dependent observations of the radio emission from Cas A. This mechanism implies an dependent solution yields a cosmic ray spectrum with the same slope as galactic cosmic rays. The results of our calculations and new work on γ-rays by, e.g., Stecker and by Lingenfelter and Higdon and cosmic ray composition by, e.g., Hainebach, Norman, and Schramm support our hypothesis that galactic cosmic rays are produced in supernova remnants by the mechanism proposed by Scott and Chevalier

  5. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  6. Spatial analysis of galactic cosmic ray particles in low earth orbit/near equator orbit using SPENVIS

    International Nuclear Information System (INIS)

    Suparta, W; Zulkeple, S K

    2014-01-01

    The space environment has grown intensively harmful to spacecraft and astronauts. Galactic cosmic rays (GCRs) are one of the radiation sources that composed of high energetic particles originated from space and capable of damaging electronic systems through single event upset (SEU) process. In this paper, we analyzed GCR fluxes at different altitudes by using Space Environment Information System (SPENVIS) software and the results are compared to determine their intensities with respect to distance in the Earth's orbit. The altitudes are set at low earth orbit (400 km and 685 km), medium earth orbit (19,100 km and 20,200 km) and high earth orbit (35,793 km and 1,000,000 km). Then, within Low Earth Orbit (LEO) near the equator (NEqO), we used altitude of 685 km to compare GCRs with the intensities of solar particles and trapped particles in the radiation belt to determine the significance of GCRs in the orbit itself.

  7. Structure of irregular galactic magnetic fields determined on the basis of cosmic ray measurements

    International Nuclear Information System (INIS)

    Somogyi, A.

    1975-02-01

    In the paper a method is described to determine the structural composition of random galactic fields on the basis of cosmic ray measurements, down to structures with characteristic length of the order of 0.001 to 1 pc. Assuming the diffusion mean free path of the particles to be independent of particle energy the spectral index of magnetic irregularities is estimated to be -(1.0+-0.5). The linear size of the confinement volume is found to be almost independent of particle energy. (Sz.Z.)

  8. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  9. Anomalous Galactic Cosmic Rays in the Framework of AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Khiali, Behrouz [National Central University (NCU), ChungLi, Tao Yuan, 32054, Taiwan (China); Haino, Sadakazu; Feng, Jie, E-mail: behrouz.khiali@cern.ch [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)

    2017-02-01

    The cosmic-ray (CR) energy spectra of protons and helium nuclei, which are the most abundant components of cosmic radiation, exhibit a remarkable hardening at energies above 100 GeV/nucleon. Recent data from AMS-02 confirm this feature with a higher significance. These data challenge the current models of CR acceleration in Galactic sources and propagation in the Galaxy. Here, we explain the observed break in the spectra of protons and helium nuclei in light of recent advances in CR diffusion theories in turbulent astrophysical sources as being a result of a transition between different CR diffusion regimes. We reconstruct the observed CR spectra using the fact that a transition from normal diffusion to superdiffusion changes the efficiency of particle acceleration and causes the change in the spectral index. We find that calculated proton and helium spectra match the data very well.

  10. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  11. Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Formato, V., E-mail: valerio.formato@ts.infn.it [INFN, Sezione di Trieste, I-34149 Trieste (Italy); University of Trieste, Department of Physics, I-34147 Trieste (Italy); Adriani, O. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G.C. [University of Naples “Federico II”, Department of Physics, I-80126 Naples (Italy); INFN, Sezione di Naples, I-80126 Naples (Italy); Bazilevskaya, G.A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R. [University of Bari, Department of Physics, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Boezio, M. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E.A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bonvicini, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bruno, A.; Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Carlson, P. [KTH, Department of Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Oskar Klein Centre for Cosmoparticle Physics (Sweden); Casolino, M. [INFN, Sezione di Rome “Tor Vergata”, I-00133 Rome (Italy); RIKEN, Advanced Science Institute, Wako-shi, Saitama (Japan); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2014-04-01

    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon–Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The velocity and rigidity information allow the identification of different isotopes for Z=1 and Z=2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the PAMELA results on the H and He isotope fluxes based on the data collected during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio.

  12. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    Science.gov (United States)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  13. Markov Stochastic Technique to Determine Galactic Cosmic Ray ...

    Indian Academy of Sciences (India)

    A new numerical model of particle propagation in the Galaxy has been developed, which allows the study of cosmic-ray production and propagation in 2D. The model has been used to solve cosmic ray diffusive transport equation with a complete network of nuclear interactions using the time backward Markov stochastic ...

  14. At what particle energy do extragalactic cosmic rays start to predominate?

    International Nuclear Information System (INIS)

    Wibig, Tadeusz; Wolfendale, Arnold W

    2005-01-01

    We have previously argued (e.g. Szabelski et al 2002 Astropart. Phys. 17 125) that the well-known 'ankle' in the cosmic ray energy spectrum, at log E (eV) ∼ 18.7-19.0, marks the transition from mainly galactic sources at lower energies to mainly extragalactic above. Recently, however, there have been claims for lower transitional energies, specifically from log E (eV) ∼ 17.0 (Thompson et al 2004 Proc. Catania Cosmic Ray Conf.) via 17.2-17.8 (Berezinsky et al 2004 Astropart. Phys. 21 617) to 18.0 (Hillas 2004 Proc. Leeds Cosmic Ray Conf.). In our model the ankle arises naturally from the sum of simple power law-spectra with slopes differing by Δγ ∼ 1.8; from differential slope γ = -3.8 for galactic particles (near log E = 19) to γ ∼ -2.0 for extragalactic sources. In the other models, on the other hand, the ankle is intrinsic to the extragalactic component alone, and arises from the shape of the rate of energy loss versus energy for the (assumed) protons interacting with the cosmic microwave background (CMB). Our detailed analysis of the world's data on the ultra-high energy spectrum shows that taken together, or separately, the resulting mean sharpness of the ankle (second derivative of the log(intensity x E 3 ) with respect to log E) is consistent with our 'mixed' model. For explanation in terms of extragalactic particles alone, however, the ankle will be at the wrong energy-for reasonable production models and of insufficient magnitude if, as seems likely, there is still a significant fraction of heavy nuclei at the ankle energy

  15. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  16. Badhwar - O'Neill 2014 Galactic Cosmic Ray Flux Model Description

    Science.gov (United States)

    O'Neill, P. M.; Golge, S.; Slaba, T. C.

    2014-01-01

    The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) model is based on GCR measurements from particle detectors. The model has mainly been used by NASA to certify microelectronic systems and the analysis of radiation health risks to astronauts in space missions. The BON14 model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model also incorporates an empirical time delay function to account for the lag of the solar activity to reach the boundary of the heliosphere. This technical paper describes the most recent improvements in parameter fits to the BON model (BON14). Using a comprehensive measurement database, it is shown that BON14 is significantly improved over the previous version, BON11.

  17. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.; /Turin Observ. /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Balseiro Inst., San Carlos de Bariloche; Allen, J.; /New York U.; Alvarez Castillo, J.; /Mexico U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples; Aminaei, A.; /Nijmegen U., IMAPP; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  18. A Shifting Shield Provides Protection Against Cosmic Rays

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  19. Evolution of cosmic ray fluxes during the rising phase of solar cycle 23: ULYSSES EPAC and COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Keppler, E.; Blake, J.B.; Fraenz, M.; Kunow, H.

    2000-01-01

    Galactic cosmic rays are entering the heliosphere from the interstellar medium, while anomalous cosmic rays are believed to be pickup ions accelerated at the heliospheric termination shock. Both particle species are modulated by the solar wind and the heliospheric magnetic field. Since 1997 solar activity increased and as a consequence the flux of galactic and anomalous cosmic ray decreased. In this paper we will discuss the variation of low energy anomalous cosmic rays as measured by the Ulysses Energetic Particle Composition Experiment (EPAC) and the Kiel Electron Telescope (KET) on board Ulysses. Specifically we are addressing the question: Are there differences in the modulation of galactic and anomalous cosmic rays and what are possible implication for the modulation of cosmic rays in the heliosphere?

  20. Features of the galactic magnetic field regarding deflections of ultra-high-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Marcus; Erdmann, Martin; Mueller, Gero; Urban, Martin [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    Most recent models of the galactic magnetic field have been derived from Faraday rotation measurements and imply strong deflections even for ultra-high energy cosmic rays. We investigate the characteristics of the different field parametrizations and point out similarities and interesting features. Among them are extragalactic regions which are invisible for an Earth bound observation and the transition from diffuse to ballistic behaviour in the 1 EeV energy regime. Applying this knowledge to a directional analysis, there are indications for deflection patterns by the galactic magnetic field in cosmic ray arrival directions measured by the Pierre Auger Observatory.

  1. Selected Theoretical Studies Group contributions to the 14th International Cosmic Ray conference. [including studies on galactic molecular hydrogen, interstellar reddening, and on the origin of cosmic rays

    Science.gov (United States)

    1975-01-01

    The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.

  2. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  3. A self-consistent model for the Galactic cosmic ray, antiproton and positron spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In this talk I will present the escape model of Galactic cosmic rays. This model explains the measured cosmic ray spectra of individual groups of nuclei from TeV to EeV energies. It predicts an early transition to extragalactic cosmic rays, in agreement with recent Auger data. The escape model also explains the soft neutrino spectrum 1/E^2.5 found by IceCube in concordance with Fermi gamma-ray data. I will show that within the same model one can explain the excess of positrons and antiprotons above 20 GeV found by PAMELA and AMS-02, the discrepancy in the slopes of the spectra of cosmic ray protons and heavier nuclei in the TeV-PeV energy range and the plateau in cosmic ray dipole anisotropy in the 2-50 TeV energy range by adding the effects of a 2 million year old nearby supernova.

  4. Cosmic-ray acceleration at stellar wind terminal shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Forman, M.A.; Axford, W.I.

    1985-01-01

    Steady-state, spherically symmetric, analytic solutions of the cosmic-ray transport equations, applicable to the problem of acceleration of cosmic rays at the terminal shock to a stellar wind, are studied. The spectra, gradients, and flow patterns of particle modulated and accelerated by the stellar wind and shock are investigated by means of monoenergetic-source solutions at finite radius, as well as solutions with monoenergetic and power-law Galactic spectra. The solutions obtained apply in the test particle limit in which the cosmic rays do not modify the background flow. The solutions show a characteristic power-law momentum spectrum for accelerated particles and a more complex spectrum of particles that are decelerated in the stellar wind. The power-law spectral index depends on the compression ratio of the shock and on the modulation parameters characterizing propagation conditions in the upstream and downstream regions of the shock. Solutions of the transport equations for the total density N (integrated over all energies), pressure P/sub c/, and energy flux F/sub c/ of Galactic cosmic rays interacting with a stellar wind and shock are also studied. The density N(r) increases with radius r, and for strong shocks with large enough modulation parameters, there may be a significant enhancement of the pressure of weakly relativistic particles near the shock compared to the cosmic-ray background pressure P/sub infinity/. The emergent energy flux at infinity is of the order of 4π R 2 V 1 P/sub infinity/ (V 1 is wind velocity upstream of the shock, R is shock radius)

  5. Flux and anisotropy of galactic cosmic rays: beyond homogeneous models

    International Nuclear Information System (INIS)

    Bernard, Guilhem

    2013-01-01

    In this thesis I study the consequence of non homogeneously distributed cosmic ray sources in the Milky way. The document starts with theoretical and experimental synthesis. Firstly, I will describe the interstellar medium to understand the mechanism of propagation and acceleration of cosmic rays. Then, the detailed study of cosmic rays diffusion on the galactic magnetic field allows to write a commonly used propagation equation. I will recall the Steady-state solutions of this equation, then I will focus on the time dependant solutions with point-like sources. A statistical study is performed in order to estimate the standard deviation of the flux around its mean value. The computation of this standard deviation leads to mathematical divergences. Thus, I will develop statistical tools to bypass this issue. So i will discuss the effect of the granularity of cosmic ray sources. Its impact on cosmic ray spectrum can explain some recent features observed by the experiments CREAM and PAMELA.Besides, this thesis is focused on the study of the anisotropy of cosmic rays. I will recap experimental methods of measurements, and I will show how to connect theoretical calculation from propagation theories to experimental measurements. Then, the influence of the local environment on the anisotropy measurements will be discussed, particularly the effect of a local diffusion coefficient. Then, I will compute anisotropy and its variance in a framework of point-like local sources with the tools developed in the first part. Finally, the possible influence of local sources on the anisotropy is discussed in the light of the last experimental results. (author) [fr

  6. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  7. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Dept. of Phys. and Astron., Univ. of Bonn (Germany); Dept. of Phys. and Astr., Univ. of Alabama, Tuscaloosa, AL (United States); Dept. of Phys., Univ. of Alabama at Huntsville, AL (United States); Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Becker, Julia K. [Institution foer Fysik, Goeteborgs Univ. (Sweden); Dept. of Phys., Univ. Dortmund, Dortmund (Germany); Caramete, Laurentiu [MPI for Radioastronomy, Bonn (Germany); Institute for Space Studies, Bucharest (Romania); Curutiu, Alex [MPI for Radioastronomy, Bonn (Germany); Engel, Ralph [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Falcke, Heino [Dept. of Astrophys., IMAP, Radboud Univ., Nijmegen (Netherlands); ASTRON, Dwingeloo (Netherlands); Gergely, Laszlo A. [Dept. Appl. Sci., London South Bank University (United Kingdom); Dept. of Theoret. and Exp. Phys., Univ. of Szeged, Szeged (Hungary); Isar, P. Gina [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Institute for Space Studies, Bucharest (Romania); Maris, Ioana C. [Inst. Nucl. Phys. FZ, Karlsruhe Inst. of Techn. (KIT) (Germany); Meli, Athina [Physik. Inst. Univ. Erlangen-Nuernberg (Germany); Kampert, Karl-Heinz [Phys. Dept., Univ. Wuppertal (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States); Tascau, Oana [Phys. Dept., Univ. Wuppertal (Germany); Zier, Christian [MPI for Radioastronomy, Bonn (Germany); Raman Res. Inst., Bangalore (India)

    2009-05-15

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  8. Active Galactic Nuclei: Sources for ultra high energy cosmic rays?

    International Nuclear Information System (INIS)

    Biermann, Peter L.; Becker, Julia K.; Caramete, Laurentiu; Curutiu, Alex; Engel, Ralph; Falcke, Heino; Gergely, Laszlo A.; Isar, P. Gina; Maris, Ioana C.; Meli, Athina; Kampert, Karl-Heinz; Stanev, Todor; Tascau, Oana; Zier, Christian

    2009-01-01

    The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgement. We outline how we may progress in the near future.

  9. Modulation of galactic cosmic ray anisotropy in heliomagnetosphere: average sidereal daily variation

    International Nuclear Information System (INIS)

    Nagashima, K.; Morishita, I.; Yasue, S.

    1982-01-01

    The modulation of galactic anisotropy of cosmic rays caused by their deflection in the heliomagnetosphere is formulated. According to the formulation, the average sidereal i-th (2=1,2...) harmonic daily variation produced [from the anisotropy from an arbitrary direction can be expressed] by a linear combination of three basic vectors for unidirectional anisotropy and five basic vectors for bi-directional anisotropy. The general characteristics and main features of the sidereal daily variations in the modulation of the cosmic ray anistropy are presented. (U.K.)

  10. The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi-Qing; Tian, Zhen; Wang, Zhen [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Hai-Jin; Chen, Tian-Lu [Physics Department of the Science School, Tibet University, Lhasa 850000 (China)

    2017-02-20

    The multiteraelectronvolt γ -rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ -ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ -ray emissions from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ -rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ -ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.

  11. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Murase, Kohta; Kimura, Shigeo S., E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: murase@psu.edu, E-mail: szk323@psu.edu [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ('Pevatron'). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 10{sup 7} yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  12. Standard Cosmic Ray Energetics and Light Element Production

    CERN Document Server

    Fields, B D; Cassé, M; Vangioni-Flam, E; Fields, Brian D.; Olive, Keith A.; Casse, Michel; Vangioni-Flam, Elisabeth

    2001-01-01

    The recent observations of Be and B in metal poor stars has led to a reassessment of the origin of the light elements in the early Galaxy. At low it is metallicity ([O/H] < -1.75), it is necessary to introduce a production mechanism which is independent of the interstellar metallicity (primary). At higher metallicities, existing data might indicate that secondary production is dominant. In this paper, we focus on the secondary process, related to the standard Galactic cosmic rays, and we examine the cosmic ray energy requirements for both present and past epochs. We find the power input to maintain the present-day Galactic cosmic ray flux is about 1.5e41 erg/s = 5e50 erg/century. This implies that, if supernovae are the sites of cosmic ray acceleration, the fraction of explosion energy going to accelerated particles is about 30%, a value which we obtain consistently both from considering the present cosmic ray flux and confinement and from the present 9Be and 6Li abundances. Using the abundances of 9Be (an...

  13. Cosmic ray origin: the way ahead

    International Nuclear Information System (INIS)

    Wolfendale, A W

    2003-01-01

    Despite their discovery being 90 years ago cosmic rays are still characterised by their uncertain masses at high energy and their uncertain origin. This paper deals with the origin problem. The case is put for the majority of the particles being of galactic origin - a generally accepted result. Specific models are put forward for the galactic mechanism and that for the minority extragalactic component

  14. Cosmic Rays from the Knee to the Ankle

    Science.gov (United States)

    Haungs, Andreas

    Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeV to EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to extragalactic origin of cosmic rays completes this paper.

  15. The modulation of galactic cosmic rays as described by a three-dimensional drift model

    International Nuclear Information System (INIS)

    Potgieter, M.S.

    1984-01-01

    An outline of the present state of knowledge about the effect of drift on the modulation of galactic cosmic rays is given. Various observations related to the reversal of the solar magnetic field polarity are discussed. Comprehensive numerical solutions of the steady-state cosmic-ray transport equation in an axially-symmetric three-dimensional heliosphere, including drift are presented. This is an extention of the continuing effort of the past six years to understand the effect and importance of drift on the transport of galactic cosmic rays in the heliosphere. A flat neutral sheet which coincides with the equatorial plane is assumed. A general method of calculating the drift velocity in the neutral sheet including that used previously by other authors is presented. The effect of changing various modulation parameters on the drift solutions are illustrated in detail. The real significance of drift is illustrated by using Gaussian input spectra on the modulation boundary. A carefully selected set of modulation parameters is used to illustrate to what extent a drift model can explain prominent observational features. It is concluded that drift is important in in the process of cosmic-ray transport and must as such be considered in all modulation studies, but that it is not overwhelmingly dominant as previously anticipated

  16. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  17. The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins

    Science.gov (United States)

    Mitchell, John W.; Binns, W. R.; Bose, R, G.; Braun, D. L.; Christian, E. R.; Daniels, W. M; DeNolfo, G. A.; Dowkontt, P. F.; Hahne, D. J.; Hams, T.; hide

    2011-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference.

  18. Isotopes produced by galactic cosmic rays in iron meteorites

    International Nuclear Information System (INIS)

    Birck, J.L.; Allegre, C.J.

    1985-01-01

    The elements Li, Mg, K, Ca, Ti, V, Cr have been investigated in the iron meteorites Grant and Carbo. Their isotopic ratios show clearly the effects of spallation by galactic cosmic rays. Our experimental technique allows us to determine the concentration of spallation products with a precision close to 1 per mil for a number of isotopes. The effects of shielding are clearly evidenced in the calcium data and the exposure ages are calculated by using the 40 K measurements

  19. Latest AMS Results on elementary particles in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  20. Prospects for identifying the sources of the Galactic cosmic rays with IceCube

    International Nuclear Information System (INIS)

    Halzen, Francis; Kappes, Alexander; O Murchadha, Aongus

    2008-01-01

    We quantitatively address whether IceCube, a kilometer-scale neutrino detector under construction at the South Pole, can observe neutrinos pointing back at the accelerators of the Galactic cosmic rays. The photon flux from candidate sources identified by the Milagro detector in a survey of the TeV sky is consistent with the flux expected from a typical cosmic-ray generating supernova remnant interacting with the interstellar medium. We show here that IceCube can provide incontrovertible evidence of cosmic-ray acceleration in these sources by detecting neutrinos. We find that the signal is optimally identified by specializing to events with energies above 30 TeV where the atmospheric neutrino background is low. We conclude that evidence for a correlation between the Milagro and IceCube sky maps should be conclusive after several years.

  1. Modulation of galactic and anomalous cosmic rays in the inner heliosphere

    Science.gov (United States)

    Heber, B.

    Our knowledge on how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged due to measurements provided by several missions launched in the past ten years. The current paradigma of singly charged anomalous cosmic rays has been confirmed by recent measurements from the SAMPEX and ACE satelite. Ulysses explored the inner heliosphere at polar regions during the last solar minimum period and is heading again to high heliographic latitudes during the time of the conference in July, 2000. The Sun approaches maximum activity when the spacecraft is at high heliographic latitudes giving us for the first time the possibility to explore modulation of cosmic rays in the inner three-dimensional heliosphere during such conditions. Ulysses electron measurements in addition to the 1 AU ICE electron and IMP helium measurements allows us to investigate charge sign dependent modulation over a full 22-year solar magnetic cycle. Implications of these observations for our understanding of different modulation processes in the inner three-dimensional heliosphere are presented.

  2. Galactic cosmic-ray intensity to a heliocentric distance of 18 AU

    International Nuclear Information System (INIS)

    Van Allen, J.A.

    1980-01-01

    An updated report is given of observations of galactic cosmic-ray intensity to heliocentric radial distance of 8.6 and 18.4 AU with Pioneer 11 and Pioneer 10, respectively. Solar activity via the magnetic structure of the interplanetary medium continues to modulate the intensity out to the greatest distance reached thus far. During the 7 year period 1972 March to 1979 March, the galactic cosmic-ray intensity E/sub p/>80 MeV as measured by detectors on Pioneers 10 and 11 exhibited aperiodic temporal variations by about a factor of 2 and on a time scale of the order of a year and quasi-persistent cyclic variations of 26 day period and amplitude a few percent. The former are attributed to overall changes in the magnetic field structure of the heliosphere, the latter to fast-slow solar wind streams in and near the ecliptic plane and not to toward-away magnetic field sectors. The apparent heliographic latitude dependence of intensity is 0( +- 1.5)% per 10 0 in the latitude range +7 0 .7 to +15. 0 8, though it is possible that radially dependent temporal variations over the large difference in the heliocentric radial distances of the two spacecraft may make this result of limited significance. For protons of energy E/sub p/>80 MeV, there is a fairly consistent heliocentric radial gradient of +2.1( +- 0.3)% per AU integral intensity until 1978 April--May, at which time a substantial disruption of the distribution of cosmic rays in the heliosphere occurred

  3. Cosmic rays, clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Svensmark, Henrik [Danish Space Research Institute, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2007-07-01

    Changes in the intensity of galactic cosmic rays seems alter the Earth's cloudiness. A recent experiment has shown how electrons liberated by cosmic rays assist in making aerosols, the building blocks of cloud condensation nuclei, while anomalous climatic trends in Antarctica confirm the role of clouds in helping to drive climate change. Variations in the cosmic-ray influx due to solar magnetic activity account well for climatic fluctuations on decadal, centennial and millennial timescales. Over longer intervals, the changing galactic environment of the Solar System has had dramatic consequences, including Snowball Earth episodes.

  4. Relative distribution of cosmic rays and magnetic fields

    Science.gov (United States)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  5. The Revival of Galactic Cosmic-Ray Nucleosynthesis?

    International Nuclear Information System (INIS)

    Fields, B.D.; Olive, K.A.

    1999-01-01

    Because of the roughly linear correlation between Be/H and Fe/H in low-metallicity halo stars, it has been argued that a open-quotes primaryclose quotes component in the nucleosynthesis of Be must be present in addition to the open-quotes secondaryclose quotes component from standard Galactic cosmic-ray nucleosynthesis. In this paper we critically reevaluate the evidence for the primary versus secondary character of Li, Be, and B (LiBeB) evolution, analyzing both the observations and Galactic chemical evolution models. Although it appears that [Be/H] versus [Fe/H] has a logarithmic slope near 1, it is rather the Be-O trend that directly arises from the physics of spallation production. Using new abundances for oxygen in halo stars based on UV OH lines, we find that in Population II stars for which O has been measured, the Be-O slope has a large uncertainty due to systematic effects. Namely, the Be-O logarithmic slope lies in the range 1.3 endash 1.8, rendering it difficult to distinguish from the data between the secondary slope of 2 and the primary slope of 1. The possible difference between the Be-Fe and Be-O slopes is a consequence of the variation in O/Fe versus Fe: recent data suggest that the best-fit O/Fe-Fe slope for Population II is in the range -0.5 to -0.2, rather than zero (i.e., Fe∝O) as is often assumed. In addition to this phenomenological analysis of Be and B evolution, we have also examined the predicted LiBeB, O, and Fe trends in Galactic chemical evolution models that include outflow. Based on our results, it is possible that a good fit to the LiBeB evolution requires only the traditional Galactic cosmic-ray spallation and the (primary) neutrino-process contribution to 11 B. We thus suggest that these two processes might be sufficient to explain 6 Li, Be, and B evolution in the Galaxy, without the need for an additional primary source of Be and B. However, the uncertainties in the data at this time prevent one from reaching a definitive

  6. Cosmic ray electrons and protons, and their antiparticles

    International Nuclear Information System (INIS)

    Boezio, Mirko

    2014-01-01

    Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1% of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics The status of the field will be reviewed, with a focus on these recent scientific results. (author)

  7. The distribution of cosmic rays in the galaxy and their dynamics as deduced from recent gamma ray observations. [noting maximum in toroidal region between 4 and 5 kpc from galactic center

    Science.gov (United States)

    Puget, J. L.; Stecker, F. W.

    1974-01-01

    Data from SAS-2 on the galactic gamma ray line flux as a function of longitude is examined. It is shown that the gamma ray emissivity varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement is accounted for in part by first-order Fermi acceleration, compression, and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy on the assumption that only an increased cosmic ray flux is responsible for the observed emission. Cosmic ray nucleons, cosmic ray electrons, and ionized hydrogen gas were found to have a strikingly similar distribution in the galaxy according to both the observational data and the theoretical model discussed.

  8. Cosmic ray-dark matter scattering: a new signature of (asymmetric) dark matter in the gamma ray sky

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ubaldi, Lorenzo

    2011-01-01

    We consider the process of scattering of Galactic cosmic-ray electrons and protons off of dark matter with the radiation of a final-state photon. This process provides a novel way to search for Galactic dark matter with gamma rays. We argue that for a generic weakly interacting massive particle, barring effects such as co-annihilation or a velocity-dependent cross section, the gamma-ray emission from cosmic-ray scattering off of dark matter is typically smaller than that from dark matter pair-annihilation. However, if dark matter particles cannot pair-annihilate, as is the case for example in asymmetric dark matter scenarios, cosmic-ray scattering with final state photon emission provides a unique window to detect a signal from dark matter with gamma rays. We estimate the expected flux level and its spectral features for a generic supersymmetric setup, and we also discuss dipolar and luminous dark matter. We show that in some cases the gamma-ray emission might be large enough to be detectable with the Fermi Large Area Telescope

  9. Effect of seeds of heavy charged particles of galactic cosmic radiation

    International Nuclear Information System (INIS)

    Maksimova, Y.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The yield of aberrant cells and its dependence on the exposure time and the site where particles hit the object were measured. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. A significant contribution of galactic cosmic radiation to the radiobiological effect is indicated. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed is established. The most sensitive target is the root meristem

  10. 2-D Modelling of Long Period Variations of Galactic Cosmic Ray Intensity

    International Nuclear Information System (INIS)

    Siluszyk, M; Iskra, K; Alania, M

    2015-01-01

    A new two-dimensional (2-D) time dependent model describing long-period variations of the Galactic Cosmic Ray (GCR) intensity has been developed. New approximations for the changes of the magnitude B of the Interplanetary Magnetic Field (IMF), the tilt angle δ of the Heliospheric Neutral Sheet (HNS) and drift effects of the GCR particles have been included into the model. Moreover, temporal changes of the exponent γ expressing the power law - rigidity dependence of the amplitudes of the 11-year variation of the GCR intensity have been added. We show that changes of the expected GCR particle density precedes changes of the GCR intensity measured by the Moscow Neutron (MN) monitor by about 18 months. So ∼18 months can be taken as an effective delay time between the expected intensity caused by the combined influence of the changes of the parameters implemented in the time-dependent 2-D model and the GCR intensity measured by neutron monitors during the 21 cycle of solar activity. (paper)

  11. LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations

    Science.gov (United States)

    Grimani, C.; Fabi, M.; Lobo, A.; Mateos, I.; Telloni, D.

    2015-02-01

    Metal free-floating test masses aboard the future interferometers devoted to gravitational wave detection in space are charged by galactic and solar cosmic rays with energies \\gt 100 MeV/n. This process represents one of the main sources of noise in the lowest frequency band (\\lt 10-3 Hz) of these experiments. We study here the charging of the LISA Pathfinder (LISA-PF) gold-platinum test masses due to galactic cosmic-ray (GCR) protons and helium nuclei with the Fluka Monte Carlo toolkit. Projections of the energy spectra of GCRs during the LISA-PF operations in 2015 are considered. This work was carried out on the basis of the solar activity level and solar polarity epoch expected for LISA-PF. The effects of GCR short-term variations are evaluated here for the first time. Classical Forbush decreases, GCR variations induced by the Sun rotation, and fluctuations in the LISA-PF frequency bandwidth are discussed.

  12. Annihilation physics of exotic galactic dark matter particles

    Science.gov (United States)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  13. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    International Nuclear Information System (INIS)

    Fang, Ke; Olinto, Angela V.; Kotera, Kumiko

    2013-01-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10 19 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ∼ E −1 ) due to pulsar spin down and a maximum energy E max ∼ Z 10 19 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10 16 and 10 18 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy

  14. Synthesis of ideas on cosmic ray origin and propagation

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    An attempt is made, based largely on ideas reported at this Advanced Studies Institute, to synthesise ideas which have been put forward on cosmic ray origin and propagation. The conclusions drawn are as follows. The bulk of cosmic rays detected at earth appear to be of Galactic origin, many probably having come from supernova remnants, at least at the lowest energies. Only above 10/sup 19/ eV does an extragalactic origin appear likely and here the VIRGO cluster at the centre of our Supercluster is a likely source. Although extragalactic cosmic rays are not present to a large extent their energy density could well be significant and the case is made for its being about 10/sup -4/ eV cm/sup -3/. Concerning the controversy about continuous or ''quick'' particle acceleration, it appears necessary to separate origin and acceleration. The interesting model put forward by Schlickeiser involving what might be called pseudo-continuous acceleration appears to require that the bulk of the particle acceleration occurs in a very large Galactic halo, the secondaries being produced only in the gas disk. Problems are likely, however, with the expected fluxes of X-rays and radio synchrotron radiation

  15. Effect of heavy charged particles of galactic cosmic radiation on seeds

    International Nuclear Information System (INIS)

    Maksimova, E.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The puppose of the experiments was to measure the yield of abberrant cells and its dependence on the exposure time and the site where particles hit the object. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. This is indicative of a significant contribution of galactic cosmic radiation to the radiobiological effect. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed was established. The most sensitive target was the root meristem

  16. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  17. Cosmic very high-energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Max-Planck-Institut fur Physik, Muenchen (Germany)

    1998-12-31

    The article gives a brief overview, aimed at nonspecialists, about the goals and selected recent results of the detection of very-high energy {gamma}-rays (energies above 100 GeV) with ground based detectors. The stress is on the physics questions, specially the origin of Galactic Cosmic Rays and the emission of TeV {gamma}-radiation from active galaxies. Moreover some particle-physics questions which are addressed in this area are discussed.

  18. Study of fossil tracks due to 50≤Z≤92 galactic cosmic ray nuclei in meteoritic crystals: Results and perspectives

    International Nuclear Information System (INIS)

    Perelygin, V.P.; Petrova, R.I.; Stetsenko, S.G.; Brandt, R.; Vater, P.; Rebetez, M.; Spohr, R.; Vetter, J.; Perron, C.

    1999-01-01

    A new approach to the problem of investigation of charge and energy spectra of ultra heavy Galactic cosmic ray nuclei, based on fossil track study of extraterrestrial olivine crystals has been developed. The results of an investigation of ultra heavy Galactic cosmic ray nuclei (Z=50-92) in meteoritic olivine crystals are presented. The technique was based on calibration of olivine crystals with accelerated Xe, Au, Pb and U ions and well-controlled partial annealing of 'fresh' and 'fossil' tracks. It allows us to determine the charge spectra and abundances of cosmic ray nuclei based on fossil track length study in meteoritic and Moon crystals. The comparative studies of the spectra of ''fossil' tracks and tracks due to 208 Pb and 238 U nuclei have shown that the group of 210 μm 'fossil' tracks, first observed in 1980 at JINR is due to Th-U nuclei-products of recent r-process nucleosyntesis in our Galaxy. The method in principle allows one to resolve Pt-Pb peaks in fossil tracks, to establish the upper limit of the abundance of Z>110 nuclei in the Galactic cosmic rays at the level ≤10 -3 to the abundance of actinide nuclei and to get information on the history of Z>50 cosmic ray nuclei in time interval up to 220 M.Y

  19. THE ORIGIN OF COSMIC RAYS: WHAT CAN GLAST SAY?

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Elliott

    2000-10-10

    Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter. It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.

  20. Cosmic Ray Mass Measurements with LOFAR

    Directory of Open Access Journals (Sweden)

    Buitink Stijn

    2017-01-01

    Full Text Available In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct Xmax by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on Xmax is smaller than 20 g/cm2. We present results of cosmic-ray mass analysis in the energy regime of 1017 - 1017.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays.

  1. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, David [Department of Physics, Ben-Gurion University, Be’er-Sheba 84105 (Israel)

    2017-06-10

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  2. Approximate supernova remnant dynamics with cosmic ray production

    Science.gov (United States)

    Voelk, H. J.; Drury, L. O.; Dorfi, E. A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  3. Approximate supernova remnant dynamics with cosmic ray production

    International Nuclear Information System (INIS)

    Voelk, H.J.; Drury, L.O.; Dorfi, E.A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probable sources of cosmic rays. Recent shock acceleration models treating the cosmic rays (CR's) as test particles nb a prescribed supernova remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the interstellar medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation

  4. Diffuse galactic continuum emission measured by COMPTEL and the cosmic-ray electron spectrum

    Science.gov (United States)

    Strong, A. W.; Diehl, R.; Schoenfelder, V.; Varendorff, M.; Youssefi, G.; Bloemen, H.; Hermsen, W.; De Vries, C.; Morris, D.; Stacy, J. G.

    1994-01-01

    Diffuse galactic continuum gamma-ray emission in the 0.75-30 MeV range from the inner Galaxy has been studied using data from COMPTEL on the Compton Gamma-Ray Observatory. Observations of the inner Galaxy from the Sky Survey have been used. The imaging properties of COMPTEL enable spatial analysis of the gamma-ray distribution using model fitting. A model based on atomic and molecular gas distributions in the Galaxy has been used to derive the emissivity spectrum of the gamma-ray emission and this spectrum is compared with theoretical estimates of bremsstrahlung emission from cosmic-ray electrons.

  5. Interpreting the cosmic ray composition

    Energy Technology Data Exchange (ETDEWEB)

    O' C Drury, L.; Ellisson, D.C; Meyer, J.-P

    2000-01-31

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model.

  6. Interpreting the cosmic ray composition

    International Nuclear Information System (INIS)

    O'C Drury, L.; Ellisson, D.C; Meyer, J.-P.

    2000-01-01

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model

  7. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.

    1991-02-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space

  8. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  9. Cosmic ray propagation with CRPropa 3

    International Nuclear Information System (INIS)

    Batista, R Alves; Evoli, C; Sigl, G; Van Vliet, A; Erdmann, M; Kuempel, D; Mueller, G; Walz, D; Kampert, K-H; Winchen, T

    2015-01-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 10 17 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python. (paper)

  10. Constraining heavy dark matter with cosmic-ray antiprotons

    Science.gov (United States)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael

    2018-04-01

    Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.

  11. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    International Nuclear Information System (INIS)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-01-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  12. A Novel Approach in the Weakly Interacting Massive Particle Quest: Cross-correlation of Gamma-Ray Anisotropies and Cosmic Shear

    Science.gov (United States)

    Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  13. A NOVEL APPROACH IN THE WEAKLY INTERACTING MASSIVE PARTICLE QUEST: CROSS-CORRELATION OF GAMMA-RAY ANISOTROPIES AND COSMIC SHEAR

    Energy Technology Data Exchange (ETDEWEB)

    Camera, Stefano [CENTRA, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Fornasa, Mattia [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Universita di Torino and INFN, Torino (Italy)

    2013-07-01

    Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.

  14. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; Bg, S. J. de Jong; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; Garcia, B.; Gaimez, D. Garcia; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Albarracin, F. Gomez; Berisso, M. Gomez; Herrero, R. Gomez; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalezc, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Hussain, M.; Larlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koanga, V. -H.; Krieger, A.; Kroemer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; LeBrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Lopez, R.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Aguera, A. Lopez; Bahilo, J. Lozano; Garcia, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Mancenido, M. E.; Mandatat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martinez, J.; Bravo, O. Martinez; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Roverok, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdes; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The

  15. The galactic center GeV excess from a series of leptonic cosmic-ray outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Evoli, Carmelo [Univ. Hamburg, Hamburg (Germany); Calore, Francesca [Univ. of Amsterdam, Amsterdam (Netherlands); Linden, Tim [Univ. of Chicago, Chicago, IL (United States); Weniger, Christoph [Univ. of Amsterdam, Amsterdam (Netherlands); Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)

    2015-06-16

    It has been proposed that a recent outburst of cosmic-ray electrons could account for the excess of GeV-scale gamma rays observed from the region surrounding the Galactic Center. After studying this possibility in some detail, we identify scenarios in which a series of leptonic cosmic-ray outbursts could plausibly generate the observed excess. The morphology of the emission observed outside of ~1° – 2° from the Galactic Center can be accommodated with two outbursts, one which took place approximately ~106 years ago, and another (injecting only about 10% as much energy as the first) about ~105 years ago. The emission observed from the innermost ~1° – 2° requires one or more additional recent outbursts and/or a contribution from a centrally concentrated population of unresolved millisecond pulsars. Furthermore, in order to produce a spectrum that is compatible with the measured excess (whose shape is approximately uniform over the region of the excess), the electrons from the older outburst must be injected with significantly greater average energy than those injected more recently, enabling their spectra to be similar after ~106 years of energy losses.

  16. Observation of galactic cosmic ray spallation events from the SoHO mission 20-Year operation of LASCO

    Science.gov (United States)

    Koutchmy, S.; Tavabi, E.; Urtado, O.

    2018-05-01

    A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.

  17. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  18. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  19. ANOMALOUS TRANSPORT OF HIGH-ENERGY COSMIC RAYS IN GALACTIC SUPERBUBBLES. I. NUMERICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Barghouty, A. F.; Schnee, D. A.

    2012-01-01

    We present a simple continuous-time random-walk model for the transport of energetic particles accelerated by a collection of supernova explosions in a galactic superbubble, developed to simulate and highlight signatures of anomalous transport on the particles' evolution and their spectra in a multi-shock context. We assume standard diffusive shock acceleration (DSA) theory for each shock encounter. The superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. The model is based on two coupled stochastic differential equations and is applied for protons and alpha particles. Using characteristic values for a typical bubble, our simulations suggest that acceleration and transport in the bubble may be sub-diffusive. In addition, a spectral break in the particles' evolution and spectra is evident located at ≈10 15 eV for protons and ≈3 × 10 15 eV for alphas. Our simulations are consistent with a bubble's mean magnetic field strength of ≈1 μG and a shock separation distance ∼0.1 × the characteristic radius of the bubble. The simulations imply that the diffusion coefficient (for the elementary shock acceleration process) is ∼ 27 cm 2 s –1 at 1 GeV/c. While the sub-diffusive transport is readily attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high-energy cosmic rays in galactic superbubbles.

  20. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    Science.gov (United States)

    Roelof, E. C.; Decker, R. B.; Krimigis, S. M.; Venkatesan, D.; Lazarus, A. J.

    1982-01-01

    The present investigation represents a summary of a comprehensive analysis of the same subject conducted by Roelof et al. (1981). It is pointed out that the tandem earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP 7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Attention is given to the method of data analysis, and the separation of field-aligned and latitudinal gradients. It is found that latitudinal gradients approximately equal to or greater than 1 percent per deg in the cosmic ray intensity were a common feature of the interplanetary medium between 1 and 5 AU in 1977-78. Except in the most disturbed periods, cosmic ray intensities are well-ordered in field-aligned structures.

  1. Prediction of galactic cosmic ray intensity variation for a few (up to 10-12 years ahead on the basis of convection-diffusion and drift model

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We determine the dimension of the Heliosphere (modulation region, radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR long-term variation, depending on particle energy, the level of solar activity (SA and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expected SA variation in the near future and prediction of next future SA cycle, we may make a prediction of the expected in the near future long-term cosmic ray intensity variation. We show that by this method we may make a prediction of the expected in the near future (up to 10-12 years, and may be more, in dependence for what period can be made definite prediction of SA galactic cosmic ray intensity variation in the interplanetary space on different distances from the Sun, in the Earth's magnetosphere, and in the atmosphere at different altitudes and latitudes.

  2. Solar flare and galactic cosmic ray tracks in lunar samples and meteorites - What they tell us about the ancient sun

    International Nuclear Information System (INIS)

    Crozaz, G.

    1980-01-01

    Evidence regarding the past activity of the sun in the form of nuclear particle tracks in lunar samples and meteorites produced by heavy ions in galactic cosmic rays and solar flares is reviewed. Observations of track-rich grains found in deep lunar cores and meteorite interiors are discussed which demonstrate the presence of solar flare activity for at least the past 4 billion years, and the similarity of track density profiles from various lunar and meteoritic samples with those in a glass filter from Surveyor 3 exposed at the lunar surface for almost three years is presented as evidence of the relative constancy of the solar flare energy spectrum over the same period. Indications of a heavy ion enrichment in solar flares are considered which are confirmed by recent satellite measurements, although difficult to quantify in lunar soil grains. Finally, it is argued that, despite previous claims, there exists as yet no conclusive evidence for either a higher solar activity during the early history of the moon or a change in galactic cosmic ray intensity, average composition or spectrum over the last 50 million years

  3. GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, A. C.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Heikkila, B. C.; Lal, N. [Goddard Space Flight Center. Greenbelt, MD 20771 (United States); Webber, W. R. [New Mexico State University, Las Cruces, NM 88003 (United States); Jóhannesson, G. [University of Iceland, Reykjavik (Iceland); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [HEPL and KIPAC, Stanford University, Stanford, CA 94305 (United States)

    2016-11-01

    Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellar gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

  4. Cosmic ray and gamma astrophysics with the AMS-02 experiment

    International Nuclear Information System (INIS)

    Natale, Sonia

    2006-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to operate on the International Space Station (ISS) for a minimum period of three years. The aim of AMS is the direct detection of charged particles in the rigidity range from 0.5 GV to few TV to perform high statistics studies of cosmic rays in space and a search for antimatter and dark matter. AMS will provide precise gamma measurements in the GeV range. In addition, the good angular resolution and identification capabilities of the detector will allow clean studies of galactic and extra-galactic sources, the diffuse gamma background and gamma ray bursts

  5. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  6. Propagation of cosmic rays in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Putze, Antje

    2006-06-01

    Cosmic rays are composed of charged particles, which arrive after a long travel through the Galaxy on Earth. Supernova explosions are considered to be galactic sources, which accelerate these particles up to energies around 10 18 eV. Beyond this energy, one supposes that the extragalactic sources, like active galaxy nuclei (AGN), gamma ray bursts or pulsars, are the origin of the ultra high energy cosmic rays. The spectral index of the elemental energy distributions of cosmic rays reflects the dynamic of its propagation, particularly the conjugation of the effects connected to the cosmic ray source spectrum and those connected to its propagation (acceleration, absorption and escape). The evolution of the spectral index with the cosmic-ray particle energy constitutes a sensitive test of the components, which determine this evolution. The precise index measurement of individual elemental spectra of the cosmic rays by AMS up to TeV and by the experiment CREAM beyond it, from TeV to PeV, will permit to proceed in this problematic. One of the difficulties on this measurement is to take well into account the systematic errors. During the data analysis we have to take into account in particular the interaction (diffusion and fragmentation) of the ions while their travel through the Earth's atmosphere. The study of the interaction and the fragmentation of these ions in the atmosphere is hence indispensable and described in this work. The study is based on a matrix calculation, which had been successfully implemented and tested and which has permitted to analyse the effects, caused by the experimental uncertainties on the cross sections, on the spectral index measurement. (author)

  7. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    Science.gov (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  8. Cosmic-ray-produced stable nuclides: various production rates and their implications

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1981-01-01

    The rates for a number of reactions producing certain stable nuclides, such as 3 He and 4 He, and fission in the moon are calculated for galactic-cosmic-ray particles and for solar protons. Solar-proton-induced reactions with bromine usually are not an important source of cosmogenic Kr isotopes. The 130 Ba(n,p) reaction cannot account for the undercalculation of 130 Xe production rates. Calculated production rates of 15 N, 13 C, and 2 H agree fairly well with rates inferred from measured excesses of these isotopes in samples with long exposure ages. Cosmic-ray-induced fission of U and Th can produce significant amounts of fission tracks and of 86 Kr, 134 Xe, and 136 Xe, especially in samples with long exposures to cosmic-ray particles

  9. Evolution of the Deep-space Galactic Cosmic Ray Lineal Energy Transfer Spectrum through Tissue Equivalent Plastic

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Spence, H. E.; Golightly, M. J.; Schwadron, N. A.; Mazur, J. E.; Blake, J. B.; Looper, M. D.; Townsend, L.; Zeitlin, C. J.

    2011-12-01

    The Cosmic Ray Telescope for the Effects of Radiation is an energetic particle telescope that resides on the Lunar Reconnaissance Orbiter spacecraft, currently in a 50 km circular lunar polar orbit. The telescope consists of 6 silicon semi-conductor detectors placed in pairs that surround two pieces of Tissue Equivalent Plastic (TEP), which serve to absorb energy from particles as they transit through the instrument. Particles with energies greater than 12 MeV/nucleon can penetrate the outermost shield and be measured by the instrument. The primary measurement made by the instrument is of the Linear Energy Transfer (LET) of energetic particles as they transit through the telescope. CRaTER measures the LET spectrum with unprecedented energy resolution and has done so during a period of historically low solar activity that led to record high intensities of Galactic Cosmic Rays (GCR). These LET spectra are used to study changes in the properties of the incoming particles, and to make detailed measurements of the radiation doses human explorers will experience in deep space on missions to the moon, to asteroids, or to Mars. We present LET spectra accumulated during 2009 and 2010. We show how the LET spectrum evolves through the instrument as the GCR interact with the TEP. Due to the importance of these measurements for human effects, our extensive absolute calibration procedures are presented. Of particular note is a significant reduction in the flux of particles with LET greater than 10 keV/um for detectors that lie deeper within the telescope stack, due to the attenuation of high LET particles within the TEP. By measuring this attenuation we can estimate the depth in human tissue where the highest LET particles that are most likely to cause genetic damage pose the greatest threat to humans in space.

  10. Structure formation cosmic rays: Identifying observational constraints

    Directory of Open Access Journals (Sweden)

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  11. Latitude survey investigation of galactic cosmic ray solar modulation during 1994-2007

    Energy Technology Data Exchange (ETDEWEB)

    Nuntiyakul, W.; Ruffolo, D.; Sáiz, A. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Evenson, P.; Bieber, J. W.; Clem, J.; Pyle, R. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Duldig, M. L.; Humble, J. E., E-mail: w.nuntiyakul@gmail.com, E-mail: david.ruf@mahidol.ac.th, E-mail: alejandro.sai@mahidol.ac.th, E-mail: evenson@udel.edu, E-mail: jwbieber@bartol.udel.edu, E-mail: clem@bartol.udel.edu, E-mail: pyle@bartol.udel.edu, E-mail: John.Humble@utas.edu.au, E-mail: Marc.Duldig@utas.edu.au [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-11-01

    The Galactic cosmic ray spectrum exhibits subtle variations over the 22 yr solar magnetic cycle in addition to the more dramatic variations over the 11 yr sunspot cycle. Neutron monitors are large ground-based detectors that provide accurate measurements of variations in the cosmic ray flux at the top of the atmosphere above the detector. At any given location the magnetic field of the Earth excludes particles below a well-defined rigidity (momentum per unit charge) known as the cutoff rigidity, which can be accurately calculated using detailed models of the geomagnetic field. By carrying a neutron monitor to different locations, e.g., on a ship, the Earth itself serves as a magnet spectrometer. By repeating such latitude surveys with identical equipment, a sensitive measurement of changes in the spectrum can be made. In this work, we analyze data from the 1994 through 2007 series of latitude surveys conducted by the Bartol Research Institute, the University of Tasmania, and the Australian Antarctic Division. We confirm the curious 'crossover' in spectra measured near solar minima during epochs of opposite solar magnetic polarity, and show that it is directly related to a sudden change in the spectral behavior of solar modulation at the time of the polarity reversal, as revealed from contemporaneous variations in the survey data and a fixed station. We suggest that the spectral change and crossover result from the interaction of effects due to gradient/curvature drifts with a systematic change in the interplanetary diffusion coefficient caused by turbulent magnetic helicity.

  12. The long-term variability of cosmic ray protons in the heliosphere: A modeling approach

    Directory of Open Access Journals (Sweden)

    M.S. Potgieter

    2013-05-01

    Full Text Available Galactic cosmic rays are charged particles created in our galaxy and beyond. They propagate through interstellar space to eventually reach the heliosphere and Earth. Their transport in the heliosphere is subjected to four modulation processes: diffusion, convection, adiabatic energy changes and particle drifts. Time-dependent changes, caused by solar activity which varies from minimum to maximum every ∼11 years, are reflected in cosmic ray observations at and near Earth and along spacecraft trajectories. Using a time-dependent compound numerical model, the time variation of cosmic ray protons in the heliosphere is studied. It is shown that the modeling approach is successful and can be used to study long-term modulation cycles.

  13. Drift effects on the galactic cosmic ray modulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurenza, M.; Storini, M. [INAF/IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Vecchio, A. [Istituto Nazionale di Geofisica e Vulcanologia-Sede di Cosenza, I-87036 Rende (CS) (Italy); Carbone, V., E-mail: monica.laurenza@iaps.inaf.it [Dipartimento di Fisica, Università della Calabria, I-87036 Rende (CS) (Italy)

    2014-02-01

    Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effects on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.

  14. Cosmic-ray-modified stellar winds. III. A numerical iterative approach

    International Nuclear Information System (INIS)

    Ko, C.M.; Jokipii, J.R.; Webb, G.M.

    1988-01-01

    A numerical iterative method is used to determine the modification of a stellar wind flow with a termination shock by the galactic cosmic rays. A two-fluid model consisting of cosmic rays and thermal stellar wind gas is used in which the cosmic rays are coupled to the background flow via scattering with magnetohydrodynamic waves or irregularities. A polytropic model is used to describe the thermal stellar wind gas, and the cosmic-rays are modeled as a hot, low-density gas with negligible mass flux. The positive galactic cosmic-ray pressure gradient serves to brake the outflowing stellar wind gas, and the cosmic rays modify the location of the critical point of the wind, the location of the shock, the wind fluid velocity profile, and the thermal gas entropy constants on both sides of the shock. The transfer of energy to the cosmic rays results in an outward radial flux of cosmic-ray energy. 21 references

  15. Cosmic rays and stochastic magnetic reconnection in the heliotail

    Directory of Open Access Journals (Sweden)

    P. Desiati

    2012-06-01

    Full Text Available Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.

  16. Recent findings about the galactic gamma-ray sky by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Strzys, Marcel C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The TeV sky currently consists of around 150 sources, about half of them situated within our galaxy. This group comprises various types of cosmic accelerators such as supernova remnants, pulsars, pulsar wind nebula, and binaries. From what we have observed in gamma rays so far, these sources can accelerate particles up to several hundred TeV. In this talk I will present recent results from the observation of galactic gamma-ray sources by MAGIC. This includes, among others, latest findings about the brightest, galactic gamma-ray source in the sky, the Crab nebula, results about one of the rare binary systems at TeV energies, insights into a not yet identified enigmatic source, and the discovery of the, so far, faintest PWN.

  17. Signatures of cosmic-ray interactions on the solar surface

    Science.gov (United States)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  18. New look on the origin of cosmic rays

    Directory of Open Access Journals (Sweden)

    Istomin Ya.N.

    2017-01-01

    Full Text Available From the analysis of the flux of high energy particles, E > 3 · 1018 eV, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, q̅(E ∝ E−2.7, with the same index of 2.7 that has the distribution of Galactic cosmic rays before the so called ‘knee', E 3 · 1015 eV, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, D∝E0.7. The obtained index of the density distribution of particles over energy, N(E∝E−2.7−0.7/2=E−3.05, for E > 3 · 1015 eV agrees well with the observed one, N(E∝E−3.1. The estimated time of the termination of the jet in the Galaxy is 4.2 · 104 years ago.

  19. Propagation of cosmic rays in the Earth's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Putze, Antje [LPSC-CNRS-IN2P3, 53, avenue des Martyrs, 38021 Grenoble cedex (France)

    2006-06-15

    Cosmic rays are composed of charged particles, which arrive after a long travel through the Galaxy on Earth. Supernova explosions are considered to be galactic sources, which accelerate these particles up to energies around 10{sup 18} eV. Beyond this energy, one supposes that the extragalactic sources, like active galaxy nuclei (AGN), gamma ray bursts or pulsars, are the origin of the ultra high energy cosmic rays. The spectral index of the elemental energy distributions of cosmic rays reflects the dynamic of its propagation, particularly the conjugation of the effects connected to the cosmic ray source spectrum and those connected to its propagation (acceleration, absorption and escape). The evolution of the spectral index with the cosmic-ray particle energy constitutes a sensitive test of the components, which determine this evolution. The precise index measurement of individual elemental spectra of the cosmic rays by AMS up to TeV and by the experiment CREAM beyond it, from TeV to PeV, will permit to proceed in this problematic. One of the difficulties on this measurement is to take well into account the systematic errors. During the data analysis we have to take into account in particular the interaction (diffusion and fragmentation) of the ions while their travel through the Earth's atmosphere. The study of the interaction and the fragmentation of these ions in the atmosphere is hence indispensable and described in this work. The study is based on a matrix calculation, which had been successfully implemented and tested and which has permitted to analyse the effects, caused by the experimental uncertainties on the cross sections, on the spectral index measurement. (author)

  20. Modeling of Cosmic-Ray Propagation and Galactic Diffuse Gamma-Ray Emission in Support of Current and Future NASA Missions, Phase 3

    Science.gov (United States)

    Moskalenko, Igor

    This is a "Phase 3" successor proposal that is a continuation of work funded by the Astrophysics Research and Analysis (APRA) Program through the sub-topic "Particle Astrophysics": Considerable advances in astrophysics of cosmic rays in recent years have become possible due to superior instrumentation launched into space and to the top of the atmosphere. The ACE-CRIS, AMS-02, Fermi-LAT, HAWC, PAMELA, SuperTIGER, Voyager 1,2, WMAP, and many other missions made a lot of breakthroughs and more is expected in the following years. Other high-expectations missions are recently launched (CALET) or are awaiting for launch (ISS-CREAM). The claimed precision of the AMS- 02 data reaches 1-3%. Taking full advantage of the high quality data requires numerical models of comparable accuracy. The current state-of-the-art cosmic ray propagation model is GALPROP, which has become a standard analysis tool in astrophysics of cosmic rays, studies of the diffuse emissions, and related fields. It provides a unified framework for the interpretation of data collected by many different kinds of experiments and emphasizes the inter-relationship between different types of data. We are proposing considerable improvements of the GALPROP model and tool that include generalization of the description of the components of the Galactic interstellar medium to the full 3D and extensive application of the Bayesian tools in building such data-sets, development of a heliospheric propagation tool fully compatible with GALPROP, development of a reliable diffuse emission model in the keV-TeV energy range, generalization of the nuclear reaction network and cross section routines to include trans-iron nuclides, improvements in the description of the production of secondary particles in cosmic ray interactions, various speed and memory optimizations. We will continue to support a dedicated website which hosts GALPROP WebRun, a user-friendly interface for running the GALPROP code on a dedicated cluster

  1. Theoretical galactic cosmic ray electron spectrum obtained for sources of varying geometry

    International Nuclear Information System (INIS)

    Cohen, M.E.

    1969-01-01

    Jokipii and Meyer have recently obtained an electron density energy spectrum of the cosmic rays, originating in the Galaxy, using integral solutions of the steady state transfer equations, by considering a circular cylindric galactic disc as source and approximating the resulting fourth order integral. In this report, we present general results, obtained by using an arbitrary circular cylindric source, without restricting ourselves to the galactic disc. The integrals are treated exactly. The conclusions of Jokipii and Meyer form special cases of these results. We also obtain an exponential energy variation which, at the moment, is not observed experimentally. The second part of this work deals with more complicated, but perhaps more realistic models of elliptic cylindric and ellipsoidal galactic disc sources. One may also note that a very large source concentrated in a very small region gives a spectrum not unlike that for a small source distributed throughout a large volume. Finally, it may be remarked that the model adopted is much less restrictive than the artificial conception of 'leakage time' followed by other workers. (author) [fr

  2. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  3. High Energy Galactic Cosmic Rays Observed by RUNJOB Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hareyama, Makoto [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2006-03-21

    Galactic cosmic rays (GCRs) from proton to iron with the energy of 10{sup 13} - 10{sup 15} eV were observed by RUssia-Nippon JOint Balloon (RUNJOB) experiments. Each energy spectrum of the primary nuclear components except for helium is in agreement with the results obtained by other observations in the same energy region as the RUNJOB observation within statistical errors, while the intensity of the helium component is nearly half that obtained by the JACEE and the SOKOL observations. The spectrum slopes seem to be almost parallel or become gradually harder as mass becomes heavier. The power indices of the spectra are nearly -2.75 in the energy range of 20-500 TeV/nucleous. These our results support the acceleration mechanism and the propagation process in Galaxy of GCRs depend on its rigidity.

  4. Production of NO by galactic cosmic rays and lightning

    International Nuclear Information System (INIS)

    Grant, K.E.; Wuebbles, D.J.

    1987-07-01

    As part of the ongoing development of the LLNL 2-D Stratospheric Transport-Kinetics Model, values for NO production rates due to galactic cosmic rays (GCRs) and lightning have been calculated. With the combined NO production rates from GCRs and lightning included in the LLNL 2-D model, we compared our predicted NO/sub y/ mixing ratios with those from LIMS (Limb Infrared Monitor of the Stratosphere) data and other models. Although our predicted NO/sub y/ mixing ratios are lower than the LIMS data at 16 mb and 30 mb, our values at these pressures are generally higher and in better agreement with LIMS than are the corresponding mixing ratios from other models. Further research is needed on the sensitivity of these results to changes in model transport processes. 12 refs., 1 fig., 5 tabs

  5. Particle and astrophysics aspects of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Sigl, G.

    2001-01-01

    The origin of cosmic rays is one of the major unresolved astrophysical questions. In particular, the highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the Universe. Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the Standard Model and processes taking place at the earliest moments of our Universe. Furthermore, many new experimental activities promise a strong increase of statistics at the highest energies and a combination with γ-ray and neutrino astrophysics will put strong constraints on these theoretical models. Detailed Monte Carlo simulations indicate that charged ultra-high energy cosmic rays can also be used as probes of large scale magnetic fields whose origin may open another window into the very early Universe. We give an overview over this quickly evolving research field. (author)

  6. Particle and astrophysics aspects of ultrahigh energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Sigl, G [Institut d' Astrophysique de Paris, Paris (France)

    2001-11-15

    The origin of cosmic rays is one of the major unresolved astrophysical questions. In particular, the highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the Universe. Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the Standard Model and processes taking place at the earliest moments of our Universe. Furthermore, many new experimental activities promise a strong increase of statistics at the highest energies and a combination with {gamma}-ray and neutrino astrophysics will put strong constraints on these theoretical models. Detailed Monte Carlo simulations indicate that charged ultra-high energy cosmic rays can also be used as probes of large scale magnetic fields whose origin may open another window into the very early Universe. We give an overview over this quickly evolving research field. (author)

  7. Simulation of cosmic ray interaction at Saturne

    International Nuclear Information System (INIS)

    Michel, R.

    1996-01-01

    Accelerator experiments provide the basis for the development of physical models describing the production of cosmogenic nuclides by cosmic ray particles. Here, experiments are presented by which the irradiation of stony and iron meteoroids in space by galactic cosmic ray protons was successfully simulated; two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at LNS. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements in which the depth-dependent production of radioactive and stable nuclides was analyzed by model calculations based on depth-dependent spectra of primary and secondary particles calculated by the HERMES code system and on experimental and theoretical thin-target cross sections. Due to the results of the two simulation experiments at LNS a consistent modelling of cosmogenic nuclide production rates in stony and iron meteorites was achieved for the first time which allows to interpret the observed abundances of cosmogenic nuclides in stony and iron meteorites with respect to their exposure histories and to describe the history of the cosmic radiation itself. (author)

  8. Interplanetary cosmic-ray scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Toptygin, I N; Vasiliev, V N [Kalininskij Sel' skokhozyajstvennyj Inst. (USSR)

    1977-05-01

    The equation for the two-particles cosmic-ray distribution function is derived by means of the Boltzmann kinetic equation averaging. This equation is valid for arbitrary ratio of regular and random parts of the magnetic field. For small energy particles the guiding-center approximation is used. On the basis of the derived equation the dependence between power spectra of cosmic-ray intensity and random magnetic field is obtained. If power spectra are degree functions for high energy particles (approximately 10 GeV nucleon/sup -1/), then the spectral exponent ..gamma.. of magnetic field lies between rho and rho-2, where rho is the spectral exponent of cosmic-ray power spectra. The experimental data concerning moderate energy particles are in accordance with ..gamma..=rho, which demonstrates that the magnetic fluctuations are isotropic or cosmic-ray space gradient is small near the Earth orbit.

  9. Cosmic-ray interactions and dating of meteorite stranding surfaces with cosmogenic nuclides

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1988-01-01

    A wide variety of products from cosmic-ray interactions have been measured in terrestrial or extraterrestrial samples. These ''cosmogenic'' products include radiation damage tracks and rare nuclides that are made by nuclear reactions. They often have been used to determine the fluxes and composition of cosmic-ray particles in the past, but they are usually used to study the history of the ''target'' (such as the time period that it was exposed to cosmic-ray particles). Products made by both the high-energy galactic cosmic rays and energetic particles emitted irregularly from the Sun have been extensively studied. Some of these cosmogenic products, especially nuclides, have been or can be applied to studies of Antarctic meteorite stranding surfaces, the ice surfaces in Antarctica where meteorites have been found. Cosmogenic nuclides studied in samples from Antarctica and reported by others elsewhere in this volume include those in meteorites, especially radionuclides used to determine terrestrial ages, and those made in situ in terrestrial rocks. Cosmogenic nuclides made in the Earth's atmosphere or brought in with cosmic dust have also been studied in polar ice, and it should also be possible to measure nuclides made in situ in ice. As an introduction to cosmogenic nuclides and their applications, cosmic rays and their interactions will be presented below and production systematics of cosmogenic nuclides in these various media will be discussed later. 20 refs., 2 tabs

  10. Cosmic-ray interactions and dating of meteorite stranding surfaces with cosmogenic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, R.C.

    1988-01-01

    A wide variety of products from cosmic-ray interactions have been measured in terrestrial or extraterrestrial samples. These ''cosmogenic'' products include radiation damage tracks and rare nuclides that are made by nuclear reactions. They often have been used to determine the fluxes and composition of cosmic-ray particles in the past, but they are usually used to study the history of the ''target'' (such as the time period that it was exposed to cosmic-ray particles). Products made by both the high-energy galactic cosmic rays and energetic particles emitted irregularly from the Sun have been extensively studied. Some of these cosmogenic products, especially nuclides, have been or can be applied to studies of Antarctic meteorite stranding surfaces, the ice surfaces in Antarctica where meteorites have been found. Cosmogenic nuclides studied in samples from Antarctica and reported by others elsewhere in this volume include those in meteorites, especially radionuclides used to determine terrestrial ages, and those made in situ in terrestrial rocks. Cosmogenic nuclides made in the Earth's atmosphere or brought in with cosmic dust have also been studied in polar ice, and it should also be possible to measure nuclides made in situ in ice. As an introduction to cosmogenic nuclides and their applications, cosmic rays and their interactions will be presented below and production systematics of cosmogenic nuclides in these various media will be discussed later. 20 refs., 2 tabs.

  11. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  12. Constraining sources of ultrahigh energy cosmic rays and shear acceleration mechanism of particles in relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruoyu

    2015-06-10

    Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.

  13. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime [Department de Fisica de PartIculas, University de Santiago de Compostela, 15782 Santiago, SPAIN (Spain); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2006-10-15

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 10{sup 18} to 10{sup 19}eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  14. Energy spectra and charge composition of galactic cosmic rays measured in ATIC-2 experiment

    International Nuclear Information System (INIS)

    Zatsepin, V.I.; Bat'kov, K.E.; Bashindzhagyan, G.L.

    2004-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon experiment is intended for measuring the energy spectra of the galactic cosmic rays with the individual resolution by the charge from protons to iron within the energy range from 50 GeV up to 100 TeV. The silicon detector matrix, making it possible to solve on the inverse current by means of the detector charge high segmentation, was applied for the first time in the high-energy cosmic rays for the charge measurement. The ATIC completed two successful flights in the Antarctica since 28.12.2000 up to 13.01.2001 (the ATIC-1 test flight) and since 29.12.2002 up to 18.01.2003 (the ATIC-2 scientific flight). The current state of the analysis of the spectra, measured in the ATIC-2 scientific flight, are presented in this work and the obtained results are compared with the model forecasts results [ru

  15. Cosmic ray muons and their associated shower particles underwater

    International Nuclear Information System (INIS)

    Anderson, S.N.

    1978-01-01

    The nucleonic contamination of the underwater cosmic ray muon flux is studied as a function of depth. Stacks of Ilford G-5 photographic emulsions were assembled and processed in an underground laboratory (9 hg/cm 2 below sea level). In between the assembly and the development they were exposed, stored in small pressure chambers, at various depths underwater for periods of time up to six months. At each depth approximately 10 cm 3 of emulsion were scanned for stopping particles and nuclear disintegrations. Altogether approximately 2000 stopping muons, 50 stopping mesons, and 200 recoil protons were found and analyzed. Comparison with theories as to how the underground cosmic ray muon beam produces a secondary flux of nuclearly active particles are made. Additionally measurements on the residue flux at 440mwe underground are made. Projected rates from the shallow depth studies are used to analyze the results at large depth. Anomalous particle production is observed at the large depth

  16. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    origin of the soft Galactic gamma-ray continuum through inverse bremsstrahlung. A flux of low-energy cosmic rays strong enough to produce the observed spectrum of gamma-rays implies substantial gamma-ray emission at a few MeV through nuclear de-excitation. It is shown that the existing limits on excess 3......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  17. Cosmological cosmic rays: Sharpening the primordial lithium problem

    International Nuclear Information System (INIS)

    Prodanovic, Tijana; Fields, Brian D.

    2007-01-01

    Cosmic structure formation leads to large-scale shocked baryonic flows which are expected to produce a cosmological population of structure-formation cosmic rays (SFCRs). Interactions between SFCRs and ambient baryons will produce lithium isotopes via α+α→ 6,7 Li. This pre-galactic (but nonprimordial) lithium should contribute to the primordial 7 Li measured in halo stars and must be subtracted in order to arrive to the true observed primordial lithium abundance. In this paper we point out that the recent halo star 6 Li measurements can be used to place a strong constraint to the level of such contamination, because the exclusive astrophysical production of 6 Li is from cosmic-ray interactions. We find that the putative 6 Li plateau, if due to pre-galactic cosmic-ray interactions, implies that SFCR-produced lithium represents Li SFCR /Li plateau ≅15% of the observed elemental Li plateau. Taking the remaining plateau Li to be cosmological 7 Li, we find a revised (and slightly worsened) discrepancy between the Li observations and big bang nucleosynthesis predictions by a factor of 7 Li BBN / 7 Li plateau ≅3.7. Moreover, SFCRs would also contribute to the extragalactic gamma-ray background (EGRB) through neutral pion production. This gamma-ray production is tightly related to the amount of lithium produced by the same cosmic rays; the 6 Li plateau limits the pre-galactic (high-redshift) SFCR contribution to be at the level of I γ π SFCR /I EGRB < or approx. 5% of the currently observed EGRB

  18. Cosmic ray physics goes to school

    CERN Multimedia

    2002-01-01

    With the help of a CERN physicist, German Schools bring the Largest Cosmic Ray Detector in Europe one step closer to reality   Eric Berthier and Robert Porret (CERN, ST/HM), Frej Torp and Christian Antfolk from the Polytechnics Arcada in Finland, and Karsten Eggert, physicist at CERN who initiated this project, during the installation of cosmic ray detectors in the Pays de Gex, at point 4. Niina Patrikainen and Frej Torp, Finnish students from Rovaniemi and Arcada Polytechnics, installing cosmic ray counters at the Fachhochschule in Duesseldorf. The science of cosmic ray detection is growing, literally. Cosmic rays, energetic particles from space, strike our planet all the time. They collide with the air molecules in our upper atmosphere and initiate large showers of elementary particles (mainly electrons, photons, hadrons and muons) which rain down upon the earth. The shower size and the particle density in the showers reflect the initial energy of the cosmic ray particle, a detail which makes d...

  19. Interaction of clouds with the hot interstellar medium (HIM) and cosmic rays

    International Nuclear Information System (INIS)

    Voelk, H.J.

    1983-01-01

    The modification, by cosmic rays, of the interaction of interstellar clouds with the ambient HIM is considered. Small clouds should still evaporate and thereby exclude cosmic rays if they do so without cosmic rays. The possible mass accretion of massice clouds is reduced by the pressure of the compressed cosmic rays. The consequences for diffuse galactic #betta#-ray emisison are discussed. (orig.)

  20. The galactic magnetic field and propagation of ultrahigh energy cosmic rays

    Czech Academy of Sciences Publication Activity Database

    Prouza, Michael; Šmída, Radomír

    2003-01-01

    Roč. 410, - (2003), s. 1-10 ISSN 0004-6361 R&D Projects: GA AV ČR IAA1010928; GA MŠk LN00A006; GA MŠk LA 134 Institutional research plan: CEZ:AV0Z1010920 Keywords : cosmic rays * magnetic fields * Galaxy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.843, year: 2003

  1. On the age distribution of galactic cosmic rays

    International Nuclear Information System (INIS)

    Owens, A.J.

    1975-01-01

    I consider the general solution for the distribution of ages for primary cosmic rays for a class of steady-state, bounded models of cosmic-ray diffusion in the galaxy. Both one dimensional and three-dimensional models are considered, with point sources and distributed sources. In all models, the age distribution is approximately exponential for ages longer than the average age, although for shorter ages the distribution depends on the details of the model. (orig.) [de

  2. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  3. MODULATION OF GALACTIC COSMIC RAY PROTONS AND ELECTRONS DURING AN UNUSUAL SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Heber, B.; Kopp, A.; Gieseler, J.; Mueller-Mellin, R.; Fichtner, H.; Scherer, K.; Potgieter, M. S.; Ferreira, S. E. S.

    2009-01-01

    During the latest Ulysses out-of-ecliptic orbit the solar wind density, pressure, and magnetic field strength have been the lowest ever observed in the history of space exploration. Since cosmic ray particles respond to the heliospheric magnetic field in the expanding solar wind and its turbulence, the weak heliospheric magnetic field as well as the low plasma density and pressure are expected to cause the smallest modulation since the 1970s. In contrast to this expectation, the galactic cosmic ray (GCR) proton flux at 2.5 GV measured by Ulysses in 2008 does not exceed the one observed in the 1990s significantly, while the 2.5 GV GCR electron intensity exceeds the one measured during the 1990s by 30%-40%. At true solar minimum conditions, however, the intensities of both electrons and protons are expected to be the same. In contrast to the 1987 solar minimum, the tilt angle of the solar magnetic field has remained at about 30 deg. in 2008. In order to compare the Ulysses measurements during the 2000 solar magnetic epoch with those obtained 20 years ago, the former have been corrected for the spacecraft trajectory using latitudinal gradients of 0.25% deg. -1 and 0.19% deg. -1 for protons and electrons, respectively, and a radial gradient of 3% AU -1 . In 2008 and 1987, solar activity, as indicated by the sunspot number, was low. Thus, our observations confirm the prediction of modulation models that current sheet and gradient drifts prevent the GCR flux to rise to typical solar minimum values. In addition, measurements of electrons and protons allow us to predict that the 2.5 GV GCR proton intensity will increase by a factor of 1.3 if the tilt angle reaches values below 10 deg.

  4. Multi-spectra Cosmic Ray Flux Measurement

    Science.gov (United States)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  5. Closing CMS to hunt cosmic rays

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  6. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    Science.gov (United States)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; hide

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  7. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  8. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Blandford, Roger D.; /KIPAC, Menlo Park

    2011-08-19

    Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution or particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient

  9. Background to Dark Matter Searches from Galactic Cosmic Rays

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Just as searches for BSM physics at the LHC necessitate a careful audit of SM backgrounds, the search for signals of dark matter in cosmic rays must contend with production of secondaries like e+ and pbar through cosmic ray propagation in the Galaxy. The theoretical framework for calculating this has however not been directly calibrated at the high energies being explored by AMS-02 and there may be surprises in store. In particular a nearby source where cosmic rays are being accelerated stochastically can naturally generate a e+ fraction rising with energy as is observed. The test of this is the expected correlated rise in other secondary/primary ratios e.g. B/C and pbar/p. Such a nearby cosmic accelerator should also be detectable through the concomitant flux of neutrinos and its discovery would be (nearly!) as exciting as that of dark matter.

  10. First results of the cosmic ray NUCLEON experiment

    International Nuclear Information System (INIS)

    Atkin, E.; Shumikhin, V.; Bulatov, V.

    2017-01-01

    The NUCLEON experiment was designed to study the chemical composition and energy spectra of galactic cosmic ray nuclei from protons to zinc at energies of ∼ 10 11 –10 15 eV per particle. The research was carried out with the NUCLEON scientific equipment installed on the Russian satellite 'Resource-P' No. 2 as an additional payload. This article presents the results for the measured nuclei spectra related to the first approximately 250 days of the scientific data collection during 2015 and 2016. The all-particle spectrum and the spectra of p, He, C, O, Ne, Mg, Si and Fe are presented. Some interesting ratios of the spectra are also presented and discussed. The experiment is now in its beginning stage and the data still have a preliminary character, but they already give numerous indications of the existence of various non-canonical phenomena in the physics of cosmic rays, which are expressed in the violation of a simple universal power law of the energy spectra. These features of the data are briefly discussed.

  11. First results of the cosmic ray NUCLEON experiment

    Energy Technology Data Exchange (ETDEWEB)

    Atkin, E.; Shumikhin, V. [National Research Nuclear University ' MEPhI' , Kashirskoe highway 31, Moscow, 115409 (Russian Federation); Bulatov, V., E-mail: evatkin@mephi.ru, E-mail: shuma.v.v@mail.ru, E-mail: bulat@horizont.e-burg.ru [SDB Automatika, Mamin-Sibiryak str. 145, Ekaterinburg, 620075 (Russian Federation); and others

    2017-07-01

    The NUCLEON experiment was designed to study the chemical composition and energy spectra of galactic cosmic ray nuclei from protons to zinc at energies of ∼ 10{sup 11}–10{sup 15} eV per particle. The research was carried out with the NUCLEON scientific equipment installed on the Russian satellite 'Resource-P' No. 2 as an additional payload. This article presents the results for the measured nuclei spectra related to the first approximately 250 days of the scientific data collection during 2015 and 2016. The all-particle spectrum and the spectra of p, He, C, O, Ne, Mg, Si and Fe are presented. Some interesting ratios of the spectra are also presented and discussed. The experiment is now in its beginning stage and the data still have a preliminary character, but they already give numerous indications of the existence of various non-canonical phenomena in the physics of cosmic rays, which are expressed in the violation of a simple universal power law of the energy spectra. These features of the data are briefly discussed.

  12. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    International Nuclear Information System (INIS)

    Jr, R M Marinho; Magalhaes, N S; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection

  13. Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles

    CERN Document Server

    Marinho, R M; Aguiar, O D; Frajuca, C

    2002-01-01

    High-energy cosmic ray particles are expected to be a significant source of noise in resonant mass gravitational wave detectors close to the quantum limit. The spherical, fourth generation antennas have been designed to attain such a limit. In this work we will show how the energy of a cosmic ray particle interacting with such an antenna is distributed over its eigenmodes. We will then make some comments on the relevant consequences of such a distribution for gravitational wave detection.

  14. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  15. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  16. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  17. Heliospheric Modulation of Galactic Cosmic Rays; Diurnal Variability Abstract Details

    Science.gov (United States)

    Kalu, D. F.; Okpala, K. C.

    2017-12-01

    We have studied the variability of Cosmic rays flux during solar quiet days at mid and high latitudes in the Northern Hemisphere. By using the five (5) quietest days for each month and the five disturbed days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1999-2015, which covers part of cycles 23, and cycle 24. This study seeks to understand the heliospheric contribution to the variation of these Cosmic rays on quietest days, three stations (Inuvik, Moscow, Rome) Neutron Monitors were employed. This study seeks to understand the important features of the high latitude and mid latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristic with solar and geomagnetic activity index showed better association with solar activity.

  18. Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1980-01-01

    Because changes in solar activity can modify the fluxes of cosmic-ray particles in the solar system, the nature of the galactic and solar cosmic rays and their interactions with matter are described and used to study the ancient sun. The use of cosmogenic nuclides in meteorites and lunar samples as detectors of past cosmic-ray variations are discussed. Meteorite records of the history of the galactic cosmic rays are reviewed. The fluxes of solar protons over various time periods as determined from lunar radionuclide data are presented and examined. The intensities of solar protons emitted during 1954 to 1964 (11-year solar cycle number 19) were much larger than those for 1965 to 1975 (solar cycle 20). Average solar-proton fluxes determined for the last one to ten million years from lunar 26 Al and 53 Mn data show little variation and are similar to the fluxes for recent solar cycles. Lunar activities of 14 C (and preliminary results for 81 Kr) indicate that the average fluxes of solar protons over the last 10 4 (and 10 5 ) years are several times larger than those for the last 10 6 to 10 7 years; however, cross-section measurements and other work are needed to confirm these flux variations

  19. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  20. On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe.

    Science.gov (United States)

    Atri, Dimitra

    2016-10-01

    Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. © 2016 The Author(s).

  1. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  2. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 1020 eV/particle), · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g.: · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. Back in 2004 we started realisation of the Roland Maze Project, the network of EAS detectors

  3. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is

  4. The Cosmic-ray Spectrum: from the knee to the ankle

    International Nuclear Information System (INIS)

    Gaisser, T K

    2006-01-01

    This talk addresses the question, 'Where is the transition from cosmic rays of galactic origin to extra-galactic cosmic-rays?' I have addressed the background of this topic recently in lectures at Erice and, with Todor Stanev, in a collection of papers on various aspects of nuclear astrophysics. Here I concentrate on primary composition as a signature of the transition and mention some new air-shower experiments aimed at the energy region from the knee to the ankle (PeV to 10 EeV)

  5. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in laboratories). - Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students is a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering the EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In our Lodz Department we run an Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz's budget to make a pilot project and equip 10 high schools, each with

  6. CREME96: A revision of the Cosmic Ray Effects on Micro-Electronics code

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.

    1997-01-01

    CREME96 is an update of the Cosmic Ray Effects on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizing-radiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle (flare) components of the near-Earth environment; (2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved single-event upset (SEU) calculation techniques, for both proton-induced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper the authors document some of these improvements

  7. Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionization from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  8. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  9. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  10. Dark matter indirect detection with charged cosmic rays

    International Nuclear Information System (INIS)

    Giesen, Gaelle

    2015-01-01

    Overwhelming evidence for the existence of Dark Matter (DM), in the form of an unknown particle filling the galactic halos, originates from many observations in astrophysics and cosmology: its gravitational effects are apparent on galactic rotations, in galaxy clusters and in shaping the large scale structure of the Universe. On the other hand, a non-gravitational manifestation of its presence is yet to be unveiled. One of the most promising techniques is the one of indirect detection, aimed at identifying excesses in cosmic ray fluxes which could possibly be produced by DM annihilations or decays in the Milky Way halo. The current experimental efforts mainly focus in the GeV to TeV energy range, which is also where signals from WIMPs (Weakly Interacting Massive Particles) are expected. Focussing on charged cosmic rays, in particular antiprotons, electrons and positrons, as well as their secondary emissions, an analysis of current and foreseen cosmic ray measurements and improvements on astrophysical models are presented. Antiproton data from PAMELA imposes constraints on annihilating and decaying DM which are similar to (or even slightly stronger than) the most stringent bounds from gamma ray experiments, even when kinetic energies below 10 GeV are discarded. However, choosing different sets of astrophysical parameters, in the form of propagation models and halo profiles, allows the constraints to span over one or two orders of magnitude. In order to exploit fully the power of antiprotons to constrain or discover DM, effects which were previously perceived as sub-leading turn out to be relevant especially for the analysis of the newly released AMS-02 data. In fact, including energy losses, diffusive re-acceleration and solar modulation can somewhat modify the current bounds, even at large DM masses. A wrong interpretation of the data may arise if they are not taken into account. Finally, using the updated proton and helium fluxes just released by the AMS-02

  11. Cosmic ray acceleration by shock waves in a diffusion medium. Research of high energies

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1982-06-01

    The problem of galactic cosmic-ray acceleration is presented with the study of a new acceleration mechanism by supernova shock waves in a diffusive medium. The question is: do supernova shocks have enough time to accelerate cosmic rays beyond 10 4 -10 5 GeV. A firm upper limit to the energy that can be acquired by particles is established and it is considered that the mean free path of the particle has its lowest possible value and the most favorable model of supernova evolution. The diffusion coefficients which are relevant for the determination of the high energy cut off are investigated. The effect of the spatial dependence of the diffusion coefficient on the rate of acceleration of particles is examined. A more realistic cut off energy is calculated. We find E max = 2 10 4 GeV [fr

  12. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high-energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles - an estimation of the astrophysical conditions at the acceleration sites and/or the search for sources of Cosmic Rays, - properties of high-energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. - '' cosmic weather '' forecasting - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares/Coronal Mass Ejection events); these are important for large electricity networks, gas pipelines, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz and Poznan workshops on particle physics for high school students. This is a part of the European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimentally study's very high energy Cosmic Rays. Locally in Lodz we concentrate on methodological studies of the detection of neutrons correlated with EAS and the interpretation of this phenomenon. We have also performed two series of neutron background measurements in the deep underground Gran Sasso Laboratory in Italy (within the ILIAS-TA Project). In 2004, we began the Roland Maze Project, a network of EAS detectors placed on the roofs of high schools in Lodz. The pilot project is to equip 10 high schools, each with four 1m

  13. ACTINIDE AND ULTRA-HEAVY ABUNDANCES IN THE LOCAL GALACTIC COSMIC RAYS: AN ANALYSIS OF THE RESULTS FROM THE LDEF ULTRA-HEAVY COSMIC-RAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J. [Dublin Institute of Technology (DIT), School of Physics, Kevin Street, Dublin 8 (Ireland); Thompson, A.; O' Sullivan, D.; Daly, J.; Drury, L. [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Domingo, V.; Wenzel, K.-P. [European Space Research and Technology Centre (ESTEC), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk (Netherlands)

    2012-03-01

    The LDEF Ultra-Heavy Cosmic-Ray Experiment (UHCRE) detected Galactic cosmic rays (GCRs) of charge Z {>=} 70 in Earth orbit with an exposure factor of 170 m{sup 2} sr yr, much larger than any other experiment. The major results include the first statistically significant uniform sample of GCR actinides with 35 events passing quality cuts, evidence for the existence of transuranic nuclei in the GCR with one {sub 96}Cm candidate event, and a low {sub 82}Pb/{sub 78}Pt ratio consistent with other experiments. The probability of the existence of a transuranic component is estimated as 96%, while the most likely {sub 92}U/{sub 90}Th ratio is found to be 0.4 within a wide 70% confidence interval ranging from 0 to 0.96. Overall, the results are consistent with a volatility-based acceleration bias and source material which is mainly ordinary interstellar medium material with some recent contamination by freshly synthesized material. Uncertainty in the key {sub 92}U/{sub 90}Th ratio is dominated by statistical errors resulting from the small sample size and any improved determination will thus require an experiment with a substantially larger exposure factor than the UHCRE.

  14. Origin and propagation of galactic cosmic rays

    Science.gov (United States)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  15. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  16. Cosmic ray riddle solved?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Physicists from Japan and the United States have discovered a possible answer to the puzzle of the origin of high energy cosmic rays that bombard Earth from all directions in space. Using data from the Japanese/US X-ray astronomical satellite ASCA, physicists have found strong evidence for the production of cosmic particles in the shock wave of a supernova remnant, the expanding fireball produced by the explosion of a star. Primary cosmic rays, mostly electrons and protons, travel near the speed of light. Each second, approximately 4 such particles cross one square centimetre of space just outside the Earth's atmosphere. Subsequently, collisions of these primary particles with atoms in the upper atmosphere produce slower secondary particles. Ever since the discovery of cosmic rays early this century, scientists have debated the origin of these particles and how they can be accelerated to such high speeds. Supernova remnants have long been thought to provide the high energy component, but the evidence has been lacking until now. The international team of investigators used the satellite to determine that cosmic rays are generated profusely in the remains of the supernova of 1006 AD - which appeared to medieval viewers to be as bright as the Moon - and that they are accelerated to high velocities by an iterative process first suggested by Enrico Fermi in 1949. Using solid-state X-ray cameras, the ASCA satellite records simultaneous images and spectra of X-rays from celestial sources, allowing astronomers to distinguish different types of X-ray emission. The tell-tale clue to the discovery was the detection of two diametrically opposite regions in the rapidly expanding supernova remnant, the debris from the stellar explosion. The two regions glow intensely from the synchrotron radiation produced when fast-moving electrons are bent by a magnetic field. The remainder of the supernova remnant, in contrast, emits ordinary ''thermal'' X-rays

  17. Proceedings of the 21. European Cosmic Ray Symposium

    International Nuclear Information System (INIS)

    Kiraly, P.; Kudela, K.; Wolfendale, A. W.

    2008-09-01

    Scientific symposium deals with problems of cosmic ray. The Symposium included the following sessions: (1): Relationship of cosmic rays to the environment; (2) Energetic particles and the magnetosphere of the Earth; (3) Energetic particles in the heliosphere; (4) Solar-terrestrial effects on different time scales; (5) Cosmic rays below the knee; (6) Cosmic rays above the knee (7) High energy interactions; (8) GeV and TeV gamma ray astronomy; (9) European projects related to cosmic rays; Future perspectives. Proceedings contains 122 papers dealing with the scope of INIS.

  18. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190 (China); Florinski, V. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States)

    2016-07-20

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  19. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    International Nuclear Information System (INIS)

    Guo, X.; Florinski, V.

    2016-01-01

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  20. A satellite born charged particles telescope for the study of cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)

    1995-09-01

    The description of the high energy particle telescope NINA for the study of cosmic ray nuclei is presented. The instrument will be installed on board of the Resource 01 satellite and will fly on a polar orbit at 690 Km. The telescope consists on a pile of 16 detecting planes each of them is composed by two silicon strip detectors with perpendicular strips and has a total area of 60x60mm{sup 2}. The experiment goals are the study of cosmic ray protons and nuclei in the energy range 12-100 MeV/amu. It will be sensitive to the anomalous component and will also make the observation of the large solar flare events and geophysical phenomena as well. This experiment is the first step of the program RIM whose goal is the satellite study of anti particles in primary cosmic rays.

  1. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · The nature of the physical and astrophysical processes responsible for the high energies of the particles (up to about 1020 eV/particle), · An estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. · 'cosmic weather' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run the Extensive Air Shower array where EAS are being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004, we started realisation of the Roland Maze Project, the network of EAS detectors placed on roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1 m

  2. Cosmic rays and tests of fundamental principles

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2011-01-01

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles... Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both 'conventional' and new Physics. Status, prospects, new ideas, and open questions in the field are discussed.

  3. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    Science.gov (United States)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  4. Recurrent modulation of galactic cosmic ray electrons and protons: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Blake, J.B.; Paizis, C.; Bothmer, V.; Kunow, H.; Wibberenz, G.; Burger, R.A.; Potgieter, M.S.

    2000-01-01

    Since measurements of space probes in the interplanetary space became available it has been known that associated with the occurrence of recurrent fast and slow solar wind streams, forming Corotating Interaction Regions, recurrent variations in the cosmic ray nuclei flux are observed. As pointed out recently by Jokipii and Kota (2) recurrent modulation for positively and negatively charged particles may be different. In the time interval extending from July 1992 to July 1994, Ulysses on its journey to high heliographic latitudes registered ∼20 stable and long-lasting Corotating Interaction Regions (CIRs). In this work we use data from the Cosmic Ray and Solar Particle Investigation Kiel Electron Telescope (COSPIN/KET) instrument on board Ulysses to study the recurrent variation of 2.5 GV electrons and protons. We find that 1) electrons are indeed periodically modulated, but that 2) the periodicity of ∼29 days is longer than the period of ∼26 days for protons, and that 3) the amplitude is larger than the one observed for protons

  5. 14. European cosmic ray symposium. Symposium program and abstracts

    International Nuclear Information System (INIS)

    1994-08-01

    The abstracts of the 14. European Cosmic Ray Symposium are presented. The papers cover a large variety of topics in cosmic ray physics, both from the theoretical and the experimental point of view. Sun physics, and the effects on the inner heliosphere, the composition, and the properties of the primary and secondary cosmic radiation, galactic acceleration and the results of accelerator physics relevant to cosmic radiation physics, and the description and the results of large detector systems are presented. 63 items are indexed for INIS database. (K.A.)

  6. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  7. Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2004-12-01

    Full Text Available An understanding of how the heliosphere modulates galactic cosmic ray (GCR fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth's environment and organisms and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68-year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux. Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  8. Search for positron anisotropies in cosmic rays with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Machate, Fabian [1. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) on the International Space Station has observed a significant excess of cosmic ray positrons over the background expected from secondary production at energies above 10 GeV. Nearby pulsars and annihilating dark matter particles as a primary source of electrons and positrons have been discussed as an explanation. A possible way of distinguishing between pulsar and dark matter origin is the measurement of dipole anisotropies in the positron flux or the positron to electron ratio. Any anisotropy will be reduced by diffusion in galactic magnetic fields to below the percent level. AMS-02 is the leading space-based experiment for cosmic ray detection and well suited for this search. A new analysis procedure for anisotropies using an event sample with large acceptance is presented. It relies on the ability of the Transition Radiation Detector (TRD) to separate positrons from the proton background.

  9. The TeV-scale cosmic ray proton and helium spectra

    Indian Academy of Sciences (India)

    2016-01-07

    Jan 7, 2016 ... Recent measurements of cosmic ray proton and helium spectra show a hardening above a few hundreds of GeV. This excess is hard to understand in the framework of the conventional models of galactic cosmic ray production and propagation. Here, we propose to explain this anomaly by the presence of ...

  10. Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Cotter, Cory, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin–Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2017-01-20

    There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, may accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.

  11. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...

    Indian Academy of Sciences (India)

    it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...

  12. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  13. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph; Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Marinacci, Federico [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Glover, Simon C. O. [Zentrum für Astronomie der Universität Heidelberg, ITA, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Clark, Paul C. [School of Physics and Astronomy, Queen’s Buildings, The Parade, Cardiff University, Cardiff CF24 3AA (United Kingdom); Smith, Rowan J., E-mail: Christine.Simpson@h-its.org [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-08-20

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  14. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  15. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  16. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  17. Towards a Unified Source-Propagation Model of Cosmic Rays

    Science.gov (United States)

    Taylor, M.; Molla, M.

    2010-07-01

    report that the entire spectrum, spanning cosmic rays of local solar origin and those eminating from galactic and extra-galactic sources can be explained using a new diagnostic — the gradient of the log-log plot. This diagnostic reveals the known Boltmann statistics in the solar-terrestrial neighbourhood but at the highest energies — presumably at the cosmic ray source, with clearly separated fractal scales in between. We interpret this as modulation at the source followed by Fermi acceleration facilitated by galactic and extra-galactic magnetic fields with a final modulation in the solar-terrestrial neighbourhood. We conclude that the gradient of multifractal curves appears to be an excellent detector of fractality.

  18. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  19. Cosmic ray particle dosimetry and trajectory tracing

    International Nuclear Information System (INIS)

    Cruty, M.R.; Benton, E.V.; Turnbill, C.E.; Philpott, D.E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package

  20. A two-zone cosmic ray propagation model and its implication of the surviving fraction of radioactive cosmic ray isotopes

    International Nuclear Information System (INIS)

    Simon, M.; Scherzer, R.; Enge, W.

    1977-01-01

    In cosmic ray propagation calculations one can usually assume a homogeneous distribution of interstellar matter. The crucial astrophysical parameters in these models are: The path length distribution, the age of the cosmic ray particles and the interstellar matter density. These values are interrelated. The surviving fraction of radioactive cosmic ray isotopes is often used to determine a mean matter density of that region, where the cosmic ray particles may mainly reside. Using a Monte Carlo Propagation Program we calculated the change in the surviving fraction quantitatively assuming a region around the sources with higher matter density. (author)

  1. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    Science.gov (United States)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  2. Galactic cosmic ray spectra during solar cycle 23 and 24. Measurement capabilities of the electron proton helium telescope on board SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, Patrick; Dresing, Nina; Gieseler, Jan; Heber, Bernd; Klassen, Andreas [Christian-Albrechts Universitaet zu Kiel (Germany)

    2016-07-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by long term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) aboard SOHO is well suited for these kind of investigations. Although the design of the instrument is optimized to measure proton and helium isotope spectra up to 50 MeV/nucleon the capability exist that allow to determine energy spectra above 1.5 GeV/nucleon. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy response function of EPHIN for electrons, protons and heavier ions. As a result we present galactic cosmic ray spectra from 1995 to 2015. For validation, the derived spectra are compared to AMS, BESS and PAMELA data. Furthermore we discuss the spectra with respect to the solar modulation.

  3. Cosmic rays and tests of fundamental principles

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2011-03-01

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles…Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both "conventional" and new Physics. Status, prospects, new ideas, and open questions in the field are discussed.

  4. Gamma radiation associated to stellar formation in the galaxy (cosmic ray astronomy)

    International Nuclear Information System (INIS)

    Casse, Michel.

    1980-05-01

    The gamma ray sky revealed by the COS-B satellite is very peculiar: a few 'gamma ray stars' lying along the galactic plane emerge from a bright milky way. A possible interpretation of this sky is to invoke the existence of regions in which stars, cosmic rays and interstellar matter are very concentrated. A genetic link is established between clouds, stars and cosmic rays: the partial fragmentation of a cloud give birth to stars, the most massive stars accelerate cosmic rays through their supersonic stellar winds, cosmic ray interact in turn with the cloud material to copiously produce high energy gamma rays: a gamma ray source is born

  5. Long-term variations of cosmic ray intensity

    International Nuclear Information System (INIS)

    Dergachev, V.A.; Kocharov, G.E.; Ostryakov, V.M.

    1982-01-01

    At the present time we know only one possibility to reconstruct the Cosmic Ray intensity in the past. This possibility is connected with the measurements of radiocarbon abundance in the dendrochronologically dated wood samples. As the experiments carried out with the help of spacecrafts, balloons and ground apparatus show the Galactic Cosmic Ray flux essentially varies on a short time scales. The variations are caused by different astrophysical and geophysical phenomena. 14 C isotope allows us to investigate these reasons on a more long time interval in comparison with direct observational possibilities

  6. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  7. Generation of mesoscale magnetic fields and the dynamics of Cosmic Ray acceleration

    Science.gov (United States)

    Diamond, P. H.; Malkov, M. A.

    The problem of the cosmic ray origin is discussed in connection with their acceleration in supernova remnant shocks. The diffusive shock acceleration mechanism is reviewed and its potential to accelerate particles to the maximum energy of (presumably) galactic cosmic rays (1018eV ) is considered. It is argued that to reach such energies, a strong magnetic field at scales larger than the particle gyroradius must be created as a result of the acceleration process, itself. One specific mechanism suggested here is based on the generation of Alfven wave at the gyroradius scale with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven waves. The generation mechanism is modulational instability of CR generated Alfven wave packets induced, in turn, by scattering off acoustic fluctuations in the shock precursor which are generated by Drury instability.

  8. Sequential measurements of spectrum and dose for cosmic-ray neutrons on the ground

    International Nuclear Information System (INIS)

    Hirabayashi, N.; Nunomiya, T.; Suzuki, H.; Nakamura, T.

    2002-01-01

    The earth is continually bathed in high-energy particles that come from outside the solar system, known as galactic cosmic rays. When these particles penetrate the magnetic fields of the solar system and the Earth and reach the Earth's atmosphere, they collide with atomic nuclei in air and secondary cosmic rays of every kind. On the other hand, levels of accumulation of the semiconductor increase recently, and the soft error that the cosmic-ray neutrons cause has been regarded as questionable. There have been long-term measurements of cosmic-ray neutron fluence at several places in the world, but no systematic study on cosmic-ray neutron spectrum measurements. This study aimed to measure the cosmic-ray neutron spectrum and dose on the ground during the solar maximum period of 2000 to 2002. Measurements have been continuing in a cabin of Tohoku University Kawauchi campus, by using five multi-moderator spectrometers (Bonner sphere), 12.7 cm diam by 12.7 cm long NE213 scintillator, and rem counter. The Bonner sphere uses a 5.08 cm diam spherical 3 He gas proportional counter and the rem counter uses a 12.7 cm diam 3 He gas counter. The neutron spectra were obtained by unfolding from the count rates measured with the Bonner sphere using the SAND code and the pulse height spectra measured with the NE213 scintillator using the FORIST code . The cosmic- ray neutron spectrum and ambient dose rates have been measured sequentially from April 2001. Furthermore, the correlation between ambient dose rate and the atmospheric pressure was investigated with a barometer. We are also very much interested in the variation of neutron spectrum following big solar flares. From the sequential measurements, we found that the cosmic-ray neutron spectrum has two peaks at around 1 MeV and at around 100 MeV, and the higher energy peak increases with a big solar flare

  9. Abundances of light isotopes in galactic cosmic rays and the interstellar gas density

    International Nuclear Information System (INIS)

    Westergaard, N.J.

    1979-01-01

    The fluxes of the light isotopes in the galactic cosmic rays are calculated in the energy range from 10 MeV to 5 GeV. The mean amount of matter traversed is taken to increase with decreasing energy, and various forms of the source spectrum are assumed. It is shown that it is possible to reconcile all observed abundance ratios including the low 10 Be abundance found by Garcia-Munoz et al. with an interstellar gas density of 1 atom cm -1 . However, a low value for the adiabatic deceleration in the solor cavity must be assumed. Comparing isotopes of the light elements does not give a unique solution for the deceleration, and it seems to be more profitable to use the isotopes of H and He for this purpose

  10. Bubbles, superbubbles and their impact on cosmic ray transport

    Energy Technology Data Exchange (ETDEWEB)

    Weinreuter, Matthias; Gebauer, Iris; Boer, Wim de; Neumann, Alexander [KIT, Karlsruhe (Germany)

    2016-07-01

    The Fermi-LAT data on diffuse gamma rays show variations in the gamma ray intensity, which are linked to either variations in the gas density or variations in the cosmic ray density. Such small scale variations are not modeled in current state-of-the-art models for galactic cosmic ray propagation. Inhomogeneities in the interstellar material can be formed by cavities like the so-called Local Bubble, an underdense region surrounding our Sun, which was created by several supernova explosions in the past. We show that the Local Bubble can have a strong impact on the cosmic ray energy spectra and density. In particular, it enhances cosmic ray scattering in the surrounding molecular cloud complexes and can significantly distort the cosmic ray arrival directions. We briefly discuss the consequences for pulsar searches in energetic positrons and electrons. By making simple assumptions on the level of inhomogeneity in the interstellar medium we investigate if the observed variations in the diffuse gamma ray emission can indeed be explained by cavities similar to the Local Bubble.

  11. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  12. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  13. Cosmic-ray antiprotons as a probe of a photino-dominated universe

    Science.gov (United States)

    Silk, J.; Srednicki, M.

    1984-01-01

    Observational tests of the hypothesis that the universe is flat and dominated by dark matter in the form of massive photinos include the production of significant fluxes of cosmic rays and gamma rays in our galactic halo. Specification of the cosmological photino density and the masses of scalar quarks and leptons determines the present annihilation rate. The predicted number of low-energy cosmic-ray antiprotons is comparable to the observed flux.

  14. Are there persistent physical atmospheric responses to galactic cosmic rays?

    International Nuclear Information System (INIS)

    Benestad, Rasmus E

    2013-01-01

    Variations in the annual mean of the galactic cosmic ray flux (GCR) are compared with annual variations in the most common meteorological variables: temperature, mean sea-level barometric pressure, and precipitation statistics. A multiple regression analysis was used to explore the potential for a GCR response on timescales longer than a year and to identify ‘fingerprint’ patterns in time and space associated with GCR as well as greenhouse gas (GHG) concentrations and the El Niño–Southern Oscillation (ENSO). The response pattern associated with GCR consisted of a negative temperature anomaly that was limited to parts of eastern Europe, and a weak anomaly in the sea-level pressure (SLP), but coincided with higher pressure over the Norwegian Sea. It had a similarity to the North Atlantic Oscillation (NAO) in the northern hemisphere and a wave train in the southern hemisphere. A set of Monte Carlo simulations nevertheless indicated that the weak amplitude of the global mean temperature response associated with GCR could easily be due to chance (p-value = 0.6), and there has been no trend in the GCR. Hence, there is little empirical evidence that links GCR to the recent global warming. (letter)

  15. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays

    Science.gov (United States)

    Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Rodriguez, L.; Janvier, M.

    2016-08-01

    Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims: The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods: We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results: We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions: The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.

  16. Cosmic rays and the search for a Lorentz Invariance Violation

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang, E-mail: wolbi@nucleares.unam.mx

    2011-08-15

    This is an introductory review about the ongoing search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultrahigh energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors {gamma}{approx}O(10{sup 11}). For heavier nuclei, the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous {gamma}-factors-far beyond accelerator tests-is a central issue. Next, we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent 'Maximal Attainable Velocities'. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic {gamma}-rays. For multi-TeV {gamma}-rays, we encounter another possible puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not that far from the Planck scale. We discuss conceivable nonlinear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent results by the Pierre Auger Collaboration, in particular the hypothesis that nearby Active Galactic Nuclei-or objects next to

  17. Cosmic rays and the search for a Lorentz Invariance Violation

    International Nuclear Information System (INIS)

    Bietenholz, Wolfgang

    2008-11-01

    This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors γ ∝ O(10 11 ). For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous γ-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ''Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic γ-rays. For multi TeV γ-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. We discuss conceivable non-linear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects next to them - as probable UHECR sources. (orig.)

  18. Cosmic rays and the search for a Lorentz Invariance Violation

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2008-11-15

    This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors {gamma} {proportional_to} O(10{sup 11}). For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous {gamma}-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ''Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic {gamma}-rays. For multi TeV {gamma}-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. We discuss conceivable non-linear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects

  19. The History of Cosmic Ray Studies after Hess

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus, E-mail: grupen@physik.uni-siegen.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  20. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  1. Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays

    Science.gov (United States)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Hofmann, Beda A.; Leya, Ingo

    2017-10-01

    Renazzo-type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shişr 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)-produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He-21Ne cosmic ray exposure (CRE) age for Shişr 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10-8 cm3STP/g) 3.99-7.76 and 0.94-1.71, respectively. Assuming present-day GCR flux density, the excesses translate into average precompaction 3He-21Ne CRE ages of 3.1-27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shişr 033 parent body in a region of the disk transparent to GCRs.

  2. The connection of the interplanetary magnetic field turbulence and rigidity spectrum of Forbush decrease of the galactic cosmic ray intensity

    International Nuclear Information System (INIS)

    Wawrzynczak, A; Alania, M V

    2015-01-01

    We analyze the temporal changes in the rigidity spectrum of Forbush decrease (Fd) of the galactic cosmic ray (GCR) intensity observed in November 2004. We compute the rigidity spectrum in two energy ranges based on the daily data from the worldwide network of neutron monitors and Nagoya ground muon telescope. We demonstrate that the changes in the rigidity spectrum of Fd are linked to the evolution/decay of the interplanetary magnetic field (IMF) turbulence during various phases of the Fd. We analyze the time-evolution of the state of the turbulence of the IMF in various frequency ranges during the Fd. Performed analysis show that the decrease of the exponent ν of the Power Spectral Density (PSD ∝ f −ν , where f is frequency) of the IMF turbulence with decreasing frequency lead to the soft rigidity spectrum of Fd for GCR particles with relatively higher energies. (paper)

  3. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  4. The Need for Direct High-Energy Cosmic-Ray Measurements

    Science.gov (United States)

    Jones, Frank C.; Streitmatter, Robert

    2004-01-01

    Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.

  5. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  6. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Science.gov (United States)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-12-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.

  7. The role of cosmic rays in the atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Stozhkov, Y I [Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect, 53, Moscow (Russian Federation)

    2003-05-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10{sup 8} times). But at altitudes of h {approx} 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h {approx} 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning.

  8. The role of cosmic rays in the atmospheric processes

    International Nuclear Information System (INIS)

    Stozhkov, Y I

    2003-01-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10 8 times). But at altitudes of h ∼ 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h ∼ 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning

  9. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J. [3D University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  10. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus Superbubble

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, A.; Allafort, A.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Bottacini, E.; Buehler, R.; Cameron, R.A.; Chiang, J.; Claus, R.; Do Couto e Silva, E.; Drell, P.S.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A.S.; Kamae, T.; Kerr, M.; Lande, J.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Okumura, A.; Orlando, E.; Paneque, D.; Prokhorov, D.; Tanaka, T.; Thayer, J.G.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Vandenbroucke, J.; Vianello, G.; Waite, A.P.; Wang, P.; Baldini, L.; Bellazzini, R.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shock waves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-giga-electron-volt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population. (authors)

  11. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  12. Electromagnetic-ram action of the plasma focus as a paradigm for the production of gigantic galactic jets and cosmic rays

    International Nuclear Information System (INIS)

    Bostick, W.

    1985-01-01

    A recent paper suggests that the electromagnetic-ram action of the plasma focus is trying to tell us how cosmic rays acquire their energy. It will be only natural for those theoretical astrophysicists who are steeped in statistical mechanics and turbulent processes, and who are now having a love affair with the black hole, to scoff at such a suggestion. But this author, undaunted, plunges even further into this cosmical question: he has the audacity to suggest further that the gigantic galactic jets in the active galaxies such as are now being observed by the computer-synthesized data of the radio signals at a number of wavelengths with the Very Large Array radio telescope in New Mexico, from radio galaxies like Cygnus A and Centaurus A (NGC 5128), are being produced by an electromagnetic-ram action similar to that of the plasma focus; and further, that this action is producing not only these spectacular jets, but also the acceleration of the cosmic ray at the same time in the same accelerating gap

  13. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  14. Cosmic ray investigation for the Voyager missions; energetic particle studies in the outer heliosphere - and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E C; Vogt, R E [California Inst. of Tech., Pasadena (USA); McDonald, F B; Teegarden, B J; Trainor, J H [National Aeronautics and Space Administration, Greenbelt, Md. (USA). Goddard Space Flight Center; Jokipii, J R [Arizona Univ., Tucson (USA); Webber, W R [New Hampshire Univ., Durham (USA)

    1977-12-01

    A cosmic-ray detector system (CRS) has been developed for the Voyager mission which will measure the energy spectrum of electrons from approximately 3-110 MeV and the energy spectra and elemental comparison of all cosmic-ray nuclei from hydrogen through iron over an energy range from approximately 1-500 MeV.nuc. Isotopes of hydrogen through sulfur will be resolved from approximately 2-75 MeV/nuc. Studies with CRS data will provide information on the energy content, origin and acceleration process, life history, and dynamics of cosmic rays in the galaxy, and contribute to an understanding of the nucleosynthesis of elements in the cosmic-ray sources. Particular emphasis will be placed on low-energy phenomena that are expected to exist in interstellar space and are known to be present in the outer Solar System. This investigation will also add to our understanding of the transport of cosmic rays, Jovian electrons, and low-energy interplanetary particles over an extended region of interplanetary space. A major contribution to these areas of study will be the measurement of three-dimensional streaming patterns of nuclei from H through Fe and electrons over an extended energy range, with a precision that will allow determination of anisotropies down to 1%. The required combination of charge resolution, reliability and redundance has been achieved with systems consisting entirely of solid-state charged-particle detectors.

  15. Ultrahigh Energy Cosmic Rays: Facts, Myths, and Legends

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-06-27

    This is a written version of a series of lectures aimed at graduate students in astrophysics/particle theory/particle experiment. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > 10^8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition, and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic ray sources, and emphasize some of the prospects for a new (multi-particle) astronomy. Next, we survey the state of the art regarding the ultrahigh energy cosmic neutrinos which should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic ray air showers. We explain the hadronic interaction models used to extrapolate results from ...

  16. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Venter, C.; Kopp, A.; Büsching, I. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520 (South Africa); Harding, A. K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gonthier, P. L. [Hope College, Department of Physics, Holland, MI (United States)

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  17. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    International Nuclear Information System (INIS)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye

    2009-01-01

    The energy spectrum of cosmic rays in the range E∼10 15 eV to 6x10 19 eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10 15 and ∼10 19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  18. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  19. Measurement of H, He, C and O Cosmic ray primaries preliminary results from the CREAM II experiment

    CERN Document Server

    Mognet, Samuel

    The direct measurement of the energy spectrum and composition of the incoming cosmic-ray flux at multi-TeV energies is of great interest. A feature located somewhere between 1000-10,000 TeV in the all-particle spectrum, referred to as the ‘knee’ characterized by a steepening of the power-law flux, has been observed by ground-based detectors for many years. It is believed to be related to an upper limit or change in efficiency of the Galactic accelerators of cosmic rays and/or properties of the propagation of cosmic rays in the Galaxy. Presented here is a preliminary analysis of the flux of primary H, He, C and O cosmic-ray species measured using the CREAM II instrument. This analysis is conducted using the Penn State-built Timing Charge Detector, distinct from other charge detectors used in alternative published CREAM II results. The second Antarctic flight of the CREAM instrument had a ∼ 28 day flight in the 2005-2006 Antarctic flight season. The instrument was launched on December 16th 2005 from Willi...

  20. Markov Stochastic Technique to Determine Galactic Cosmic Ray ...

    Indian Academy of Sciences (India)

    has been developed, which allows the study of cosmic-ray production and propagation in ... sive transport equation with a complete network of nuclear interactions using the ... This paper describes a further development of the model to calculate the .... In case of several nuclei the problem is expanded to solve a system of ...

  1. Ultrahigh-energy particles from cosmic strings

    International Nuclear Information System (INIS)

    Bhattacharjee, P.

    1991-02-01

    The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a ''natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all ''primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as α's or Fe's are in the spectrum. 43 refs., 3 figs

  2. Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Goodenough, Lisa; /New York U.

    2010-10-01

    We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10{sup o} around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25{sup o} and 10{sup o} from the Galactic Center is well described by a the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25{sup o} ({approx}175 parsecs) of the Galactic Center, in contrast, cannot be accounted for by these processes or known sources. We find that an additional component of gamma ray emission is clearly present which is highly concentrated around the Galactic Center, but is not point-like in nature. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution ({rho} {proportional_to} r{sup -1.34{+-}0.04}). The observed spectrum of this component, which peaks at energies between 2-4 GeV (in E{sup 2} units), is well fit by that predicted for a 7.3-9.2 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of <{sigma}{nu}> = 3.3 x 10{sup -27} to 1.5 x 10{sup -26} cm{sup 3}/s, depending on how the dark matter distribution is normalized. We discuss other possible sources for this component, but argue that they are unlikely to account for the observed emission.

  3. Chemistry of the galactic cosmic ray induced ionosphere of Titan

    Science.gov (United States)

    Molina-Cuberos, G. J.; López-Moreno, J. J.; Rodrigo, R.; Lara, L. M.

    1999-09-01

    Titan's lower ionosphere (from 1 to 400 km) has been studied with a one-dimensional ion-neutral model. In this region of the atmosphere, galactic cosmic rays (GCRs) are the main ionization source. They penetrate to the deeper atmosphere and ionize the neutral constituents of Titan's atmosphere (mainly N2, CH4, Ar, H2, and CO) to produce N2+, N+, Ar+, CH4+, CH3+, CH2+, H2+, H+, and CO+. Fast reactions with the neutrals convert these ions into ions such as CH5+, C2H5+, and N2H+. Different pathways are proposed to obtain the ion and electron densities. The most abundant ions are cluster ions, like CH5+.CH4, HCO+.H2, and HCNH+.C2H4, and long chain hydrocarbon ions. In atmospheres very rich in N2, such as Titan's, ions like H4C7N+ and CH3CNH+ also represent an important contribution to the total positive ion density. Three-body reactions may play an important role in the dense atmosphere of Titan, and special attention is devoted to them. The calculated electron density in the lower atmosphere reaches a peak of ~2150 cm-3 at an altitude of 90 km.

  4. Cosmic rays and terrestrial life: A brief review

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  5. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  6. Cosmic ray-modified stellar winds. I. Solution topologies and singularities

    International Nuclear Information System (INIS)

    Ko, C.M.; Webb, G.M.

    1987-01-01

    In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P/sub c/)-space, or a two-dimensional hypersurface of singularities in (r, u, P/sub c/, dP/sub c/dr)-space, where r, u, and P/sub c/ are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points. 64 references

  7. Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967--1978

    International Nuclear Information System (INIS)

    Evans, J.C.; Reeves, J.H.; Rancitelli, L.A.; Bogard, D.D.

    1982-01-01

    Cosmogenic radionuclides were measured on 48 fragments of 24 meteorites which fell between 1967 and 1978. Nondestructive gamma counting techniques were used to obtain data on 7 Be, 46 Sc, 48 V, 51 Cr, 54 Mn, 56 Co, 57 Co, 58 Co, and 60 Co on at least some of the samples. Sodium 22 and 26 Al measurements are reported on all 48 samples. In addition, new rare gas data and exposure ages are reported for the meteorites Guibga, Gorlovka, Dhajala, Louisville, Acapulco, Jilin, Kabo, Alta-Ameen, and Canon City. The cosmogenic radioisotope and rare gas data are interpreted in terms of a time dependent modulation of galactic cosmic rays spanning one full 11 year sun spot cycle. Special attention is given to the data on 22 Na, 46 Sc, 54 Mn, and 48 V with either 26 Al or 22 Ne/ 21 Ne used to provide a shielding correction. The shielding normalized data using the 26 Al method appear to correlate well with calculated production rates scaled against the Deep River neutron monitor. The data for the four isotopes are consistent with a production rate variation of a factor of 2.5--3 between solar maximum and solar minimum for sun spot cycle 20. These data demonstrate that the production rates of cosmic ray-produced nuclides in meteorites vary considerably according to modulation by the 11-year solar cycle and support the concept that variations of solar-modulated, cosmic ray flux of similar magnitude have occurred over much longer time periods

  8. Experimental Investigation of Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionisation from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets.We have chosen to start our......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  9. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  10. Distinct Pattern of Solar Modulation of Galactic Cosmic Rays above a High Geomagnetic Cutoff Rigidity

    Science.gov (United States)

    Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin

    2018-05-01

    Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.

  11. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  12. Supernova remnants and the origin of cosmic rays

    NARCIS (Netherlands)

    Vink, J.

    2014-01-01

    Supernova remnants have long been considered to be the dominant sources of Galactic cosmic rays. For a long time the prime evidence consisted of radio synchrotron radiation from supernova remnants, indicating the presence of electrons with energies of several GeV. However, in order to explain the

  13. Sensitivity of a search for cosmic ray sources including magnetic field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Martin; Erdmann, Martin; Mueller, Gero [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    We analyze the sensitivity of a new method investigating correlations between ultra-high energy cosmic rays and extragalactic sources taking into account deflections in the galactic magnetic field. In comparisons of expected and simulated arrival directions of cosmic rays we evaluate the directional characteristics and magnitude of the field. We show that our method is capable of detecting anisotropy in data sets with a low signal fraction.

  14. Propagation of ultrahigh-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  15. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  16. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  17. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  18. The dependence of cosmic ray-driven galactic winds on halo mass

    Science.gov (United States)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  19. Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements

    Science.gov (United States)

    O'Neill, Pat M.; Kim, Myung-Hee Y.

    2014-01-01

    The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GR measurements is used by deep space mission planners for the certification of micro-electronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n-20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determines the GCR flux at a given time applying an empirical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized for than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried onward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so empirical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on the gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its

  20. Modulation of Galactic Cosmic Rays in the Inner Heliosphere over Solar Cycles

    Science.gov (United States)

    Shen, Z.-N.; Qin, G.

    2018-02-01

    The 11- and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere is studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parker’s transport equations, the model incorporates a modified Parker heliospheric magnetic field, a locally static time-delayed heliosphere, and a time-dependent diffusion coefficients model in which an analytical expression of the variation of magnetic turbulence magnitude throughout the inner heliosphere is applied. Furthermore, during solar maximum, the solar magnetic polarity is determined randomly with the possibility of A > 0 decided by the percentage of the solar north polar magnetic field being outward and the solar south polar magnetic field being inward. The computed results are compared at various energies with several GCR observations, e.g., the Interplanetary Monitoring Platform 8 (IMP 8), EPHIN on board the Solar and Heliospheric Observatory (SOHO), Ulysses, and Voyager 1 and 2, and they show good agreement. We show that our model has successfully reproduced the 11- and 22-year modulation cycles.

  1. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; Falgarone, E. [LERMA, Observatoire de Paris, Ecole Normale Supérieure, PSL Research University, CNRS, UMR8112, F-75014 Paris (France); Schilke, P.; Chambers, E. T.; Ossenkopf, V. [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Benz, A. O. [Institute of Astronomy, ETH Zürich (Switzerland); Winkel, B.; Menten, K. M. [MPI für Radioastronomie, Bonn (Germany); Black, John H.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Bruderer, S.; Van Dishoeck, E. F. [Max Planck Institut für Extraterrestrische Physik, Garching (Germany); Godard, B.; Lis, D. C. [Sorbonne Universités, UPMC Univ. Paris 06, UMR8112, LERMA, F-75005 Paris (France); Goicoechea, J. R. [Instituto de Ciencias de Materiales de Madrid (CSIC), E-28049 Cantoblanco, Madrid (Spain); Gupta, H. [California Institute of Technology, Pasadena, CA 91125 (United States); Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Van der Tak, F. F. S. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ζ{sub H} throughout our sample, and find a lognormal distribution with mean log (ζ{sub H}) = –15.75 (ζ{sub H} = 1.78 × 10{sup –16} s{sup –1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.

  2. Modulation of Galactic Cosmic Rays in the Inner Heliosphere, Comparing with PAMELA Measurements

    Science.gov (United States)

    Qin, G.; Shen, Z.-N.

    2017-09-01

    We develop a numerical model to study the time-dependent modulation of galactic cosmic rays in the inner heliosphere. In the model, a time-delayed modified Parker heliospheric magnetic field (HMF) and a new diffusion coefficient model, NLGCE-F, from Qin & Zhang, are adopted. In addition, the latitudinal dependence of magnetic turbulence magnitude is assumed to be ˜ (1+{\\sin }2θ )/2 from the observations of Ulysses, and the radial dependence is assumed to be ˜ {r}S, where we choose an expression of S as a function of the heliospheric current sheet tilt angle. We show that the analytical expression used to describe the spatial variation of HMF turbulence magnitude agrees well with the Ulysses, Voyager 1, and Voyager 2 observations. By numerically calculating the modulation code, we get the proton energy spectra as a function of time during the recent solar minimum, it is shown that the modulation results are consistent with the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics measurements.

  3. Transition-radiation detectors for cosmic-ray research

    International Nuclear Information System (INIS)

    Mueller, D.; Chicago Univ., Ill.

    1975-01-01

    Transition-radiation detectors for cosmic-ray work are described which consist of plastic foam of multiple plastic foil radiators, followed by proportional chambers. A summary of the properties of such detectors is given, and the detection and discrimination efficiencies for energetic particles are discussed. Several possible applications of such devices for studies of cosmic-ray particles in the energy region γ=E/mc 2 >10 3 are advertised

  4. CHARGE SPECTRUM OF HEAVY AND SUPERHEAVY COMPONENTS OF GALACTIC COSMIC RAYS: RESULTS OF THE OLIMPIYA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Victor; Kalinina, Galina; Pavlova, Tatyana, E-mail: aval37@mail.ru, E-mail: gakalin@mail.ru, E-mail: pavlova4tat@mail.ru [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., Moscow 119991 (Russian Federation); and others

    2016-10-01

    The aim of the OLIMPIYA experiment is to search for and identify traces of heavy and superheavy nuclei of galactic cosmic rays (GCR) in olivine crystals from stony–iron meteorites serving as nuclear track detectors. The method is based on layer-by-layer grinding and etching of particle tracks in these crystals. Unlike the techniques of other authors, this annealing-free method uses two parameters: the etching rate along the track ( V {sub etch}) and the total track length ( L ), to identify charge Z of a projectile. A series of irradiations with different swift heavy ions at the accelerator facilities of GSI (Darmstadt) and IMP (Lanzhou) were performed in order to determine and calibrate the dependence of projectile charge on V {sub etch} and L . To date, one of the most essential results of the experiment is the obtained charge spectrum of GCR nuclei within the range of Z > 40, based on about 11.6 thousand processed tracks. As the result of data processing, 384 nuclei with charges Z ≥ 75 have been identified, including 10 nuclei identified as actinides (90 < Z < 103). Three tracks were identified to be produced by nuclei with charges 113 < Z < 129. Such nuclei may be part of the Island of Stability of transfermium elements.

  5. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    Energy Technology Data Exchange (ETDEWEB)

    Letaw, J.R.; Adams, J.H.

    1986-07-15

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements of HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.

  6. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  7. Ultrahigh energy cosmic rays from nearby starburst galaxies

    Science.gov (United States)

    Attallah, Reda; Bouchachi, Dallel

    2018-04-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic-ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh energy cosmic rays through the state-of-the-art simulation framework CRPropa 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  8. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  9. Interstellar propagation of low energy cosmic rays

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  10. CERN explores link between cosmic rays and clouds

    CERN Multimedia

    2006-01-01

    "Scientists at CERN, the European Organisation for Nuclear Research, have started a new experiment to investigate the possible influence of galactic cosmic rays on the Earths clouds and climate. This is the first time that a high energy physics accelerator has been used for atmospheric and climate science." (1 page)

  11. Observation of superheavy primary cosmic ray nuclei with solid state track detectors and x-ray films

    International Nuclear Information System (INIS)

    Doke, Tadayoshi; Hayashi, Takayoshi; Ito, Kensai; Yanagimachi, Tomoki; Kobayashi, Shigeru.

    1977-01-01

    The measurements of energy spectra and the nuclear charge distribution of superheavy nuclei heavier than iron in primary cosmic ray can provide information on the origin, propagation and life time of the cosmic ray. Since incident particles are in the region of relativistic velocity (the low energy cosmic ray below the cutoff energy is forbidden from entering), the charges of cosmic ray nuclei can be determined without knowing the energy of particles. The balloon-borne solid state track detector and plastic and X-ray films were employed for the detection of superheavy cosmic ray, and the five events were detected with the cellulose nitrate film. The flux of superheavy nuclei is predicted from the present analysis. (Yoshimori, M.)

  12. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.

  13. Implications of the IRAS data for galactic gamma-ray astronomy and EGRET

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distributions of galactic far-infrared emission were obtained independently for both the northern and southern hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale

  14. Cosmic-ray modulation: an ab initio approach

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N.E.; Burger, R.A., E-mail: 12580996@nwu.ac.za [Center for Space Research, North-West University, Potchefstroom (South Africa)

    2014-07-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  15. Cosmic-ray modulation: an ab initio approach

    International Nuclear Information System (INIS)

    Engelbrecht, N.E.; Burger, R.A.

    2014-01-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  16. Cosmic-ray phenomenology and data analysis with the CREAM experiment

    International Nuclear Information System (INIS)

    Coste, B.

    2012-01-01

    The sources of Galactic cosmic-ray (GCR) nuclei are still poorly identified. This is partly due to the diffusive propagation (in turbulent magnetic fields) that erases all directional information about the measured fluxes. The species that are predominantly created and accelerated in the sources are denoted 'primary species'. Those mostly created by spallation of heavier primary species are denoted 'secondary species'. While primary fluxes give access to the source parameters, secondary- to-primary ratios trace propagation processes. Key quantities for such studies are the fragmentation cross sections on the interstellar gas and the measured fluxes and ratios. In the first part of this thesis, we provide new constraints on the Galactic propagation parameters from the quartet of elements ( 1 H, 2 H, 3 He, 4 He), relying on a new estimate of their cross sections and a detailed statistical analysis. The derived constraints are competitive with those obtained from the standard B/C ratio analysis. The results are however limited by the precision of current measurements and motivate the development of new experiments. The second part of this thesis is dedicated to the analysis of cosmic-ray fluxes measured with the CREAM balloon-borne experiment. We present the particle identification in the detector, the estimation of efficiencies for each sub-detector, the energy reconstruction, and the atmospheric correction. Applied to the 3. flight data (CREAM-III), we provide new data points for the boron, carbon, nitrogen and oxygen elements above 100 GeV/n. (author)

  17. A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum

    Science.gov (United States)

    Eisch, Jonathan

    Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event

  18. Recent Observations of Energetic Particles from the Voyager Spacecraft

    Science.gov (United States)

    Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.; Webber, W. R.

    2013-05-01

    The Voyager spacecraft have been exploring the heliosheath since their crossings of the solar wind termination shock on December 2004 (Voyager 1) and August 2007 (Voyager 2). Starting on 7 May 2012, dramatic short-term changes in the intensities of heliospheric particles and galactic cosmic rays have been occurring periodically at Voyager 1. In July, a series of encounters with a heliospheric depletion region occurred, culminating on 25 August 2012 with the durable entry into the region by Voyager 1 (durable at least through the time of this writing in early February 2012). This depletion region is characterized by the disappearance of particles accelerated in the heliosphere, the anomalous cosmic rays and termination shock particles, and the increased intensity of galactic cosmic ray nuclei and electrons. The result is that the low-energy part of the galactic cosmic ray spectra is being revealed for the first time. Data from the magnetometer experiment on Voyager 1 implies that the spacecraft is not yet in the interstellar medium, but it apparently has a good connection path to it. At Voyager 2, dramatic changes haven't occurred but there are longer-term trends in the intensities that are different from what were observed on Voyager 1. We will report on the recent observations of energetic particles from both spacecraft. This work was supported by NASA under contract NNN12AA012.

  19. Super-TIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    Science.gov (United States)

    Binns, Walter

    predominately r-process nuclei. Super-TIGER has unique capabilities to address the APRA program solicitation for investigations of particles of cosmic origin and will advance our understanding of the fundamental operational aspects of detectors for future space flight missions. As a dedicated UHCR instrument, Super-TIGER provides critical measurements to unravel the mystery of galactic cosmic ray (GCR) origins and complements instruments with different observational aims including AMS, CALET, BESS-Polar, CREAM, TRACER, Fermi, and PAMELA.

  20. Direct cosmic ray muons and atmospheric neutrinos

    International Nuclear Information System (INIS)

    Ryazhskaya, O.G.; Volkova, L.V.; Zatsepin, G.T.

    2005-01-01

    A possible contribution of very short living particles (particles with life-time much shorter than that of charmed particles), for example, resonances, into cosmic ray muon and atmospheric neutrino fluxes (direct muons and neutrinos) is estimated. This contribution could become of the same order of magnitude as that from pions and kaons (conventional) already at energies of hundreds TeV and tens TeV for muons and muon neutrinos coming to the sea level in the vertical direction correspondingly. Of course, the estimation has quite a qualitative character and even it is quite arbitrary but it is necessary to keep this contribution in mind when studying EAS, cosmic ray muon component or trying to interpret data of experiments on cosmic neutrino searching at high energies

  1. Constraints on the galactic distribution of cosmic rays from the COS-B gamma-ray data

    International Nuclear Information System (INIS)

    1985-08-01

    The velocity information of the HI and CO observations is used as a distance indicator to ascertain the spatial distribution of the interstellar gas. Using this distance information, the galacto-centric distribution of the gamma-ray emissivity (the production rate per H atom) is determined for three gamma-ray energy ranges from a correlation study of the gamma-ray intensity maps and the gas-tracer maps for selected galacto-centric distance intervals, taking into account the expected IC contribution and pointlike gamma-ray sources. On the assumption that unresolved gamma-ray point sources do not contribute significantly to the observed gamma-ray emission, the gamma-ray emissivity is proportional to the Cosmic ray density and, more specifically, the energy dependence can be used to study separately the distribution of Cosmic ray electrons and nuclei: whereas the emission for the 300 MeV - 5 GeV range is dominated by π 0 -decay, the 70 MeV - 150 MeV range has a large electron bremsstrahlung contribution

  2. A Tale of cosmic rays narrated in γ rays by Fermi

    International Nuclear Information System (INIS)

    Tibaldo, Luigi

    2014-01-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ -ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ -ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ - ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multi messenger observations are bringing ever closer to solving the cosmic-ray mystery

  3. A Tale of cosmic rays narrated in γ rays by Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Tibaldo, Luigi, E-mail: ltibaldo@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park (United States)

    2014-07-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ -ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ -ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ - ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multi messenger observations are bringing ever closer to solving the cosmic-ray mystery

  4. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  5. The charged particle veto system of the cosmic ray electron synchrotron telescope

    Science.gov (United States)

    Geske, Matthew T.

    The Cosmic Ray Electron Synchrotron Telescope is a balloon-borne detector designed to measure cosmic electrons at energies from 2 to 50 TeV. CREST completed a successful 10-day Antarctic flight which launched on December 25, 2011. CREST utilizes a novel detection method, searching for the synchrotron radiation emitted by the interaction of TeV-energy electrons with the geomagnetic field. The main detector component for CREST is a 32 x 32 square array of BaF 2 crystal detectors coupled to photomultiplier tubes, with an inter-crystal spacing of 7.5 cm. This document describes the design, construction and flight of the CREST experiment. A special focus is put upon the charged particle veto system, and its use in the analysis of the CREST results. The veto system, consisting of a series of 27 large slabs of organic plastic scintillator read out through photomultiplier tubes, is designed as a passive mechanism for rejecting charged particle events that could contaminate the X-ray signal from synchrotron radiation. The CREST veto system has 99.15% geometric coverage, with individual detector components exhibiting a mean detection efficiency of 99.7%. In whole, the veto system provides a charged particle rejection factor of better than 7 x 103.

  6. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    International Nuclear Information System (INIS)

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.; Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.

    2010-01-01

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ∼70 to ∼450 MeV nucleon -1 , near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ∼20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  7. Study of cosmic rays reveals secrets of solar-terrestrial science

    Science.gov (United States)

    Jokipii, J. R.

    For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.

  8. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique......We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  9. Maximum entropy analysis of cosmic ray composition

    Czech Academy of Sciences Publication Activity Database

    Nosek, D.; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, J.

    2016-01-01

    Roč. 76, Mar (2016), s. 9-18 ISSN 0927-6505 R&D Projects: GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : ultra-high energy cosmic rays * extensive air showers * cosmic ray composition Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.257, year: 2016

  10. On the Origin of Ultra High Energy Cosmic Rays II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  11. Future Extensive Air Shower arrays: From Gamma-Ray Astronomy to Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sciascio Giuseppe Di

    2016-01-01

    Full Text Available Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.. The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 1011 – 1018 eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.

  12. Power requirements for cosmic ray propagation models involving diffusive reacceleration; estimates and implications for the damping of interstellar turbulence

    Science.gov (United States)

    Drury, Luke O.'C.; Strong, Andrew W.

    2017-01-01

    We make quantitative estimates of the power supplied to the Galactic cosmic ray population by second-order Fermi acceleration in the interstellar medium, or as it is usually termed in cosmic ray propagation studies, diffusive reacceleration. Using recent results on the local interstellar spectrum, following Voyager 1's crossing of the heliopause, we show that for parameter values, in particular the Alfvén speed, typically used in propagation codes such as GALPROP to fit the B/C ratio, the power contributed by diffusive reacceleration is significant and can be of order 50% of the total Galactic cosmic ray power. The implications for the damping of interstellar turbulence are briefly considered.

  13. Long-lived staus from cosmic rays

    International Nuclear Information System (INIS)

    Ahlers, M.; Illana, J.I.; Masip, M.

    2007-05-01

    The collision of a high energy cosmic ray with a nucleon in the upper atmosphere could produce long-lived heavy particles. Such particles would be very penetrating, since the energy loss in matter scales as the inverse mass, and could reach a neutrino telescope like IceCube from large zenith angles. Here we study this possibility and focus on the long-lived stau of SUSY models with a gravitino LSP. The signal would be a pair of muon-like parallel tracks separated by 50 meters along the detector. We evaluate the background of muon pairs and show that any events from zenith angles above 80. could be explained by the production of these heavy particles by cosmic rays. (orig.)

  14. Long-lived staus from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Illana, J.I.; Masip, M. [Granada Univ. (Spain). CAFPE y Dept. de Fisica Teorica y del Cosmos; Meloni, D. [Univ. degli Studi di Roma La Spienza (Italy). Dipt. di Fisica; INFN, Roma (Italy)

    2007-05-15

    The collision of a high energy cosmic ray with a nucleon in the upper atmosphere could produce long-lived heavy particles. Such particles would be very penetrating, since the energy loss in matter scales as the inverse mass, and could reach a neutrino telescope like IceCube from large zenith angles. Here we study this possibility and focus on the long-lived stau of SUSY models with a gravitino LSP. The signal would be a pair of muon-like parallel tracks separated by 50 meters along the detector. We evaluate the background of muon pairs and show that any events from zenith angles above 80. could be explained by the production of these heavy particles by cosmic rays. (orig.)

  15. Correlation between galactic HI and the cosmic microwave background

    International Nuclear Information System (INIS)

    Land, Kate; Slosar, Anze

    2007-01-01

    We revisit the issue of a correlation between the atomic hydrogen gas in our local galaxy and the cosmic microwave background, a detection of which has been claimed in some literature. We cross correlate the 21-cm emission of galactic atomic hydrogen as traced by the Leiden/Argentine/Bonn Galactic Hi survey with the 3-year cosmic microwave background data from the Wilkinson microwave anisotropy probe. We consider a number of angular scales, masks, and Hi velocity slices and find no statistically significant correlation

  16. Erzion interpretation of negative penetrating cosmic ray particles excess flux observed in bubble chamber "SKAT"

    Science.gov (United States)

    Bazhutov, Yu. N.

    2001-08-01

    It is discussed the interpretation of negative penetrating cosmic ray particles excess flux observed in bubble chamber "SKAT" for the momentum range P > P0 = 30 GeV/c by Erzions, hypothetical heavy stable penetrating hadrons, proposed to explain the anomalous vertical muons energy spectrum at small depth underground. Here it is shown that negative charge of p articles observed in "SKAT" is the same as predicted by theoretical Erzion model. The excess particles flux ( J ˜ 10-5 cm-2 s-1 sr-1 ) corresponds to the Erzion intensity observed by scintillation telescope in our previous experiment. The threshold momentum ( P0 ) and the track length threshold ( L0 = 50 cm of liquid BrF3C) are in good accordance with Erzion stop path as for the single charged particle with mass M ≅ 200 GeV/c2 . But to don't contradict with all previous charge ratio results for cosmic ray muons in 30 - 100 GeV/c momentum range it is necessary to propose for such particles the Solar sporadic origin taking to account that both Erzion observations were in the active Sun years (April 23,1979 & July, 1999). INTRODUCTION. 20 years ago to explain anomalous energy spectrum of vertical cosmic ray muons, observed at sea level and small depth underground (particles were started [4,5,6]. Later the theoretical model U(1)xSUl(2)xSU r(2)xSU(3) of such particles (Erzions) has been created in framework of "mirror" models [7,8], which without contradictions to elementary particles Standard Model has explained large kind of another anomalous results in cosmic rays and nuclear physics [9-19]. At last after almost 20 years Erzions search they have been observed due to small vertical original scintillation telescope "Doch-4" [20,21,22]. The observed Erz ions mass was ME = (175+/-25) GeV/c2 and intensity at sea level - JE = (1.8+/-0.4)ṡ10-6 cm-2 sr-1 s-1 (at EE ≤ 6 GeV, PE ≤ 50 GeV/c2 ). To confirm such Erzion discovery it was undertook the attempt of Erzions search on one of the largest bubble chamber (BC

  17. Production of particle clustern in 50 GeV/cπ- -N and cosmic ray interactions

    International Nuclear Information System (INIS)

    Kaul, S.K.

    1977-01-01

    The role of particle clusters in multiple-pion production at accelerator and cosmic ray energies is studied employing the high multiplicity (nsub(c) > = 9) accelerator data at 50 GeV/c, and cosmic ray α-N and N-N data at 0.1-1.21 TeV and 0.25-42.3 TeV respectively. The clusters in individual interactions have been identified by employing three methods. In interactions where the measurement of the secondaries was possible, the parameters of the clusters were found from the kinematics of the cluster production process and in it rest of the cases the parameters were determined by the conventional method. A phenomeological investigation of the following aspects has been made: (i) mass and decay particles of the cluster, (ii) transverse momentum of the cluster, (iii) angular distribution of the secondary particles in the cluster system, and (iv) average momentum (Psub(0)) of the pions in the cluster-rest system. In majority of the events of each type of interactions, at least one cluster is emitted. The average characteristics of clusters produced in double and single cluster events have been found to be similar. The average mass of the cluster and the number of its charged decay particles have been found to be 1.79 +- 0.2 GeV and 5.78 +- 0.4 GeV respectively. Value of (Psub(0)) has been found to be (161.2 +- 12) MeV/c. It has been observed that the features of the clusters at accelerator and cosmic ray energies are almost similar. (author)

  18. THE EFFECT OF A DYNAMIC INNER HELIOSHEATH THICKNESS ON COSMIC-RAY MODULATION

    International Nuclear Information System (INIS)

    Manuel, R.; Ferreira, S. E. S.; Potgieter, M. S.

    2015-01-01

    The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulation model. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulation of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solar minimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays

  19. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector

    Science.gov (United States)

    De Mendonça, R. R. S.; Raulin, J.-P.; Bertoni, F. C. P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2011-07-01

    We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.

  20. Cosmic-ray world with gamma-ray astronomy: a wealth on information, an even more open issue

    Directory of Open Access Journals (Sweden)

    Cardillo Martina

    2015-01-01

    Full Text Available Since from their discovery in 1912, Cosmic-Rays (CRs are one of the most debated issues of the high energy astrophysics. Their origin is still a fundamental problem and is the subject of very intense research. Until now, the best candidate sources of Galactic CR component are Supernova Remnants (SNRs but final proof for the origin of CRs up to the knee can only be obtained through two fundamental signatures, the detection of a clear gamma-ray signature of π0 decay in Galactic sources and the identification of sources emitting a photon spectrum up to PeV energies. Both indications are quite difficult to obtain. The two gamma-ray satellites, AGILE and Fermi, together with ground telescopes operating in the TeV energy range (HESS, VERITAS and MAGIC, collected a great amount of data from SNRs. In spite of the recent discovery of the neutral pion spectral signature in the SNR W44 spectrum by AGILE (and confirmed by Fermi-LAT, all gamma-ray data collected at GeV and TeV energies for several young and middle-aged SNRs provide interesting challenges to current theoretical models. The emerging view from gamma-ray and particle detection is intriguing and lead to revisit the CR-SNR paradigm, considering also the contribution of other kind of sources.

  1. Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012

    Science.gov (United States)

    Livada, M.; Mavromichalaki, H.; Plainaki, C.

    2018-01-01

    During the burst of solar activity in March 2012, close to the maximum of solar cycle 24, a number of X-class and M-class flares and halo CMEs with velocity up to 2684 km/s were recorded. During a relatively short period (7-21 March 2012) two Forbush decreases were registered in the ground-level neutron monitor data. In this work, after a short description of the solar and geomagnetic background of these Forbush decreases, we deduce the cosmic ray density and anisotropy variations based on the daily cosmic ray data of the neutron monitor network (http://www.nmdb.eu; http://cosray.phys.uoa.gr). Applying to our data two different coupling functions methods, the spectral index of these Forbush decreases was calculated following the technique of Wawrzynczak and Alania (Adv. Space Res. 45:622-631, 2010). We pointed out that the estimated values of the spectral index γ of these events are almost similar for both cases following the fluctuation of the Forbush decrease. The study and the calculation of the cosmic ray spectrum during such cosmic ray events are very important for Space Weather applications.

  2. Some problems of physics of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1999-01-01

    Nearest 15-20 years will be years of flourishing of experimental researches into the energy of cosmic rays at > or ∼ 10 15 eV and of new discoveries in the physics of elementary particles of ultrahigh energies. Unsolved problems of modern physics of ultrahigh energy cosmic rays, which are relevant to the problems of elementary particles physics, are reviewed

  3. Non-universal spectra of ultra-high energy cosmic ray primaries and secondaries in a structured universe

    International Nuclear Information System (INIS)

    Sigl, Guenter

    2007-01-01

    Analytical calculations of extra-galactic cosmic ray spectra above ∼ 10 17 eV are often performed assuming continuous source distributions, giving rise to spectra that depend little on the propagation mode, be it rectilinear or diffusive. We perform trajectory simulations for proton primaries in the probably more realistic case of discrete sources with a density of ∼ 10 -5 Mpc -3 . We find two considerable non-universal effects that depend on source distributions and magnetic fields: First, the primary extra-galactic cosmic ray flux can become strongly suppressed below a few 10 18 eV due to partial confinement in magnetic fields surrounding sources. Second, the secondary photon to primary cosmic ray flux ratio between ≅ 3 x 10 18 eV and ≅ 10 20 eV decreases with decreasing source density and increasing magnetization. As a consequence, in acceleration scenarios for the origin of highest energy cosmic rays the fraction of secondary photons may be difficult to detect even for experiments such as Pierre Auger. The cosmogenic neutrino flux does not significantly depend on source density and magnetization. (author)

  4. Observation of cosmic-ray anisotropy in the decade below 1 PeV with a pentagon array

    Science.gov (United States)

    Moghaddam, S. Mortazavi; Bahmanabadi, M.

    2018-03-01

    The study of the anisotropy of the arrival directions is an essential tool to investigate the origin and propagation of cosmic rays primaries. A pentagon array has been designed to collect data around the knee region of cosmic ray spectrum. The experimental results of this array obtained from October 2016 to October 2017. During this period, more than 5.3 ×105 extensive air shower events at energies in the decade below 1 PeV has been accumulated by this array at Sharif University of Technology in Tehran (3 5 ° 4 3'N , 5 1 ° 2 0'E , 1200m a .s .l =890 g cm-2 ). In analyzing the data set, we have used appropriate techniques of analysis and considered environmental effects. We report the analysis of the sidereal anisotropy of Galactic cosmic rays (GCRs). In this analysis, in addition to the Compton- Getting effect due to the motion of the earth in the Galaxy, an anisotropy has been observed which is due to a unidirectional anisotropy of cosmic ray flow along the Galactic arms.

  5. LHCf sheds new light on cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The energy spectrum of the single photon obtained using data from the LHCf experiment has turned out to be very different from that predicted by the theoretical models used until now to describe the interactions between very high-energy cosmic rays and the earth's atmosphere. The consequences of this discrepancy for cosmic ray studies could be significant.   Artistic impression of cosmic rays entering Earth's atmosphere. (Credit: Asimmetrie/Infn). It took physicists by surprise when analysis of the data collected by the two LHCf calorimeters in 2010 showed that high-energy cosmic rays don't interact with the atmosphere in the manner predicted by theory. The LHCf detectors, set up 140 metres either side of the ATLAS interaction point, are dedicated to the study of the secondary particles emitted at very small angles during proton-proton collisions in the LHC, with energies comparable to cosmic rays entering the earth's atmosphere at 2.5x1016 eV. The aim of the experiment is to r...

  6. Cosmic-ray production rates of neon isotopes in meteorite minerals

    International Nuclear Information System (INIS)

    Bhandari, N.

    1988-01-01

    The rates of production of 21 Ne and 22 Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of 21 Ne and 22 Ne due to galactic cosmic rays, and the 22 Ne/ 21 Ne ratio depend upon the size of the meteoroid. The 22 Ne/ 21 Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2 cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the 22 Ne/ 21 Ne ratio. Composite production profiles are given and compared with measurements in some meteorites. (author). 22 refs

  7. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    International Nuclear Information System (INIS)

    Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Schultz, D.; Tosi, D.; BenZvi, S.; Jensen, K.; Peacock, J.; Ruggles, T.; Santander, M.; Simons, A.L.

    2016-01-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available

  8. New fermionic dark matters, extended Standard Model and cosmic rays

    Science.gov (United States)

    Hwang, Jae-Kwang

    2017-08-01

    Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 1015 eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of -4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.

  9. Pulsars and cosmic rays in the dense supernova shells

    International Nuclear Information System (INIS)

    Berezinsky, V.S.; Prilutsky, O.F.

    1977-01-01

    Cosmic rays (c.r.) injected by a young pulsar in the dense supernova shell are considered. The maintenance of the Galactic c.r. pool by pulsar production is shown to have a difficulty: adiabatic energy losses of c.r. in the expanding shell demand a high initial c.r. luminosity of pulsar, which results in too high flux of γ-radiation produced through π 0 -decays (in excess over diffuse γ-ray background). (author)

  10. An algorithm to resolve γ-rays from charged cosmic rays with DAMPE

    Science.gov (United States)

    Xu, Zun-Lei; Duan, Kai-Kai; Shen, Zhao-Qiang; Lei, Shi-Jun; Dong, Tie-Kuang; Gargano, Fabio; Garrappa, Simone; Guo, Dong-Ya; Jiang, Wei; Li, Xiang; Liang, Yun-Feng; Mazziotta, Mario Nicola; Munoz Salinas, Maria Fernanda; Su, Meng; Vagelli, Valerio; Yuan, Qiang; Yue, Chuan; Zang, Jing-Jing; Zhang, Ya-Peng; Zhang, Yun-Long; Zimmer, Stephan

    2018-03-01

    The DArk Matter Particle Explorer (DAMPE), also known as Wukong in China, which was launched on 2015 December 17, is a new high energy cosmic ray and γ-ray satellite-borne observatory. One of the main scientific goals of DAMPE is to observe GeV-TeV high energy γ-rays with accurate energy, angular and time resolution, to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays, it is challenging to identify γ-rays with sufficiently high efficiency, minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations, using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at ∼ 10GeV amounts to less than 1% of the selected sample. Finally, we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.

  11. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  12. The Hisparc cosmic ray experiment : data acquisition and reconstruction of shower direction

    NARCIS (Netherlands)

    Fokkema, D.; Fokkema, D.

    2012-01-01

    The field of cosmic ray physics is a century old and an exciting area of research. When cosmic ray particles enter our atmosphere they collide with air molecules creating new high-energy particles. These particles participate in further collisions and the entire process is known as an air shower.

  13. The ALTA cosmic ray experiment electronics system

    International Nuclear Information System (INIS)

    Brouwer, W.; Burris, W.J.; Caron, B.; Hewlett, J.; Holm, L.; Hamilton, A.; McDonald, W.J.; Pinfold, J.L.; Price, P.; Schaapman, J.R.; Sibley, L.; Soluk, R.A.; Wampler, L.J.

    2005-01-01

    Understanding the origin and propagation of high-energy cosmic rays is a fundamental area of astroparticle physics with major unanswered questions. The study of cosmic rays with energy more than 10 14 eV, probed only by ground-based experiments, has been restricted by the low particle flux. The Alberta Large-area Time-coincidence Array (ALTA) uses a sparse array of cosmic ray detection stations located in high schools across a large geographical area to search for non-random high-energy cosmic ray phenomena. Custom-built ALTA electronics is based on a modular board design. Its function is to control the detectors at each ALTA site allowing precise measurements of event timing and energy in the local detectors as well as time synchronization of all of the sites in the array using the global positioning system

  14. Enhancements of energetic particles near the heliospheric termination shock.

    Science.gov (United States)

    McDonald, Frank B; Stone, Edward C; Cummings, Alan C; Heikkila, Bryant; Lal, Nand; Webber, William R

    2003-11-06

    The spacecraft Voyager 1 is at a distance greater than 85 au from the Sun, in the vicinity of the termination shock that marks the abrupt slowing of the supersonic solar wind and the beginning of the extended and unexplored distant heliosphere. This shock is expected to accelerate 'anomalous cosmic rays', as well as to re-accelerate Galactic cosmic rays and low-energy particles from the inner Solar System. Here we report a significant increase in the numbers of energetic ions and electrons that persisted for seven months beginning in mid-2002. This increase differs from any previously observed in that there was a simultaneous increase in Galactic cosmic ray ions and electrons, anomalous cosmic rays and low-energy ions. The low-intensity level and spectral energy distribution of the anomalous cosmic rays, however, indicates that Voyager 1 still has not reached the termination shock. Rather, the observed increase is an expected precursor event. We argue that the radial anisotropy of the cosmic rays is expected to be small in the foreshock region, as is observed.

  15. Are we making progress in finding the sources of the most energetic cosmic rays?

    International Nuclear Information System (INIS)

    Hillas, A. M.

    1999-01-01

    There is progress, in the sense that although the energies assigned to cosmic rays by air shower arrays may need reducing by about 20%, energy measurements are consistent at about this level, and several experiments now accord with a spectrum which astonishingly shows no GZK cut-off near 10 20 eV, greatly limiting the possible source regions. The simplest interpretation is that few cosmic rays above 10 19 eV come from hundreds of Mpc, contrary to expectation on geometrical grounds. Most of the arrival directions of showers above 4 x 10 19 eV show little correlation with the supergalaxy or with matter concentrations within 200 Mpc. The implications of the spectrum and the arrival directions are discussed. The most likely explanations of their unexpected features are either (a) that these cosmic rays come mainly from the decay of cosmological relic particles clustered in a large galactic halo (though not if photons really do form a large part of the decay spectrum), or (b) that local intergalactic magnetic fields are unexpectedly strong, and disguise the position of and enhance one extraordinary source within a few Mpc, or (c) most particles above 10 19 eV are very different from protons after all, and do not have a threshold for serious energy loss as low as 10 20 eV, or (d) that there is a conspiracy of matching fluxes, so that most cosmic rays above 10 19 eV are from widespread extragalactic sources, but a superimposed hard spectrum from decaying halo relic particles neatly reduces the magnitude of the GZK fall-off above 10 20 eV. Several close pairs of arrival directions may yet turn out to be accidental, but if not, explanations (a) and (b) fail. There are several diagnostic tests to be made by the well-placed first (Southern) Auger Project detector and the High-Resolution Fly's Eye detector

  16. New Measurements of Suprathermal Ions, Energetic Particles, and Cosmic Rays in the Outer Heliosphere from the New Horizons PEPSSI Instrument

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.

    2017-12-01

    During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.

  17. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  18. Galactic cosmic rays in the periods of an inversion of the total solar magnetic field

    International Nuclear Information System (INIS)

    Krajnev, M.B.; Stozhkov, Yu.I.; Charakhch'yan, T.N.

    1984-01-01

    Anomalies in galactic cosmic ray (GCR) behaviour in the periods of the total solar magnetic field (TSMF) inversion are considered according to the data of neutron monitors and stratospheric measurements. These anomalies are interpreted as superpositions of two phenomena: phenomenon 1 and phenomenon 2. Phenomenon 1 is conditioned by the decrease and following strengthening of the regular interplanetary field strong strength in heliosphere in the periods of TSMF inversion. Phenomenon 2 consists in exess of GCR nuclei intensity over the expeited one, corresponding to the level of solar activity after TSMF inversion with dMsub(Z)/dt > 0 (inversion of 1969-1971) and also in decrease of observed GCR nuclei intensity as compared to the expected one after TSMF inversion with dMsub(Z)/dt < 0 (Msub(Z)-projection of magnetic field dipole moment on solar axis of rotation). The phenomenon 1 is slightly late in respect to TSMF inversion, as the phenomenon 2 takes part in the process only approximately 1 year after inversion completing

  19. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    Science.gov (United States)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  20. Catching Cosmic Rays with a DSLR

    Science.gov (United States)

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  1. Plastic scintillators in coincidence for the study of multi-particle production of sea level cosmic rays in dense medium

    Science.gov (United States)

    Chuang, L. S.; Chan, K. W.; Wada, M.

    1985-01-01

    Cosmic ray particles at sea level penetrate a thick layer of dense medium without appreciable interaction. These penetrating particles are identified with muons. The only appreciable interaction of muons are by knock on processes. A muon may have single, double or any number of knock on with atoms of the material so that one, two, three or more particles will come out from the medium in which the knock on processes occur. The probability of multiparticle production is expected to decrease with the increase of multiplicity. Measurements of the single, double, and triple particles generated in a dense medium (Fe and Al) by sea level cosmic rays at 22.42 N. Lat. and 114.20 E. Long. (Hong Kong) are presented using a detector composed of two plastic scintillators connected in coincidence.

  2. Cosmic-ray neutron simulations and measurements in Taiwan

    International Nuclear Information System (INIS)

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-01-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm -2 in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 x 10 -3 n cm -2 s -1 , was suggested. The cosmic-ray neutron background in Taiwan was studied using the FLUKA simulations and field measurements. A new measurement was performed using a car-mounted high-efficiency neutron detector, re-coding real-time neutron counting rates from sea level up to 3275 m. The attenuation of cosmic-ray neutrons in the lower atmosphere exhibited an effective attenuation length of 163 g cm -2 . The calculated neutron counting rates over predicted the measurements by ∼32 %, which leaded to a correction factor for the FLUKA-calculated cosmic-ray neutrons in the lower atmosphere in Taiwan. In addition, a previous measurement regarding neutron spectrum variation near the air/ground and air/water interfaces was re-evaluated. The results showed that the

  3. Cosmic Ray Interactions in Shielding Materials

    International Nuclear Information System (INIS)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-01-01

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth's surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  4. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  5. Radio reconstruction of the mass of ultra-high cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Dorosti, Qader [Institut fuer Kernphysik (IKP), KIT (Germany)

    2015-07-01

    Detection of ultra-high energy cosmic rays can reveal the processes of the most violent sources in the Universe, which yet has to be determined. Interaction of cosmic rays with the Earth's atmosphere results in cascades of secondary particles, i.e. air showers. Many of such particles are electrons and positrons. The induced electrons and positrons interact with the geomagnetic field and induce radio emissions. Detection of air showers along with the detection of induced radio emissions can furnish a precise measurement of the direction, energy and mass of ultra-high energy cosmic rays. The Auger Engineering Radio Array consists of 124 radio stations measuring radio emission from air showers, in order to reconstruct the energy, direction and mass of cosmic rays. In this contribution, we present a method which employs a reduced hyperbolic model to describe the shape of radio wave front. We have investigated that the parameters of the reduced hyperbolic model are sensitive to the mass of cosmic rays. The obtained results are presented in this talk.

  6. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  7. Correlation of the highest-energy cosmic rays with nearby extragalactic objects

    NARCIS (Netherlands)

    Pierre Auger Collaboration, [No Value; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez, C.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argirò, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Blümer, H.; Bohácová, M.; Bonifazi, C.; Bonino, R.; Boratav, M.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazón-Boado, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clark, P. D. J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Cronin, J.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Dobrigkeit, C.; D'Olivo, J. C.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; DuVernois, M. A.; Engel, R.; Epele, L.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fernández, A.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fonte, R.; Fracchiolla, C. E.; Fulgione, W.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Herrero, R.; Gonçalves, P.; Gonçalves do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; González, M.; Góra, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Kopmann, A.; Krieger, A.; Krömer, O.; Kümpel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Le Brun, P.; Lee, J.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Lozano Bahilo, J.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Malek, M.; Mancarella, G.; Manceñido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nguyen Thi, T.; Nierstenhöfer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschläger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ostapchenko, S.; Otero, L.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pçkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Ngoc, DiepPham; Ngoc, DongPham; Pham Thi, T. N.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Porter, T. A.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Rídky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Rodríguez Frías, D.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Ros, G.; Rosado, J.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovánek, P.; Schüssler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smetniansky De Grande, N.; Smialkowski, A.; Smída, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torresi, D.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vázquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Waldenmaier, T.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Xu, J.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    2007-01-01

    Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 × 1019 electron volts and the positions of active galactic nuclei (AGN) lying within ~75 megaparsecs. We rejected the

  8. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  9. Cosmic Ray Physics with the KASCADE-Grande Observatory

    Science.gov (United States)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    The existence of a knee at a few PeV in the all-particle cosmic ray energy spectrum has been well established by several experiments but its physical origin has eluded researches for a long time. It is believed that keys to disentangle the mystery could be found in the spectrum and the composition of cosmic rays between 1 PeV and 1 EeV. A first detailed look into the elemental chemical abundances of cosmic rays in this energy regime was provided by both the KASCADE and the KASCADE-Grande experiments. Their measurements opened the door to a wealth of new data on the subject, which led to the discovery of new structures in the all-particle energy spectrum and the confirmation of knee-like features in the spectra of individual mass groups, as well as the observation of an unexpected ankle-like structure at around 100 PeV in the flux of the light component of cosmic rays. In this contribution, early findings with the KASCADE-Grande experiment will be reviewed and then a short update on the analyses currently performed with the data of the observatory will be presented.

  10. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  11. Cosmic neutrinos as a probe of TeV-scale physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M.

    2007-02-15

    Ultra-high energy cosmic neutrinos are versatile probes of astrophysics, astronomy, and particle physics. They represent the messengers of hadronic processes in cosmic accelerators and survive the propagation through the interstellar medium practically unscathed. We investigate the neutrino fluxes associated with optically thin proton sources which provide a diagnostic of the transition between galactic and extragalactic cosmic rays. The center of mass energies in collisions of these cosmic neutrinos with atomic nuclei in the atmosphere or the Earth's interior easily exceed those so far reached in man-made accelerators. We discuss the prospects of observing supersymmetric neutrino interactions with Cherenkov telescopes and speculate about a neutrino component in extremely high energy cosmic rays from exotic interactions in the atmosphere. (orig.)

  12. Observation of cosmic-ray particles with artificial satellites in Japan

    International Nuclear Information System (INIS)

    Nagata, Katsuaki

    1981-01-01

    The present status are described on the cosmic-ray observation with artificial satellites in Japan. In 1978, an electrostatic analyzer was loaded on the satellite EXOS-A to measure low energy electrons. The spectra taken on April 27, 1978, showed that the electron flux decreased exponentially with the increasing electron energy. A space environment monitor (SEM) was loaded on a geostationary meteorological satellite (GMS) in 1977. The SEM consists of 5 Si detectors, with which particle identification can be made, and protons with the energy of 500 MeV and alpha particles with the energy of 370 MeV were observed. The time variation of particle flux was large in the low energy part and small in the high energy part. In 1984, the satellite EXOS-C will be launched. The purposes of this project are general observation of the middle atmosphere composition and the study of the anomaly of the ionosphere above the Brazilian Anomaly. Measurement of low energy particles will be done with an electrostatic analyzer, and that of high energy particles with a telescope with Si detectors. Other projects designed in Japan are OPEN-J and EXOS-D. (Kato, T.)

  13. Search for tachyonomonopoles in cosmic rays

    International Nuclear Information System (INIS)

    Bartlett, D.F.; Nauenberg, U.

    1977-05-01

    Two of the most speculative particles are the magnetic monopole and the tachyon. One conjectures that these particles exist in cosmic rays as a combined ''tachyon monopole''. The fringing magnetic field of Fermilab's 15-foot bubble chamber is used to ''accelerate'' the tachyon to sufficiently high energy that it can emit visible Cherenkov radiation. This radiation is detected by 8 photomultiplier tubes mounted on the corners of a room-sized box which is suspended from the ceiling above the bubble chamber. Two small plastic scintillator counters placed inside the box differentiate between extensive air showers and tachyon monopoles. The detector was exposed to cosmic rays for 50 days. During that time we have not recorded any tachyon monopoles. The flux of such particles in cosmic rays cannot exceed 2.5 x 10 -15 cm -2 sec -1 if they follow the earth's magnetic field lines or 1.2 x 10 -12 cm -2 sec -1 if they do not. In either event this limit is at least 400 times lower than that inferred from a previous measurement. One did record counts from extensive air showers at a rate consistent with previous experiment. This rate was halved when the bubble chamber's magnetic field was turned off. This phenomenon was likely caused by focusing of the shower electrons in the fringing magnetic field of the bubble chamber

  14. The basis for cosmic ray feedback: Written on the wind

    Science.gov (United States)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  15. Cosmic Ray Signatures of Decaying Dark Matter

    International Nuclear Information System (INIS)

    Ibarra, Alejandro

    2011-01-01

    Astrophysical and cosmological observations do not require the dark matter particles to be absolutely stable. If they are indeed unstable, their decay into Standard Model particles might occur at a sufficiently large rate to allow the indirect detection of dark matter through an anomalous contribution to the high energy cosmic ray fluxes. We analyze the implications of the excess in the total electron plus positron flux and the positron fraction reported by the Fermi and PAMELA collaborations, respectively, for the scenario of decaying dark matter. We also discuss the constraints on this scenario from measurements of other cosmic ray species and the predictions for the diffuse gamma ray flux and the neutrino flux. In particular, we expect a sizable dipole-like anisotropy which may be observed in the near future by the Fermi-LAT.

  16. Solar-cosmic-ray variability

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1976-01-01

    The maximum flux of particles from solar events that should be considered in designing the shielding for a space habitation is discussed. The activities of various radionuclides measured in the top few centimeters of lunar rocks are used to examine the variability of solar cosmic ray fluxes over the last five million years. 10 references

  17. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    Science.gov (United States)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the International Advisory Committee, I should like to

  18. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  19. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    Science.gov (United States)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  20. ROLE OF LINE-OF-SIGHT COSMIC-RAY INTERACTIONS IN FORMING THE SPECTRA OF DISTANT BLAZARS IN TeV GAMMA RAYS AND HIGH-ENERGY NEUTRINOS

    International Nuclear Information System (INIS)

    Essey, Warren; Kusenko, Alexander; Kalashev, Oleg; Beacom, John F.

    2011-01-01

    Active galactic nuclei (AGNs) can produce both gamma rays and cosmic rays. The observed high-energy gamma-ray signals from distant blazars may be dominated by secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. This explains the surprisingly low attenuation observed for distant blazars, because the production of secondary gamma rays occurs, on average, much closer to Earth than the distance to the source. Thus, the observed spectrum in the TeV range does not depend on the intrinsic gamma-ray spectrum, while it depends on the output of the source in cosmic rays. We apply this hypothesis to a number of sources and, in every case, we obtain an excellent fit, strengthening the interpretation of the observed spectra as being due to secondary gamma rays. We explore the ramifications of this interpretation for limits on the extragalactic background light and for the production of cosmic rays in AGNs. We also make predictions for the neutrino signals, which can help probe the acceleration of cosmic rays in AGNs.

  1. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    Science.gov (United States)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  2. COSMIC-RAY SPALLATION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI: A CASE STUDY OF NGC 4051

    International Nuclear Information System (INIS)

    Turner, T. J.; Miller, L.

    2010-01-01

    We investigate conditions for and consequences of spallation in radio-quiet Seyfert galaxies. The work is motivated by the recent discovery of significant line emission at 5.44 keV in Suzaku data from NGC 4051. The energy of the new line suggests an identification as Cr I Kα emission; however, the line is much stronger than would be expected from material with cosmic abundances, leading to a suggestion of enhancement owing to nuclear spallation of Fe by low-energy cosmic rays from the active nucleus. We find that the highest abundance enhancements are likely to take place in gas out of the plane of the accretion disk and that timescales for spallation could be as short as a few years. The suggestion of a strong nuclear flux of cosmic rays in a radio-quiet active Seyfert galaxy is of particular interest in light of the recent suggestion from Pierre Auger Observatory data that ultra-high-energy cosmic rays may originate in such sources.

  3. Dark matter from cosmic defects on galactic scales?

    International Nuclear Information System (INIS)

    Guerreiro, N.; Carvalho, J. P. M. de; Avelino, P. P.; Martins, C. J. A. P.

    2008-01-01

    We discuss the possible dynamical role of extended cosmic defects on galactic scales, specifically focusing on the possibility that they may provide the dark matter suggested by the classical problem of galactic rotation curves. We emphasize that the more standard defects (such as Goto-Nambu strings) are unsuitable for this task but show that more general models (such as transonic wiggly strings) could in principle have a better chance. In any case, we show that observational data severely restricts any such scenarios.

  4. Cosmic ray nuclei detection in the balloon borne nuclear emulsion gamma ray telescope flight in Australia (GRAINE 2015

    Directory of Open Access Journals (Sweden)

    Iyono Atsushi

    2017-01-01

    Full Text Available Nuclear emulsion plates for studying elementary particle physics as well as cosmic ray physics are very powerful tracking tools with sub-micron spatial resolutions of charged particle trajectories. Even if gamma rays have to be detected, electron-positron pair tracks can provide precise information to reconstruct their direction and energy with high accuracy. Recent developments of emulsion analysis technology can digitally handle almost all tracks recorded in emulsion plates by using the Hyper Track Selector of the OPERA group at NAGOYA University. On the other hand, the potential of time resolutions have been equipped by emulsion multilayer shifter technology in the GRAINE (Gamma Ray Astro-Imager with Nuclear Emulsion experiments, the aims of which are to detect cosmic gamma rays such as the Vela pulsar stellar object by precise emulsion tracking analysis and to study cosmic ray particle interactions and chemical compositions. In this paper, we focus on the subject of cosmic ray nuclei detection in the GRAINE balloon flight experiments launched at Alice Springs, Australia in May 2015.

  5. THE UNREASONABLE WEAKNESS OF R -PROCESS COSMIC RAYS IN THE NEUTRON-STAR-MERGER NUCLEOSYNTHESIS SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Kyutoku, Koutarou [Interdisciplinary Theoretical Science (iTHES) Research Group, RIKEN, Wako, Saitama 351-0198 (Japan); Ioka, Kunihito, E-mail: koutarou.kyutoku@riken.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2016-08-10

    We reach the robust conclusion that, by combining the observed cosmic rays of r -process elements with the fact that the velocity of the neutron-star-merger ejecta is much higher than that of the supernova ejecta, either (1) the reverse shock in the neutron-star-merger ejecta is a very inefficient accelerator that converts less than 0.003% of the ejecta kinetic energy to the cosmic-ray energy or (2) the neutron star merger is not the origin of the Galactic r -process elements. We also find that the acceleration efficiency should be less than 0.1% for the reverse shock of the supernova ejecta with observed cosmic rays lighter than the iron.

  6. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  7. Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look

    Science.gov (United States)

    Escudero, Miguel; Witte, Samuel J.; Hooper, Dan

    2017-11-01

    Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.

  8. Hidden Sector Dark Matter and the Galactic Center Gamma-Ray Excess: A Closer Look

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Witte, Samuel J.; Hooper, Dan

    2017-09-20

    Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.

  9. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  10. High-energy cosmic rays: Puzzles, models, and giga-ton neutrino ...

    Indian Academy of Sciences (India)

    magnetic field, it is believed that cosmic rays of energy <1019 eV are of galactic ... high energy near the central source is impossible due to the high density of pho- .... 1020 eV, the Fly's Eye, HiRes and Yakutsk experiments are in agreement .... detection rate of ~20 neutrino-induced muon events per year (over 4π sr) in a.

  11. Modelling cosmic ray intensities along the Ulysses trajectory

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2005-03-01

    Full Text Available Time dependent cosmic ray modulation in the inner heliosphere is studied by comparing results from a 2-D, time-dependent cosmic ray transport model with Ulysses observations. A compound approach, which combines the effects of the global changes in the heliospheric magnetic field magnitude with drifts to establish a realistic time-dependence, in the diffusion and drift coefficients, are used. We show that this model results in realistic cosmic ray modulation from the Ulysses launch (1990 until recently (2004 when compared to 2.5-GV electron and proton and 1.2-GV electron and Helium observations from this spacecraft. This approach is also applied to compute radial gradients present in 2.5-GV cosmic ray electron and protons in the inner heliosphere. The observed latitude dependence for both positive and negative charged particles during both the fast latitude scan periods, corresponding to different solar activity conditions, could also be realistically computed. For this an additional reduction in particle drifts (compared to diffusion toward solar maximum is needed. This results in a realistic charge-sign dependent modulation at solar maximum and the model is also applied to predict charge-sign dependent modulation up to the next expected solar minimum.

  12. The origin of very high cosmic rays

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1975-01-01

    There are now two arguments that indicate that the whole cosmic ray spectrum is created in every galaxy, primarily Sc galaxies, and furthermore, that the source(s) should be occuring randomly such as supernova approximately = 1 per 50 years. The canonical source must produce a flatter spectrum by E +1 for E > 10 15 eV so that galactic leakage approximately E**-1 gives the observed slope, E 18 eV. For E > 3 x 10 18 eV all galaxies contribute to the extragalactic flux which equals approximately the galactic flux. Anisotropy occurs because of the statistical probability that several sources (supernovae) occur in this galaxy in the time and position such as to give rise to a flux greater than the extragalactic flux. (orig./BJ) [de

  13. Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus

    Science.gov (United States)

    Cucinotta, Francis

    An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.

  14. Cosmic ray anisotropy searches with AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Zeissler, Stefan; Gebauer, Iris; Trumpf, Ricarda [Karlsruher Institut fuer Technologie (KIT) (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art particle detector designed to operate as an external module on the International Space Station (ISS). In this unique space environment cosmic particles can be measured with high precision over an energy range from GeV up to TeV. The AMS collaboration provided precise measurements of the electron and positron fluxes, which indicate an additional source of positrons among the various cosmic particles. Possible candidates for this source are local pulsars, a local source of positrons produced in proton-gas interactions or dark matter annihilation. In the first two cases a possible anisotropy in the electrons and positrons incoming direction at Earth might be detectable. To determine the level of isotropy the measured data is compared to reference maps, which simulate the measurement of an isotropic sky. A common choice of reference maps are proton count maps or shuffled maps, which redistribute measured incoming directions over the whole measuring time. Both choices lead to difficulties in the reconstruction of a marginal signal with a big expansion over the galactic sky as it would be the case for charged cosmic particles. We developed a method to construct reference maps based on fundamental detector characteristics such as the lifetime and the geometric acceptance. Using this we are able to reconstruct the isotropic sky as it would be seen by the detector. We demonstrate the performance of the method using AMS-02 data.

  15. Cosmic rays around 1018 eV: Implications of contemporary measurements on the origin of the ankle feature

    International Nuclear Information System (INIS)

    Deligny, O.

    2014-01-01

    The impressive power-law decay of the energy spectrum of cosmic rays over more than thirty orders of magnitude in intensity and for energies ranging over eleven decades between 10 9 eV and 10 20 eV is actually dotted with small irregularities. These irregularities are highly valuable for uncovering and understanding the modes of production and propagation of cosmic rays. They manifest themselves through changes in the spectral index characterising the observed power laws. One of these irregularities, known as the ankle, is a hardening of the energy spectrum of cosmic rays in the 10 18 eV energy range. There are many possible interpretations for explaining it. One is to say that the ankle may be the spectral feature marking the transition between Galactic and extragalactic cosmic rays. Another one is to understand the ankle as the natural distortion of a proton-dominated extragalactic spectrum due to e ± pair production in the collisions with the photons of the cosmic microwave background. While the data collected at the Telescope Array supports the second explanation, the data collected at the Pierre Auger Observatory requires a totally different picture in terms of introducing a new component mainly composed of light elements in order to fill the gap of the all-particle energy spectrum between 10 17 eV and 4*10 18 eV, and to reproduce the measurements related to mass composition. If contemporary observations characterising the ankle have shed new lights, they are still far from being able to deliver all the story

  16. The energy spectrum of cosmic-ray electrons measured with H.E.S.S

    International Nuclear Information System (INIS)

    Egberts, Kathrin

    2009-01-01

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse γ rays from the Galactic plane. (orig.)

  17. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  18. Solar /flare/ cosmic ray proton fluxes in the recent past

    International Nuclear Information System (INIS)

    Venkatesan, T.R.; Nautiyal, C.M.; Padia, J.T.; Rao, M.N.

    1980-01-01

    A method for determining the average solar cosmic ray (SCR) proton fluxes which occurred in the last few million yr from He-3 samples from suitable lunar rocks is presented. Specimens removed from 0.3-1.5, 5-7, and 7-9 mm depths of the lunar surface were cleaned to reveal the feldspar grains of interest and heated for stepwise mass-spectrometric analyses. The 200 micron or greater grains were outgassed at 600, 1000, 1200, and 1600 C and noble gas data were recorded, along with isotopic ratio data. He-3 is assumed to have been degassed completely from rocks shocked by an impact event and diffusion losses are negligible due to the 90 C or less temperature exposures on the lunar surface. Thus the presence of He-3 is indicative of cosmic ray incidence, and known galactic cosmic ray production abundances for He-3 can be subtracted from the total He-3 observed, yielding the SCR flux results, which, when combined with exposure data, yield a history of SCR events

  19. Radio detection of cosmic rays with LOFAR

    NARCIS (Netherlands)

    Hörandel, J. R.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Karskens, T.; Krause, M.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Thoudam, S.; Trinh, T. N G

    2015-01-01

    When high-energy cosmic rays (ionized atomic nuclei) impinge on the atmosphere of the Earth they interact with atomic nuclei and initiate cascades of secondary particles - the extensive air showers. Many of the secondary particles in the air showers are electrons and positrons. They cause radiation

  20. A Study of the Link between Cosmic Rays and Clouds with a Cloud Chamber at the CERN PS

    CERN Multimedia

    Laakso, L K; Lehtipalo, K; Miettinen, P K; Duarte branco da silva santos, F; Stojkov, Y; Jud, W; Wurm, F; Pinterich, T; Dommen, J; Curtius, J; Kreissl, F C; Minginette, P; Azeredo lima, J M; Kulmala, M T; Petaja, T T; Volkamer, R M; Schafer, M; Rodrigues tome, A; Viisanen, Y A; Onnela, A T O; Kristic, R; Ehrhart, S K; Amorim, A J; Maksumov, O; Kupc, A; Sitals, R P; Dunne, E M; Riipinen, I A; Downard, A J; Virtanen, A; Tsagkogeorgas, G; Schuchmann, S; Kvashnin, A; Hansel, A; Gonzalez carracedo, L R; Vrtala, A; Schallhart, S; Yan, C; Stratmann, F; Pinto mogo, S I; Makhmutov, V; Riccobono, F; Weingartner, E P; Kurten, C A; Rondo, L; Ruuskanen, T M; Finkenzeller, H F; Laaksonen, A J; De menezes, L; Hauser, D; Kajos, M K; Schmitt, T M; Mathot, S; Wasem, A; Guida, R; Metzger, A E; Baltensperger, U; Kirkby, J; Duplissy, J; Franchin, A; Rorup, B; Flagan, R C; Wex, H D

    2002-01-01

    Three recent independent observations suggest that galactic cosmic rays may exert a significant influence on the climate. Firstly, satellite data suggest a positive correlation between variations of cosmic ray intensity and the fraction of Earth covered by low clouds. Secondly, palaeoclimatic data provide extensive evidence for an association between cosmic ray intensity and climate over the last 10 kyr and at earlier times. Finally, the presence of ion-induced nucleation of new aerosol in the atmosphere is supported by recent observations. If cosmic rays do indeed enhance aerosol production and low cloud formation, this could exert a strong cooling influence on the radiative energy balance of Earth. Physical mechanisms by which cosmic rays may affect aerosol and clouds have been proposed and modelled, but definitive experiments are lacking. The aim of CLOUD is to investigate the nature and significance of cosmic ray-aerosol-cloud mechanisms under controlled laboratory conditions using the T11 beam at the CER...

  1. Turbulence and particle acceleration

    International Nuclear Information System (INIS)

    Scott, J.S.

    1975-01-01

    A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed

  2. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  3. Composition of cosmic rays in the knee region of the primary energy spectrum

    International Nuclear Information System (INIS)

    Das Gupta, U.

    1989-01-01

    The Soudan Surface-Underground Cosmic Ray Telescope is located at the Soudan iron mine in northern Minnesota. It consists of a coincidence arrangement of two detectors-one installed at the surface of the mine and the other located underground, at a vertical depth of 600 meters. Using such an arrangement, the energy and composition of a primary cosmic ray particle can be determined independently of one another. When a high energy cosmic ray enters the Earth's atmosphere, secondary particles are produced in successive interactions, creating an extensive air shower. Using the surface detector, the number of particles in the shower at the surface of the Earth can be counted and the energy of the primary particle estimated. Of all the particles that are created in a cosmic ray air shower, only the energetic muons are able to penetrate underground. The separations of the muons below ground are measured by the Soudan 1 detector and this serves as an indicator of the type of nucleus that initiated the shower. The Soudan surface-underground detector is sensitive to primary cosmic rays of energies between 10 14 and 10 18 eV. The data from the experiment were compared to the predictions of various cosmic ray composition models, within this energy range. The data supported a composition model that was proton dominated up to the highest energies measured. There was no indication of a shift in the composition towards heavier primaries as would be expected on the basis of some models

  4. Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels

    Science.gov (United States)

    Mason, Paul A.; Biermann, Peter L.

    2016-01-01

    Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.

  5. The response of clouds and aerosols to cosmic ray decreases

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, Martin Andreas Bødker; Shaviv, N. J.

    2016-01-01

    A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response in physi......A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response...... in physical and micro-physical cloud parameters to FDs. The test is subsequently applied to one ground based and three satellite based datasets. Responses (> 95%) to FDs are found in the following parameters of the analyzed datasets. AERONET: Ångström exponent (cloud condensation nuclei changes), SSM...... with the strength of the FDs, and the signs and magnitudes of the responses agree with model based expectations. The effect is mainly seen in liquid clouds. An impact through changes in UV driven photo chemistry is shown to be negligible and an impact via UV absorption in the stratosphere is found to have no effect...

  6. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.; Gaggero, D.; Grasso, D.

    2017-01-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray

  7. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Gavish, Eyal; Eichler, David [Physics Department, Ben-Gurion University, Be’er-Sheva 84105 (Israel)

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objects (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.

  8. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  9. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  10. Cosmic rays: an in-flight hazard?

    International Nuclear Information System (INIS)

    O'Sullivan, Denis

    2000-01-01

    International airlines are collaborating with physicists to assess whether aircrew are at risk from cosmic radiation as routine monitoring will soon become mandatory. Recently, an international team of physicists has joined forces with NASA and several European airlines to study in detail how the radiation field varies inside the atmosphere depending on the altitude, latitude and solar activity. Astronauts are subjected to the full intensity of high-energy cosmic rays and solar particles (together with the secondary particles produced in the spacecraft walls), and the biological risks in space are the subject of ongoing investigations. A typical return mission to Mars, for example, could result in a total ''dose equivalent'' of up to 0.5 sievert. The dose equivalent takes into account the harm caused by a particular type of radiation. Current estimates suggest that a person who receives a 1 sievert dose of ionizing radiation incurs a few per cent increase in the risk of contracting fatal cancer in his or her lifetime, although the risk level depends on sex and age. The radiation we observe at aircraft altitudes of typically 10-12 km is due to very high-energy particles mainly protons and helium nuclei, together with a small amount of heavy nuclei penetrating the atmosphere and colliding with air atoms. These collisions give rise to the production of more particles, such as protons, neutrons and various mesons. A cascade of particles is then produced by successive interactions as they penetrate deeper into the atmosphere. As a result, the flux of particles increases in the upper atmosphere and reaches a maximum at about 20 km above sea level. Below this point, the number of particles decreases due to energy losses and various particle interactions. Happily, at the Earth's surface we are protected by the air above us, which provides the same degree of shielding as a layer of water 10 m thick. The small amount of radiation that eventually reaches us in the form of

  11. Cosmic rays: material from coronae of ordinary stars and from He-Burning zones, but not from s-process sites

    International Nuclear Information System (INIS)

    Meyer, J.P.

    1986-07-01

    The Galactic Cosmic Ray composition seems to tell us that the bulk of the galactic cosmic ray nuclei were first extracted out of the coronae of ordinary F to M stars. They were most likely first accelerated to MeV energies by stellar flares, and later on boosted up to GeV energies by supernova remnants (and possibly massive star wind) shocks. A small fraction of them (∼ 2%) should originate in He-burning material, plausibly in Wolf-Rayet stars. The most recent analysis of the HEAO-C3 data does not confirm last year's indications of an excess of s- (and possibly r-) nuclei with N > 50

  12. Origin of the highest energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L.; Ahn, Eun-Joo; Medina-Tanco, Gustavo; Stanev, Todor

    2000-06-01

    Introducing a simple Galactic wind model patterned after the solar wind we show that back-tracing the orbits of the highest energy cosmic events suggests that they may all come from the Virgo cluster, and so probably from the active radio galaxy M87. This confirms a long standing expectation. Those powerful radio galaxies that have their relativistic jets stuck in the interstellar medium of the host galaxy, such as 3C147, will then enable us to derive limits on the production of any new kind of particle, expected in some extensions of the standard model in particle physics. New data from HIRES will be crucial in testing the model proposed here.

  13. Electric field of thunderclouds and cosmic rays: evidence for acceleration of particles (runaway electrons)

    CERN Document Server

    Khaerdinov, N S; Petkov, V B; 12th International Conference on Atmospheric Electricity

    2004-01-01

    We present the data on correlations of the intensity of the soft component of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a. s. l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the "electric mill" type (rain-protected) is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000-2002. We observe strong enhancements of the soft component intensity before some lightning strokes. At the same time, the analysis of the regression curve "intensity versus field" discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons. It is interpreted as a signature of runaway electrons from the region of the strong field (with opposite sign) overhead.

  14. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  15. Cosmic AntiParticle Ring Imaging Cerenkov Experiment

    CERN Multimedia

    2002-01-01

    %RE2A \\\\ \\\\ %title \\\\ \\\\The CAPRICE experiment studies antimatter and light nuclei in the cosmic rays as well as muons in the atmosphere. The experiment is performed with the spectrometer shown in the figure which is lifted by a balloon to an altitude of 35-40 km. At this altitude less than half a percent of the atmosphere is above the 2 ton spectrometer which makes it possible to study the cosmic ray flux without too much background from atmospherically produced particles. The spectrometer includes time-of-flight scintillators, a gaseous RICH counter, a drift chamber tracker and a silicon electromagnetic calorimeter. The important feature of the spectrometer is to discriminate between different particles.\\\\ \\\\ The experiment aims at measuring the flux of the antiparticles (antiprotons and positrons) above about 5 GeV and relate the fluxes to models including exotic production of antiparticles like dark matter supersymmetric particles. The flux of muons is measured during descent of the balloon through the at...

  16. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (total significance...... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray......Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...

  17. Cosmic Ray Astrophysics using The High Altitude Water Cherenkov (HAWC Observatory in México

    Directory of Open Access Journals (Sweden)

    de la Fuente Eduardo

    2017-01-01

    Full Text Available The High-Altitude Water Cherenkov (HAWC TeV gamma–ray Observatory in México is ready to search and study gamma-ray emission regions, extremely high-energy cosmic-ray sources, and to identify transient phenomena. With a better Gamma/Hadron rejection method than other similar experiments, it will play a key role in triggering multi–wavelength and multi–messenger studies of active galaxies (AGN, gamma-ray bursts (GRB, supernova remnants (SNR, pulsar wind nebulae (PWN, Galactic Plane Sources, and Cosmic Ray Anisotropies. It has an instantaneous field-of-view of ∼2 str, equivalent to 15% of the whole sky and continuous operation (24 hours per day. The results obtained by HAWC–111 (111 detectors in operation were presented on the proceedings of the International Cosmic Ray Conference 2015 and in [1]. The results obtained by HAWC–300 (full operation are now under analysis and will be published in forthcoming papers starting in 2017 (see preliminary results on http://www.hawc-observatory.org/news/. Here we present the HAWC contributions on cosmic ray astrophysics via anisotropies studies, summarizing the HAWC detector and its upgrading by the installation of “outriggers”.

  18. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Science.gov (United States)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  19. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    on the site of the cosmic ray air shower experiment KASCADE-Grande at the Forschungszentrum Karlsruhe. They are receiving radio signals which are clearly in coincidence with cosmic ray air showers. Due to the calibration spanning the whole signal path and the polarization analysis it is possible to investigate radio emission from cosmic ray air showers and underlying emission models. An autonomous operation of the receiver stations requires a self trigger which identifies the cosmic ray air shower by its own radio signal only. Due to the superposition of noise and radio frequency interference an increasing false trigger rate is expected with decreasing trigger threshold. The self trigger conceived within this work allows suitably low thresholds at technically manageable false trigger rates. The behaviour and limitations of this self trigger concept are derived theoretically but also confirmed by measurements under real environmental conditions. On the radio-loud site of the Forschungszentrum Karlsruhe, the electric field strength threshold is only a factor of 3 above the theoretical minimum which is given by the omnipresent galactic noise in an unpopulated environment. The resulting detection limits for cosmic rays are expected to be above 5.10 17 eV for the primary particle energies in an unpopulated environment and above 10 18 eV on the site of the Forschungszentrum Karlsruhe. (orig.)

  20. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  1. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    Science.gov (United States)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering

  2. Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory

    International Nuclear Information System (INIS)

    Birmingham, T.J.; Jones, F.C.

    1975-02-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)

  3. A deep learning-based reconstruction of cosmic ray-induced air showers

    Science.gov (United States)

    Erdmann, M.; Glombitza, J.; Walz, D.

    2018-01-01

    We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.

  4. Shell-type SNRs as sources of cosmic rays

    Science.gov (United States)

    Sinitsyna, V. G.; Andreeva, M. S.; Balygin, K. A.; Borisov, S. S.; Ivanov, I. A.; Kirichenko, A. M.; Klimov, A. I.; Kozhukhova, I. P.; Mirzafatikhov, R. M.; Moseiko, N. I.; Ostashev, I. E.; Palamarchuk, A. I.; Sinitsyna, V. Y.; Volokh, I. G.

    2017-06-01

    Investigations of VHE gamma-ray sources by any methods, including mirror Cherenkov telescopes, touch on the problem of the cosmic ray origin and, accordingly, the role of the Galaxy in their generation. SHALON observations have yielded results on Galactic supernova remnants (SNR) of different ages. Among them are: the shell-type SNRs Tycho's SNR (1572y), Cas A (1680y), IC 443 (age ˜ (3 ÷ 30) × 103 y), Cygni SNR (age ˜ (5 ÷ 7) × 103 y), G166.0 + 4.3 (age ˜ 24 × 103 y) and the classical nova GK Per (Nova 1901). Observation results are presented for each of the SNRs with spectral energy distributions by SHALON in comparison with other experiment data and images by SHALON together with data from X-rays by Chandra and radio-data by CGPS. The collected experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy 800 GeV-100 TeV gamma-rays in Tycho's SNR, Cas A and IC443. For the first time, unique data on GK Per (Nova1901) TeV gamma-ray emission were obtained with the SHALON experiment. The X-ray data shows that the nova remnant of GK Per could be a younger remnant that will resemble older SNRs like IC 443 which interact with molecular clouds. GK Per is supposed to be a candidate for TeV gamma-ray emission due to accelerated particles in the reverse shock region.

  5. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    International Nuclear Information System (INIS)

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Formato, V.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Santis, C. De; Castellini, G.; Donato, C. De; Simone, N. De; Felice, V. Di

    2016-01-01

    The cosmic-ray hydrogen and helium ( 1 H, 2 H, 3 He, 4 He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes 2 H and 3 He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December

  6. 11. European cosmic ray symposium

    International Nuclear Information System (INIS)

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  7. Very local interstellar spectra for galactic electrons, protons and helium

    Energy Technology Data Exchange (ETDEWEB)

    Potgieter, Marius S., E-mail: Marius.Potgieter@nwu.ac.za [Centre for Space Research, North-West University (South Africa)

    2014-07-01

    The local interstellar spectra (LIS) for cosmic rays at energies below ∼30 GeV/nuc are increasingly obscured from view at Earth by solar modulation, the lower the energy becomes. These charged particles encounter significant changes in the heliosphere, over an 11-year cycle, which include processes such as convection, diffusion, adiabatic energy losses and gradient, curvature and current sheet drifts. Particle drifts cause charge-sign-dependent modulation and a 22-year cycle, adding complexity to determining the respective very LIS from observations only at Earth. However, with measurements now made by the Voyager 1 spacecraft in the vicinity of the helio pause, it is possible to determine a very LIS for galactic electrons between ∼5 and ∼120 MeV. At these low energies, also galactic protons observed in the outer heliosphere had been completely obscured by the so-called anomalous component which is accelerated inside the helio sheath. Since August 2012, these anomalous cosmic rays are substantially depleted at Voyager 1 so that for cosmic ray ions, it is now possible to obtain a lower limit to their very LIS. Combining numerical modelling of solar modulation with the accurate measurements by the PAMELA mission and with Voyager observations, the lower limit of the very LIS for electrons, protons and helium and other ions can be determined from ∼5 MeV and above. These spectra are called helio pause spectra which is considered to be the lowest possible very LIS. Also, from an astrophysics point of view, the determination of what can be called a very LIS, not just an averaged galactic spectrum, is encouraging. The mentioned aspects are discussed, focusing on a comparison of recent heliospheric observations and corresponding solar modulation modelling. (author)

  8. Acceleration and propagation of cosmic rays. Production, oscillation and detection of neutrinos

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1987-01-01

    This thesis is devoted to studies on cosmic rays and neutrinos, particles astrophysically relevant. In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth ...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a [fr

  9. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    International Nuclear Information System (INIS)

    Tamburro, Alessio

    2014-01-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the “knee” region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube

  10. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    Science.gov (United States)

    Tamburro, Alessio

    2014-04-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.

  11. Observation of cosmic hard x-ray by L-3H-9 rocket

    International Nuclear Information System (INIS)

    Hayakawa, Sachio; Makino, Fumiyoshi; Matsui, Yutaka; Fukada, Yutaka.

    1978-01-01

    It has been considered that the isotropic constituents of cosmic hard X-ray have their origins outside the galactic system. As the spectra are uncertain, the generation mechanism of X-ray has not been clearly known yet. It was attempted to make more reliable observation by shutter method and the technique removing charged particles, using the L-3H-8 rocket. The equipment consists of NaI scintillation counter, a front counter, a Xenon counter, a UV sensor, a collimator, a shutter and a shutter-driving device. The L-3H-9 rocket was launched on August 16, 1977, and reached height of 310 km in about 300 seconds. Then the observation was started, but it was not able to observe the isotropic constituents of hard X-ray which were aimed at, as the shutter didn't work normally. It is expected to make another observation with the K-9M-64 rocket in August, 1978, after investigating the action of the shutter and employing and improved driving device. (Kobatake, H.)

  12. Explaining the Cosmic-Ray e+/(e- + e+) and (bar p)/p Ratios Using a Steady-State Injection Model

    International Nuclear Information System (INIS)

    Lee, S.H.; Kamae, T.; Baldini, L.; Giordano, F.; Grondin, M.H.; Latronico, L.; Lemoine-Goumard, M.; Sgro, C.; Tanaka, T.; Uchiyama, Y.

    2011-01-01

    We present a model of cosmic ray (CR) injection into the Galactic space based on recent γ-ray observations of supernova remnants (SNRs) and pulsar wind nebulae (PWNe) by the Fermi Large Area Telescope (Fermi) and imaging atmospheric Cherenkov telescopes (IACTs). Steady-state injection of nuclear particles and electrons (e - ) from the Galactic ensemble of SNRs, and electrons and positrons (e + ) from the Galactic ensemble of PWNe are assumed, with their injection spectra inferred under guidance of γ-ray observations and recent development of evolution and emission models. The ensembles of SNRs and PWNe are assumed to share the same spatial distributions. Assessment of possible secondary CR contribution from dense molecular clouds interacting with SNRs is also given. CR propagation in the interstellar space is handled by GALPROP. Different underlying source distribution models and Galaxy halo sizes are employed to estimate the systematic uncertainty of the model. We show that this observation-based model reproduces the positron fraction e + /(e - + e + ) and antiproton-to-proton ratio ((bar p)/p) reported by PAMELA and other previous missions reasonably well, without calling for any speculative sources. A discrepancy remains, however, between the total e - + e + spectrum measured by Fermi and our model below ∼ 20 GeV, for which the potential causes are discussed. Important quantities for Galactic CRs including their energy injection, average lifetime in the Galaxy, and mean gas density along their typical propagation path are also estimated.

  13. A climatological study of the relations among solar activity, galactic ...

    Indian Academy of Sciences (India)

    activity, galactic cosmic ray and precipitation on various regions .... mate variations to cosmic rays and the physical- chemical .... For the wavelet spectrum, significance level for each ..... monthly climate for Europe and the globe: The observed.

  14. The Global Survey Method Applied to Ground-level Cosmic Ray Measurements

    Science.gov (United States)

    Belov, A.; Eroshenko, E.; Yanke, V.; Oleneva, V.; Abunin, A.; Abunina, M.; Papaioannou, A.; Mavromichalaki, H.

    2018-04-01

    The global survey method (GSM) technique unites simultaneous ground-level observations of cosmic rays in different locations and allows us to obtain the main characteristics of cosmic-ray variations outside of the atmosphere and magnetosphere of Earth. This technique has been developed and applied in numerous studies over many years by the Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN). We here describe the IZMIRAN version of the GSM in detail. With this technique, the hourly data of the world-wide neutron-monitor network from July 1957 until December 2016 were processed, and further processing is enabled upon the receipt of new data. The result is a database of homogeneous and continuous hourly characteristics of the density variations (an isotropic part of the intensity) and the 3D vector of the cosmic-ray anisotropy. It includes all of the effects that could be identified in galactic cosmic-ray variations that were caused by large-scale disturbances of the interplanetary medium in more than 50 years. These results in turn became the basis for a database on Forbush effects and interplanetary disturbances. This database allows correlating various space-environment parameters (the characteristics of the Sun, the solar wind, et cetera) with cosmic-ray parameters and studying their interrelations. We also present features of the coupling coefficients for different neutron monitors that enable us to make a connection from ground-level measurements to primary cosmic-ray variations outside the atmosphere and the magnetosphere. We discuss the strengths and weaknesses of the current version of the GSM as well as further possible developments and improvements. The method developed allows us to minimize the problems of the neutron-monitor network, which are typical for experimental physics, and to considerably enhance its advantages.

  15. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Czech Academy of Sciences Publication Activity Database

    Velinov, P. I. Y.; Asenovski, S.; Kudela, K.; Laštovička, Jan; Mateev, L.; Mishev, A.; Tonev, P.

    2013-01-01

    Roč. 3, 26 March (2013), A14/1-A14/17 ISSN 2115-7251 Grant - others:European COST Action(XE) ES0803 Institutional support: RVO:68378289 Keywords : cosmic rays * solar energetic particles * ionization * ionosphere * atmosphere * solar activity * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/articles/swsc/abs/2013/01/swsc120040/swsc120040.html

  16. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  17. [A research program in neutrino physics, cosmic rays and elementary particles: Tasks A, B, C, D

    International Nuclear Information System (INIS)

    Sobel, H.W.

    1991-01-01

    A Summary of the DOE Supported High Energy Physics Research at The University of California, Irvine. Physics interests of the group are focused primarily on tests of conservation laws and studies of fundamental interactions between particles. There is also a significant interest in astrophysics and cosmic rays. The DOE support has been divided into four tasks briefly describes in this paper

  18. EMMA: A new underground cosmic-ray experiment

    International Nuclear Information System (INIS)

    Enqvist, T; Foehr, V; Joutsenvaara, J; Jaemsen, T; Keraenen, P; Kuusiniemi, P; Laitala, H; Lehtola, M; Mattila, A; Narkilahti, J; Peltoniemi, J; Remes, H; Reponen, M; Raeihae, T; Sarkamo, J; Shen, C; Vaittinen, M; Zhang, Z; Ding, L; Zhu, Q; Roos, M; Dzaparova, I; Karpov, S; Kurenya, A; Petkov, V; Yanin, A; Fynbo, H

    2006-01-01

    A cosmic-ray experiment of new type is under construction in the Pyhaesalmi mine in the underground laboratory of the University of Oulu, Finland. It aims to study the composition of cosmic rays at and above the knee region (energy above 1 PeV). The experiment, called EMMA, covers about 150 m 2 of detector area, and the setup is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The detector is placed at the depth of about 85 metres (corresponding about 240 mwe) which gives a threshold energy of muons of about 45 GeV. The rock overburden filters out all other particles of the air shower except the high-energy muons. These high-energy muons originate at high altitudes close to the first interaction of the primary cosmic ray and they carry more information about the primary than low-energy muons. The full-size detector is supposed to run by the end of 2007

  19. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

    OpenAIRE

    Spence, H. E.; Case, A. W.; Golightly, M. J.; Heine, T.; Larsen, B. A.; Blake, J. B.; Caranza, P.; Crain, W. R.; George, J.; Lalic, M.; Lin, A.; Looper, M. D.; Mazur, J. E.; Salvaggio, D.; Kasper, J. C.

    2009-01-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaT...

  20. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  1. Atomic properties of the elements and cosmic ray composition at the source

    International Nuclear Information System (INIS)

    Casse, M.; Goret, P.; Cesarsky, C.J.

    1975-01-01

    Possible correlations between the abundances of cosmic rays at the source and the solar system abundances are discussed. Cosmic ray source abundances could be explained if the particles are accelerated to injection energies in a dilute, moderately hot plasma, from which they escape in a rigidity dependant fashion [fr

  2. A time-averaged cosmic ray propagation theory

    International Nuclear Information System (INIS)

    Klimas, A.J.

    1975-01-01

    An argument is presented, which casts doubt on our ability to choose an appropriate magnetic field ensemble for computing the average behavior of cosmic ray particles. An alternate procedure, using time-averages rather than ensemble-averages, is presented. (orig.) [de

  3. Role of cosmic ray protons in two types of extragalactic objects

    International Nuclear Information System (INIS)

    Vestrand, W.T.

    1980-01-01

    For many years the physics of galactic cosmic rays has been studied in detail. Very little work, however, has been done concerning cosmic ray protons in extragalactic objects. Here the role cosmic ray protons can play in two types of extragalactic sites are examined: (1) clusters of galaxies, and (2) the active nuclei of Quasars that produce superluminal radio components. Models of Coma-type radio halos must explain both their large extent and their rarity. A model is presented wherein secondary electrons produced by the interaction of cosmic ray protons with the observed intracluster gas are responsible for the diffuse radio emission. This model predicts a correlation between a cluster's evolutionary state and the presence of Coma-type halos. If a cluster's x-ray morphology is an indication of the cluster's evolutionary state, this prediction is supported by observations. This model also predicts that clusters with Coma-type halos will emit π 0 γ-rays. If the intracluster magnetic field in Coma has the strength favored by many authors, B/sub c/ = 0.2 microgauss, these γ-rays should be detectable with the proposed GRO satellite. Superluminal radio sources may originate in highly compact and relativistically hot plasmas. The production of mesons and their secondaries in an ultrarelativistic plasma is examined. Source functions from a relativistic Maxwellian distribution of protons are numerically calculated for conditions likely during the formation of superluminal radio components. Analytic expressions for the source functions from a power law distribution of relativistic protons are also presented

  4. Ultrahigh-energy cosmic rays: facts, myths and legends

    International Nuclear Information System (INIS)

    Anchordoqui, L.A.

    2011-01-01

    This is a written version of a series of lectures aimed at graduate students in astrophysics and theoretical/experimental particle physics. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > or approx. 10 8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic-ray sources, and emphasize some of the prospects for a new (multiparticle) astronomy. Next, we survey the state of the art regarding the ultrahigh-energy cosmic neutrinos that should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic-ray air showers. We explain the hadronic interaction models used to extrapolate results from collider data to ultrahigh energies, and describe the prospects for insights into forward physics at the Large Hadron Collider. We also explain the main electromagnetic processes that govern the longitudinal shower evolution. Armed with these two principal shower ingredients and motivation from the underlying physics, we describe the different methods proposed to distinguish primary species. In the last part, we outline how ultrahigh-energy cosmic-ray interactions can be used to probe new physics beyond the electroweak scale. (author)

  5. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  6. Cosmic ray modulation

    International Nuclear Information System (INIS)

    Ueno, Hirosachi

    1974-01-01

    It is important to know the physical state of solar plasma region by the observation of intensity variation of cosmic ray which passed through the solar plasma region, because earth magnetosphere is formed by the interaction between geomagnetic field and solar plasma flow. The observation of cosmic ray intensity is useful to know the average condition of the space of 0.1--3 A.U., and gives the structure of the magnetic field in solar wind affecting the earth magnetosphere. The observation of neutron component in cosmic ray has been carried out at Norikura, Tokyo, Fukushima and Morioka. The lower limit of the energy of incident cosmic ray which can be observed at each station is different, and the fine structure of the variation can be known by comparison. The intensity of meson component in cosmic ray has been measured in underground, and the state of solar plasma region 2--3 A.U. from the earth can be known. The underground measurement has been made at Takeyama and Matsumoto, and a new station at Sakashita is proposed. The measurement at Sakashita will be made by proportional counters at the depth of 100m (water equivalent). Arrangement of detectors is shown. (Kato, T.)

  7. Cosmic ray observations deep underground and further analysis of the evidence for the production of new particles

    International Nuclear Information System (INIS)

    Krishnaswamy, M.R.; Menon, M.G.K.; Narasimham, V.S.; Ito, N.; Kawakami, S.; Miyake, S.

    1976-01-01

    In a cosmic ray experiment at a depth of 7000 kg/cm 2 three clear new particle events are found, out of a total of 17 events, in which the zenith angle of the penetrating particles is greater than 50 0 , and which have so far been identified as arising from neutrino interactions. The new heavy particles, charged or neutral, must have had low momenta to be consistent which the large opening angles of their decay products. There exists so far no observation of these Kolar events in accelerator experiments with neutrinos. (BJ) [de

  8. The puzzle of the ultra-high energy cosmic rays

    CERN Document Server

    Tkachev, I I

    2003-01-01

    In early years the cosmic ray studies were ahead of accelerator research, starting from the discovery of positrons, through muons, to that of pions and strange particles. Today we are facing the situation that the puzzling saga of cosmic rays of the highest energies may again unfold in the discovery of new physics, now beyond the Standard Model; or it may bring to life an "extreme" astrophysics. After a short review of the Greisen-Zatsepin-Kuzmin puzzle, I discuss different models which were suggested for its resolution. Are there any hints pointing to the correct model? I argue that the small-scale clustering of arrival directions of cosmic rays gives a clue, and BL Lacs are the probable sources of the observed events. (58 refs).

  9. FPGA development board for applications in cosmic rays physics

    International Nuclear Information System (INIS)

    Angelov, Ivo; Damov, Krasimir; Dimitrova, Svetla

    2013-01-01

    The modern experiments in cosmic rays and particle physics are usually performed with large number of detectors and signal processing have to be done by complex electronics. The analog signals from the detectors are converted to digital (by discriminators or fast ADC) and connected to different type of logic implemented in FPGA (Field Programmable Gate Arrays). A FPGA development board based on Xilinx XC3S50AN was designed, assembled and tested. The board will be used for developing a modern registering controller (to replace the existing now) for the muon telescope in the University and can be used for other experiments in cosmic rays physics when fast digital pulses have to be processed. Keywords: FPGA, Spartan3A, muon telescope, cosmic rays variations

  10. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  11. Cosmic ray: Studying the origin

    International Nuclear Information System (INIS)

    Szabelski, J.

    1997-01-01

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10 15 eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O 19 eV (for these are the highest energies observed in nature). (author)

  12. Radio emission, cosmic ray electrons, and the production of γ-rays in the galaxy

    International Nuclear Information System (INIS)

    Webber, W.R.; Simpson, G.A.; Cane, H.V.

    1980-01-01

    Using a perspective based on new radio data, we have reexamined the traditional derivation of the interstellar electron spectrum using the galactic nonthermal radio spectrum. The radio spectrum derived in the polar directions is now used as a base for this derivation rather than the anticenter spectrum. The interstellar electron spectrum between 70 and 1200 MeV is found to have an exponent -2.14 +- 0.06, steeper than previously determined, and leading to electron fluxes at low energies up to a factor of 10 larger than previously predicted. The electron spectrum below approx.20 MeV measured at Earth is used along with solar modulation arguments to suggest that this interstellar electron spectrum flattens to an exponent of -1.6 +- 0.1 between 5 and 70 MeV. We then use radio maps to predict the γ-ray fluxes produced by the bremsstrahlung process to be expected from these electrons. Using the radio maps, we fiest define L/sub eff/, the effective path length for radio emission in various directions, to predict the effective path length for γ-ray emission. The spectral shapes of γ-rays predicted when the contribution from π 0 decay is included, show little evidence of a pion-decay bump and agree well with those observed, indicating that large changes in the cosmic-ray electron to proton ratio from that observed locally are unlikely along a line of sight. The differences in the predicted and observed γ-ray intensities in the galactic plane are small. However, in the polar direction, the predicted γ-ray flux using the radio data is approx.6 times larger than that actually observed. This is indicative of the fact that the radio emissivity is considerably thicker than the γ-ray emissivity disk, and the cosmic-ray electron population extends beyond the gaseous disk of the Galaxy. This technique of estimating the γ-ray intensity using the radio data is compared with the usual technique which employs estimates of the column density of hydrogen

  13. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Fludra, A., E-mail: Andrzej.Fludra@stfc.ac.uk [RAL Space, STFC Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX (United Kingdom)

    2015-01-20

    We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

  14. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  15. Cosmic-ray-veto detector system

    International Nuclear Information System (INIS)

    Miller, D.W.; Menlove, H.O.

    1992-12-01

    To reduce the cosmic-ray-induced neutron background, we are testing a cosmic-ray veto option with a neutron detector system that uses plastic scintillator slabs mounted on the outside of a 3 He-tube detector. The scintillator slabs eliminate unwanted cosmic-ray events, enabling the detector to assay low-level plutonium samples, for which a low-background coincident signature is critical. This report describes the design and testing of the prototype cosmic-ray-veto detector system

  16. Determination of cosmic ray (CR) ionization path and iono/atmospheric cut-off energy from CR intervals III, IV and V in the planetary environments

    International Nuclear Information System (INIS)

    Velinov, P.

    2001-01-01

    In this paper are determined the ionization path and cut-off energies of the cosmic ray (CR) nuclei in relation to the general interaction model 'CR - ionosphere-middle atmosphere'. Here the ionization path and the iono/atmospheric cut-off energies of the galactic CR, solar CR and anomalous CR are separately considered in each energetic range, without taking into account the particle transfer from one range in another. This more general approach will be the object of a further paper

  17. Cosmic ray: Studying the origin

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  18. Galactic cosmic ray and El Nino Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    [1] The recently reported correlation between clouds and galactic cosmic rays (GCR) implies the existence of a previously unknown process linking solar variability and climate. An analysis of the interannual variability of International Satellite Cloud Climatology Project D2 (ISCCP-D2) low-cloud...... a strong correlation with GCR, which suggests that low-cloud properties observed in these regions are less likely to be contaminated from overlying cloud. The GCR-low cloud correlation cannot easily be explained by internal climate processes, changes in direct solar forcing, or UV-ozone interactions...... properties over the period July 1983 to August 1994 suggests that low clouds are statistically related to two processes, (1) GCR and (2) El Nino-Southern Oscillation (ENSO), with GCR explaining a greater percentage of the total variance. Areas where satellites have an unobstructed view of low cloud possess...

  19. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  20. Recovering the observed b/c ratio in a dynamic spiral-armed cosmic ray model

    International Nuclear Information System (INIS)

    Benyamin, David; Piran, Tsvi; Shaviv, Nir J.; Nakar, Ehud

    2014-01-01

    We develop a fully three-dimensional numerical code describing the diffusion of cosmic rays (CRs) in the Milky Way. It includes the nuclear spallation chain up to oxygen, and allows the study of various CR properties, such as the CR age, grammage traversed, and the ratio between secondary and primary particles. This code enables us to explore a model in which a large fraction of the CR acceleration takes place in the vicinity of galactic spiral arms that are dynamic. We show that the effect of having dynamic spiral arms is to limit the age of CRs at low energies. This is because at low energies the time since the last spiral arm passage governs the CR age, and not diffusion. Using the model, the observed spectral dependence of the secondary to primary ratio is recovered without requiring any further assumptions such as a galactic wind, re-acceleration or various assumptions on the diffusivity. In particular, we obtain a secondary to primary ratio which increases with energy below about 1 GeV.

  1. Ultra high energy cosmic rays above 10 GeV: Hints to new physics ...

    Indian Academy of Sciences (India)

    Ultra high energy cosmic rays; physics beyond standard model. ... The origin of the observed cosmic ray (CR) events above 10ѕј eV — the so-called ex- .... to arise simply from decay of some supermassive particles (of mass> 10ѕЅ eV) ...

  2. LHCf-measurement of forward neutral particle production for cosmic ray research

    CERN Multimedia

    Masuda, K; Ito, Y; Adriani, O; Papini, P; Tricomi, A; Perrot, A; Ricciarini, S B; D'alessandro, R; Yoshida, K

    2007-01-01

    An energy calibration experiment is under preparation for ultra high energy cosmic ray experiments in the energy range between 1017eV and 1020eV. Small calorimeters will be installed between the two beam pipes in the â€ワY vacuum chamber” 140m away from the interaction point IP1 of the Large Hadron Collider. Within an exposure time of a few hours at luminosity ~10$^{29}$ cm-2s-1, very important results will be obtained that will resolve long standing quests by the highest energy cosmic ray physics experiments.

  3. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    International Nuclear Information System (INIS)

    Roelof, E.C.; Decker, R.B.; Krimigis, S.M.; Venkatesan, D.; Lazarus, A.J.

    1982-01-01

    The tandem Earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP-7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Anti-coincidence solid-state detectors on the Voyager 1/2 LECP experiment measure nucleons > or approximately 20 MeV/nuc with large (28 cm 2 ) omnidirectional geometry factors. Anti-coincidence scintillators on the IMP-7/8 CPME with omnidirectional geometry factors comparable to those on Voyager measure nucleons > or approximately 35 MeV/nuc. Because the Voyagers are well-connected via the interplanetary magnetic field (IMF) to the near-Earth vicinity throughout their transit from 1-5 AU (September 1977 - February 1979), we obtained the first direct measurement of field-aligned gradients, i.e., those that do not depend upon ''corotation'' from one spacecraft to another over many days. Another new result is the unambiguous identification of nonuniform latitudinal gradients approximately 2-5% degree -1 in structures lasting 10-30 days. There is additional evidence for somewhat smaller latitudinal gradients, north to south and probably mixed with small field-aligned gradients -1 , which persist for several solar rotations

  4. Some contributions of MAGIC to the physics ofcosmic rays

    Directory of Open Access Journals (Sweden)

    Gozzini S.R.

    2013-06-01

    Full Text Available Cosmic ray interactions can be investigated indirectly in γ ray astronomy, with the observation of spectral and morphological features of certain classes of sources. MAGIC is a stereoscopic system of two γ ray telescopes, located at La Palma (Canaries, with access to the energy window between 50 GeV and 30 TeV. Sources of high relevance for the study of very high energy hadronic interactions are active galactic nuclei, as blazars and radio galaxies. MAGIC has detectedabout fifty such extragalactic objects; we will present some where theemission is explained with accelerated hadrons in interaction with ambient photons. We will also mention cosmic ray acceleration in galaxy clusters. Other than that, hadron-hadron interactions are supposed to take place in some supernova remnants in interaction with surrounding molecular clouds; we will show some results, in connection with cosmic rays of galactic origin. Finally, about other possible components, wewill mention the measurement of the diffuse electron and positron spectrum. Trustingly, the close connection between particle physics and astrophysics will contribute in future years to many new interesting observations.

  5. Elemental composition of cosmic ray

    International Nuclear Information System (INIS)

    Yanagida, Shohei

    1987-01-01

    The report first summarizes some data that have been obtained so far from observation of isotopes and elements in cosmic rays in the low energy region. Then, objectives of studies planned to be carried out with Astromag are outlined and the number of incident particles expected to be measured by baloon observation is estimated. Heavy elements with atomic numbers of greater than 30 are considered to be formed through neutron absorption reactions by the s- or r-process. Observations show that products of the r-process is abundant in cosmic ray sources. The escape length depends on energy. In relation to this, it has been reported that the ratios Ar-Fe and Ca-Fe increase above 200 GeV-n while such a tendency is not observed for K, Sc, Ti or V. Thus, no satisfactory models are available at present which can fully explain the changes in the escape length. The ratio 3 He- 4 He in the range of 5 - 10 GeV-n is inconsistent with the general theory that interprets the escape length of heavy elements. Some models, including the supermetallicity model and Wolf Rayet theory, have been proposed to explain unusual ratios of isotopes in cosmic rays, but more measurements are required to verify them. It is expected that Astromag can serve to make observations that can clarify these points. (Nogami, K.)

  6. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    Science.gov (United States)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  7. A recommended procedure for estimating the cosmic-ray spectral parameter of a simple power law

    CERN Document Server

    Howell, L W

    2002-01-01

    A simple power law model with single spectral index alpha sub 1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10 sup 1 sup 3 eV. Two procedures for estimating alpha sub 1 --the method of moments and maximum likelihood (ML)--are developed and their statistical performance are compared. The ML procedure is shown to be the superior approach and is then generalized for application to real cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution and inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives.

  8. Energy determination of trans-EeV cosmic rays

    International Nuclear Information System (INIS)

    Yoshida, S.

    2004-01-01

    This article gives a summary of the primary energy estimation by observing ultra-high energy cosmic ray induced extensive air showers (down to the EeV energies - the energy range of the Japanese AGASA experiment). The shower cascade in air initiated by cosmic rays is called Extensive Air Shower (EAS) which has been playing a key role in the detection of cosmic ray particles. There are two types of detection techniques available to measure the energy (as well as the arrival directions and mass composition) of the primary UHECR (ultra high energy cosmic rays) particles: the Ground Arrays and the Fluorescence Detectors. The two methods are highly complementary: the ground array method measures the lateral development of EAS cascades. The dynamics to determine the behavior of the lateral spread of particle distributions in EAS is well understood and rather reliable, regardless of the mass of the primary cosmic rays, but some uncertainties remain due to our incomplete knowledge concerning the hadronic interactions and the multiple scattering of secondary electrons. The fluorescence method observes the longitudinal development of cascades. It is similar to the concept of calorimetric detectors in high energy physics, since the fluorescence light generated by the charged particles in the shower is proportional to the energy deposited in the atmosphere. These two methods are complementary since they view different components of the EAS. The ground array observes the particles at ∼ 1 km away from the EAS axis while the fluorescence method is sensitive to particle energy distributions very close to the shower axis, typically less than 100 m. Therefore, both methods have their own advantage and disadvantage as far as the energy estimation is concerned. In the following sections, we discuss how to deduce the primary energy and the possible sources of the systematic uncertainties. The energy spectrum of UHECRs is a key clue for the understanding of the origin of UHE particle

  9. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  10. Ultrahigh energy cosmic ray fluxes and cosmogenic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2013-04-15

    We discuss the possible origin of the two neutrino shower events reported by the IceCube Collaboration at the Neutrino 2012 conference in Kyoto, Japan. The suspicion early on was that these two events are due to cosmogenic neutrinos and possibly by electron antineutrinos generating the Glashow resonance. The difference of the energy of the W{sup −} in the resonance and the energy estimates of the detected cascade events makes this assumption unlikely. The conclusion then may be that these high energy neutrinos are produced at sources of high energy cosmic rays such as Active Galactic Nuclei.

  11. Signs of cosmic rays in gravitational wave detectors

    International Nuclear Information System (INIS)

    Tavares, Denis Borgarelli

    2010-01-01

    One of the phenomena predicted by Einstein in the derivation of general relativity is the existence of small perturbations of the metric that he named gravitational waves. As they travel through space oscillates the space-time according to its polarization. This is the only major prediction of general relativity not yet proven completely. The small signal generated by the passage of a gravitational wave compared to the noise in the system of detection makes their direct detection one challenge of modern science. In this paper we study the noise generated by cosmic rays in the gravitational antenna Mario Schenberg, located in the city of Sao Paulo. Single muons and hadrons flux measurements held in the northern hemisphere were used to calculate the expected flux of these particles in the city of Sao Paulo. The calculation of the energy deposited in the detector of gravitational waves from cosmic rays was performed by Monte Carlo simulations using Geant4. The transport of muons and protons, with several energy and some different angles of incidence, across the building and the resonant sphere was simulated. We developed a thermo-acoustic model, called multi-point, suitable for calculating the energy deposited in the normal modes from the energy deposited on the sphere by elementary particles. With these results we calculate the expected rate of cosmic ray signals in the main detection mode of gravitational waves, nl = 12, of the Mario Schenberg detector, for temperatures T noise between 10 -5 and 10 -7 K. The results showed for the designed for 4.2 K sensitivity of the Mario Schenberg detector that the rate of signals due to cosmic rays is very small, being around 5 events per day. However, when it will reach the quantum limit will be needed a more detailed analysis of the antenna signal output, since the expected number of cosmic ray noise increases considerably, reaching about 250 signals per day. (author)

  12. Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1977-01-01

    Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)

  13. Constraining strong baryon-dark-matter interactions with primordial nucleosynthesis and cosmic rays

    International Nuclear Information System (INIS)

    Cyburt, Richard H.; Fields, Brian D.; Pavlidou, Vasiliki; Wandelt, Benjamin

    2002-01-01

    Self-interacting dark matter (SIDM) was introduced by Spergel and Steinhardt to address possible discrepancies between collisionless dark matter simulations and observations on scales of less than 1 Mpc. We examine the case in which dark matter particles not only have strong self-interactions but also have strong interactions with baryons. The presence of such interactions will have direct implications for nuclear and particle astrophysics. Among these are a change in the predicted abundances from big bang nucleosynthesis (BBN) and the flux of γ rays produced by the decay of neutral pions which originate in collisions between dark matter and galactic cosmic rays (CR). From these effects we constrain the strength of the baryon-dark-matter interactions through the ratio of baryon-dark-matter interaction cross section to dark matter mass, s. We find that BBN places a weak upper limit on this ratio (less-or-similar sign)10 8 cm 2 g -1 . CR-SIDM interactions, however, limit the possible DM-baryon cross section to (less-or-similar sign)5x10 -3 cm 2 g -1 ; this rules out an energy-independent interaction, but not one which falls with center-of-mass velocity s∝1/v or steeper

  14. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    Science.gov (United States)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  15. Analyzing γ rays of the Galactic Center with deep learning

    Science.gov (United States)

    Caron, Sascha; Gómez-Vargas, Germán A.; Hendriks, Luc; Ruiz de Austri, Roberto

    2018-05-01

    We present the application of convolutional neural networks to a particular problem in gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess emission of GeV γ rays in the direction of the Galactic Center, reported by several groups by analyzing Fermi-LAT data. Interpretations of this excess include γ rays created by the annihilation of dark matter particles and γ rays originating from a collection of unresolved point sources, such as millisecond pulsars. We train and test convolutional neural networks with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic Center tuned to measured γ ray data. Our new method allows precise measurements of the contribution and properties of an unresolved population of γ ray point sources in the interstellar diffuse emission model. The current model predicts the fraction of unresolved point sources with an error of up to 10% and this is expected to decrease with future work.

  16. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  17. UHE Cosmic Ray Observations Using the Cygnus Water - Array

    Science.gov (United States)

    Dion, Cynthia L.

    1995-01-01

    The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.

  18. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  19. Ultrahigh energy cosmic rays and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Foundation, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2008-04-01

    We discuss the relation between the highest energy cosmic rays (UHECR) and UHE neutrinos. The neutrinos produced in the sources of optically thin astrophysical sources have been linked to the UHECR emissivity of the Universe. The fluxes of cosmogenic neutrinos, generated in propagation by UHECR, also reflect the acceleration of these particles, the maximum acceleration energy, and the cosmological evolution of their sources.

  20. Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers

    International Nuclear Information System (INIS)

    Atac, M.; Streets, J.; Wilcer, N.

    1998-02-01

    This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution

  1. Anisotropy of TeV and PeV cosmic rays with IceCube and IceTop

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M., E-mail: santander@icecube.wisc.edu [University of Wisconsin-Madison, Madison, WI 53703 (United States)

    2013-10-11

    The interaction of high energy cosmic rays with the Earth's atmosphere produces extensive air showers of secondary particles with a large muon component. By exploiting the sensitivity of neutrino telescopes to high energy muons, it is possible to use these detectors for precision cosmic ray studies. The high rate of cosmic-ray muon events provides a high-statistics data sample that can be used to look for anisotropy in the arrival directions of the parent particles at the per-mille level. This paper will report on the observation of anisotropy in the cosmic ray data collected with the IceCube neutrino telescope in the 20-400 TeV energy range at multiple angular scales. New data from the IceTop air shower array, located on the ice surface above IceCube, shows an anisotropy that is consistent with the high-energy IceCube results. The sensitivity of IceTop to all the components of the extensive air shower will allow us to explore in more detail the characteristics of the primary cosmic rays associated with the observed anisotropy.

  2. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    International Nuclear Information System (INIS)

    Nautiyal, C.M.; Rao, M.N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed

  3. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  4. Local Times of Galactic Cosmic Ray Intensity Maximum and Minimum in the Diurnal Variation

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2006-06-01

    Full Text Available The Diurnal variation of galactic cosmic ray (GCR flux intensity observed by the ground Neutron Monitor (NM shows a sinusoidal pattern with the amplitude of 1sim 2 % of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum and minimum. To test the influences of the solar activity and the location (cut-off rigidity on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum and 2000 (solar maximum at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about 2sim3 hours in the solar activity maximum year 2000 than in the solar activity minimum year 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by 2sim3 hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.

  5. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to 3 x 10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √s nn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  6. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2009-01-01

    Cosmic-rays with energies up to 3x10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √(s nn )=700TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (>1TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  7. Shocked molecular gas and the origin of cosmic rays

    Science.gov (United States)

    Reach, William; Gusdorf, Antoine; Richter, Matthew

    2018-06-01

    When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.

  8. Fornax A, Centaurus A other radio galaxies as sources of ultra-high energy cosmic rays

    Science.gov (United States)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2018-06-01

    The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starburst galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.

  9. Cosmic rays and ancient planetary magnetic fields

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1977-01-01

    The possibility is discussed of using the latitude-dependent cutoff in the intensity and flux of cosmic ray particles reaching the surface of a planet to investigate ancient magnetic fields in the Moon, Mars and the Earth. In the last case, the method could provide a validity test for conventional palaeomagnetism. (Auth.)

  10. Exploring the cosmic rays energy frontier with the Auger Observatory

    CERN Document Server

    CERN. Geneva

    2006-01-01

    The existence of cosmic rays with energies in excess of 1020 eV represents a longstanding scientific mystery. Unveileing the mechanism and source of production/acceleration of particles of such enormous energies is a challenging experimental task due to their minute flux, roughly one km2 century. The Pierre Auger Observatory, now nearing completion in Malargue, Mendoza Province, Argentina, is spread over an area of 3000 km2. Two techniques are employed to observe the cosmic ray showers: detection of the shower particles on the ground and detection of fluorescence light produced as the shower particles pass through the atmosphere. I will describe the status of the Observatory and its detectors, and early results from the data recorded while the observatory is reaching its completion.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  11. Gravi-Burst: Super-GZK Cosmic Rays from Localized Gravity

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman

    2000-01-01

    The flux of cosmic rays beyond the GZK cutoff (∼ 10 20 eV) may be explained through their production by ultra high energy cosmic neutrinos, annihilating on the relic neutrino background, in the vicinity of our galaxy. This process is mediated through the production of a Z boson at resonance, and is generally known as the Z-Burst mechanism. We show that a similar mechanism can also contribute to the super-GZK spectrum at even higher, ultra-GZK energies, where the particles produced at resonance are the Kaluza-Klein gravitons of weak scale mass and coupling from the Randall-Sundrum (RS) hierarchy model of localized gravity model. We call this mechanism Gravi-Burst. We discuss the parameter space of relevance to Gravi-Bursts, and comment on the possibility of its contribution to the present and future super-GZK cosmic ray data and place bounds on the RS model parameters. Under certain assumptions about the energy spectrum of the primary neutrinos we find that cosmic ray data could be potentially as powerful as the LHC in probing the RS model

  12. Cosmic rays and the interstellar medium

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    It is inevitable that there is a close connection between cosmic rays and the ISM insofar as the propagation of cosmic rays is conditioned by the magnetic field in the ISM and the cosmic rays interact with the gas (and photon fluxes) in this medium. This paper deals with both topics. Propagation effects manifest themselves as an anisotropy in arrival directions and a review is given of anisotropy measurements and their interpretation. The status of studies of cosmic ray interactions is examined whit particular reference to the information about the ISM itself which comes from observations of the flux of secondary γ-rays produced by cosmic ray interactions with gas, the situation regarding molecular as in the Inner Galaxy being of particular concern

  13. The origins of cosmic rays and quantum effects on gravity

    Science.gov (United States)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  14. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays

    Science.gov (United States)

    Huege, Tim; Besson, Dave

    2017-12-01

    Radio waves, perhaps because our terrestrial atmosphere and the cosmos beyond are uniquely transparent to them, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructible, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for the measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.

  15. Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements

    Science.gov (United States)

    Joyce, C. J.; Schwadron, N. A.; Townsend, L. W.; deWet, W. C.; Wilson, J. K.; Spence, H. E.; Tobiska, W. K.; Shelton-Mur, K.; Yarborough, A.; Harvey, J.; Herbst, A.; Koske-Phillips, A.; Molina, F.; Omondi, S.; Reid, C.; Reid, D.; Shultz, J.; Stephenson, B.; McDevitt, M.; Phillips, T.

    2016-09-01

    We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location-dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high-altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high-altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.

  16. How can we protect astronauts from cosmic rays?

    International Nuclear Information System (INIS)

    Parker, E.

    2006-01-01

    Interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime and as a consequence large number of them would develop radiation-related illnesses like cancer, cataract or would suffer from brain damage. In recognition to radiation threats, Nasa set up the space radiation shielding program in 2003. The first idea was to protect the astronauts by surrounding them with matter, by analogy of the earth's atmosphere but the problem of such a shield is its weight: the required mass would be at least 400 tons. The second proposal was to deflect the cosmic rays magnetically but the deflection of particles that have energies up to 2 GeV requires a magnetic field 600.000 times as strong as earth's equatorial field. Strong magnetic field may itself be dangerous. A more recent idea has been to give the spacecraft a positive charge which would repel any incoming positively charged nucleus. The drawback is that the ship will attract and accelerate negatively charged particles over distances as long as a few tens of thousands of kilometers. The result would be that the natural cosmic-ray flux would be replaced with a much more intense artificial one. At the present time the different solutions for protecting the astronauts from cosmic rays give little encouragement. (A.C.)

  17. Cosmic Rays Report from the Structure of Space

    Directory of Open Access Journals (Sweden)

    A. Annila

    2015-01-01

    Full Text Available Spectrum of cosmic rays follows a broken power law over twelve orders of magnitude. Since ubiquitous power laws are manifestations of the principle of least action, we interpret the spectrum accordingly. Our analysis complies with understanding that low-energy particles originate mostly from rapidly receding sources throughout the cosmos. The flux peaks about proton rest energy whereafter it decreases because fewer and fewer receding sources are energetic enough to provide particles with high enough velocities to compensate for the recessional velocities. Above 1015.6 eV the flux from the expanding Universe diminishes below the flux from the nearby nonexpanding part of the Universe. In this spectral feature, known as the “knee,” we relate to a distance of about 1.3 Mpc where the gravitational potential tallies the energy density of free space. At higher energies particles decelerate in a dissipative manner to attain thermodynamic balance with the vacuum. At about 1017.2 eV a distinct dissipative mechanism opens up for protons to slow down by electron-positron pair production. At about 1019.6 eV a more effective mechanism opens up via pion production. All in all, the universal principle discloses that the broad spectrum of cosmic rays probes the structure of space from cosmic distances down to microscopic details.

  18. Dosimetry of environmental radiations (cosmic ray)

    International Nuclear Information System (INIS)

    Yamasaki, Keizo

    1978-01-01

    Cosmic ray is dominant as environmental radiation, though the experimental determination made on cosmic ray doses is few in Japan. The free air ionization intensity at sea level due to cosmic ray has been estimated in the Bay of Wakasa, Japan, at middle geomagnetic latitude (25 deg. N), in October 1977. The ionization chambers used were two air and one argon types. Where the responses to cosmic and terrestrial gamma rays were equal, the ionization intensity due to cosmic ray was obtained by subtracting the ionization intensity due to terrestrial gamma ray from the total ionization intensity. As the terrestrial gamma ray, (1) U-238 series, Th-232 series, and K-40 in seawater, (2) K-40 in the material of a wooden ship, and (3) Rn-222 and its daughter products in the atmosphere were considered. The result of free air ionization due to cosmic ray with the argon chamber was slightly smaller than those with the other two air chambers; however, both were in good agreement within standard errors. (JPN.)

  19. Cosmic far-infrared background at high galactic latitudes

    International Nuclear Information System (INIS)

    Stecker, F.W.; Puget, J.L.; Fazio, G.G.

    1977-01-01

    We predict far-infrared background fluxes from various cosmic sources. These fluxes lie near the high-frequency side of the blackbody radiation spectrum. These sources could account for a significant fraction of the background radiation at frequencies above 400 GHz which might be misinterpreted as a ''Comptonization'' distortion of the blackbody radiation. Particular attention is paid to the possible contributions from external galaxies, from rich clusters of galaxies, and from galactic dust emission

  20. Cosmic far-infrared background at high galactic latitudes

    International Nuclear Information System (INIS)

    Stecker, F.W.; Puget, J.L.; Fazio, G.G.

    1976-12-01

    Far-infrared background fluxes from various cosmic sources are predicted. These fluxes lie near the high-frequency side of the blackbody radiation spectrum. These sources could account for a significant fraction of the background radiation at frequencies above 400 GHz, which might be misinterpreted as a comptonization distortion of the blackbody radiation. Particular attention is paid to the possible contributions from external galaxies, rich clusters of galaxies and from galactic dust emission

  1. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude

    International Nuclear Information System (INIS)

    Goldhagen, P.; Clem, J. M.; Wilson, J. W.

    2004-01-01

    Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra. (authors)

  2. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  3. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    Science.gov (United States)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  4. On the calibration of a single channel cosmic ray particle detector

    Science.gov (United States)

    Maghrabi, A. H.; Alghamdi, A. S.; Alotaibi, R.; Almutari, M. M.; Garawi, M. S.

    2014-07-01

    Cosmic Ray (CR) variation measurements have been extensively conducted using different type of detectors sensing different components of CR and at different locations around the world. We have constructed and, operated a single channel muon detector in the central part of Saudi Arabia. The main goal of this detector is to record the intensity of cosmic rays on different time scales and investigate their correlations with environment parameters. This detector is expected to fill the gap between neutron monitors and muon telescopes that exist around the world. In this paper, the technical aspects of this detector will be briefly discussed. Calibration procedures conducted to characterize and improve its performance will be detailed. These include the effect of the detector geometry and the internal surface coating.

  5. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

    Science.gov (United States)

    DAMPE Collaboration; Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M. S.; Chang, J.; Chen, D. Y.; Chen, H. F.; Chen, J. L.; Chen, W.; Cui, M. Y.; Cui, T. S.; D'Amone, A.; de Benedittis, A.; De Mitri, I.; di Santo, M.; Dong, J. N.; Dong, T. K.; Dong, Y. F.; Dong, Z. X.; Donvito, G.; Droz, D.; Duan, K. K.; Duan, J. L.; Duranti, M.; D'Urso, D.; Fan, R. R.; Fan, Y. Z.; Fang, F.; Feng, C. Q.; Feng, L.; Fusco, P.; Gallo, V.; Gan, F. J.; Gao, M.; Gao, S. S.; Gargano, F.; Garrappa, S.; Gong, K.; Gong, Y. Z.; Guo, D. Y.; Guo, J. H.; Hu, Y. M.; Huang, G. S.; Huang, Y. Y.; Ionica, M.; Jiang, D.; Jiang, W.; Jin, X.; Kong, J.; Lei, S. J.; Li, S.; Li, X.; Li, W. L.; Li, Y.; Liang, Y. F.; Liang, Y. M.; Liao, N. H.; Liu, H.; Liu, J.; Liu, S. B.; Liu, W. Q.; Liu, Y.; Loparco, F.; Ma, M.; Ma, P. X.; Ma, S. Y.; Ma, T.; Ma, X. Q.; Ma, X. Y.; Marsella, G.; Mazziotta, M. N.; Mo, D.; Niu, X. Y.; Peng, X. Y.; Peng, W. X.; Qiao, R.; Rao, J. N.; Salinas, M. M.; Shang, G. Z.; H. Shen, W.; Shen, Z. Q.; Shen, Z. T.; Song, J. X.; Su, H.; Su, M.; Sun, Z. Y.; Surdo, A.; Teng, X. J.; Tian, X. B.; Tykhonov, A.; Vagelli, V.; Vitillo, S.; Wang, C.; Wang, H.; Wang, H. Y.; Wang, J. Z.; Wang, L. G.; Wang, Q.; Wang, S.; Wang, X. H.; Wang, X. L.; Wang, Y. F.; Wang, Y. P.; Wang, Y. Z.; Wen, S. C.; Wang, Z. M.; Wei, D. M.; Wei, J. J.; Wei, Y. F.; Wu, D.; Wu, J.; Wu, L. B.; Wu, S. S.; Wu, X.; Xi, K.; Xia, Z. Q.; Xin, Y. L.; Xu, H. T.; Xu, Z. L.; Xu, Z. Z.; Xue, G. F.; Yang, H. B.; Yang, P.; Yang, Y. Q.; Yang, Z. L.; Yao, H. J.; Yu, Y. H.; Yuan, Q.; Yue, C.; Zang, J. J.; Zhang, C.; Zhang, D. L.; Zhang, F.; Zhang, J. B.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, P. F.; Zhang, S. X.; Zhang, W. Z.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. Q.; Zhang, Y. L.; Zhang, Y. P.; Zhang, Z.; Zhang, Z. Y.; Zhao, H.; Zhao, H. Y.; Zhao, X. F.; Zhou, C. Y.; Zhou, Y.; Zhu, X.; Zhu, Y.; Zimmer, S.

    2017-12-01

    High-energy cosmic-ray electrons and positrons (CREs), which lose energy quickly during their propagation, provide a probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been measured directly up to approximately 2 teraelectronvolts in previous balloon- or space-borne experiments, and indirectly up to approximately 5 teraelectronvolts using ground-based Cherenkov γ-ray telescope arrays. Evidence for a spectral break in the teraelectronvolt energy range has been provided by indirect measurements, although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range 25 gigaelectronvolts to 4.6 teraelectronvolts by the Dark Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The largest part of the spectrum can be well fitted by a ‘smoothly broken power-law’ model rather than a single power-law model. The direct detection of a spectral break at about 0.9 teraelectronvolts confirms the evidence found by previous indirect measurements, clarifies the behaviour of the CRE spectrum at energies above 1 teraelectronvolt and sheds light on the physical origin of the sub-teraelectronvolt CREs.

  6. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    International Nuclear Information System (INIS)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation

  7. Primary cosmic radiation

    International Nuclear Information System (INIS)

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  8. Cosmic gamma-ray bursts from BATSE - Another great debate

    Science.gov (United States)

    Hartmann, Dieter H.; The, Lih-Sin; Clayton, Donald D.; Schnepf, Neil G.; Linder, Eric V.

    1992-01-01

    The BATSE detectors aboard Compton Observatory record about one cosmic gamma-ray burst (GRB) per day. Preliminary data analysis shows a highly isotropic sky map and a nonuniform brightness distribution. Anisotropies expected from a Galactic neutron star population, the most frequently considered source model, did not emerge from the data. Taken at face value, the data seem to suggest a heliocentric solution of the GRB puzzle. The observed isotropy can be achieved if sources are either very near or extragalactic. Pop I neutron stars in the disk do not simultaneously fit sky and brightness distributions. A possibility are sources in an extended Galactic halo with scale length large enough to avoid strong anisotropies due to the solar offset from the Galactic center. If GRBs are located in an extended halo we ask whether the neutron star paradigm can survive. We show that the recently discovered high velocity radio pulsars may provide a natural source population for GRBs. If these pulsars formed in the halo, as suggested by the radio data, the possibility arises that GRBs and high velocity pulsars are two related phenomena that provide observational evidence of the dark Galactic corona. We also discuss cosmological redshift constraints that follow from the observed brightness distribution.

  9. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs

  10. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  11. Cosmic rays: the spectrum and chemical composition from 10{sup 10} to 10{sup 20} eV

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, C.J. Todero; De Souza, Vitor [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos (Brazil); Biermann, Peter L., E-mail: toderocj@usp.br, E-mail: vitor@ifsc.usp.br, E-mail: plbiermann@mpifr-bonn.mpg.de [Max-Planck-Institute for Radioastronomy, Auf dem Hügel 69, 53121 Bonn (Germany)

    2015-07-01

    The production of energetic particles in the universe remains one of the great mysteries of modern science. The mechanisms of acceleration in astrophysical sources and the details about the propagation through the galactic and extragalactic media are still to be defined. In recent years, the cosmic ray flux has been measured with high precision in the energy range from 10{sup 10} to 10{sup 20.5} eV by several experiments using different techniques. In some energy ranges, it has been possible to determine the flux of individual elements (hydrogen to iron nuclei). This paper explores an astrophysical scenario in which only our Galaxy and the radio galaxy Cen A produce all particles measured on Earth in the energy range from 10{sup 10} to 10{sup 20.5} eV . Data from AMS-02, CREAM, KASCADE, KASCADE-Grande and the Pierre Auger Observatories are considered. The model developed here is compared to the total and if available to the individual particle flux of the experiments considered.The flux of each element as determined by AMS-02, CREAM, KASCADE and KASCADE-Grande and the mass sensitivity parameter X{sub max} measured by the Pierre Auger Observatory above 10 eV are also explored within the framework of the model. The transition from 10{sup 16} to 10{sup 18} eV is carefully analyzed. It is shown that the flux measured in this energy range suggest the existence of an extra component of cosmic rays yet to be understood.

  12. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    Science.gov (United States)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  13. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2017-01-01

    Roč. 2017, č. 6 (2017), 1-26, č. článku 026. ISSN 1475-7516 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : cosmic ray experiments * ultra high energy cosmic rays Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 4.734, year: 2016

  14. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  15. Cosmic ray physics in space: the role of Sergey Vernov's scientific school

    Science.gov (United States)

    Panasyuk, M. I.

    2011-04-01

    Cosmic rays were discovered almost 100 years ago. Since then the scientific world has learned a lot from their nature: the particles nascent in the Universe, both in our Galaxy and outside, the basic mechanisms of their acceleration, transfer in the interstellar environment and the interaction of the primary cosmic rays with the atmosphere surrounding the Earth. Before 1957, i.e., the beginning of the Space Era, researchers' capabilities were limited to experiments performed on the ground, underground and in near-ground atmosphere to flight altitudes of aerostats, airplanes and rockets, i.e., where only secondary radiation is in existence, this is the result of the interaction of cosmic rays with the Earth's atmosphere. The launching of spacecraft allowed the scientists to commence exploring the Universe's primordial matter itself outside the atmosphere, i.e., the primary cosmic rays. Sergey Vernov, the Russian scientist, was among them.

  16. Cosmic ray studies on the ISS using SSNTD, BRADOS projects, 2001–2003

    CERN Document Server

    Pálfalvia, J K; Akatov, Y; Sajó-Bohus, L; Eördögh, I

    2005-01-01

    The BRADOS 1–3 projects were organised by the Russian Space Agency (RZA) between 2001 and 2003. The aim was to study the contribution of the primary galactic cosmic rays and of the secondary particles to the dose received by the crew of the International Space Station (ISS). Several laboratories participated in these experiments. Two different stacks (constructed by the team of the Atomic Energy Research Institute, AERI, Budapest, Hungary) composed of solid-state nuclear track detectors (SSNTD) were exposed inside the Service Module at different locations. The calibrations were made at the CERN high-energy neutron reference field named CERF (Geneva, Swiss). Applying a multiple track etching technique (2–20 h etching time) and a sophisticated image analyser, the secondary neutron dose was deduced. The composition of stacks, the evaluation methods and the results will be presented here or referenced to previous papers.

  17. VHE Gamma-ray Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  18. Cosmic Ray Physics with ACORDE at LHC

    CERN Document Server

    Pagliarone, C.

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  19. Cosmic ray physics with ACORDE at LHC

    International Nuclear Information System (INIS)

    Pagliarone, C; Fernandez-Tellez, A

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2·10 10 to 2· 10 12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10 15 to 10 17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program

  20. Key scientific problems from Cosmic Ray History

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    young scientist from the Graz University, started to investigate how γ-radiations change their intensity with the distance from their sources, i.e. from the ground. When he performed his historical experiments on balloons in 1911-1912, it was found that at the beginning (up to approximately one km) ionization did not change, but with increase of the altitude for up to 4 - 5 km, the ionization rate escalates several times. Victor Hess drew a conclusion that some new unknown source of ionization of extra terrestrial origin exists. He named it 'high altitude radiation'. 5. Many scientists did not agree with this conclusion and tried to prove that the discovered new radiation has terrestrial origin (e.g., radium and other emanations from radioactive substances in the ground, particle acceleration up to high energies during thunderstorms, and so on). However, a lot of experiments showed that Victor Hess's findings are right: the discovered new radiation has extra terrestrial origin. 6. In 1926 the great American scientist Robert Millikan named them 'cosmic rays': cosmic as coming from space, and rays because it was generally wrongly accepted at those time that the new radiation mostly consisted of γ-rays. Robert Millikan believed that God exists and continues to work: in space God has creates He atoms from four atoms of H with the generation high energy gamma rays (in contradiction with physical laws, as this reaction can occur only at very high temperature and great density, e.g., as inside stars). 7. On this problem, interesting to many people, there was a famous public discussion between two Nobel laureates Arthur Compton and Robert Millikan, widely reported in newspapers. Only after a lot of latitude surveys in the 1930s, organized mostly by Compton and Millikan, it became clear that 'cosmic rays' are mostly not γ-rays, but rather charged particles (based on Störmer's theory about behavior of charged energetic particles in the geomagnetic field, developed in 1910