WorldWideScience

Sample records for fxg chemical yield

  1. Investigation of the use of FXG gel dosimeter for UV radiation detection

    International Nuclear Information System (INIS)

    Bero, M.; Abu Kassem, I.

    2009-02-01

    The radio-chromic chemical radiation dosimeter is well known type of detectors that have been used in the measurement application of radiation dose resulting for ionizing radiation such as γ and X-rays. The detector materials consist of mainly water with added gelatin powder that gives the detector its solid shape. Other chemicals sensitive to radiation are also added to form the Ferrous-sulfate Xylenol-orange Gelatin gel detector (FXG). Ionizing radiation effects appears as an increase in the optical absorbance within a defined range of wavelengths located in the visible region of the light spectrum. These visible changes in the materials optical characteristic as a result of radiation exposure is proportional to the radiation absorbed dose at certain wave lengths. Ultraviolet radiation was found to produce similar effects in the FXG detector materials; hence we suggested studying the UV effects in details. It is known that UV radiation carry relatively high quantum energies big enough to enhance important chemical and biological reactions in some exposed medium. This study examines the most important properties required for the FXG detector to be used as a UV monitoring system that is capable of measuring the absorbed UV radiation dose. The study also works on finding chemical detector structure that is easy to be used for simulating the UV interactions with human body. It has been shown that the optical absorbance of standard size FXG samples increases linearly with the exposure time to UV radiation produced by a sun simulator source, when the beam is filtered to produces exposure similar to that found in nature. However, the UV effects are also influenced by the applied UV radiation spectrum used for irradiation as well as the thicknesses of the FXG materials.(authors)

  2. A Practical Use for FXG Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olding, T; Salomons, G; Darko, J; Schreiner, L J, E-mail: Tim.Olding@krcc.on.c

    2010-11-01

    In-phantom Fricke-xylenol orange-gelatin (FXG) gel dosimetry yields three dimensional (3D) dose data for intensity modulated radiation therapy (IMRT) treatment plan verification within 18-24 hours from the point of request. The information obtained from a 3% dose difference, 3 mm distance-to-agreement gamma function comparison between treatment plan dose and gel-measured dose then provides a useful secondary 3D quality assurance check of the treatment plan prior to delivery.

  3. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B., E-mail: bhsouza@unifesp.b, E-mail: daros.kellen@unifesp.b, E-mail: rbitel-li.ddi@epm.b [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagem; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Servico de Radioterapia

    2011-07-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  4. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    International Nuclear Information System (INIS)

    Cavinato, Christianne C.; Campos, Leticia L.; Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B.; Giordani, Adelmo J.

    2011-01-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  5. Preparation of the FXG gel dosemeter and studying its response for low and medium energy X-rays

    International Nuclear Information System (INIS)

    Bero, M.; Kharita, M. H.

    2008-02-01

    Gel dosimetry method was found to be capable of addressing complicated issues related to dose measurements particularly in modern sophisticated radiotherapy applications. Ferrous-sulphate Xylenol-orange and Gelatin (FXG) radiochromic gel dosemeter is one of the systems used for such applications. Some chemical dosemeters show different response for low and medium energies X-rays in comparison with high energy-photons. The energy and dose rate dependence of the FXG dose response was examined. In addition to the detector response other important dosimetric properties of the system were investigated for different X-ray beam qualities with tube voltages in the range 100 - 300 kv. An orthovoltage X-ray therapy unit was used to irradiate standard sized samples of FXG from different batches for radiation doses in the range 0 - 8 Gy. This work includes in the first stage the preparation of the radiochromic gel dosemeter (FXG) as well as its calibration in gamma radiation field. Furthermore, the stability and reproducibility of measurements were tested. The obtained results were found to be suitable as a basis to carry on the next stage of this study. The second phase was centred about the delivery of radiation doses from X-ray source that has increasing energy and evaluating the gel material properties as a dosemeter in this case, with concentration on finding the changes of the gel material response with the changes in the applied X-ray energy. Therefore establishing the response radiation energy dependence and comparing the measurement results with other results taken from other known dosimetry system such as ion chambers. Experiments shows that the FXG gel detector has a dynamic rage suitable for the dose delivered in radiotherapy treatment; its response as a function of the dose rate is also stable in the range of radiation energies applied.(Author)

  6. SU-E-T-606: Performance of MR-Based 3D FXG Dosimetry for Preclinical Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Jaffray, D [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); TECHNA Institute for the Advancement of Technology for Health, Toronto, ON (Canada)

    2015-06-15

    Purpose: Technological advances have revolutionized preclinical radiation research to enable precise radiation delivery in preclinical models. Kilovoltage x-rays and complex geometries in preclinical radiation studies challenge conventional dosimetry methods. Previously developed gel-based dosimetry provides a viable means of accommodating complex geometries and accurately reporting dose at kV energies. This paper will describe the development and evaluation of gel-based ferrous xylenol-orange (FXG) dosimetry using a 7T preclinical imaging system. Methods: To confirm water equivalence, Zeff values were calculated for the FXG material, water and ICRU defined soft tissue. Proton T1 relaxivity response in FXG was measured using a preclinical 7T MR and a small animal irradiator for a dose range of 1–22 Gy. FXG was contained in 50 ml centrifuge tubes and irradiated with a 225 kVp x-ray beam at a nominal dose rate of 2.3 Gy/min. Pre and post irradiation maps of the T1 relaxivity were collected using variable TR spin-echo imaging (TE 6.65 ms; TR 500, 750, 1000, 1500, 2000, 3000 and 5000 ms) with 2 mm thick slices, 0.325 mm/pixel, 3 averages and an acquisition time of 26 minutes. A linear fit to the change in relaxation rate (1/T1) for the delivered doses reported the gel sensitivity in units of ms{sup -1}Gy{sup -1}. Irradiation and imaging studies were repeated using three batches of gel over 72 hrs. Results: FXG has a Zeff of 3.8 for the 225 kVp spectrum used; differing from water and ICRU defined soft tissue by 0.5% and 2.5%, respectively. The average sensitivity for the FXG dosimeter was 31.5 ± 0.7 ms{sup -1}Gy{sup -1} (R{sup 2} = 0.9957) with a y-intercept of −29.4 ± 9.0 ms{sup -1}. Conclusion: Preliminary results for the FXG dosimeter properties, sensitivity, and dose linearity at preclinical energies is promising. Future work will explore anatomically relevant tissue inclusions to test MR performance. Student funding provided by The Terry Fox Foundation

  7. Optical response of the FXG solution to different phantom materials

    International Nuclear Information System (INIS)

    Cavinato, C.C.; Sakuraba, R.K.; Cruz, J.C.; Campos, L.L.

    2011-01-01

    The purpose of this work is to evaluate the performance of the Fricke xylenol gel (FXG) solution developed at IPEN, prepared with 270 Bloom gelatine (made in Brazil), for clinical electron beams to the reference depth, using different phantom materials. The colour change, optical absorption spectra, intra and inter-batches reproducibility, dose-response, lower detection limit, energy and dose rate dependent response and response uniformity were studied. The excellent results obtained indicate the viability of employing this solution in 2D spectrophotometric dosimetry (could be extended to 3D MRI dosimetry) to be applied in quality assurance for clinical radiotherapy treatment planning of superficial tumours being treated with clinical electron beams.

  8. Using Simulation to Increase Yields in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    William C. Conley

    2003-06-01

    Full Text Available Trying to increase the yields or profit or efficiency (less pollution of chemical processes is a central goal of the chemical engineer in theory and practice. Certainly sound training in chemistry, business and pollution control help the engineer to set up optimal chemical processes. However, the ever changing demands of customers and business conditions, plus the multivariate complexity of the chemical business can make optimization challenging. Mathematical tools such as statistics and linear programming have certainly been useful to chemical engineers in their pursuit of optimal efficiency. However, some processes can be modeled linearly and some can not. Therefore, presented here will be an industrial chemical process with potentially five variables affecting the yield. Data from over one hundred runs of the process has been collected, but it is not known initially whether the yield relationship is linear or nonlinear. Therefore, the CTSP multivariate correlation coefficient will be calculated for the data to see if a relationship exists among the variables. Then once it is proven that there is a statistically significant relationship, an appropriate linear or nonlinear equation can be fitted to the data, and it can be optimized for use in the chemical plant.

  9. Track models and radiation chemical yields

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  10. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 1 - Concepts and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Freund, H.; Walters, C.C.; Kelemen, S.R.; Siskin, M.; Gorbaty, M.L.; Curry, D.J.; Bence, A.E. [ExxonMobil Research & Engineering Co., Annandale, NJ (United States)

    2007-07-01

    We have developed a method to calculate the amounts and composition of products resulting from the thermal decomposition of a solid complex carbonaceous material. This procedure provides a means of using laboratory measurements of complex carbonaceous solids to construct a representative model of its chemical structure (CS) that is then coupled with elementary reaction pathways to predict the chemical yield (CY) upon thermal decomposition. Data from elemental analysis, H, N, O, S, solid state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS), sulfur X-ray absorption structure spectroscopy (XANES), and pyrolysis-gas chromatography (GC) are used to constrain the construction of core molecular structures representative of the complex carbonaceous material. These core structures are expanded stochastically to describe large macromolecules ({gt} 10{sup 6} cores with similar to 10{sup 6} atoms) with bulk properties that match the experimental results. Gas, liquid and solid product yields, resulting from thermal decomposition, are calculated by identifying reactive functional groups within the CS stochastic ensemble and imposing a reaction network constrained by fundamental thermodynamics and kinetics. An expulsion model is added to the decomposition model to calculate the chemical products in open and closed systems. Product yields may then be predicted under a wide range of time-temperature conditions used in rapid laboratory pyrolysis experiments, refinery processes, or geologic maturation.

  11. A standard comparison of spectral properties and energy response for a number of ultraviolet dosimeters

    International Nuclear Information System (INIS)

    Abu Kassem, I.; Bero, M.

    2013-09-01

    The radio-chromic chemical radiation dosimeters are materials that change their optical properties (Spectrique optical absorbance and optical density) due to radiation absorption. These detectors are used for dose measurements of ionizing radiation (γ and X-rays). It was established that these detectors could be used for ultraviolet radiation dose measurements. So, the aim of this work is to study and compare the metrological properties of two radiation chemical detectors, FXG gel and EBT2 Gafchromic film. The FXG gel is prepared directly at laboratory but EBT2 gafchromic film is a self developed radiation sensible film which is available as commercial product. This work focuses on realizing a comparison study between FXG and EBT2 detector metrological properties. It consists of studying optical and spectral properties of the detectors responsivity, radiation and temporal stability, linearity and total detected dose level. The results showed that the studied detectors present a very good responsivity to UVA radiation, high stability in optical absorbance under UVA radiation and good linearity over wide radiation level which contains the solar UVA radiation level reaching the earth surface. But, the EBT2 film presents two time higher total detection dose level than FXG gel, moreover, due to the simplicity of use, it was possible to test the use of EBT2 film for direct solar UVA radiation measurement. The two studied chemical detector (FXG gel and EBT2 film) provide a direct second order mathematical relation between the applied radiation dose and the optical absorbance changes with a very good approximation and suitable uncertainty (Measurement results relative dispersion is about 5%). It is possible to study the EBT2 film optical density variation as a function of UVA dose using directly a portable densitometer (author).

  12. Dosimetric properties of a radiochromic gel detector for diagnostic X-rays

    International Nuclear Information System (INIS)

    Bero, M.A.

    2007-01-01

    The gel dosimetry method was found to be capable of addressing complicated issues related to dose measurements particularly in modern sophisticated radiotherapy applications. The Ferrous-sulphate Xylenol-orange and Gelatin (FXG) radiochromic gel dosemeter is one of the systems used for such applications. Some chemical dosemeters show different responses for low- and medium-energy X-rays in comparison with high-energy γ-photons. The energy and dose rate dependence of the FXG dose response was examined. In addition to the detector response, other important dosimetric properties of the system were investigated for different X-ray beam qualities with tube voltages in the range 100-300 kV. An orthovoltage X-ray therapy unit was used to irradiate standard sized samples of FXG from different batches for radiation doses in the range 0-20 Gy

  13. The effects of vermicompost and chemical fertilizers on yield and yield components of marshmallow (Altheae officinalis L.

    Directory of Open Access Journals (Sweden)

    A.A. Sadeghi

    2016-05-01

    Full Text Available In order to investigate the effects of vermicompost and chemical fertilizers on growth characteristics, yield and yield components of marshmallow (Altheaeofficinalis L., a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2012. Experimental treatments were designed based on 3 levels of vermicompost (0, 5 and 10 t ha-1 and 5 levels of nitrogen fertilizer (0, 25, 50, 75 and 100% of 200 kg N ha-1. Results indicated that applied vermicompost had significant effects on increasing leaf area, flower weight per plant and grain yield of marshmallow. Flower weight per plant and grain yield of marshmallow was increased by 2 to 3 times by applying vermicompost at 10 t. ha-1, as compared to control treatment. In addition, nitrogen fertilizer had a significant effect on increasing flower weight per plant and grain, mucilage and oil yields of marshmallow. It seems that applying vermicompost can be suitable strategy in reducing the problems caused by excessive using of chemical fertilizers.

  14. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  15. Radiation-chemical yields of molecular hydrogen formation in cyclohexane based alcohols

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Kovalev, G.V.

    1988-01-01

    Molecular hydrogen radiation-chemical yields in γ-irradiated cyclohexanol, 1.2-cis- and 1.2-trans-cyclohexandiols and inositol are determined within the general problem frameworks of radiolysis mechanism for cyclohexanering-base alcohols. Irradiation was conducted at 77 and 293 K, dose rate - 4 Gy/s. Hydrogen concentration in all irradiated alcohols depends linearly on the dose. Radiation-chemical yields of H 2 and of stabilized radicals, as well, in the irradiated crystalline alcohols are analyzed depending on the irradiation temperature, alcohol molecular structure

  16. Effects of Chemical and Organic Fertilizers on Growth, Yield and Yield Component of Tomato (Lycopersicon sculentum L.

    Directory of Open Access Journals (Sweden)

    R Mirzaei Talarposhti

    2017-03-01

    Full Text Available Introduction Although using animal manures and crop residues as a traditional method for increasing soil fertility and crop yield has a long history but Conventional agricultural systems rely on the use of chemical fertilizer due to its immediate availability of nutrients. In many of modern agricultural systems using chemical fertilizers as a fast and easiest way to reduce nutrient deficiency and increasing soil fertility is considered. Intensive and continuous use of chemical fertilizers leads to decreasing the stability and sustainability of agricultural systems and also poses major threat to environment and human health. Organic fertilizers have positive effects on physiochemical and biological attributes of soil and could be classified in three different groups (i.e. Animal manures, green manure and composts.Using animal manure not only increase soil fertility but also could result in increasing infiltration, aeration and water holding capacity of soil. The main role of these fertilizers is related to physical change in soil. Different types of composts such as municipal waste compost and vermicompost also have similar positive effects, but usually the farmers observe the main effect of these organic fertilizers in long term. In order to investigate the effects of different types of organic fertilizers on growth indexes, yield and yield component of tomato (Lycopersicon sculentum L. current experiment was conducted. Materials and Methods The experiment was conducted based on randomized complete block design (RCBD with three replications and six treatments in the research station of Shahid Beheshti University. The experimental treatments were: Control or no fertilizer (NF, chemical fertilizer (CF, cow manure (CM, poultry manure (PM, vermicompost (VC and municipal waste compost (MC. Considering nitrogen concentration in all of the treatments different amounts of these fertilizers were used based on nitrogen recommendation for the field, so in

  17. The Effect of Chemical, Biological and Organic Nutritional Treatments on Sunflowers Yield and Yield Components under the Influence of Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    fatemeh soleymani

    2016-07-01

    Full Text Available Introduction To achieve the higher economic yield of crop plants, supplying enough nutrients to plants is very important. Moreover, nutrient uptakes by plants is influenced by the soil water contents. However, nowadays chemical fertilizer application is important agronomic factor that has significant effects on growth and quantity and quality of final yield, but traditional nutrient management and excessive use of chemical fertilizers may cause the environmental problems such as contamination of soil and water resources, low quality of agricultural products and reduction of soil fertility. These factors have drawn attention to health and ecological sustainable farming systems (Sharma, 2002. In this context, usage of organic and biological products for plant nutrition is considered as one of the solutions to achieve the goals of sustainable agriculture. Materials and methods To evaluate the effect of various feeding systems on yield and yield components of sunflower (Helianthus annuus L. under the influence of water deficit stress, a split-plot experiment based on randomized complete block design with three replications, was carried out in the Agricultural Faculty of Bu-Ali Sina University during the growing season of 2013-2014. Main plots consisted of two irrigation levels: optimum irrigation and deficit irrigation stress (irrigation after 60 and 120 mm evaporation from evaporation pan, class A, respectively and sub-plots included of nine nutrition systems: 1- no bio or chemical fertilizer application, 2- 100% of the recommended chemical fertilizer , 3- vermicompost, 4- phospho nitro kara, 5- vermicompost+ phospho nitro kara, 6- vermicompost+ ½ chemical fertilizer, 7- phospho nitro kara+ ½ chemical fertilizer, 8- vermicompost+ phospho nitro kara+ ½ chemical fertilizer, 9- ½ proposed chemical fertilizer. Phospho-nitro-kara which contains phosphate solubilizing and nitrogen fixing bacteria (Bacillus coagulans, azotobactr chroocuccum and

  18. The effects of vermicompost and chemical fertilizers on yield and yield components of marshmallow (Altheae officinalis L.)

    OpenAIRE

    A.A. Sadeghi; K. Bakhsh Kelarestaghi; K. Hajmohammadnia Ghalibaf

    2016-01-01

    In order to investigate the effects of vermicompost and chemical fertilizers on growth characteristics, yield and yield components of marshmallow (Altheaeofficinalis L.), a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2012. Experimental treatments were designed based on 3 levels of vermicompost (0, 5 and 10 t ha-1) and 5 levels of ...

  19. Evaluation of Yield and Yield Components of Oilseed Rape in the Wheat-Oilseed Rape Strip Intercropping Influenced by Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    R Amirmardfar

    2015-01-01

    Full Text Available To evaluate the effects of wheat (Triticum aestivum and oilseed rape (Brassica napus strip intercropping on yield components, seed and biological yields of oilseed rape, field experiments were carried out as factorial based on randomized complete block design with three replications at Research Farm of Tabriz University, Tabriz, Iran during 2010-2012 cropping seasons. The first factor consisted of four types of wheat and oilseed rape cropping system, sole crop of oilseed rape (A1,: strip intercropping with 8:3 (A2, 12:4 (A3 and 16:5 (A4 of wheat and oilseed rape rows, respectively and the other factor consisted of two fertilizer levels, B1: 100% chemical fertilizers (urea and triple superphosphate and B2: 50% chemical fertilizers + biofertilizers (Nitrazhin and Barvar2. The results showed that strip intercropping of wheat- oilseed rape resulted in significant increase in yield components, seed yield per occupied unit area and biological yield per occupied unit area of oilseed rape as compared with mono-cropping. The number of silique per plant in intercropping systems was significantly higher than that of mono-cropping. The highest seed yield was obtained in the 16:5 rows of wheat-oilseed rape with 343.76 g.m-2 and the lowest mean was observed in mono-cropping of oilseed rape with 260.21 g.m-2. Biological yield per occupied unit area and seed yield per intercropped unit area in B1 were significantly greater than that of B2, but this treatment had no significant effect on the other traits. Because, B1 and B2 had no significant difference in seed yield per occupied unit area and due to the importance of reduction in chemical fertilizers consumption and food and environmental health care, strip intercropping of wheat-oilseed rape under 50% chemical fertilizers + biofertilizers can be recommended as a suitable cultural method.

  20. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  1. Effect of mass loss on the chemical yields from massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Caimmi, R [Padua Univ. (Italy). Istituto di Astronomia

    1979-01-01

    Recent results on the calculation of the chemical yields from massive stars, are rediscussed by taking into account the occurrence of mass loss by stellar wind during the core H- and He-burning phases. The new yields are found to be compatible with the observed distribution of chemical abundances in the solar system, except for He. The net enrichment of several elements over the galaxy's lifetime is found to be consistent with the current estimate of the star formation rate, if we adopt a two phase process of galaxy formation (halodisk). The relative He to heavy element enrichment rate ..delta..Y/..delta..Z turns out to agree with the observational value when mass loss by stellar wind is taken into account.

  2. Fricke xylenol gel energy dependence

    International Nuclear Information System (INIS)

    Costa, Rosangela T.; Moreira, Marcos V.; Almeida, Adelaide de

    2009-01-01

    The advancement of technology has increasingly use the of ionizing radiation mainly in the areas of medicine, industry and research. The development of instruments and methods for an effective performance for detection and measurement of each radiation area was crucial. The literature have demonstrated the effectiveness of the Fricke Xylenol Gel (FXG) as an adequate chemical sensor to be used for dosimetry, once its effective atomic number and density are near to those of the soft tissue. The use of photon beams for therapeutic purpose requires knowledge of their characteristics that can vary for each equipment. Therefore, is important to know all parameters involved for the patient irradiation as the total geometry involved, type of radiation, target material composition and beam energy, that have to be taken into account in the beam dosimetry for the treatment success being the energy parameter is one of the most important. This work was developed to study the energetic dependence of the FXG dosimeter. This chemical solution is made with gelatine 300 Bloom, ferrous ammonium sulfate, xylenol orange, sulfuric acid and Milli-Q water and is based on the Fe +2 oxidation to Fe +3 , due to the ionizing radiation leading to the xylenol orange - ferric complex formation, that is linear depend on the absorbed dose. The FXG samples were irradiated with photons of different energies and the absorbance measurements were done with the spectrophotometric technique at the 585 nm, FXG highest absorption peak. The energetic dependence results presented a stronger dependence for low energies and almost independence for high energies, as expected by the interaction of radiation with matter. (author)

  3. Fricke Xylenol Gel characterization at megavoltage radiation energy

    Energy Technology Data Exchange (ETDEWEB)

    Del Lama, Lucas Sacchini, E-mail: lucasdellama@gmail.com [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, DF-FFCLRP/USP, Avenida Bandeirantes, n" o 3900, Monte Alegre, CEP: 14040-901, Ribeirão Preto, SP (Brazil); Petchevist, Paulo César Dias [Oncoville, Centro de Excelência em Radioterapia em Curitiba, Rodovia BR-277, n" o 1437, Ecoville, CEP: 82305-100, Curitiba, PR (Brazil); Almeida, Adelaide de [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, DF-FFCLRP/USP, Avenida Bandeirantes, n" o 3900, Monte Alegre, CEP: 14040-901, Ribeirão Preto, SP (Brazil)

    2017-03-01

    Accurate determination of absorbed dose is of great importance in every medical application of ionizing radiation, mainly when involving biological tissues. Among different types of dosimeters, the ferrous sulfate chemical solution, known as Fricke solution, can be detached, due to its accuracy, reproducibility and linearity, been used in radiation dosimetry for over 50 years. Besides these characteristics, the Fricke Xylenol Gel (FXG), became one of the most known dosimeters for absorbed dose spatial distribution because of its high spatial resolution. In this work, we evaluated the FXG dosimeter taking into account different preparation recipes, in order to characterize its response in terms of absorbed dose range, linearity, sensitivity and fading.

  4. Fricke Xylenol Gel characterization at megavoltage radiation energy

    International Nuclear Information System (INIS)

    o 3900, Monte Alegre, CEP: 14040-901, Ribeirão Preto, SP (Brazil))" data-affiliation=" (Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, DF-FFCLRP/USP, Avenida Bandeirantes, no 3900, Monte Alegre, CEP: 14040-901, Ribeirão Preto, SP (Brazil))" >Del Lama, Lucas Sacchini; o 1437, Ecoville, CEP: 82305-100, Curitiba, PR (Brazil))" data-affiliation=" (Oncoville, Centro de Excelência em Radioterapia em Curitiba, Rodovia BR-277, no 1437, Ecoville, CEP: 82305-100, Curitiba, PR (Brazil))" >Petchevist, Paulo César Dias; o 3900, Monte Alegre, CEP: 14040-901, Ribeirão Preto, SP (Brazil))" data-affiliation=" (Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, DF-FFCLRP/USP, Avenida Bandeirantes, no 3900, Monte Alegre, CEP: 14040-901, Ribeirão Preto, SP (Brazil))" >Almeida, Adelaide de

    2017-01-01

    Accurate determination of absorbed dose is of great importance in every medical application of ionizing radiation, mainly when involving biological tissues. Among different types of dosimeters, the ferrous sulfate chemical solution, known as Fricke solution, can be detached, due to its accuracy, reproducibility and linearity, been used in radiation dosimetry for over 50 years. Besides these characteristics, the Fricke Xylenol Gel (FXG), became one of the most known dosimeters for absorbed dose spatial distribution because of its high spatial resolution. In this work, we evaluated the FXG dosimeter taking into account different preparation recipes, in order to characterize its response in terms of absorbed dose range, linearity, sensitivity and fading.

  5. Chemical intervention in plant sugar signalling increases yield and resilience

    Science.gov (United States)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  6. Chemical yields from low-temperature pyrolysis of CCA-treated wood

    Science.gov (United States)

    Qirong Fu; Dimitris Argyropolous; Lucian Lucia; David Tilotta; Stan Lebow

    2009-01-01

    Low-temperature pyrolysis offers a feasible option for wood-waste management and the recovery of a variety of useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of various pyrolysis products was investigated in the present research. A novel quantitative 31P nuclear magnetic resonance (...

  7. The Effects of Organic, Chemical and Biological Fertilizers on Seed Yield and Yield Components of Dwarf Chicory (Cichorium pumilum Jacq.

    Directory of Open Access Journals (Sweden)

    Farima Doaei

    2017-08-01

    Full Text Available Introduction: In order to response to greater demand for wild medicinal plants consumption, it has been recommended that wild medicinal plants can be brought into cultivation systems. Cichorium pumilum Jacq. is an annual species of Asteraceae family, that has a long history of herbal use and is especially of great value for its tonic effects upon the liver and digestive tract. The root and the leaves of chicory are digestive, hypoglycemic, diuretic, laxative and tonic. Using chemical fertilizers can be easily lost from soils through fixation, leaching or gas emission that can lead to reduced fertilizer efficiency. The applications of organic fertilizers such as compost and vermicompost can be considered as a good management practice to increase cropping system sustainability, reducing soil erosion and improving soil physical, chemical and biological properties. Soil microorganisms have a significant role in regulating the dynamics of organic matter breakdown and the availability of plant nutrients such as nitrogen, phosphate and sulfur. Materials and Methods: For evaluating the effects of organic, mineral and biological fertilizers on seed yield and yield components of dwarf chicory (Cichorium pumilum Jacq., a field experiment was conducted at the Agricultural Research Station, the Ferdowsi University of Mashhad (36016/ N, 59036/ E, elevation 985 m during growing season of 2011-2012. The experimental layout was factorial based on randomized complete block design with four replications. The experimental treatments were all combination of organic and chemical fertilizers (compost 4 t/ha, vermicompost 4 t/ha, urea fertilizer 130 kg/ha and control and biological fertilizer (biosulfur biofertilizer + pure sulfur 100 kg/ ha and control. Before conducting the experiment, soil sample were taken from the depth of 0-30 cm, and physical and chemical characteristics of the soil and also used compost and vermicompost were determined. All fertilizer

  8. Dosimetric evaluation of the Fricke gel dosimeter using the spectrophotometric technique for application in electron and neutron dosimetry

    International Nuclear Information System (INIS)

    Mangueira, Thyago Fressatti

    2009-01-01

    In this work the main dosimetric characteristics of the Fricke Xylenol Gel (FXG) solution were established for further application in the measurement of dose distribution of clinical electron fields. The dose-response curves of the FXG in a neutron field were also evaluated for the research in Boron Neutron Capture Therapy (BNCT) and industrial electron fields. The standard reading technique was the spectrophotometric. For the clinical field, the intra and inter-batch reproducibility are better than 1.4% and 5.1 %, respectively, the response presents a linear behavior for doses ranging from 0.2 to 40 Gy independently of the energy and the dose rate in the studied ranges. Due to the effects of the FXG natural oxidation, the optimum elapsed time between FXG preparation and irradiation was established as 24h period and the behavior of the dose-response curve of the FXG using the variation in the absorbance relative to the non-irradiated dosimeter as a basis during the whole studied period were not altered. The dose-response to the industrial electron beam presented an exponential decreasing behavior and the neutron beam for research in BNCT presented a linear behavior for the complete studied dose range. According to the obtained results for the different types of radiation studied for the FXG, there was no change in the position of the characteristic bands of the absorption spectrum due to the interaction of these radiation types. Additional tests were performed to determine the digital photographic imaging of FXG analyses viability and the application of FXG dosimetry on intracavitary brachytherapy. The good performance of the FXG dosimeter in the tests that were carried out indicates that this dosimeter may be applied to the tri-dimensional dose evaluation in radiotherapic treatments using electrons and neutron beams. (author)

  9. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  10. Kinetics of methane fermentation yield in biogas reactors: Genetic variation and association with chemical composition in maize

    International Nuclear Information System (INIS)

    Grieder, Christoph; Mittweg, Greta; Dhillon, Baldev S.; Montes, Juan M.; Orsini, Elena; Melchinger, Albrecht E.

    2012-01-01

    Maize (Zea mays L.) is the most competitive crop for methane production in Germany. Methane fermentation yield per unit of dry matter (MFY) is a determinant of methane yield, but little information is available on this trait. Our objectives were to investigate the kinetics of MFY during fermentation of maize, estimate quantitative-genetic parameters for different traits related to MFY and examine the relationship of MFY with chemical composition and silage quality. Whole-plant material of 16 inbreds and their 32 testcrosses was analyzed for MFY over 35 days of fermentation using a discontinuous laboratory assay. Data were also generated on chemical composition and in vitro digestible organic matter (IVDOM). Significant genotypic variances and high heritabilities were observed for MFY at early fermentation stages (up to 5 days) probably due to different concentrations of easily degradable chemical components. However, genotypic variances and heritability of MFY reduced as fermentation progressed, because of complete or partial degradation of all chemical components. Further, there were strong correlations of MFY with chemical components at early fermentation stages but not at later stages. Therefore, MFY at later stages, which is closer to potential MFY, does not seem to be amenable to selection. High heritability of IVDOM and its strong correlation with MFY in testcrosses indicated its possible use for preliminary or indirect selection. Keeping in view the magnitude of genetic variance that was low for MFY and high for dry matter yield (DMY), the other component of methane yield, more emphasis on breeding for DMY seems appropriate. -- Highlights: ► We investigated methane fermentation yield (MFY) of diverse germplasm of maize. ► The kinetics of MFY and its correlations with chemical composition were examined. ► Genetic variance and heritability for MFY decreased with fermentation time. ► Complete fermentation (35 d) reduced correlations of MFY with chemical

  11. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Brett H. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A., E-mail: andrewsb@pitt.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  12. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  13. Influence of tumbling and phosphate on the yield, sensory and chemical characteristics of pork liver loaf

    NARCIS (Netherlands)

    Percel, P.J.; Parrett, N.A.; Plimpton, R.F.; Ockerman, H.W.; Krol, B.; Roon, P.S. van

    1982-01-01

    Yield, sensory and chemical properties of pork liver loaves manufactured using varying processing treatments (tumbling vs immersion) and phosphate levels (0 vs 6.4%) were studied. Tumbling significantly improved liver cure uptake, total cure and loaf cooked yield when compared to immersion as a

  14. Assessing the Effect of Organic Compounds, Biofertilizers and Chemical Fertilizers on Morphological Properties,yield and Yield Components of Forage Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    A.H Saeidnejad

    2012-12-01

    Full Text Available Recently, using the source of organic fertilizers and biofertilizers in sustainable crop production is growing. In order to evaluate the effect of organic compounds, biofertilizers and chemical fertilizer on morphological properties, yield and yield components of forage Sorghum (sorghum bicolor a field experiment was conducted in the Research Farm, College of Agriculture, Ferdowsi University of Mashhad in 2008.The treatments were seed inoculation with the combination of Azotobacter chroococcum and Azospirillum brasilense, Compost (15 t/ha, Vermicompost (10 t/ha, seed inoculation with Azotobacter and Azospirillum and compost (10t/ha, seed inoculation with Azotobacter chroococcum and Azospirillum brasilense and Vermicompost (7t/ha, seed inoculation with Pseudomonas flurescence, seed inoculation with Pseudomonas flurescence and Azotobacter chroococcum and Azospirillum brasilense combination, seed inoculation with Pseudomonas flurescence and compost (15t/ha, chemical fertilizer (80 kg/h urea fertilizer and 50 kg/h super phosphate fertilizer and control. Harvesting was performed in 2 cuts in flowering stage. Plant height, number of tiller per plant and SPAD reading was significantly affected by the treatments. Stem diameter was not affected by any treatments. There was a significant difference among all treatments in terms of fresh and dry forage yield. There were no significant differences among all treatments in terms of stem and leaf dry matter. In general, result of this experiment indicated that organic amendments and biofertilizers could be acceptable alternatives for chemical fertilizers.

  15. Spatial distribution of the chemical properties of the soil and of soybean yield in the field

    Directory of Open Access Journals (Sweden)

    Alexandre Gazolla-Neto

    2016-06-01

    Full Text Available ABSTRACT The aim of this study was to evaluate the spatial dependence between chemical properties of the soil and yield components in the soybean using precision farming techniques. Samples of the soil and plants were taken from georeferenced points to determine the chemical properties of the soil and the yield components. The results were submitted to Pearson correlation analysis, descriptive statistics and geostatistics. The coefficient of variation showed a wide range of distribution for the chemical attributes of the soil, with the highest indices being found for the levels of available phosphorus (102% and potassium (72.65%. Soil pH and organic matter showed a coefficient of variation of 5.96 and 15.93% respectively. Semivariogram analysis of the yield components (productivity, 1,000-seed weight and number of seeds and the chemical properties of the soil (organic matter, pH, phosphorus, potassium, calcium, magnesium, boron, manganese and zinc fitted the spherical model with moderate spatial dependence, with values ranging from 200 to 700 m. Spatial distribution by means of map interpolation was efficient in evaluating spatial variability, allowing the identification and quantification of regions of low and high productivity in the production area, together with the distribution of soil attributes and their respective levels of availability to the soybean plants.

  16. Influence of density on radiation-chemical yield of molecular hydrogen formed at radiolysis of aqueous solution of NaOH

    International Nuclear Information System (INIS)

    Jafarov, Y.D.; Hajiyeva, S.R.; Ramazanova, N.K.; Aliyev, S.M.; Alasgarov, A.M.

    2014-01-01

    Full text : In atom and nuclear energy the specialists knowledge about radiation-chemical yield of the initial products formed under the influence of ionizing rays on water is of great importance from the point of security. The radiation-chemical yields of molecular hydrogen have been defined according to the graph and the obtained results

  17. Effect of Chemical Fertilizer, Cow Manure and Municipal Compost on Yield, Yield Components and Oil Quantity of three Sesame (Sesamum indicum L. Cultivars in Mashhad

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2013-10-01

    Full Text Available In order to evaluate the effects of different organic and chemical fertilizers on yield, yield components and seed oil content of sesame an experiment was conducted in a split plot layout based on randomized complete block design with four replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad in year 2006. Four types of fertilizer, including chemical fertilizer, cow manure, municipal compost and no fertilizer (control were allocated as main plots and three sesame cultivars (two local varieties of Kalat and Esfarayen, and Oltan cultivar were used as sub plots. The results showed that fertilizer treatments had significant effect (P

  18. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  19. Investigation of Yield and Yield Components of Canary Seed Forage (Phalaris canariensis L. in Response to Different Levels of Irrigation, Organic and Chemical Fertilizers and their integration

    Directory of Open Access Journals (Sweden)

    V Varnaseri Ghandali

    2016-12-01

    Full Text Available Introduction Canary seed (Phalaris canariensis L. is a forage plant from Poaceae family. This plant is drought tolerant. Canary seed is originally a native to Mediterranean region, which can be grown commercially in several parts of the word, especially in semi-arid conditions. Increasing growth of population and lack of ability of pastures to satisfy the food requirement of animal has led to more interest in cultivating forage plants. In this regard, Canary seed having properties such as high yield per unit area, high tillering power, very fast growth and appropriate nutritional value, is of considerable importance and its cultivation development especially in arid and semi-arid regions can be effective in providing part of the country forage needs. Optimum water requirement is considered as one the important factors to obtain a high growth and yield of the product. On the other hand, Iran is located in arid and semi-arid climate region of the world . Therefore, determination of appropriate amount of irrigation water can lead to the improvement of water use efficiency and preventing the water loss. In order to achieve a high yield and desirable quality in plants one of the important requirements in agricultural planning is the evaluation of different systems of plant feeding. By applying an appropriate method in soil productivity, in addition to protecting the environment, optimization of water usage, reduction of erosion and protection of biodiversity can be increased. Therefore, gradually replacing chemical fertilizers with biological and organic fertilizers will result in providing feed requirements of plants, improvement of physical, chemical and biological conditions of soil and reduction of adverse environmental effects resulting from application of chemical inputs. The aim of this research was to study the effects of deficit irrigation and fertilizer management based on sole chemical and organic fertilizers or their integrated

  20. Yield of Peas Treated with Compost and Chemical Fertilizer Using 15N Technique

    International Nuclear Information System (INIS)

    El-Degwy, S.M.A.

    2011-01-01

    A field experiment was carried out to evaluate the yield of peas treated with organic compost and mineral N fertilizer under sandy soil conditions. The obtained results showed that all the tested vegetative growth parameters, i.e. fresh and dry weight of leaves, root and pods of pea plants, were significantly increased with increasing the levels of mineral N fertilizer from 20 up to 50 kg N ha-1 either solely or in combination with compost. Nitrogen, phosphorus and potassium uptake by pea plants were ranked as follow: chemical N fertilize > compost + chemical N fertilize > compost. Organic additives either alone or in combination with chemical fertilizer had enhanced Ndff uptake by pods over aerial parts and roots while reversible trend was noticed with sole application of chemical fertilizer. Nitrogen derived from compost (Ndfc) and uptake by aerial parts followed by pods were enhanced by addition of organic plus chemical fertilizers comparable to sole addition of organic compost. In other term, chemical fertilizer had enhanced the portion of N derived from organic compost

  1. Evaluation of Effect of Chemical and Organic Fertilizers on Growth Characteristics, Yield and Yield components of three Sesame Ecotypes (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    M Goldani

    2014-07-01

    Full Text Available Using organic fertilizers is cause increase soil fertility, improving crop growth and production. For this purpose a greenhouse experiment was carried out in factorial arrangement based on a completely randomized design with three replications during 2011 year. First factor included: three sesame ecotype (MSC3, MSC6, MSC7 and second factor was 6 fertilizer treatments that included: Incorporation manure and chemical fertilizer (216 g manure and 1 gram chemical fertilizer NPK, Chemical fertilizer (2 g NPK, Vermicompost (192 g, Manure ( 228 g, Compost Sulfur granules (192 g per vase and Control (without any manure or fertilizer. Results indicated that different manure treatments had significant effect on morphological and yield components traits, as the most number and length branch per plant was obtained from incorporation manure and chemical fertilizer treatment. Appling incorporation manure and chemical fertilizer treatment had the most biomass in MSC3 ecotype that in comparison of control treatment was increased almost 73 percent. Consuming incorporation manure and chemical fertilizer treatment in MSC3 ecotype was also obtained the most capsule per plant (21.2, number seed per capsule (54.4, 100-seed weight (0.257 g and seed per plant with (1.95 g. The least seed weight per plant with 0.450 g was observed in MSC7 ecotype from application of control treatment. Response of three sesame ecotype (MSC3, MSC6, MSC7 to applied vermin-compost manure was similar; as the amount of seed weight per plant was increased more than 1 g per plant in all these ecotypes and in others fertilizer treatments was not observed this trend. There was significant positive correlation between seed weight per plant and number of capsule per plant (r=0.83**, height (r=0.68** and biomass (r=0.51**. The results showed that incorporation manure and chemical fertilizer was improved on growth and yield characteristics of sesame plant.

  2. Effect of Non-chemical Procedures of Weed Management on Growth Characteristics and Yield of Cumin (Cuminnum cyminum L.

    Directory of Open Access Journals (Sweden)

    Surur Khorramdel

    2018-02-01

    Full Text Available Introduction Medicinal and aromatic plants are major crops of domestic and industrial interest. The essential oil yield, seed yield and biomass of medicinal and aromatic plants are seriously affected by interspecific competition, meaning proper weed management becomes crucial. Competition with weeds is detrimental for medicinal and aromatic plants production for two main reasons. The first reason is that, in acting as an important stress factor, the interference of weeds is supposed to generate variations in photosynthesis rate and direction, pushing plants to allocate more carbon to roots (competition for nutrients or water or shoots (competition for light. These plants are increasingly organically grown to improve profitability. However, the presence of weeds may lead to a decline in both yield and quality. Therefore, nonchemical methods of weed management are needed. More attention has been paid worldwide about the technical means for weeding, generally addressed to a removal of weeds as complete as possible, and sometimes to the effects of weeds on medicinal and aromatic plants yields and quality.Cumin (Cuminum cyminum L. is an herbaceous and annual plant belonging to Apiaceae family which is planted in arid and semi-arid regions of Iran as medicinal plant. About 26% of the total area under cultivation of medicinal plants in Iran is allocated to cumin cultivation. This paper studied the methods of non-chemical weed control on yield components and quantitative and qualitative yield of cumin. Materials and Methods In order to study weed management methods, an experiment was conducted based on a randomized complete block design with nine treatments and three replications at the Agricultural Research Station, Ferdowsi University of Mashhad during growing season 2012-2013. Treatments included tillage at night, false seed bed, three cover crops such as hairy vetch, chuckling vetch and fenugreek, crop residues of sunflower, barley and garlic and

  3. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    Science.gov (United States)

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.

  4. Processing yield and chemical composition of rainbow trout (Oncorhynchus mykiss with regard to body weight

    Directory of Open Access Journals (Sweden)

    Maria Luiza Rodrigues de Souza

    2015-05-01

    Full Text Available The influence of weight (W category of the rainbow trout on processing yield and chemical composition of the entire eviscerated fish and fish fillet was analyzed. A completely randomized design was employed for processing variables (W1 = 300 to 370 g and W2 = 371 to 440 coupled to a 2 x 2 factorial scheme for the chemical composition (W1 and W2 and forms of presentation: fillet and whole eviscerated fish. W1 showed higher yield for entire eviscerated fish (83.00% and head (13.27%, but a lower yield for the viscera (17.00%, when compared to W2. We did not affect abdominal muscle yield, fillet with or without skin, skin percentage and residues. There were significant differences between W for moisture (W1 = 72.30% and W2 = 71.15% and lipids (CP1 = 7.96% and CP2 = 9.04% rates. Fillet moisture contents (73.74% and crude protein (19.05% were higher (p < 0.01 than for entire eviscerated fish (69.71% and 17.81%, respectively. Ash (2.15% and lipid (10.48% rates were higher (p < 0.01 for entire fish when compared to those of fillets (1.16% and 6.52%, respectively. The slaughter of fish weighing between 300 and 370 g and their fillets are more adequate for the market.

  5. Effects of Single and Combined Application of Organic, Biological and Chemical Fertilizers on Quantitative and Qualitative Yield of Coriander (Coriandrum sativum

    Directory of Open Access Journals (Sweden)

    M. Aghhavani Shajari

    2016-07-01

    Full Text Available Introduction: Medicinal plants were one of the main natural resources of Iran from ancient times. Coriander (Coriandrum sativum L. is from Apiaceae family that it has cultivated extensively in the world. Management and environmental factors such as nutritional management has a significant impact on the quantity and quality of plants. Application of organic fertilizers in conventional farming systems is not common and most of the nutritional need of plants supply through chemical fertilizers for short period. Excessive and unbalanced use of fertilizers in the long period, reduce crop yield and soil biological activity, accumulation of nitrates and heavy metals, and finally cause negative environmental effects and increase the cost of production. The use of bio-fertilizers and organic matter are taken into consideration to reduce the use of chemical fertilizers and increase the quality of most crops. Stability and soil fertility through the use of organic fertilizers are important due to having most of the elements required by plants and beneficial effects on physical, chemical, biological and soil fertility. Therefore, the aim of this research was to evaluate the effects of organic, biological and chemical fertilizers on quality and quantity characteristics of coriander. Materials and Methods: In order to study the effects of single and combined applications of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of Coriander (Coriandrum sativum, an experiment was conducted based on a randomized complete block design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in - 2011. Treatments included: (1 mycorrhizae (Glomus mosseae (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, 5( vermin compost, 6( mycorrhizae + chemical fertilizer, 7( mycorrhizae + cow manure, 8( mycorrhizae + vermicompost, 9( biosulfur

  6. Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices

    NARCIS (Netherlands)

    Straathof, Adrie J.J.; Bampouli, A.

    2017-01-01

    Carbohydrates are the prevailing biomass components available for bio-based production. The most direct way to convert carbohydrates into commodity chemicals is by one-step conversion at maximum theoretical yield, such as by anaerobic fermentation without side product formation. Considering these

  7. Evaluation of Yield and Chemical Characteristics of some Peanut Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-daem, G.A.; Anwar, M.M.

    2013-01-01

    This study was conducted to evaluate some promising mutants in peanut for yielding ability over three generation (M5, M6 and M7) and to evaluate yield attributes as will as chemical characteristics of these mutants in M7 generation induced by 100 Gy gamma radiation. The obtained results showed that the increase of yield / plot over three generation as a percentage of control was 5% for mutant 7, 10.2 % for mutant 10; 22% for mutant 9 and 22.9% for mutant 8. This increase in yield may be due to increase of one or more of yield attributes for most mutant lines. The significant increase for. No .of pods and seeds/ plant, weight of pods and seeds/ plant and 100- seed weight in M7 as compared to the control. For saturated fatty acid composition, results revealed that total saturated fatty acids ranged from 17.79% for mutant 8 to 21.75 for mutant 2 compared to 24.21% for control. Reduction of total saturated fatty acid was noticed for different mutants compared to that of the original variety. However, for total unsaturated fatty acids, results indicated that total unsaturated fatty acid composition ranged from 77.95% for mutant 9 to 82.09% for mutant 8 compared to 75.49% for control. Higher total unsaturated fatty acids for all mutant lines were obtained than that of the control, however, total saturated (TS)/ total unsaturated (TU) ratio was decreased for all mutants compared to control. The physical and chemical contents of Peanut oils showed that the refractive indices were ranged from 1.4620 to 1.4718 specific gravity were in range of 0.9146 to 0.9177. Acid value was range from 0.54 to 0.89% lodine value was ranged from 94.56 to 101.85. Saponification value was ranged from 185.2 to 190.7 and unsaponifiable matter was ranged from 0.98 to 1.33. The peroxide values ranged from 1.15 to 2.33 meq/kg oil. Also, fortified yoghurt made with replaced mutant peanut oil by 50% as milk fat substitute. Data showed that chemical composition and organolyptic properties had the

  8. Association of total-mixed-ration chemical composition with milk, fat, and protein yield lactation curves at the individual level

    NARCIS (Netherlands)

    Caccamo, M.; Veerkamp, R.F.; Licitra, G.; Petriglieri, R.; Terra, La F.; Pozzebon, A.; Ferguson, J.D.

    2012-01-01

    The objective of this study was to examine the effect of the chemical composition of a total mixed ration (TMR) tested quarterly from March 2006 through December 2008 for milk, fat, and protein yield curves for 27 herds in Ragusa, Sicily. Before this study, standard yield curves were generated on

  9. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. FORAGE YIELD, CHEMICAL COMPOSITION AND IN VITRO GAS PRODUCTION OF YELLOW HYBRID MAIZE GROWN IN MEXICO

    Directory of Open Access Journals (Sweden)

    Lizbeth Esmeralda Roblez Jimenez

    2017-12-01

    Full Text Available Maize is the most important forage in feed cattle, due to its higher energy content, however, it is characterized by its wide range of varieties and the possibility of generating a large quantity of final products. The objective of the present study was to evaluate and compare the forage yield, chemical composition and in vitro gas production as fresh and hay of a local yellow criollo maize and six varieties of yellow hybrid maize (HIT13, CML460, PIONER, COPPER, CDMO80001 and CLO80902. Fresh and dry yield did not show differences between treatments (P>0.05, their chemical composition (g / kg DM showed differences (P ˂ 0.05 for the protein content by various storage methods ranging from 59.87 to 59.61 g kg-1 DM per conservation method, NDF ranged from 591 to 686 g kg-1 DM by variety and by the method ranged from 619 to 639 g kg -1 DM, ADF ranged from 298 to 345 g kg-1 DM by variety and 317 to 340 g kg-1 DM by conservation method; ADL ranged from 58 to 41 g kg-1 DM by variety and 41 to 57 g kg-1 DM by conservation method, in vitro gas production  there were no differences (P>0.05 between varieties and conservation method. It is concluded that according to the results obtained, the varieties studied show the same forage yields in both hay and fresh, chemical composition, and in vitro gas production.

  11. yield and yield componemts of extra early maize (zea mays l.)

    African Journals Online (AJOL)

    SHARIFAI

    maize crop and improve the soil structures and chemical nutrients of the soil. The significant interaction between intra-row spacing and poultry manure on cob diameter, 100 grain weight and grain yield showed the importance of poultry manure on yield and yield components of maize crop. Poultry manure increases both ...

  12. Effect of Indigenous Pseudomonas sp. and Bacillus sp. Strains on Yield and Main Chemical Growth Parameters of Radicchio

    Directory of Open Access Journals (Sweden)

    Stanojković-Sebić Aleksandra

    2018-03-01

    Full Text Available Pseudomonas sp. and Bacillus sp. belong to plant growth promoting rhizobacteria which are able to colonize the plants roots and stimulate growth. In this study, the effect of two indigenous plant growth promoting rhizobacterial strains Pseudomonas sp. Q4 and Bacillus sp. Q10 and their mixture (mix Q4+Q10 on content of the main chemical growth parameters (nitrogen, phosphorus, potassium, calcium and magnesium and the yield of dry biomass of radicchio (Cichorium spp. var. rossa di treviso aerial parts and root, was investigated. The study was carried out with stagnosol type of soil in pot experiments under semi-controlled conditions in the Institute of Soil Science (Belgrade, in the period from July to October in 2013. Phosphorus was determined by spectrophotometer, potassium - by flame emission photometry and total nitrogen and carbon - using elemental CNS analyzer, while calcium and magnesium were determined by AAS. The data on yield of both aerial parts and root dry biomass of radicchio showed that its treatment with Q4 and Q10 strains, as well as with their mixture, caused noticeably increase in this parameter in relation to the control, whereby the strain Q4 was more effective for aerial parts, while mix Q4+Q10 - for roots. The obtained data on the studied chemical parameters of radicchio root and aerial parts were in total accordance with their yield. Concluding, studied strains have a potential in promoting the biomass yield and main chemical growth parameters of both aerial parts and root of radicchio.

  13. Comparison the effect of organic and chemical fertilizers on yield and essential oil percentage of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S.M.K. Tahami

    2016-04-01

    Full Text Available In order to have a sustainable agriculture it is necessary to use environmental friendly inputs to improve ecological aspects of environment. Basil (Ocimum basilicum L. is a medicinal and vegetable crop which is cultivated in different parts of the world. An experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in year 2009. A complete randomized block design with six treatments, and three replications was used. The treatments were: control (no fertilizer, cow manure, sheep manure, hen manure, vermin-compost and NPK fertilizers. Results showed that all studied organic manures were high in measured characters in compare with chemical fertilizer. The highest plant height, leaf yield, fresh and dry matter were obtained at vermicompost. Treatments have no significant affect on Essential oil percentage. The highest essential oil yield was obtained in cow manure treatments. Third cut and the first cut had the maximum and the minimum of leaf yield, fresh and dry shoot yield, respectively. Essential oil percentage in the first cut was significantly more than other cuts, but essential oil yield, were the highest in third cut because this cut produced highest leaf yield. There was no significant difference between chemical fertilizers and control treatment in all characters except green area index and fresh and dry leaf weight in a plant.

  14. Effect of Plant Growth Promoting Rhizobacteria on Yield and Yield Components of Garlic Medicinal Plant (Allium sativum L. under the Conditions of Different Organic and Chemical Fertilizers Application

    Directory of Open Access Journals (Sweden)

    Yaser Esmaeilian

    2018-03-01

    often underestimated. Garlic is easy to grow and can be grown year-round in mild climates. Garlic cloves are used for consumption (raw and cooked or for medicinal purposes. They have a pungent characteristic, spicy flavor that mellows and sweetens considerably with cooking. Materials and Methods: In order to evaluate the effect of biofertilizers and organic and chemical fertilizers on yield and yield components of garlic (Allium sativum L., a split plot experiment based on RCBD with three replications was conducted in 2015-2016 growing seasons, in Gonabad University, Iran. Main plot included different organic and chemical fertilizers (1- vermicompost, 2- cow manure, 3- chemical fertilizer and 4- control and sub plot included plant growth promoting rhizobacteria (nitroxin, biophosphorous and control. In order to determine physic-chemical properties of soil, sampling was performed at the depth of 0 to 30 cm. Before cultivation, 7 and 30 t.ha-1 vermicompost and cow manure were added to the soil, respectively. Nutrient requirement of garlic for nitrogen, phosphorous and potassium from the chemical source was considered 40, 50 and 60 kg.ha-1. For application of biofertilizers, bulblets inoculated with plant growth promoting rhizobacteria for 15 minutes. Distance in and between rows was considered 10 and 20 cm, respectively. Weeds were controlled manually three times. At the end of the growing season, economic yield, biological yield, plant height, shoot dry weight, bulb diameter, bulblet weight per plant, bulblet volume per plant and bulblet number per plant were measured. Analysis of data variance was performed by using SAS software (Ver 9.1. Results and Discussion: The results showed that simple effect of chemical fertilizer on bulb diameter was not significant but combined application of chemical fertilizer and biophosphorous increased bulb diameter as much as 18% compared to control. Combined application of nitroxin and cow manure increased bulblet weight per plant by 41

  15. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2015-03-01

    This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  16. Yield and Chemical Composition of Cucumber Treated by Nitrogen Levels and Doses of Gamma Rays

    International Nuclear Information System (INIS)

    Fath El-Bab, T.Sh.; Abo El-Khier, Om.M.; Abdallah, A.A.G.

    2013-01-01

    Two field experiments were performed at the Atomic Energy Authority, Experimental farm, Inshas, Egypt during 2010 and 2011 summer growing seasons in sandy soil. The experiments were conducted to study the effect of pre-sowing seeds which treated by gamma irradiation with different doses of 0, 2, 4 and 6 Gy. This was in combination with three rates of nitrogen, fertilizer i.e., 30, 60 and 90 Kg N/fed. The experiments were laid out using drip irrigation system. The obtained results indicated that gamma rays doses showed significant differences on cucumber yield per plot or per Fed., increasing doses of gamma rays gradually increased cucumber yield per plot up to highest dose, i.e., (6 Gy). The highest value of total yield was obtained with the highest nitrogen rate (90 Kg N/fed.). Doses of gamma rays significantly increased total soluble solids (T.S.S.), total Carbohydrates, fats, total protein, NPK and Ca of cucumber fruits. Application of 60 Kg N/fed. recorded the highest values of all above mentioned chemical characters except of total protein with 90 kg N/fed. every all dose treatments. The effect of interaction between doses and fertilizer levels on chemical characters were significant therefore, the highest values was found at 4 Gy and 60 Kg N/fed. treatment for protein, fat, nitrogen and potassium contents while the carbohydrate and calcium contents had the highest value with the treatment of 6 Gy and 60 Kg N/fed

  17. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  18. Effect of animal manure on quantitative and qualitative yield and chemical composition of essential oil in cumin (Cuminum cyminum

    Directory of Open Access Journals (Sweden)

    ahmad ahmadiyan

    2009-06-01

    Full Text Available Animal manure on soil prepares essential elements and increase water holding capacity and quality of plants. To study the effects of animal manure on yield and its components, nutrients absorption, chemical composition and its percentages on Cuminum cyminum this experiment was conducted at the agricultural researcher station of Zahak-Zabol, during 2003 – 2004 in a randomized complete block design with four replications. Animal manure significantly enhanced number of umbers per plant, number of seed per plant, biological and seed yield. Use of animal manure had not significant affect on Ca, Mg, Fe, P, K, Mn, Zn, and Cu and protein percentage in cumin seed but decreased Na concentration. Animal manure significantly enhanced cumin aldehyde and ρ-cymene and decrease β-pinene, γ-terpinene and α-pinene in cumin oil. A relationship or correlation exists between the main components of cumin oil. This study showed that animal manure enhances seed yield, oil percentage and qualitative chemical composition in cumin oil.

  19. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  20. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  1. The effect of application of chemical and organic fertilizers on yield and yield components of sesame (Sesamum indicum L. in different plant densities

    Directory of Open Access Journals (Sweden)

    P. Rezvani Moghaddam

    2016-04-01

    Full Text Available In order to understand the effect of plant density and different fertilizers on sesame (Sesamum indicum L. production, an experiment was conducted as a factorial arrangement based on completely randomized block design with three replications. The experimental treatments were fertilizers in four levels (cow manure (30 t.ha-1, municipal compost (30 t.ha-1, chemical fertilizer (250 kg ammonium phosphate + 100 kg urea and control (no-fertilizer and plant density in four levels (20, 30, 40 and 50 plant.m-2. The results showed that all treatments increased the plant height, number of capsule per plant, plant biomass, seed yield, seed weight and number of seed per plant compared to control, significantly. The highest amount of the traits was obtained in manure treatment. The seed yield was increased by increasing plant density, but decreased the plant height, number of capsule per plant, plant biomass, seed yield and weight and number of seed per plant, significantly. 1000-seed weight, harvest index and weight of seed per capsule had no affected by treatments. Our result indicated that the density of 40 plant.m-2 among using manure was the most appropriate of cropping pattern in our experiment.

  2. Effect of three pretreatment techniques on the chemical composition and on the methane yields of Opuntia ficus-indica (prickly pear) biomass.

    Science.gov (United States)

    Calabrò, P S; Catalán, E; Folino, A; Sánchez, A; Komilis, D

    2018-01-01

    Opuntia ficus-indica (OFI) is an emerging biomass that has the potential to be used as substrate in anaerobic digestion. The goal of this work was to investigate the effect of three pretreatment techniques (thermal, alkaline, acidic) on the chemical composition and the methane yield of OFI biomass. A composite experimental design with three factors and two to three levels was implemented, and regression modelling was employed using a total of 10 biochemical methane potential (BMP) tests. The measured methane yields ranged from 289 to 604 NmL/gVS added ; according to the results, only the acidic pretreatment (HCl) was found to significantly increase methane generation. However, as the experimental values were quite high with regards to the theoretical methane yield of the substrate, this effect still needs to be confirmed via further research. The alkaline pretreatment (NaOH) did not noticeably affect methane yields (an average reduction of 8% was recorded), despite the fact that it did significantly reduce the lignin content. Thermal pretreatment had no effect on the methane yields or the chemical composition. Scanning electron microscopy images revealed changes in the chemical structure after the addition of NaOH and HCl. Modelling of the cumulated methane production by the Gompertz modified equation was successful and aided in understanding kinetic advantages linked to some of the pretreatments. For example, the alkaline treatment (at the 20% dosage) at room temperature resulted to a μ max (maximum specific methane production rate [NmLCH 4 /(gVS added ·d)]) equal to 36.3 against 18.6 for the control.

  3. Chemical and Mechanical Weed Control Methods and Their Effects on Photosynthetic Pigments and Grain Yield of Kidney Bean

    Directory of Open Access Journals (Sweden)

    A.S Ghatari

    2015-11-01

    Full Text Available To evaluate the integrated management of weeds in red kidney bean, a split-plot experiment using randomized complete block design with three replications was conducted in 2013 in the Damavand County. In this experiment, the mechanical control treatments consisted of two levels (no cultivation and one cultivation asseigned to main plots and controlling chemical treatments consisted of six levels (non-application of herbicides, pre-emergence herbicide application of Pursuit with full dose of 1 liter per hectare, pre-emergence herbicide application of Pursuit a dose decreased 0.5 liters per hectare, post-emergence herbicide application of Pursuit dose reduced to 0.3 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit with a reduced dose of 0.5 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit full dose of 1 liter per hectar + 2 thousand citogate to subplots. The results showed that the effects of interaction between herbicide application and cultivation for traits of carotenoids, chlorophyll a, chlorophyll b and total chlorophyll contents, density of weeds and their dry weights were significant at 1 %, and grain yield at the 5% probability levels. The highest bean seed yield with an average of 5461.6 kg.ha-1 and lowest weed dry weight with an average of 345.9 kg.ha-1 were related to pre-emergence herbicide and cultivation with a dose of 1 liter per hectare treatment. The difference between full and reduced doses of chemical weed control was non-significant. It could be concluded that integrated mechanical and chemical weed control not only may increase seed yield but also reduce, environmental hazards.

  4. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  5. The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production.

    Science.gov (United States)

    Getachew, Girma; Laca, Emilio A; Putnam, Daniel H; Witte, Dave; McCaslin, Mark; Ortega, Kara P; DePeters, Edward J

    2018-02-06

    Lignin is a complex, phenolic polymer found in plant cell walls that is essential for mechanical support, water and mineral transport, and defense in vascular plants. Over ten different enzymes play a role in the synthesis of lignin in plants. Suppression of any one enzyme or combinations of these enzymes may change the concentration and composition of lignin in the genetically transformed plants. Two lines of alfalfa that were downregulated for caffeoyl coenzyme A O-methyltransferase were used to assess the impact of lignin downregulation on chemical composition and fermentation rate and extent using an in vitro gas production technique. A total of 64 samples consisting of two reduced lignin (RL) and two controls (CL), four field replicates, two cutting intervals (CIs; 28 and 35 days), and two cuts (Cut-1 and Cut-3) were used. No differences were detected in yield, crude protein, neutral detergent fiber (aNDF), and acid detergent fiber between the lines when harvested at the 28-day CI. The acid detergent lignin (ADL) concentration in RL alfalfa lines was significantly (P gas production and metabolizable energy content were greater in RL than in CL alfalfa. RL lines had 3.8% indigestible aNDF per unit ADL, whereas CL had 3.4% (P < 0.01). The positive effect of lignin downregulation was more pronounced when intervals between harvests were longer (35-day CI compared with the 28-day CI). Lignin downregulation in alfalfa offers an opportunity to extend harvesting time (CI) for higher yield without compromising the nutritional quality of the alfalfa forage for dairy and livestock feeding. However, the in vitro results reported here warrant further study using in vivo methods. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  7. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  8. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    Energy Technology Data Exchange (ETDEWEB)

    Czelusniak, C; Del Lama, L S; Moreira, M V; De Almeida, A, E-mail: dalmeida@ffclrp.usp.b

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  9. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    International Nuclear Information System (INIS)

    Czelusniak, C; Del Lama, L S; Moreira, M V; De Almeida, A

    2010-01-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  10. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...... carbon, and cation exchange capacity, and temporarily increased soil respiration and microbial biomass carbon. Further, incorporation of combined application of cow dung and biochar increased lettuce yield more than sole incorporation of either amendment. The study demonstrated that corn cob biochar can...... improve soil chemical properties and lettuce yield if applied solely or in combination with cow dung....

  11. Effect of Nutritional Management on Yield and Yield Components of Roselle (Hibiscus sabdariffa as a Medicinal Plant in Mashhad Condition

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2018-02-01

    Full Text Available Introduction Roselle (Hibiscus sabdariffa is an annual plant with a height of about 64 to 429 cm belongs to Malvaceae family. Roselle is self-pollinated and sensitive to cold. Sepals of Roselle are used in food and pharmaceutical industries. It has been reported that Roselle is not native to Iran but it is cultivated extensively in Sistan and Baluchistan province, Iran. In order to achieve high quality and quantity yield of Roselle sepal it is necessary to improve nutritional systems of plant. Proper management of soil fertility and plant nutrition can preserve environment, improve biodiversity and also increase inputs efficiency. Results showed that use of nutritional resources will improve plant growth. Organic fertilizers such as compost can improve soil fertility as an important source of food that increase yield of plants. Nabila and Aly (2002 observed that use of hen and cow manure increased plant height, number of lateral branches, numbers of fruit and sepal yield of Roselle. Each plant species has the maximum potential in favorable conditions. Therefore, evaluation the effect of climatic and agronomic factors and nutritional management for plants is essential. This experiment was conducted to evaluate the yield and yield components of Roselle in response to use of single and combined nutritional resources. Materials and Methods In order to study the effects of single and combined organic, biological and chemical fertilizers on yield and yield components of Roselle (Hibiscus sabdariffa, a field experiment was conducted with 12 treatments based on a Randomized Complete Block Design with three replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2013-2014. Treatments included: 1- mycorrhiza (Glomus intraradices, 2- cow manure, 3- chemical fertilizer, 4- vermicompost, 5- chemical fertilizer + cow manure, 6- chemical fertilizer + vermicompost, 7- chemical fertilizer + mycorrhiza, 8- cow manure

  12. Effect of Different Levels of Organic and Chemical Fertilizers on Yield, Harvest Index and Extract Percentage of Hemp (Cannabis sativa L.

    Directory of Open Access Journals (Sweden)

    S Laleh

    2018-02-01

    Full Text Available Introduction Hemp is a dioecious and annual plant. The most important use to this plant is in the food, drug, and natural fibers. Proper fertilizer management for a medicinal plant species is important for increasing its yield and maintaining the quality of active principles. Sustainable farming is on the basis of natural fertilizer application with the aim of decreasing chemical fertilizers. Various studies show that application of animal manure with chemical fertilizers (as N, P and … have positive effects on soil structure, microbial population, soil fertility, growth and yield of plant with the aim of protecting the environment. Therefore, the present study was under taken to evaluate the effect of organic amendments enriched with chemical fertilizers of nitrogen and phosphorus on yield and extract of hemp. Materials and Methods To study the effect of different levels of animal manure and chemical fertilizers, a split factorial experiment, based on complete randomized blocks design with three replications was conducted at the research Farm of Faculty of agriculture, University of Birjand, during the growing season 2014-2015. Experimental factors were animal manure (0, 10, 20 and 30 t. ha-1well rotted farmyard manure as the main plot, and factorial application of three levels of N (0, 50 and 100 kg N ha-1 as Urea with two levels of P (0 and 80 kg P2O5 ha-1 as triple and P was superphosphate as sub-plot. Animal manure, P and half of the N fertilizer were applied before planting and the other half of N were applied by top dressing. Hemp were planted 5 may on rows 60 cm apart, with 30 cm distance between each hemp on row, at the depth of 3-4 cm. Measured traits included leaf, stem and seed weights, stem height and diameter, 1000 seed weight, and leaves extract percentage per square meter in sub-plot for female plants of hemp. Also percentage of female plants calculated per sub-plot. Finally, all variables were analyzed by SAS software (V. 9

  13. Comparison of different methods for extraction from Tetraclinis articulata: yield, chemical composition and antioxidant activity.

    Science.gov (United States)

    Herzi, Nejia; Bouajila, Jalloul; Camy, Séverine; Romdhane, Mehrez; Condoret, Jean-Stéphane

    2013-12-15

    In the present study, three techniques of extraction: hydrodistillation (HD), solvent extraction (conventional 'Soxhlet' technique) and an innovative technique, i.e., the supercritical fluid extraction (SFE), were applied to ground Tetraclinis articulata leaves and compared for extraction duration, extraction yield, and chemical composition of the extracts as well as their antioxidant activities. The extracts were analyzed by GC-FID and GC-MS. The antioxidant activity was measured using two methods: ABTS(•+) and DPPH(•). The yield obtained using HD, SFE, hexane and ethanol Soxhlet extractions were found to be 0.6, 1.6, 40.4 and 21.2-27.4 g/kg respectively. An original result of this study is that the best antioxidant activity was obtained with an SFE extract (41 mg/L). The SFE method offers some noteworthy advantages over traditional alternatives, such as shorter extraction times, low environmental impact, and a clean, non-thermally-degraded final product. Also, a good correlation between the phenolic contents and the antioxidant activity was observed with extracts obtained by SFE at 9 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of Organic Fertilizers on Yield and Yield Components of Safflower (Carthamus tinctorious L.

    Directory of Open Access Journals (Sweden)

    S. M Azimzadeh

    2017-12-01

    two different application dates of them on safflower an experiment was conducted at Islamic Azad University of Shirvan, Iran, in growing season of 2012-2013 and 2013-2014. Date of first application was two month prior of planting and date of second application was simultaneous with planting. Amounts of vermicompost included 4, 7 and 10 ton ha-1, municipal solid waste compost included 5, 10 and 15 ton ha-1, cow manure included 20, 33 and 50 ton ha-1, nitrogen chemical fertilizer included 100 kg ha-1 and control. Experiment was conducted as split plot based on randomized complete block design with three replications. Application time of organic fertilizers located in main plots and each one of organic fertilizers levels with nitrogen fertilizer and control as a independent treatment located in subplots. Required rates of different fertilizers were scattered by hand into the plots on 20th Feb then no operation was done until April 21th. On April 21th, main plots which should have been applied fertilization simultaneous with planting were received fertilizers. At this time, all of the plot which have been received fertilizers on Feb 20th plus plots which received fertilizers recently were planted simultaneously. Data were combined analyzed by MSTAT-C software and means were compared with Duncan’s test at the 5% level of probability. Results and Discussion The results showed that in first growing season, fertilizer application before planting caused 12% yield increment of safflower compared with fertilizer application at planting time but in second growing season, fertilizer application at the time of planting caused 12.8% yield increment of safflower compared with fertilizer application before planting. Enough time for manure decomposition can be the reason for this difference. In first year in fertilizer application before planting, all treatments except 10 ton h-1 municipal solid waste compost produced more seed yield than control and chemical fertilizer treatments

  15. Chemical Composition and Yield of Six Genotypes of Common Purslane (Portulaca oleracea L.): An Alternative Source of Omega-3 Fatty Acids.

    Science.gov (United States)

    Petropoulos, Spyridon Α; Karkanis, Anestis; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C F R; Ntatsi, Georgia; Petrotos, Konstantinos; Lykas, Christos; Khah, Ebrahim

    2015-12-01

    Common purslane (Portulaca oleracea L.) is an annual weed rich in omega-3 fatty acids which is consumed for its edible leaves and stems. In the present study six different genotypes of common purslane (A-F) were evaluated for their nutritional value and chemical composition. Nutritional value and chemical composition depended on genotype. Oxalic acid content was the lowest for genotype D, whereas genotypes E and F are more promising for commercial cultivation, since they have low oxalic acid content. Genotype E had a very good antioxidant profile and a balanced composition of omega-3 and omega-6 fatty acids. Regarding yield, genotype A had the highest yield comparing to the other genotypes, whereas commercial varieties (E and F) did not differ from genotypes B and C. This study provides new information regarding common purslane bioactive compounds as affected by genotype and could be further implemented in food industry for products of high quality and increased added value.

  16. Effects of sowing dates and different fertilizers on yield, yield components, and oil percentage of castor bean (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of sowing dates and different fertilizers on yield, yield components, and oil percentage of castor bean, an experiment was conducted at Experimental station, College of Agriculture, Ferdowsi University of Mashhad, Iran in years 2004-2005. The experimental treatments comprised all combinations of four sowing dates (11 April, 25 April, 8 May and 22 May and three different fertilizers (cow manure (30 tons/ha, compost (30 tons/ha, chemical fertilizers (100 kg/ha N and 250 kg/ha of super phosphate and no fertilizer as control. Different characteristics such as plant height, main inflorescence height, number of inflorescence per plant, number of secondary stems per plant, number of capsules per plant, number of grain per plant, grain weight per plant, 100 seed weight, grain yield, oil percentage and oil yield were recorded. A factorial arrangement based on a randomized complete block design with three replications was used. The results showed by delaying sowing date grain yield, seed oil percentage and oil yield were decreased, but there was no significant differences between 25 April, 8 May and 22 May sowing dates. Harvest index and 100 seed weight did not affect by neither sowing dates nor fertilizer treatments. The highest number of branches per plant, number of fertile inflorescences per plant, number of fertile capsules per plant, number of grain per plant, grain weight per plant and biological yield were obtained at 8 May sowing date on chemical fertilizer. Percentage of seed oil, grain yield and oil yield was higher at the first sowing date (11 April in compost and chemical fertilizer treatments. Keywords: Castor bean, sowing date, fertilizer, grain yield, oil percentage.

  17. Determination of the chemical yield on the Fricke dosimetry for 192Ir sources used in brachytherapy

    International Nuclear Information System (INIS)

    David, M.G.; Albuquerque, M.A.G.; Almeida, C.E. de; Rosado, P.H.

    2015-01-01

    With the aim of developing a primary standard for the absorbed dose to water, for the 192 Ir sources used in high dose rate brachytherapy, this work focuses on the determination of the chemical yield, G(Fe +3 ), using Fricke dosimetry, for the energy of those sources . The G(Fe +3 ) were determined the for three qualities of x-ray beams (150, 250 and 300 kV ) and for 60 Co energy. The G(Fe +3 ) value for the average energy of 192 Ir was obtained by linear fit, the found value was 1,555 ± 0,015 μmol/J. (author)

  18. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    Science.gov (United States)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  19. Effect of Different Methods of Chemical Weed Control Irrigation Regimes on Weed Biomass and Safflower Yield

    Directory of Open Access Journals (Sweden)

    M. Matinfar

    2011-06-01

    Full Text Available In order to investigate the effects of different weed control methods and moisture regimes on safflower (Carthamus tinctorius, a field split plot experiment based on randomized complete block design with 4 replications was conducted in Takestan Iran, during growing seasons of 2007-8. Three irrigations regimes (normal irrigation, restricted irrigation at stem elongation and restricted irrigation at  flowering stage were assigned to the main plots and nine chemical weed control method (complete hand weeding, treflan with 2 L/ha as pre plant herbicide, sonalan with 3 L/ha ad pre plant herbicide, estomp with 3 L/ha as pre plant herbicide, gallant super with 0/75 L/ha as post emergence herbicide, treflan with 2 L/ha as pre plant herbicide+ gallant super with 0/75 L/ha as post emergence herbicide, sonalan with 3 L/ha as pre plant herbicide + gallant super with 0/75 L/ha as post emergence herbicide estomp with 3 L/ha as pre plant herbicide + gallant super with 0/75 L/ha as post emergence herbicide and without hand weeding to sub- plots. At the end of growing period traits like number of head   per plant, number of seed per head, 1000 grain weight, percent of seed oil, yield of seed oil and grain yield were measured. Results indicated that treflan + gallant super treatment in restricted irrigation at stem elongation stage had the lowest dry weight of weeds. In this study maximum grain yield (2927 Kg/ha was achieved from hand weeding + usual irrigation treatments. In general treflan + gallant super treatment was the most effective treatment on safflower yield and weed control.

  20. Evaluation of indigenous rhizobacterial strains with reduced dose of chemical fertilizer towards growth and yield of mustard (Brassica campestris under old alluvial soil zone of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Shampa Dutta

    2017-12-01

    Full Text Available A field experiment had been carried out in the Crop Research and Seed Multiplication Farm of The University of Burdwan, West Bengal, India during the two consecutive winter seasons of 2011-2012 and 2012-2013 to study the effect of indigenous rhizospheric bacterial strains on growth, physiology and yield of mustard variety. Pseudomonas putida, Burkholderia cepacia, Burkholderia sp. and their mixture were used as seed inoculants for mustard cultivation. The experiment was laid down in a randomized complete block design (RCBD with three replications. Results revealed that indigenous inoculation (with reduced dose of chemical fertilizer significantly increased (p < 0.05 the yield of mustard as compared to uninoculated control (full recommended dose of NPK fertilizers. A combination treatment of biofertilizer and chemical fertilizer also increased plant height, plant biomass and other yield components compared to control. The comprehensive approach of plant growth promoting rhizobacteria (PGPR in agriculturally important crops should be carried out to explore the hidden potential of PGPR and to promote the quality and yield of crop under field conditions. Keywords: Indigenous rhizobacteria, Mustard, PGPR, Yield

  1. Diversity in chemical composition and yield of essential oil from two Iranian landraces of sweet basil

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2014-01-01

    Full Text Available Ocimum basilicum L. belongs to the family Lamiaceae is an herb that is extensively cultivated in some countries. Areal parts, especially leaves of sweet basil are widely used to enhance the flavour of foods such as salads, pasta, tomato products, vegetables, pizza, meat, soups, marine foods, confectioneries and other products. Essential oil yield and chemical components of two Iranian landraces of sweet basil including “Purple” and “Green” grown south-central of Iran (Isfahan province were investigated. The hydro-distillated oils were analyzed by GC-MS. The oil yields were obtained from the aerial of Purple with 0.56 ml/100 g dry matter and the aerial of Green with 0.48 ml/100 g dry matter. Results indicated significant differences (p < 0.01 among the aerial for the main constituents in the essential oil from two Iranian landraces of sweet basil. The major constituents of the essential oil from the aerial of Purple landrace were methyl chavicol or estragol (63.32% and linalool (7.96%. The main compositions of the essential oil from the aerial of Green landrace were methyl chavicol (31.82%, geranial (24.60% and neral (22.65%. Genarlly, a comparison of our results with the previous reports suggests differences in the essential oil compositions and oil yield of the plant material could be attributed to genetic diversity in two Iranian landraces of sweet basil.

  2. [Yield and chemical composition of the vegetal parts of the amaranth (Amaranthus hypochondriacus, L.) at different physiological stages].

    Science.gov (United States)

    Alfaro, M A; Martínez, A; Ramírez, R; Bressani, R

    1987-03-01

    The genus Amaranthus comprises species which, consumed as vegetables, provide essential nutrients to man; they also have a high acceptability among the population. These two factors justify the need to increase their cultivation. Therefore, the purpose of this research was to establish the most adequate physiological state of maturity, to harvest the leaves for human consumption. The field experiment utilized a randomized block design with three treatments and eight replications. These treatments consisted in harvesting the plants at 25, 40 and 60 days after emergence of the seedlings, samples which served to evaluate: plant height, number of leaves, leaf surface area, gross weight (leaves and stems), net weight (leaves), green matter and dry matter yield, as well as protein. The chemical composition of the harvested material was evaluated also in terms of moisture, protein, crude fiber, ether extract, ash, carbohydrate, calcium, phosphorus, iron, beta-carotene and oxalates. The results obtained in the agronomic study were subjected to analysis of variance for the respective design, with significant differences found between treatments for all the variables studied. In its turn, the results of the chemical analysis were analyzed by a completely randomized design, with significant differences obtained for most of the variables studied, except for ether extract, calcium, iron and oxalates. From the nutritional point of view, the first harvest was the most acceptable due to the chemical composition of the plant, in particular protein (29.5%), beta-carotene (33.7 mg%), calcium (2,356.1 mg%), phosphorus (759.1 mg%) and due to its low crude fiber content, only 11.1 g%. It did not occur so from the agronomic point of view, since during this stage, very low yields of green matter (575.9 kg/ha), dry matter (66.6 kg/ha) and protein (19.7 kg/ha) were obtained. At the second harvest, besides obtaining adequate yields of green matter (6,530.4 kg/ha), dry matter (681.8 kg

  3. Evaluation the effects of organic, biological and chemical fertilizers on morphological traits, yield and yield components of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S. M.K Tahhami Zarandi

    2015-04-01

    Full Text Available The use of organic manure and biofertilizers containing beneficial microorganisms instead of chemical fertilizers are known to improve plant growth through supply of plant nutrients and can help sustain environmental health and soil productivity. Because of special priority of the medicinal plants production in sustainable agricultural systems and lack of studies on assessment of different sources of fertilizer on basil plants, an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2009. A complete randomize block design with ten treatments, and three replications was used. The treatments were: 1cow manure, 2sheep manure, 3hen manure, 4compost 5vermicompost, 6biological fertilizer nitroxin (consisting of Azotobacter and Azospirillum, 7biological fertilizer consisting of Phosphate Solubilizing Bacteria (Pseudomonas and Bacillus, 8mixture of biological fertilizer nitroxin and Phosphate Solubilizing Bacteria 9NPK fertilizers, and 10control (no fertilizer. Results showed plant height in sheep manure was higher than other treatments. Number of branches in vermicompost and number of inflorescence in cow manure were significantly higher than other treatments. The number of whorled flowers in compost, sheep and cow manure were more than other treatments. Highest leaf and green area index was observed in nitroxin treatment and biological yield in sheep manure have significant difference with other treatments (except cow manure. The highest seed yield were obtained from plants treated with compost (1945 kg/h and the lowest of that observed in NPK fertilizer and control treatments. In all measured traits (except number of inflorescence NPK fertilizer and control treatment did not have any significant difference.

  4. Prevention of transfusion-associated graft-versus-host disease by irradiation: technical aspect of a new ferrous sulphate dosimetric system.

    Directory of Open Access Journals (Sweden)

    Lucas Sacchini Del Lama

    Full Text Available Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD. However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a (60Co teletherapy unit and its validation was accomplished with a (137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs were used as reference dosimeters to determine the dose response and dose rate of the (60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs.

  5. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    Science.gov (United States)

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  6. Chemical, Biological, Radiological, Nuclear, and High-Yield Explosives Consequences Management

    Science.gov (United States)

    2006-10-02

    protective measures associated with such offensive operations. Since riot control agents and herbicides are not considered to be chemical warfare agents...control. Procedures to avoid, reduce, remove, or render harmless (temporarily or permanently) nuclear, radiological, biological, and chemical...destroying, neutralizing, making harmless , or removing chemical or biological agents, or by removing radioactive material clinging to or around it. (JP 1

  7. Effect of Organic and Chemical Fertilizers on Yield and Essential Oil of Two Ecotypes of Savory (Satureja hortensis L. under Normal and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    O Akrami nejad

    2016-02-01

    height, grain and biological yield, chlorophyll index, ionic leakage, relative water content, number of branches, essence percentage and essence amount were evaluated. Data were analyzed with SAS and MSTAT-C software and mean comparison was done using Duncan test at %5 level. Results and Discussion The results showed that drought stress reduced plant height, number of branches, oil yield, relative water content, SPAD index and increased ion leakage. Meanwhile, it had no significant effect on the percent of oil. Fertilizers increased plant height, number of branches, yield, chlorophyll index and oil yield, while it decreased ion leakage in contrast with control. Baher et al (2002 have reported that drought stress reduced plant height, grain yield, and branches number of Savory. As nutrients deficit is one of the main factors in control of plant height and yield, plant that were treated with control had the lowest growth. Organic fertilizers provide appropriate plant growth via gradual release of nutrients during growth season and saving water. Two ecotypes had significant differences for yield, number of branches and ionic leakage. Kerman ecotype showed better yield performance. The results showed that water stress reduced yield, number of branches and plant height of savory. Meanwhile fertilizers (especially cow and hen manure could reduce the effects of drought. Conclusions Generally, organic fertilizers, especially cow manure, produced higher yield and showed a better response to drought stress. It might be for higher moisture maintenance in contrast with chemical fertilizers. It seems that, using cow manure could be helpful to overcome the negative effects of drought stress.

  8. The Effect of Different Fertilizer Management on Yield and Yield Components of Black Seed (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2017-08-01

    Full Text Available Introduction Given the importance of nitrogen for improving the quantitative and qualitative yield of crops (Rodrigues et al., 2006 and the need for application of chemical fertilizers in intensive agriculture to get the maximum production, nitrogen supply in adequate amounts by ecologically avowed resources is known as one of the main challenges during transition from conventional to organic farming (Rodrigues et al., 2006. Considering the sustainable nitrogen management, reconstruction and rehabilitation of agroecosystems depends on reduction the nitrogen losses due to leaching, soil erosion and volatilization (Kizilkaya, 2008. For this purpose, the use of eco-friendly bio based fertilizers that are derived from natural origin, known as effective and enforceable approaches. In this regards, the proper use of manure and free-living aerobic bacteria of soils, such as Azotobacter and Azospirillum as well as mycorrhizal inoculation which can be used as a biological fertilizers, can particularly be considered (Kizilkaya, 2008. With regard to all mentioned above, the current study was aimed to evaluate the effects of biological, organic and inorganic resources of nitrogen on yield and yield components of black seed (Nigella sativa L.. Materials and methods The field experiment was conducted at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in years of 2009-2010. Experimental site was located in a semi-arid region, Khorasan Province, Northeast of Iran. The soil texture was silty loam, pH 8.36, electrical conductivity 3.72 dS.m-1, total N 0.095% and 0.195% organic carbon. The available P and K contents were 5.76 and 0.378 ppm, respectively. Experimental design was arranged by using a completely randomized block design with three replications. Experimental treatments included chemical fertilizer (urea, urea + nitroxin, urea + mycorrhizae, urea + nitroxin + mycorrhizae, urea + biosulfur, manure, manure + nitroxin, manure + mycorrhizae

  9. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, R.U.; Khan, M.S.

    2010-01-01

    The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)

  10. The Effect of Mycorrhizal Fungi and Humic Acid on Yield and Yield Components of Sunflower

    Directory of Open Access Journals (Sweden)

    Hamideh Veysi

    2017-08-01

    Full Text Available Introduction Cultivated sunflower is one of the largest oilseed crops in the world. Sunflower seed is the third largest source of vegetable oil worldwide, following soybean and canola. Nitrogen is one of the most important elements for crops to achieve optimum yields and quality. Phosphorus (P, next to nitrogen, is often the most limiting nutrient for crop and forage production. Phosphorus availability is controlled by three primary factors: soil pH, amount of organic matter and plant species (Reddy et al., 2003. Arbuscular mycorrhizal fungi are one of the most important microorganisms in majority of the undamaged soils so that about 70% of the soil microbial biomass is formed by the mycelium of these fungi. Mycorrhizal association promotes plant absorption of scarce or immobile minerals, especially phosphorus, resulting in enhanced plant growth. Humic acids are dark brown to black, and are soluble in waterunder neutral and alkaline conditions. They are complex aromatic macromolecules with amino acid, amino sugar, peptide and aliphatic compounds linked to the aromatic groups. Humic acid contains nitrogen, phosphorous, calcium, magnesium, sulphur, copper and zinc (Subramanian et al., 2009. Materials and methods Experiment was conducted as split plot factorial based on randomized block design with three replications in 2011-2012. The main plots consisted of nitrogen and phosphorus application levels (zero percent or no chemical fertilizer application, 50% equivalent to 37.5 kg.ha-1 urea + 25 kg.ha-1 super phosphate triple and 100% equivalent to 75 kg.ha-1 urea + 25 kg.ha-1 super phosphate triple. Two species of mycorrhizal include (G. mosseae and (G. interaradices with three levels of humic acid (0, 8 and 16 kg.ha-1 were placed in subplots. The measured traits were: plant height, seed number per head, head diameter, seed oil content, thousand seed weight and seed yield. The data were analyzed using the Mstat-C statistical software. Mean comparison

  11. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    Full Text Available Introduction Due to the development of sustainable agriculture and the reduction of utilizing chemical fertilizers, it is essential to use organic fertilizer. Organic matter is vital to soil fertility and its productivity. To maintain the level of fertility and the strength of soil, organic matter levels should be maintained at an appropriate level. Unfortunately, the level of organic matter in soil is generally less than 1%. One solution to increase the soil’s organic matter content is to use organic fertilizers such as animal manure, green manure, and vermicompost (Nuralvandy, 2011. As a correction factor, green manure can increase water supply and nutrient soil conservation (Tajbakhsh et al., 2005. Materials and methods In order to assess the effects of fertilizer sources (green manure, cow manure, and chemical fertilizer on maize yield and yield components (KSC 704 under tillage management, a field experiment was carried out at Zahak Agricultural and Natural Resource Research Station in two years (from 2013 to 2014. Before corn planting, barley was planted as green manure in the fall of each year. The experiment was conducted as a split plot arranged in a completely randomized block design with three replications. The main plots were tillage and no tillage, whereas the sub plots were: 1-barley green manure (without application of fertilizer, 2-barley green manure with applying 100% chemical fertilizer (NPK to the barley during cultivation, tillering and stemming stages, 3- green manure with 2/3 of chemical fertilizer to the barley and 1/3 to the maize, 4- green manure with 1/3 of chemical fertilizer to the barley and 2/3 to the maize, 5- barley green manure with 50% animal and chemical manures, 6- barley green manure with 40 t ha-1 of animal manure, 7-control (non-fertilizer application. Corn was planted on 15 March each year. Phosphorus, potassium fertilizer, and animal manure were added to the soil as the base fertilizers. At full

  12. The effect of organic, biological and chemical fertilizers on yield, essential oil percentage and some agroecological characteristics of summer savory (Satureja hortensis L. under Mashhad conditions

    Directory of Open Access Journals (Sweden)

    E Gholami Sharafkhane

    2016-05-01

    , all studied characteristics including plant height, lateral branches, flowering shoot yield, stem yield, percentage of essential oil and dry matter yield were affected positively by cattle manure. The highest plant height and number of lateral branches resulted from vermicompost and combination of Nitroxin+Biophosphor+Biosulfur, respectively. Biosulfur fertilizer produced the highest dry matter yield, flowering shoot yield and stem yield. Percentage of essential oil was also significantly affected by fertilizer treatments as the most percentage of essential oil was obtained from Nitroxin, vermicompost and combination of Nitroxin+Biophosphor+Biosulfur. A positive and strong correlation was observed between dry mater yield and flowering shoot yield and stem yield, respectively. Conclusion The results indicated that application of organic and inoculation of biological fertilizers have positive effects on improvement of qualitative and quantitative traits of summer savory, so it could be considered as an alternative method for healthy production of summer savory. Acknowledgements The expenses for this research were funded by the Research and Technology Deputy of the Ferdowsi University of Mashhad, Faculty of agriculture. The financial support is appreciated. References Chen, J. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. October 16-20. Thailand. 11 pp. Gliessman, S.R. 1998. Agroecology: Ecological Processes in Sustainable Agriculture. CRC Press. ISBN: 1-57504-043-3 Mahfouz, S.A., Sharaf- Eldin, A. 2007. Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill.. Agrophysics Journal 21: 361-366. Omidbeigi, R. 2000. Approaches to Production and Processing of Medicinal plants, vol. (3. Beh Nashr Publisher, Mashhad. (In

  13. Effect of Different Sources of Nitrogen and Organic Fertilizers on Yield and Yield Components of Ajowan (Trachyspermum ammi L.

    Directory of Open Access Journals (Sweden)

    zahra saydi

    2017-09-01

    Full Text Available Introduction Ajowan (Trachyspermum ammi L. is an annual medicinal plant of the family Apiaceae which can reach 30 -100 cm in height. and its growth is highly depended on the availability of mineral nutrients in the soil. But, it has been shown that utilization of chemical fertilizers for growth promotion of Ajown could have negative impacts on environment and ecological systems. Nowadays, sustainable agriculture is the best approach to overcome such problems and prevent the excess accumulation of chemical fertilizers deposited within the soil. Application of bio-fertilizers as an alternative to chemical fertilizers is a new sustainable approach which have been raised in the new era of Agriculture. Therefore, this study was conducted to investigate the application of various source of biological fertilizers such as Vermicompost, Alkazotplus and Humic Acid in combination with nitrogen fertilizers on growth behavior, yield and yield components of Ajowan under Ahvaz growing condition. Materials and methods This research was conducted at the Agricultural Research Station of Shahid Chamran University in 2014-2015 to determine the effects of different sources of nitrogen and organic fertilizers on the yield and yield components of Ajowan based on two way randomized complete block design with three replications. The first factor of the experiment was Application of four different nitrogen sources including: Urea (U, Sulfur-coated Urea (SCU, %50 Sulfur-coated urea (1/2 SCU + Alkazot Plus biological fertilizer and Control (no nitrogen source used. Organic fertilizers were also applied at four levels, consisting of Humic Acid, Vermicompost, %50 Vermicompost + Humic Acid and Control (no organic Fertilizer as the second factor. After soil preparation, approximately four Kg.ha-1 of the seeds were planted on the rows with 30 cm distance. Plant height, number of sub branches, number of umbels per plant, number of seeds per umbel , 1000 seeds weight, biological

  14. Chemical yield determination for 59Ni, 63Ni and 56Fe in low and intermediate nuclear wastes by ICP-AES

    International Nuclear Information System (INIS)

    Franco, Milton B.; Santos Neto, Francisco C. dos; Reis Junior, Aluisio S.; Temba, Eliane S.C.; Monteiro, Roberto P.G.

    2011-01-01

    Iron and nickel are constituents of a wide range of metallic materials used in nuclear reactor construction and their corresponding activation products are often encountered in reactor-derived solid low and intermediate-level wastes. The most significant radioisotopes of iron and nickel, in terms of quantity and half life, are 55 Fe (t 1/2 =2.73y), 59 Ni (t 1/2 =7.6x10 4 y) and 63 Ni (t 1/2 =10 2 y) and they are activation products of stable iron and nickel. 59 Ni is an X-ray - emitting and 55 Fe and 63 Ni are β-particle-emitting radionuclides and so they are radionuclides of interest for the performance of assessment studies of waste storage or disposal. For their determination in the radioactive wastes is necessary to know the chemical yield for the radiochemical separation procedures prior analytical measurements. In this work Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) technique was used for this aim. Total nickel and iron in waste samples from nuclear power plants were determined before and after the radiochemical separation at specific wavelengths, 231.604 nm and 259.940 nm respectively. The chemical yields for nickel and iron recovery were around 82 % for iron and 59 % for nickel according the analytical methodology adopted. (author)

  15. Evaluation Of Yield And Chemical Properties Of Some Faba Bean (Vicia FABA L.) Mutants Induced By GAMMA Radiation And Ethyl Methane Sulphonate

    International Nuclear Information System (INIS)

    Sallam, E.M.; Nasr, E.H.; Attia, Z.M.; Shawki, H.A.

    2013-01-01

    This investigation aims to study the effect of physical and chemical mutagens on the yield and chemical properties as well as amino acids composition of defatted faba bean (Vicia faba L.) seeds meal as a control (Giza 2) compared with mutants produced by gamma radiation and ethyl methane sulphonate (EMS). Also, the functional properties of these samples were determined. The results indicated high differences between mutation for seed yield and its components than the untreated samples. In addition, radiation mutation of faba bean seeds showed slight increase in protein content as the main constituent of faba bean seeds as well as total oil percentages in some mutant of these seeds in return of decreasing in total carbohydrate. Furthermore, radiation mutation had detectable effects on the total amino acids contents of faba bean seeds meal which had a higher percentages on essential amino acids (EAA) and non-essential amino acids (NEAA) and mutant 3 was the highest values of EAA and NEAA as compared to the control. On the other hand, radiation mutation improved the protein functional properties of some mutant of faba bean meal flour than the other mutant samples as compared to local commercial variety

  16. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    International Nuclear Information System (INIS)

    Bero, M A; Abukassem, I

    2009-01-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  17. Fe+3 diffusion coefficient in Fricke xylenol gel through shielding half of a 6 MV photon beam field size

    International Nuclear Information System (INIS)

    Cavalcante, Fernanda; Oliveira, Lucas de; Almeida, Adelaide de

    2009-01-01

    Diffusion of ions can be observed in a solution or gel when a difference occurs in their concentrations. For dosimetric gels, the diffusion can interfere on measurements of absorbed dose delivered to the patient in a radiotherapic treatment, when the time interval for measurements pos-irradiation is considered long. In the present work, a pos-irradiation Fricke Xylenol Gel (FXG) spatial dose distribution was obtained for several time intervals and the diffusion coefficient was inferred following a literature theoretical methodology. Using FXG samples, whose [Fe 2+ ] are oxidated to [Fe +3 ] when irradiated, the diffusion coefficient for the last ion was obtained in order that one can have the real spatial dose distribution right after the irradiation and this was done using half shielded 6 MV photons field size. Each sample, for each time interval selected (from 2.8 up to 28.6 hours) was analyzed in function of their optical absorbance. From Fick's law and from an error equation, the diffusion coefficient was inferred, which can be used to correct the absorbance positions promptly after irradiation. The diffusion coefficient found for the FXG dosimeter, has the value of 0.452 mm 2 /h, that is between the interval of 0.3 up to 2.0 mm 2 /h, predicted for gel type dosimeters. (author)

  18. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    Science.gov (United States)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  19. Effect of Treated Wastewater Combined with Various Amounts of Manure and Chemical Fertilizers on Nutrient Content and Yield in Corn

    Directory of Open Access Journals (Sweden)

    Abolfazal Tavassoli

    2010-09-01

    Full Text Available In order to study the effects of treated wastewater combined with manure and chemical fertilizers on the nutrients content and forage yield in corn, field experiments were conducted in 2007. The experiments were conducted in a split plot design with three replications. The treatments were comprised of two levels of irrigation water (W1= well water and W2= wastewater in the main plot and five levels of fertilizer (F1= unfertilized, F2 = 100% manure, F3= 50% manure, F4= 100% fertilizer, and F5= 50% fertilizer in the subplot. Results showed that, compared to ordinary water, irrigation with treated wastewater significantly increased fresh and dry forage yield of corn. The treatment using treated wastewater also had a significant effect on N, P, and K contents in corn forage. However, wastewater had no significant effect on plant Fe, Mn, and Zn contents. Among the fertilizer treatments, the highest fresh and dry forage yields and the highest N, P and K contents belonged to the treatments using 100% fertilizer. The highest Fe, Mn, and Zn contents were observed in plants in the treatment with 100% manure.

  20. effects of preharvest treatments on yield and chemical composition

    African Journals Online (AJOL)

    Administrator

    altitude of 1197 m above sea level and lies at 9o6'N ... widest point form the upper, middle and lower part of the plant was ... heated in boiling water bath for sufficient time until the ..... al., 1970 reported yield increase in tomato due to nitrogen ...

  1. The Effects of Different Nitrogen Sources on Yield and Yield Components of Sweet Corn (Zea mays L. saccharata

    Directory of Open Access Journals (Sweden)

    ali mojab ghasroddashti

    2017-09-01

    percent level calculated for mean comparison. Results and Discussion Results indicated that the different sources of nitrogen had significant effect on the number of grains per row and the number of grains per ear as well as ear and canned yield except for the number of ears per m2 and number of row per ear. Mean comparison indicated that the highest ear yield (2178 g.m-2 was obtained in the treatments of 100 kg N + 4 tons of poultry manure (T6 and the lowest yield (1188 g.m-2 in control (T9. Using of organic sources of nitrogen with chemical fertilizer led to increase ear yield. In other words, integrated treatments had better effect on yield than chemical and organic treatments. In addition, the highest canned harvest index (42.8 ton.ha-1 and ear harvest index (48.7 ton.ha-1 was related to 100 kg net nitrogen + 12 ton municipal solid waste compost (T8 treatments. Municipal solid waste compost and poultry manure in the 100 and 150 kg nitrogen levels caused to increase of canned harvest index and ear harvest index. This matter is indicative more effect of municipal solid waste compost than poultry manure on two indices.Generally, the combined use of organic manures and chemical fertilizers could be an appropriate method to increase sweet corn yield and soil fertility. According to the obtained results, T6 treatment can be recommended. Conclusion Based on the obtained results, it seems that single application of organic fertilizers cannot lead to maximum yield, therefore, to obtain the optimal yield integrated application of organic and chemical fertilizers (T6 can be recommended for farmers in the region.

  2. Influence factor on automated synthesis yield of 3'-deoxy-3'-[18F] fluorothymidine

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Liu Changbin; Liu Jian; Luo Zhigang

    2009-01-01

    3'-deoxy-3'-[ 18 F] fluorothymidine ( 18 F-FLT) was prepared from N-BOC precursor to improve the synthesis yield, chemical purity and radiochemical purity of 18 F-FLT by home-made automated synthesis module. The results showed that residual water in synthesis system and the amount of precursor could affect the synthesis yield dramatically. The more the amount of precursor, the higher the synthesis yield of N-BOC. The residual water can decrease the synthesis yield. In the presence of excess base, the precursor was consumed by elimination before substitution was completed. The precursor to base was optimal in 1 to 1. The balance of semi-preparatiove HPLC Column can affect purified the final 18 F-FLT product. The chemical purity of 18 F-FLT could be decreased with 8% EtOH as mobile phase in semi-preparatiove HPLC. The high chemical purity, radiochemical purity and synthesis yield could be obtained by optimized the parameter of synthesis with home-made automated synthesis module. (authors)

  3. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  5. Effects of Organic and Chemical Fertilizers on Leaf Yield, Essential Oil Content and Composition of Lemon Verbena (Lippia citriodora Kunth

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ebadi

    2017-02-01

    Full Text Available Introduction: Organic fertilizers with beneficial effects on soil structure and nutrient availability help maintain yield and quality, and they are less costly than synthetic fertilizers. Vermicompost and vermiwash are two organic fertilizers that they contain a biologically active mixture of bacteria, enzymes and phytohormones, also these organic fertilizers can supply the nutritional needs of plants. Lemon verbena (Lippia citriodora Kunth, Verbenaceae is an evergreen perennial aromatic plant. The lemon-scented essential oil from the lemon verbena has been widely used for its digestive, relaxing, antimalarial and lemony flavor properties. In order to decrease the use of chemical fertilizers for reduction of environmental pollution, this research was undertaken to determine effects of vermicompost and vermiwash in comparison with chemical fertilizer on leaf yield, essential oil content and composition of lemon verbena. Materials and Methods: A pot experiment based on a completely randomized design with six treatments and three replications on Lemon verbena was carried out in the experimental greenhouse of the Department of Horticulture Sciences, Tarbiat Modares University, 2012. Treatments consisted of 10, 20 and 30 % by volume of vermicompost and vermiwash (with an addition to irrigation in three steps, including: two weeks after the establishment of plants in pots, the appearing of branches and three weeks before harvest, complete fertilizer and control without any fertilizer. Each replication contained six pots and each pot contained one plant of Lemon verbena provided from Institute of Medicinal Plants, Karaj, therefore 108 pots were used in this experiment. The pots were filled up by a mixture contained 3/5 soil and 2/5 sand (v/v. After three months, plant aerial parts were harvested concomitantly at starting of the flowering stage. Aerial parts were dried at room temperature for 72 hours and dry weights of dried branches and leaves were

  6. [Effects of Chemical Fertilizers and Organic Fertilizer on Yield of Ligusticum chuanxiong Rhizome].

    Science.gov (United States)

    Liang, Qin; Chen, Xing-fu; Li, Yan; Zhang, Jun; Meng, Jie; Peng, Shi-ming

    2015-10-01

    To study the effects of different N, P, K and organic fertilizer (OF) on yield of Ligusticum chuanxiong rhizome, in order to provide the theoretical foundation for the establishment of standardization cultivation techniques. The field plot experiments used Ligusticum chuanxiong rhizome which planted in Pengshan as material, and were studied by the four factors and five levels with quadratic regression rotation-orthogonal combination design. According to the data obtained, a function model which could predict the fertilization and yield of Ligusticum chuanxiong rhizome accurately was established. The model analysis showed that the yields of Ligusticum chuanxiong rhizome were significantly influenced by the N, P, K and OF applications. Among these factors, the order of increase rates by the fertilizers was K > OF > N > P; The effect of interaction between N and K, N and OF, K and OF on the yield of Ligusticum chuanxiong rhizome were significantly different. High levels of N and P, N and organic fertilizer, K and organic fertilizer were conducive to improve the yield of Ligusticum chuanxiong rhizome. The results showed that the optimal fertilizer application rates of N was 148.20 - 172.28 kg/hm2, P was 511.92 - 599.40 kg/hm2, K was 249.70 - 282.37 kg/hm2, and OF was 940.00 - 1 104.00 kg/hm2. N, P, K and OF obviously affect the yield of Ligusticum chuanxiong rhizome. K and OF can significantly increase the yield of Ligusticum chuanxiong rhizome. Thus it is suggested that properly high mount of K and OF and appropriate increasing N are two favorable factors for cultivating Ligusticum chuanxiong.

  7. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  8. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  9. The Effect of Plant Growth Promoting Rhizobacteria (PGPR and Phosphate Solubilizing Microorganism (PSM on Yield and Yield Components of Wheat (cv. N80 under Different Nitrogen and Phosphorous Fertilizers Levels in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. H Bahari saravi

    2013-04-01

    Full Text Available In order to evaluate the effect of plant growth promoting rhizobacteria (PGPR and phosphate solubilizing microorganism (PSM on yield and yield components of wheat a pot experiment was conducted at Sari Agricultural Sciences and Natural Resources University during 2009. Experiment was arranged in factorial based on completely randomized design in three replicates. Treatments were included bio-fertilizer in four levels (non-inoculation control, Phosphate Barvare 2 (Pseudomonas fluorescens+Bacillus subtilis, Supernitroplus (Azotobacter brasilense+Azospirillum lipoferum and Nitroxine (Azospirillum + Pseudomona + Bacillus, three levels of chemical nitrogen fertilizer (0, 75 and 150 kg urea/ha and three levels of phosphorus fertilizer (0, 60 and 120 kg super phosphate triple/ha. Results showed that the studied treatments (biofertilizer, nitrogen and phosphate inorganic fertilizers had significant effect on grain number per spike, 1000 grain weight, grain yield, straw yield, biological yield and harvest index. Interaction effect between biofertilizer and chemical fertilizers was significant in terms of grain yield. The maximum grain yield was resulted from simultaneously applying of Nitroxine and 75 kg ha-1 nitrogen fertilizer. By contrast, the highest straw yield was obtained when 150 kg nitrogen fertilizer was used. Grain yield had the maximum correlation with biological yield (r=0.85**. Grain yield positively and significantly correlated with grain number per spike (r=0.73**, 1000 grain weight (r=0.68**, straw yield (r=0.56** and harvest index (r=0.69**. In conclusion biofertilizer inoculations could reduce application of nitrogen and phosphorus chemical fertilizers and increase plant performance.

  10. The Effect Different Fertilizers, on Germination, Yield, of Vicia vilosa Roth

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2015-09-01

    Full Text Available In order to study the interaction of germination, yield of Vicia vilosa Roth to use of biological fertilizer, chemical, and manure, an experiment was conducted as a randomized complete block design with three replications at Research greenhouse, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2013-2014 growing season. The experimental treatments was included three kinds of bio fertilizers and their integration with each other and vermicompost and chemical fertilizer as following : 1- mycorhhizaarbuscular species Glomus mosseae+vermicompost2- mycorhhiza+Nitrocsin (included bacteries Azospirillum sp. and Azotobacter sp. 3- mycorhhiza arbuscular+ Rhizobium (Rhizobium sp. 4-mycorhhiza arbuscular + Chemical fertilizer NPK 5- mycorhhizaarbuscular (Glomus moseae 6-control. The results showed that, although the treatments has not significant effects on height of stem , it has significant effects on characteristics of root length colonization percent, number the root node, Root dry weight, soggy yield, yield dry and protein Percent. The results showed that the highest percent of root length colonization(76 percent, number the root node (20, Root dry weight (.94 g, soggy yield (1894.5 g m-2, yield dry (473.63 g m-2 and protein Percent (27.33 percent was gained in integrated mycorhhiza and nitrocsine treatment. On the basis of results, the integration of mycrhhoriza and biological rhizobium is suggested as the best fertilizer treatment for Vicia vilosa Roth.

  11. Effect of Application of Pseudomonas fluorescent Strains on Yield and Yield Components of Rapeseed Cultivars

    Directory of Open Access Journals (Sweden)

    R Najafi

    2015-09-01

    Full Text Available Plant growth promoting rhizobacteria has been identified as an alternative to chemical fertilizer to enhance plant growth and yield directly and indirectly. Use of rhizosphere free living bacteria is one of the methods for crop production and leads to improvement of resources absorption. In order to study of yield, yield components and radiation use efficiency, under application of PGPR condition, an experiment was carried out in 2008 growing season at Agriculture and natural resources research station of Mashhad. The cultivars selected from three rapeseed species belong to Brassica napus, Brassica rapa and Brassica juncea (landrace, BP.18، Goldrush، Parkland، Hyola330، Hyola401. Experimental factorial design was randomized in complete block with three replications. Treatments included six varieties of Rapeseed and inoculations were four levels as non–inoculation, inoculation with P. fluorescens169, P. putida108 and use then together. Results showed that strains of fluorescent pseudomonas bacteria had greatest effects on yield and yield components cultivars. A significant difference in the number of pods per plant and 1000 seed weight observed. The cultivars were different in all treats except 1000 seed weight. Overall results indicated that application of growth stimulating bacteria in combination with different cultivars, had a positive effect growth, yield characteristics of plant varieties of rapeseed plants.

  12. Effect of Application of Nitrogen, Phosphorus and Organic Fertilizers on Yield and Yield Components of Bean (Phaseolus vulgaris L. in Lahijan, Northern Iran

    Directory of Open Access Journals (Sweden)

    K. Mansour Ghanaei Pashaki

    2017-02-01

    Full Text Available In order to study the effect of application of nitrogen, phosphorus and biologic fertilizers on yield and yield components of native bean, an experiment was conducted as factorial in randomized complete block design with three replications in Lahijan, northern Iran in 2013. Treatments consisted of chemical nitrogen fertilizer (0, 60 and 120 kg ha-1 urea, chemical phosphorus fertilizer (0, 40 and 80 kg ha-1 P2O5 and mixture of rhizobium, bacillus and pseudomonas biofertilizers (application and on application. The maximum and minimum seed yields (1556 kg ha-1and 451 kg ha-1 were obtained at the presence of 120 kg ha-1 urea with 80 kg ha-1 P2O5 and control (no fertilizers, respectively. The results showed that seed yield was significantly affected by interactions of nitrogen and phosphorus, and phosphorus with bio-fertilizers. The triple interaction effect of nitrogen, phosphorus and biofertilizers was significant on pod number per plant, seed number per pod, seed number per plant and 100 seed weight. The maximum pod number per plant, seed number per pod and 100 seed weight were found in interaction of 120 kg ha-1 urea and 40 kg ha-1 P2O5 with biological fertilizers. Overall, it seems that application of biological phosphorus with both N and P chemical fertilizers is more beneficial to bean; however, the present one-year study needs to be continued in years ahead to ascertain our results.

  13. Yield Mapping in Salix; Skoerdekartering av salix

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christoffer; Gilbertsson, Mikael; Rogstrand, Gustav; Thylen, Lars

    2004-09-01

    The most common species for energy forest production is willow. Willow is able to produce a large amount of biomass in a short period of time. Growing willow has a potential to render a good financial result for the farmer if cultivated on fields with the right conditions and plenty of water. Under the right conditions growing willow can give the farmer a net income of 3,000 SEK (about 430 USD) per hectare and year, which is something that common cereal crops cannot compete with. However, this is not the common case since willow is often grown as a substitute crop on fields where cereal crop yield is low. The aim of this study was to reveal if it is possible to measure yield variability in willow, and if it is possible to describe the reasons for yield variation both within the field but also between different fields. Yield mapping has been used in conventional farming for about a decade. The principles for yield mapping are to continuously measure the yield while registering location by the use of GPS when harvesting the field. The collected data is then used to search for spatial variations within the field, and to try to understand the reasons for this variation. Since there is currently no commercial equipment for yield mapping in willow, a yield mapping system had to be developed within this project. The new system was installed on a Claas Jaguar harvester. The principle for yield mapping on the Claas Jaguar harvester is to measure the distance between the feeding rollers. This distance is correlated to the flow through the harvester. The speed and position of the machine was registered using GPS. Knowing the working width of the harvester this information was used to calculate the yield. All collected data was stored on a PDA computer. Soil samples were also collected from the yield mapped fields. This was to be able to test yield against both physical and chemical soil parameters. The result shows that it is possible to measure spatial variations of yield in

  14. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  15. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass

    International Nuclear Information System (INIS)

    Frigon, Jean-Claude; Mehta, Punita; Guiot, Serge R.

    2012-01-01

    The conversion of cellulosic crops into biofuels, including methane, is receiving a lot of attention lately. Panicum vergatum, or switchgrass, is a warm season perennial grass well adapted to grow in North America. Different pre-treatments were tested in 0.5 l batch reactors, at 35 °C, in order to enhance the methane production from switchgrass, including temperature, sonication, alkalinization and autoclaving. The methane production on the basis of volatile solids (VS) added to the fermentation were 112.4 ± 8.4, 132.5 ± 9.7 and 139.8 ml g −1 after 38 days of incubation for winter harvested switchgrass (WHS) after grinding, grinding with alkalinization, and grinding with alkalinization and autoclaving, respectively. The methane production was higher for fresh summer harvested switchgrass (SHS), with a production of 256.6 ± 8.2 ml g −1 VS after mulching, alkalinization and autoclaving. The methane production from SHS was improved by 29 and 42% when applying lignin (LiP) or manganese peroxidase (MnP), at 202.1 ± 9.8 and 222.9 ± 22.5 ml g −1 VS, respectively. The combination of an alkali pre-treatment with the MnP increased the methane production furthermore at 297.7 ml g −1 VS. The use of pectinases without chemical pre-treatment showed promising yields at 287.4 and 239.5 ml g −1 VS for pectate-lyase and poly-galacturonase, respectively. An estimation of the methane yield per hectare of crop harvested resulted in net energy production of 29.8, 49.7 and 78.1 GJ for winter harvested switchgrass, mulched and pretreated summer harvested switchgrass, respectively. Switchgrass represents an interesting candidate as a lignocellulosic crop for methane production. -- Highlights: ► Switchgrass is a model energy crops for biofuels production. ► This study evaluated different pre-treatments to enhance methane production. ► Pre-treatments increase significantly the methane produced from switchgrass. ► Enzymatic pre-treatments were superior to physical and

  16. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  17. Neutron activation analysis of biological materials for sub PPM amount of mercury without determining the chemical yield

    International Nuclear Information System (INIS)

    Foldzinska, A.; Dybczynski, R.

    1976-01-01

    A simple method for the determination of sub ppm amounts of mercury in various biological materials by neutron activation analysis is described. Irradiated samples were decomposed with H 2 SO 4 - fuming HNO 3 mixture and mercury selectively isolated by ion exchange chromatography using Dowex 50X2(H + ) and Dowex 1X4(Br - ) columns in HBr medium. Finally the activity of 197 Hg fixed on an anion exchange resin was measured either with a Ge(Li) or a NaI (Tl) detector. Both the high radiochemical purity of mercury and the practically quantitative recovery were achieved thus eliminating the necessity of determining the chemical yield. The method was used for the determination of mercury in flour, milk, butter, margarine, fish, etc. Total time of analysis (including counting) amounted to 6-7 hrs and several samples could be simultaneously analysed by one technician. (T.G.)

  18. Effect of Pseudomonas and Bacillus bacteria on Yield and Nutrient Uptake in Comparison with Chemical and Organic Fertilizers in Wheat

    Directory of Open Access Journals (Sweden)

    A. Fallah Nosrat Abad

    2015-06-01

    Full Text Available The high cost of fertilizers in farming systems, soil pollution and degradation of soil are factors that caused to full use of available renewable nutrient sources of plant (organic and biological with optimal application of fertilizers in order to maintain fertility, structure, biological activity, exchange capacity and water-holding capacity of the water in soil. Therefore, in recent years, according to investigators biofertilizers and organic farming as an alternative to chemical fertilizers has been drawn. Through this study, we examined the effects of triple superphosphate, organic matters and phosphate solubilizing microorganisms on quantitative and qualitative yield of wheat and nutrient uptake. The experiment was carried out in the factorial based on randomized complete block design. The factors were: 1-phosphate solubilizing bacteria in three levels including control, Pseudomonas Putida and Bacillus Coagulans bacteria, 2- triple superphosphate in five levels of 0, 25%, 50%, 75% and 100% and 3-organic matter in 2 levels of 0 and 15 ton/ha in the soil with high phosphorous accessibility (13 mg/kg soil but lower than sufficient limit for plant 15 mg/kg soil. The results showed that the highest amount of yield has been recorded in Pseudomonas Putida bacteria treatment with organic matter and 25% phosphate fertilizer. As a result, at the conditions of this experiment phosphate solubilizing bacteria and organic matter significantly had higher yield than control and their combination with phosphate fertilizer had significant effect on reducing phosphate fertilizer use.

  19. [Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato].

    Science.gov (United States)

    Shen, Fei; Zhu, Tong-bin; Teng, Ming-jiao; Chen, Yue; Liu, Man-qiang; Hu, Feng; Li, Hui-xin

    2016-02-01

    In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.

  20. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  1. Changes in growth and yield attributes of two selected maize varieties as influenced by application of chemical (npk) and organic (bat's manure) fertilizers in pala (chad) grown field

    International Nuclear Information System (INIS)

    Ridine, W.; Ngakou, A.; Mbaiguinam, M.; Namba, F.; Anna, P

    2014-01-01

    The present experiment was conducted in Pala, region of the Mayo-Kebi West division, in a contribution to improve maize production in Chad. The work was oriented towards the evaluation of the interactions between chemical (NPK) and organic (bat's manure) fertilizers on growth and yield attributes of TZEE-W and IB selected maize varieties. The experimental design was a (5x2)x4 factorial design in which the main factor was the proportion of organic/chemical fertilizer (%), and the maize variety as the secondary factor, comprising the following six treatments repeated four times: control (T0) with 0 % NPK and 0 % bat's manure; T1 with 100% NPK; T2 with 100% bat's manure; T3 with 75% NPK and 25% bat's manure; T4 with 75% bat's manure and 25% NPK; T5 with 50% bat's manure and 50% NPK. Results show a variation in experimental soils pH of treatments from 5.91 to 7.92, depending on the proportion of the fertilizers applied. There were significant yield differences among treatments, as well as maize varieties. The 50% NPK+50% bat's manure was found as the best treatment to significantly (p<0.0001) enhance the yield of IB (51.2 t/ha) and TZEE-W (37.9 t/ha) maize varieties compared to their respective controls (7.25 t/ha and 6.76 t/ha). These results suggest that the combination at equal proportion of NPK and bat's manure could be recommended to sustainably improve maize production in Pala-Chad, thus with a considerable alleviation of the pollution risks that have been attributed to chemical fertilizer. (author)

  2. Yield and nutritional composition of oyster mushroom strains newly introduced in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mostak Ahmed

    2013-02-01

    Full Text Available The objective of this work was to evaluate yield and chemical composition of oyster mushroom strains newly introduced in Bangladesh. Strains of Pleurotus high‑king (strain PHK, P. ostreatus (strain PO2, and P. geesteranus (strains PG1 and PG3 were evaluated as to yield components and proximate composition. Pleurotus ostreatus was used as control. Pleurotus high‑king showed fastest growth of primordia, but moderate flush of effective fruiting bodies. Pleurotus geesteranus (PG1 showed higher economic yield and biological performance, and better chemical composition, especially in terms of protein and mineral contents. Pleurotus geesteranus (PG1 shows better performance than P. ostreatus (PO2, the most commercially cultivated edible species in Bangladesh, and, therefore, it should be recommended for commercial cultivation.

  3. Effects of Chemical Fertilizer, Algea Compost and Zeolite on Green Bean Yield

    Directory of Open Access Journals (Sweden)

    Aysun Türkmen

    2017-03-01

    Full Text Available The present study used chemical fertilizer, brown algae compost and zeolite carried out in the field of Giresun Hazelnut Research Center between May-November 2014 in pots according to randomized blog design as three replicate each. Treatment groups were consist of eight different combinations as follow; G1-Control, G2-Zeolite, G3-Compost, G4-Chemical Fertilizer, G5-Zeolite+Compost, G6-Zeolite+Chemical Fertilizer, G7-Compost+ Chemical Fertilizer, G8-Compost+Zeolite+ Chemical Fertilizer. The brown algae (Cystoseira sp. were used as compost material. These combinations were applied to green beans (Phaseolus vulgaris. The green beans were seeded by hand to arrange planting depth of 5-6 cm and 20 seeds/m2. Except control group, each treatment was added fertilizers as 50 g zeolite, 50 g compost, and 25 g chemical according to treatment design. Half of the chemical fertilizers were added at seeding time and the rest after two weeks. Collected soil samples were analyzed right after harvest, the greatest values of treatment groups were determined as; Carbon% G1: 5.08, nitrogen G3: 0.09 ppm, sodium G5: 139 ppm, potassium G6 and G8: 5 ppm, magnesium G2: 1865 ppm, calcium G6: 8.33 ppm, manganese G2: 359 ppm, iron G6 : 16070 ppm, cobalt G6 and G7: 7.91 ppm, copper G2: 17.5 ppm, zinc G8: 28.0 ppm, selenium G7: 4.17 ppm, cadmium G5: 0.08 ppm, lead G4: 5.31 ppm. The greatest harvest value as g/m2 was obtained from zeolite only group G2 with 273 while the lowest was obtained from Compost only group G3 with 113 g/m2, obviously showing the effectiveness of zeolite only application moreover, also thinking that better results may get if the present study run for longer period.

  4. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    Science.gov (United States)

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  6. Effects of bud loading levels and nitrogen doses on yield, physical ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the effects of several bud loading levels in winter pruning and nitrogen doses on yield and physical and chemical properties of fresh vine-leaves of grape cultivar “Narince”. Vines trained with bilateral cordon system was pruned to yield 35000 to 53000 buds/ha (16 or 24 buds/vine) ...

  7. Effect of Organic and Inorganic Fertilizers on Growth and Yield of Tef ...

    African Journals Online (AJOL)

    toshiba

    Results showed that tef yield, some yield components and soil chemical properties are ... integrated soil fertility management is an approach that attempts to make the best use of .... organic fertilizers applied were based on the recommended N equivalent rate for the test ..... Science and engineering of composting: Design,.

  8. Yielding to stress: Recent developments in viscoplastic fluid mechanics

    OpenAIRE

    BALMFORTH, Neil; FRIGAARD, Ian A.; OVARLEZ, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize e...

  9. Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS

    Directory of Open Access Journals (Sweden)

    K. E. Leather

    2012-01-01

    Full Text Available Gas-phase ethene ozonolysis experiments were conducted at room temperature to determine formic acid yields as a function of relative humidity (RH using the integrated EXTreme RAnge chamber-Chemical Ionisation Mass Spectrometry technique, employing a CH3I ionisation scheme. RHs studied were <1, 11, 21, 27, 30 % and formic acid yields of (0.07±0.01 and (0.41±0.07 were determined at <1 % RH and 30 % RH respectively, showing a strong water dependence. It has been possible to estimate the ratio of the rate coefficient for the reaction of the Criegee biradical, CH2OO with water compared with decomposition. This analysis suggests that the rate of reaction with water ranges between 1×10−12–1×10−15 cm3 molecule−1 s−1 and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Global model integrations suggest that this reaction between CH2OO and water may dominate the production of HC(OOH in the atmosphere.

  10. Determination of experimental K-shell fluorescence yield for ...

    Indian Academy of Sciences (India)

    X-ray; fluorescence yield; cross-section and chemical effects; potassium; cal- ... The X-ray production cross-section in Ti, V, Cr, Mn, Fe, Co, Ni and Cu .... where µinc (cm2 g−1) and µemt (cm2 g−1) are the mass attenuation coefficients at the.

  11. Measurements of the Fe3+ diffusion coefficient in Fricke Xylenol gel using optical density measurements

    International Nuclear Information System (INIS)

    Nonato de Oliveira, Lucas; Sampaio, Francisco Glaildo Almeida; Moreira, Marcos Vasques; Almeida, Adelaide de

    2014-01-01

    In Fricke dosimetry, optical density measurements are performed some time after dosimeter irradiation. Values of the diffusion coefficient of Fe 3+ in Fricke Xylenol gel (FXG) are necessary for determining the spatial distribution of the absorbed dose from measurements of the optical density. Five sets of FXG dosimeters, kept at different constant temperatures, were exposed to collimated 6 MV photons. The optical density profile, proportional to the Fe 3+ concentration, at the boundary between irradiated and non-irradiated parts of each dosimeter was measured periodically over a period of 60 h. By comparing the experimental data with a function that accounts for the unobserved initial concentration profile of Fe 3+ in the FXG, we obtained diffusion coefficients 0.30±0.05, 0.40±0.05, 0.50±0.05, 0.60±0.05 and 0.80±0.05 mm 2 /h for the temperatures 283.0±0.5, 286.0±0.5, 289.0±0.5, 292.0±0.5, and 296.0±0.5 K, respectively. The activation energy of Fe 3+ diffusion in the gel, 0.54±0.06 eV, was determined from the temperature dependence of the diffusion coefficients. - Highlights: • A new analytical method to determine diffusion coefficients of ions in gels is proposed. • The method is applied for measurements of the diffusion coefficients of Fe 3+ ions in a Fricke gel dosimeter. • Activation energy of the Fe 3+ ions in the gel was found to be 0.54 ±0.06 eV

  12. Yields, photosynthetic efficiencies, and proximate chemical composition of dense cultures of marine microalgae. A subcontract report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Seibert, D.L.R.; Alden, M.; Eldridge, P.; Neori, A.

    1983-07-01

    The yields, photosynthetic efficiencies, and proximate composition of several microalgae were compared in dense cultures grown at light intensities up to 70% sunlight. Yields ranged from 3.4 to 21.7 g dry weight/m/sup 2/ day. The highest yield was obtained with Phaeodactylum; the lowest in Botryococcus cultures. The same species had the highest and lowest efficiencies of utilization of photosynthetically active radiation. In nitrogen-sufficient cells of all but one species, most of the dry weight consisted of protein. Lipid content of all species was 20 to 29%, and carbohydrate content 11 to 23%. Lipid content increased somewhat in N-deficient Phaeodactylum and Isochrysis cells, but decreased in deficient Monallanthus cells. Because the overall dry weight yield was reduced by deficiency, lipid yields did not increase. However, since the carbohydrate content increased to about 65% in N-deficient Dunaliella and Tetraselmis cells, the carbohydrate yield increased. In Phaeodactylum the optimum light intensity was about 40% of full sunlight. Most experimets with this alga included a CUSO/sub 4/ filter to decrease infrared irradiance. When this filter was removed, the yield increased because more red light in the photosynthetically active spectral range was included. These results should prove useful to workers attempting to maximize yields and efficiencies, but additional studies are needed. 69 references, 27 figures, 18 tables.

  13. Factors affecting the optimal performance of a high-yield pulping operation

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Technology Centre, Pointe-Claire, PQ (Canada); Paris, J [Ecole Polytechnique, Montreal, PQ (Canada); Valada, J L [Quebec Univ., Trois-Rivieres, PQ (Canada)

    1995-06-01

    Strategies for operating a chemical-mechanical pulp mill were investigated from data based on process models from some one hundred pilot scale pulping runs. Optimal values for 55 process and pulp quality variables have been calculated by applying a genetic algorithm search to a fuzzy model of the overall system. Best pulp quality was achieved and maintained when the chemical pretreatment was conducted at moderately low temperatures using a high SO{sub 2} concentration, which produced high sulphonation and high yield at the same time. By characterizing the quality of the pulp at the fibre level, optimization results were said to be more easily transferable to other high yield pulping systems. 19 refs., 6 tabs.

  14. Effect of Bio-fertilizers in Combination with Different Rates of Chemical Fertilizers on the Growth Characters and Sepals Yield of Roselle (Hibiscus sabdariffa L.

    Directory of Open Access Journals (Sweden)

    roghayeh mohammadpour vashvaei

    2017-10-01

    Full Text Available Roselle or Maki tea (Hibiscus sabdariffa L. is a subtropical medicinal and aromatic plant belongs to the family Malvaceae that sepals of it's due to its medicinal properties and culinary uses. To evaluate the effect of bio-fertilizers in combination with different rates of chemical fertilizers on the growth characters, sepals yield and yield components of roselle, an experiment was conducted in randomized coplete block design with three replications, at the Research Station in Zabol University, during 2012 and 2013. Experimental treatments were plant nutrition with NPK, biophosphate, biophosphate+25% NPK, biophosphate+50% NPK, biophosphate+ 100% NPK, nitroxin, nitroxin+25%NPK, nitroxin+50%NPK, nitroxin+100%NPK, nitroxin+biophosphate, nitroxin+ biophosphate+25% NPK, nitroxin+biophosphate+50% NPK, nitroxin+biophosphate+100% NPK and control (non-use of any fertilizer. Plant traits such as plant height, no. of branches.plant-1, fresh and dry weight of vegetative, roots fresh and dry weight, calyx no.plant-1, sepal dry weight, sepals yield of roselle were measured. The results of combined analysis of variance showed that the effect of fertilizer were significant (P≤0.01 for all studied traits. Calyx no.plant-1 was the most important component in determining the sepals yield. The highest of all studied triates belong to nitroxin+biophosphate+100% NPK treatment that its difference with nitroxin+ biophosphate+50% NPK treatment was not significant. Thus, with respect to the production of medicinal plants in cropping systems and attention to the cultivation of these plants in low input systems, to improve plant growth and increase the sepals yield of roselle, 50% of the recommended dose of fertilizers with bio-fertilizers is recommended.

  15. Effects of Nitrogen and Phosphorous Biofertilizers on Yield and Yield Components of Corn AS71 in Dareh-shahr, Iran

    Directory of Open Access Journals (Sweden)

    A. Fathi

    2013-11-01

    Full Text Available Biofertilizers are inputs that naturally supplement replace chemical fertilizers and they are recommended in sustainable agriculture. To study the effects of biological fertilizers on yield and yield components of corn, a factorial experiment in randomized complete block design with three replications were conducted at Dareh-shahr, Iran in 2010. Biological factors were 4 levels of nitrogen biofertilizers (nitroxin, nitrokara, supernitroplus and control and 4 levels of phosphorus biofertilizers (biophosphore, phosphate fertilized 2, MC1 and control. Results showed that biological nitrogen and phosphorus fertilizers had significant effects on all traits under study. Interaction of nitrogen biological fertilizer × phosphate biological fertilizer was significant on 100 seed weight (P

  16. Viability evaluation of the reading system by CCD for application at the Fricke xylenol gel dosimetry developed by IPEN-Sao Paulo, Brazil; Avaliacao de viabilidade do sistema de leitura por CCD para aplicacao na dosimetria Fricke xilenol gel desenvolvido no IPEN-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Mangueira, Thyago Fressatti; Dias, Daniel Menezes; Campos, Leticia Lucente, E-mail: thyagomangueira@usp.b, E-mail: dmdias@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The use of chambers with coupled charge devices - CCD, is already used by research centres for the dose evaluation applying the Fricke xylenol gel dosemeter. This work evaluates the application of this optical reading technique for the FXG developed at the IPEN, Sao Paulo, Brazil

  17. Viability evaluation of the reading system by CCD for application at the Fricke xylenol gel dosimetry developed by IPEN-Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Mangueira, Thyago Fressatti; Dias, Daniel Menezes; Campos, Leticia Lucente

    2009-01-01

    The use of chambers with coupled charge devices - CCD, is already used by research centres for the dose evaluation applying the Fricke xylenol gel dosemeter. This work evaluates the application of this optical reading technique for the FXG developed at the IPEN, Sao Paulo, Brazil

  18. Effect of molecular weight on radiation chemical degradation yield of chain scission of γ-irradiated chitosan in solid state and in aqueous solution

    International Nuclear Information System (INIS)

    Tahtat, Djamel; Mahlous, Mohamed; Benamer, Samah; Nacer Khodja, Assia; Larbi Youcef, Souad

    2012-01-01

    Chitosan A 1 , A 2 and A 3 with molecular weight of 471, 207 and 100 kDa respectively, produced from squid pen chitin was degraded by gamma rays in the solid state and in aqueous solution with various doses in air at ambient temperature. Effect of molecular weight on radiation chemical degradation yield of chain scission and degradation rate constants of γ-irradiated chitosan in solid state and in aqueous solution was investigated. The radiation chemical degradation yield G (s) and degradation rate values were calculated. The molecular weight changes were monitored by capillary viscometry method and the chemical structure changes were followed by UV analysis. The results showed that, the degradation of chitosan was faster in solution, than in solid state. The values of G (s) in solid state and in aqueous solution were respectively 1.1×10 −8 mol/J and 0.074×10 −7 mol/J for A 1 , 4.42×10 −8 mol/J and 0.28×10 −7 mol/J for A 2 and 6.08×10 −8 mol/J and 0.38×10 −7 mol/J for A 3 . Degradation rate constants values ranged from 0.41×10 −5 to 2.1×10 −5 kGy −1 in solid state, whereas in solution they ranged from 13×10 −5 to 68×10 −5 kGy −1 . The chitosan A 3 was more sensitive to radiolysis than A 1 and A 2 . The chain scission yield, G (s) and degradation rate constants seems to be greatly influenced by the initial molecular weight of the chitosan. Structural changes in irradiated chitosan are revealed by the apparition of absorption peaks at 261 and 295 nm, which could be attributed to the formation of carbonyl groups. In both conditions the peak intensity was higher in chitosan A 3 than in A 1 and A 2 , the oxidative products decreased with increasing molecular weight of chitosan. - Highlights: ► We investigated the effects of MW on G (s) value of γ-irradiated chitosan in solid and aqueous state. ► Chitosan with low molecular weight was more sensitive to radiolysis than high molecular weight. ► G (s) value and degradation rate

  19. Description of Some Ecological Factors in Three Forest Sites in Lorestan Province and Their Impact on Myrtle (Myrtus communis L. Essential Oil Yield and Chemical Components

    Directory of Open Access Journals (Sweden)

    Z. Mir-Azadi

    2013-03-01

    Full Text Available Due to the side effects of chemical drugs, special attention is given recently to pharmaceutical plants. Myrtle (Myrtus communis L. is one of the valuable pharmaceutical plants, which is distributed over the vast areas of Iran. Yield and components of essential oil of this plant is dependent on ecological and genetic factors. In order to describe some ecological factors that affect myrtle in Lorestan province, three forest sites (Sepiddasht, Chame-moord, and Hamzeh Camp were selected. Some effective ecological factors on type of essential oil were measured and compared among the sites. To compare the yield and components of essential oil, myrtle leaves were collected during flowering stage in each site. Leaves were dried in open air conditions and the oil was extracted by distillation. Yield of essential oil was calculated and its components were identified by GC and GC/MS. Results showed that maximum yield belongs to Sepiddasht site. The altitude and soil Na, P, and organic carbon content of this site is quite different from other two sites. The main components of essential oils of these three sites had considerable differences. The amount of 9,10 anthracenedione was 29.1% in Sepiddasht site, while it was not found in the oil of Chame-moord site. It seems that differences in ecological and soil properties of the tree sites could have major effect on essential oil yield and its composition.

  20. Effect of Integrated Weed Management Methods on Yield and Yield Components of Corn (Zea mays L. in Kermanshah Province, Iran

    Directory of Open Access Journals (Sweden)

    R. Amini

    2017-08-01

    Full Text Available Introduction: Corn (Zea mays L. is cultivated widely throughout the world and has the highest production among the cerealsafter rice and wheat. In Iran the total production of corn in 2013 was more than 2540000 tons. Weeds are one of the greatest limiting factors to decrease corn yield in Iran as the average yield loss due to weeds in the fields of Kermanshah in 2009 was 17.32 %. The herbicides are the main weed control method in conventional cropping systems but their application has been increased herbicide resistant weeds and environmental pollution. Integrated weed management combines all applicable including chemical and non-chemical methods to reduce the effect of weeds in the cropping systems. Thus, Weed control strategies such as tillage, mulch, cover crops and intercropping could be used for integrated weed management of corn. Previous studies showed that crop residues such as rye (Secale sereal L., wheat (Triticum aestivum L., barley (Hordeum vulgare L. and clover (Trifolium sp., cover crops and living mulch could inhibit weed germination and growth. Therefore the objective of this study was evaluating the effects of some integrated weed management treatments on weed characteristics, yield components and grain yield of corn. Materials and methods: In order to evaluate the effect of some weed management treatments on corn (Zea mays L. yield an experiment was conducted in 2014 in Ravansar, Kermanshah, Iran. This study was arranged based on randomized complete block design with 10 treatments and three replications. The weed management treatments were including 1-chemical control followed by mechanical control (application of nicosulfuron at a dose of 80 g.a.i.ha-1 + cultivator 40 days after emergence 2- chemical control followed by mechanical control (application of 2,4-D+MCPA at a dose of 675 g.a.i.ha-1 + cultivator 40 days after emergence 3- cultural control followed by mechanical control (planting hairy vetch (Vicia villosa in the fall

  1. Breast meat yield, muscle linear measurements and meat ...

    African Journals Online (AJOL)

    Breast meat yield, chemical composition, mineral profile and linear measurement of the resultant breast meat Supracoracoides and Pectoralis thoracicus of one hundred and eighty (28 days old BUT) male turkeys fed diet containing wheat or sorghum as sole cereal source were studied. One hundred and eighty 28-days old ...

  2. The effect of biological fertilizers on yield, yield components and seed oil contents of three cultivars of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-05-01

    Dehaghi, M., and Modarres Sanavy, A.M. 2011. Effect of phosphate biofertilizer Barvar- 2 and triple super phosphate fertilizer on yield, quality and nutrient uptake of Medicago scutellata, cv. Robinson. Plant Protection (Scientific Journal of Agriculture 4: 43-54. In Persian with English Summary Hezbavi, E., and Minaei, S. 2008. Determination and investigation of some physical properties of seven variety rapeseed. Food Science and Technology Research Journal 5: 21-28. In Persian with English Summary Ministry of Jihad-e-Agriculture. 2013. Available at Web site http://www.maj.ir/portal/Home/Default.aspx?CategoryID=20ad5e49-c727-4bc9-9254-de648a5f4d52 (verified 12 march 2013 Shoghi Kalkhoran, S., Ghalavand, A., and Modares Sanavi, S.A.M. 2012. Effects of biofertilizer and green manure (winter wheat in combination with integrated nitrogen sources (chemical-farmyard manure on quantitative and qualitative characteristics of sunflower (Helianthus annuus L.. Environmental Sciences 3: 35-52. In Persian with English Summary The effect of organic, biological and chemical fertilizers on yield, essential oil percentage and some agroecological characteristics of summer savory (Satureja hortensis L. under Mashhad conditions E. Gholami Sharafkhane , M. Jahan2, M. Banayan Avval3, A. Koocheki4 and P. Rezvani Moghaddam4 Submitted: 06-05-2013 Accepted: 13-05-2014 Keywords: Cattle manure, Dry matter yield, Low input system, Plant Growth Promoting Rhizobacteria (PGPR, Vermicompost Introduction Savory (Satureja hortensis L. is an annual herbaceous plant that belongs to the Lamiaceae family. Nowadays, the use of biofertilizers is increased in agriculture and their role in increasing the crops production has been demonstrated in many research works (Vessey, 2003; Chen, 2006; Mahfouz & Sharaf- Eldin, 2007. One of the most important visions is sustainable production of enough food plus paying attention to social, economical and environmental aspects. (Gliessman, 1998 stated that the first step to

  3. Effects of organic manure on soil chemical properties and yield of ...

    African Journals Online (AJOL)

    The experiment was conducted during the 1999 cropping season at University of Agriculture, Makurdi, Nigeria to determine the effects of organic manure on the yield components of ginger. There were five treatments, namely, two levels of cow dung (15t and 30t ha-1) and two levels of Poultry litter (10t and 20t ha-1). Organic ...

  4. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    Full Text Available Introduction: After soybean and palm oil, canola is third important oil seed in the world which belongs to the genus Brassicaceae, that its seeds contain about 40% oil. The per capita consumption of oil in Iran is about 14 kg, so approximately 900 thousand tons of oil will be required for each year. However, only less than 10% of this oil is produced in the country. In recent years, special attention has been paid to canola cultivation in order to increase oil production, so during recent years an apparent increase in canola cultivated lands is significant. In most of these canola cultivated lands, the soil is calcareous therefore; some available nutrients such as phosphorus, iron and zinc are less than the amounts required by plants. Increasing qualitative and quantitative yield of canola in calcareous soils is a priority to canola cultivation improvement. Sulfur plays an important role in oil content of oily seed crops. On the other hands sulfur oxidation in calcareous soils can improve some nutrients availability. The present study was designed to investigate the effect of sulfur on yield, oil content and nutrients uptake and also its impact on soil chemical properties with 8 treatments, in 3 replications. Materials and Methods: This study was conducted in Ekbatan research station in Hamedan province for 2 years as completely randomized block design with 8 treatments and 3 repetitions. The treatments were: T1: Control (Without sulfur and Thiobacillus, T2: Application of 150 kg sulfur per ha, T3: T2+ Thiobacillus inoculums (2% of applied sulfur, T4: Application of 300 kg sulfur per ha, T5: T4+ Thiobacillus inoculums (2% of applied sulfur, T6: Application of 600 kg sulfur per ha, T7: T6+ Thiobacillus inoculums (2% of applied sulfur T8: Fertilizing based on soil test without sulfur and Thiobacillus. Thiobacillus inoculant containing about 107 cells of Thiobacillus bacteria which belonged to neutrophile Thiobacilli were prepared at soil biology

  6. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  7. Biosorption of uranium by chemically modified Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jing, E-mail: baijing@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yao Huijun [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fan Fangli; Lin Maosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiaofei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Guo Junsheng; Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-11-15

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: {yields} Uranium biosorption on to chemically modified yeast cells {yields} Cells before and after uranium sorption were investigate by FTIR spectroscopy {yields} Amino and carboxyl groups were important functional groups involved in uranium binding {yields} The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  8. Isotope dependence of chemical erosion of carbon

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Krstic, P.S.; Stuart, S.J.; Zhang, H.; Harris, P.R.; Meyer, F.W.

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1-30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However, the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  9. Distillation time effect on lavender essential oil yield and composition.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Cantrell, Charles L; Astatkie, Tess; Jeliazkova, Ekaterina

    2013-01-01

    Lavender (Lavandula angustifolia Mill.) is one of the most widely grown essential oil crops in the world. Commercial extraction of lavender oil is done using steam distillation. The objective of this study was to evaluate the effect of the length of the distillation time (DT) on lavender essential oil yield and composition when extracted from dried flowers. Therefore, the following distillation times (DT) were tested in this experiment: 1.5 min, 3 min, 3.75 min, 7.5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 150 min, 180 min, and 240 min. The essential oil yield (range 0.5-6.8%) reached a maximum at 60 min DT. The concentrations of cineole (range 6.4-35%) and fenchol (range 1.7-2.9%) were highest at the 1.5 min DT and decreased with increasing length of the DT. The concentration of camphor (range 6.6-9.2%) reached a maximum at 7.5-15 min DT, while the concentration of linalool acetate (range 15-38%) reached a maximum at 30 min DT. Results suggest that lavender essential oil yield may not increase after 60 min DT. The change in essential oil yield, and the concentrations of cineole, fenchol and linalool acetate as DT changes were modeled very well by the asymptotic nonlinear regression model. DT may be used to modify the chemical profile of lavender oil and to obtain oils with differential chemical profiles from the same lavender flowers. DT must be taken into consideration when citing or comparing reports on lavender essential oil yield and composition.

  10. Chemical equilibration of antihyperons

    International Nuclear Information System (INIS)

    Greiner, C.

    2002-01-01

    Rapid chemical equilibration of antihyperons by means of the interplay between strong annihilation on baryons and the corresponding backreactions of multi-mesonic (fusion-type) processes in the later, hadronic stage of an ultrarelativistic heavy ion collision will be discussed. Explicit rate calculations for a dynamical setup are presented. At maximum SPS energies yields of each antihyperon specie are obtained which are consistent with chemical saturated populations of T∼150-160 MeV. The proposed picture supports dynamically the popular chemical freeze-out parameters extracted within thermal models. (orig.)

  11. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  12. Cattle manure fertilization increases fig yield

    OpenAIRE

    Leonel,Sarita; Tecchio,Marco Antonio

    2009-01-01

    Fertilization using organic compounds is complementary to chemical fertilization, being essential to integrated fruit production. Reports on fig tree (Ficus carica L.) organic fertilization and mineral nutrition are worldwide scarce, especially in Brazil. This experiment aimed to evaluate the effects of cattle manure fertilization on the yield and productivity of the fig tree 'Roxo de Valinhos' in Botucatu, São Paulo State, Brazil, during the 2002/03, 2003/04, 2004/05 and 2005/06 crop cycles....

  13. Cura Annonae-Chemically Boosting Crop Yields Through Metabolic Feeding of a Plant Signaling Precursor.

    Science.gov (United States)

    Vocadlo, David J

    2017-05-22

    The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of experimental K-shell fluorescence yield for ...

    Indian Academy of Sciences (India)

    calcium compounds using a Si(Li) X-ray detector system (FWHM=5.96 keV at 160 eV). The samples were excited by 5.96 keV photons produced by a 55Fe radioisotope source. The experimental values are systematically lower than the theoretical values. Keywords. X-ray; fluorescence yield; cross-section and chemical ...

  15. Botanical composition, yield and nutritional quality of grassland in ...

    African Journals Online (AJOL)

    Livestock production contributes to the livelihoods of the Ethiopian people; however, the productivity of the livestock subsector in the highlands is low due to malnutrition. Therefore, this study assessed the botanical composition, dry matter (DM) yield, chemical composition and in vitro dry matter digestibility (IVDMD) of the ...

  16. Effect of Azolla Based - Organic Fertilizer, Rock Phosphate and Rice Hull Ash on Rice Yield and Chemical Properties of Alfisols

    Directory of Open Access Journals (Sweden)

    Sudadi

    2014-07-01

    Full Text Available The application of chemical fertilizer for long time may adverse soil environment. Organic agriculture, for example combination use of azolla based-organic fertilizer, phosphate rock and rice hull ash, was one of ways that able to recover it. Research was conducted in Sukosari, Jumantono, Karanganyar while soi chemical properties analysis was analysed in Soil Chemistry and Fertility Laboratory, Fac. of Agriculture, Sebelas Maret University April to November 2013. Research design used was RAKL with 5 treatments, each repeated 5 times. The treatments applied were P0 (control, P1 ( azola inoculum dosage 250 g/m2 + phosphate rock + rice hull ash equal to 150 kg/ha KCl, P2 (azola inoculum dosage 500 g/m2 + phosphate rock equal to 150kg/ha, SP-36 + rice hull ash equal to 100 kg/ha KCl, P3 (manure dosage of 5 ton/ha,P4 (Urea 250 kg/ha + SP-36 150 kg/ha + KCl 100 kg/ha. Data analysed statistically by F test (Fisher test with level of confident 95% followed by DMRT (Duncan Multiple Range Test if any significant differences. The result showed that the treatment combination of azolla, phosphate rock and rice hull ash increase soil organic matter content, cation exchange capacity, available-P and exchangeable-K as well as rice yield ( (at harvest-dry grain weight and milled-dry grain weight.

  17. Effect of Vermicompost, Sulfur and Thiobacillus on Some Soil Physico-chemical Properties, Yield and Yield Components of Maize (Zea mays L. in Jovain District

    Directory of Open Access Journals (Sweden)

    Mahmmud Ahmadi

    2018-02-01

    Full Text Available Introduction The excessive use of chemical fertilizers causes environmental pollution that is led to imbalance of essential elements in agricultural production system. Organic matter application as compost in the soil can improve chemical quality and biochemical properties that increase essential elements for plant nutrition. Application of organic manure can significantly increase the soil aggregate as well. Reported that application of 7 ton ha-1 of vermicompost increased number of leaves, stem dry weight, and corn plant height as compared to control and water holding capacity increases. Sulphur in plant is near to phosphorus (0.2%. Sulphur deficiency cause severe reduction in plant growth and due to participation in protein building and its deficiency cause yellowish in younger leaves. Sulphur can be applied as elemental sulphur, with ammonium and super phosphate to the soil. Iran is situated in arid and semi arid region of the world and need to reduce the pH with sulphur application due to high pH above 8 in some parts. The aim of this research was to study the effect of above factors in yield and yield components of maize and reducing environmental pollution. Materials and Methods This research carried out at 2012 in Jovein Distract suberb of Sabzevar city. Before conducting the research soil sample were collected from 0-30 cm depth and physical and chemical properties of the soil were estimated. Treatments including sulphur, thiobacillus and vermicompost were applied to soil and well mixed with soil before sowing. Each plot consists of five rows with six m length by 80 cm from each other. Seeds were sown at the depth of five cm and 20 cm from each other. This research carried out as a factorial experiment on the basis of randomized complete block design. In this research three factors including elemental sulphur, vermicompost and thiobacillus were used with three replications. Elemental sulphur in three levels (control, 500 kg ha-1 and

  18. Foliar application effects of beet vinasse on rice yield and chemical composition

    International Nuclear Information System (INIS)

    Tejada, M.; Garcia-Martinez, A. M.; Benitez, C.; Gonzalez, J. L.; Bautista, J.; Parrado, J.

    2009-01-01

    This study presents an account of rice (oriza sativa cv. Puntal) yield quality parameters as influenced by the foliar application of an industrial byproduct (beet vinasse). Beet (Beta vulgaris L. Subsp.vurgaris) vinasse is a product of great agricultural interest, because of its organic matter content, N and K concentrations. (Author)

  19. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals.

    Science.gov (United States)

    Schwartz, Thomas J; Shanks, Brent H; Dumesic, James A

    2016-04-01

    Advances in metabolic engineering have allowed for the development of new biological catalysts capable of selectively de-functionalizing biomass to yield platform molecules that can be upgraded to biobased chemicals using high efficiency continuous processing allowed by heterogeneous chemical catalysis. Coupling these disciplines overcomes the difficulties of selectively activating COH bonds by heterogeneous chemical catalysis and producing petroleum analogues by biological catalysis. We show that carboxylic acids, pyrones, and alcohols are highly flexible platforms that can be used to produce biobased chemicals by this approach. More generally, we suggest that molecules with three distinct functionalities may represent a practical upper limit on the extent of functionality present in the platform molecules that serve as the bridge between biological and chemical catalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of Continuous Application of Commercial Organic Manure on Farmland Quality and Vegetable Yield

    Directory of Open Access Journals (Sweden)

    YANG Wen-ye

    2014-08-01

    Full Text Available Field plot trials were carried out with cabbage, brassica chinensis and corn involving 3 different fertilization schemes including non-fertilizer, chemical fertilizer, chemical fertilizer with organic manure to investigate the effects of the fertilization schemes on farmland quality as well as vegetable yield. The results showed that the fertilization scheme of organic manure caused accumulation of arsenic, lead and chromium, and the accumulation increased with organic manure amount;pH of alkaline soil was decreased by organic manure;the chemical fertilizer with organic manure significantly increased the content of soil organic matter, available nitrogen, available phosphorus and available potassium, as well as the yield of cabbage, brassica chinensis and corn, which indicated the increasing of soil fertility and vegetable field were based on fertilizer inputs.

  1. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  2. SU-F-BRA-11: An Experimental Commissioning Test of Brachytherapy MBDCA Dosimetry, Based On a Commercial Radiochromic Gel/optical CT System

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, E; Karaiskos, P; Zourari, K; Peppa, V; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens (Greece)

    2015-06-15

    Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attached was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin brachytherapy

  3. Yield stress of duplex stainless steel specimens estimated using a compound Hall–Petch equation

    Directory of Open Access Journals (Sweden)

    Noriaki Hirota, Fuxing Yin, Tsukasa Azuma and Tadanobu Inoue

    2010-01-01

    Full Text Available In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall–Petch equation. The compound Hall–Petch equation was derived from four types of duplex stainless steel, which contained 0.2–64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323–1473 K. The derived compound Hall–Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.

  4. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    Science.gov (United States)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  5. Biomass and biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar

    International Nuclear Information System (INIS)

    Mahmood, A.; Hussain, A.; Shahzad, A. N.; Honermeier, B.

    2015-01-01

    Biogas from biomass is a promising renewable energy source whose importance is increasing in European as well as in other countries. A field experiment at one location (Experimental Station Giessen, Justus Liebig University of Giessen, Germany) over two years was designed to study the effect of altering sowing time (ST), planting density and cultivar on the biomass yield and chemical composition of biomass sorghum, and its potential for methane production. Of the two cultivars tested, cv. Goliath (intraspecific hybrid) was more productive with respect to biomass yield than cv. Bovital (S. bicolor x S. sudanense hybrid). ST also influenced biomass yield and most of the quality parameters measured. Delayed sowing was in general advantageous. The choice of cultivar had a marked effect on biogas and methane yield. The highest biogas and methane yields were produced by late sown cv. Bovital. Sub-optimal planting densities limited biomass accumulation of the crop, however neither the chemical composition nor the methane yield was affected by planting density. (author)

  6. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  7. High yield CTMP fibres as a possibility of the more efficient yield of wood raw material

    Directory of Open Access Journals (Sweden)

    Klašnja Bojana A.

    2004-01-01

    Full Text Available The evident shortage of wood as a raw material has become a limiting factor in the pulp and paper industry which is the greatest consumer of wood in Europe. The situation in our country is similar. During the few past years, the production of poplar and willow pulpwood was 220.000 m3 per year, which is insufficient for the planned increase in the production of sulphate pulp (175.000 tons till 2005. This paper deals with the aspects of the more efficient yield of raw material, based on the significantly higher yield of CTMP fibres, as well as with the significance of the lower adverse effect on the environment. It also analyses the conditions of production and the quality of the obtained fibres, as a possible substitute for chemical pulp and secondary fibres in papers of different quality. The main reasons for the production and use of CTMP fibres in our country are reported.

  8. Soybean yield modeling using bootstrap methods for small samples

    Energy Technology Data Exchange (ETDEWEB)

    Dalposso, G.A.; Uribe-Opazo, M.A.; Johann, J.A.

    2016-11-01

    One of the problems that occur when working with regression models is regarding the sample size; once the statistical methods used in inferential analyzes are asymptotic if the sample is small the analysis may be compromised because the estimates will be biased. An alternative is to use the bootstrap methodology, which in its non-parametric version does not need to guess or know the probability distribution that generated the original sample. In this work we used a set of soybean yield data and physical and chemical soil properties formed with fewer samples to determine a multiple linear regression model. Bootstrap methods were used for variable selection, identification of influential points and for determination of confidence intervals of the model parameters. The results showed that the bootstrap methods enabled us to select the physical and chemical soil properties, which were significant in the construction of the soybean yield regression model, construct the confidence intervals of the parameters and identify the points that had great influence on the estimated parameters. (Author)

  9. Oil palm fruit fibre promotes the yield and quality of Lentinus ...

    African Journals Online (AJOL)

    aghomotsegin

    fruit fibre proved a better substrate for the production of mushrooms with higher yields and protein content (30.10 g/kg ... techniques which in turn affect the chemical compositions ... potentials of this group of fungi, there is need for better.

  10. Radiochemical problems of radiation chemical synthesis in n, γ-field of nuclear reactor

    International Nuclear Information System (INIS)

    Mironov, V.P.; Frejdus, N.V.; Bugaenko, L.T.; Kalyazin, E.P.; Petryaev, E.P.

    1981-01-01

    A wide applicability of products of radiation chemical synthesis (RCS), using n, γ-irradiation, is limited by possible contamination of the latter with long-lived radioactive isotopes of chemical elements included in the composition of the reagent and compounds syntesized (chemically non-separable radionuclides - CNR). A technique of the determination of the limit accumulation CNR on the basis of radiation chemical parameters of the synthesis (radiation-chemical yield, the dose rate absorbed, singleness of purpose of RCS etc.) and radiochemical parameters of formation and accumulation of CNR (radiochemical yields of CNR in the products of radiolysis, neutron fluence, the reagent purity etc.) is suggested. The radiochemical evaluation of CNR accumulation (tritium and carbon-14), formed at the expense of activation with neutrons of chemical elements of water and organic substances, consisting of hydrogen, carbon and oxygen has shown that at relatively low yields of final products (> or approximately 3 molecules/100 eV) no accumulation of radionuclides in concentrations reaching the average admissible concentration takes place [ru

  11. YIELD CAPACITY AND CHEMICAL COMPOSITION OF GREEN BEANS IN CULTIVARS OF KIDNEY BEAN BRED AT OMSK AGRARIAN UNIVERSITY IN THE SOUTH FOREST-STEPPE OF WESTERN SIBERIA

    Directory of Open Access Journals (Sweden)

    N. G. Kazydub

    2017-01-01

    Full Text Available In  2014-2016  the  assessment of  kidney bean  cultivars bred at Omsk State Agrarian University on yield capacity, quality, and biochemical  chemical compounds  in green beans, such as proteins, zinc, iodine, iron and sucrose was carried  out  in  the  south  forest-steppe  of  Western Siberia. The technological  parameters of  green  beans: the  shape  of  cross-section  area; pulpiness,  fibrous  or non-fibrous,  and bean thickness were estimated. Threeyear study showed that all tested cultivars bred at Omsk State  Agrarian  University  surpassed  control  cultivar  in yield capacity,  chemical composition  and technological parameters of green beans. The cultivar ‘Pamiyaty Rizhovoy’ gave a highest yield: 563.4 g/m2  in 2014; 622.8 g/m2 in 2015; and 620.4 g/m2  in 2016. It is worth noticing that this cultivar is also distinguished by contents of micro and macroelements: 21.20-28.68  mg/kg  of zinc; 0.012-0.018 mg/kg of iodine; and 1.8-3.2 mg/kg of iron. In the course of the study, it was noticed the dependence of  yield  capacity  on  hydrothermal  coefficient  (HC. In 2014-2015 the yield capacity was a lowest when the moisturization was insufficient at 0.7 HC. With increase of HC the yield was higher. With sufficient moisturization at 1.0 HC the highest yield of green beans was observed in 2016.  The estimation  of  kidney  bean  cultivars  bred  at Omsk State  Agrarian University showed  that  all beans were  distinguished  by  high  quality  parameters  in  the phase  of  technical  maturity,  such  as  pulpiness,  nonfibrous, thickness 0.5 to  1.0 cm, and green and yellow colors.  The  highest  protein  content  comparing  to  the control  cultivar  ‘Zolushka’  was  detected  in  ‘Marusya’ 23.60%  in  2014,  20.94%  in  2015;  and  ‘Zoloto  Sibiry’ 19.79%  in  2016.  The  observed  results  confirmed  that contents  change of

  12. Radiation chemical effects of X-rays on liquids

    International Nuclear Information System (INIS)

    Holroyd, R.A.; Preses, J.M.

    1998-01-01

    This review describes some of the chemical changes induced by photoelectrons which are released in liquids when X-rays are absorbed. Both experimental studies and theory are discussed. In part 1, the basic processes occurring upon absorption of X-rays are described. Parts 2 and 3 deal with hydrocarbon liquids; in part 2 the ion yields, including effects at K-edges, and in part 3, the yields of excited states. Part 4 discusses chemical effects of X-rays in aqueous solutions. The authors end with a summary of future needs and directions

  13. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    Science.gov (United States)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  14. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  15. Fluorine in the solar neighborhood: Chemical evolution models

    Science.gov (United States)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  16. Combined effects of agrochemicals and ecosystem services on crop yield across Europe

    NARCIS (Netherlands)

    Gagic, Vesna; Kleijn, David; Báldi, András; Boros, Gergely; Jørgensen, Helene Bracht; Elek, Zoltán; Garratt, Michael P. D.; de Groot, G. Arjen; Hedlund, Katarina; Kovács- Hostyánszki, Anikó; Marini, Lorenzo; Martin, Emily; Pevere, Ines; Potts, Simon G.; Redlich, Sarah; Senapathi, Deepa; Steffan-Dewenter, Ingolf; Świtek, Stanislaw; Smith, Henrik G.; Takács, Viktória; Tryjanowski, Piotr; van der Putten, Wim H.; van Gils, Stijn; Bommarco, Riccardo

    2017-01-01

    Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity

  17. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  18. The effect of organic fertilizers and different sowing dates on yield and yield components of flower and grain of Pot Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    P Rezvani moghaddam

    2016-05-01

    Full Text Available In order to find out suitable organic fertilizers for elimination of chemical fertilizers usage and the optimum sowing date in Pot Marigold cultivation, an experiment was conducted in the Agricultural Research Station, Ferdowsi University of Mashhad, Iran, in 2007 growing season. For this purpose a split plot experiment based on completely randomized block design with three replications was used. The main factor consist of four different fertilizers (50 kg.ha-1 N, 40 t.ha-1 Cow manure, 20 t.ha-1 Compost fertilizer and 10 t.ha-1 Hen manure beside control (without fertilizer and three sowing dates (10th April, 1th May and 21th May were allocated as sub factor. The results showed that the length time of emergence to budding, budding to flowering and flowering to ripening decreased by delay in sowing date, significantly. By delay in sowing date, plant height and dry matter also decreased because of reduction of vegetative growing duration. The various fertilizers had not significant effect on developmental stages and morphological characteristics of Pot Marigold. Nitrogen fertilizer and Hen manure in compare of other treatments had significantly (p≤0.05 higher level in number of inflorescences, yield of inflorescences, yield of petal and seed yield. Thus, Hen manure can be a suitable replacement of chemical fertilizers in Pot Marigold cultivation. The various sowing dates showed significant effect on the most measured characteristics of seed and inflorescences yield components of Pot Marigold. The highest of all studied characteristics were obtained in 10th April and 1th May than 21th May sowing dates.

  19. The Effect of Organic and Chemical Fertilizers on Qualitative and Quantitative Yield of Indigo (Indigofera tinctoria L. at Irrigation Levels under Bam Climatic Conditions

    Directory of Open Access Journals (Sweden)

    N Modafe Behzadi

    2018-05-01

    and Discussion The results showed that at the first and second cuttings, the highest dry weight of leaf (with 751.11 and 769.24 g m-2, respectively and indigocarmin yield (with 4.62 and 4.66 g.m-2, respectively were observed for vermicopmost. Increasing soil water content from 60 to 100% FC at the first and second cuttings caused to increase dry weight of leaf (with 37 and 100%, respectively. Decreasing soil water content caused to reduce the dry matter yield of indigo and these highest yields were obtained in 100% FC with 1589.3 and 1829.3 g m-2, respectively. Also, increasing soil water content from 60 to 100% FC caused that indigocarmin content and indigocarmin yield increased with 36 and 18%, respectively. Relationship between soil nutrients and metabolic processes of medicinal plants causes to change of yield quantity or secondary metabolites contents. Therefore, we determined that the best growth condition for indigo was observed for manure and irrigation based on 80% FC. Conclusions It was concluded that cow manure could be a good choice for decreasing chemical fertilization application.

  20. Using cheminformatics to find simulants for chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, J.; Srinivasan, Sree [Molecular Sciences and Engineering Team, U.S. Army Natick Soldier Research, Development and Engineering Center, 15 Kansas Street, Natick, MA 01760 (United States); Nagarajan, R., E-mail: Ramanathan.Nagarajan@us.army.mil [Molecular Sciences and Engineering Team, U.S. Army Natick Soldier Research, Development and Engineering Center, 15 Kansas Street, Natick, MA 01760 (United States)

    2011-10-30

    Highlights: {yields} Summary of chemical warfare agent (CWA) simulants in current use. {yields} Application of method of molecular similarity to CWA and simulants. {yields} Quantitative metric for CWA-simulant similarity. {yields} Rank ordering of simulants in current use. {yields} Potential of method to identify simulants for emerging agents. - Abstract: Direct experimentation with chemical warfare agents (CWA) to study important problems such as their permeation across protective barrier materials, decontamination of equipment and facilities, or the environmental transport and fate of CWAs is not feasible because of the obvious toxicity of the CWAs and associated restrictions on their laboratory use. The common practice is to use 'simulants,' namely, analogous chemicals that closely resemble the CWAs but are less toxic, with the expectation that the results attained for simulants can be correlated to how the CWAs would perform. Simulants have been traditionally chosen by experts, by means of intuition, using similarity in one or more physical properties (such as vapor pressure or aqueous solubility) or in the molecular structural features (such as functional groups) between the stimulant and the CWA. This work is designed to automate the simulant identification process backed by quantitative metrics, by means of chemical similarity search software routinely used in pharmaceutical drug discovery. The question addressed here is: By the metrics of such software, how similar are traditional simulants to CWAs? That is, what is the numerical 'distance' between each CWA and its customary simulants in the quantitative space of molecular descriptors? The answers show promise for finding close but less toxic simulants for the ever-increasing numbers of CWAs objectively and fast.

  1. Long-term yield effects of establishment method and weed control in willow for short rotation coppice (SRC)

    DEFF Research Database (Denmark)

    Larsen, Søren Ugilt; Jørgensen, Uffe; Kjeldsen, Jens Bonderup

    2014-01-01

    matter (DM) yield was measured over 6 harvest rotations corresponding to 16 years. In 1st rotation, yield differed significantly between establishment methods with highest yield for 1.8 m rods (10.4 Mg ha−1 year−1), intermediate yield for cuttings and 0.2 m billets (8.6 and 8.5 Mg ha−1 year−1...... establishment methods; 1) vertical planting of standard 0.2 m cuttings; 2) horizontal planting of 0.1 m billets; 3) horizontal planting of 0.2 m billets; 4) horizontal planting of 1.8 m rods. All establishment methods were combined with mechanical and chemical weed control during the establishment year. Dry......, respectively) and lowest for 0.1 m billets (5.6 Mg ha−1 year−1). No differences were found in 2nd rotation. Over 1st and 2nd rotation, mechanical weed control resulted in significantly lower yield than chemical control when combined with 0.1 m billets. Cuttings and 1.8 m rods were compared over 1st, 2nd, 3rd...

  2. UK Chemical Nuclear Data Committee: progress report

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1992-02-01

    Studies of the basic nuclear data for commercial and industrial application are monitored by the UK Chemical Nuclear Data Committee (UKCNDC). Such data are defined on the basis of chemical methods of analysis, and include half-lives, decay parameters and fission yields. Work undertaken within this area is described in this document for information. (author)

  3. Yield of maize (Manoma spp) affected by automobile oil waste and ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... waste polluted soils, and on the yield parameters (plant height, leave surface and dry matter weight) of maize (Manoma spp). ... 40 cm) were examined for chemical and physical properties, including poly aromatic hydrocarbons. Polluted soils were ... Particularly, bioremediation of oil polluted soils using ...

  4. Effect of plant diversification on pest abundance and tomato yields in ...

    African Journals Online (AJOL)

    Diakalia SON

    Effect of plant diversification on pest abundance and tomato yields in two cropping systems in ..... Table 2: Monitoring of evolution of the pests population in IPM plots. Pests ... For pollinators, the most abundant families ...... induced by chemical interaction between unattacked .... in a coastal savannah agro ecological zone.

  5. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  6. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  7. EMPIRICALLY DERIVED INTEGRATED STELLAR YIELDS OF Fe-PEAK ELEMENTS

    International Nuclear Information System (INIS)

    Henry, R. B. C.; Cowan, John J.; Sobeck, Jennifer

    2010-01-01

    We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, Fe, Co, and Ni, and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity-these two elements have opposite slopes-as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.

  8. Differential growth and yield by canola (Brassica napus L.) and wheat (Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash.

    Science.gov (United States)

    Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek

    2013-03-30

    There is a need for field trials on testing agronomic potential of coal fly ash to engender routine use of this technology. Two field trials were undertaken with alkaline and acidic fly ashes supplied at between 3 and 6 Mg ha⁻¹ to acidic soils and sown to wheat and canola at Richmond (Eastern Australia) and to wheat only at Merredin (Western Australia). Ash addition marginally (PAPSIM at Richmond over a 100-year period (1909-2008) predicted yield increases in 52% of years with addition of ash at 3.0 Mg ha⁻¹ compared with 24% of years with addition of ash at 6.0 Mg ha⁻¹. The simulated yield increases did not exceed 40% over the control with addition of 6 Mg ha⁻¹ ash, but was between 40% and 50% with an addition rate of 3 Mg ha⁻¹. We found no evidence of phytotoxicity in either crop in this unusually dry year and there is still a need for further field assessment in years with favourable rainfall to enable development of clear recommendations on fly ash rates for optimum yield benefits. © 2012 Society of Chemical Industry.

  9. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    user

    also other applications like in the chemical industry. (Biermann, 1993). Therefore pulp is a very .... digester was maintained at an operating condition of. 170°C, pressure of 2 bars, with liquor to wood ratio of 4:1. Cooking ... The effects of different concentrations of pulping liquor on the yield of pulp from the wood species are ...

  10. Metabolic Engineering of TCA Cycle for Production of Chemicals

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A.

    2016-01-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical

  11. Calculated yields of ammonia in the radiolysis of deoxygenated solutions of glycylglycine

    International Nuclear Information System (INIS)

    Bolch, W.E.; Turner, J.E.; Yoshida, H.; Jacobson, K.B.

    1988-01-01

    This paper presents detailed Monte Carlo simulations of physical and chemical interactions occurring within electron tracks in deoxygenated solutions of glycylglycine. Hydrated electrons produced within these tracks react with the solute to produce ammonia and a peptide secondary free radical. Calculated yields of ammonia are presented for a range of solute concentrations and electron energies. Excellent agreement is found between calculated and measured yields of ammonia in solutions irradiated by 250-kVp x-rays and 60 Co gamma rays. 12 refs., 5 figs

  12. Possible changes to arable crop yields by 2050.

    Science.gov (United States)

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Chintan Gupta. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 659-673. Maximization of yield of C-13 isotope by multiphoton dissociation of Freon-22 using high average power TEA CO2 laser · Manoj Kumar Anant Deshpande ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Manoj Kumar. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 659-673. Maximization of yield of C-13 isotope by multiphoton dissociation of Freon-22 using high average power TEA CO2 laser · Manoj Kumar Anant Deshpande ...

  15. The organic fertilizers in pepper (Capsicum annuum L. and the impact on yield and its components

    Directory of Open Access Journals (Sweden)

    Juan José Reyes Pérez

    2017-10-01

    Full Text Available The use of organic fertilizers in the fertilization of crops is an alternative to the problems generated by the intensive use of chemical fertilizers. The objective of this research was to evaluate the application to soil of organics fertilizers compared with a control treatment with chemical fertilization on the yield and its components in pepper (Capsicum annuum L.. Treatments consisted in to apply worm humus, water hyacinth compost, a mixture with 50 % worm humus and 50 % of water hyacinth compost, and a chemical control. It was evaluated fruits quantity per harvest, fruit length, diameter and fruit weight per harvest and yield. Results showed that the plants that were supplemented with worm humus, followed by worm humus + water hyacinth they had significantly better response with respect to the length, diameter and weight of the fruits.

  16. Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene

    Directory of Open Access Journals (Sweden)

    J. E. Shilling

    2008-04-01

    Full Text Available The yield of particle mass in secondary organic aerosol (SOA formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH4SO4 seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m−3, increasing to 0.27 at 40 μg m−3. Compared to some results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m−3. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μm−3, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere.

  17. Effect of Nitrogen and biological Fertilizers on Seed Yield and Fatty acid Composition of Sesame cultivars under Yazd conditions

    Directory of Open Access Journals (Sweden)

    E Shakeri

    2013-04-01

    Full Text Available To investigate the effect of different levels of nitrogen fertilizer and biofertilizers Azotobacter sp. and Azosprillum sp. on seed yield, oil yield and its percent and fatty acid composition in three sesame (Sesamum indicum L. cultivars an experiment was conducted using splite plot factorial arrangement based on randomized complete block design with three replications at Agricultural and Natural Resources Reasearch Center of Yazd in 2009 cropping season. The treatments included : cultivars ( Darab-14, Jiroft and Yazdi assigned to main plots, nitrogen fertilizer (0, 25 and 50 kg ha-1 and biofertilizer (inoculation and no-inoculation as factorial were randomized in sub-plots. Oil percent was measured using the Soxhlet method and fatty acid composition was measured using GC method. Results showed the significant differenc among three varieties concerning seed yield, oil yield and four fatty acids (oleic, linoleic, palmetic and stearis acid. Seed yield, oil yield, Oleic, Linolenic and Arasshidic acid significantly increased with applying N fertilizer. Seed yield, oil yield and linolenic acid percent significantly increased with applying biofertilizer. Oleic acid percent had negative and significant correlation with Linoleic acid (r = -0.759** and stearic acid (r=-0.774** percent. Generally, results showed the importance of applying biofertilizers against chemical fertilizers to protect the environment from harmful chemical pollution.

  18. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  19. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  20. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    Science.gov (United States)

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  1. Strategies for narrowing the maize yield gap of household farms through precision fertigation under irrigated conditions using CERES-Maize model.

    Science.gov (United States)

    Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu

    2017-07-01

    Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Almuth Läuter. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 675-686. Absolute quantum yield measurements for the formation of oxygen atoms after UV laser excitation of SO2 at 222.4 nm · Mohammed Abu-Bajeh Melanie Cameron ...

  3. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.; Hart, E.J.; Flynn, K.F.; Gindler, J.E.

    1976-04-01

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO 2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  4. Qualitative and qualitative characteristics of milk thistle (Silybum marianum L. in response to organic, biological and chemical fertilizers

    Directory of Open Access Journals (Sweden)

    R. Yazdani Biuki

    2016-04-01

    Full Text Available In order to evaluate the effects of organic, biological and chemical fertilizers on yield and yield components of milk thistle (Silybum marianum L., an experiment was conducted at the Research Station of Ferdowsi University of Mashhad based on complete randomized block design with three replications and six treatments during year 2007. Treatments included inoculated seeds with Azotobacter, compost, vermicompost, combination of both Azotobacter and compost treatments, chemical NPK fertilizer and control (without any fertilizer. The traits such as number of branches per plant, plant height, number of inflorescences per plant, inflorescence diameter, number of seeds per capitol, 1000 seed weight, seed yield, biological yield, harvest index, oil percentage, silymarin percentage, silybin percentage, oil yield and silymarin yield were measured. The results showed that application of different types of organic fertilizers had no effect on yield components, but had significant effect on oil percentage of oil, silymarin and silybin of seed. Compost application resulted the highest oil percentage (20.1 compared to other treatments. There was no significant difference between control, chemical fertilizer, compost and Azotobacter treatments on silymarin percentage. In terms of silybin percentage, there was no significant difference between control, compost, Azotobacter and aztobacter+compost treatments. The chemical fertilizer treatment showed the lowest silybin percentage (16.4. There was a positive correlation between plant height and seed yield (r=0.68**. It seems that biofertilizers can consider as a replacement for chemical fertilizers in Milk thistle medicinal plant production.

  5. Effect of integrated plant nutrition and irrigation scheduling on yield and yield components of maize (zea mays l.)

    International Nuclear Information System (INIS)

    Randhawa, M.S.; Maqsood, M.; Wajid, S.A.; Haq, A.U.

    2012-01-01

    Effect of three irrigation schedules (4-6 irrigations) and seven integrated plant nutrition levels (control, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + Farm yard manure at the rate 15 t ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/ -K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha-1 and 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 15 t ha/sup -1/) on grain yield and its components in maize were studied during 2009 and 2010. Plant height, number of cobs plant-1, number of grain rows cob-1, number of grains cob-1, 1000-grain weight, grain weight cob-1, grain yield, stover yield and biological yield were significantly affected by irrigation schedules and integrated plant nutrition levels during both years. The crop applied with six irrigations and fertilized by integrated application of chemical fertilizers (250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/) and farmyard manure (15 t ha/sup -1/) produced the highest grain yield of 8.47 t ha/sup -1/ and 8.22 t ha/sup -1/ during 2009 and 2010, respectively. (author)

  6. Nuclear and chemical data

    Energy Technology Data Exchange (ETDEWEB)

    De Regge, P.

    1978-12-15

    The neutron fission yield and other nuclear and chemical data of interest to the nuclear applications of mass spectrometry (mainly in the field of burnup determination) are examined. The performance of those determinations and the achievable accuracy should match the needs of the users of the data produced. 3 figures, 2 tables. (RWR)

  7. Has the use of talc an effect on yield and extra virgin olive oil quality?

    Science.gov (United States)

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Study of carbon impurity generation by chemical sputtering in JT-60U

    International Nuclear Information System (INIS)

    Higashijima, S.; Kubo, H.; Sugie, T.; Shimizu, K.; Asakura, N.; Itami, K.; Hosogane, N.; Sakasai, A.; Konoshima, S.; Sakurai, S.; Takenaga, H.

    1997-01-01

    CD/CH-band intensities emitted from hydrocarbon molecules have been measured in the divertor region of JT-60U and the chemical sputtering yield of methane was estimated as a function of the surface temperature and the deuterium ion flux. The chemical sputtering yield increases with the surface temperature and decreases with increasing ion flux density in the L-mode plasmas. The B 4 C converted CFC tiles are installed in JT-60U and it is found that the chemical sputtering of B 4 C converted CFC tiles is suppressed in comparison to normal CFC tiles. (orig.)

  9. Optimizing rice yields while minimizing yield-scaled global warming potential.

    Science.gov (United States)

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  10. Effect of oversowing leguminous species on dry matter yield and ...

    African Journals Online (AJOL)

    Seven years after oversowing, forage dry matter yield and chemical composition were estimated both in the dryand wet seasons. Mean values of forage dry matter yieid in the dry season were 1.75, 1.69, 1.62, 1.51 and, 0.94 t/ha for the plots oversown, with, S. hamata, M atropurpureum, C. ternatea and C. pubescence and ...

  11. Development of techniques for tagging precursor and essential chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, W.A.; Shepodd, T.J. [Sandia National Labs., Livermore, CA (United States); Phillips, M.L.F. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    The ability to identify the manufacturers and distributors of chemicals seized in raids of illicit drug labs would be of great value in controlling the diversion of these chemicals. We developed a tagging scheme based on the addition of sub-ppM concentrations of various combinations of rare-earth elements to the target chemicals and evaluated a number of techniques for detecting the tags. We developed soluble tags for tagging liquids and selected Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) as the preferred detection technique. We developed insoluble tags for tagging solids and developed methods to analyze them and mix them into solid precursors. We have successfully demonstrated the tagging of several solvents and two of the precursor chemicals used in one of the most popular clandestine methamphetamine syntheses (ephedrine reacting with hydriodic acid/red phosphorus). The tagging scheme is capable of yielding tens of thousands of signatures (using holmium as an internal standard and up to 9 rare-earths at up to 3 concentrations yields 3{sup 9} {minus} 1 = 19,682 signatures) and is applicable to most of the chemicals on the precursor and essential chemicals list. In the concentrations employed, the tags are safe enough to be added to pharmaceuticals and cheap enough to tag tanker loads of chemicals.

  12. Performance of sorghum cultivars for biomass quality and biomethane yield grown in semi-arid area of Pakistan.

    Science.gov (United States)

    Hassan, Muhammad Umair; Chattha, Muhammad Umer; Mahmood, Athar; Sahi, Shahbaz Talib

    2018-05-01

    Biomass is a promising renewable energy source and its significance is escalating in the context of climate change and depletion of fossil foils. This study was conducted for two consecutive years 2016 and 2017, using five sorghum cultivars, i.e., JS-263, Jawar-2011, Hagari, JS-2002, and YS-2016, in order to determine the best cultivars in terms of dry matter yield, chemical composition, and biomethane yield grown under semi-arid conditions in Pakistan. The results revealed that sorghum cultivars responded differently in terms of growth, biomass yield, chemical composition, and methane yield. Cultivars Jawar-2011 produced maximum leaf area index, leaf area duration, crop growth rate, plant height, and leaves per plant, however, they were comparable with Sorghum-2016, whereas cultivar JS-2002 performed poorly among the tested cultivars. Similarly, cultivar Jawar-2011 produced maximum dry matter yield (16.37 t ha -1 ) similar to that of YS-2016, further cultivar JS-2002 performed poorly and gave lower dry matter yield (12.87 t ha -1 ). The maximum protein concentration (10.95), neutral detergent fibers (61.20), and lignin contents (5.55) found in Jawar-2011 were comparable with those in YS-2016, while the lowest neutral detergent fiber and lignin contents were found in JS-2002. Although JS-2002 produced the highest specific methane yield per kilogram of volatile solids, it was overcompensated by Jawar-2011 owing to higher dry matter yield per hectare. These results suggested that cultivar Jawar-2011 can be grown successfully in semi-arid conditions of Pakistan in order to get good biomass yield along with higher methane yield.

  13. Quality control in radiotherapy: an assessment in the Brazilian Northeast

    International Nuclear Information System (INIS)

    Souza, V.L.B.; Santos, C.D.A.; Rodrigues, K.R.G.; Melo, R.T.; Figueiredo, M.D.

    2009-01-01

    This paper describes the synthesis of Fricke Xylenol Gel dosimeter (FXG) in Centro Regional de Ciencias Nucleares, and an study with this type of dosimeter in some hospitals of the Brazilian Northeast. It is demonstrated the applicability of the dosimeter for X-ray equipment and the values of the doses show the reality of the doses used in patients undergoing radiotherapy. (author)

  14. Application of Spent Mushroom Compost and Mycorrhiza on Yield and Yield Components of Garlic (Allium sativum L. in the Low Input Cropping System

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2017-10-01

    , manganese and copper and water. In return, the plant provides carbohydrates for the fungi. Materials and methods In order to study the effect of mushroom compost and mycorrhiza on yield of garlic (Allium sativum L., a split plot experiment based on RCBD design with three replications was conducted in 2010-11 growing season in research farm of Ferdowsi University of Mashhad, Iran. Mycorrhiza (Glomus mosseae (use and non-use and spent mushroom compost levels (SMC (0, 20, 40, 60, 80, 100 t ha-1 were considered as the main and sub factors. In order to determine the physic-chemical properties of soil, sampling was done at a depth of 0 to 30 cm. Distance on and between rows was considered 10 and 20 cm, respectively. In order to weeds control, manual weeding was done three times. At the end of the growing season, economic yield, biological yield, plant height, shoot dry weight, bulb diameter, bulblet weight per plant, bulblet volume per plant and bulblet number per plant were measured. Analysis of variance was done with SAS Ver 9.1 software. Result and discussion The results showed that the effect of different levels of mushroom compost was significant on the most studied traits, but mycorrhiza had no significant effect on yield and yield components of garlic. Based on the results, highest diameter and length of the bulb and bulblets were observed in application of 100 t ha-1 SMC. The highest economic yield (12760 kg ha-1 was observed in application of 100 t ha-1 SMC, so that the application of SMC increased economic yield by 48 percent compared to control. The highest dry matter production and harvest index also were observed in application of 100 t ha-1 SMC. Organic and biological fertilizers are among the most significant resources for development of agricultural soil quality and increase in the yield of different medicinal plants. It has been reported that this ecological inputs provide favorable conditions for plant growth and development through improvement of physical

  15. Effects of different chemical materials and cultural methods on ...

    African Journals Online (AJOL)

    reading 6

    2011-10-27

    Oct 27, 2011 ... which accounts for 53% of wheat production in China and about 15% of the total ... environment as it is mainly made from chemical mate- rials. ... yield and yield components in harvest in both years were deter- mined. The data were subjected to analyses of variance (ANOVA) ..... Long-term stability of.

  16. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

    2013-06-01

    This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

  17. Analysis of the behavior of tubular-type equipment for nuclear waste treatment: sensitivities of the parameters affecting mass transfer yield

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Kim, Eung Ho

    2007-01-01

    It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipment. as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the back mixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface. and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate

  18. Yield of 73Se for various reactions and its chemical processing

    International Nuclear Information System (INIS)

    Nozaki, T.; Itoh, Y.; Ogawa, K.

    1979-01-01

    Excitation curves for the formation of 73 Se by the following reactions were measured up to proton energy of 50 MeV and 3 He- and α-particle energies of 40 MeV, together with those for byproduct formation reactions: (1) 75 As(p, 3n) 73 Se, (2) Ge + 3 He → 73 Se, and (3) Ge + α → 73 Se. The proton reaction has proved to be much superior to the other reactions both in yield and product purity. Volatilization of 73 Se from a solution of condensed polyphosphoric acid was found to give an excellent method of 73 Se separation from various arsenic targets without carrier. Also, solvent extraction of red selenium 73 Se with a minute amount of carrier was shown to be a useful separation method. (author)

  19. Effect of Integrated Nutrient Management on Yield and Yield ...

    African Journals Online (AJOL)

    Declining soil fertility is one of the major problems causing yield reduction of barley ... (VC) with inorganic NP on growth, yield and yield components of food barley. ... The experiments were laid out in a randomized complete block design with ...

  20. Buckwheat yield and its quality as affected by laser biostimulation of its seeds

    International Nuclear Information System (INIS)

    Koper, R.; Mikos-Bielak, M.

    2003-01-01

    The influence of various doses of laser radiation applied to buckwheat seed bio stimulation on the yield, and changes of chemical composition was analysed. A 12-25 percent increase of yield was observed in bio stimulated plants. The most positive effects were achieved after seed triple radiation using a laser of 30 mW power for 0.1 s. Bio stimulation caused a slight increase of protein, fat and fiber content a large increase of soluble and reducing sugars and a decrease of starch level

  1. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    Science.gov (United States)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  2. Strangeness chemical equilibration in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Letessier, Jean; Rafelski, Johann

    2007-01-01

    We study, in the dynamically evolving quark-gluon plasma (QGP) fireball formed in relativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC), the growth of strangeness yield toward and beyond the chemical equilibrium. We account for the contribution of the direct strangeness production and evaluate the thermal-QCD strangeness production mechanisms. The specific yield of strangeness per entropy, s/S, is the primary target variable. We explore the effect of collision impact parameter, i.e., fireball size, on kinetic strangeness chemical equilibration in QGP. Insights gained in studying the RHIC data with regard to the dynamics of the fireball are applied to the study of strangeness production at the LHC. We use these results and consider the strange hadron relative particle yields at RHIC and LHC in a systematic fashion. We consider both the dependence on s/S and the direct dependence on the participant number

  3. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    Science.gov (United States)

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack

  4. Influence of urea application on growth, yield and mineral uptake in ...

    African Journals Online (AJOL)

    A pot experiment was conducted in a wire netting green house in order to assess the beneficial effect of urea on corn cultivars (C-20 and C-79) differing in yield production. Corn plants were grown in loam soil with alkaline in reaction. Application of varying urea levels did not change the physico-chemical properties of soil.

  5. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  6. Equity yields

    NARCIS (Netherlands)

    Vrugt, E.; van Binsbergen, J.H.; Koijen, R.S.J.; Hueskes, W.

    2013-01-01

    We study a new data set of dividend futures with maturities up to ten years across three world regions: the US, Europe, and Japan. We use these asset prices to construct equity yields, analogous to bond yields. We decompose the equity yields to obtain a term structure of expected dividend growth

  7. Effect of machinery wheel load on grass yield

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian

    2010-01-01

    Effect of machinery wheel load on grass   Ole Green1, Rasmus N. Jørgensen2, Kristian Kristensen3, René Gislum3, Dionysis Bochtis1, & Claus G. Sørensen1   1University of Aarhus, Dept. of Agricultural Engineering 2University of Southern Denmark, Inst. of Chemical Eng., Biotechnology and Environmental...... 3University of Aarhus, Dept. of Genetics and Biotechnology   Corresponding author: Ole Green Address & e-mail: Research Centre Foulum, Blichers Allé 20, 8830 Tjele. Ole.Green@agrsci.dk     Abstract   Different traffic intensities have been shown to have a negative influence on the yield of grass...... and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16 different traffic intensities with 35 replicates and 1 traffic free treatment with 245 replicates, totalling 17...

  8. Combined effects of agrochemicals and ecosystem services on crop yield across Europe.

    Science.gov (United States)

    Gagic, Vesna; Kleijn, David; Báldi, András; Boros, Gergely; Jørgensen, Helene Bracht; Elek, Zoltán; Garratt, Michael P D; de Groot, G Arjen; Hedlund, Katarina; Kovács-Hostyánszki, Anikó; Marini, Lorenzo; Martin, Emily; Pevere, Ines; Potts, Simon G; Redlich, Sarah; Senapathi, Deepa; Steffan-Dewenter, Ingolf; Świtek, Stanislaw; Smith, Henrik G; Takács, Viktória; Tryjanowski, Piotr; van der Putten, Wim H; van Gils, Stijn; Bommarco, Riccardo

    2017-11-01

    Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced. © 2017 John Wiley & Sons Ltd/CNRS.

  9. Chemical control of flowering time

    DEFF Research Database (Denmark)

    Ionescu, Irina Alexandra; Møller, Birger Lindberg; Sánchez Pérez, Raquel

    2017-01-01

    Flowering at the right time is of great importance; it secures seed production and therefore species survival and crop yield. In addition to the genetic network controlling flowering time, there are a number of much less studied metabolites and exogenously applied chemicals that may influence...... on the genetic aspects of flowering time regulation in annuals, but less so in perennials. An alternative to plant breeding approaches is to engineer flowering time chemically via the external application of flower-inducing compounds. This review discusses a variety of exogenously applied compounds used in fruit...

  10. A modified Fricke gel dosimeter for fast electron blood dosimetry

    International Nuclear Information System (INIS)

    Del Lama, L.S.; Góes, E.G. de; Sampaio, F.G.A.; Petchevist, P.C.D.; Almeida, A. de

    2014-01-01

    It has been suggested for more than forty years that blood and blood components be irradiated before allogeneic transfusions for immunosuppressed patients in order to avoid the Transfusion-Associated Graft-versus-Host Disease (TA-GVHD). Whole blood, red blood cells, platelets and granulocytes may have viable T cells and should be irradiated before transfusion for different patient clinical conditions. According to international guides, absorbed doses from 25 up to 50 Gy should be delivered to the central middle plane of each blood bag. Although gamma and X-rays from radiotherapy equipments and dedicated cell irradiators are commonly used for this purpose, electron beams from Linear Accelerators (LINACs) could be used as well. In this work, we developed a methodology able to acquire dosimetric data from blood irradiations, especially after fast electrons exposures. This was achieved using a proposed Fricke Xylenol Gel (FXG p ) dosimeter, which presents closer radiological characteristics (attenuation coefficients and stopping-powers) to the whole blood, as well as complete absorbed dose range linearity. The developed methodology and the FXG p dosimeter were also able to provide isodose curves and field profiles for the irradiated samples

  11. A modified Fricke gel dosimeter for fast electron blood dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Del Lama, L.S., E-mail: lucasdellama@gmail.com [Departamento de Fsica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (FFCLRP/USP), Av. Bandeirantes, 3900, CEP 14040-901, Bairro Monte Alegre, Ribeirão Preto, São Paulo (Brazil); Góes, E.G. de [Instituto de Matemática, Estatística e Física, Universidade Federal de Rio Grande (IMEF/FURG), Av. Itália, km 8, CEP 96201-900, Bairro Carreiros, Rio Grande, Rio Grande do Sul (Brazil); Sampaio, F.G.A.; Petchevist, P.C.D.; Almeida, A. de [Departamento de Fsica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (FFCLRP/USP), Av. Bandeirantes, 3900, CEP 14040-901, Bairro Monte Alegre, Ribeirão Preto, São Paulo (Brazil)

    2014-12-15

    It has been suggested for more than forty years that blood and blood components be irradiated before allogeneic transfusions for immunosuppressed patients in order to avoid the Transfusion-Associated Graft-versus-Host Disease (TA-GVHD). Whole blood, red blood cells, platelets and granulocytes may have viable T cells and should be irradiated before transfusion for different patient clinical conditions. According to international guides, absorbed doses from 25 up to 50 Gy should be delivered to the central middle plane of each blood bag. Although gamma and X-rays from radiotherapy equipments and dedicated cell irradiators are commonly used for this purpose, electron beams from Linear Accelerators (LINACs) could be used as well. In this work, we developed a methodology able to acquire dosimetric data from blood irradiations, especially after fast electrons exposures. This was achieved using a proposed Fricke Xylenol Gel (FXG{sub p}) dosimeter, which presents closer radiological characteristics (attenuation coefficients and stopping-powers) to the whole blood, as well as complete absorbed dose range linearity. The developed methodology and the FXG{sub p} dosimeter were also able to provide isodose curves and field profiles for the irradiated samples.

  12. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Gunaseelan, V.N. [PSG College of Arts and Science, Coimbatore (India). Department of Zoology

    2007-04-15

    Several fractions of fruits and vegetable solid wastes (FVSW), sorghum and napiergrass were analyzed for total solids (TS), volatile solids (VS), total organic carbon, total kjeldahl nitrogen, total soluble carbohydrate, extractable protein, acid-detergent fiber (ADF), lignin, cellulose and ash contents. Their ultimate methane yields (B{sub o}) were determined using the biochemical methane potential (BMP) assay. A series of simple and multiple regression models relating the B{sub o} to the various substrate constituents were generated and evaluated using computer statistical software, Statistical Package for Social Sciences (SPSS). The results of simple regression analyses revealed that, only weak relationship existed between the individual components such as carbohydrate, protein, ADF, lignin and cellulose versus B{sub o}. A regression of B{sub o} versus combination of two variables as a single independent variable such as carbohydrate/ADF and carbohydrate + protein/ADF also showed that the relationship is not strong. Thus it does not appear possible to relate the B{sub o} of FVSW, sorghum and napiergrass with single compositional characteristics. The results of multiple regression analyses showed promise and the relationship appeared to be good. When ADF and lignin/ADF were used as independent variables, the percentage of variation accounted for by the model is low for FVSW (r{sup 2}=0.665) and sorghum and napiergrass (r{sup 2}=0.746). Addition of nitrogen, ash and total soluble carbohydrate data to the model had a significantly higher effect on prediction of B{sub o} of these wastes with the r{sup 2} values ranging from 0.9 to 0.99. More than 90% of variation in B{sub o} of FVSW could be accounted for by the models when the variables carbohydrate, lignin, lignin/ADF, nitrogen and ash (r{sup 2}=0.904), carbohydrate, ADF, lignin/ADF, nitrogen and ash (r{sup 2}=0.90) and carbohydrate/ADF, lignin/ADF, lignin and ash (r{sup 2}=0.901) were used. All the models have

  14. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  15. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  16. DETERMINATION THE EFFECT OF DEFOLIATION TIMING ON COTTON YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    Karademir Emine

    2007-12-01

    Full Text Available This study was carried out for determining the effect of different application times at 40, 50, 60 and 70 % boll opening and untreated plot of the defoliant on cotton yield, earliness and technological properties in Southeast Anatolia Region conditions in Turkey. Maras 92 cotton variety was used as plant material in the experiment field of the Southeast Anatolia Agricultural Research Institute during 2000-2001. Defoliant was including thidiazuron + diuron chemical substance. The result of this study showed that ginning percentage, 100 seed weight, seed germination percentage, fiber fineness, fiber length, fiber strength, reflectance, elongation and seed cotton yield were not affected by the treatment; plant height and first picking percentage in 2001, fiber uniformity in 2000 were 5 % significantly affected. This study showed that application of defoliant didn’t affect significantly yield and technological properties of cotton and after 40 % boll opening the defoliant can be used.

  17. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  18. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  19. Genetic effects of combined chemical-X-ray treatments in male mouse germ cells

    International Nuclear Information System (INIS)

    Cattanach, B.M.; Rasberry, C.

    1987-01-01

    Several studies have shown that the yield of genetic damage induced by radiation in male mouse germ cells can be modified by chemical treatments. Pre-treatments with radio-protecting agents have given contradictory results but this appears to be largely attributable to the different germ cell stages tested and dependent upon the level of radiation damage induced. Pre-treatments which enhance the yield of genetic damage have been reported although, as yet, no tests have been conducted with radio-sensitizers. Another form of interaction between chemicals and radiation is specifically found with spermatogonial stem cells. Chemicals that kill cells can, by population depletion, substantially and predictably modify the genetic response to subsequent radiation exposure over a period of several days, or even weeks. Enhancement and reduction in the genetic yield can be attained, dependent upon the interval between treatments, with the modification also varying with the type of genetic damage scored. Post-treatment with one chemical (TEM) has been shown to reduce the genetic response to radiation exposure. (author)

  20. Contributions of type II and Ib/c supernovae to Galactic chemical evolution

    International Nuclear Information System (INIS)

    Sahijpal Sandeep

    2014-01-01

    Type II and Ib/c supernovae (SNe II and Ib/c) have made major stellar nucleosynthetic contributions to the inventories of stable nuclides during chemical evolution of the Galaxy. A case study is performed here with the help of recently developed numerical simulations of Galactic chemical evolution in the solar neighborhood to understand the contributions of SNe II and Ib/c by comparing the stellar nucleosynthetic yields obtained by two leading groups in this field. These stellar nucleosynthetic yields differ in terms of their treatment of stellar evolution and nucleosynthesis. The formulation describing Galactic chemical evolution is developed with the recently revised solar metallicity of ∼0.014. Furthermore, the recent nucleosynthetic yields of stellar models based on the revised solar metallicity are also used. The analysis suggests that it could be difficult to explain, in a self-consistent manner, the various features associated with the elemental evolutionary trends over Galactic timescales by any single adopted stellar nucleosynthetic model that incorporates SNe II and Ib/c

  1. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Sutaryo, Sutaryo; Møller, Henrik Bjarne

    2013-01-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn...... as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kg VS)-1 for leaf and stem, respectively. Approximately 45% more methane...... was produced by the TC-F management (5430 Nm3 ha-1) as by the OC management (3735 Nm3 ha-1). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass...

  2. In-Season Yield Prediction of Cabbage with a Hand-Held Active Canopy Sensor.

    Science.gov (United States)

    Ji, Rongting; Min, Ju; Wang, Yuan; Cheng, Hu; Zhang, Hailin; Shi, Weiming

    2017-10-08

    Efficient and precise yield prediction is critical to optimize cabbage yields and guide fertilizer application. A two-year field experiment was conducted to establish a yield prediction model for cabbage by using the Greenseeker hand-held optical sensor. Two cabbage cultivars (Jianbao and Pingbao) were used and Jianbao cultivar was grown for 2 consecutive seasons but Pingbao was only grown in the second season. Four chemical nitrogen application rates were implemented: 0, 80, 140, and 200 kg·N·ha -1 . Normalized difference vegetation index (NDVI) was collected 20, 50, 70, 80, 90, 100, 110, 120, 130, and 140 days after transplanting (DAT). Pearson correlation analysis and regression analysis were performed to identify the relationship between the NDVI measurements and harvested yields of cabbage. NDVI measurements obtained at 110 DAT were significantly correlated to yield and explained 87-89% and 75-82% of the cabbage yield variation of Jianbao cultivar over the two-year experiment and 77-81% of the yield variability of Pingbao cultivar. Adjusting the yield prediction models with CGDD (cumulative growing degree days) could make remarkable improvement to the accuracy of the prediction model and increase the determination coefficient to 0.82, while the modification with DFP (days from transplanting when GDD > 0) values did not. The integrated exponential yield prediction equation was better than linear or quadratic functions and could accurately make in-season estimation of cabbage yields with different cultivars between years.

  3. Ion-stimulated Gas Desorption Yields of Electropolished, Chemically Etched, and Coated (Au, Ag, Pd, TiZrV) Stainless Steel Vacuum Chambers and St707 Getter Strips Irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator LINAC 3, has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting under grazing incidence on different accelerator-type vacuum chambers. Desorption yields for H2, CH4, CO, and CO2, which are of fundamental interest for future accelerator applications, are reported for different stainless steel surface treatments. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, palladium-, and getter-coated 316 LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 104 molecules/Pb53+ ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble-metal coating by up to 2 orders of magnitude. In addition, pressure rise measurements, the effectiveness of beam scrubbing with le...

  4. Nanofabrication Yields. Hybridization and Click-Fixation of Polycyclic DNA Nanoassemblies

    KAUST Repository

    Lundberg, Erik P.

    2011-09-27

    We demonstrate the stepwise assembly of a fully addressable polycyclic DNA hexagon nanonetwork for the preparation of a four-ring system, one of the biggest networks yet constructed from tripodal building blocks. We find that the yield exhibits a distinct upper level <100%, a fundamental problem of thermodynamic DNA assembly that appears to have been overlooked in the DNA nanotechnology literature. A simplistic model based on a single step-yield parameter y can quantitatively describe the total yield of DNA assemblies in one-pot reactions as Y = yduplex n, with n the number of hybridization steps. Experimental errors introducing deviations from perfect stoichiometry and the thermodynamics of hybridization equilibria contribute to decreasing the value of yduplex (on average y = 0.96 for our 10 base pair hybridization). For the four-ring system (n = 31), the total yield is thus less than 30%, which is clearly unsatisfactory if bigger nanoconstructs of this class are to be designed. Therefore, we introduced site-specific click chemistry for making and purifying robust building blocks for future modular constructs of larger assemblies. Although the present yield of this robust module was only about 10%, it demonstrates a first step toward a general fabrication approach. Interestingly, we find that the click yields follow quantitatively a binomial distribution, the predictability of which indicates the usefulness of preparing pools of pure and robust building blocks in this way. The binomial behavior indicates that there is no interference between the six simultaneous click reactions but that step-yield limiting factors such as topological constraints and Cu(I) catalyst concentration are local and independent. © 2011 American Chemical Society.

  5. Fast pyrolysis of linseed. Product yields and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Acikgoz, C.; Onay, O.; Kockar, O.M. [Department of Chemical Engineering, Faculty of Engineering and Architecture, Iki Eylul Campus, Anadolu University, Eskisehir 26470 (Turkey)

    2004-06-01

    Fixed-bed fast pyrolysis experiments have been conducted on a sample of linseed (Linum usitatissimum L.) to determine particularly the effect of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their compositions. The maximum oil yield of 57.7wt.% was obtained at a final pyrolysis temperature of 550C, particle size range 0.6mmchemical feedstock, with a calorific value of 38.45MJ/kg and empirical formula of CH{sub 1.64}O{sub 0.11}N{sub 0.03}.

  6. Gamma-radiolysis of the 2-methyl-2-propanol-water system: yields of methane and ethane

    International Nuclear Information System (INIS)

    Silaev, M.M.; Afanas'ev, A.M.; Kalyazin, E.P.

    1991-01-01

    The dependence of methane and ethane yields on the concentration and corresponding electron part of alcohol during γ-radiolysis of 2-methyl-2-propanol-water system has been investigated. Irradiation was realized at room temperature, dose rate of 7.7 Gy/s up to absorbed doses of 0.4-14 kGy. The observed deviations of radiation-chemical yields of products from additivity rule, positive in case of methane and negative in case of ethane, are explained

  7. Biogas yield from Sicilian kitchen waste and cheese whey

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available The aim of this study is to determine the chemical composition of kitchen waste and cheese whey, as well as the biogas yield obtained from the Anaerobic Digestion (AD tests of these two raw materials. Since the separated waste collection is performed in the town of Marineo (Palermo, a sample of kitchen waste, different from food industry one and included in the Organic Fraction of Municipal Solid Waste (OFMSW, was collected from the mass stored at the households of this town. Moreover, a sample of cheese whey was collected in a Sicilian mini dairy plant, where sheep milk is processed. This investigation was carried out inside laboratory digesters of Aleksandras Stulginskis University (Lithuania. Total Solids (TS resulted 15.6% in kitchen waste and 6% in cheese whey, while both the raw materials showed a high content of organic matter, 91.1% and 79.1%, respectively. The biogas yield resulted 104.6 l kg–1 from kitchen waste and 30.6 l kg–1 from cheese whey. The biogas yield from TS resulted 672.6 l kg–1 using kitchen waste and 384.7 l kg–1 using cheese whey. The biogas yield from Volatile Solids (VS resulted 738.9 l kg–1 using kitchen waste and 410.3 l kg–1 using cheese whey.

  8. Improving yield of PZT piezoelectric devices on glass substrates

    Science.gov (United States)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  9. Effect of cow manure and empty fruit bunches application treated with different fertilizers on growth and yield of chili (Capsicum annum)

    Science.gov (United States)

    Ghazali, Mohd Rashdan; Mutalib, Sahilah Abd.; Abdullah, Aminah

    2016-11-01

    Study on the comparison of cow manure (CM) and empty fruit bunches (EFB) compost application as planting medium was conducted using four different treatments of fertilizer (without fertilizer, chemical fertilizer, organic fertilizer, and both fertilizer) on growth and yield of chili (Capsicum annum). The experiment started on August until December 2014 which consisted of eight treatments and were laid in a completely randomized block design (CRBD) with three replications. Variety chili that was used was Cilibangi 3. The seed was planted inside the tray for one week and transferred into the polybag containing growth media consisted of soil, compost (CM or EFB compost) and sand with ratio 3:2:1. Treatments without fertilizer were acted as a control. Throughout the study, plant growth performance and yield were recorded. The highest height of the plants for CM compost was 100.8 cm using chemical fertilizer and have significant different between the groups. For EFB compost was 92.7 cm using also chemical fertilizer but no significant different between the groups. The highest fruits weight per plant for CM compost was 485.67 g treated with both fertilizers and for EFB compost was 420.17 g treated with chemical fertilizer. Analysis of variance (ANOVA) table stated that fruits weight per plant has significant different for both planting medium with the fertilizer treatment. For the highest total fruits per plant, CM compost recorded about average 55 fruits per plant using both fertilizers and EFB compost recorded around 45 fruit per plant using chemical fertilizer. There was significantly different for total fruits per plant for both planting medium with the fertilizer treatment according to the ANOVA table. For CM, the ripening time was around 102-112 days and for EFB compost was around 96-110 days. Thus, application of CM compost treated with both chemical and organic fertilizers demonstrated better growth and fruit yield. While EFB compost was better growth and fruit

  10. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. The NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.

  11. Increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Chunqi Li; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-10-01

    The effect of water treatment at 500 and 600 K on solvent extractions of Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) coals was investigated. All the coals used show that the water treatments at 600 K increased the extraction yields greatly in the extractions with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent, NMP, or 1-methylnaphthalene (1-MN). However, the water treatments at 500 K and the heat treatments at 600 K without water gave only a slight increase in the yields. Characterizations of the water-treated coals were performed using ultimate and proximate compositions, Fourier transform infrared analysis, solvent swelling, nuclear magnetic resonance relaxation time, and viscoelasticity behavior. The swelling degree in methanol and toluene was increased by the water treatment at 600 K, suggesting that crosslinks become loosened by the treatment. The results of infrared analysis and the extraction temperature dependency of the extraction yields with NMP and 1-MN suggest that the loosening of {pi} - interactions, and of both {pi} - interactions and hydrogen bonds, are responsible for the yield enhancements for PO and UF coals, respectively. However, for IL coal, which exhibited a decrease in oxygen content and the amount of hydrogen-bonded OH, suggesting the occurrence of some chemical reactions, the yield enhancements may be due to the relaxation of hydrogen bonds and the removal of oxygen functional groups, such as the breaking of ether bonds. 17 refs., 3 figs., 5 tabs.

  12. Yield, yield components and dry matter digestibility of alfalfa experimental populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available Alfalfa is the most important forage crop grown in the temperate regions. It is cultivated for production of vegetative aerial mass used fresh or as hay, and recently as haylage and silage. In many centres worldwide, efforts are made to breed and create new alfalfa cultivars with both higher yields and of higher nutritional value. The aim of this paper was to determine yield and digestibility of 12 experimental populations of alfalfa, and to compare their results to the yields of well-known domestic alfalfa commercial cultivars. The results show significant differences in yield of green forage and dry matter among alfalfa populations, as well as in yield components, height, proportion of leaves in yield and growth rate (tab. 1, 2 and 3. Differences between in vitro digestible dry matter (% and yields of in vitro digestible dry matter (t ha-1 were also significant (tab. 5 and 6. Yield and quality of experimental populations were at the same level or higher than of control cultivars. Synthetic SINUSA exceeded the control cutivars (NS Mediana ZMS V and Banat VS in yield and quality of dry matter. .

  13. Electrical properties of chemically prepared nonstoichiometric CuIn ...

    Indian Academy of Sciences (India)

    TECS

    2; thin films; chemical bath deposition technique; d.c. conductivity; thermoelectric .... In a semiconductor, temperature gradient yields the thermo- ... to form the metal complex (Chavan and Sharma 2005) .... Thesis, University of Rajasthan, Jaipur.

  14. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  15. Yield trends and yield gap analysis of major crops in the world

    NARCIS (Netherlands)

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are

  16. H + CH{sub 2}CO {yields} CH{sub 3} + CO at high temperature : a high pressure chemical activation reaction with positive barrier.

    Energy Technology Data Exchange (ETDEWEB)

    Hranisavljevic, J.; Kumaran, S. S.; Michael, J. V.

    1997-12-08

    The Laser Photolysis-Shock Tube (LP-ST) technique coupled with H-atom atomic resonance absorption spectrometry (ARAS) has been used to study reaction, H + CH{sub 2}CO {r_arrow} CH{sub 3} + CO, over the temperature range, 863-1400 K. The results can be represented by the Arrhenius expression, k = (4.85 {+-} 0.70) x 10{sup {minus}11} exp({minus}2328 {+-} 155 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The present data have been combined with the earlier low temperature flash photolysis-resonance fluorescence measurements to yield a joint three parameter expression, k = 5.44 x 10{sup {minus}14} T{sup 0.8513} exp({minus}1429 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. This is a chemical activation process that proceeds through vibrationally excited acetyl radicals. However, due to the presence of a low lying forward dissociation channel to CH{sub 3} + CO, the present results refer to the high pressure limiting rate constants. Hence, transition state theory with Eckart tunneling is used to explain the data.

  17. Yield of acid curd cheese produced from cow's milk from different lactation periods.

    Science.gov (United States)

    Salamończyk, Ewa; Młynek, Krzysztof; Guliński, Piotr; Zawadzka, Wiesława

    2017-01-01

    Milk production intensification has led in many countries, including Poland, to increased milk yields per cow. A higher milk yield resulted in changes in cow productivity, including extended lactations. There is a paucity of information on the quality of milk harvested during the last months of lactations exceed- ing 10 months. Production capacity cheese (“cheese expenditure”) is an important parameter of providing   a recovery as much as the possible components of the milk processed are dry substances, which in turn af- fects the economics of production. The aim of the study was to determine the influence of the lactation period (from standard lactation; extended lactation phase) on the performance of the acid curd cheese. the relation- ship between total protein content and acidity of fresh milk collected in two separate periods of lactation on the yield of acid cheese was also evaluated. The study included 1384 samples of milk collected from Polish Holstein-Friesian cows, the Black-White variety. The basic chemical composition of fresh milk and acid-curd cheese produced in the laboratory were analyzed. The cheese milk yield was evaluated on the basis of the quantity of the re- sulting curd mass. According to our estimates, under laboratory conditions an average of 100 kg of milk per cow in population produced an estimated 20.1 kg of curd cheese. The basic chemical composition of raw milk, which was diverse in terms of the period of lactation, showed a higher dry matter, fat and protein content in milk acquired during the extension phase of lactation compared to the milk of standard lactation. It has been found that the lower titratable acidity of fresh milk appeared with a higher yield of cheese curd. This difference was between 1.76 kg (with milk from cows milked during the extended lactation phase) to 2.72 kg from 100 kg of cheese milk (milk with the standard lactation). Thus, the optimum level of titratable acidity of milk for cheese yield is 6.0–7.5

  18. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi

    2017-01-01

    on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)−2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD......+, and a high titer of 371 mM (32 g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin...... is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield...

  19. On yield gaps and yield gains in intercropping

    NARCIS (Netherlands)

    Gou, Fang; Yin, Wen; Hong, Yu; Werf, van der Wopke; Chai, Qiang; Heerink, Nico; Ittersum, van Martin K.

    2017-01-01

    Wheat-maize relay intercropping has been widely used by farmers in northwest China, and based on field experiments agronomists report it has a higher productivity than sole crops. However, the yields from farmers’ fields have not been investigated yet. Yield gap analysis provides a framework to

  20. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency.

    Science.gov (United States)

    Kandel, Tanka P; Sutaryo, Sutaryo; Møller, Henrik B; Jørgensen, Uffe; Lærke, Poul E

    2013-02-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kgVS)(-1) for leaf and stem, respectively. Approximately 45% more methane was produced by the TC-F management (5430Nm(3)ha(-1)) as by the OC management (3735Nm(3)ha(-1)). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass was to some extent off-set by lower concentration of methane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Growth and Yield of Sweet Corn Fertilized by Dairy Cattle Effluents Without Chemical Fertilizers in Inceptisols

    Directory of Open Access Journals (Sweden)

    Yudi Sastro

    2011-05-01

    Full Text Available Several research has proven the role of dairy cattle effluents in improving the growth and yield of some crops. However, its role in supporting the growth and yield of sweet corn, especialy in Inceptisols, has not been reported. The study aims to determine the effect of dairy cattle effluents on growth and yield of sweet corn in Inceptisols. The pot study was conducted in a greenhouse of the Assessment Institute for Agriculture Technology of Jakarta. The treatments were fertilization using dairy cattle effluents (without dilution, dilution with water 1:1 and 1:2, a mixture of Urea, SP-36 and KCl (NPK, and without fertilizer. The experimental design was a completely randomized design with five replications. Compared to a without fertilizer treatment, dairy cattle effluents were significantly increased plant height (114%, leaf number (136%, cob weight (131%, cob length (124%, and cob diameters (128%. Base on cob weight, relative agronomic effectiveness (RAE of dairy cattle effluents reached 38.4% (without dilution, 47.5% (dilution with water 1:1, and 62.1% (dilution with water 1:2.

  2. Investigating the Effect of Chemical Management on Weeds Population, Agronomical Traits and Yield of Garlic (Allium sativum L. in Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Sobhan Mahzari

    2018-02-01

    Full Text Available Introduction: Garlic (Allium sativum L. is an important winter crop in northern of Iran with a total of 9580 ha which produces approximately 90, 197 tons per year. It is the second most widely cultivated species of the genus, Allium after onion (Allium cepa. Also, Garlic along with onions and leeks are three major cultivated species in Alliaceae family. This plant because of high economic and medicinal values is cultivated in 2610 hectares of agricultural lands of Mazandaran Province, Iran. Slow growth rate, low height, and a thin canopy that does not cover the soil enough to sup-press weeds make garlic a poor competitor against the latter until the beginning of spring. According results, reported 71% yield losses in garlic crop if weeds are allowed to grow during the crop season. Weed interference is affected by the time of weed emergence relative to the crop’s phenological development. The weeds, which emerge early or simultaneously with the crop, are highly competitive and should be managed by farmers. Most weed management strategies in cereals target seedlings, as they are the most sensitive stage of the weed. However, emergence of weed seedlings varies every year in timing, extent and intensity. Therefore in this study, the effect of chemical management on reducing the density and biomass of weeds, yield and agronomic characteristics of garlic were studied in Mazandaran Province, Iran. Materials and Methods: After the selection of location test, in order to determine the physical and chemical properties before the preparation of soil for planting, sampling from the soil was carried out from the depth of 0 to 30 cm at some point. The farm was plowed using a moldboard plow, then the used fertilizers in this study were added to the soil twice before planting and then the fertilizers were incorporated with the soil using a Disc. The amount of used fertilizers in this study according to soil test were including: 200 kg Urea per hectare that

  3. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  4. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  5. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  6. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management

    International Nuclear Information System (INIS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-01-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice–wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha −1 yr −1 , 20% organic fertilizer), control–released urea treatment (CRU, 390 kg N ha −1 yr −1 , 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha −1 yr −1 , all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha −1 yr −1 , all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha −1 yr −1 , all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20–32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28–48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but

  7. The Use of Chemical Modification of Polymer Waste for Obtaining Polymer Flocculants

    Institute of Scientific and Technical Information of China (English)

    W.W.Sulkowski; K.Nowak; A.Sulkowska; A.Wolin; ska; S.Malanka; W.M.Baldur; D.Pentak

    2007-01-01

    1 Results Chemical modification of polymer plastic wastes to useful products can be one of the way of effective waste plastics management (chemical recycling). Chemical modification of polymers and polymer plastic wastes can yield products with suitable physical and chemical properties. In consequence they can be used as polyelectrolytes[1]. The variety of pollutants, universality of various water and sewage treatment technologies, introduction of new water quality improved technologies have caused a gr...

  8. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, Guilherme P.; Breitkreitz, Marcia C.; Souza, Andre M. de [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Fonseca, Patricia da; Calefe, Lupercio; Moffa, Mario [Zelus Servicos para Industria Farmaceutica Ltda., Av. Professor Lineu Prestes n. 2242, Sao Paulo, SP (Brazil); Poppi, Ronei J., E-mail: ronei@iqm.unicamp.br [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-11-07

    Highlights: {yields} Near-Infrared Chemical Imaging was used for pellets analysis. {yields} Distribution of the components throughout the coatings layers and core of the pellets was estimated. {yields} Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  9. Cosmic-Ray Nucleosynthesis of p-nuclei: Yields and Routes

    Science.gov (United States)

    Kusakabe, Motohiko; Mathews, Grant J.

    2018-02-01

    We investigate the cosmic-ray nucleosynthesis (CRN) of proton-rich stable nuclides (p-nuclides). We calculate the cosmic-ray (CR) energy spectra of heavy nuclides with mass number A=[74,209], taking into account the detailed nuclear spallation, decay, energy loss, and escape from the Galaxy during the CR propagation. We adopt the latest semiempirical formula SPACS for the spallation cross sections and the latest data on nuclear decay. Effective electron-capture decay rates are calculated using the proper cross sections for recombination and ionization in the whole CR energy region. Calculated CR spectral shapes vary for different nuclides. Abundances of proton-rich unstable nuclides increase in CRs with increasing energy relative to those of other nuclides. Yields of the primary and secondary spallation processes and differential yields from respective seed nuclides are calculated. We find that the CR energy region of ≤slant { \\mathcal O }(100) MeV/nucleon predominantly contributes to the total yields. The atomic cross sections in the low-energy range adopted in this study are then necessary. Effects of CRN on the Galactic chemical evolution of p-nuclides are calculated. Important seed nuclides are identified for respective p-nuclides. The contribution of CRN is significant for 180m Ta, accounting for about 20% of the solar abundance. About 87% of the 180m Ta CRN yield can be attributed to the primary process. The most important production routes are reactions of 181Ta, 180Hf, and 182W. CRN yields of other p-nuclides are typically about { \\mathcal O }(10‑4–10‑2) of solar abundances.

  10. Antibodies and isotopes, a chemical approach to tumour targeting

    International Nuclear Information System (INIS)

    Vaughan, A.T.M.; Yankuba, S.C.S.; Anderson, P.

    1986-01-01

    In this study, scandium-47 and yttrium-90 have been used as representatives of potential cytotoxic labels. Both isotopes have a high yield of energetic beta particles and half-lives of the same order as indium-111. In addition they are both members of Group III and so may be used as a base for chemical comparisons in the future with radiotoxic isotopes from other chemical groups

  11. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    Energy Technology Data Exchange (ETDEWEB)

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 8 ... condensation in good to high yields in the presence of diatomite-SO3H as a solid ... of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan ...

  13. Effect of Plant Growth Promoting Rhizobacteria (PGPR on Yield and Yield Components of Sesame (Sesamum indicum l. with Emphasize on Environmental Friendly Operations

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2015-07-01

    Full Text Available In order to evaluate the effects of different plant growth promoting rhizobacteria (PGPR on yield and yield components of sesame, an experiment was conducted in the form of Randomized Complete Block Design with three replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad in year 2009. Treatments were: 1 Nitragin (containing of Azotobacter sp., Azospirillum sp. and Pseudomonas sp., 2 Nitroxin (containing of Azotobacter sp. and Azospirillum sp., 3 Super nitro plus (containing of Azospirillum sp., Bacillus sp. and Pseudomonas sp., 4 Phosphate suloblizing bacteria (containing of Bacillus sp. and Pseudomonas sp., 5 Bio Phosphate (containing of Bacillus sp. and Pseudomonas sp., 6 Nitroxin + Phosphate suloblizing bacteria, 7 Nitroxin + Bio Phosphate and control. The results showed that seed yield affected by PGPR and Nitroxin + Phosphate suloblizing bacteria treatment had superior effect on seed yield compared to other treatments. Superior effect of Nitroxin + Phosphate suloblizing bacteria treatment also was shown on plant seed weight and harvest index. Nitragin, Nitroxin + Bio Phosphate, Nitroxin + Phosphate suloblizing bacteria, Bio Phosphate, Phosphate suloblizing bacteria, Nitroxin treatments increased dry weight of capsules per plant of 62, 53, 51, 36 and 30 percent compared to control, respectively. Although, the effect of PGPR was not significant on sesame seed oil content but Bio Phosphate and Nitragin treatments increased seed oil content by 1 and 1.5 percent, respectively. In general, results showed utilization of PGPR can improve seed yield and seed oil content, which can decrease dependence of sesame seed production to chemical fertilizer, decrease negative environmental impacts and as an ecofriendly inputs can help to produce crops and sustainable agriculture guidlines.

  14. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    Science.gov (United States)

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  15. Amendment of Tephrosia Improved Fallows with Inorganic Fertilizers Improves Soil Chemical Properties, N Uptake, and Maize Yield in Malawi

    Directory of Open Access Journals (Sweden)

    Maggie G. Munthali

    2014-01-01

    Full Text Available Maize production in Malawi is limited mainly by low soil N and P. Improved fallows of N-fixing legumes such as Tephrosia and Sesbania offer options for improving soil fertility particularly N supply. The interactions of Tephrosia fallows and inorganic fertilizers on soil properties, N uptake, and maize yields were evaluated at Chitedze Research Station in Malawi. The results indicated that the level of organic matter and pH increased in all the treatments except for the control. Total N remained almost unchanged while available P decreased in all plots amended with T. vogelii but increased in T. candida plots where inorganic P was applied. Exchangeable K increased in all the plots irrespective of the type of amendment. The interaction of N and P fertilizers with T. vogelii fallows significantly increased the grain yield. The treatment that received 45 kg N ha−1 and 20 kg P ha−1 produced significantly higher grain yields (6.8 t ha−1 than all the other treatments except where 68 kg N ha−1 and 30 kg P ha−1 were applied which gave 6.5 t ha−1 of maize grain. T. candida fallows alone or in combination with N and P fertilizers did not significantly affect grain yield. However, T. candida fallows alone can raise maize grain yield by 300% over the no-input control. Based on these results we conclude that high quality residues such as T. candida and T. vogelii can be used as sources of nutrients to improve crop yields and soil fertility in N-limited soils. However, inorganic P fertilizer is needed due to the low soil available P levels.

  16. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  17. Radiation-chemical degradation of chloroform in water solutions

    International Nuclear Information System (INIS)

    Ahmadov, S.A.; Gurbanov, M.A.; Iskenderova, Z.I.; Abdullayev, E.T.; Ibadov, N.A.

    2006-01-01

    Full text: Chloroform is the major chlorine-containing compound forming at chlorination of drinking water. As our basic water resources of Kur and Araz rivers are mostly polluted along the territory of the neighbour republics their chlorination for the purpose of biological purification can result in forming of chloroform. Unfortunately, there are only poor data about containing of chloroform in drinking water in the Republic, however the particular problem is to develop new methods of drinking water purification from chloroform, taking into account the high toxicity of this compounds. Appropriate works indicate that radiation-chemical processing can mostly reduce the concentration of chloroform in drinking water. The purification degree can achieve 95-98 percent. This work studies the tendency of chloroform decomposition at its radiolysis processes in water solutions. The concentration of chloroform changed in the range of 0,03-1 weight percentage. Taking into account the dissolvability of chloroform in water solutions it can be said that examined water solutions are homogeneous. Following advancements are studied: 1) Determination of radiation-chemical yield of chloroform decomposition at its various initial concentrations; 2) Impact of adsorbed dose on pH of solutions; 3) Formation of by-products. It is set that radiation-chemical output of chloroform decomposition is equal to 3 * 10 - 3 - 125 mol/100 ev. The high yield of chloroform decomposition can be connected with the chain process of oxidation with presence of dissolved oxygen. However, taking into account the fact that at its water radiolysis the yield of active particles of OH, e - aq, H-atoms does not exceed 6-7 particles/100 ev, the observed high yield can be explained only with the chain process with presence of dissolved oxygen

  18. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India); Gupta, Shikha; Rai, Premanjali [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India)

    2013-10-15

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models was performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive

  19. Effects of Animal Manures and Chemical Fertilizer on Quantitative and Qualitative Characteristics of Milk Thistle Plant (Silybum marianum

    Directory of Open Access Journals (Sweden)

    R Yazdani Biuki

    2011-02-01

    Full Text Available Abstract Milk Thistle (Silybum marianum is one of the medicinal plants that has many drug properties. In order to evaluate effects of animal manures and chemical fertilizer on yield and yield components of Milk Thistle plant, an experiment was conducted in the Research Farm of Ferdowsi University of Mashhad in year 2008 based on completely randomized block design with three replications and four treatments. The treatments included: control (without any manure or fertilizer, chemical NPK fertilizer, cattle and sheep manures. The characteristics such as number of lateral stem per plant, height of plant, number of inflorescences per plant, inflorescence diameter, number of seeds per capitol, 1000 seed weight, seed yield, biological yield, harvest index, oil percentage, silymarin percentage (active ingredient, silybin percentage, oil yield and silymarin yield were recorded. The results showed that different treatments had no effect on yield components, but had significant effect on oil percentage, silymarin and silybin content of seeds. Cattle manure had more oil (21% and silybin (21.7% compared with other treatments. There was no significant difference in oil and silymarin percentage between control and chemical fertilizer treatments. Cattle manure and sheep manure had minimum percentage of silybin (16.4 and maximum percentage of silymarin (3.1 Compared with other treatments. There were positive correlation between height of plant with seed yield (r=0.86** and inflorescence diameter (r=0.6*, which represents importance of these traits for final yield assessment. There were no positive correlation between seed yield and other yields components. Keywords: Milk Thistle, Quantitative and qualitative characteristics, Animal manures, Medicinal plants

  20. The Effect of Nitroxin Biofertilizer and Foliar Applicatin of Micronutrients Time Consumption on Yield and Yield Components of New Wheat Cultivars under Khorramabad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Vaez

    2016-02-01

    Full Text Available Introduction In order to study the effects of Nitroxin biofertilizer and foliar application of micronutrients time consumption on yield and yield components of new wheat cultivars (Triticum aestivum & T. durum under Khorramabad climatic conditions, an experiment was conducted as factorial based on a randomized complete block design with three replications at the research farm khorramabad during growing season of 2012-2013. Considering the positive effect of inoculation with bio-fertilizer and foliar Nitroxin micronutrients and reaction of cultivars to this type of fertilizer instead of chemical fertilizers and the importance of wheat as one of the main crops, this study aims to determine the most appropriate time for foliar and Nitroxin application of micronutrients at the different stages of plant growth and bio-fertilizer application on yield and yield components. Materials and Methods The first factor was considered in six levels: N0: The lack of the seed insemination with nitroxin biofertilizer and without the foliar application of micronutrients (control, N1: the seed inoculation with the nitroxin biofertilizer, N2: the foliar application of micronutrients at the jointing stage, N3: the foliar application of micronutrients at the heading stage, N4: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the jointing stage, N5: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the heading stage. The second factor was considered at two levels, consisting: V1: Parsi cultivar and V2: Dena cultivar. MSTATC Software was used for data analysis and means were compared by Duncan's multiple range test at the 5% level. Results and Discussion In this experiment the grain yield, biological yield, harvest index, 1000- grain weight, spike number per m-2, grain number per spike and spikelet number per spike of wheat were studied. The results of the data variance analysis has

  1. VARIABILITY OF YIELD AND YIELD COMPONENTS IN “EGUSI ...

    African Journals Online (AJOL)

    journal

    Estimate of expected genetic advance in seed yield plant-1 ranged between. 25.90-48.40%. ..... values in fruit and seed yield characters have been reported in culinary melon, ... and Khund, A. 2004. Extent of heterosis and heritability in some.

  2. Semi-empirical determination of the diffusion coefficient of the Fricke Xylenol Gel dosimeter through finite difference methods; Determinacao semi-empirica do coeficiente de difusao do dosimetro Fricke Xilenol Gel atraves do metodo de diferencas finitas

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, E.O.; Oliveira, L.N., E-mail: lucas@ifg.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias (IFG), Goiania, GO (Brazil)

    2014-11-01

    Partial Differential Equations (PDE) can model natural phenomena, such as related to physics, chemistry and engineering. For these classes of equations, analytical solutions are difficult to be obtained, so a computational approach is indicted. In this context, the Finite Difference Method (FDM) can provide useful tools for the field of Medical Physics. In this study, is described the implementation of a computational mesh, in order to be used in determining the Diffusion Coefficient (DC) of the Fricke Xylenol Gel dosimeter (FXG). The initial and boundary conditions both referred by experimental factors are modelled in FDM, thus making a semi-empirical study in determining the DC. Together, the method of Reflection and Superposition (SRM) and the analysis of experimental data, served as first validation for the simulation. Such methodologies interface generated concordant results for a range of error of 3% in concentration lines for small times when compared to the analytical solution. The result for the DC was 0.43 mm{sup 2} /h. This value is in concordance with measures parameters range found in polymer gels dosimeters: 0.3-2.0 mm{sup 2} /h. Therefore, the application of computer simulation methodology supported by the FDM may be used in determining the diffusion coefficient in FXG dosimeter. (author)

  3. SOIL QUALITY AND YIELD OF PINUS TAEDA IN THE PLANALTO CATARINENSE REGION

    Directory of Open Access Journals (Sweden)

    Cedinara Arruda Santana Morales

    2010-12-01

    Full Text Available In forest areas, the continual use of the soil alters its physical attributes and deteriorates its quality, in consequence of the traffic of machines used in forest operations, resulting in lower yields of crops. The relationship between soil quality at different sites and the production of Pinus taeda was evaluated in soils of the Planalto Catarinense region. Four farms were used, with two sites on each farm, chosen for the soil type and yield of the forest. The soil morphology was described and samples were collected in each pedogenetic horizon for physical and chemical analyses. Great variation exists in the physical attributes of the profiles, especially in the sequence and thickness of the horizons. Compaction was verified in the surface layer of the shallow profiles, evidenced by the higher bulk density and, or, soil resistance to penetration. In these profiles, the yield was reduced by between 14 and 36%, compared to the deeper profiles with a smaller degree of compaction.

  4. Milk yield of some goat breeds in Croatia

    Directory of Open Access Journals (Sweden)

    Boro Mioč

    2007-04-01

    Full Text Available In Croatia, goats are primarily bred for meat production. However, for the past twenty years the interest in goat milk production was based on imported breeds such as Alpine-French, Saanen and German Improved Fawn goat. The purpose of this paper is to establish litter size of the principal goat breeds in Croatia and the indicators related to milk yield and chemical composition. The largest average litter size has been determined on the German Improved Fawn (1.72, then with the Boer (1.54, the Saanen (1.53 and the Croatian coloured goat (1.51, while the Alpine-French goat was the smallest (1.31. The longest lactation period (259 days has been determined on the Alpine-French goat, while the largest milk yield during lactation (724.4 kg and the largest milk fat yield (20.16 kg and protein yield (18.64 kg have been determined on the Saanen goat. However, it has been established that the Alpine-French goat milk has the highest average fat content (3.55 %, while the German Improved Fawn’s milk has the highest protein content (3.23 %. The Saanen goat had the longest milking period (222 days and the shortest suckling period (32 days, while the Alpine-French and the German Improved Fawn had the longest suckling period (51 and 45 days, respectively. The lowest quantity of milk during the suckling period (102.97 kg, i.e. 14 % was suckled by Saanen kids, while the Alpine-French (122.08 kg, i.e. 22 % and the German Improved Fawn kids suckled the greatest quantity (116.31 kg, i.e. 22 %.

  5. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  6. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee.

    Science.gov (United States)

    Cerda, Rolando; Avelino, Jacques; Gary, Christian; Tixier, Philippe; Lechevallier, Esther; Allinne, Clémentine

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.

  7. The Effect of Soil Fertilizers on Yield and Growth Traits of Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2016-07-01

    Full Text Available Introduction Since the use of chemical fertilizers causes environmental pollution and ecological damage, so application of biological fertilizers and selection the effective and compatible species in an special area, could be beneficial for sustainability of agroecosystems there. Nowadays, attention to the interrelation of plant-organism tended to interrelations between plant-organism-organism. Such nutritional relations, have ecological importance and important application in agriculture. The aim of this experiment was to evaluate the effect of chemical, organic and bio fertilizers on sorghum performance. Materials and Methods A field experiment was conducted in a randomized complete block design with three replications. The experimental treatments include three kinds of biofertilizers and their integrations and vermicompost and chemical fertilizer as follow: 1- mycorhhiza arbuscular (G.mosseae + vermicompost 2- mycorhhiza+ Nitroxine® (included bacteria Azospirillum sp. and Azotobacter sp. 3- mycorhhiza arbuscular+ Rhizobium (Rhizobium sp. 4-mycorhhiza arbuscular + Chemical fertilizer NPK 5- mycorhhiza arbuscular 6-control. Mycorhhiza and chemical fertilizer were mixed with soil at the depth of 30 cm before planting. Seeds were inoculated with bio fertilizers and dried at shadow. First irrigation applied immediately after planting. In order to improve seedling emergence second irrigation was performed after 4 days and other irrigation was applied at regular intervals of 10 days. Studied traits were: height and percentage of root colonization, specific root length, seed yield, number of seeds in panicle, thousands seeds weight. To determine the specific root length (root length in a certain volume of soil at the end of the growing season, plants in each plot were sampled. Then the length of root of each sample was determined. Results and Discussion The results showed that although the treatments did not affect the height of stem significantly

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 11. Nano MgBi₂O₄: A Novel Green Catalyst for the One-step Cascade Condensation of ... times, mild eco-friendly conditions and excellent yields to prepare a novel class of ...

  9. Effects of organic, biological and chemical fertilizers on vegetative indices and essential oil content of coriander (Coriandrum sativum L.

    Directory of Open Access Journals (Sweden)

    M Aghhavani Shajari

    2016-05-01

    Full Text Available This experiment was conducted to study the effects of single and combined application of organic, biological and chemical fertilizers on qualitative and quantitative characteristics of vegetative part of coriander, (Coriandrum sativum L.. The experiment was carried out as split plot in time based on Complete Randomized Block Design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2010-2011. Treatments included: (1 mycorrhiza (Glomus mosseae, (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, (5 vermicompost, (6 mycorrhiza + chemical fertilizer, (7 mycorrhiza + cow manure, (8 mycorrhiza + vermicompost, (9 biosulfur + chemical fertilizer, (10 biosulfur + cow manure, (11 biosulfur + vermicompost and (12 control. Vegetative parts of coriander were cut at 5% of flowering stage in two dates (19 May and 5 June. Results showed that the highest plant height (28 cm and lateral branches (5.2 were obtained in combined application of biosulfur with cow manure treatment. The highest fresh and dry leaf weight, fresh and dry matter yield and stem dry matter weight were obtained in single application of chemical fertilizer. Single application of biosulfur increased leaf/stem ratio. The highest essential oil percentage and essential oil yield were observed in cow manure treatment (0.2% and 1753 g.ha-1, respectively. The maximum leaf/stem ratio were observed in the first cutting, while the highest lateral branches, stem fresh and dry matter yield, essential oil percentage and essential oil yield were obtained in second cut. Overall, results of this study showed that the plant vegetative yield increased by using chemical fertilizer, while essential oil percentage and essential oil yield of coriander were improved by using organic and biological fertilizers.

  10. A scalable machine-learning approach to recognize chemical names within large text databases

    Directory of Open Access Journals (Sweden)

    Wren Jonathan D

    2006-09-01

    Full Text Available Abstract Motivation The use or study of chemical compounds permeates almost every scientific field and in each of them, the amount of textual information is growing rapidly. There is a need to accurately identify chemical names within text for a number of informatics efforts such as database curation, report summarization, tagging of named entities and keywords, or the development/curation of reference databases. Results A first-order Markov Model (MM was evaluated for its ability to distinguish chemical names from words, yielding ~93% recall in recognizing chemical terms and ~99% precision in rejecting non-chemical terms on smaller test sets. However, because total false-positive events increase with the number of words analyzed, the scalability of name recognition was measured by processing 13.1 million MEDLINE records. The method yielded precision ranges from 54.7% to 100%, depending upon the cutoff score used, averaging 82.7% for approximately 1.05 million putative chemical terms extracted. Extracted chemical terms were analyzed to estimate the number of spelling variants per term, which correlated with the total number of times the chemical name appeared in MEDLINE. This variability in term construction was found to affect both information retrieval and term mapping when using PubMed and Ovid.

  11. Chemical impurity production under boronized wall conditions in TEXTOR

    International Nuclear Information System (INIS)

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1992-01-01

    The TEXTOR SNIFFER probe has been used to analyse the chemical impurity production under various plasma and boronized wall conditions. Methane formation has been observed to 0.6-1 x 10 -2 CH 4 /H at room temperature, increasing slightly with increasing density in the SOL. The hydrocarbon formation yields increase from R.T. to the maximum at about 500 o C by a factor of 1.5-2.5. Increasing the impact energy by biasing the graphite plate leads to a decrease of the hydrocarbon yield at room temperature but to an increase at 500 o C. Chemical CO formation due interaction of oxygen impurities with the graphite reaches ratios between 0.5 and 3 x 10 -2 CO/H,D increasing with increasing distance to the limiter edge. (author) 10 refs., 6 figs

  12. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.

    Science.gov (United States)

    de Vries, Johannes G

    2016-12-01

    Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent β-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used

  13. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  14. An adapted yield criterion for the evolution of subsequent yield surfaces

    Science.gov (United States)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  15. Effects of Different Amounts of Nitrogen and Azotobarvar on Growth Characteristics and Yield of Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    ghobad mohammadpoor

    2017-09-01

    Full Text Available Introduction One of the most important agricultural efforts is to minimize the use of chemicals nitrogen fertilizers and to replace it with biological nitrogen fertilizers to produce healthy productions. In dry conditions the use of industrial nitrogen fertilizers depends on the amount of rainfall and consumed cautiously. Low consumption of nitrogen sources reduce crop growth and yield and higher than optimum applications of chemical Nitrogen sources can cause many environmental disorders. This is while Azotobacter as a soil bacteria also fixes nitrogen, produce vitamins, growth hormones and antibiotics and also increases the photosynthesis, plant growth and grain yield and reduces the need to application of chemical Nitrogen. Materials and Methods In order to study the effect of biological and industrial nitrogen fertilizers on growth, yield and yield components of chickpea (Bivanij variety, an experiment was conducted with split plot arrangement based on randomized complete block design (RCBD with four replications under rainfed conditions in the Telesm village, Dalahoo, Kermanshah, during 2013 agricultural season. Climate of the region is temperate and semi-arid with 535.6 mm of rainfall. Soil texture is clay - loam with 0.02 percent of nitrogen. Basic amount of Nitrogen fertilizer was considered 30 Kg.ha-1 Urea and four levels of chemical nitrogen fertilizers including: %50 of base fertilizer, %100 of base fertilizer, %150 of base fertilizer and no fertilizer (control were assumed as main plot factors. Similarly, the basic amount of Azotobarvar bio-fertilizer was considered as 100 g.ha-1 and four levels of it including %50 of base fertilizer, %100 of base fertilizer, %150 of base fertilizer and no bio-fertilizer (control were assumed as sub plot factors. Bio-fertilizers are inoculated to seeds and planting was done manually on 19 March 2013. Density was considered 40 plants per square meter with 25 cm intervals between rows and 10 cm on the

  16. Metabolic Engineering of TCA Cycle for Production of Chemicals.

    Science.gov (United States)

    Vuoristo, Kiira S; Mars, Astrid E; Sanders, Johan P M; Eggink, Gerrit; Weusthuis, Ruud A

    2016-03-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical maximum yield (Y(E)). For succinate, this was solved by creating two pathways to the product, using both branches of the TCA cycle, connected by the glyoxylate shunt (GS). A similar solution cannot be applied directly for production of compounds from the oxidative branch of the TCA cycle because irreversible reactions are involved. Here, we describe how this can be overcome and what the impact is on the yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Methane Fermentation of Slurry with Chemical and Biological Additive

    Directory of Open Access Journals (Sweden)

    Anna Smurzyńska

    2017-12-01

    Full Text Available The problem of proper slurry management is primarily present in intensive livestock production. Industrialized livestock farms generate enormous quantities of manure droppings in a livestock-litter-free system. The traditional management of slurry is made by using it as a fertilizer. Alternative techniques used for neutralizing the detrimental effect of slurry are based on the use of chemical and biological additives, as well as by introducing aerobic environment through aerobic or anaerobic digestion, leading to methane fermentation. In the experiment, cattle manure was used, which came from the Przybroda farm belonging to the University of Life Sciences in Poznan. The aim of the study was to determine the biogas yield of slurry using the chemical and biological additive available on the Polish market. Mesophilic and thermophilic fermentation was used for the indication of the effectiveness of the employed fermentation process. The slurry was supplemented by a biological and chemical additive, i.e. effective microorganisms and – PRP, respectively. The experiment allowed to achieve a higher biogas yield during the use of effective microorganisms.

  18. Infrared laser-induced chemical reactions

    International Nuclear Information System (INIS)

    Katayama, Mikio

    1978-01-01

    The experimental means which clearly distinguishes between infrared ray-induced reactions and thermal reactions has been furnished for the first time when an intense monochromatic light source has been obtained by the development of infrared laser. Consequently, infrared laser-induced chemical reactions have started to develop as one field of chemical reaction researches. Researches of laser-induced chemical reactions have become new means for the researches of chemical reactions since they were highlighted as a new promising technique for isotope separation. Specifically, since the success has been reported in 235 U separation using laser in 1974, comparison of this method with conventional separation techniques from the economic point of view has been conducted, and it was estimated by some people that the laser isotope separation is cheaper. This report briefly describes on the excitation of oscillation and reaction rate, and introduces the chemical reactions induced by CW laser and TEA CO 2 laser. Dependence of reaction yield on laser power, measurement of the absorbed quantity of infrared ray and excitation mechanism are explained. Next, isomerizing reactions are reported, and finally, isotope separation is explained. It was found that infrared laser-induced chemical reactions have the selectivity for isotopes. Since it is evident that there are many examples different from thermal and photo-chemical reactions, future collection of the data is expected. (Wakatsuki, Y.)

  19. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... 7 × 7 incomplete diallel cross of seven wheat parents during the crop season of 2009 to 2010. Mean square of general ... Genetic background and yield traits of the seven parents. Parent. Pedigree. Released year ..... Correlation and path analysis for yield and yield contributing characters in wheat (Triticum ...

  20. Development of a Chemically Defined Medium for Better Yield and Purification of Enterocin Y31 from Enterococcus faecium Y31

    Directory of Open Access Journals (Sweden)

    Wenli Liu

    2017-01-01

    Full Text Available The macro- and micronutrients in traditional medium, such as MRS, used for cultivating lactic acid bacteria, especially for bacteriocin production, have not been defined, preventing the quantitative monitoring of metabolic flux during bacteriocin biosynthesis. To enhance Enterocin Y31 production and simplify steps of separation and purification, we developed a simplified chemically defined medium (SDM for the growth of Enterococcus faecium Y31 and production of its bacteriocin, Enterocin Y31. We found that the bacterial growth was unrelated to Enterocin Y31 production in MRS; therefore, both the growth rate and the Enterocin Y31 production were set as the index for investigation. Single omission experiments revealed that 5 g/L NaCl, five vitamins, two nucleic acid bases, MgSO4·7H2O, MnSO4·4H2O, KH2PO4, K2HPO4, CH3COONa, fourteen amino acids, and glucose were essential for the strain’s growth and Enterocin Y31 production. Thus, a novel simplified and defined medium (SDM was formulated with 30 components in total. Consequently, Enterocin Y31 production yield was higher in SDM as compared to either MRS or CDM. SDM improved the Enterocin Y31 production and simplified the steps of purification (only two steps, which has broad potential applications.

  1. Study on Replacement Probability of Organic with Chemical Fertilizers in Canola (Brassica napus under Two Deficit and Full Irrigation Conditions

    Directory of Open Access Journals (Sweden)

    S. J. Azimzadeh

    2017-03-01

    Full Text Available Introduction In agricultural ecosystems, organic fertilizers play an important role in producing sustainable agricultural production. Considering this Sajjadi Nik et al (2011 reported that with increasing of vermicompost inoculation with nitroxin biofertilizer, capsule number per sesame plant increased, so that the most of capsule number per plant (124.7 was observed in 10 t/h vermicompost with nitroxin inoculation. Seyyedi and Rezvani Moghaddam (2011 reported that seed number per plant and the thousand kernel weight in treatment of 80 t/h mushroom compost in comparison with control were increased by 2.98 and 1.56 fold. In another experiment, Kato and Yamagishi (2011 reported that seed yield of wheat in application of manures equal to 80 t/h/ year more than 10 years in comparison with application of nitrogen fertilizer at the rate of 204 kg/h, showed significant increasing from 725 to 885 gr/m2. In another study, Rezvani Moghaddam et al (2010 reported that the most (74.08 and the least (60.94 seed number per capsule in sesame was obtained in the treatments of cow manure and control treatments respectively. The aim of this experiment was evaluation the effects of municipal waste compost, vermicompost and cow manure fertilizers in comparison with chemical fertilizer on yield and yield components of canola under two levels of deficit and full irrigation. Materials and Methods In order to evaluate the replacement probability of organic fertilizer with chemical fertilizers in canola cultivation, an experiment was conducted at research farm of Mashhad Faculty of Agriculture in year of 2013. Treatments were fertilizer and irrigation. Irrigation treatments included full and deficit irrigation. Fertilizer treatments included municipal waste compost, vermicompost, manure and chemical fertilizer. Chemical fertilizer included Nitrogen and Phosphorus. Experiment was conducted as split plot in randomized complete block design with three replications. Organic

  2. High-yield production of herbicidal thaxtomins and analogs in a nonpathogenic Streptomyces strain.

    Science.gov (United States)

    Jiang, Guangde; Zhang, Yucheng; Powell, Magan M; Zhang, Peilan; Zuo, Ran; Zhang, Yi; Kallifidas, Dimitrios; Tieu, Albert M; Luesch, Hendrik; Loria, Rosemary; Ding, Yousong

    2018-03-30

    Thaxtomins are virulence factors of most plant pathogenic Streptomyces strains. Due to their potent herbicidal activity, attractive environmental compatibility and inherent biodegradability, thaxtomins are key active ingredients of bioherbicides approved by the United States Environmental Protection Agency. However, the low yield of thaxtomins in native Streptomyces producers limits their wide agricultural applications. Here, we describe the high-yield production of thaxtomins in a heterologous host. The thaxtomin gene cluster from S. scabiei 87.22 was cloned and expressed in S. albus J1074 after chromosomal integration. The production of thaxtomins and nitro-tryptophan analogs were observed using LC-MS analysis. When culturing the engineered S. albus J1074 in the minimal medium TMDc, the yield of the most abundant and herbicidal analog, thaxtomin A, was 10 times higher than S. scabiei 87.22, and optimization of the medium resulted in the highest yield of thaxtomin analogs at about 222 mg/L. Further engineering of the thaxtomin biosynthetic gene cluster through gene deletion led to the production of multiple biosynthetic intermediates important to the chemical synthesis of new analogs. Additionally, the versatility of the thaxtomin biosynthetic system in S. albus J1074 was capitalized to produce one unnatural fluorinated analog 5-F-thaxtomin A, whose structure was elucidated by a combination of MS and 1D and 2D NMR analyses. Natural and unnatural thaxtomins demonstrated potent herbicidal activity in radish seedling assays. These results indicated that S. albus J1074 has the potential to produce thaxtomins and thereof with high yield, fostering their agricultural applications. IMPORTANCE Thaxtomins are agriculturally valuable herbicidal natural products but the productivity of native producers is limiting. Heterologous expression of thaxtomin gene cluster in S. albus J1074 resulted in the highest yield of thaxtomins ever reported, representing a significant leap

  3. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  4. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction

    International Nuclear Information System (INIS)

    Wen, Jia-Long; Sun, Shao-Long; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2014-01-01

    Highlights: • The terrified bamboo has a high energy yield of 85.7% and a HHV of 20.13 MJ/kg. • The structural changes of hemicelluloses, cellulose, and lignin were investigated. • First study on the structural transformations of lignin during torrefaction. • The mechanism of structural changes of lignin has been proposed. - Abstract: Torrefaction is an efficient method to recover energy from biomass. Herein, the characteristics (mass yield, energy yield, physical, and chemical characteristics) of torrefied bamboo at diverse temperatures (200–300 °C) were firstly evaluated by elemental analysis, XRD, and CP–MAS 13 C NMR methodologies. Under an optimal condition the terrified bamboo has a relative high energy yield of 85.7% and a HHV of 20.13 MJ/kg. The chemical and structural transformations of lignin induced by thermal treatment were thoroughly investigated by FT-IR and solution-state NMR techniques (quantitative 13 C NMR, 2D-HSQC, and 31 P-NMR methodologies). The results highlighted the chemical reactions of the native bamboo lignins towards severe torrefaction treatments occurred, such as depolymerization, demethoxylation, bond cleavage, and condensation reactions. NMR results indicated that aryl-ether bonds (β-O-4) and p-coumaric ester in lignin were cleaved during the torrefaction process at mild conditions. The severe treatments of bamboo (275 °C and 300 °C) induced a dramatic enrichment in lignin content together with the almost complete disappearance of β-O-4, β-β, and β-5 linkages. Further analysis of the molecular weight of milled wood lignin (MWL) indicated that the average molecular weights of “torrefied MWL” were lower than those of control MWL. It is believed that understanding of the reactivity and chemical transformations of lignin during torrefaction will contribute to the integrated torrefaction mechanism

  5. Method for conversion of carbohydrate polymers to value-added chemical products

    Science.gov (United States)

    Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The oxazole and indole based heterocyclic photochromic fulgides were synthesized from their corresponding fulgenic acid derivatives by clay catalysed microwave irradiation methodology. Improved yields of fulgides were observed by the microwave irradiation method as compared other chemical methods employed so far ...

  7. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  8. Determination of yields of gaseous products of carbohydrates radiolysis by mass spectrometry method

    International Nuclear Information System (INIS)

    Ivko, A.A.; Gol'din, S.I.; Bondarenko, N.T.; Markevich, S.V.; Sharpatyj, V.A.

    1977-01-01

    Possible complications are treated involved in the mass spectral study of the radiolytic products of deuterated carbohydrates. A method is proposed suitable for the evaluation of hydrogen isotopes relations and the content of deuterium in water. It has been possible to identify the major gaseous radiolytic products of glucose, polyglucan and dextran, and also to assess their radiation-chemical yields [ru

  9. Effects of cutting frequency on alfalfa yield and yield components in ...

    African Journals Online (AJOL)

    Effects of cutting frequency on alfalfa yield and yield components in Songnen Plain, Northeast China. J Chen, F Tang, R Zhu, C Gao, G Di, Y Zhang. Abstract. The productivity and quality of alfalfa (Medicago sativa L.) is strongly influenced by cutting frequency (F). To clarify that the yield and quality of alfalfa if affected by F, ...

  10. Chemical reactions involved in the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions; Cr203 + 2 Na2S04(1) + 3/2 02 yields 2 Na2Cr04(1) + 2 S03(g)n TiO2 + Na2S04(1) yields Na20(T102)n + 503(g)n T102 + Na2Cro4(1) yields Na2(T102)n + Cr03(g).

  11. Feasibility studies to assess the use of 236Pu as a radiochemical yield monitor in bioassay samples

    International Nuclear Information System (INIS)

    Sawant, P.D.; Kalsi, P.C.

    2007-01-01

    Various plutonium compounds are handled in nuclear facilities of BARC. Hence, there is a possibility of occupational workers getting exposed to Pu. In vitro bioassay monitoring in which Pu is separated by chemical procedures from excreta samples and estimated by alpha-spectrometry, is the method of choice for the evaluation of internal dose to the occupational workers handling Pu. However, this method requires a suitable Pu tracer for reducing the uncertainties due to chemical yield in the separation, electro-deposition and counting efficiency. 242 Pu is commonly used as a tracer but due to its non-availability, efforts were made earlier to indigenously synthesis 236 Pu by proton irradiation of 237 Np in BARC-TIFR pelletron facility. The present study, reports the feasibility of using 236 Pu as a radiochemical yield monitor (tracer) in bioassay samples. (author)

  12. The Effect of Foliar Application of Humic Acid and Nano Fertilizer (Pharmks® on Morphological Traits, Yield, Essential Oil Content and Yield of Black Cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    majid azizi

    2017-08-01

    Full Text Available Introduction: The ever-increasing tendency to the use of medicinal plants in the world has grown concerns about their cultivation and production processes. As medicinal plants are more compatible with the nature, special interest and attention have recently been given to herb therapy, and use of medicinal plants, being limited by the rise of pharmaceutical drugs, has become again common and widespread due to a number of reasons. In a sustainable agriculture system, application of the fertilizers which are nature friendly and suitable for plants is essential. This becomes more important when dealing with medicinal plants. Doing studies over the effect of nano¬pharmax and humic acid fertilizer on the plant, no research findings were obtained. So, in order to use less chemical fertilizers to prevent environmental pollution and encourage farmers to use more organic fertilizer, the present study was carried out to evaluate the effect of foliar application of humic acid and nano-pharmax fertilizer on the growth index, yield, yield components, essential oil content of N. sativa. Materials and Methods: The experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2012-2013. Land preparation was done in October. The land area was 80 square meters in which three blocks were designed. Eight plots were prepared within each block and each plot was planted with 4 lines. Furrow sowing operations were carried out on October 29. The plants were thinned in 4-6 leaf stage. First irrigation after planting, and subsequent ones were done every 7 days until the end of the growing season. No herbicides were applied in this plan and weeding was done by hand. The test treatments included humic acid and nano¬pharmax fertilizer with the levels of 0, 1, 3 and 6 mg per liter and 0 and 1 ml per liter, respectively. Fertilizer treatments was applied at the 8-10 leaf stage and continued once every two weeks, three times

  13. Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost.

    Science.gov (United States)

    Lazcano, Cristina; Revilla, Pedro; Malvar, Rosa Ana; Domínguez, Jorge

    2011-05-01

    Vermicompost has been proposed as a valuable fertilizer for sustainable agriculture. The effects of vermicompost on yield and quality of sweet corn were evaluated in this study. In two field trials, sweet corn plants were grown under (i) a conventional fertilization regime with inorganic fertilizer, and integrated fertilization regimes in which 75% of the nutrients were supplied by the inorganic fertilizer and 25% of the nutrients were supplied by either (ii) rabbit manure, or (iii) vermicompost. All three types of fertilization regime were supplied at two doses. Two pairs of nearly isogenic sweet corn hybrids homozygous for sugary1 and shrunken2 mutants were included in the trials to explore fertilizer × genotype interactions. Growth, yield and ear quality of the plants were evaluated in relation to the three fertilization regimes. In general, the integrated regimes yielded the same productivity levels as the conventional treatment. Moreover, both vermicompost and manure produced significant increases in plant growth and marketable yield, and also affected the chemical composition and quality of the marketable ear. Nevertheless, most of the observed effects of the organic fertilizers were genotype-dependent. The results confirm that the use of organic fertilizers such as vermicompost has a positive effect on crop yield and quality. Nevertheless, these effects were not general, indicating the complexity of the organic amendment-plant interactions and the importance of controlling genetic variation when studying the effects of vermicompost on plant growth. Copyright © 2011 Society of Chemical Industry.

  14. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    Science.gov (United States)

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Determination of 230Th (Ionium) in uranium ores and wastes from uranium reprocessing. IV. Calculation of ionium separation yield

    International Nuclear Information System (INIS)

    Galiano Sedano, J. A.; Acena Barrenechea, M. L.

    1974-01-01

    For determining ionium ( 2 30Th) in minerals and uranium processing wastes by precipitation with fluorhidric acid, using lanthanum as carrier, and selective extraction with tenoytrifluoroacetone (TTA) followed by radiometric determination of the isolated nuclide, it is necessary the use of a tracer since the chemical yield of the separation ranges between wide limits. In this paper, the use of the beta-emitter 2 34Th as the most convenient tracer is discussed. Equations are derived for correcting for counting errors introduced by other thorium isotopes which are present either in the sample or in the tracer, as well as for calculating the chemical yield of the separation. These equations have been experimentally checked by ionium determinations carried out with different types of samples. (Author) 18 refs

  16. Chemical evaluation of electronic cigarettes

    OpenAIRE

    Cheng, Tianrong

    2014-01-01

    Objective To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Methods Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. Results The levels ...

  17. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  18. Bond yield curve construction

    Directory of Open Access Journals (Sweden)

    Kožul Nataša

    2014-01-01

    Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.

  19. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  20. Allelopathic Effect of Wheat and Barley Residues on Yield and Yield Components of Cowpea (Vigna sinensis L. and Weeds Control

    Directory of Open Access Journals (Sweden)

    M Shahbyki

    2018-02-01

    Full Text Available Introduction Weeds are a major constraint limiting crop yield in agricultural systems and in organic systems in particular. Although herbicides are efficient for weed control, continuous use has caused the development of resistance in weeds against several herbicides. Furthermore, herbicides also pollute the soil, water and aerial environments and herbicide residues in food have deteriorated food quality and enhanced the risk of diseases. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the release of chemical compounds into the environment. Wheat (Triticum aestivum L. is known to be allelopathic against crops and weeds. The objective of this study was to investigate the allelopathic effect of wheat and barley residues on weeds control and cowpea yield. Materials and Methods An experiment was conducted as randomized complete block design with three replications at the research field (36° 25’E, 54° 58’N, 1349 m a.s.l. of Agricultural Faculty, Shahrood University of Technology in 2015. Treatments were included; weeding all season, no weeding, trifluralin according to the recommended dose (2 ton ha-1, foliar application of wheat straw extract (concentration of 50%, foliar application of wheat straw extract (concentration of 100%, the application of wheat residue mixed with the soil at a rate of 2 ton ha-1, the application of wheat residue mixed with the soil at a rate of 4 ton ha-1, the application of wheat residue mixed with the soil at a rate of 8 ton ha-1, foliar application of barley straw extract (concentration of 50%, foliar application of barley straw extract (concentration of 100%. Statistical analysis of data was performed with MSTAT-C software and means were compared with LSD test at the 5% level of probability. Results and Discussion The results showed that the effect of treatments was significant (P 0.01 on weed density and dry weight. Soil incorporation with wheat

  1. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  2. Combined use of Azolla and loach suppressed paddy weeds and increased organic rice yield: second season results

    Directory of Open Access Journals (Sweden)

    Weiguo Cheng

    2015-01-01

    Full Text Available Organic farming uses alternatives to agricultural chemicals such as synthetic fertilizers and pesticides. The primary challenge in organic rice farming is controlling weeds without using herbicides and improving rice yield without chemical fertilizers. In our previous paper entitled as combined use of Azolla and loach suppressed weed Monochoria vaginalis and increased rice yield without agrochemicals, we reported the first year rice growth season results from an in situ container experiment. The experiment was designed with 4 treatments—control (with neither Azolla nor loach, Azolla (Azolla alone, loach (loach alone, and Az+Lo (combined Azolla and loach—with 3 replications each. The first year results showed that combined use of Azolla and loach was successful in weed suppression and increase in rice yield in 2012. In this paper, we report the second year results from the continuous container experiment in 2013. M.vaginalis emergences were very low in second year rice growth season on all treatments. Compared first year, the rice yields decreased in second year on all treatments due to different weather condition and with or without organic soybean oil cake application between two rice growth seasons. The second year results also showed the raising loach had a stronger effect to increase tiller and panicle numbers, and spikelet number per panicle, then improve rice yields to 2.3 times than control. The Azolla residues left from first year have weaker effect on rice growth and yield, but increase soil organic matter accumulation at second year. The two years study indicated that combined use of Azolla and loach can meet two of the greatest challenges in organic rice production: providing effective weed control and improving rice nutrition without agrochemicals.

  3. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  4. 7755 EFFECT OF NPK FERTILIZER ON FRUIT YIELD AND YIELD ...

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... peasant farmers in Nigeria. With the increased ... did not significantly (p=0.05) increase the fruit yield nor the seed yield. Key words: NPK fertilizer, Fruit ..... SAS (Statistical Analysis System) Version 9.1. SAS Institute Inc., Cary, ...

  5. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    Science.gov (United States)

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2018-01-01

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 1 ... Ruthenium(II) complexes (1-3) bearing bis-phenolate--heterocyclic carbene ligand were synthesized in good yields by the reaction of imidazolinium proligand (HL) with ... Department of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India ...

  7. Wastewater impact on physiology, biomass and yield of canola (brassica napus L.)

    International Nuclear Information System (INIS)

    Khan, I.U.; Khan, M.J.

    2012-01-01

    The impact of domestic/municipal wastewater (mww) of Dera Ismail Khan, Pakistan was assessed through its effects on biomass, physiology and yield of canola (Brassica napus L.). The pot experiments were conducted in a completely randomized design with three replications in net house during winter season 2006-07 and 2007-08 at Gomal University, Dera Ismail Khan, Pakistan. Treatments included were T0 (tube well/tap water), T/sub 1/ (20% mww), T/sub 2/ (40% mww), T/sub 3/ (80% mww) and T/sub 4/ (100% mww/raw-form municipal wastewater). The quality and chemical composition of wastewater was deviating from international (Anon., 1985) as well as NEQS (2005) standard. Analysis of wastewater showed that biochemical oxygen demand (BOD), chemical oxygen demand (COD), sodium adsorption ratio (SAR) and total suspended solids (TSS) were above the permissible limit of irrigation. In pods per plant, the reduction was 61.55% by recording 110 pods per plant with T/sub 4/ (100% mww) as compared to control T0 (286.1 pods per plant). Similarly pod length (reduced by 59.72%), seeds per pod (reduced by 42.53%), Seeds per plant (reduced by 82%), seed weight per plant (reduced by 88%), 100-seed weight (reduced by 19.54%) and straw yield (reduced by 54.23%) were significantly reduced by applying 100% wastewater. The most affected yield contributing traits were seeds per plant and seed weight per plant with 82% and 88% reduction, respectively due to T/sub 4/ (100% mww). On average, the decrease was 60% in the first stage and a further decrement of 4.83% was observed when the obtained seeds were re-sown in 2007-08. Results revealed that utilizing municipal wastewater of the area under investigation for irrigation purpose of food and feed crops might not be safe. The major reason seems to be the high salinity and sodium adsorption ratio that restricted crop growth and yield. (author)

  8. An Efficient, Green Chemical Synthesis of the Malaria Drug ...

    African Journals Online (AJOL)

    Results : A green-chemical synthesis of piperaquine is described that proceeds in 92 – 93 % overall yield. ... Keywords: ACTs, Dihydroartemisinin Piperaquine, Dihydroartemisinin, Green Chemistry, Malaria, ..... Mathers CD, Ezzati M, Lopez AD. ... Medicines Programme [Homepage on the Internet]. Geneva ... An Alternative.

  9. Response of Yield and Yield Components of Tef [Eragrostis Tef ...

    African Journals Online (AJOL)

    The partial budget analysis also indicates that applications of 46 kg. N ha-1 and 10 kg P ha-1 are ..... (1994) indicated that where the grain yield response is negative, yield reduction is primarily caused by a .... An Economic Training. Manual.

  10. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  11. Chemical qualities of oils from some fresh and market vegetable ...

    African Journals Online (AJOL)

    JTEkanem

    production was examined by evaluating the oil yield and chemical qualities of oil extracted from fresh ... oil may be considered as Nigeria potential asset for biofuel and oleochemical production. Keywords: ..... standards for edible Arachis oil.

  12. The UK chemical nuclear data library: a summary of the data available in ENDF/B format

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1981-11-01

    The UK Chemical Nuclear Data Committee files have been considerably revised and extended. The files now embrace: fission yields (C31), fission product decay data (UKFPDD-2), activation product decay data (UKPADD-1), and heavy element decay data (UKHEDD-1). The fission yield data is based on Crouch's third round of adjustment and includes yields to isometric states. The decay data files include data on half-life, decay modes, branching ratios and alpha, beta and gamma radiation energies and intensities. The data have all been recommended by the UK Chemical Nuclear Data Committee for use in the UK reactor programme; they are stored on magnetic tape at AERE Harwell, AEE Winfrith and CEGB Berkeley Nuclear Laboratories. (author)

  13. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  14. Nutrient retention values and cooking yield factors for three South African lamb and mutton cuts.

    Science.gov (United States)

    van Heerden, Salomina M; Strydom, Phillip E

    2017-11-01

    Nutrient content of raw and cooked foods is important for formulation of healthy diets. The retention of nutrients during cooking can be influenced by various factors, including animal age, carcass characteristics and cooking method, and these factors are often unique to specific countries. Here the effects of animal age (lamb and mutton) and carcass cut (shoulder, loin and leg) combined with cooking method (moist heat and dry heat) on yield and nutrient retention of selected nutrients of South African sheep carcasses were studied. Cooking yields and moisture retention were lower for lamb loin but higher for lamb leg. Energy and fat retention were higher for all cuts of mutton compared with lamb, while higher retention values for cholesterol were recorded for lamb. Mutton retained more iron (P = 0.10) and zinc and also more vitamin B 2 , B 6 and B 12 than lamb. Shoulder cooked according to moist heat cooking method retained more magnesium, potassium and sodium. Incorporating these retention and yield values into the South African Medical Research Council's Food Composition Tables provides a reliable reference to all concerned with nutrient content of food. It will also guide practitioners and primary industry to adjust animal production aimed at optimum nutrient content to specific diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Directory of Open Access Journals (Sweden)

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  16. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    Science.gov (United States)

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.

  17. Correlation and path-cofficient analysis of seed yield and yield ...

    African Journals Online (AJOL)

    This study was undertaken in order to determine the association among yield components and their direct and indirect effects on the seed yield of confectionery sunflower. 36 confectionery sunflower populations originated from different regions of Northwest Iran were characterized using 11 agromorphological traits ...

  18. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Ahmad, M.; Jamil, M.; Akhtar, F.U.Z.

    2014-01-01

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  19. Yield and quality of brine-ripened cheeses, production from the milk of jersey and Simmental cows

    Directory of Open Access Journals (Sweden)

    Zh.T. Chitchyan

    2016-06-01

    Full Text Available Research has been conducted in Lusadzor community of Tavoush province in Armenia to determine the processability of milk samples collected from Jersey and Simmental cows for cheese manufacturing. The chemical composition as well as physical–chemical and technological parameters of the milk samples have been analyzed experimentally. In addition, the researchers estimated physical, chemical and organoleptic parameters as well as the yield of the cheese produced from the bulk milk collected from Jersey and Simmental cows. The results of the research proved that the milk samples collected from Jersey and Simmental cows possess the necessary physical–chemical and technological properties and can be used as high-quality raw material for manufacturing brine-ripened (pickled cheese. The highest content of dry matter, observed in the milk collected from Jersey cows, stemmed from the high contents of fat, protein and minerals. The content of lactose (milk sugar and physical characteristics (density, freezing temperature did not vary significantly across the samples. The rennet clots formed in the milk collected from Jersey cows were characterized by higher structural–mechanical parameters and syneresis. Jersey milk possesses the qualitative characteristics that best contribute to high cheese yield, which allows for the most efficient cheese production. Cheese manufactured from Jersey milk is distinguished by less water content, higher fat and protein contents and higher organoleptic indicators, which all together improve the quality of cheese turning it into a highly competitive product.

  20. Chemical aspects of radiation damage processes: radiolysis

    International Nuclear Information System (INIS)

    Asmus, K.D.

    1975-01-01

    The formation of primary species and radiation chemical yields are discussed. In a section on chemical scavenging of primary species the author considers scavenging kinetics and competition reactions and gives a brief outline of some experimental methods. The radiation chemistry of aqueous solutions is discussed as an example for polar solvents. Cyclohexane is used as an example for non-polar solvents. The importance of excited states and energy transfer is considered. Reactions in the solid state are discussed and results on linear energy transfer and average ion pair formation for various kinds of radiation are surveyed. (B.R.H.)

  1. System dynamics approach for modeling of sugar beet yield considering the effects of climatic variables.

    Science.gov (United States)

    Pervin, Lia; Islam, Md Saiful

    2015-02-01

    The aim of this study was to develop a system dynamics model for computation of yields and to investigate the dependency of yields on some major climatic parameters, i.e. temperature and rainfall, for Beta vulgaris subsp. (sugar beet crops) under future climate change scenarios. A system dynamics model was developed which takes account of the effects of rainfall and temperature on sugar beet yields under limited irrigation conditions. A relationship was also developed between the seasonal evapotranspiration and seasonal growing degree days for sugar beet crops. The proposed model was set to run for the present time period of 1993-2012 and for the future period 2013-2040 for Lethbridge region (Alberta, Canada). The model provides sugar beet yields on a yearly basis which are comparable to the present field data. It was found that the future average yield will be increased at about 14% with respect to the present average yield. The proposed model can help to improve the understanding of soil water conditions and irrigation water requirements of an area under certain climatic conditions and can be used for future prediction of yields for any crops in any region (with the required information to be provided). The developed system dynamics model can be used as a supporting tool for decision making, for improvement of agricultural management practice of any region. © 2014 Society of Chemical Industry.

  2. Soviet test yields

    Science.gov (United States)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  3. Identifying and designing chemicals with minimal acute aquatic toxicity.

    Science.gov (United States)

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  4. The Potential Of Cultural And Chemical Control Practices For ...

    African Journals Online (AJOL)

    The Potential Of Cultural And Chemical Control Practices For Enhancing ... and a significant (P < 0.05) increase in yield components of hands per bunch and finger ... Une étude de l\\'effet de la population de plantes, l\\'application des engrais, ...

  5. Multi-pathway exposure modeling of chemicals in cosmetics with application to shampoo.

    Science.gov (United States)

    Ernstoff, Alexi S; Fantke, Peter; Csiszar, Susan A; Henderson, Andrew D; Chung, Susie; Jolliet, Olivier

    2016-01-01

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quantified based on the chemical mass originally applied via a product, multiplied by the product intake fractions (PiF, the fraction of a chemical in a product that is taken in by exposed persons) to yield intake rates. The average PiFs for the evaluated chemicals in shampoo ranged from 3×10(-4) up to 0.3 for rapidly absorbed ingredients. Average intake rates ranged between nano- and micrograms per kilogram bodyweight per day; the order of chemical prioritization was strongly affected by the ingredient concentration in shampoo. Dermal intake and inhalation (for 20% of the evaluated chemicals) during use dominated exposure, while the skin permeation coefficient dominated the estimated uncertainties. The fraction of chemical taken in by a shampoo user often exceeded, by orders of magnitude, the aggregated fraction taken in by the population through post-use environmental emissions. Chemicals with relatively high octanol-water partitioning and/or volatility, and low molecular weight tended to have higher use stage exposure. Chemicals with low intakes during use (<1%) and subsequent high post-use emissions, however, may yield comparable intake for a member of the general population. The presented PiF based framework offers a novel and critical advancement for life cycle assessments and high-throughput exposure screening of chemicals in cosmetic products demonstrating the importance of consistent consideration of near- and far-field multi-pathway exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    Science.gov (United States)

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Effect of different lignocellulosic wastes on Hericium americanum yield and nutritional characteristics.

    Science.gov (United States)

    Atila, Funda; Tüzel, Yuksel; Faz Cano, Angel; Fernandez, Juan A

    2017-01-01

    The aim of this study was to investigate the possibility of using cottonseed hulls (CSH) and olive press cake (OPC) as new supplement materials for substrate preparation in Hericium americanum cultivation. Some chemical properties of the substrates prepared by mixtures of oak sawdust (OS) with wheat bran (WB), CSH and OPC in different ratios were determined. In addition, the effect of mixtures of OS:CSH and OS:OPC on spawn run time, yield and biological efficiency (BE), average mushroom weight and nutrition content of the fruiting body were compared with the control substrate (8OS:2WB). The yield, BE and average mushroom weight of substrates containing CSH and OPC were higher than the control substrate and increased with an increase in the rate of CSH and OPC in the mixtures. Hericium americanum showed (on a dry weight basis) 8.5-23.7% protein, 9.9-21.2 g kg -1 P, 26.6-35.8 g kg -1 K, 0.63 - 1.33 g kg -1 Mg, 0.19 - 0.23 g kg -1 Ca, 1.34-1.78 g kg -1 Na, 49.5-72.2 mg kg -1 Fe, 6.22-10.11 mg kg -1 Mn, 32.8-82.8 mg kg -1 Zn and 8.6-11.2 mg kg -1 Cu on different growing substrates. The nutritional value of mushrooms was greatly affected by the growing media. The results revealed that CSH and OPC could be used as new supplement materials for substrate preparation in H. americanum cultivation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Determining the Most Important Soil Properties Affecting the Yield of Saffron in the Ghayenat Area

    Directory of Open Access Journals (Sweden)

    amir ranjbar

    2016-02-01

    Full Text Available Introduction: Saffron is one of the most important economic plants in the Khorasan province. Awareness of soil quality in agricultural lands is essential for the best management of lands and for obtaining maximum economic benefit. In general, plant growth is a function of environmental factors especially chemical and physical properties of soil (20. It has been demonstrated that there was a positive and high correlation between soil organic matter and saffron yield. Increasing the yield of saffron due to organic matter is probably due to soil nutrient, especially phosphorous and nitrogen and also improvement of soil physical quality (6, 28, 29. The yield of saffron in soils with high nitrogen as a result of vegetative growth is high (8. Shahandeh (6 found that most of the variation of saffron yield depends on soil properties. Due to the economic importance of saffron and the role of soil properties on saffron yield, this research was conducted to find the relationship between saffron yield and some soil physical and chemical properties, and to determine the contribution of soil properties that have the greatest impact on saffron yield in the Ghayenat area. Materials and Methods: This research was performed in 30 saffron fields (30 soil samples of the Ghayenat area (longitude 59° 10΄ 10.37˝ - 59° 11΄ 38.41˝ and latitude 33° 43΄ 35.08˝ - 33΄ 44΄ 02.78˝, which is located in the Khrasan province of Iran. In this research, 21 soil properties were regarded as the total data set (TDS. Then the principal component analysis (PCA was used to determine the most important soil properties affecting saffron yield as a minimum data set (MDS and the stepwise regression to estimate saffron yield. To estimate the yield of saffron in stepwise regression method, saffron yield was considered as a dependent variable and soil physical and chemical properties were considered to be independent variables. Results and Discussion: According to the PCA method

  9. Effects of phosphorus and zinc applications on the yields and yields ...

    African Journals Online (AJOL)

    Effects of phosphorus and zinc applications on the yields and yields components of sole early maturing maize ( Zea mays ) and bambaranut ( Vigna subterranean Thour. ) and in intercrop under southern guinea savannah ecology zone.

  10. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  11. Breeding experiments in chickpea (Cicer Arietinum L.), III. Chemical composition and In-vitro nutritional evaluation of chickpea developed lines compare with local varieties

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Eisa, M.A.M.

    1994-01-01

    Seed yield/plant, chemical composition and in vitro nutritional value of 4 developed lines of chickpea crop were studied in comparison with 3 recommended local varieties. According to appearance and size of size of the seeds, the line 1 and line 2 were compared with the local variety giza 1, while line 3 with giza 2 and line 4 with giza 88. Data showed that L 2 was better than giza 1 in grain yield/plant, in chemical composition and in nutritive value, too. Although L 1 was little less than giza 1 in yield quality, higher yield quantity of L 1 may correct the situation for its side. The L 3 surpassed the comparing variety Giza 2 in yield/plant, in chemical composition and in nutritive value. The L 4 can not be considered a promising variety because of its less quality and lower seed yield potentiality comparing with Giza 88. Thus, the new lines L 1 , L 2 and L 3 are considered good addition to the chickpea germplasm in Egypt. 4 tabs

  12. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gamma radiation induced mutant for improved yield components in sunflower

    International Nuclear Information System (INIS)

    Elangovan, M.

    2001-01-01

    Sunflower has become an important oilseed in the Indian vegetable oil pool following its introduction from Russia in 1969. It can be used for all quality products useful to humans. The need for genetic variability and new useful gene sources has necessitated that sunflower breeders and geneticists utilize a wide range of germplasm in their breeding programmes. The induction of mutations in sunflower by physical and chemical mutagens has been practiced quite intensively in the last two decades. The results recorded to date suggest that utilization of mutagenesis could be a great advantage in improving the sunflower crop. An induced mutation programme was undertaken to generate variability in the variety 'Morden' using gamma rays. The certified and genetically pure seeds were irradiated with 50, 100, and 150 Gy gamma rays and used for further studies. Selection in M 2 generations, raised from different treatments, revealed the presence of an erectophylly leaf mutant from 50 Gy treatment. The isolated mutant showed improved yield components like head diameter, 100- seed weight and yield per plant. The mutant was a plant with short petiole length and erect leaves. This type of leaf get sunlight throughout the day. From morning to afternoon, the first half of the leaf gets sunlight, and from afternoon to evening the second half of the leaf gets sunlight. As a result of getting sunlight the whole day, the plant had more photosynthetic products and grew vigorously. Plant height, head diameter and 100-seed weight had direct effect on seed yield, and the number of leaves and stem diameter influenced the seed yield indirectly. In the M 3 generation, the mutant showed an almost two-fold increase over the parent variety for all investigated characters, except that of the yield per plant where there was a three-fold increase. The present investigation has shown that there are remarkable possibilities of increasing the yield components in sunflower by induced mutations

  14. The Effect of Rate and Application Method of Potassium on Yield and Yield Components of Cotton in Saline Condition

    Directory of Open Access Journals (Sweden)

    A Ardakani

    2016-12-01

    flowering (25P+25V+50F, and 25% at planting+50% at vegetative stage and 25%at early boll development (25P+50V+25B as the subplot. The seeds planted had been acid-delinted and treated with chemicals against seed and seedling diseases. Plots consisted of six rows spaced 0.5 min row and 0.2 m in plant (10 plants m-2 and 6 m in length. To evaluate yield components of cotton including plant height, sympodial branch number, boll number, boll weight, 10 individual plants were selected randomly from final harvest area. At harvesting time one meter square from the beginning and a half meter around each plot was removed as a marginal effect. The remaining area was harvested by hand for determine of lint and biological yield. Seed-cotton samples were ginned to separate the fiber (lint from the seed. Lint percentage (% was calculated as the weight of lint to weight of the seed-cotton. The statistical analyses were performed by SAS software Ver. 9.1. The mean separation was done through Fischer least significant difference (FLSD test at alpha 0.05. Results and Discussion Analysis of variance showed that boll weight, seed cotton yield and biological yield were significantly affected by potassium rate, whereas plant height, number of sympodial branch, boll number and lint percentage was not affected by potassium rate. All traits were affected by potassium application method except plant height and lint percentage. Plant height, boll weight, seed cotton yield and lint percentage were affected by interaction of potassium rate and application method. Increasing of K level up to 150 kg ha-1 increased boll weight (23.64%, seed cotton yield (17.67%, and biological yield (9.86% in comparison with the application of 75 kg ha-1. Plant height, sympodial branch number and lint percentage did not respond to K rate. K application as 25% at planting+25% at vegetative stage (5-8 leaves stage, 25% at first flowering and 25% at early boll development (25P+25V+25F+25B had the highest boll weight, seed

  15. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum).

    Science.gov (United States)

    Gutiérrez-Miceli, Federico A; Santiago-Borraz, Jorge; Montes Molina, Joaquín Adolfo; Nafate, Camerino Carlos; Abud-Archila, Miguel; Oliva Llaven, María Angela; Rincón-Rosales, Reiner; Dendooven, Luc

    2007-11-01

    The effects of earthworm-processed sheep-manure (vermicompost) on the growth, productivity and chemical characteristics of tomatoes (Lycopersicum esculentum) (c.v. Rio Grande) were investigated in a greenhouse experiment. Five treatments were applied combining vermicompost and soil in proportions of 0:1, 1:1, 1:2, 1:3, 1:4 and 1:5 (v/v). Growth and yield parameters were measured 85 days and 100 days after transplanting. Addition of vermicompost increased plant heights significantly, but had no significant effect on the numbers of leaves or yields 85 days after transplanting. Yields of tomatoes were significantly greater when the relationship vermicompost:soil was 1:1, 1:2 or 1:3, 100 days after transplanting. Addition of sheep-manure vermicompost decreased soil pH, titratable acidity and increased soluble and insoluble solids, in tomato fruits compared to those harvested from plants cultivated in unamended soil. Sheep-manure vermicompost as a soil supplement increased tomato yields and soluble, insoluble solids and carbohydrate concentrations.

  16. Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components

    Science.gov (United States)

    Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...

  17. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  18. [Effects of fertilizer application on water consumption characteristics and yield of potato cultured under ridge-furrow and whole filed plastic mulching in rain-fed area.

    Science.gov (United States)

    Yu, Xian Feng; Zhang, Xu Cheng; Wang, Hong Li; Ma, Yi Fan; Hou, Hui Zhi; Fang, Yan Jie

    2016-03-01

    Chemical fertilizer reduction and organic manure substitution are the useful methods to increase potato water-and nutrient use efficiency, which is cultured under ridge-furrow and whole soil surface mulched by plastic film in semiarid rain-fed area. A 4-year field experiment was carried out from 2011 to 2014 with three treatments: 1) traditional chemical fertilizer application (F), 2) chemical nitrogen fertilizer reduced by 25% and dressing at flowering stage (DF), and 3) chemical nitrogen fertilizer reduced by 50% and organic manure substitution (OF). The soil moisture and potato yield were investigated, and seasonal water consumption, water use efficiency (WUE) were calculated to study the regulations of different nutrient management methods on potato water use process, as well as its effects on potato tuber yield and WUE. The results showed that soil water storage in potato flowering stage was the highest under DF treatment, but there were no significant difference among these three treatments. The depth of soil water depletion in DF and OF showed an increasing trend at post-flowering stage. Potato water consumption decreased significantly at pre-flowering stage, but increased by 36.2%, 23.2%, 24.8% and 19.0% respectively at post-flowering stage in 2011-2014 under DF treatment, as compared with those under F treatment. OF treatment increased potato water consumption by 20.7% and 16.3% than that under F treatment at post-flowering stage from 2011 to 2012, respectively, but exerted no significant effect at pre-flowering stage. Compared with F, DF increased potato tuber yield averagely by 2595.1 kg·hm -2 from 2012 to 2014 and significantly increased the WUE by 14.4% and 6.3% in 2013 and 2014, respectively; OF significantly increased potato tuber yield averagely by 2945 kg·hm -2 tuber yield in 4 experimental years and WUE was significantly higher than that under F from 2012 to 2014. It was indicated that both DF and OF could regulate water consumption between pre

  19. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S; Oliveira, Lucas N de; Almeida, Carlos E de; Almeida, Adelaide de

    2007-01-01

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm 2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium

  20. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  1. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  2. Proximate chemical composition of giant ipil-ipil wood from different sources

    Energy Technology Data Exchange (ETDEWEB)

    Escolano, E U; Gonzales, E V; Semana, J A

    1978-01-01

    Studies of the chemical composition of seven samples of giant ipil-ipil (Leucaena leucocephala) yielded holocellulose, 69.8 to 73.9%; pentosans, 8.9 to 20.1%; lignin, 21.8 to 26%; alcohol-benzene solubles, 1.4 to 3.0%; caustic soda solubles, 13.0 to 16.4%; and ash, 0.7 to 0.9%. Based on chemical composition, this should be a suitable species for pulp and paper. (Refs. 11).

  3. Atributos químicos e físicos de latossolos e sua relação com os rendimentos de milho e feijão irrigados Chemical and physical attributes of oxisols and their relation with irrigated corn and common bean yields

    Directory of Open Access Journals (Sweden)

    Telmo Jorge Carneiro Amado

    2009-08-01

    ível, e na de PM foram observadas limitações físicas representadas por compactação por meio dos indicadores densidade, resistência à penetração e macroporosidade. A ocorrência de zonas com menor rendimento das culturas irrigadas nas duas áreas foi associada a limitações químicas e físicas do solo, especialmente em subsuperfície.Under irrigated agriculture one of the main causes of yield variability, which is the plant-available water, is controlled. In this case, other yield limitations caused by soil attributes become more relevant. To investigate the spatial variability of soil attributes and crop yields, besides the relation between chemical and physical-hydric soil attributes and crop yields of two irrigated commercial plantations (51.8 and 58.2 ha were studied in Trindade do Sul (TS and Palmeira das Missões (PM respectively, in the state of Rio Grande do Sul, Brazil. The soil was sampled from a regular grid of 100 x 100 m in the 0-0.10 m layer for chemical analysis. To investigate the relation between chemical and physical-hydric soil attributes and yields, due to the large area of the plantations, three soil management zones were established based on yield maps available (common bean in 2005/06 and 2006, in TS, and corn in 2002/03 and 2003/04, in PM recorded by harvesters equipped with yield sensors. In these zones, 15 grid points were sampled in the layers 0-0.05, 0.05-0.10 and 0.10-0.20 m to analyze soil attributes. These underlying soil data, analyzed by descriptive statistics and geostatistics, classified the spatial dependence as strong and moderate, with predominance of the spherical model. Spatial variability was highest for P and lowest for pH. Although both plantations were irrigated there was spatial variability in the yields. In the low-yield zone in TS soil acidity, low base saturation and lower available soil water capacity was diagnosed, while in PM the yield constraints were associated to soil compaction, expressed in the bulk density

  4. Comparing predicted yield and yield stability of willow and Miscanthus across Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Jaiswal, Deepak; Bentsen, Niclas Scott

    2016-01-01

    was 12.1 Mg DM ha−1 yr−1 for willow and 10.2 Mg DM ha−1 yr−1 for Miscanthus. Coefficent of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland and the year-to-year variation in yield was greatest on these soils. Willow was predicted to outyield...... Miscanthus on poor, sandy soils whereas Miscanthus was higher yielding on clay-rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared....... The semi-mechanistic crop model BioCro was used to simulate the production of both short rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990-2010. The potential average, rain-fed mean yield...

  5. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  6. Novel catalysts for valorization of biomass to value-added chemicals ...

    Indian Academy of Sciences (India)

    The catalysts used for each transformation were subjected to detailed characterization using XRD, BET surface area, temperature-programmed desorption and transmission electron microscopy. The effect of various reaction parameters was also investigated for obtaining high yields of desired chemical intermediates.

  7. Impact assessment of recent climate change on rice yields in the Heilongjiang Reclamation Area of north-east China.

    Science.gov (United States)

    Zhou, Yang; Li, Ning; Dong, Guanpeng; Wu, Wenxiang

    2013-08-30

    Investigating the degree to which climate change may have impacted on rice yields can provide an insight into how to adapt to climate change in the future. Meteorological and rice yield data over the period 1960-2009 from the Heilongjiang Reclamation Area of north-east China (HRANC) were used to explore the possible impacts of climate change on rice yields at sub-regional scale. Results showed that a warming trend was obvious in the HRANC and discernible climate fluctuations and yield variations on inter-annual scale were detected to have occurred in the 1980s and 1990s, respectively. Statistically positive correlation was observed between growing season temperature and rice yields, with an increase rate by approximately 3.60% for each 1°C rise in the minimum temperature during growing season. Such findings are consistent with the current mainstream view that warming climate may exert positive impacts on crop yields in the middle and higher latitude regions. Our study indicated that the growing season minimum temperature was a major driver of all the climatic factors to the recent increase trends in rice yield in HRANC over the last five decades. © 2013 Society of Chemical Industry.

  8. Effect of goat manure on some soil properties and growth, yield and nutrient status of tomato

    International Nuclear Information System (INIS)

    Ojeniyi, S.O.; Awodun, M.A.; Akanni, D. A.

    2007-01-01

    Field experiment were conducted at Akure, Negeria, in a rainforest zone of Southwest Nigeria to study the effect of goat manure (droppings) on some soil physical and chemical properties and nutrient status, growth and yied of tomato (Lycopersicon esculentum). Five levels of manure (0, 10, 25, 40 and 50 t/ha) were applied on the soil surface to two crops of tomato at each of two sites, namely, Federal College of Agriculture and Federal University of Technology. Soils were deficient in organic matter (OM), total N, exchangeable Ca and available P. Soil OM, total N, available P and moisture content increased with the level of manure, while soil bulk density decreased. Leaf N, P, K, Ca and Mg, growth and fruit yield of tomato were significantly increased by goat manure treatments. Leaf K, Ca and Mg, plant height, number of branches, leaf area, root length, number of fruits and fruit diameter increased with the level of manure, However, the 25 t/ha manure gave optimum values of number and weight of fruits. The mean fruit yields recorded for 0, 10, 25, 40 and 50 t/ha goat manure were 15.0, 19.7, 23.7, 24.3 and 22.3 t/ha, respectively. It is concluded that goat manure is suitable for impoving soil physical and chemical properties and growth and yield of tomato.(Author)

  9. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting.

    Science.gov (United States)

    Schauberger, Bernhard; Gornott, Christoph; Wechsung, Frank

    2017-11-01

    Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%-81%) of observed yield anomalies. Its out-of-sample performance (34%-55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%-84%). But the out-of-sample performance is lower (15%-42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical

  10. Fractional Yields Inferred from Halo and Thick Disk Stars

    Science.gov (United States)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  11. THE INFLUENCE OF FERTILIZATION ON YIELD AND YIELD COMPONENT FORMATION OF SOYBEAN VARIETIES

    Directory of Open Access Journals (Sweden)

    Eva CANDRÁKOVÁ

    2009-03-01

    Full Text Available In 2005 and 2006, the influence of fertilization was investigated on forming of yield components and yield of three soybean varieties in sugar beet growing area. Varieties Korada, Supra and OAC Vision were grown. Number of plants per m2, number of pods per plant, number of seeds in pod, thousand seeds weight, yield of seeds, yield of stems and harvest index were examined. Variants of fertilization: I. non-fertilized control, II. LAV 27 % (40 kg ha-1 net nutrient of N in growing stage of first pair of true leaves unfolded, III. Humix komplet (rate 8 l.ha-1 applied in growing stage of first pair of true leaves unfolded (4 l.ha-1 and in growing stage of first flower buds visible (4 l.ha-1, IV. Humix komplet in rate 8 l.ha-1 applied in growing stage of first pair of true leaves unfolded. The yields of seeds and stems were high significantly influenced by variety, fertilization and year. The significantly highest yield of seeds was achieved by Korada variety (4,04 t.ha-1. Varieties OAC Vision and Supra reached yields in interval 3,74-3,84 t.ha-1. Split rate of Humix komplet (III var significantly influenced yield of seeds and stems. The fertilization have increased weight of seeds in proportion to aboveground phyto-mass weight, what was expressed by harvest index.

  12. Direct calibration of the yield of nuclear explosion

    International Nuclear Information System (INIS)

    Nakanishi, K.; Nikolayev, A.

    1994-06-01

    The determination of the power of underground nuclear explosions (UNE) is of great significance. The seismic method of UNE yield determination allows monitoring at large distances, but is less precise than local monitoring methods. A way is proposed to calibrate UNE based on the idea of the vibroseis method in which powerful vibrators are used to produce seismic waves in the UNE epicenter; UNE calibration is carried out by comparison of the vibroseis record with a UNE seismogram. Results of preliminary work on the problem are presented. It is based on experience with vibrosounding of the Earth as well as earthquakes and chemical and nuclear explosions wave field structure studies. It is concluded that UNE calibration with the aid of seismic vibrators is both possible and expedient

  13. Atributos químicos do solo, crescimento radicular e produtividade do arroz de acordo com a aplicação de escórias Soil chemical attributes, root growth and rice yield according to slag application

    Directory of Open Access Journals (Sweden)

    Juliana Garcia Carvalho-Pupatto

    2004-12-01

    Full Text Available Resíduos industriais são fontes alternativas de nutrientes para as plantas e sua utilização decorre da necessidade de diminuir o acúmulo dos resíduos nos centros de produção. O objetivo deste trabalho foi avaliar o efeito de escórias de siderurgia nos atributos químicos do solo, no desenvolvimento e na produtividade de grãos do arroz de terras altas irrigado por aspersão. O delineamento experimental foi em blocos casualizados, com três tratamentos constituídos de duas escórias, alto-forno (196 g kg-1 de Si e aciaria (56 g kg-1 de Si, e a testemunha sem aplicação, com oito repetições. As escórias podem ser usadas como corretivo de acidez do solo e como fonte de silício. As alterações nos atributos químicos do solo estão relacionadas com a composição química das escórias. A escória de alto-forno proporcionou maior crescimento radicular em profundidade e melhor distribuição no perfil do solo e, conseqüentemente, maior produção de massa de matéria seca da parte aérea e produtividade de grãos de arroz.Use of industrial residues as alternative sources of nutrients to the plants is due to the necessity of reducing their accumulation in the production sites. The objective of this work was to evaluate the effect of metallurgy slag in soil chemical attributes, in development and in grain yield of upland rice sprinkler irrigated. The experiment was carried out in a randomized block design, with three treatments constituted by two scums, blast furnace (196 g kg-1 of Si and steel slag (56 g kg-1 of Si, and a control without application, with eight replications. The scums can be used as corrective of soil acidity and silicon source. Alterations in the soil chemical attributes are related to the chemical composition of the scums. Blast furnace slag resulted in higher root growth in depth and better distribution in the profile soil provides higher shoot dry matter yield and grain yield.

  14. Initial growth and yield structure of selected cultivars of cranberry (Vaccinium macrocarpon Ait. cultivated on mineral soils

    Directory of Open Access Journals (Sweden)

    Szwonek Eugeniusz

    2016-06-01

    Full Text Available A study was conducted to evaluate the possibility of cranberry cultivation on mineral soils and to assess the influence of vegetative biomass development, generative growth and yield components on the yielding of three cranberry cultivars originating in the USA (Stevens, Pilgrim and Ben Lear at two locations in Poland. The key biometrical traits involved in yield formation were taken into account, and the soil and plant chemical conditions were evaluated. All of the measured biometrical characteristics were strongly influenced by the location and the year of cultivation, and varietal differences were also noted. The most important determinants that explained yield variation were: the number of uprights per square meter, floral induction and berry set. However, the participation of each component in yield variation was strongly affected by the location, age of plantation and to a minor extent by the cultivar. The study confirmed the possibility of cranberry cultivation on mineral soils with a low pH. The biggest average yield of the three years was collected from cv. Stevens as cultivated on sandy soil in contrast to the same cultivar grown on sandy loam soil. In the case of sandy loam soil after acidification, cv. Pilgrim appeared to be a relatively better yielding cultivar.

  15. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.

    Science.gov (United States)

    Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A

    2012-10-04

    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.

  16. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  17. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  18. Effects of application boron on yields, yield component and oil ...

    African Journals Online (AJOL)

    The study was conducted to investigate the effects of five boron (B) doses; 0, 2.5, 5.0, 7.5 and 10.0 kg B ha-1 in B-deficient calcareous soils on yield and some yield components of four sunflower genotypes. Genotypes have shown variations with respect to their responses to B applications. AS-615 and Coban had the ...

  19. Influence of Inter and Intra-rows Spacing on Yield and Yield ...

    African Journals Online (AJOL)

    Abyssinia

    yield and yield components of fresh market(Bishola) and processing (Cochoro) tomato cultivars. ... row spacing had a significant effect on plan canopy width, above ground dry biomass, ... Poor varietal performance and management practices that includeinter and intra-row spacing ..... of assimilate export from the leaves.

  20. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  1. Soybean root growth and crop yield in reponse to liming at the beginning of a no-tillage system

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2014-02-01

    Full Text Available Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation, soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity and plant parameters (root growth system, soybean grain yield, and oat dry matter production were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.

  2. Development of Green and Sustainable Chemical Reactions

    DEFF Research Database (Denmark)

    Taarning, Esben

    Abstract This thesis entitled Development of Green and Sustainable Chemical Reactions is divided into six chapters involving topics and projects related to green and sustainable chemistry. The chapters can be read independently, however a few concepts and some background information is introduced...... as well as the possibility for establishing a renewable chemical industry is discussed. The development of a procedure for using unsaturated aldehydes as olefin synthons in the Diels- Alder reaction is described in chapter three. This procedure affords good yields of the desired Diels- Alder adducts...... in chapter one and two which can be helpful to know when reading the subsequent chapters. The first chapter is an introduction into the fundamentals of green and sustainable chemistry. The second chapter gives an overview of some of the most promising methods to produce value added chemicals from biomass...

  3. Determination of yields of gaseous products of carbohydrates radiolysis by mass spectrometry method. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivko, A A; Gol' din, S I; Bondarenko, N T; Markevich, S V; Sharpatii, V A [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1977-01-01

    Possible complications are treated involved in the mass spectral study of the radiolytic products of deuterated carbohydrates. A method is proposed suitable for the evaluation of hydrogen isotopes relations and the content of deuterium in water. It has been possible to identify the major gaseous radiolytic products of glucose, polyglucan and dextran, and also to assess their radiation-chemical yields.

  4. Effect of catalyst preparation on the yield of carbon nanotube growth

    International Nuclear Information System (INIS)

    Escobar, Mariano; Rubiolo, Gerardo; Candal, Roberto; Goyanes, Silvia

    2009-01-01

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 deg. C) and then treated at 450 deg. C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 deg. C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 deg. C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 deg. C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25-40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

  5. Effect of catalyst preparation on the yield of carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano, E-mail: mescobar@df.uba.a [Dep. Quimica Inorganica, Analitica y Quimica Fisica, FCEyN, UBA, Ciudad Universitaria (1428), Bs As (Argentina); LP and MC, Dep. Fisica, FCEyN, UBA (Argentina); Rubiolo, Gerardo [Unidad de Actividad Materiales, CNEA, Av Gral Paz 1499, San Martin (1650), Bs As (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Candal, Roberto [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Fisico-quimica de Materiales, Ambiente y Energia (INQUIMAE), CONICET - UBA (Argentina); Goyanes, Silvia [LP and MC, Dep. Fisica, FCEyN, UBA (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2009-10-01

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 deg. C) and then treated at 450 deg. C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 deg. C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 deg. C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 deg. C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25-40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

  6. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    Science.gov (United States)

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar

  7. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  8. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  9. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries

    International Nuclear Information System (INIS)

    Liu, J.B.; Johnson, D.D.; Smirnov, A.V.

    2005-01-01

    The L1 2 -based pseudo-binary (Ni 1-c Fe c ) 3 Ge is an ideal system to study yield-strength anomaly and its origin as it has a solid-solution phase vs. c and Ni 3 Ge exhibits an anomaly while Fe 3 Ge does not. Using two ab initio electronic-structure techniques, we calculate the planar-fault energies on the γ-surface, i.e., antiphase boundaries (APB) and stacking faults, both complex and superlattice intrinsic (SISF), for (Ni 1-c Fe c ) 3 Ge as a function of c. Generally, we use the fault energies combined with elasticity theory to predict occurrence/loss of the yield-strength anomaly and show that the loss of anomaly occurs due to APB(1 1 1)-to-SISF(1 1 1) instability. Assessing the stability of APB(1 1 1) on the γ-surface within linear elasticity theory, we predict the transition from anomalous to normal temperature dependence of yield strength for c ∼≥ 0.35 (or 26 at.% Fe), as is observed, after which type-II, rather than type-I, dissociation is energetically favorable. Hence, first-principles calculations can predict reliably the existence/loss of anomalous yield-strength. Finally, we show that (0 0 1) and (1 1 1) APB energies of the binaries and pseudo-binaries agree quantitatively with measured values when chemical antisite disorder, intrinsic to the samples characterized, is included, whereas they are too large by a factor of two in perfect L1 2 . We investigate three types of disorder: thermal and off-stoichiometric antisites, as well as chemical disorder vs. Fe-content in pseudo-binaries

  10. Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion

    International Nuclear Information System (INIS)

    Qin, Jiang; Cheng, Kunlin; Zhang, Silong; Zhang, Duo; Bao, Wen; Han, Jiecai

    2016-01-01

    The working process of scramjet with regenerative cooling, which was actually the chemical recuperation process, was analyzed in view of energy cascade utilization. The indirect combustion was realized through pyrolysis reaction of fuel. The relative yields of thermal exergy obtained by indirect combustion have been predicted both assuming an ideal pyrolysis reaction and using the experimental results of thermal pyrolysis of n-decane. The results showed that the influence mechanism of regenerative cooling improved the scramjet engine performance by the energy cascade utilization, and the combustion process was supposed to be designed with the cooling process together to utilize the chemical energy of fuel in a more effective way. A maximum value of 11% of the relative yield was obtained with the ideal pyrolysis reaction while a value less than 3% existed in the thermal pyrolysis experiments because of the domination of chemical kinetics rather than chemical thermodynamics in the real experiments. In spite of the difference between the ideal and the present experimental results, the indirect combustion was prospective to achieve a better energy cascade utilization in a chemically recuperated scramjet if the pyrolysis reaction was further optimized. The results in this paper were beneficial for the performance optimization of a regenerative cooling scramjet. - Highlights: • A new method of energy cascade utilization in a chemically recuperated scramjet. • 11% exergy loss is reduced by ideal pyrolysis reaction with indirect combustion. • Regenerative cooling with chemical recuperation can improve engine performance.

  11. Effects of heterosis for yield and yield components obtained by crossing divergent alfalfa populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available When breeding alfalfa for yield performance, it is necessary to use high-yielding parents obtained by different breeding methods. The assumption at the onset of this research was that crossing highest-yielding domestic cultivars with divergent populations from geographically distant breeding centers could result in the expression of heterotic effects in their hybrids contributing to increased alfalfa yield. The objective of this study was to determine yield and yield components and heterotic effects in hybrid progenies obtained by crossing the domestic cultivars NS Banat ZMS II and NS Mediana ZMS V with the cultivars Pella, Dolichi and Hyliki from Greece, UMSS 2001 from Bolivia and Jogeva 118 from Estonia in two series. The field trial planted in 2006, included 13 F1 hybrids and 6 of 7 initial parents in both series. Heterotic effects for yields of forage and hay were observed in 4 combinations (C NS Banat ZMS II x E Hyliki; C NS Banat ZMS II x E UMSS 2001; C NS Mediana ZMS V x E Hyliki; C NS Mediana ZMS V x E Dolichi. The populations that exhibited heterosis in a set of crossings are recommended for use as parent components for development of high-yielding synthetic alfalfa cultivars. .

  12. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Increasing the biogas yield of manure by wet explosion of the digested fiber fraction

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    digested manure fibers from the effluent of an anaerobic digester for enhancing biogas production and exploring the untapped biomass potential. The increase in methane yield of the digested manure fibers was investigated by applying the WEx treatment under 5 different process conditions. The pretreatment......Increasing the biodegradability of the lignocellulosic fiber fraction of manure can ensure higher methane productivity in biogas plants, leading to process profitability and thus larger production of renewable energy. A new pretreatment method, wet explosion (WEx), was investigated to treat...... condition of 180 ºC and a retention time of 10 minutes without addition of chemicals was found to be optimal, resulting in 136% increase in methane yield as compared to the untreated digested manure fibers....

  14. Statistical Evaluations of Variations in Dairy Cows’ Milk Yields as a Precursor of Earthquakes

    Science.gov (United States)

    Yamauchi, Hiroyuki; Hayakawa, Masashi; Asano, Tomokazu; Ohtani, Nobuyo; Ohta, Mitsuaki

    2017-01-01

    Simple Summary There are many reports of abnormal changes occurring in various natural systems prior to earthquakes. Unusual animal behavior is one of these abnormalities; however, there are few objective indicators and to date, reliability has remained uncertain. We found that milk yields of dairy cows decreased prior to an earthquake in our previous case study. In this study, we examined the reliability of decreases in milk yields as a precursor for earthquakes using long-term observation data. In the results, milk yields decreased approximately three weeks before earthquakes. We have come to the conclusion that dairy cow milk yields have applicability as an objectively observable unusual animal behavior prior to earthquakes, and dairy cows respond to some physical or chemical precursors of earthquakes. Abstract Previous studies have provided quantitative data regarding unusual animal behavior prior to earthquakes; however, few studies include long-term, observational data. Our previous study revealed that the milk yields of dairy cows decreased prior to an extremely large earthquake. To clarify whether the milk yields decrease prior to earthquakes, we examined the relationship between earthquakes of various magnitudes and daily milk yields. The observation period was one year. In the results, cross-correlation analyses revealed a significant negative correlation between earthquake occurrence and milk yields approximately three weeks beforehand. Approximately a week and a half beforehand, a positive correlation was revealed, and the correlation gradually receded to zero as the day of the earthquake approached. Future studies that use data from a longer observation period are needed because this study only considered ten earthquakes and therefore does not have strong statistical power. Additionally, we compared the milk yields with the subionospheric very low frequency/low frequency (VLF/LF) propagation data indicating ionospheric perturbations. The results showed

  15. Use of nuclear and biotechnological tools for improving crop yield

    International Nuclear Information System (INIS)

    Mukherjee, Prasun K.; Venugopalan, V.P.

    2017-01-01

    Crop improvement, crop production and crop protection are the three pillars of agriculture. Optimum yield can be achieved only by cultivating the best available variety coupled with good agronomic practices and robust plant protection (from pests and diseases). Depletion of soil organic matter has become a serious problem, especially in the post-green revolution era, due to the cultivation of nutrient-exhausting, high yielding crop varieties with intensive chemical inputs. Soil organic matter is crucial not only for restoring soil physical properties, but also to sustain the soil flora and fauna that are involved in nutrient cycling. Depletion of cattle population has resulted in less availability of manures. In order to assess the soil health and extent of carbon depletion, we have developed a user-friendly kit for in situ soil organic carbon detection. This technology has been transferred to six companies and many products are already available in the market. This technology has been adopted by CIFAL (Sweden), an FAO -backed NGO for imparting training to the farmers in African countries

  16. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  17. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Directory of Open Access Journals (Sweden)

    Xiaofei Tian

    Full Text Available Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N, and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  18. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Science.gov (United States)

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  19. Sugarcane trash management assessed by the interaction of yield with soil properties

    Directory of Open Access Journals (Sweden)

    Flávio Carlos Dalchiavon

    2013-12-01

    Full Text Available Currently, sugarcane plays an important global role, particularly with a view to alternative energy sources. Thus, in a sugarcane field of the mill Vale do Paraná S/A Álcool e Açúcar, Rubineia, São Paulo State, managed under two green cane harvest systems (cane trash left on and cane trash removed from the soil, Pearson and spatial correlations between the sugarcane yield (variety RB855035 in the third cut and soil physical and chemical properties were studied to identify the property best correlated with stalk yield and the best harvest method. For this purpose, two geostatistical grids (121 sampling points on 1.30 ha were installed on a eutrophic Red Argisol (homogeneous slope of 0.065 m m-1, in 2011, to determine the properties: stalk yield and sugarcane plant population, and soil resistance to penetration, gravimetric moisture, bulk density, and carbon stock, in the layers 0-0.20 and 0.20-0.40 m. The data were analyzed by descriptive, linear correlation and geostatistical analysis. In both treatments, the property stand density was best correlated with sugarcane yield (r = 0.725 in the trash mulching treatment - TM and r = 0.769 in the trash removal treatment - TR. However, in relation to the soil properties, bulk density (0-0.20 m was best correlated (r = 0.305 in TM, r = 0.211 in TR. Similarly, from the spatial point of view, stand density was the property that best explained the sugarcane yield. However, in the TM treatment the density (0.20-0.40 m was the only soil property spatially correlated with stalk yield. The carbon stock in the soil of the TM was 11.5 % higher than in the TR treatment. Results of the TM treatment were best, also with regard to soil management and conservation.

  20. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  1. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1985-01-01

    Previous studies of radiation induced chemical reactions of CO-H 2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H 2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H 2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH 3 ) and radical scavenger (O 2 ) on the products yields were also carried out on the CO-H 2 -CH 4 mixture. (author)

  2. Comparing milk yield, chemical properties and somatic cell count from organic and conventional mountain farming systems

    Directory of Open Access Journals (Sweden)

    Marcello Bianchi

    2010-01-01

    Full Text Available A study was undertaken to investigate the effects of farming systems (organic vs. conventional, diet (hay/concentrate vs. pasture and their interaction on milk yield, gross composition and fatty acid (FA profile of dairy cows bred in mountainous areas. For this purpose four dairy farms (two organic and two conventional were chosen in the alpine territory of Aosta Valley (NW Italy; individual milk yield was recorded daily and bulk milk samples were collected monthly from February to September 2007 to cover dietary variations. Higher levels of milk production (P<0.05 and lower milk protein amounts (P<0.01 were observed in the organic farms with respect to the conventional ones, while no significant differences were noticed in milk fat and lactose contents and in somatic cell count. Concerning fatty acids, only small differences were detected between organic and conventional milk and such differences seemed to be related mainly to the stabled period. Diet affected almost all variables studied: pasture feeding provided a significant improvement in the fatty acid composition in both organic and conventional systems leading to lower hypercholesterolemic saturated fatty acids, higher mono- and polyunsaturated fatty acids and conjugated linoleic acid amounts (P<0.001.

  3. Pretreatments for converting wood into paper and chemicals

    Science.gov (United States)

    William R. Kenealy; Carl J. Houtman; Jose Laplaza; Thomas W. Jeffries; Eric G. Horn

    2007-01-01

    Biorefining wood into paper and chemicals is not as easy as making a single traditional paper product. Paper is made from the cellulose- containing fractions of wood and processing may remove lignin and hemicellulose components. The yield and composition of the product depend upon the type of paper being produced. The paper process often alters the noncellulose...

  4. Wheat yield and physical properties of a brown latosol under no-tillage in south-central Paraná

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Kramer

    2013-10-01

    Full Text Available Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT. The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006, wheat (2007 and maize (2009 of a plot (150 ha, zones with higher and lower yield potential (Z1 and Z2, respectively were identified. Sampling grids with 16 units (50 x 50 m and three sampling points per unit were established. The wheat grain yield (GY and water infiltration capacity (WIC were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg levels and the latter to determine soil bulk density (BD, total porosity (TP, macroporosity (Mac, and microporosity (Mic. Soil penetration resistance (PR and water content (SWC were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 % than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between

  5. Susceptibility based upon Chemical Interaction with Disease ...

    Science.gov (United States)

    One of the challenges facing toxicology and risk assessment is that numerous host and environmental factors may modulate vulnerability and risk. An area of increasing interest is the potential for chemicals to interact with background aging and disease processes, an interaction that may yield cumulative damage, altered chemical potency, and increased disease incidence. This review outlines the interactions possible between chemicals and background disease and identifies the type of information needed to evaluate such interactions. Key among these is the existence of a clinically relevant and easy to measure biomarker of disease risk which allows the identification of vulnerable individuals based upon the level of risk biomarker. The impact of toxic chemicals on this biomarker can then be used to predict how the chemical modifies disease risk as long as related mechanistic and toxicological data are consistent with toxicant effect on the disease process. Several case studies are briefly presented which describe the toxic chemical, the clinical biomarker and the impacted disease including: fine particulate matter/decreased heart rate variability/increased cardiopulmonary events; cadmium/decreased glomerular filtration rate/increased chronic kidney disease; methyl mercury/decreased paraoxonase-1/increased cardiovascular risk; trichloroethylene/increased anti-nuclear antibody/autoimmunity; dioxin/increased CYP1A1/hypertension. These case studies point o

  6. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  7. Wood anatomical and chemical properties related to the pulpability ...

    African Journals Online (AJOL)

    Eucalyptus globulus is one of the most important hardwood species used by the pulp and paper industry due to its high pulp yield, high wood density, excellent fibre quality and good handsheet properties. However, the wood is a highly variable and complex material that has different chemical, physical and anatomical ...

  8. Effect of Chemical Refining on Citrullus Colocynthis and Pongamia ...

    African Journals Online (AJOL)

    Oil from the both plant seeds was evaluated (both before and after refining) for different physico-chemical parameters like free fatty acids, iodine value, peroxide value, saponification value, unsaponifiable matter and fatty acid composition. Oil yield (30-35 %) in both plants was found average. After refining, per cent reduction ...

  9. Effect of sulfur and iron fertilizers on yield, yield components and ...

    African Journals Online (AJOL)

    Jane

    2011-06-13

    Jun 13, 2011 ... per plant. Interaction between water stress and combination of iron and sulfur fertilizers had significant .... Results of analysis of variance (ANOVA) of water stress (W), sulfur (B) and iron (C), and their interaction with gain yield, yield components and ... the soil structure and it increased the usefulness of other.

  10. Effect of water stress on yield and yield components of sunflower ...

    African Journals Online (AJOL)

    A field experiment during year 2009 was conducted in the research station of the University of Tehran, College of Abouraihan in Pakdasht region, Iran. The study was aimed to investigate the effect of water stress on seed yield, yield component and some quantitative traits of four sunflower hybrids namely Azargol, Alstar, ...

  11. Path coefficient and correlation of yield and yield associated traits in candidate bread wheat (triticum aestivum l)lines

    International Nuclear Information System (INIS)

    Muhammad, T.; Haider, S.; Qureshi, M. J.; Shah, G. S.; Zamir, R.

    2005-01-01

    Yield and yield contributing traits were studied in candidate bread wheat lines to find out the genetic contribution of the different characters towards grain yield at NIFA, Peshawar during 2001-02. All the characteristics studied differed significantly from each other. Days to heading showed negative and significant correlation with harvest index and grain yield but was negative and non-significant with the biological yield. Days to maturity were negatively correlated at both genotypic and phenotypic levels with biological yield; harvest index and grain yield and level of correlations were significant with harvest index and grain yield. Plant height showed negative genotypic and phenotypic correlation with harvest index and grain yield. Biological yield had positive and significant genotypic and phenotypic correlations with harvest index and grain yield. Harvest index had positive and highly significant genotypic and phenotypic correlation with grain yield. Genotypic and phenotypic correlation coefficients revealed that important characters influencing grain yield are harvest index and biological yield. Path analysis showed the importance in order of harvest index, biological yield, plant height, days to maturity and days to heading with grain yield. (author)

  12. Radiation chemical yields for formation of molecular hydrogen in alcohols based on the cyclohexane ring

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Kovalev, G.V.

    1989-01-01

    Within the framework of the general problem of studying the radiolysis mechanism for alcohols based on the cyclohexane ring, we have determined the yields of molecular hydrogen in γ-irradiated cyclohexanol, 1,2-cis- and 1,2-trans-cyclohexanediols, and inositol (cyclohexanehexol). The cyclohexanol and also powders of the polyols were placed into ampuls, deaerated in a vacuum apparatus and irradiated with 60 Co γ-rays at 77 K and 293 K. After irradiation, the samples were heated up to 373 K (the polyol crystals were heated until melting) and the hydrogen evolved from the liquid phase was determined by gas chromatography

  13. Engineering cell factories for producing building block chemicals for bio-polymer synthesis

    OpenAIRE

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-01

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineerin...

  14. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    Science.gov (United States)

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimization of Application of Nitrogen Fertilizers for Growth and Yield of Forage Sorghum under Low-Input and Conventional Farming Systems

    Directory of Open Access Journals (Sweden)

    M. Pourazizi

    2013-10-01

    Full Text Available In order to maintain sustainable agriculture and prevent excessive use of chemical fertilizers, supplying part of the plant needs by organic fertilizers is necessary. In this respect, effects of nitrogen (N source and rate on yield and yield components of forage sorghum was evaluated as a factorial experiment arranged in randomized complete blocks design with three replications at the Research Farm of Shahrekord University in 2010. Treatments consisted of three N sources (urea fertilizer, cow manure and equal combination of urea fertilizer + cow manure and three N levels 80, 160 and 240 kg/ha N, equivalent to 174, 348 and 522 kg/ha urea and 26.2, 52.5 and 78.7 Mg/ha of cow manure and equal combination of urea fertilizer + cow manure at each nitrogen level, respectively. The results showed that increase of N utilization, with increase in leaf, stem and panicle weights and stem diameter, caused a linear increase of forage yield in urea fertilizer and cow manure treatments and a quadratic increase in the combined fertilizer. The highest leaf, stem and panicle weight (600, 3789 and 823 g/m2 and also fresh forage yield (44 Mg/ha were observed in 240 kg/ha N treatment in combined treatment. But, there was no significant difference in forage yield between this treatment and the 160 kg/ha N treatment. Overall, the results indicated that the potential of sorghum production can be increased by conjunctive use of animal manure and chemical fertilizers, even in low levels of these fertilizers, or low-input agriculture.

  16. Seed yield and some yield components of sesame as affected by ...

    African Journals Online (AJOL)

    In order to study the effect of different irrigation, N and superabsorbent levels on yield and yield components of sesame, a field experiment was conducted in Khosf Region, Birjand, Iran in 2009 as a split-split plot design based on a randomized complete block design. The treatments included irrigation interval at three levels ...

  17. Study to establish cost projections for production of Redox chemicals

    Science.gov (United States)

    Walther, J. F.; Greco, C. C.; Rusinko, R. N.; Wadsworth, A. L., III

    1982-01-01

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  18. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  19. Influences of nitrogen and potassium top dressing on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... (K) top dressing on grain yield and yield components of rice (Oryza sativa cv. Tarrom) and to ... positive reciprocal effect on crops, and was an important approach in ..... dressing fertilization (Figures 2a, b and c), but nitrogen levels of upper fully .... (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant Soil ...

  20. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... average yield of wheat in China is 4.75 t ha-1, which is low compared to other .... Analysis of variance for combining ability for grain yield plant-1. Source of variation ..... Hayman BI (1954). The theory and analysis of diallel crosses. .... Analysis and prospect of China wheat market in 2011. Food and Oil.

  1. Effect of Biofertilizers on the Yield and Yield Components of Black Cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    S Khorramdel

    2011-02-01

    Full Text Available Abstract Application of biological fertilizers is one of the most important methods for plant nutrition in ecological agriculture. In order to investigate the effect of biofertilizers on yield and yield components of black cumin (Nigella sativa L., a field experiment was arranged in a randomized complete block design with three replications during 2007 growing season at the Agricultural Research Station of Ferdowsi University of Mashhad. Treatments included: (A Azotobacter paspali, (B Azospirillum brasilense, (C the fungus of Glomus intraradaices, C+A, C+B, A+B, A+B+C, and control without no biofertilizers. In all treatments except control, the amounts of 15 mg of each biofertilizer were applied to 110 g of seeds. Results indicated that application of biofertilizers enhanced yield and yield components and decreased percentage of hollow capsules. Plant performance was better with application of Azospirillum plus mycorrhiza and a mixture of Azotobacter, Azospirillum and mycorrhiza in terms of yield determining criteria. The maximum and minimum amounts of seed yield were recorded in the B+C treatment with 41.4 gm-2, and control with 24.1 gm-2, respectively. There was no significant correlation between number of capsules per plant and seed yield, but the positive and significant correlation between number of branches per plant, number of seeds per capsule, 1000-seed weight and seed yield was observed. This study showed that application of suitable biofertilizers could increase yield and yield components of black cumin. Keywords: Biofertilizer, Ecological agriculture, Medicinal plants, Plant growth promoting rhizobacteria

  2. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Wahl, A.C.

    2002-01-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z F = 90 thru 98, mass number A F = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  4. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  5. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  6. Locational variation in green fodder yield, dry matter yield, and forage quality of sorghum

    International Nuclear Information System (INIS)

    Hussain, A.; Khan, S.; Mohammad, D.

    2007-01-01

    The present study was designed to find out the variations in for- age yield and quality of sorghum as affected by different environments. The three agroecological zones viz., Agricultural Research Institute (ARI), Sariab, Quetta, Ayub Agricultural Research Institute (AARI), Faisalabad and National Agricultural Research Centre (NARC), Islamabad were selected on the basis of different physiography, geology, temperature, and climate and water availability. Crude protein contents, varied from 6.98 to 8.02 percent, crude fibre contents from 30.84 to 31.68 percent, green fodder yield from 38.91 to 50.64 t/ha and dry matter yield from 8.92 to 10.17 t/ha at the three diverse locations. Maximum crude protein and crude fibre contents were obtained at NARC, Islamabad and AARI, Faisalabad. Maximum green fodder and dry matter yields were also observed at NARC, Islamabad and AARI, Faisalabad. It was also noted that the same genotypes showed differential response when planted under the diverse environments for green fodder yield, dry matter yield, crude protein and crude fibre contents. Therefore, it was concluded that these differences in forage yield and quality traits under diverse environments were due to differences in soil types, soil fertility, temperature, rain- fall and other climatic conditions. (author)

  7. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  8. Tillage, fertilization systems and chemical attributes of a Paleudult

    Directory of Open Access Journals (Sweden)

    Evelyn Penedo Dorneles

    2015-02-01

    Full Text Available Tillage and fertilization methods may affect soil fertility. With the aim of assessing changes in soil chemical properties over a period of ten years, soil samples of a Paleudult were collected over nine seasons at three layer depths (0-5, 5-10, 10-20 cm and were chemically analyzed. Grain yield and nutrient export in two summer crops, soybean (Glycine max and corn (Zea mays, in a field experiment set in Eldorado do Sul, in the state of Rio Grande do Sul, Brazil, were determined. Three soil tillage systems were evaluated, conventional (CT, reduced (RT and no-tillage (NT, combined with mineral (lime and fertilizers and organic (poultry litter fertilization. The no-tillage system stood out as compared to the others, especially in the surface layer, in terms of values of organic matter, soil pH, available phosphorus, cation exchange capacity and base saturation. Phosphorus content was higher under organic than mineral fertilization due to the criteria used for the establishment of fertilizer doses. Under organic fertilization, soil pH values were similar to those obtained in limed soil samples because of the cumulative effect of the organic fertilizer. Soybean yield was lower under NT in comparison to the RT and CT systems. Consequently, soybean grain exported a lower content of nutrients than maize grain. Maize yield was not affected by either tillage or fertilization systems.

  9. Customization of copolymers to optimize selectivity and yield in polymer-driven antibody purification processes.

    Science.gov (United States)

    Capito, Florian; Skudas, Romas; Stanislawski, Bernd; Kolmar, Harald

    2013-01-01

    This manuscript describes customization of copolymers to be used for polymer-driven protein purification in bioprocessing. To understand how copolymer customization can be used for fine-tuning, precipitation behavior was analyzed for five target antibodies (mAbs) and BSA as model impurity protein, at ionic strength similar to undiluted cell culture fluid. In contrast to the use of standardized homopolymers, customized copolymers, composed of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and 4-(acryloylamino)benzoic acid (ABZ), exhibited antibody precipitation yields exceeding 90%. Additionally, copolymer average molecular weight (Mw ) was varied and its influence on precipitation yield and contaminant coprecipitation was investigated. Results revealed copolymer composition as the major driving force for precipitation selectivity, which was also dependent on protein hydrophobicity. By adjusting ABZ content and Mw of the precipitant for each of the mAbs, conditions were found that allowed for high precipitation yield and selectivity. These findings may open up new avenues for using polymers in antibody purification processes. © 2013 American Institute of Chemical Engineers.

  10. Genetic analysis of yield and yield components in Oryza sativa x ...

    African Journals Online (AJOL)

    ... inheritance of yield and yield components and to estimate the heritabilities of important quantitative traits in rice (Oryza sativa L.). Six generations viz., P1, P2, F1, F2, BCP1 and BCP2 of a cross between IET6279 and IR70445-146-3-3 were used for the study. Generation mean analysis suggested that additive effects had a ...

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The chemical reaction of PtII(L1)Cl2 [L1 = 2-(phenylazo)pyridine] with a bidentate N,S-donor atom ligand, 2-phenylthioaniline, (HL2) in alkaline acetonitrile yielded a mixed ligand donor acceptor complex, [PtII(L1)(L2)−]Cl, [1]Cl. The complex has been characterized by using a host of physical methods: X-ray crystallography, ...

  12. Helicity dependence of the {gamma}{yields}p{yields}{yields}n{pi}{sup +}{pi}{sup 0} reaction in the second resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Altieri, S.; Annand, J.R.M.; Anton, G.; Arends, H.-J.; Aulenbacher, K.; Beck, R.; Bradtke, C.; Braghieri, A.; Degrande, N.; D' Hose, N.; Dutz, H.; Goertz, S.; Grabmayr, P.; Hansen, K.; Harmsen, J.; Harrach, D. von; Hasegawa, S.; Hasegawa, T.; Heid, E.; Helbing, K.; Holvoet, H.; Van Hoorebeke, L.; Horikawa, N.; Iwata, T.; Jahn, O.; Jennewein, P.; Kageya, T.; Kiel, B.; Klein, F.; Kondratiev, R.; Kossert, K.; Krimmer, J.; Lang, M.; Lannoy, B.; Leukel, R.; Lisin, V.; Matsuda, T.; McGeorge, J.C.; Meier, A.; Menze, D.; Meyer, W.; Michel, T.; Naumann, J.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Preobrajenski, I.; Radtke, E.; Reichert, E.; Reicherz, G.; Rohlof, Ch.; Rosner, G.; Rostomyan, T.; Rovelli, C.; Ryckbosch, D.; Sauer, M.; Schoch, B.; Schumacher, M.; Seitz, B.; Speckner, T.; Takabayashi, N.; Tamas, G.; Thomas, A.; Vyver, R. van de; Wakai, A.; Weihofen, W.; Wissmann, F.; Zapadtka, F.; Zeitler, G

    2003-01-02

    The helicity dependence of the total cross section for the {gamma}{yields}p{yields}{yields}n{pi}{sup +}{pi}{sup 0} reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement was performed with the large acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, due to the intermediate production of the D{sub 13} resonance.

  13. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass.

    Science.gov (United States)

    Kim, Sun Min; Dien, Bruce S; Singh, Vijay

    2016-01-01

    Production of advanced biofuels from woody and herbaceous feedstocks is moving into commercialization. Biomass needs to be pretreated to overcome the physicochemical properties of biomass that hinder enzyme accessibility, impeding the conversion of the plant cell walls to fermentable sugars. Pretreatment also remains one of the most costly unit operations in the process and among the most critical because it is the source of chemicals that inhibit enzymes and microorganisms and largely determines enzyme loading and sugar yields. Pretreatments are categorized into hydrothermal (aqueous)/chemical, physical, and biological pretreatments, and the mechanistic details of which are briefly outlined in this review. To leverage the synergistic effects of different pretreatment methods, conducting two or more pretreatments consecutively has gained attention. Especially, combining hydrothermal/chemical pretreatment and mechanical refining, a type of physical pretreatment, has the potential to be applied to an industrial plant. Here, the effects of the combined pretreatment (combined hydrothermal/chemical pretreatment and mechanical refining) on energy consumption, physical structure, sugar yields, and enzyme dosage are summarized.

  14. Effects of Lignocellulosic Compounds on the Yield, Nanostructure and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Broström, Markus; Kling, Jens

    reactor. The specific objectives of this study were to: (1) obtain knowledge about lignocellulosic compounds and monolignols influence on the yield, nanostructure, composition, and reactivity of soot during high-temperature gasification, (2) understand the influence of Soxhlet extraction on the soot......Gasification offers the utilization of biomass to a wide variety of applications such as heat, electricity, chemicals and transport fuels in an efficient and sustainable manner. High soot yields in the high-temperature entrained flow gasification lead to intensive gas cleaning and can cause...... primary, secondary and teriary pyrolysis products such as organic acids, aldehydes and phenolics [1]. In this study, therefore, the impacts of lignocellulosic compounds and monolignols (syringol, guaiacol, p-hydroxyphenol) on the yield and characteristics of soot were investigated at 1250°C in a drop tube...

  15. Biogas generation in landfills. Equilibria, rates and yields

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M

    1997-05-01

    Landfilling in `cells` has become more common in recent years. Different waste streams are guided to different cells, among which the biocell is a landfill designed for biogas production. In this thesis, the dependence of biogas generation on waste composition was investigated. Six 8,000 m{sup 3} test cells, with contents ranging from mainly commercial waste to pure domestic waste and equipped with gas extraction systems and bottom plastic liners, were monitored for seven years. Great emphasis was given to the characterization of conversion processes and governing mechanism in the topics of bio-energetics, kinetics and capacities. A thermodynamic model, in which the oxidations of volatile fatty acids (VFA) (2yields (in this study found to be 150-200 and 40-70 Nm{sup 3}/dry tonne, respectively), the possible nutritional limitation was investigated. Pools and emissions of chemical oxygen demand, N, P and K were quantified. Biomass pools were estimated from methane yields, growth yield coefficients, and bacterial mineral contents. However, results from commercial waste test cells showed that the assimilation of P exceeded the refuse content, which suggests the turnover of microbial biomass and questions the notion of nutritional limitation. In sum, the results showed that the advantages of a reduced content of readily biodegradable material, achieved by guidance or pretreatment, encompass several aspects of the performance. 84 refs, 6 figs, 1 tab

  16. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    Science.gov (United States)

    Zhao, Haibo [The Woodlands, TX; Holladay, Johnathan E [Kennewick, WA; Zhang, Zongchao C [Norwood, NJ

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  17. Yield surface evolution for columnar ice

    Science.gov (United States)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  18. Chemical processes in neutron capture therapy

    International Nuclear Information System (INIS)

    Brown, B.J.

    1975-01-01

    Research into the radiation chemical effects of neutron capture therapy are described. In the use of neutron capture therapy for the treatment of brain tumours, compounds containing an activatable nuclide are selectively concentrated within tumour tissue and irradiated with neutrons. Target compounds for use in therapy must accumulate selectively in high concentrations in the tumour and must be non toxic to the patient. The most suitable of these are the boron hydrides. Radiation dosages, resulting from neutron capture in normal tissue constituents are tabulated. As part of the program to study the radiation-induced chemical processes undergone by boron target compounds, the radiolytic degredation of boron hydride and phenyl boric acid system was investigated. No direct dependence between the yield of the transient radiolytic species and the concentration of the B-compound was observed. (author)

  19. Chemical composition of essential oils of Eugenia caryophylla and ...

    African Journals Online (AJOL)

    Results: The essential oils obtained yielded of 5.9 for Eugenia caryophylla and 0.2% Mentha sp cf piperita respectively. The chemical composition was assigned by GC and GC/SM and showed that E. caryophylla was mainly composed of eugenol (80.0 %), E-caryophyllene (8.3%), and eugenol acetate (6.7%) while Mentha ...

  20. Photon production in an expanding and chemically equilibrating gluon-enriched plasma

    International Nuclear Information System (INIS)

    Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.; AN Ukrainskoj SSR, Kiev

    1993-12-01

    Photon production in a longitudinally and transversely expanding gluon plasma with initially little quark admixture is considered. Chemical equilibration of quarks and gluons is followed by rate equations. The yields of hard photons with E ≥ 2 GeV are insensitive to chemical equilibration and depend mainly on the initial thermalized state. Medium-energy photons with E ∼ 1 GeV are more frequently produced in case of faster equilibration, despite of faster cooling. For an assumed fast equilibration we follow the evolution of matter through mixed and hadron phases. The transverse momentum kick, due to transverse expansion, of photons from hadron matter is shown to be reduced for an equation of state with reduced latent heat. The photon yield in the region E > 1 GeV from deconfined matter dominates for conditions, estimated to be achieved at RHIC, in case of a weakly first-order confinement transition. (orig.)

  1. A note on hypoplastic yielding

    OpenAIRE

    Nader, José Jorge

    2010-01-01

    This note discusses briefly the definition of yield surface in hypoplasticity in connection with the physical notion of yielding. The relation of yielding with the vanishing of the material time derivative of the stress tensor and the vanishing of the corotational stress rate is investigated.

  2. Interpretation of biomass gasification yields regarding temperature intervals under nitrogen-steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2007-04-15

    Gasification of some agricultural waste biomass samples (sunflower shell, pine cone, cotton refuse, and olive refuse) and colza seed was performed using a thermogravimetric analyzer at temperatures up to 1273 K with a constant heating rate of 20 K/min under a dynamic nitrogen-steam atmosphere. Derivative thermogravimetric analysis profiles of the samples were derived from the non-isothermal thermogravimetric analysis data. Gasification yields of the biomass samples at temperature intervals of 473-553 K, 553-653 K, 653-773 K, 773-973 K, and 973-1173 K were investigated considering the successive stages of ''evolution of carbon oxides'', ''start of hydrocarbon evolution'', ''evolution of hydrocarbons'', ''dissociation'', and ''evolution of hydrogen'', respectively. Although, there were some interactions between these stages, some evident relations were observed between the gasification yields in a given stage and the chemical properties of the parent biomass materials. (author)

  3. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  4. Chemical consequences of the neutron irradiation of ionic antimony oxides and Fe Sb2O4

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1970-01-01

    The chemical consequences fo the neutron irradiation of ionic antimony oxides and Fe Sb2O4 are studied. The nature of the Sb-O2 bond effects the yield of SbV the higher the yield the more covalent the bond. In addition, the Fe Sb2O4 obeys the Maddock's rule.

  5. Effect of Soybean and Wheat as Cover Crops on Corn Yield and Weed Control using Different Fertilizer Sources

    Directory of Open Access Journals (Sweden)

    F. Dadashi

    2016-02-01

    Full Text Available Introduction: According to the importance of corn in supplying the human food directly and indirectly, it is one of the most important plants among crops. One of the major problems in corn production systems, is competition with weeds that reduce corn yield significantly. Weeds not only reduce crop yields but also decrease the commercial quality and the feeding palatability of main crops. They enhance the soil seed bank of weeds, which may cause continuous weed infestation of field crops as well. Herbicide application is a reliable and highly effective method for weed control. However, demand for safe food products that have been produced with a minimum application of chemical inputs is increasing. Therefore, farmers interested in weed management have to rely on other control approaches. An alternative weed control method is the use of cover crops, which can suppress the growth of weeds by preventing them from light and by producing allelopathic compounds. Cover crops successfully have been integrated into conservational agriculture systems in many areas of the world. Legumes are used as cover crop because of their rapid growth, in addition their potential to provide further nitrogen,along with high ability to compete with weeds. Materials and Methods: In order to study the effect of cover crops (soybean and wheat and different fertilizers sources on yield of corn and weed control, a filed experiment was conducted in randomized complete block design with three replications in 2012. Treatments included two cover crop (wheat and soybean and three fertilizer (no fertilizer, chemical fertilizer and compost..Fertilizer treatments was used according to soil analysis and requirement of corn (as a main plant. Weed-infestation and weed-free plots were used as controls. Study cultivars of corn, wheat and soybean were NS-640, Milan and Sari, respectively. Planting of corn was in June and cover crop was planted with corn simultaneously and between corn rows

  6. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    International Nuclear Information System (INIS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-01-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  7. Chemical Entity Recognition and Resolution to ChEBI

    Science.gov (United States)

    Grego, Tiago; Pesquita, Catia; Bastos, Hugo P.; Couto, Francisco M.

    2012-01-01

    Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2–5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks. PMID:25937941

  8. Effects of nitrogen application method and weed control on corn yield and yield components.

    Science.gov (United States)

    Sepahvand, Pariya; Sajedi, Nurali; Mousavi, Seyed Karim; Ghiasvand, Mohsen

    2014-04-01

    The effects of nitrogen fertilizer application and different methods for weed control on yield and yield components of corn was evaluated in Khorramabad in 2011. The experiment was conducted as a split plot based on randomized complete block design in 3 replications. Nitrogen application was as main plot in 4 levels (no nitrogen, broadcasting nitrogen, banding nitrogen and sprayed nitrogen) and methods of weed control were in 4 levels (non-control weeds, application Equip herbicide, once hand control of weeds and application Equip herbicide+once time weeding) was as subplots. Result illustrated that effects of nitrogen fertilizer application were significant on grain and forage yield, 100 seeds weight, harvest index, grain number per row and cob weight per plant. Grain yield increased by 91.4 and 3.9% in application banding and broadcasting for nitrogen fertilizer, respectively, compared to the no fertilizer treatment. The results show improved efficiency of nitrogen utilization by banding application. Grain yield, harvest index, seed rows per cob, seeds per row and cob weight were increased by weed control. In the application of Equip herbicide+ hand weeding treatment corn grain yield was increased 126% in comparison to weedy control. It represents of the intense affects of weed competition with corn. The highest corn grain yield (6758 kg h(-1)) was related to the application banding of nitrogen fertilizer and Equip herbicide+once hand weeding.

  9. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    Science.gov (United States)

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  10. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    Science.gov (United States)

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  11. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  12. Investigation on anatomical, chemical and pulping characteristics of Silybum marianum stem

    Directory of Open Access Journals (Sweden)

    Rahim Yadollahi

    2013-11-01

    Full Text Available To study the possibility of using plant Silybum marianum in paper industry, its stem yield potential, chemical properties, fiber indices and pulping was evaluated. Mean value of fiber length and diameter of Silybum marianumstem harvested in early June, were calculated 178 and 3.5 cm, respectively. Dry weight of whole stem determined 4710 kg per hectar. Mean value of fiber length, diameter, cavity diameter and wall thickness were obtained 1194, 16.06, 9.06, and 3.66 μm, respectively. Raunkel, flexibility, and slenderness ratios of its fibers were determined 80.83, 56.39, and 74.37, respectively. Results of chemical analysis showed that the stem comprises %70.35 holocellulose, %39.25 cellulose, %13.13 lignin, %3.09 acetone-soluble, %18 hot water-soluble extractives, and %11/85 ash. Soda pulp was obtained at 165 °C pulping time, 25% alkaline and 10:1 ratio of liquor to chips. Results of pulping showed that with increasing of pulping time from 30 to 210 minutes, the kappa number and yield decreased from 77.32 to 32.13 and 43.6 to 36.5, respectively; whereas accepted pulp yield (passed from 20 mesh increased from 17.4 to 35.5% paper made of pulp with kappa number 32 had 36.82 Nm/g tensile index, 3.76 km breaking length and 1.75 Kpa.m2/g burst strength. In general, achieved results have shown that the present studied species could be regarded more for papermaking because of the suitable fiber biometrical and chemical properties as compared to other non-woody plants.

  13. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  14. Optimization of dilute sulfuric acid pretreatment to maximize combined sugar yield from sugarcane bagasse for ethanol production.

    Science.gov (United States)

    Benjamin, Y; Cheng, H; Görgens, J F

    2014-01-01

    Increasing fermentable sugar yields per gram of biomass depends strongly on optimal selection of varieties and optimization of pretreatment conditions. In this study, dilute acid pretreatment of bagasse from six varieties of sugarcane was investigated in connection with enzymatic hydrolysis for maximum combined sugar yield (CSY). The CSY from the varieties were also compared with the results from industrial bagasse. The results revealed considerable differences in CSY between the varieties. Up to 22.7 % differences in CSY at the optimal conditions was observed. The combined sugar yield difference between the best performing variety and the industrial bagasse was 34.1 %. High ratio of carbohydrates to lignin and low ash content favored the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe condition. This observation suggests that under less severe conditions the glucose recovery was largely determined by chemical composition of biomass. The results from this study support the possibility of increasing sugar yields or improving the conversion efficiency when pretreatment optimization is performed on varieties with improved properties.

  15. Effect of Planting Date and Biological and Chemical Fertilizers on Phenology and Physiological Indices of Peanuts

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2017-06-01

    Full Text Available Introduction Peanut (Arachis hypogaea L. is an annual herbaceous plant in Fabaceae which grown in tropical to temperate regions worldwide for extracting its seed oil and nut consumption. Select the optimum planting date is one of the most important agricultural techniques that comply with the seed yield is maximized . For instance, delay planting date can reduce the number of fertile nodes and the number of pods per plant. The delay in planting date reduces total dry matter (TDM, leaf area index (LAI, crop growth rate (CGR and yield in bean (Phaseolus vulgaris L.. Daneshian et al., (2008 reported that the delay in planting date reduced sunflower (Helianthus annuus yield due to high temperatures in early growth which shortened flowering time and reduced solar radiation. On the other hand, due to increase importance of environmental issues has been attending biofertilizers to replace chemical fertilizers. Biofertilizers has formed by beneficial bacteria and fungi that each of them are produced for a specific purpose, such as nitrogen fixation, release of phosphate, potassium and iron ions of insoluble compound. The use of nitrogen fertilizer with slow-releasing ability stimulated shoot growth in soybean (Glycine max and be created more LAI in the reproductive process, particularly during grain filling stage and finally increased seed yield . Therefore, this study was conducted in order to evaluate the interaction of biological and chemical fertilizers in the purpose of achieving sustainable agriculture with emphasis of the effects of various planting dates on physiological parameters and growth of peanut in Hamadan. Materials and Methods In order to investigate the effects of planting date on important physiological indices of peanuts (Arachis hypogaea L. under the influence of biological and chemical fertilizers. A field experiment was conducted in the research farm of Bu-Ali Sina University, Hamedan during 2013 growing season. This study was

  16. Effects of Single and Combined Application of Organic and Biological Fertilizers on Quantitative and Qualitative Yield of Anisum (Pimpinella anisum

    Directory of Open Access Journals (Sweden)

    N Kamayestani

    2015-07-01

    Full Text Available In order to study the effects of single and combined applications of biofertilazer and organic fertilizers on quantitative and qualitative characteristics of anisum (Pimpinella anisum, an experiment was conducted based on a Randomized Complete Block Design with three replications and fifteen treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2011 year. Treatments were: (1 mycorrhiza (Glomus intraradices, (2 mycorrhiza + cow manure, (3 mycorrhiza + vermicompost, (4 mycorrhiza+ compost, (5 mycorrhiza + chemical fertilizer, (6 biosulfur (Thiobacillus sp. + Bentonite, (7 biosulfur + chemical fertilizer, (8 biosulfur + cow manure, (9 biosulfur + vermicompost, (10 biosulfur+compost,11 (cow manure, (12 vermicompost, (13 chemical fertilizer (NPK, (14compost and (15 control. The results showed that application of fertilizer treatments had significant effect on most characteristics of anisum. The highest number of seed per umbelet (7.24, economic yield (1263.4kg/ha were obtained fram biosulfur treatment. The highest dry matter yield (4504.1 kg/ha resulted from combined application of biosulfur + chemical fertilizer and the highest harvest index (25.97% observed in biosulfur+cow manure. The combined application of mycorrhiza affected some qualification traits, as the highest number of umbel per plant (65.7, 1000 seed-weight (3.24 g and essential oil percentage (5.3% resulted from combined application of mycorrhiza+chemical fertilizer. In general, it can be concluded that application of organic and biological fertilizer particularly mycorrhiza and biosulfur had a significant effect on improving of quantitative and qualitative characteristics of anisum. Furthermore, the combined application of organic and biological fertilizer had higher positive effects than their single application.

  17. Biochar improves fertility of a clay soil in the Brazilian Savannah: short term effects and impact on rice yield

    NARCIS (Netherlands)

    Melo Carvalho, de M.T.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Meinke, H.B.

    2013-01-01

    The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH,

  18. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants.

    Science.gov (United States)

    Parađiković, Nada; Vinković, Tomislav; Vinković Vrček, Ivana; Žuntar, Irena; Bojić, Mirza; Medić-Šarić, Marica

    2011-09-01

    Modifications in growing techniques can affect the yield and nutritional quality of various cultivated plant species. Owing to its high nutritional value, pepper (Capsicum annuum L.) was used in this study as a model plant to investigate the effect of natural biostimulants on yield and fruit quality parameters under conditions of reduced fertilisation. A positive influence of biostimulant treatment on yield parameters was observed. The overall increase in the pigment content of leaves after biostimulant application agreed well with the higher total and commercial yields of treated pepper cultivars compared with their controls. The results showed that natural biostimulants had a positive effect on the vitamin C and total phenolic contents in pepper fruits during the hot summer season. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) antioxidant activities were also significantly higher (P hydroponically. Thus the application of biostimulants could be considered as a good production strategy for obtaining high yields of nutritionally valuable vegetables with lower impact on the environment. Copyright © 2011 Society of Chemical Industry.

  19. Toxicity challenges in environmental chemicals: Prediction of ...

    Science.gov (United States)

    Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative structure-activity relationships (QSAR) serve as a vital tool for the high-throughput prediction of chemical-specific PBPK parameters, such as the fraction of a chemical unbound by plasma protein (Fub). The presented work explores the merit of utilizing experimental pharmaceutical Fub data for the construction of a universal QSAR model, in order to compensate for the limited range of high-quality experimental Fub data for environmentally relevant chemicals, such as pollutants, pesticides, and consumer products. Independent QSAR models were constructed with three machine-learning algorithms, k nearest neighbors (kNN), random forest (RF), and support vector machine (SVM) regression, from a large pharmaceutical training set (~1000) and assessed with independent test sets of pharmaceuticals (~200) and environmentally relevant chemicals in the ToxCast program (~400). Small descriptor sets yielded the optimal balance of model complexity and performance, providing insight into the biochemical factors of plasma protein binding, while preventing over fitting to the training set. Overlaps in chemical space between pharmaceutical and environmental compounds were considered through applicability of do

  20. Determination of primary yields in the alpha radiolysis of alkaline water

    International Nuclear Information System (INIS)

    Auclair, Guy

    2001-01-01

    This work presents a fundamental study of the radiolysis of water within the framework of the management of nuclear waste. During their storage, the packages of cemented radioactive waste are likely to release molecular hydrogen. Indeed, interstitial water undergoes decomposition under irradiation. This phenomenon is called radiolysis. In order to envisage the impact of H 2 de-gasification on the security of the installations, it is necessary to determine the primary radiolytic yields in the cementing medium (characterised by a pH ranging between 12 and 14), which provides a basic simulations thus allowing us to obtain both the quantities of gas and the pressure in the pore. Such data is currently not available in the literature. Studies were undertaken with a beam of accelerated helium ions in order to reproduce the conditions of irradiation on solutions at pH = 13 in order to determine a first complete series of radiolytic yields.A more complete study was undertaken on the effects of LET and pH on the yield of molecular hydrogen. The results seem to show that the yield of this primary product is little influenced by pH. Such results were in good agreement with those obtained by Monte-Carlo simulations. These studies have shown that, contrary to γ irradiations, the irradiations with α-particles do not lead to the same characteristic times. The extrapolation of this data with respect to the problem of the packaging of nuclear waste is delicate due to the limited amount of results in the literature and also the chemical and physical complexity of the concretes. (author) [fr

  1. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Lithner, Delilah, E-mail: delilah.lithner@gmail.com; Larsson, Ake; Dave, Goeran

    2011-08-15

    . - Research highlights: {yields} Environmental and health hazards of chemicals in polymer production were identified. {yields} A hazard ranking model for environmental and human health hazard classifications was developed. {yields} 55 plastic polymers were ranked based on monomer classifications, and assessed. {yields} Polyurethanes, polyacrylonitrile, PVC, epoxy and styrenic copolymers ranked as most hazardous. {yields} These have a large market share and are made of mutagenic and/or carcinogenic monomers.

  2. Chemical Preparation Laboratory IND Candidate Compounds.

    Science.gov (United States)

    1986-01-21

    and final products unreported in the chemical literature were fully characterized by elemental and spectral analyses. 3 V% TABLE OF CONTENTS Page I...resulting crystalline material was filtered and washed with water to yield 2.0 g. An additional 0.2 g of the product was recovered from the above filtrate... mercaptopurine (Tri-C- acetvlthioinosine) (3): To a well stirred mixture of 2 (93.0 g, 0.236 mol) and pyridine (3570 mL), phosphorus pentasulfide (220.0 g, 0.49

  3. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    Science.gov (United States)

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  4. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  5. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  6. Effect of Salinity and Silicon on Seed Yield and Yield Components of Purslane Portulaca oleracea L.(

    Directory of Open Access Journals (Sweden)

    Z Rahimi

    2011-01-01

    Full Text Available Abstract In order to study the effects on salinity and silicon application on yield and yield components of purslane (Portulaca oleracea L., an experiment was conducted in a completely randomized desgin with three replications and two factors consisted of four different levels of salinity using NaCl (0, 7, 14, 21dS/m and two levels of silicon (application of one mMol sodium silicate and not application. Increasing salinity concentration significantly caused a negative effect on seed yield. But yield components such as number and weight of seed were more sensitive than number of capsul in main stem in final seed yield. Application of silicon increased seed yield in control but was not significant in salinity levels and leaves and stem biomass. Seed yield and total seed weight in branches was significantly decresed. Weight of 1000 seed in main stem and branches was not significantly different in salinity levels. As a result, purslane could be extremely tolerated to saline conditions, so it seems that it can be cultivated in saline soils and arid regions. Also applied silicon can be increase yield and plant tolerance to environmental stress. Keywords: 1000 seed, Branches, Capsul, Dry weight

  7. Yield stress fluids slowly yield to analysis

    NARCIS (Netherlands)

    Bonn, D.; Denn, M.M.

    2009-01-01

    We are surrounded in everyday life by yield stress fluids: materials that behave as solids under small stresses but flow like liquids beyond a critical stress. For example, paint must flow under the brush, but remain fixed in a vertical film despite the force of gravity. Food products (such as

  8. Study of the chemical sputtering in Tore-Supra

    International Nuclear Information System (INIS)

    Cambe, A.

    2002-01-01

    The work presented in this thesis focuses on the interactions between energetic particles coming from thermonuclear plasma and the inner components of a fusion machine. This interaction induces two major problems: erosion of the wall, and tritium retention. This report treats the erosion of carbon based materials. The first part is devoted to chemical sputtering, that appears to be the principal erosion mechanism, compared to physical sputtering and radiation enhanced sublimation that both can be limited. Chemical sputtering has been studied in situ in the tokamak Tore-Supra for ohmic and lower hybrid (LH) heated discharges, by means of mass spectrometry and optical spectroscopy. We have shown that it is necessary to take into account both methane and heavier hydrocarbons (C 2 D x and C 3 D y ) in the determination of the chemical sputtering yield. It is found that for the ohmic discharges, the sputtering yield of CD 4 (Y CD4 ) is highly flux (φ) dependent, showing a variation of the form: Y CD4 ∝ φ -0.23 . The experimental study also reveals that an increase of the surface temperature induces an augmentation of Y CD4 . The interpretation and the modelling of the experimental results have been performed with a Monte Carlo code (BBQ. In the second part of this work, we have developed and installed an infrared spectroscopy diagnostic in the 0.8-1.6, μm wavelength range dedicated to the measurement of surface temperature, and the identification of atomic and molecular lines emitted during plasma/wall interactions. In the third part, we present the feasibility study of an in situ tungsten deposition process at low temperature(<80 deg C) in order to suppress the chemical sputtering. This study shows that, with this method call Plasma Assisted Chemical Vapor Deposition (PACVD), we are able to coat the whole inner vessel of a tokamak with 1 μm of tungsten. (author)

  9. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  10. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  11. Effect of nitrogen and water deficit type on the yield gap between the potential and attainable wheat yield

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2015-12-01

    Full Text Available Water deficit and N fertilizer are the two primary limiting factors for wheat yield in the North China plain, the most important winter wheat (Triticum aestivum L. production area in China. Analyzing the yield gap between the potential yield and the attainable yield can quantify the potential for increasing wheat production and exploring the limiting factors to yield gap in the high-yielding farming region of North China Plain. The Decision Support System for Agrotechnology Transfer (DSSAT model was used to identify methods to increase the grain yield and decrease the gap. In order to explore the impact of N and cultivars on wheat yield in the different drought types, the climate conditions during 1981 to 2011 growing seasons was categorized into low, moderate, and severe water deficit classes according to the anomaly percentage of the water deficit rate during the entire wheat growing season. There are differences (P < 0.0001 in the variations of the potential yields among three cultivars over 30 yr. For all three water deficit types, the more recent cultivars Jimai22 and Shijiazhuang8 had higher yields compared to the older 'Jinan17'. As the N fertilizer rate increased, the yield gap decreased more substantially during the low water deficit years because of the significant increase in attainable yield. Overall, the yield gaps were smaller with less water stress. Replacement of cultivars and appropriate N fertilizer application based on the forecasted drought types can narrow the yield gap effectively.

  12. Moessbauer study of the chemical state of gold in gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.H.; Regnard, J.-R.

    1986-01-01

    Information on the chemical state of gold in gold ores has been obtained by 197 Au Moessbauer spectroscopy in cases where the state of this element cannot be determined by such standard methods as optical or electron microscopy. Ore concentrates consisting mainly of pyrite or arsenopyrite and roasted ore and matte samples were studied. The results yielded directly the respective amounts of metallic and chemically bound gold. Unless the gold is metallic, its chemical state in the ores turns out to be different from that in the minerals studied so far as reference materials. The chemical processes taking place during various treatments of the ores, such as roasting or leaching, can also be followed by Moessbauer spectroscopy. It is hoped that Moessbauer spectroscopy will eventually facilitate the development of more efficient methods of gold extraction

  13. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, Rita [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)]. E-mail: rita.petrucci@uniroma1.it; Astolfi, Paola [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Greci, Lucedio [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Firuzi, Omidreza [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Saso, Luciano [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Marrosu, Giancarlo [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)

    2007-02-01

    Electrochemical and chemical oxidation of hydroxycinnamic acids (HCAs) was studied to investigate the mechanisms occurring in their antioxidant activities in a protons poor medium. Electrolyses and chemical reactions were followed on-line by monitoring the UV-spectral changes with time; final solutions were analysed by HPLC-MS. Anodic oxidation of mono- and di-HCAs, studied by cyclic voltammetry and controlled potential electrolyses, occurs via a reversible one-step two-electrons process, yielding the corresponding stable phenoxonium cation. A cyclization product was also proposed, as supported by ESR studies. Chemical oxidation with lead dioxide leads to different oxidation products according to the starting substrate. Di-HCAs like chlorogenic and rosmarinic acids and the ethyl ester of caffeic acid gave the corresponding neutral o-quinones, while mono-HCAs like cumaric, ferulic and sinapinic acids yielded the corresponding unstable neutral phenoxyl radical, as supported by the formation of dimerization products evidenced by HPLC-MS. In the case of caffeic acid, traces of the dimerization product suggest that the neutral phenoxyl radical may competitively undergo dimerization or decomposition of the neutral quinone. Chemical oxidation of HCAs was also followed by ESR spectroscopy: the di-HCAs radical anions were generated and detected, whereas among the mono-HCAs only the phenoxyl radical of the sinapinic acid was recorded.

  14. Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2012-01-01

    Full Text Available Brassica napus was synthesized by hybridization between its diploid progenitor species B. rapa and B. oleracea followed by chromosome doubling. Cross with B. rapa as a female parent was only successful. Among three colchicine treatments (0.10, 0.15, and 0.20%, 0.15% gave the highest success (86% of chromosome doubling in the hybrids (AC; 2=19. Synthetic B. napus (AACC, 2=38 was identified with bigger petals, fertile pollens and seed setting. Synthetic B. napus had increased growth over parents and exhibited wider ranges with higher coefficients of variations than parents for morphological and yield contributing characters, and yield per plant. Siliqua length as well as beak length in synthetic B. napus was longer than those of the parents. Number of seeds per siliqua, 1000-seed weight and seed yield per plant in synthetic B. napus were higher than those of the parents. Although flowering time in synthetic B. napus was earlier than both parents, however the days to maturity was little higher over early maturing B. rapa parent. The synthesized B. napus has great potential to produce higher seed yield. Further screening and evaluation is needed for selection of desirable genotypes having improved yield contributing characters and higher seed yield.

  15. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    Science.gov (United States)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  16. Search for B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-02-12

    The authors present preliminary results from a search for the flavor-changing neutral current decays B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -} using a sample of 22.7 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II B Factory. They have reconstructed the following final states: B{sup +} {yields} K{sup +}{ell}{sup +}{ell}{sup -}, B{sup 0} {yields} K{sup 0}{ell}{sup +}{ell}{sup -} (K{sub s}{sup 0} {yields} {pi}{sup +} {pi}{sup -}), B{sup +} {yields} K*{sup +}{ell}{sup +}{ell}{sup -} (K*{sup +} {yields} K{sub s}{sup 0}{pi}{sup +}), and B{sup 0} {yields} K*{sup 0}{ell}{sup +}{ell}{sup -} (K*{sup 0} {yields} K{sup +}{pi}{sup -}), where {ell}{sup +}{ell}{sup -} is either an e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pair. They obtain the 90% C.L. upper limits {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) < 0.6 x 10{sup -6} and {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) < 2.5 x 10{sup -6}, close to the Standard Model predictions for these branching fractions.

  17. Effect of Nitrogen and Phosphorus on Yield and Yield Components of Sesame (Sesamumindicum L.)

    OpenAIRE

    Muhammad Ibrahim; Manzoor Hussain; Ahmad Khan; Yousaf Jamal; Muhammad Ali; Muhammad Faisal Anwar Malik

    2014-01-01

    Nitrogen is a structural component of chlorophyll and protein therefore adequate supply of nitrogen is beneficial for both carbohydrates and protein metabolism as it promotes cell division and cell enlargement, resulting in more leaf area and thus ensuring good seed and dry matter yield. Theexperiment entitled effect of nitrogen and phosphorus on yield and yield components of sesame were conducted at New Developmental Farm of the University of Agriculture Peshawar during kharif 2013. Randomiz...

  18. Chemical effects of /sup 32/P recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, N [Tokyo Univ. (Japan). Coll. of General Education

    1975-06-01

    Szilard-Chalmers' effect of /sup 32/P were reviewed. The concentration method using Szilard-Chalmers' effect in production of radioisotope, circumstances such as exposure time in an atomic pile, states of target substances and the yields by them were discussed. Many kinds of chemical effects, such as chemical effects of /sup 32/P recoil atom in phosphorated glass, studies of the effect of adducts, the threshold of ..gamma..-ray effect, the oxidation number of /sup 32/P in phosphorated glass by exposure time in the pile and the labelling position of /sup 32/P, are associated with caryotransformation (nuclear transformation) by environmental factors. The abovementioned articles were explained concerning /sup 32/P.

  19. Chemically Addressable Perovskite Nanocrystals for Light-Emitting Applications

    KAUST Repository

    Sun, Haizhu

    2017-07-10

    Whereas organic–inorganic hybrid perovskite nanocrystals (PNCs) have remarkable potential in the development of optoelectronic materials, their relatively poor chemical and colloidal stability undermines their performance in optoelectronic devices. Herein, this issue is addressed by passivating PNCs with a class of chemically addressable ligands. The robust ligands effectively protect the PNC surfaces, enhance PNC solution processability, and can be chemically addressed by thermally induced crosslinking or radical-induced polymerization. This thin polymer shield further enhances the photoluminescence quantum yields by removing surface trap states. Crosslinked methylammonium lead bromide (MAPbBr3) PNCs are applied as active materials to build light-emitting diodes that have low turn-on voltages and achieve a record luminance of over 7000 cd m−2, around threefold better than previous reported MA-based PNC devices. These results indicate the great potential of this ligand passivation approach for long lifespan, highly efficient PNC light emitters.

  20. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  1. 1,5-Anhydro-D-fructose: biocatalytic and chemical synthetic methods for the preparation, transformation and derivatization

    DEFF Research Database (Denmark)

    Lundt, Inge; Yu, Shukun

    2010-01-01

    1,5-Anhydro-D-fructose (1,5AnFru) is a monoketosaccharide that can be prepared enzymatically from starch by a-1,4-glucan lyase or chemically from D-glucose or D-fructose in a few steps with high yields. The formed 1,5AnFru can be derivatized both enzymatically and chemically to interesting new...

  2. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    Directory of Open Access Journals (Sweden)

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  3. Evaluation of Mycorrhizal Fungi, Vermicompost and Humic Acid on Essence Yield and Root Colonization of Fennel

    Directory of Open Access Journals (Sweden)

    I. Akbari

    2016-02-01

    Full Text Available Introduction The main objective of sustainable agriculture is to decrease the off-farm inputs such as chemical fertilizers, increased farm nutrient cycle through reduced tillage and the use of biological and organic fertilizers. Studies on medicinal plants indicates that the use of sustainable farming systems provide the best conditions for the production of these plants. Mycorrhizal fungi, vermicompost and humic acid are samples of biological and organic fertilizer that can be used, to eliminate or substantially reduce the use of chemical inputs in order to increase the quantity, quality and stability of the products. Mycorrhizal fungi are one of the most important rhizosphere microorganisms which have symbiotic relation with root of most crops. Mycorrhizal symbiosis improves the soil physical (through expansion of hyphae of fungus, chemical (through increased absorption of nutrients and biological (the soil food web quality. These fungus increased nutrient uptake, such as phosphorus and some micronutrients, water uptake, reducing the negative effects of environmental stress and increase resistance to pathogens and improve the quality of their host plants. Fennel (Foeniculum vulgare Mill is one of the most important medicinal plants, as the essential oil from the seeds used in a variety of industries, pharmaceutical, food and cosmetic use. Anethole is important component of the essential oil of fennel seed. Materials and Methods This experiment was conducted as a factorial based on randomized complete block design in order to evaluate the effects of vermicompost application, humic acid and mycorrhizal fungi on quantitative and qualitative aspects of fennel yield at experimental farm of Shahrood University during growing season of 1391-92. This experiment includes 12 treatments and 3 applications. Vermicompost levels include: v1 (no application v2 (4 ton ha-1 v3 (8 ton ha-1. Mycorrhizal fungi include: m1 (no inoculation and m2 (inoculation and

  4. Effects of commercial organic fertilizers on the yield and yield structure of potato cultivars

    Directory of Open Access Journals (Sweden)

    Filipović Vladimir

    2012-01-01

    Full Text Available The research work has dealt with investigations of two type commercial organic fertilizers (DCM ECO-MIX 4 NPK 7:7:10 i GUANITO NPK 6:15:3 effects on the yield and yield structure of three potato cultivars (Cleopatra, Carrera and Sylvana. The control variant was used in plots without the use of organic fertilizers. The field experiment was performed in 2012. in a populated area Dobrica (N 45° 13’, E 20° 51’, 78 m.s.l. at the experimental farm plot Belča on which is certified organic production, on anthropogenic soil subtype chernozem on carbonate terrace. The results of research showed that the lowest tuber yield was determined in the control treatment (20,87 t ha-1, while the highest yield was achieved with a commercial organic fertilizer DCM ECO-MIX 4 (23,96 t ha-1. Number of tubers per plant corresponded to the characteristics of the studied cultivars. The largest number of tubers per plant was correlated with yield. Specifically, individual variants of the two greatest yields had the highest average number of tubers per plant. Cultivar Cleopatra of variant with GUANITO achieved 17,51 tubers per plant, while cultivar Sylvana of variant with DCM ECO-MIX 4 achieved 17,38 tubers per plant.

  5. The effect of microwave pretreatment on chemical looping gasification of microalgae for syngas production

    International Nuclear Information System (INIS)

    Hu, Zhifeng; Ma, Xiaoqian; Jiang, Enchen

    2017-01-01

    Highlights: • Microwave pretreatment is beneficial to chemical-looping gasification reaction. • Gasification efficiency and gas yield increased greatly under microwave pretreatment. • 60 s is the optimal microwave pretreatment time in CLG to produce syngas. • Suitable microwave pretreatment can make the structure of solid residue become loose. • 750 W is the optimal microwave pretreatment power in CLG to produce syngas. - Abstract: Chemical-looping gasification (CLG) of Chlorella vulgaris was carried out in a quartz tube reactor under different microwave pretreatment. The product fractional yields, conversion efficiency and analysis of performance parameters were analyzed in order to obtain the characterization and optimal conditions of microwave pretreatment for syngas production. The results indicate that microwave pretreatment is conducive to CLG reaction. Furthermore, the higher power or the longer time in the process of microwave pretreatment could not exhibit a better effect on CLG. In addition, 750 W and 60 s is the optimal microwave pretreatment power and time respectively to obtain a great reducibility of oxygen carrier, high conversion efficiency, high products yield and good LHV. The H_2 yield, LHV, gasification efficiency and gas yield increased obviously from 18.12%, 12.14 MJ/Nm"3, 59.76% and 1.04 Nm"3/kg of untreated Chlorella vulgaris to 24.55%, 13.13 MJ/Nm"3, 72.16% and 1.16 Nm"3/kg of the optimal microwave pretreatment condition, respectively.

  6. Genetic basis of yield and some yield related traits in basmati rice

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Additive, dominance and epistasis components of genetic variation for yield and some yield related traits were assessed through modified triple test cross technique in Basmati rice. Epistasis was found an important part of genetic variation for plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant except primary branches per panicle and panicle length. Bifurcation of epistasis showed that additive x additive (i) type and additive x dominance + dominance x dominance (j + l) types of non-allelic interactions were involved in the expression of these traits. Additive and dominance type of gene action influenced the expression of primary branches per panicle and panicle length. No evidence of directional dominance was observed for these two traits. For plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant, recurrent selection or bi parental mating may be exercised in F2 and following generations however, selection of desired plants may be postponed till F5 or F6 generations to permit maximum obsession of epistatic effects to develop desired cultivar(s) in Basmati rice.(author)

  7. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  8. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.S.; Shaikh, J.S.; Dalavi, D.S.; Kalagi, S.S. [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.in [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-08-15

    Highlights: {yields} Chemical synthesis of PVA/PANI films by spin and dip coating at room temperature. {yields} Thickness dependent supercapacitor behavior of PVA/PANI film. {yields} The synthesized film are highly stable up to 20,000 cycles. - Abstract: Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H{sub 2}SO{sub 4} aqueous electrolyte. The highest specific capacitance of 571 Fg{sup -1} was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.

  9. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    Science.gov (United States)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  10. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    Science.gov (United States)

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. UK Chemical Nuclear Data Committee progress report

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-01-01

    Basic nuclear data requirements for industrial application are monitored by the UK Chemical Nuclear Data Committee (UKCNDC), covering half-lives, decay data, fission yields and the content of computerised data files. While the UKCNDC Request list was reviewed at the end of 1989 to reveal new and continued requirements, funding problems have increased during the year. Difficulties in the UK nuclear power industry are reflected in the decline in experimental studies, although evaluation efforts have been maintained. (author)

  12. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.

    Science.gov (United States)

    Funari, V; Mäkinen, J; Salminen, J; Braga, R; Dinelli, E; Revitzer, H

    2017-02-01

    Bio- and hydrometallurgical experimental setups at 2-l reactor scale for the processing of fly ash from municipal waste incinerators were explored. We aimed to compare chemical H 2 SO 4 leaching and bioleaching; the latter involved the use of H 2 SO 4 and a mixed culture of acidophilic bacteria. The leaching yields of several elements, including some of those considered as critical (Mg, Co, Ce, Cr, Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn (>85%), Cr (∼65%), Ga (∼60%), and Ce (∼50%). Chemical leaching showed the best yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching was effective for Nd (76%), Pb (59%), and Co (55%). The two leaching methods generated solids of different quality with respect to the original material as we removed and significantly reduced the metals amounts, and enriched solutions where metals can be recovered for example as mixed salts for further treatment. Compared to chemical leaching the bioleaching halved the use of H 2 SO 4 , i.e., a part of agent costs, as a likely consequence of bio-produced acid and improved metal solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Green manure affects cut flower yield and quality of ‘Vegas’ rose bushes

    Directory of Open Access Journals (Sweden)

    Elka Fabiana Aparecida Almeida

    2017-01-01

    Full Text Available Rose cultivation requires many inputs for satisfactory production, making the process expensive. Nowadays, alternative practices have been used for sustainable crop production. Green manure is an agricultural practice that aims to maintain or improve soil fertility, increasing its yielding capacity. The objective of this research was to evaluate the effect of green manure with legumes on the yield and quality of ‘Vegas’ roses. Grafted rose seedlings were cultivated in open field for 30 months. Legumes used as green manure and planted intercropped with rose bushes were forage peanut (Arachis pintoi and jack bean (Canavalia ensiformis. Pigeon pea (Cajanus cajan was grown in a separate area, cut, macerated, and applied in the rows between rose bushes every 3 months. Plants of control group received no green manure, only mineral fertilizer and cattle manure, as in all other treatments. The experimental design was randomized block with four treatments (three green manure species plus the control and seven replications. The highest yield and quality of flower stems in ‘Vegas’ occurred with addition of pigeon pea on the soil surface or chemically treated (control. Forage peanut and jack bean are not suitable for intercropping with ‘Vegas’ rose bushes due to possible nutrient and water competition.

  14. Quantifying potential yield and water-limited yield of summer maize in the North China Plain

    Science.gov (United States)

    Jiang, Mingnuo; Liu, Chaoshun; Chen, Maosi

    2017-09-01

    The North China Plain is a major food producing region in China, and climate change could pose a threat to food production in the region. Based on China Meteorological Forcing Dataset, simulating the growth of summer maize in North China Plain from 1979 to 2015 with the regional implementation of crop growth model WOFOST. The results showed that the model can reflect the potential yield and water-limited yield of Summer Maize in North China Plain through the calibration and validation of WOFOST model. After the regional implementation of model, combined with the reanalysis data, the model can better reproduce the regional history of summer maize yield in the North China Plain. The yield gap in Southeastern Beijing, southern Tianjin, southern Hebei province, Northwestern Shandong province is significant, these means the water condition is the main factor to summer maize yield in these regions.

  15. GDP growth and the yield curvature

    DEFF Research Database (Denmark)

    Møller, Stig Vinther

    2014-01-01

    This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...... predicts bond returns, implying a common element to time-variation in expected bond returns and expected GDP growth....

  16. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller

  17. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  18. Quantum yields and mechanism in TiO[sub 2] mediated photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lizhong

    1994-01-01

    The photocatalytic pathway in TiO[sub 2] suspensions was examined using a spin trap/electron paramagnetic resonance spectroscopy technique within a competition kinetic scheme. Experimental results from competition reactions show that there is a marked difference in kinetic behaviors between the systems with (heterogeneous) and without (homogeneous) TiO[sub 2] suspension, confirming that the reaction pathway of OH- radicals in the TiO[sub 2] suspension is at least partly heterogeneous. A photocatalytic mechanism is proposed. A method of determining the trapping efficiency of OH- radicals was developed, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), for measuring growth rates of the spin adduct DMPO-OH and high pressure liquid chromatography for measuring the OH- radical generation rates. The reliability of the measurement method was confirmed by comparison with published values. The trapping efficiency in the heterogeneous (TiO[sub 2]) system was found to be ca 0.28. A method for quantum yield determinations in heterogeneous systems was developed, based on measurements of OH- radical generation rates and the flux of absorbed photons by TiO[sub 2] suspensions. A chemical actinometer was used to measure absorbed-photon flux. Good agreement with literature values was obtained for quantum yield measurements in p-benzoquinone and H[sub 2]O[sub 2] systems. Accordingly, the quantum yield of OH- radical generation in TiO[sub 2] suspensions was determined to be ca 0.040 at pH 7. Effects of suspension loading, light intensity, electron acceptor addition, and dissolved oxygen concentration on the quantum yield were observed. The effects of pH and buffer concentration on the formation rate of DMPO-OH spin adduct are discussed. 117 refs., 50 figs., 8 tabs.

  19. Allelopathy of weed extracts on yield and its components in four cultivars of rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Ali MOHADESI

    2011-07-01

    Full Text Available Weeds are enemies to the crop plants and have harmful effects on agricultural crops due to several factors such as competition for space, light and nutrients. Allelopathic effects of weed extracts were studied on grain yield and yield components of rice. The experiment was carried out in the Rice Research Institute of Chaparsar, in 2006- 2007, in Tonekabon, Iran (latitude 36°54’ N, longitude 50° 40’E, level -20 m altitude, split plot on basis of randomized completely block design (RCBD with 4 replications. Results showed highly significant differences suggesting substantial to moderate phenotypic variability in most parameters evaluated except number of empty grain and 1000 -grain weight. Also, most yield of single plant obtained from umbrella sedge extract (28.5 g. It seems that umbrella sedge had least minerals in water; it could be affected positively on important factors such as yield of single plant compared to other treatments. Correlation coefficient analysis revealed significant and negative correlation between number of empty grain and yield of single plant (r=-0.42***. It’s implies that grain yield magnitude of Nemat cultivar exhibiting the least number of empty grain. Although yield of single plant was not affected neither by plant height nor number of tiller. In addition, irrigation water due to existence of high mineral and chemical pesticides in upstream of station farms severely was reduced yield. Also, results of this research showed that weed extracts haven’t very allelopathic effect on rice and in end of growing season, that’s better, plant leftover return and remain in field.

  20. The Effect of Application of Nitrogen Fertilizer and Nano-Organic Manure on Yield, Yield Components and Essential Oil of Fennel (Foeniculum vulgar Mill.

    Directory of Open Access Journals (Sweden)

    S Khoshpeyk

    2017-03-01

    Full Text Available Introduction Since discovery of food, clothing and shelter, human wanted to improve their physical sufferings, and using experience separated toxic plants from non – toxic ones and medicinal herbs from non – medicine. Medicinal herbs are agricultural products which have a very important role in the health of people in society. Among the medicinal herbs, fennel with scientific name (Foeniculum vulgare Mill. traditionally was used for treating problems such as Inflammation and Cramping. Now, one of the main objectives of the modern agriculture is decreasing the consumption of fertilizers and greater the use of organic fertilizers especially livestock fertilizers. The use of organic fertilizers in nano-dimensions can absorb the nutrients needed to plant. Better use of nano- technology for producing organic fertilizers, suitable for recruiting plant can help plants in variable environmental conditions and be effective in the growth, quantity and quality performance (Sumner, 2000. By the considering the same management of organic and chemical fertilizers consumption especially nano–organic fertilizers, is of great importance and necessitate further research and consideration in all kinds of plants, medical and aromatic herbs and plants in particular. Materials and Methods A factorial experiment, arranged in a randomized complete blocks design with three replications, was conducted in the Saffron Research Institute at Torbat - Heydarieh University in 2014. The geographical location of the experimental station was 35º 20´ N and 59º 13´ E with the altitude of 1450 m. Factors, including utilization of nano-organic fertilizer in four levels (zero, 10, 20 and 30 tons per hectare and nitrogen fertilizers application in four levels (0, 25 , 50 and 75 kg per hectare. Each experimental plot was 3 m long and 2 m wide and contained 4 rows with 50 cm distance. Seeds were directly sown by hand in late May. First irrigation was done 10 days after seedling