WorldWideScience

Sample records for future tokai earthquake

  1. Report on planning of input earthquake vibration for design of vibration controlling structure, in the Tokai Works, Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Shinohara, Takaharu; Terada, Shuji; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi

    1997-05-01

    When adopting a vibration controlling structure for a nuclear facility building, it is necessary to evaluate a little longer frequency vibration properly. Although various evaluation methods are proposed, there is no finished method. And, to the earthquake itself to investigate, some factors such as effect of surface wave, distant great earthquake, and so on must be considered, and further various evaluations and investigations are required. Here is reported on an evaluation method of the input earthquake vibration for vibration controlling design establishing on adoption of the vibration controlling structure using a vibration control device comprising of laminated rubber and lead damper for the buildings of reprocessing facility in Tokai Works. The input earthquake vibration for vibration controlling design shown in this report is to be adopted for a vibration controlling facility buildings in the Tokai Works. (G.K.)

  2. Summary of the function and the safety design of the Tokai Reprocessing Utility Center

    International Nuclear Information System (INIS)

    Yanai, Chisato; Yamazaki, Toshihiko; Tomita, Tsuneo; Horii, Shinichi; Uryu, Mituru; Ishiguro, Nobuharu; Kobayashi, Kentarou

    1998-01-01

    The Tokai Reprocessing Utility Center is a new facility to replace the utilities to the Tokai Reprocessing Plant such as the emergency power supply, compressed air, etc. which are scattered about the site and have became superannuated. The Facility building has a base-isolation system that is a strongly resistant to earthquake. After completion, the center will supply utilities to the Main Plant, the Central Building, the Auxiliary Active Facility, etc. of the Tokai Reprocessing Plant. This document outlines the function and the safety design of the Tokai Reprocessing Utility Center. (author)

  3. Tokai densitometer manual

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Hsue, S.T.; Junck, K.

    1987-01-01

    In 1979, the Tokai densitometer was installed at the Tokai Reprocessing Plant in Tokai, Japan. It uses a nondestructive active technique (K-edge absorption densitometry) to assay solutions for plutonium content. The original hardware was upgraded in 1984 and 1985. This manual describes the instrument's operation after the upgrade. 2 refs

  4. Seismic ACROSS Transmitter Installed at Morimachi above the Subducting Philippine Sea Plate for the Test Monitoring of the Seismogenic Zone of Tokai Earthquake not yet to Occur

    Science.gov (United States)

    Kunitomo, T.; Kumazawa, M.; Masuda, T.; Morita, N.; Torii, T.; Ishikawa, Y.; Yoshikawa, S.; Katsumata, A.; Yoshida, Y.

    2008-12-01

    Here we report the first seismic monitoring system in active and constant operation for the wave propagation characteristics in tectonic region just above the subducting plate driving the coming catastrophic earthquakes. Developmental works of such a system (ACROSS; acronym for Accurately Controlled, Routinely Operated, Signal System) have been started in 1994 at Nagoya University and since 1996 also at TGC (Tono Geoscience Center) of JAEA promoted by Hyogoken Nanbu Earthquakes (1995 Jan.17, Mj=7.3). The ACROSS is a technology system including theory of signal and data processing based on the brand new concept of measurement methodology of Green function between a signal source and observation site. The works done for first generation system are reported at IWAM04 and in JAEA report (Kumazawa et al.,2007). The Meteorological Research Institute of JMA has started a project of test monitoring of Tokai area in 2004 in corporation with Shizuoka University to realize the practical use of the seismic ACROSS for earthquake prediction researches. The first target was set to Tokai Earthquake not yet to take place. The seismic ACROSS transmitter was designed so as to be appropriate for the sensitive monitoring of the deep active fault zone on the basis of the previous technology elements accumulated so far. The ground coupler (antenna) is a large steel-reinforced concrete block (over 20m3) installed in the basement rocks in order to preserve the stability. Eccentric moment of the rotary transmitter is 82 kgm at maximum, 10 times larger than that of the first generation. Carrier frequency of FM signal for practical use can be from 3.5 to 15 Hz, and the signal phase is accurately controlled by a motor with vector inverter synchronized with GPS clock with a precision of 10-4 radian or better. By referring to the existing structure model in this area (Iidaka et al., 2003), the site of the transmitting station was chosen at Morimachi so as to be appropriate for detecting the

  5. Permanent cessation of Tokai power plant's operation

    International Nuclear Information System (INIS)

    Satoh, T.

    1998-01-01

    Tokai power plant (166MWe, Magnox type: GCR) is the first commercial reactor in Japan and has been kept operating stable since its commissioning in July 1996. During this period it has produced electricity of approximately 27.7 billion KWh (as of March 1997) and its stable operation has contributed greatly to the stable supply of electricity in Japan. Furthermore, technologies in various fields have been developed, demonstrated and accumulated through the construction and operation of Tokai power plant. It also contributes to training for many nuclear engineers, and constructions and operations of nuclear power stations by other Japanese power companies. As a pioneer, it has been achieved to develop and popularize Japanese nuclear power generation. On the other hand, Tokai power plant has small capacity in its electric power output, even though the size of the reactor and heat exchangers are rather bigger than those of LWR due to the characteristics of GCR. Therefore, the generation cost is higher than the LWR. Since there is no plant whose reactor type is the same as that of Tokai power plant, the costs for maintenance and fuel cycle are relatively higher than that of LWR. Finally we concluded that the longer we operate it, the less we can take advantage of it economically. As a result of the evaluation for the future operation of Tokai power plant including the current status for supply of electricity by the Japanese utilities and study of decommissioning by Japanese government, we decided to have a plan of stopping its commercial operation of Tokai power plant in the end of March, 1998, when we completely consume its fuel that we possess. From now on, we set about performing necessary studies and researches on the field of plant characterization, remote-cutting, waste disposal for carrying out the decommissioning of Tokai power plant safely and economically. We are going to prepare the decommissioning planning for Tokai power plant in a few years based on the

  6. Tokai earthquakes and Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Komura, Hiroo

    1981-01-01

    Kanto district and Shizuoka Prefecture are designated as ''Observation strengthening districts'', where the possibility of earthquake occurrence is high. Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., is at the center of this district. Nuclear power stations are vulnerable to earthquakes, and if damages are caused by earthquakes in nuclear power plants, the most dreadful accidents may occur. The Chubu Electric Power Co. underestimates the possibility and scale of earthquakes and the estimate of damages, and has kept on talking that the rock bed of the power station site is strong, and there is not the fear of accidents. However the actual situation is totally different from this. The description about earthquakes and the rock bed in the application of the installation of No.3 plant was totally rewritten after two years safety examination, and the Ministry of International Trade and Industry approved the application in less than two weeks thereafter. The rock bed is geologically evaluated in this paper, and many doubtful points in the application are pointed out. In addition, there are eight active faults near the power station site. The aseismatic design of the Hamaoka Nuclear Power Station assumes the acceleration up to 400 gal, but it may not be enough. The Hamaoka Nuclear Power Station is intentionally neglected in the estimate of damages in Shizuoka Prefecture. (Kako, I.)

  7. Good practice at Tokai No. 2 Power Station at the 2011 off the Pacific coast of Tohoku Earthquake

    International Nuclear Information System (INIS)

    Takeuchi, Kimihito

    2017-01-01

    At Tokai No. 2 Power Station, one of the three seawater pumps for cooling the emergency diesel generator (D/G) became unusable due to the tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake, and one of the functions of two residual heat removal systems was lost. However, due to the cooperation and accurate judgment of many power station staff, partner companies, and many stakeholders, cold shutdown was successfully achieved. This is the results of day-to-day power plant operation management and correct response to the tasks that occurred during response process. Good practice included the following items. (1) Continuous tsunami countermeasures: Although a serious accident was escaped by level raising work, the above mentioned seawater pump function loss occurred due to the incomplete part. (2) Judgment on core cooling at the time of D/G function loss. (3) Early securing of preliminary power and fuel. (4) Power securing for waste disposal system. (5) Reflection of precedent cases and experiences: Installation of seismic isolation building as emergency measures, fixation of fluorescent lamp louvers, and earthquake response drills at central control room. (6) Collaboration among departments: Arrangement of communicators other than operators, preparation of equipment/articles corresponding to large tsunami warnings, placement of monitoring personnel, placement of personnel for check of power interchange, and securing of a circulation bus for commuting. (A.O.)

  8. Tokai-1 decommissioning project

    International Nuclear Information System (INIS)

    Hirano, Tomoko

    2002-01-01

    The Tokai Power Station (166 MWh in its electric output) of the first commercial nuclear power station in Japan ended its business operation for more than thirty-one years, on end of March, 1998. Through its construction and operation, it has built foundation of nuclear power generation and grown a number of nuclear energy relating engineers. And, technologies and experiences obtained by its construction and operation built base of technology on nuclear power generation in Japan. After now, to share a new role of proof on safe and rational abolishment measure of the first commercial nuclear power stations in Japan, its abolishment measure was begun since December, 2001. It aims at realization of rational subdivision and processing/disposition of wastes, and construction to future LWR abolishment measure. Here were described history of the Tokai Power Station, its outline and process to beginning of stoppage of generation, conditions from the stoppage to beginning of its abolishment measure, outline on its abolishment plan, performing conditions on its abolishment measure, safety security measures, processing and disposition of wastes, and technical development. (G.K.)

  9. The 4th technological meeting of Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Ohnishi, Tohru; Maki, Akira; Shibata, Satomi; Yatogi, Hideo; Nyui, Daisuke; Hashimoto, Takakazu; Fukuda, Kazuhito; Ohzeki, Tatsuya

    2001-11-01

    ''The 4th technological meeting of Tokai Reprocessing Plant (TRP)'' was held in JNFL Rokkasho site on October 11 th , 2001. The report contains the proceedings, transparencies and questionnaires of the meeting. This time, we reported about ''Maintenance and repair results of Tokai Reprocessing Plant'' based on technology and knowledge accumulated in Tokai Reprocessing Plant. (author)

  10. Tokai Advanced Safeguards Technology Exercise (TASTEX). An experience in international co-operation on safeguards

    International Nuclear Information System (INIS)

    Fukuda, G.; Koizumi, T.; Higuchi, K.

    1983-01-01

    TASTEX stands for Tokai Advanced Safeguards Technology Exercise, and was the joint programme of Japan, the United States of America, France and the International Atomic Energy Agency for developing, testing and evaluating advanced safeguards technology to be used in reprocessing facilities. The TASTEX programme, which started early in 1978 and successfully ended in May 1981, consisted of thirteen safeguards-technology-related tasks, from Task A to M. They were classified into four groups from the viewpoints of their usefulness and effectiveness: (1) Tasks technically feasible for international safeguards application in the near future: Tasks E, G, H and part of Task A (underwater CCTV and monitoring cameras); (2) Tasks which can be used in the future if research and development are continued: Tasks F, I, J, C and the other part of Task A (exclusive of the themes shown in (1)); (3) Tasks which may be used in future at the Tokai Reprocessing Facility if research and development are continued: Tasks K and L; and (4) Tasks which are difficult to be used at the Tokai Reprocessing Facility: Tasks B, D and M. The tasks classified under Group (1) are being developed further as part of the JASPAS (Japan Support Programme for Agency's Safeguards) project. (author)

  11. Development of Tokai reprocessing plant maintenance support system (TORMASS) in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Shimizu, Kazuyuki; Tomita, Tsuneo; Sakai, Katsumi

    2008-01-01

    The maintenance work of many equipments such as mechanical, electrical and instrumentations installed in Tokai reprocessing plant has been performed more then 10,000 times per year and about 90% of maintenances were preventive work. For the maintenance management, optimization of maintenance information is required. Therefore, Tokai Reprocessing Plant Maintenance Support System (TORMASS) was developed from 1985 to 1992 as the aim of construction for suitable maintenance management system. About 24,000 equipments of specifications and about 261,000 maintenance detail were registered in this system. TORMASS has been used for the repair, inspection and replacement of equipment since 1992. (author)

  12. Estimation of the spatiotemporal evolution of slow slip events in the Tokai region, central Japan, during 1994 - 2016 using GNSS data

    Science.gov (United States)

    Sakaue, H.; Nishimura, T.; Fukuda, J.; Kato, T.

    2017-12-01

    In the Tokai region, central Japan, the long-term slow slip events (L-SSEs) observed on the subducting Philippine Sea Plate (PSP) from 2000 to 2005 and since 2013. Moreover, many short-term slow slip events (S-SSEs) have been observed in the Tokai region since 1996. Sakaue et al. (2017) reported that the spatiotemporal evolution of an L-SSE and S-SSEs on the PSP beneath the Tokai region from 2013 to 2015. This study is probably the first case that migration of slip for S-SSE (Mw GPS Research) in the Tokai region. It is well known that GNSS time series have many systematic signals that do not result from SSEs. These systematic signals include, for example, seasonal variations, cosiesmic and post-seismic deformation of the 2004 off Southeast Kii Peninsula eqrthquake and the 2011 Tohoku-oki earthquake (Mw. 9.0), crustal deformation of volcanic activity on Miyake-jima island and so on. After removing these systematic signals, we applied a modified Network Inversion Filter (NIF) [Fukuda et al., 2008]. The original NIF [Segall & Matthews, 1997] assumes a constant hyperparameter for the temporal smoothing of slip rates and thus often results in oversmoothing of slip rates. The modified NIF assumes a time-variable hyperparameter, so that changes in slip rates are effectively extracted from GNSS time series.The results indicate that not only the spatiotemporal evolutions of the 2000 Tokai L-SSE and the 2013 L-SSE but also the spatiotemporal evolution of S-SSEs are estimated. We will present a comparison of the spatiotemporal evolutions between the 2000 Tokai L-SSE and the 2013 L-SSE and possible dependence of the occurrence style of S-SSEs on the occurrence of the L-SSEs.

  13. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  14. Tokai carbon: A processing sales position is put on Europe; Tokai kabon: oshu ni kako hanbai kyoten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-30

    It went through the same company with increase in England establishing a business generalization company in Europe, and Tokai carbon purchased the processing sales company graphite-technology (GT Company, England and Birmingham City) of fine carbon. The thing that it aimed at the expansion of the fine carbon business in Europe. A system from the middle product to the final product is prepared, and the reclamation of the new field is included, and it starts active business development by the bribery of the GT Company. Moreover, the head office is set up in London, and Tokai carbon Europe where it was established newly is capital 3400000 pounds. (translated by NEDO)

  15. Current status of JRR-3. After the 3.11 earthquake

    International Nuclear Information System (INIS)

    Arai, Masaji; Murayama, Yoji; Wada, Shigeru

    2012-01-01

    JRR-3 at Tokai site of JAEA was in its regular maintenance period, when the Great East Japan Earthquake was taken place on 11th March 2011. The reactor building with their solid foundations and the equipment important to safety survived the earthquake without serious damage and no radioactive leakage has been occurred. Recovery work is planned to be completed by the end of this March. At the same time, check and test of the integrity of all components and seismic assessment to show resistance with the 3.11 earthquake have been carried out. JRR-3 will restart its operation after completing above mentioned procedures. (author)

  16. Future Earth: Reducing Loss By Automating Response to Earthquake Shaking

    Science.gov (United States)

    Allen, R. M.

    2014-12-01

    Earthquakes pose a significant threat to society in the U.S. and around the world. The risk is easily forgotten given the infrequent recurrence of major damaging events, yet the likelihood of a major earthquake in California in the next 30 years is greater than 99%. As our societal infrastructure becomes ever more interconnected, the potential impacts of these future events are difficult to predict. Yet, the same inter-connected infrastructure also allows us to rapidly detect earthquakes as they begin, and provide seconds, tens or seconds, or a few minutes warning. A demonstration earthquake early warning system is now operating in California and is being expanded to the west coast (www.ShakeAlert.org). In recent earthquakes in the Los Angeles region, alerts were generated that could have provided warning to the vast majority of Los Angelinos who experienced the shaking. Efforts are underway to build a public system. Smartphone technology will be used not only to issue that alerts, but could also be used to collect data, and improve the warnings. The MyShake project at UC Berkeley is currently testing an app that attempts to turn millions of smartphones into earthquake-detectors. As our development of the technology continues, we can anticipate ever-more automated response to earthquake alerts. Already, the BART system in the San Francisco Bay Area automatically stops trains based on the alerts. In the future, elevators will stop, machinery will pause, hazardous materials will be isolated, and self-driving cars will pull-over to the side of the road. In this presentation we will review the current status of the earthquake early warning system in the US. We will illustrate how smartphones can contribute to the system. Finally, we will review applications of the information to reduce future losses.

  17. Tokai works semi-annual progress report, July--December 1975

    International Nuclear Information System (INIS)

    1976-09-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) is a semi-governmental organization responsible for the development of advanced power reactors and nuclear fuels in Japan. The Tokai Works is the PNC center for research and development of nuclear fuels concerned with plutonium fuels fabrication, fuel reprocessing, and centrifugal uranium enrichment. Accomplishments in the activities of Tokai Works during the latter half of 1975 are summarized as follows: (1) Plutonium fuels development--Fabrication of core fuel assemblies is being continued for initial loading of the Experimental Fast Breeder Reactor JOYO and remodeling is being carried out on the facility for fabrication of plutonium fuels for the Prototype Heavy Water Moderated and Boiling Light Water Cooled Reactor FUGEN; (2) Fuel reprocessing--Construction of the Tokai Reprocessing Plant is nearly completed and preparation for its commissioning is being made; (3) Development of centrifugal uranium enrichment is being performed successfully

  18. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  19. The reprocessing plant of Tokai-Mura (Japan)

    International Nuclear Information System (INIS)

    Lung, M.; Coignaud, M.

    1978-01-01

    The main stages of cooperation between Japan and the French nuclear industry for the development of the Tokai-Mura plant are presented. The plant facilities and the operating conditions are described [fr

  20. Field Observations of Precursors to Large Earthquakes: Interpreting and Verifying Their Causes

    Science.gov (United States)

    Suyehiro, K.; Sacks, S. I.; Rydelek, P. A.; Smith, D. E.; Takanami, T.

    2017-12-01

    Many reports of precursory anomalies before large earthquakes exist. However, it has proven elusive to even identify these signals before their actual occurrences. They often only become evident in retrospect. A probabilistic cellular automaton model (Sacks and Rydelek, 1995) explains many of the statistical and dynamic natures of earthquakes including the observed b-value decrease towards a large earthquake or a small stress perturbation to have effect on earthquake occurrence pattern. It also reproduces dynamic characters of each earthquake rupture. This model is useful in gaining insights on causal relationship behind complexities. For example, some reported cases of background seismicity quiescence before a main shock only seen for events larger than M=3 4 at years time scale can be reproduced by this model, if only a small fraction ( 2%) of the component cells are strengthened by a small amount. Such an enhancement may physically occur if a tiny and scattered portion of the seismogenic crust undergoes dilatancy hardening. Such a process to occur will be dependent on the fluid migration and microcracks developments under tectonic loading. Eventual large earthquake faulting will be promoted by the intrusion of excess water from surrounding rocks into the zone capable of cascading slips to a large area. We propose this process manifests itself on the surface as hydrologic, geochemical, or macroscopic anomalies, for which so many reports exist. We infer from seismicity that the eastern Nankai Trough (Tokai) area of central Japan is already in the stage of M-dependent seismic quiescence. Therefore, we advocate that new observations sensitive to detecting water migration in Tokai should be implemented. In particular, vertical component strain, gravity, and/or electrical conductivity, should be observed for verification.

  1. Statistics of meteorological data at Tokai Research Establishment in JAERI

    International Nuclear Information System (INIS)

    Sekita, Tsutomu; Tachibana, Haruo; Matsuura, Kenichi; Yamaguchi, Takenori

    2003-12-01

    The meteorological observation data at Tokai site were analyzed statistically based on a 'Guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). This report shows the meteorological analysis of wind direction, wind velocity and atmospheric stability etc. to assess the public dose around the Tokai site caused by the released gaseous radioactivity. The statistical period of meteorological data is every 5 years from 1981 to 1995. (author)

  2. Annual report on the effluent control of low level liquid water in Tokai Works. FY2004

    International Nuclear Information System (INIS)

    Takeishi, Minoru; Miyagawa, Naoto; Watanabe, Hitoshi

    2005-08-01

    This report was written about the effluent control of low level liquid waste in JNC Tokai Works Fiscal Year 2004, from 1st April 2004 to 31th March 2005. In this period, the quantities and concentrations of radioactivity in liquid waste from Tokai Works were under the discharge limits of 'Safety Regulations for the Tokai Reprocessing Plant' and regulations of government. (author)

  3. Radioactive airborne effluent discharged from Tokai reprocessing plant. 1998-2007

    International Nuclear Information System (INIS)

    Nakada, Akira; Miyauchi, Toru; Akiyama, Kiyomitsu; Momose, Takumaro; Kozawa, Tomoyasu; Yokota, Tomokazu; Ohtomo, Hiroyuki

    2008-10-01

    This report provides the data set of atmospheric discharges from Tokai reprocessing plant in Tokai-mura, Japan over the period from 1998 to 2007. Daily and weekly data are shown for 85 Kr that is continuously monitored and for the other nuclides (alpha emitters, beta emitters, 3 H, 14 C, 129 I and 131 I) whose activities are evaluated based on weekly samplings (Weekly sampling is continuous for 1 week). The data contained in this report are expected to apply for studying the behavior of the radioactive airborne effluent in the environment. (author)

  4. Continuous Earthquake Observation using pop-up Ocean Bottom Seismographs (OBSs) in Suruga Bay at the Pacific Coast of Shizuoka, Japan.

    Science.gov (United States)

    Baba, H.; Ichinose, S.; HIrata, K.; Yamazaki, A.; Tsushima, H.; Nakata, K.; Nishiimiya, T.; Nagao, T.

    2017-12-01

    Tokai University and Meteorological Research Institute have been conducting seismic observation using pop-up type OBSs in the Suruga Bay since 2012. Suruga Bay is located in the Pacific coast of central Honshu, Japan, where large thrust earthquake along the Suruga trough expected to occur (Ishibashi, 1981) and often referred to as the Tokai Earthquake. OBSs deployment and retrieval have been repeated every three months at three or four sites continually. Seismicity has become active after the moderate earthquakes (M6.5 in 2009 and M6.2 in 2011) occurred in the Suruga Bay. From land based network observations, these earthquakes are thought to have occurred with related to subduction of the Philippine Sea Plate, and the depth of these moderate earthquakes were not determined with enough accuracy due to the lack of observation points in the sea areas. We will report the results of OBSs observation and the local seismicity in Suruga Bay in terms of frequency of earthquakes and hypocenter distribution. As a result of the observation, the followings have become clear. (1) Earthquakes were occurring frequently beneath Senoumi Bank in the Suruga Bay. It is thought these seismic activities might be the aftershocks of the earthquakes of M6.5 in 2009, and M6.2 in 2011. These aftershocks were located west side of the Suruga Trough axis. (2) Most of these earthquakes occurred at depths shallower than 25km, and were smaller than M2.0, and they were not detected by land based network. (3) It is clear that many earthquakes were occurring along the plate subduction zone. (4) It is conceivable that most of the determined hypocenters might be in the subducting Philippine plate because hypocenter along the plate boundary were not determined in the northern area of the Suruga Bay.

  5. Tokai advanced safeguards technology exercise task T-F: study of selected capabilities needed to apply DYMAC principles to safeguarding the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Lowry, L.L.; Augustson, R.H.

    1979-10-01

    Selected technical capabilities needed to apply the DYMAC principles to safeguarding the Tokai reproprocessing plant are presented. The measurements needed to close the mass balance around the process line and the analysis methods for assessing the results were investigated. Process conditions at the Tokai plant were used when numerical values were needed to assist the analyis. A rationale is presented for the selection of instruments (x-ray fluorescence spectrometers, x-ray densitometers, and gamma-ray spectrometers) best suited to establishing plutonium concentrations and inventories in the feed tanks. The current state of the art in estimating inventory in contactors is reviewed and profitable directions for further work are recommended. A generalized performance surface has been developed that can measure the diversion sensitivity of the safeguard system when the instrument performance levels, the number of measurements made, and the false alarm probability are specified. An analysis of its application to the Tokai plant is given. Finally, a conceptual approach to the problem of IAEA safeguards verification is discussed. It appears possible that, in the process of verifying, the full power of the plant operator's safeguard system can be brought to the service of the IAEA

  6. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2017-12-01

    Full Text Available This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0 that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan – including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal–vertical evacuation time maps – has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  7. Workshop of the JAEA-Tokai Tandem Accelerator. Memorial of 100,000-hour operation

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Osa, Akihiko

    2009-04-01

    Workshop of the JAEA-Tokai tandem accelerator has been held every two years. As a memorial of 100,000-hour operation of the tandem accelerator, we have organized the workshop focusing on the activity at this facility. This workshop covers developments and experiments carried out so far, together with experiments in progress and proposals in future. As previous series of workshops, we offered an opportunity to have active discussion among scientists in different fields including accelerator, nuclear physics, nuclear chemistry, radiation effects, atomic physics and so on, aiming at extending facility and research interactively. As a memorial lecture, we invited Dr. Akira Tonomura of fellow of Hitachi, Ltd, a distinctive scientist for development of electron holography. He delivered a lecture titled 'Structure of magnetic flux observed by electron beam'. He once used the tandem accelerator to induce columnar defects in high-temperature superconductor and studied vortices trapped along the defects. Prof. Shigeru Kubono of University of Tokyo, a chairman of program advisory committee of the tandem accelerator, encouraged us through a talk of 'Expectations for the JAEA-Tokai tandem accelerator'. This workshop was held at Advanced Science Research Center Building in Nuclear Science Research Institute on January 6th and 7th in 2009, having 24 oral presentations and 48 posters, and successfully carried out with as many as 120 participants and a lot of science discussions. This review is the collection of slides of oral presentations. The colored slides can be also found in the home page of the tandem accelerator facility (http://rrsys.tokai-sc.jaea.go.jp/rrsys/html/tandem/index.html). (author)

  8. Towards the Future "Earthquake" School in the Cloud: Near-real Time Earthquake Games Competition in Taiwan

    Science.gov (United States)

    Chen, K. H.; Liang, W. T.; Wu, Y. F.; Yen, E.

    2014-12-01

    To prevent the future threats of natural disaster, it is important to understand how the disaster happened, why lives were lost, and what lessons have been learned. By that, the attitude of society toward natural disaster can be transformed from training to learning. The citizen-seismologists-in-Taiwan project is designed to elevate the quality of earthquake science education by means of incorporating earthquake/tsunami stories and near-real time earthquake games competition into the traditional curricula in schools. Through pilot of courses and professional development workshops, we have worked closely with teachers from elementary, junior high, and senior high schools, to design workable teaching plans through a practical operation of seismic monitoring at home or school. We will introduce how the 9-years-old do P- and S-wave picking and measure seismic intensity through interactive learning platform, how do scientists and school teachers work together, and how do we create an environment to facilitate continuous learning (i.e., near-real time earthquake games competition), to make earthquake science fun.

  9. Report on design and technical standard planning of vibration controlling structure on the buildings, in the Tokai Reprocessing Facility, Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi

    1997-10-01

    The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)

  10. TASTEX: Tokai Advanced Safeguards Technology Exercise

    International Nuclear Information System (INIS)

    1982-01-01

    During the years 1978 to 1981 the Governments of France, Japan and the United States of America cooperated with the International Atomic Energy Agency in the TASTEX (Tokai Advanced Safeguards Technology Exercise) programme. The aim of this programme was to improve the technology for the application of international safeguards at reprocessing facilities, and the results are presented in the present report

  11. The extraction behavior of some noticeable nuclides in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Yamanouchi, T.; Sasao, N.; Ozawa, M.; Yamana, H.

    1987-01-01

    The extraction behavior of some TRU nuclides and Ru-106 were investigated on the basis of the process analytical data obtained during this decade of the hot operation in the Tokai Reprocessing Plant. Some characteristics of their extraction behavior under Tokai-flowsheet became clear. They were explainable by the chemical features of these nuclides in conjunction with the chemical conditions of the process. Some extraction-simulation calculations were performed to supplement the understanding of their characteristic behaviors

  12. Forecasting of future earthquakes in the northeast region of India considering energy released concept

    Science.gov (United States)

    Zarola, Amit; Sil, Arjun

    2018-04-01

    This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.

  13. Sea conditions off Tokai-mura

    International Nuclear Information System (INIS)

    Fukuda, Masaaki

    1975-01-01

    The result of investigation on the conditions of oceanic diffusion off Tokai-mura is presented. The diffusion phenomena are very complicated. The turbulent diffusion was analyzed by statistical method used with the data of sea current. The meteorological conditions, geographical feature and sea conditions effect considerably in oceanic diffusion in coastal area. By separating into short range and long range, the dye diffusion experiment and the river water diffusion were analyzed with several diffusion models. The author also describes on the behavior of nuclides connected with the deposition. (auth.)

  14. Change in nuclear fuel material processing operation at Tokai Plant of Mitsubishi Atomic Fuel Co., Ltd. (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Prime Minister, deals with studies on a proposed change in the operation of processing nuclear fuel substances at the Tokai Plant of Mitsubishi Atomic Fuel Co., Ltd. The conclusions of and principles for the examination and evaluation are described. It is concluded that part of the proposed change is appropriate with respect to required technical capability and that part of the change will not have adverse effects on the safety of the plant. The studies carried out are focused on the safety of the facilities. The study on the earthquake resistance reveals that anti-earthquake design for the new buildings is properly developed. The buildings are of fireproof construction and the systems and equipment to be installed are made of incomustible materials to ensure the prevention of fire and explosion. It is confirmed that criticality control (for each unit and for the group of units) will be performed appropriately and that the waste (gaseous waste, liquid waste, solid waste) treatment systems are designed appropriately. A study is also made on the radiation control methods (working condition control, individual exposure control, surrounding environment control). In addition accident evaluation is carried out to confirm the safety of the residents around the plant. (Nogami, K.)

  15. Change in nuclear fuel material processing operation at Tokai Plant of Mitsubishi Atomic Fuel Co. , Ltd. (report)

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Prime Minister, deals with studies on a proposed change in the operation of processing nuclear fuel substances at the Tokai Plant of Mitsubishi Atomic Fuel Co., Ltd. The conclusions of and principles for the examination and evaluation are described. It is concluded that part of the proposed change is appropriate with respect to required technical capability and that part of the change will not have adverse effects on the safety of the plant. The studies carried out are focused on the safety of the facilities. The study on the earthquake resistance reveals that anti-earthquake design for the new buildings is properly developed. The buildings are of fireproof construction and the systems and equipment to be installed are made of incomustible materials to ensure the prevention of fire and explosion. It is confirmed that criticality control (for each unit and for the group of units) will be performed appropriately and that the waste (gaseous waste, liquid waste, solid waste) treatment systems are designed appropriately. A study is also made on the radiation control methods (working condition control, individual exposure control, surrounding environment control). In addition accident evaluation is carried out to confirm the safety of the residents around the plant. (Nogami, K.).

  16. A 30-year history of earthquake crisis communication in California and lessons for the future

    Science.gov (United States)

    Jones, L.

    2015-12-01

    The first statement from the US Geological Survey to the California Office of Emergency Services quantifying the probability of a possible future earthquake was made in October 1985 about the probability (approximately 5%) that a M4.7 earthquake located directly beneath the Coronado Bay Bridge in San Diego would be a foreshock to a larger earthquake. In the next 30 years, publication of aftershock advisories have become routine and formal statements about the probability of a larger event have been developed in collaboration with the California Earthquake Prediction Evaluation Council (CEPEC) and sent to CalOES more than a dozen times. Most of these were subsequently released to the public. These communications have spanned a variety of approaches, with and without quantification of the probabilities, and using different ways to express the spatial extent and the magnitude distribution of possible future events. The USGS is re-examining its approach to aftershock probability statements and to operational earthquake forecasting with the goal of creating pre-vetted automated statements that can be released quickly after significant earthquakes. All of the previous formal advisories were written during the earthquake crisis. The time to create and release a statement became shorter with experience from the first public advisory (to the 1988 Lake Elsman earthquake) that was released 18 hours after the triggering event, but was never completed in less than 2 hours. As was done for the Parkfield experiment, the process will be reviewed by CEPEC and NEPEC (National Earthquake Prediction Evaluation Council) so the statements can be sent to the public automatically. This talk will review the advisories, the variations in wording and the public response and compare this with social science research about successful crisis communication, to create recommendations for future advisories

  17. Coastal observation of Tokai-mura

    International Nuclear Information System (INIS)

    Iwasaki, Kohzi; Kinoshita, Mutsumi; Kurabayashi, Mizumi; Yamato, Aiji; Narita, Osamu

    1976-01-01

    The survey of sea current with a flow direction and speed meter is generally performed to have knowledge and information on the state of flow in a sea area concerned. Such survey has been carried out for long in the sea off Tokai-mura, thereby the flow tendency up to several km offshore has been obtained. In the series of survey by PNC (Power Reactor and Nuclear Fuel Development Corporation) from 1974 to 1975, multi-point simultaneous flow survey was carried out. These results are described together with two- and three-dimensional flow characteristics. (Mori, K.)

  18. The development of in-cell remote inspection system in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ishibashi, Yuzo

    1985-01-01

    In the Tokai fuel reprocessing plant, the containment is triple, i.e. the vessel containing radioactive material, then the concrete cell structure and finally the housing building. The fuel reprocessing plant is now proceeding with the development of an in-cell remote inspection system. The inspection system is for inspection of the cell itself and the equipment etc. in the cell, concerning the integrity. Described are the following: the course taken and problems in development of the remote inspection system; development of the floor rambling type remote inspection equipment and the multiple armed type, both for inspection of in-cell ''drip trays''; in-cell equipment inspection devices in specifications etc.; problems in its future development. (Mori, K.)

  19. Tectonic styles of future earthquakes in Italy as input data for seismic hazard

    Science.gov (United States)

    Pondrelli, S.; Meletti, C.; Rovida, A.; Visini, F.; D'Amico, V.; Pace, B.

    2017-12-01

    In a recent elaboration of a new seismogenic zonation and hazard model for Italy, we tried to understand how many indications we have on the tectonic style of future earthquake/rupture. Using all available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5) of the last 100 yrs, first arrival focal mechanisms for less recent earthquakes and also geological data on past activated faults, we collected a database gathering a thousands of data all over the Italian peninsula and regions around it. After several summations of seismic moment tensors, over regular grids of different dimensions and different thicknesses of the seismogenic layer, we applied the same procedure to each of the 50 area sources that were designed in the seismogenic zonation. The results for several seismic zones are very stable, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different, opposite tectonic styles for different hypocentral depths. In several zones, characterized by a low seismic moment release, defined for the study region using 1000 yrs of catalog, the next possible tectonic style of future earthquakes is less clear. It is worth to note that for some zones the possible greatest earthquake could be not represented in the available observations. We also add to our analysis the computation of the seismic release rate, computed using a distributed completeness, identified for single great events of the historical seismic catalog for Italy. All these information layers, overlapped and compared, may be used to characterize each new seismogenic zone.

  20. Experience and projects concerning treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Fukuda, G.; Matsumoto, K.; Miyahara, K.

    1984-01-01

    The active operation of Tokai reprocessing plant started in September 1977, and about 170 t U of spent fuel were reprocessed between then and December 1982. During this period, the low-level waste processing plant reduced the amount of radioactivity discharged into the environment. For radioactive liquid waste, the treatment procedures consist mainly of evaporation to keep the discharge into the sea at a low level. For combustible low-level solid waste and the solvent waste, which is of low tributyl phosphate content, incineration has been used successfully (burned: about 150 t of combined LLSW, about 50 m 3 of solvent waste, i.e. diluent waste). Most of the past R and D work was devoted to reducing the activity discharged into the environment. Current R and D work is concerned with the treatment of solvent waste, the conditioning of solid wastes, the bituminization of low-level liquid waste and the vitrification of high-level liquid waste. The paper describes present practices, R and D work and future aspects of the treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant. (author)

  1. Survey of secular change for the buildings of nuclear fuel facility in JNC Tokai Works

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Kyue, Tadashi; Satoko, Hiroyuki; Yamazaki, Toshihiko

    2002-06-01

    Some nuclear facilities of JNC such as Tokai Reprocessing Plant or Tokai Plutonium Fuel plant have been operating over 20 years since their completion. These facilities' buildings are constructed near the seaside, so we are that, we are surveying the secular change, estimating the tendency and counterplan to operate the facilities stably. In this paper, we report the abstract of the result of the survey, and the maintenance stage of the diagnostic techniques etc. (author)

  2. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS model for short-term clustering

    Directory of Open Access Journals (Sweden)

    Jiancang Zhuang

    2012-07-01

    Full Text Available Based on the ETAS (epidemic-type aftershock sequence model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.

  3. Deposition of radionuclides and stable elements in Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Takashi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    This report presents the data of deposition of radionuclides (Sep. 1993-March 2001) and stable elements (Sep. 1993-Oct. 1995) in Tokai-mura. To evaluate the migration of radionuclides and stable elements from the atmosphere to the ground surface, atmospheric deposition samples were collected from Sep. 1993 to March 2001 with three basins (distance to grand surface were 1.5 m, 4 m, 10 m) set up in the enclosure of JAERI in Tokai-mura, Ibaraki-ken, Japan. Monthly samples were evaporated to dryness to obtain residual samples and measured with a well type Ge detector for {sup 7}Be, {sup 40}K, {sup 137}Cs and {sup 210}Pb. According to the analysis of radioactivity, clear seasonal variations with spring peaks of deposition weight (dry) and deposition amounts of all objective radionuclides were found. Correlation analysis of deposition data also showed that these radionuclides can be divided into two groups. A part of dried sample was irradiated to reactor neutrons at JRR-4 for determination of stable element's deposition. (author)

  4. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1997-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  5. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  6. Operating document on management division waste management section in Tokai works in the 2002 fiscal year. Document on present of affairs

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Isozaki, Kouei; Akutu, Shigeru; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi

    2003-04-01

    This document is announced about task of Waste Management Division Waste Management Section in the 2002 fiscal year. Mainly, our task is that treated Low level solid waste, stored Low level solid waste and stored High level solid waste. Those wastes are generated from Tokai reprocessing plant in Tokai Works. We carried out task safely as planned. The results are as follows. (1) We incinerated that combustible Low level solid waste of 70.5 ton in Incinerate facility. Such wastes were generated from operation of Tokai reprocessing plant and cleaned up operation of Tokai bituminization facility (The fire and explosion incident of Tokai bituminization facility). (2) We stored Low level solid waste that generated the waste of 1,071 drums. It is found that Storage facilities will not fill on this condition Low level radioactive waste treatment facility is started operation. (3) We stored High level solid waste that generated the waste of 117 drums from Tokai reprocessing plant. And, it is found that there facilities will not fill on this condition generated wastes of about 100 drams by a year. (4) We started printing of the data from the 2002 fiscal year to intranet which amount of stored Low level solid waste and High level solid waste in order to educate-the amount reduction of waste generating (at those facilities). (author)

  7. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    Science.gov (United States)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  8. Report of meteorological observations in site of Tokai Research Establishment in 1971

    International Nuclear Information System (INIS)

    1978-05-01

    Covered are the meteorological observations from January to December 1971 in Tokai Research Establishment as monthly summaries, including daily and hourly mean wind speeds, frequencies of wind directions and atmospheric stability. (auth.)

  9. Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough

    Science.gov (United States)

    Imai, K.; Satake, K.; Furumura, T.

    2010-04-01

    We investigated the effect of delayed rupture of great earthquakes along the Nankai trough on tsunami heights on the Japanese coast. As the tsunami source, we used a model of the 1707 Hoei earthquake, which consists of four segments: Tokai, Tonankai, and two Nankai segments. We first searched for the worst case, in terms of coastal tsunami heights, of rupture delay time on each segment, on the basis of superposition principle for the linear long wave theory. When the rupture starts on the Tonankai segment, followed by rupture on the Tokai segment 21 min later, as well as the eastern and western Nankai segments 15 and 28 min later, respectively, the average coastal tsunami height becomes the largest. To quantify the tsunami amplification, we compared the coastal tsunami heights from the delayed rupture with those from the simultaneous rupture model. Along the coasts of the sea of Hyu'uga and in the Bungo Channel, the tsunami heights become significantly amplified (>1.4 times larger) relative to the simultaneous rupture. Along the coasts of Tosa Bay and in the Kii Channel, the tsunami heights become amplified about 1.2 times. Along the coasts of the sea of Kumano and Ise Bay, and the western Enshu coast, the tsunami heights become slightly smaller for the delayed rupture. Along the eastern Enshu coast, the coast of Suruga Bay, and the west coast of Sagami Bay, the tsunami heights become amplified about 1.1 times.

  10. Prospect of future housing and risk of psychological distress at 1 year after an earthquake disaster.

    Science.gov (United States)

    Nakaya, Naoki; Nakamura, Tomohiro; Tsuchiya, Naho; Narita, Akira; Tsuji, Ichiro; Hozawa, Atsushi; Tomita, Hiroaki

    2016-04-01

    Since the Great East Japan Earthquake in 2011, many of the affected have been forced to live in temporary housing or at a relative's house. Special attention needs to be paid to the negative health impacts resulting from such changes in living conditions. This study examined the association between future housing prospects and the risk of psychological distress 1 year after the earthquake. In 2012, a questionnaire was completed by a cross-sectional study of people aged 20 years or older living in Shichigahama Town, Miyagi, northeastern Japan, an area that had been severely inundated by the tsunami. Future housing prospects post-earthquake were classified into four categories: already settled in permanent housing, moving to new housing, under consideration, or unable to make any plans. Psychological distress was evaluated using the Kessler 6 scale, defined as ≥5 points out of 24. We performed multiple logistic regression analyses adjusted for potential confounding factors. Of the 3614 individuals studied, subjects whose future housing was under consideration (odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.6-2.7, P prospects were under consideration and those who were unable to make any future housing plans were at a higher risk of psychological distress 1 year after the earthquake disaster. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  11. Monitoring of the future strong Vrancea events by using the CN formal earthquake prediction algorithm

    International Nuclear Information System (INIS)

    Moldoveanu, C.L.; Novikova, O.V.; Panza, G.F.; Radulian, M.

    2003-06-01

    The preparation process of the strong subcrustal events originating in Vrancea region, Romania, is monitored using an intermediate-term medium-range earthquake prediction method - the CN algorithm (Keilis-Borok and Rotwain, 1990). We present the results of the monitoring of the preparation of future strong earthquakes for the time interval from January 1, 1994 (1994.1.1), to January 1, 2003 (2003.1.1) using the updated catalogue of the Romanian local network. The database considered for the CN monitoring of the preparation of future strong earthquakes in Vrancea covers the period from 1966.3.1 to 2003.1.1 and the geographical rectangle 44.8 deg - 48.4 deg N, 25.0 deg - 28.0 deg E. The algorithm correctly identifies, by retrospective prediction, the TJPs for all the three strong earthquakes (Mo=6.4) that occurred in Vrancea during this period. The cumulated duration of the TIPs represents 26.5% of the total period of time considered (1966.3.1-2003.1.1). The monitoring of current seismicity using the algorithm CN has been carried out since 1994. No strong earthquakes occurred from 1994.1.1 to 2003.1.1 but the CN declared an extended false alarm from 1999.5.1 to 2000.11.1. No alarm has currently been declared in the region (on January 1, 2003), as can be seen from the TJPs diagram shown. (author)

  12. Quasi real-time estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2016-12-01

    The 2011 Tohoku-Oki (off the Pacific coast of Tohoku) earthquake, of moment magnitude 9.0, was accompanied by large static strain changes (10-7), as measured by borehole strainmeters operated by the Geological Survey of Japan in the Tokai, Kii Peninsula, and Shikoku regions. A fault model for the earthquake on the boundary between the Pacific and North American plates, based on these borehole strainmeter data, yielded a moment magnitude of 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency (JMA) announced just after earthquake occurrence was 7.9. Such geodetic moment magnitudes, derived from static strain changes, can be estimated almost as rapidly as determinations using seismic waves. I have to verify the validity of this method in some cases. In the case of this earthquake's largest aftershock, which occurred 29 minutes after the mainshock. The prompt report issued by JMA assigned this aftershock a magnitude of 7.3, whereas the moment magnitude derived from borehole strain data is 7.6, which is much closer to the actual moment magnitude of 7.7. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using static strain changes is one of the strong methods for rapid estimation of the magnitude of large earthquakes, and useful to improve the accuracy of Earthquake Early Warning.

  13. Criticality management of Tokai reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Ichiro [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-01-01

    In fuel cycle centers a number of equipment and vessels of various types and of complex design are used in several processes, i.e. dissolution of spent fuels, separation and storage of uranium and plutonium from fission products and transuranium elements. For each processes, Monte Carlo codes are frequently applied to manage the fuel criticality. Safety design depends largely on specific features of each facilities. The present report describes status of criticality management for main processes in Tokai Reprocessing Facility, JNC, and the criticality conditions specifically existing there. The guiding principle throughout consists of mass control, volume control, design (form) control, concentration control, and control due to employment of neutron poisons. (S. Ohno)

  14. Practice of producing cement packages for sea dumping and their quality control in Tokai Research Establishment, JAERI

    International Nuclear Information System (INIS)

    Hattori, Yoshiro; Fujisaki, Setsuo; Usami, Jun; Morishita, Satoru; Komatsu, Shigeru

    1980-07-01

    The production of cement packages for the exploratory sea dumping has been carried out at Waste Disposal and Decontamination Section, Tokai Research Establishment, JAERI. And around 1,000 packages were completed until 1979. The production practice were conducted based on NEA guideline and domestic regulation. In order to meet the guideline and regulation, consistent quality control is necessary to the production procedure. This Report describes about the procedure and quality control that were practiced from 1977 to 1979 in Tokai Research Establishment. (author)

  15. Abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions September 9-10, 1994, Tokai, Japan

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1995-01-01

    This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author)

  16. Abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions September 9-10, 1994, Tokai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Kaoru [ed.; Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-01-01

    This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author).

  17. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  18. Major earthquake of Friday March 11, 2011, magnitude 8.9 at 5:46 UT, off Honshu island (Japan)

    International Nuclear Information System (INIS)

    2011-01-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 8.9 earthquake took place at 80 km east of Honshu island (Japan). The earthquake affected a large part of the Honshu territory and led to the automatic emergency shutdown of all nuclear power plants of the east coast. This paper recalls first the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact on nuclear facilities. At the time of publication of this information report, no radioactive release in the environment and no anomaly at the Tokai-Mura and Rokkasho-Mura sites were mentioned. However, the evacuation of populations in a 3 to 10 km area around the Fukushima-Dai-ichi power plant had been ordered by the Governor as preventive measure, which made one think that the situation at this specific site was particularly worrying. (J.S.)

  19. Inspection and repair in JRR-3 after the 2011 off the Pacific coast of Tohoku Earthquake

    International Nuclear Information System (INIS)

    Hosoya, Toshiaki; Nagadomi, Hideki; Torii, Yoshiya

    2014-01-01

    In the 2011 off the Pacific Coast of Tohoku Earthquake, seismic intensity of 6 lower was observed at Tokai Village. However, the maximum acceleration of ground motion that was observed in the JRR-3 reactor facilities had exceeded the maximum response acceleration at the time of design. Therefore, to confirm whether the predetermined performance of the facility equipment of the reactor facilities had been maintained after the earthquake, soundness confirmation inspection was carried out. In the inspection, the soundness of equipment and facilities was evaluated from the results of the equipment inspection and seismic impact assessment, and the repair work was applied when necessary. As a result, it was confirmed that after the earthquake, the equipment of JRR-3 reactor facilities maintained the predetermined performance, and was possible to resume operation. The following item are reported here: (1) overview of JRR-3, (2) conditions of JRR-3 reactor facilities while earthquake occurrence, (3) basic principle for soundness evaluation of facilities, (4) soundness confirmation of buildings and structures, (5) contents of repair, and (6) soundness verification and comprehensive evaluation of each facility and equipment. (A.O.)

  20. Criticality safety evaluation in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Shirai, Nobutoshi; Nakajima, Masayoshi; Takaya, Akikazu; Ohnuma, Hideyuki; Shirouzu, Hidetomo; Hayashi, Shinichiro; Yoshikawa, Koji; Suto, Toshiyuki

    2000-04-01

    Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 'Criticality safety of single unit' in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units. (author)

  1. The technological study on the decommissioning of nuclear facility, etc. in the Tokai Research Establishment

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Matsuo, Kiyoshi; Shiraishi, Kunio; Kato, Rokuro; Watabe, Kozou; Higashiyama, Yutaka; Nagane, Satoru

    2005-03-01

    Since JPDR is dismantled and is removed, in Tokai Research Establishment, Japan Atomic Energy Research Institute, the dismantling of nuclear facility which finished the mission, etc. is advanced. At present, nuclear facility as a dismantling object count the approximately 20 facilities, and decommissioning plan of these facilities becomes an important problem, when the decommissioning countermeasure is considered. However, decommissioning techniques in proportion to various nuclear facility, etc. are clearly, and it has not been determined. In this report, the technical consideration on decommissioning techniques of nuclear facility promoted on the basis of this experience in future, while until now decommissioning experience and technical knowledge are arranged, etc. was added in order to appropriately and surely carry out decommissioning techniques and legal procedures, etc. (author)

  2. Annual report on the environmental radiation monitoring around Tokai Reprocessing Plant. FY 2001. Document on present state of affairs

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Takeishi, Minoru; Miyagawa, Naoto

    2002-06-01

    Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed since 1975, based on ''Safety Regulations for the Tokai Reprocessing Plant, Chapter IV - Environmental Monitoring''. This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant during April 2001 to March 2002. Appendices present comprehensive information, such as monitoring program, monitoring results, meteorological data and annual discharges from the plant. (author)

  3. Evaluation on maintenance technology developed in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2008-01-01

    Tokai reprocessing plant (TRP) has been processing 1,140 tons of spent fuels, including 29tons of Fugen MOX fuels, since the beginning of its active operation in Sept.1977. For 30 years operation of TRP, many technological problems have been overcome to obtain the stable and reliable operation. This knowledge of maintenance technology could contribute to the safety and stable operation of Rokkasho reprocessing plant (RRP), as well as to the design and construction of the next reprocessing plant. (author)

  4. Application of the basic concepts of dynamic materials accountancy to the Tokai spent fuel reprocessing facilityssing facility

    International Nuclear Information System (INIS)

    Lovett, J.E.; Ikawa, Koji; Hirata, Mitsuho; Augustson, R.H.

    1980-11-01

    During 1978 and 1979 individuals from the International Atomic Energy Agency, the Los Alamos Scientific Laboratory, and the Japan Atomic Energy Research Institute investigated the feasibility of applying the basic concepts of dynamic materials accountancy to PNC-Tokai reprocessing facility in Japan. The system developed for Tokai requires weekly in-process physical inventories for the process MBA, and allows 2-3 additional days for completion of measurements and for data reduction and evaluation. The study concluded that such a system would be feasible, and recommended that an actual field test should be conducted as soon as feasible. (author)

  5. Concentration of 7Be in the lower atmosphere and fallout rate in Tokai

    International Nuclear Information System (INIS)

    Amano, Hikaru; Kasai, Atsushi

    1981-01-01

    Beryllium-7, cosmic ray produced radioactivity, its monthly average concentration in the lower atmosphere and monthly fallout rate were measured in Tokai, Japan. Then, the monthly variations were compared with those of fission products due to nuclear detonations in the atmosphere. The concentration of 7 Be in the lower atmosphere ranged from 0.5 x 10 -1 pCi/m 3 to 2.5 x 10 -1 pCi/m 3 in Tokai between the observed period, 1975 - 1977. The fallout rate of 7 Be vibrated widely, its range was from the detection limits to 1.2 x 10 4 pCi/m 2 . The monthly variations were not always the same with variations of the fission products. Fallout rate of 7 Be depended on the rain strongly. The concentration of 7 Be in the rain was measured, too. Then the range was from 9.2 pCi/l to 1.9 x 10 2 pCi/l between the observed period 1976.9 - 1977.2. (author)

  6. Delivery and installation of PC/FRAM at the PNC Tokai Works

    International Nuclear Information System (INIS)

    Sampson, T.E.; Kelley, T.A.; Kroncke, K.E.; Menlove, H.O.; Baca, J.; Asano, Takashi; Terakado, Shigeru; Goto, Yasushi; Kogawa, Noboru

    1997-11-01

    The authors report on the assembly, testing, delivery, installation, and initial testing of three PC/FRAM plutonium isotopic analysis systems at the Power Reactor and Nuclear Fuel Development Corporation's Tokai Works. These systems are intended to measure the isotopic composition and 235 U/plutonium of mixed oxide (MOX) waste in 200-L waste drums. These systems provide capability for performing measurements on lead-lined drums

  7. Improvement of shearing machine in the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takae, Akiyoshi; Otani, Yoshikuni

    1994-01-01

    The shearing machine in the Tokai Reprocessing Plant has been improved and refurbished through its operational experience for about 20 years. Every component except the shear housing and magazine is changed for improved things by PNC, while the shearing machine had been designed and fabricated originally by a French Company. The improvement of the shearing machine was carried out for the purpose of settling the problems which were experienced in the past operation, and improving durability, remote maintainability, and operability. The details of their improvement work are described. (author)

  8. Approach to mitigate intergranular stress corrosion cracking and dose rate reduction rate by water chemistry control in Tokai-2

    International Nuclear Information System (INIS)

    Hisamune, Kenji

    2015-01-01

    The Japan Atomic Power Company (JAPC) had been working on material replacement and measures to mitigate stress in order to maintain the integrity of the structural material of Tokai-Daini nuclear power plant (Tokai-2, BWR, 1,100 MWe; commercial operation started on November 28, 1978). In addition, as Stress Corrosion Cracking (SCC) environmental mitigation measures, we have been reducing the sulfate ion concentration in the reactor water by improving the regeneration method of the ion exchange resin at condensate purification system. Furthermore, in conducting the SCC environmental mitigation measures by applying hydrogen water chemistry (HWC) and HWC during start-up (HDS), we have been reducing the oxidizing agent concentration in the reactor water. On the other hand, as a plant that has not installed condensate filters, we have been working on feed water iron concentration reduction measures in Tokai-2 as part of the dose reduction measures. Therefore, we have improved condensate demineralizer's ion exchange resin and the ion exchange resin cleaning method using the ARCS (Advanced Resin Cleaning System) in order to improve the iron removal performance of condensate demineralizer. This document reports the improvement effect of the SCC environmental mitigation measures and the dose reduction measures by water chemistry management at Tokai-2. In addition, the dose reduction effect of the recently applied zinc injection, and the Electrochemical Corrosion Potential (ECP) monitoring plan under the On-Line Noble Chemical Addition (OLNC™) to be implemented later shall be introduced. (author)

  9. When it happens again: impact of future San Francisco Bay area earthquakes

    Science.gov (United States)

    Zoback, M.; Boatwright, J.; Kornfield, L.; Scawthorn, C.; Rojahn, C.

    2005-12-01

    San Francisco Bay area earthquakes, like major floods and hurricanes, have the potential for massive damage to dense urban population centers concentrated in vulnerable zones-along active faults, in coastal regions, and along major river arteries. The recent destruction of Hurricane Katrina does have precedent in the destruction following the 1906 "San Francisco" earthquake and fire in which more than 3000 people were killed and 225,000 were left homeless in San Francisco alone, a city of 400,000 at the time. Analysis of a comprehensive set of damage reports from the magnitude (M) 7.9 1906 earthquake indicates a region of ~ 18,000 km2 was subjected to shaking of Modified Mercalli Intensity of VIII or more - motions capable of damaging even modern, well-built structures; more than 60,000 km2 was subjected to shaking of Intensity VII or greater - the threshold for damage to masonry and poorly designed structures. By comparison, Katrina's hurricane force winds and intense rainfall impacted an area of ~100,000 km2 on the Gulf Coast. Thus, the anticipated effects of a future major Bay Area quake to lives, property, and infrastructure are comparable in scale to Katrina. Secondary hazards (levee failure and flooding in the case of Katrina and fire following the 1906 earthquake) greatly compounded the devastation in both disasters. A recent USGS-led study concluded there is a 62% chance of one or more damaging (M6.7 or greater) earthquakes striking the greater San Francisco Bay area over the next 30 years. The USGS prepared HAZUS loss estimates for the 10 most likely forecast earthquakes which range in size from a M6.7 event on a blind thrust to the largest anticipated event, a M7.9 repeat of the 1906 earthquake. The largest economic loss is expected for a repeat of the 1906 quake. Losses in the Bay region for this event are nearly double those predicted for a M6.9 rupture of the entire Hayward Fault in the East Bay. However, because of high density of population along the

  10. Modification in fuel processing of Mitsubishi Nuclear Fuel's Tokai Works

    International Nuclear Information System (INIS)

    1976-01-01

    Results of the study by the Committee for Examination of Fuel Safety, reported to the AEC of Japan, are presented, concerning safety of the modifications of Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. Safety has been confirmed thereof. The modifications covered are the following: storage facility of nuclear fuel in increase, analytical facility in transfer, fuel assemblage equipment in addition, incineration facility of combustible solid wastes in installation, experimental facility of uranium recovery in installation, and warehouse in installation. (Mori, K.)

  11. Operating experience and development of fluidized-bed denitrators for UNH at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Minoru; Nakamichi, Hideya; Takeda, Seiichiro; Kubota, Kanya; Katoh, Shuji

    1983-01-01

    The fluidized bed denitrator for uranyl nitrate hexahydrate (UNH) at Tokai reprocessing plant has been operated since 1976. About 170 tons of spent fuel have been reprocessed, and the denitrator has encountered numerous operational problems during the period. This report deals with these technical problems and the associated countermeasures taken, including the dismantling and reconstruction of equipment and the improvement of operating method. The major problems encountered were as follows: (1) the crystallization of UNH on the UNH feeding line, (2) spray nozzle clogging and candle filter clogging, (3) particle growth, (4) plugging of the drawing-out line by nozzle caking, and (5) slugging in fluidized-bed denitration. The total quantity and quality of UO 3 products obtained so far at the plant are also briefly described together with some future R and D programs such as the improvement of UO 3 reactivity and the automation of denitrators. (Aoki, K.)

  12. Annual report on the present state and activities of the radiation protection division, JNC Tokai Works in fiscal 2003

    International Nuclear Information System (INIS)

    2004-10-01

    This annual report summarizes the activities, such as radiation control in the radiation facilities, personnel monitoring, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, safety research, and technical support, undertaken by the Radiation Protection Division at JNC Tokai Works in fiscal 2003. The major radiation facilities in the Tokai Works are the Tokai Reprocessing Plant (TRP), three MOX fuel fabrication facilities, the Chemical Processing Facility (CPF), and various other radioisotope and uranium research laboratories. The Radiation Protection Division is responsible for radiation control in and around these radiation facilities, including personnel monitoring, workplace monitoring, consultation on radiological work planning and evaluation, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, calibration, quality assurance, and safety research. The Division also provides technical support and cooperation to other international and domestic institutes in the radiation protection field. In fiscal 2003, the results of radiological monitoring showed the situation to be normal, and no radiological incident or accident occurred. The maximum annual effective dose to radiation workers was 6.2 mSv and the mean annual effective dose was 0.1 mSv. Individual doses were kept within the annual dose limit specified in the safety regulations. The estimated effective dose caused by gas and liquid effluents form the TRP to members of the public around the Tokai Works was 4.2 x 10 -4 mSv. Environmental monitoring and effluent control were performed appropriately in compliance with safety regulation and standards. In addition, the various preparations were made for introduction of the quality assurance to regulation since fiscal 2004. (author)

  13. Impact of the Tokai reprocessing plant on the workers and on the surrounding environment

    International Nuclear Information System (INIS)

    Tago, I.

    1996-01-01

    The Tokai reprocessing plant began operation in September 1977 to establish oxide fuel reprocessing technology in Japan. Its designed capacity is about 0.7 metric tons of uranium per day. This report gives an example of the evaluation of the health and environmental aspects of a reprocessing plant. (author)

  14. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  15. Environmental radiation monitoring system in Tokai and Oarai areas

    International Nuclear Information System (INIS)

    Morita, Shigeki

    1983-01-01

    In the Tokai and the Oarai areas there are total of seventeen enterprises, different in size and kind, connected with nuclear energy. Environmental monitoring is carried out in the cooperation of the Government, local governments and enterprises according to the plans by a prefectural monitoring committee. The purpose is in the following three aspects: (1) Estimation of the dose of general people, based on environmental radioactivity and released radioactivity data (2) Grasping the radioactive accumulation on long-terms (3) Detection of abnormal releases from the enterprises at an early stage. By environmental monitoring made thus far, no rise in environmental radioactivities due to the enterprises is indicated. (author)

  16. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  17. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    International Nuclear Information System (INIS)

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  18. Local governments' roles of the compensation for damage by the Tokai JCO criticality accident

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2003-01-01

    The Tokai JCO criticality accident on September 30, 1999 was the first case to which The Law on Compensation for Nuclear Damage was applied. Although the Law on Compensation for Nuclear Damage formulates the outline of the institutional framework for nuclear third party liability together with operator's insurance scheme, details of actual compensation procedure are not specified. By this reason, the compensation procedure in the Tokai accident had been executed without a concrete legal specification and a precedent. In spite of this situation, the compensation procedure with the accident led to an unexpectedly successful result. We observe the several reasons why the compensation procedure was implemented successfully despite the lack of concrete legal specification and a precedent. One of the reasons is that the local governments, Tokai Village and Ibaraki Prefecture, immediately took the leadership in implementing a temporary regime of compensation procedure without wasting time for waiting national government's directives. Upon practicing this compensation procedure, the local governments implemented the following steps. (1) Initial estimation of the amount and scope of damage. (2) Providing the criteria and heads of damage subject to compensation. (3) Unitary compensation procedure at the local levels. (4) Distribution of emergency payments for the victims. (5) Facilitating compensatory negotiation between the victims and JCO as arbitrator. However, some concerns are also pointed out about the fact that the local government directed the whole procedure without sufficient adjustment with the national government for compensation policy. Among all, in the compensation led by the local governments, it was difficult to guarantee fairness of compensation because victims who are influential on the local government such as industrial associations would have unfairly strong negotiation power in the compensatory negotiation, while the operator being responsible for the

  19. Rapid estimation of the moment magnitude of the 2011 off the Pacific coast of Tohoku earthquake from coseismic strain steps

    Science.gov (United States)

    Itaba, S.; Matsumoto, N.; Kitagawa, Y.; Koizumi, N.

    2012-12-01

    The 2011 off the Pacific coast of Tohoku earthquake, of moment magnitude (Mw) 9.0, occurred at 14:46 Japan Standard Time (JST) on March 11, 2011. The coseismic strain steps caused by the fault slip of this earthquake were observed in the Tokai, Kii Peninsula and Shikoku by the borehole strainmeters which were carefully set by Geological Survey of Japan, AIST. Using these strain steps, we estimated a fault model for the earthquake on the boundary between the Pacific and North American plates. Our model, which is estimated only from several minutes' strain data, is largely consistent with the final fault models estimated from GPS and seismic wave data. The moment magnitude can be estimated about 6 minutes after the origin time, and 4 minutes after wave arrival. According to the fault model, the moment magnitude of the earthquake is 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency announced just after earthquake occurrence was 7.9. Generally coseismic strain steps are considered to be less reliable than seismic waves and GPS data. However our results show that the coseismic strain steps observed by the borehole strainmeters, which were carefully set and monitored, can be relied enough to decide the earthquake magnitude precisely and rapidly. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using strain steps is one of the strong methods for rapid estimation of the magnitude of great earthquakes.

  20. Annual report on the present state and activities of the radiation protection division, JNC Tokai Works in fiscal 2004

    International Nuclear Information System (INIS)

    2005-09-01

    This annual report summarizes the activities on radiation control in the radiation facilities, personnel monitoring, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, safety research, and technical support, undertaken by the Radiation Protection Division at JNC Tokai Works in fiscal 2004. The major radiation facilities in the Tokai Works are the Tokai Reprocessing Plant (TRP), three MOX fuel fabrication facilities, the Chemical Processing Facility (CPF), and various other radioisotope and uranium research laboratories. The Radiation Protection Division is responsible for radiation control in and around these radiation facilities, including personnel monitoring, workplace monitoring, consultation on radiological work planning and evaluation, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, calibration, quality assurance, and safety research. The Division also provides technical support and cooperation to other international and domestic institutes in the radiation protection field. In fiscal 2004, the results of radiological monitoring showed the situation to be normal, and no radiological incident or accident occurred. The maximum annual effective dose to radiation workers was 6.1 mSv and the mean annual effective dose was 0.1 mSv. Individual doses were kept within the annual dose limit specified in the safety regulations. The estimated effective dose caused by gas and liquid effluents from the TRP to members of the public around the Tokai Works was 4.4x10 -4 mSv. Environmental monitoring and effluent control were performed appropriately in compliance with safety regulation and standards. Research and development on radiation protection in nuclear fuel cycle are also performed actively. Safety audit and Nuclear Safety Inspection were made in accordance with the quality assurance system which had been introduced to safety regulation since fiscal 2004. (author)

  1. Some examples of the cavity filling along transportation routes above abandoned room and pillar lignite Mines in Tokai Region

    International Nuclear Information System (INIS)

    Sakamoto, A.; Yamada, N.; Sugiura, K.; Kawamoto, T.

    2005-01-01

    The authors describe the applications of the integrated cavity filling technique to abandoned lignite mines in Tokai region. These abandoned lignite mines were in operation until 1960's and the routes of Tokai By-Pass Expressway and the linear motor car railway line for Aichi Exposition pass over these abandoned mines. Since the size of abandoned mines were much larger than the route of the expressway and the elevated monorail, limited areas relevant to their stability had to be only filled. This article describe the details of cavity filling operations in these two projects, which may be some valuable examples for assessing the methods how to deal problems associated with mine closures in long term. (authors)

  2. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Hisanori; Nagayama, Tetsuya; Horigome, Kazushi; Ishibashi, Atsushi; Kitao, Takahiko; Surugaya, Naoki

    2014-01-01

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  3. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  4. Levels of tritium concentration in the environmental samples around JAERI TOKAI

    International Nuclear Information System (INIS)

    Matsuura, K.; Sasa, Y.; Nakamura, C.; Katagiri, H.

    1995-01-01

    By the operation of research reactors, tritium-handling facilities, nuclear power plants, and a reprocessing facility around JAERI TOKAI, tritium is released into the environment in compliance with the regulatory standards. To investigate the levels of tritium concentration in environmental samples around JAERI, rain, air (vapor and hydrogen gas), and tissue-free water of pine needles were measured and analyzed from 1984 to 1993. Sampling locations were determined by taking into consideration wind direction, distance from nuclear facilities, and population distribution. The NAKA site (about 6 km west-northwest from the Tokai site) was also selected as a reference point. Rain and tissue-free water of pine needles were sampled monthly. For air samples, sampling was carried out for two weeks by using the continuous tritium sampler. After the pretreatment of samples, tritium concentrations were measured by a low background liquid scintillation counter (detection limit 0.8 Bq/l). Annual mean tritium concentrations in rain observed at six points for 10 years was 0.8 to 8.9 Bq/l, which decreased with distance from the nuclear facilities. Tritium concentrations in rain obtained at Chiba City were around 0.8 Bq/l (1987-1988) and those at the NAKA site were 0.8 to 3.8 Bq/l. Annual mean HTO concentrations in air at three points for 10 years were 9.2 x 10 -2 to 1.1 Bq/m 3 , although HT concentrations in air, ranging from 1.7 x 10 -2 to 5.8 x 10 -2 Bq/m 3 , were not influenced by the operation of the nuclear facilities. Annual mean tritium concentrations in tissue-free water of pine needles at four points for 10 years were 1.4 to 31 Bq/l. Those at the NAKA site ranging from 1.4 to 6.2 Bq/l were in good agreement with the reported value by Takashima of 0.78 to 3.0 Bq/l at twenty-one locations in Japan. Monthly mean HTO concentrations in air for 10 years showed a good correlation with absolute humidity, while other samples showed no seasonal variation. Higher level tritium

  5. Evaluation of cold testing for Tokai Vitrification Facility

    International Nuclear Information System (INIS)

    Yoshioka, Masahiro; Inada, Eiichi

    1994-01-01

    The cold testing of the Tokai Vitrification Facility (TVF) was completed at the end of March, 1994 through the tests of nearly two years since May in 1992. The cold testing was carried out in order to evaluate the process equipment, product quality control, remote maintenance capability. The test results shown that TVF has enough performance with safety to treat the liquid waste in each process, and to control the product quality. For the remote maintenance of process equipment in the vitrification cell, the remote maintenance capability was confirmed for all remote equipment in the cell. The improvements were taken for some equipment with problem from the point of the operability and maintenance. It was confirmed by these test results that the TVF can go forward to the hot test operation using actual waste. (author)

  6. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  7. Local governments' roles of the compensation for damage by the Tokai JCO criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Tomoyuki [Central Research Inst. of Electric Power Industry, Tokyo (Japan). Socio-Economic Research Center

    2003-03-01

    The Tokai JCO criticality accident on September 30, 1999 was the first case to which The Law on Compensation for Nuclear Damage was applied. Although the Law on Compensation for Nuclear Damage formulates the outline of the institutional framework for nuclear third party liability together with operator's insurance scheme, details of actual compensation procedure are not specified. By this reason, the compensation procedure in the Tokai accident had been executed without a concrete legal specification and a precedent. In spite of this situation, the compensation procedure with the accident led to an unexpectedly successful result. We observe the several reasons why the compensation procedure was implemented successfully despite the lack of concrete legal specification and a precedent. One of the reasons is that the local governments, Tokai Village and Ibaraki Prefecture, immediately took the leadership in implementing a temporary regime of compensation procedure without wasting time for waiting national government's directives. Upon practicing this compensation procedure, the local governments implemented the following steps. (1) Initial estimation of the amount and scope of damage. (2) Providing the criteria and heads of damage subject to compensation. (3) Unitary compensation procedure at the local levels. (4) Distribution of emergency payments for the victims. (5) Facilitating compensatory negotiation between the victims and JCO as arbitrator. However, some concerns are also pointed out about the fact that the local government directed the whole procedure without sufficient adjustment with the national government for compensation policy. Among all, in the compensation led by the local governments, it was difficult to guarantee fairness of compensation because victims who are influential on the local government such as industrial associations would have unfairly strong negotiation power in the compensatory negotiation, while the operator being

  8. Earthquake evaluation of a substation network

    International Nuclear Information System (INIS)

    Matsuda, E.N.; Savage, W.U.; Williams, K.K.; Laguens, G.C.

    1991-01-01

    The impact of the occurrence of a large, damaging earthquake on a regional electric power system is a function of the geographical distribution of strong shaking, the vulnerability of various types of electric equipment located within the affected region, and operational resources available to maintain or restore electric system functionality. Experience from numerous worldwide earthquake occurrences has shown that seismic damage to high-voltage substation equipment is typically the reason for post-earthquake loss of electric service. In this paper, the authors develop and apply a methodology to analyze earthquake impacts on Pacific Gas and Electric Company's (PG and E's) high-voltage electric substation network in central and northern California. The authors' objectives are to identify and prioritize ways to reduce the potential impact of future earthquakes on our electric system, refine PG and E's earthquake preparedness and response plans to be more realistic, and optimize seismic criteria for future equipment purchases for the electric system

  9. Comprehensive understanding of a deep transition zone from an unstable- to stable-slip regime of the megathrust interplate earthquake

    Science.gov (United States)

    Kato, A.; Iidaka, T.; Ikuta, R.; Yoshida, Y.; Katsumata, K.; Iwasaki, T.; Sakai, S.; Yamaoka, K.; Watanabe, T.; Kunitomo, T.; Yamazaki, F.; Tsumura, N.; Nozaki, K.; Okubo, M.; Suzuki, S.; Hirata, N.; Zhang, H.; Thurber, C. H.

    2009-12-01

    Most slow slips have occurred in the deep transition zone from an unstable- to stable-slip regime. Detailed knowledge about a deep transition zone is essentially important to understand the mechanism of the slow slips, and the stress concentration process to the source region of the megathrust interplate earthquake. We have conducted a very dense seismic observation in the Tokai-region from the April to the August in 2008 through a linear deployment of 75 portable stations, in Japan. The array extended from the bottom part of the source region of the Tokai earthquake to deep low-frequency earthquakes (LFE, ~ 35 km depth) including the long-term slow-slip region (~ 25 km depth). Here we present a high-resolution tomographic imaging of seismic velocities and highly-accurate hypocenters including LFEs, using first arrival data from the dense seismograph deployment. We manually picked the first arrivals of P- and S- waves from each waveform for about 700 earthquakes including about 20 LFEs observed by the dense array. Then, we applied the TomoDD-code [Zhang and Thurber, 2003] to the arrival data set, adding an accurate double-difference data estimated by a waveform cross-correlation technique. A low velocity (Vp, Vs) layer with high Poisson’s ratio is clearly imaged, and tilts to the northwestward with a low dip angle, which corresponds to the subducting oceanic crust of the Philippine Sea Slab. Although seismicity within the oceanic crust is significantly low, few earthquakes occur within the oceanic crust. The LFEs are linearly aligned along the top surface of the subducting oceanic crust at depths from 30 to 40 km. The Poisson’s ratio within the oceanic crust does not show significant depth-dependent increase beneath the linear alignment of LFEs. This result argues against a depth section of Poisson’s ratio obtained in the SW Japan [Shelly et al., 2006]. Beneath the LFEs, active cluster of slab earthquakes are horizontally distributed. At the depths greater

  10. The calculation and estimation of wastes generated by decommissioning of nuclear facilities. Tokai works and Ningyo-toge Environmental Engineering Center

    International Nuclear Information System (INIS)

    Ayame, Y.; Tanabe, T.; Takahashi, K.; Takeda, S.

    2001-07-01

    This investigation was conducted as a part of planning the low-level radioactive waste management program (LLW management program). The aim of this investigation was contributed to compile the radioactive waste database of JNC's LLW management program. All nuclear facilities of the Tokai works and Ningyo-toge Environmental Engineering Center were investigated in this work. The wastes generated by the decommissioning of each nuclear facility were classified into radioactive waste and others (exempt waste and non-radioactive waste), and the amount of the wastes was estimated. The estimated amounts of radioactive wastes generated by decommissioning of the nuclear facilities are as follows. (1) Tokai works: The amount of waste generated by decommissioning of nuclear facilities of the Tokai works is about 1,079,100 ton. The amount of radioactive waste is about 15,400 ton. The amount of exempt waste and non-radioactive waste is about 1,063,700 ton. (2) Ningyo-toge Environmental Engineering Center: The amount of waste generated by decommissioning of nuclear facilities of Ningyo-toge Environmental Engineering Center is about 112,500 ton. The amount of radioactive waste is about 7,800 ton. The amount of exempt waste and non-radioactive waste is about 104,700 ton. (author)

  11. Experience of iodine removal in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Kikuchi, K.; Komori, Y.; Takeda, K.

    1985-01-01

    In the Tokai reprocessing plant about 170 ton of irradiated fuels have been processed since the beginning of hot operations in 1977. There was no effective equipment for iodine removal from the off-gas except for alkaline scrubbers when the plant construction was completed. In order to reduce the iodine discharge to the atmosphere, silver-exchanged zeolite (AgX) filters were installed additionally in 1979 and 1980, and they have been effective. However, those decontamination factors (DFs) were not as high as expected, and increasing the reprocessing amount of spent fuels it became necessary to lower the iodine discharge to the atmosphere. Therefore, other iodine removal equipment is planned to be installed in the plant. Concerning these investigations and development of iodine removal techniques, the iodine concentration of actual off-gases was measured and useful data were obtained

  12. Remote repair of the dissolvers in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Otani, Yosikuni

    1985-01-01

    In the Tokai fuel reprocessing plant, there occurred failures (pinholes) in two dissolver tanks successively in 1982 and 1983. These dissolvers are set under high radiation field, not permitting access of the personnel. So, repair works were carried out after development of the remotely operated repair system. For repair of the failed dissolver tanks, after tests and studies, the means was employed of grinding off the wall surface to small depth and then forming over it a corrosion resistant sealing layer by padding welding. The repair system which enabled the repair and the inspection in the cell by remote operation consisted of six devices including polishing, welding, dye penetration test, etc. Repair works on the dissolvers took two months and a half from September 1983. (Mori, K.)

  13. Earthquake prediction by Kina Method

    International Nuclear Information System (INIS)

    Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.

    2005-01-01

    Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)

  14. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  15. 大地震発生の予測に関する提案

    OpenAIRE

    中村, 浩士; 五十石, 浩

    2009-01-01

    [Abstract] Recently, the outbreak probability of main big size earthquake occurred at the plate borders such as Tokai Earthquake, Tounankai Earthquake, Nankai Earthquake, increase in Japan. It is very significant for social needs to predict the outbreak of the big size earthquake in such situation. In this report, we suppose that several medium/small size earthquakes are related to the outbreak of the big size earthquake, and we will speculate about the hypocenter and the outbreak time of the...

  16. Review of Design Data for Safety Assessment of Tokai Reprocessing Plant. Control of hydrogen gas produced by radiolysis of reprocessing solutions at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Omori, E.; Surugaya, N.; Takaya, A.; Nakamura, H.; Maki, A.; Yamanouchi, T.

    1999-10-01

    Radioactive materials in aqueous solution at a nuclear fuel reprocessing plant causes radiolytic generation of several gases including hydrogen. Hydrogen accumulating in equipment can be an explosion hazard. In such plants, though the consideration in the design has been fundamentally made in order to remove the ignition source from the equipment, the hydrogen concentration in the equipment should not exceed the explosion threshold. It is, therefore, desired to keep the hydrogen concentration lower than the explosion threshold by dilution with the air introduced into equipment, from the viewpoint which previously prevents the explosion. This report describes the calculation of hydrogen generation, evaluation of hydrogen concentration under abnormal operation and consideration of possible improvement at Tokai Reprocessing Plant. The amount of hydrogen generation was calculated for each equipment from available data on radiolysis induced by radioactive materials. Taking into consideration for abnormal condition that is single failure of air supply and loss of power supply, the investigation was made on the method for controlling so that the hydrogen concentration may not exceed the explosion threshold. Possible means which can control the concentration of hydrogen gas under the explosion threshold have been also investigated. As the result, it was found that hydrogen concentration of most equipment was kept under the explosion threshold. It was also shown that improvement of the facility was necessary on the equipment in which the concentration of the hydrogen may exceed the explosion threshold. Proposals based on the above results are also given in this report. The above content has been described in 'Examination of the hydrogen produced by the radiolysis' which is a part of 'Reviews of Design Data for Safety Assessment of Tokai Reprocessing Plant' (JNC TN8410 99-002) published in February 1999. This report incorporates the detail evaluation so that operation

  17. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  18. Future Developments for the Earthquake Early Warning System following the 2011 off the Pacific Coast of Tohoku Earthquake

    Science.gov (United States)

    Yamada, M.; Mori, J. J.

    2011-12-01

    The 2011 off the Pacific Coast of Tohoku Earthquake (Mw9.0) caused significant damage over a large area of northeastern Honshu. An earthquake early warning was issued to the public in the Tohoku region about 8 seconds after the first P-arrival, which is 31 seconds after the origin time. There was no 'blind zone', and warnings were received at all locations before S-wave arrivals, since the earthquake was fairly far offshore. Although the early warning message was properly reported in Tohoku region which was the most severely affected area, a message was not sent to the more distant Tokyo region because the intensity was underestimated. . This underestimation was because the magnitude determination in the first few seconds was relatively small (Mj8.1)., and there was no consideration of a finite fault with a long length. Another significant issue is that warnings were sometimes not properly provided for aftershocks. Immediately following the earthquake, the waveforms of some large aftershocks were contaminated by long-period surface waves from the mainshock, which made it difficult to pick P-wave arrivals. Also, correctly distinguishing and locating later aftershocks was sometimes difficult, when multiple events occurred within a short period of time. This masinhock begins with relatively small moment release for the first 10 s . Since the amplitude of the initial waveforms is small, most methods that use amplitudes and periods of the P-wave (e.g. Wu and Kanamori, 2005) cannot correctly determine the size of the4 earthquake in the first several seconds. The current JMA system uses the peak displacement amplitude for the magnitude estimation, and the magnitude saturated at about M8 1 minute after the first P-wave arrival. . Magnitudes of smaller earthquakes can be correctly identified from the first few seconds of P- or S-wave arrivals, but this M9 event cannot be characterized in such a short time. The only way to correctly characterize the size of the Tohoku

  19. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  20. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  1. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  2. Summary of typical routine maintenance activities at Tokai Reprocessing Plant. Supplement (March, 2002)

    International Nuclear Information System (INIS)

    2002-03-01

    Typical maintenance activities, such as replacement of worn out parts and cleaning of filter elements, routinely performed during steady operation are summarized. [The Summary of Typical Routine Maintenance Activities at Tokai Reprocessing Plant] (JNC TN 8450 2001-006) was already prepared in September, 2001. The purpose of this summary is to give elementary understanding on these activities to people who are responsible for explanation them to the public. At this time, the same kind of summary is prepared as a supplement of the previous one. (author)

  3. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    Science.gov (United States)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  4. Dose evaluation for the public around the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Takeishi, Minoru; Furuta, Sadaaki; Miyabe, Kenjiro; Shinohara, Kunihiko

    2007-01-01

    The dose evaluations for the public around the Tokai Reprocessing Plant (TRP) have been carried out by using the mathematical models, because the effects on the environmental radiation due to the operation of the TRP are too small to separate from the background level. The models were developed by the site-specific investigations of the environment and reviewed in several times based on the latest scientific knowledge. The maximum annual effective dose through the whole period of the operation of the TRP was evaluated as 1.4 μSv with the data of the discharge monitoring and the meteorological observation in 1992. The evaluated doses revealed to be kept as far below the annual dose limit for the public as 1 mSv. (author)

  5. Overview of Historical Earthquake Document Database in Japan and Future Development

    Science.gov (United States)

    Nishiyama, A.; Satake, K.

    2014-12-01

    In Japan, damage and disasters from historical large earthquakes have been documented and preserved. Compilation of historical earthquake documents started in the early 20th century and 33 volumes of historical document source books (about 27,000 pages) have been published. However, these source books are not effectively utilized for researchers due to a contamination of low-reliability historical records and a difficulty for keyword searching by characters and dates. To overcome these problems and to promote historical earthquake studies in Japan, construction of text database started in the 21 century. As for historical earthquakes from the beginning of the 7th century to the early 17th century, "Online Database of Historical Documents in Japanese Earthquakes and Eruptions in the Ancient and Medieval Ages" (Ishibashi, 2009) has been already constructed. They investigated the source books or original texts of historical literature, emended the descriptions, and assigned the reliability of each historical document on the basis of written age. Another database compiled the historical documents for seven damaging earthquakes occurred along the Sea of Japan coast in Honshu, central Japan in the Edo period (from the beginning of the 17th century to the middle of the 19th century) and constructed text database and seismic intensity data base. These are now publicized on the web (written only in Japanese). However, only about 9 % of the earthquake source books have been digitized so far. Therefore, we plan to digitize all of the remaining historical documents by the research-program which started in 2014. The specification of the data base will be similar for previous ones. We also plan to combine this database with liquefaction traces database, which will be constructed by other research program, by adding the location information described in historical documents. Constructed database would be utilized to estimate the distributions of seismic intensities and tsunami

  6. Concerning change in nuclear fuel material processing business at Tokai plant of Japan Nuclear Fuel Conversion Co., Ltd. Report to Prime Minister

    International Nuclear Information System (INIS)

    1988-01-01

    The Nuclear Safety Committee of Japan on April 7, 1988, directed the Nuclear Safety Expert Group to make a study concerning the proposed changes in the nuclear fuel material processing business at the Tokai plant of Japan Nuclear Fuel Conversion Co., Ltd., and after receiving and reviewing the report from the Group, concluded that the proposed changes should be approved. The conclusions together with results of the study were reported to the Prime Minister on June 9. 1988. The proposed plan included changes in the maximum processing capacity of the No.2 processing facilities; construction of a new powder warehouse and changes in the maximum capacity of the No.3 powder storage room and No.2 powder warehouse; reuse of No.1 powder warehouse as No.3 solid waste warehouse; and abolition of UF 6 dispensing equipment installed at the No.1 processing facilities and changes in procedures for criticality control of the hydrolysis facilities. The safety of these facilities were studied in terms of resistance to earthquakes, prevention of fire and explosion, criticality control, operations of waste processing, and radiation management. Exposure doses expected during normal operations were also examined to confirm that the possible exposure doses to the public would be sufficiently small. (N.K.)

  7. JAEA-Tokai TANDEM annual report 2005. April 1, 2005 - March 31, 2006

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Takeuchi, Suehiro; Oshima, Masumi; Nagame, Yuichiro; Chiba, Satoshi; Sataka, Masao; Osa, Akihiko

    2006-09-01

    This annual report describes research activities, which have been performed using the JAEA-Tokai tandem accelerator with the energy booster from April 1, 2005 to March 31, 2006. Summary reports of 51 papers are categorized into seven research/development fields, i.e., (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, and (7) radiation effects in materials, and lists of publications, meetings, personnel and cooperative researches with universities related to these papers are contained. The 51 of presented papers are indexed individually. (J.P.N.)

  8. New geological perspectives on earthquake recurrence models

    International Nuclear Information System (INIS)

    Schwartz, D.P.

    1997-01-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release

  9. Stress transferred by the 1995 Mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities

    Science.gov (United States)

    Toda, S.; Stein, R.S.; Reasenberg, P.A.; Dieterich, J.H.; Yoshida, A.

    1998-01-01

    The Kobe earthquake struck at the edge of the densely populated Osaka-Kyoto corridor in southwest Japan. We investigate how the earthquake transferred stress to nearby faults, altering their proximity to failure and thus changing earthquake probabilities. We find that relative to the pre-Kobe seismicity, Kobe aftershocks were concentrated in regions of calculated Coulomb stress increase and less common in regions of stress decrease. We quantify this relationship by forming the spatial correlation between the seismicity rate change and the Coulomb stress change. The correlation is significant for stress changes greater than 0.2-1.0 bars (0.02-0.1 MPa), and the nonlinear dependence of seismicity rate change on stress change is compatible with a state- and rate-dependent formulation for earthquake occurrence. We extend this analysis to future mainshocks by resolving the stress changes on major faults within 100 km of Kobe and calculating the change in probability caused by these stress changes. Transient effects of the stress changes are incorporated by the state-dependent constitutive relation, which amplifies the permanent stress changes during the aftershock period. Earthquake probability framed in this manner is highly time-dependent, much more so than is assumed in current practice. Because the probabilities depend on several poorly known parameters of the major faults, we estimate uncertainties of the probabilities by Monte Carlo simulation. This enables us to include uncertainties on the elapsed time since the last earthquake, the repeat time and its variability, and the period of aftershock decay. We estimate that a calculated 3-bar (0.3-MPa) stress increase on the eastern section of the Arima-Takatsuki Tectonic Line (ATTL) near Kyoto causes fivefold increase in the 30-year probability of a subsequent large earthquake near Kyoto; a 2-bar (0.2-MPa) stress decrease on the western section of the ATTL results in a reduction in probability by a factor of 140 to

  10. Use of Ground Motion Simulations of a Historical Earthquake for the Assessment of Past and Future Urban Risks

    Science.gov (United States)

    Kentel, E.; Çelik, A.; karimzadeh Naghshineh, S.; Askan, A.

    2017-12-01

    Erzincan city located in the Eastern part of Turkey at the conjunction of three active faults is one of the most hazardous regions in the world. In addition to several historical events, this city has experienced one of the largest earthquakes during the last century: The 27 December 1939 (Ms=8.0) event. With limited knowledge of the tectonic structure by then, the city center was relocated to the North after the 1939 earthquake by almost 5km, indeed closer to the existing major strike slip fault. This decision coupled with poor construction technologies, led to severe damage during a later event that occurred on 13 March 1992 (Mw=6.6). The 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms whereas the 1992 event was only recorded by 3 nearby stations. There are empirical isoseismal maps from both events indicating indirectly the spatial distribution of the damage. In this study, we focus on this region and present a multidisciplinary approach to discuss the different components of uncertainties involved in the assessment and mitigation of seismic risk in urban areas. For this initial attempt, ground motion simulation of the 1939 event is performed to obtain the anticipated ground motions and shaking intensities. Using these quantified results along with the spatial distribution of the observed damage, the relocation decision is assessed and suggestions are provided for future large earthquakes to minimize potential earthquake risks.

  11. Sensitivity of Coulomb stress changes to slip models of source faults: A case study for the 2011 Mw 9.0 Tohoku-oki earthquake

    Science.gov (United States)

    Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.

    2017-12-01

    Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.

  12. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  13. Deep seismic transect across the Tonankai earthquake area obtained from the onshore- offshore wide-angle seismic study

    Science.gov (United States)

    Nakanishi, A.; Obana, K.; Kodaira, S.; Miura, S.; Fujie, G.; Ito, A.; Sato, T.; Park, J.; Kaneda, Y.; Ito, K.; Iwasaki, T.

    2008-12-01

    In the Nankai Trough subduction seismogenic zone, M8-class great earthquake area can be divided into three segments; they are source regions of the Nankai, Tonankai and presumed Tokai earthquakes. The Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. Hypocenters of these great earthquakes were usually located off the cape Shiono, Kii Peninsula, and the rupture propagated westwards and eastwards, respectively. To obtain the deep structure of the down-dip limit of around the Nankai Trough seismogenic zone, the segment boundary and first break area off the Kii Peninsula, the onshore-offshore wide-angle seismic studies was conducted in the western and eastern part of the Kii Peninsula and their offshore area in 2004 and 2006, respectively. The result of the seismic study in 2004 is mainly shown here. Structural images along the onshore and offshore profiles have already been separately obtained. In this study, an onshore-offshore integrated image of the western part of the Kii Peninsula, ~400km in a total length, is obtained from first arrival tomography and traveltime mapping of reflection phases by combining dataset of 13 land explosions, 2269 land stations, 36 OBSs and 1806 offshore airgun shots. The subduction angle of the Philippine Sea plate (PSP) gradually increases landward up to ~20-25 degree. Beneath the onshore part, the subducting PSP is estimated at ~5km shallower than that previously derived from seismicity. Low frequency earthquakes (identified and picked by Japan Meteorological Agency) are relocated around the plate interface of the subducting PSP by using the deep seismic transect obtained in this study. The offshore research is part of 'Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The onshore research carried by the Kyoto University is part of 'Special Project for

  14. Fission-track ages of the Tokai Group and associate formations in the east coast areas of Ise Bay and their significance in geohistory

    International Nuclear Information System (INIS)

    Makinouchi, Takeshi; Danhara, Toru; Isoda, Kunitoshi.

    1983-01-01

    Fission-track ages of volcanic ash layers within the Tokai Group and associate formations in the east coast areas of Ise Bay are obtained by grain-by-grain method with which individual ages for the respective zircon grains are measured. They are as follows; 1) a volcanic ash layer in the Karayama Formation (tentative age: 1.9 +- 0.4 Ma). Among the zircon grains in this layer, essential ones occupy only 1 per cent, and the others are accidental. 2) Ohtani volcanic ash layer (4.3 +- 0.6 Ma). 3) Kosugaya volcanic ash layer (4.0 +- 0.5 Ma). 4) Kaminoma volcanic ash layer (5.3 +- 0.4 Ma). 5) A volcanic ash layer in the Toyoura Formation seems to be older than 10 Ma. 6) Zircon grains in the Kofu volcanic ash layer (Tokai Group) include two types of spontaneous namely track, clear and vague ones. The latter vague tracks are shorter and thiner, and seem to suffer thermal annealing. The ages obtained have clarified the following Points; a) The tentative age, 1.9 Ma, of the ''Karayama'' volcanic ash layer suggests the existence of unknown Plio-Pleistocene sediment in the Nagoya area. b) The sedimentary basin of Lake Tokai was formed in the latest Miocene, about 6.5 Ma. Generation of the basin coincides approximately with the stage of synchronous and abrupt change in sedimentation rate in sedimentary basins on the Pacific side of central and southern Japan. c) The Tokai Group in Chita (Tokoname Group) intercalates the Gilbert/Epoch 5 boundary in the paleomagnetic chronology in the middle horizon of the group. d) Average rate of sedimentation is about 1 m/10 4 yrs in the marginal areas of the basin, and 3-5 m/10 4 yrs in the central areas. (author)

  15. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  16. Structural variation along the southwestern Nankai seismogenic zone related to various earthquake phenomena

    Science.gov (United States)

    Nakanishi, A.; Shimomura, N.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Kashiwase, K.; Fujimori, H.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2011-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In order to reduce a great deal of damage to coastal area from both strong ground motion and tsunami generation, it is necessary to understand rupture synchronization and segmentation of the Nankai megathrust earthquake. For a precise estimate of the rupture area of the Nankai megathrust event, it is important to know the geometry of the subducting Philippine Sea plate and deep subduction structure along the Nankai Trough. To obtain the deep subduction structure of the coseismic rupture area of the Nankai earthquake in 1946 off Shikoku area, the large-scale high-resolution wide-angle seismic study was conducted in 2009 and 2010. In this study, 201 and 200 ocean bottom seismographs were deployed off the Shikoku Island and the Kii channel respectively. A tuned airgun system (7800 cu. in.) shot every 200m along 13 profiles. Airgun shots were also recorded along an onshore seismic profile (prepared by ERI, univ. of Tokyo and NIED) prolonged from the offshore profile off the Kii Peninsula. Long-term observation was conducted for ~9 months by 21 OBSs off the Shikoku area and 20 OBSs off the Kii channel.This research is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Structural images of the overriding plate indicate the old accreted sediments (the Cretaceous-Tertiary accretionary prism) with the velocity greater than 6km/s extend seaward from off the Shikoku to the Hyuga-nada. Moreover, the young accreted sediments become relatively thinner eastward from off the cape Ashizuri to Muroto. These structural variations might be related to the different rupture pattern of the Nankai event. Structural image of the deep low frequency earthquakes and tremors is shown by using the airgun shots recorded at onshore

  17. Using remote sensing to predict earthquake impacts

    Science.gov (United States)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  18. PSA application on the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Ishida, Michihiko; Nakano, Takafumi; Morimoto, Kazuyuki; Nojiri, Ichiro

    2003-01-01

    The Periodic Safety Review (PSR) of the Tokai Reprocessing Plant (TRP) has been carrying out to obtain an overall view of actual plant safety. As a part of the PSR, Probabilistic Safety Assessment (PSA) methodology has been applied to evaluate the relative importance of safety functions that prevent the progress of events causing to postulated accidents. Based on the results of the safety reassessments of the TRP that was carried out in 1999, event trees were developed to model sequences of postulated accidents. Event trees were quantified by using the results of fault tree analysis and human reliability analysis. In the quantification, the reliability data generally used in PSA of nuclear power plants were mainly used. Operating experiences of the TRP were also utilized to evaluated both component/system reliability and human reliability. The relative importance of safety functions was evaluated by using two major importance measures, Fussell-Vesely and Risk Achievement Worth both generally used in PSA of nuclear power plants. Through these evaluations, some useful insights into the safety of the TRP have been obtained. The results of the relative importance measures would be utilized to qualify TRP component/equipment important to the safety. (author)

  19. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  20. Measurements of national radiation exposure rates on train lines in Tokai area

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1996-01-01

    For data accumulation of natural radiation exposure rate derived from gamma-ray and cosmic-ray to evaluate population dose, the author measured the rate in the running vehicles of 12 JR Tokai lines, 17 Nagoya Railway lines, 4 Kinkinippon Railway lines and 1 line of Nagoya City Bus. A portable gamma spectrometer equipped with 3' in diameter x 3' NaI (Tl) scintillation detector was placed on the seat of the vehicle for measurement in the period of December, 1992-August, 1995. Gamma-ray and cosmic-ray exposure rates in air were assessed separately as reported before and expressed in Gy/h. The average exposure rate of gamma-ray in JR Tokai lines was 19.8 nGy/h and of cosmic-ray, 28.5 nGy/h, both of which were markedly varied from line to line. The average rates of gamma-and cosmic-ray were 21.6 nGy/h and 29.0 nGy/h, respectively, in Nagoya Railway lines and 20.9 nGy/h and 28.7 nGy/h, respectively, in Kinkinippon lines. In the city bus, the respective rates were 27.2 nGy/h and 27.0 nGy/h. Thus, the average rates of gamma-ray (about 20 nGy/h) and cosmic-ray (about 29 nGy/h) were not so different between JR and other private railway lines. In the bus, the former rate was slightly lower and the latter, slightly higher. However, the total rates of both rays were in the range of about 50-55 nGy/h in all vehicles examined. (H.O.)

  1. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to processes or conditions, which may include Increased rates of M>4 earthquakes on the plate interface north of the Mendocino region 

  2. Dose reduction and cost-benefit analysis at Japan's Tokai No. 2 Plant

    International Nuclear Information System (INIS)

    Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi

    1995-01-01

    In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company's headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which was less than the initial target value

  3. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  4. Major earthquake of Friday March 11, 2011, magnitude 8.9 at 5:46 UT, off Honshu island (Japan); Seisme majeur au large de l'Ile d'Honshu (Japon) du vendredi 11 mars 2011 Magnitude = 8,9 a 5h46 (TU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    On Friday March 11, 2011, at 5:46 UT (2:46 PM local time), a magnitude 8.9 earthquake took place at 80 km east of Honshu island (Japan). The earthquake affected a large part of the Honshu territory and led to the automatic emergency shutdown of all nuclear power plants of the east coast. This paper recalls first the seismo-tectonic and historical seismic context of the Japan archipelago and the first analyses of the Tohoku earthquake impact on nuclear facilities. At the time of publication of this information report, no radioactive release in the environment and no anomaly at the Tokai-Mura and Rokkasho-Mura sites were mentioned. However, the evacuation of populations in a 3 to 10 km area around the Fukushima-Dai-ichi power plant had been ordered by the Governor as preventive measure, which made one think that the situation at this specific site was particularly worrying. (J.S.)

  5. Computer aided radiation protection system at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ishida, J.; Saruta, J.; Yonezawa, R.

    1996-01-01

    Radiation control for workers and workforce has been carried out strictly and effectively taking into account ALARA principle at Tokai Reprocessing Plant (TRP) which has treated about 860 tons of irradiated fuels by now since 1977. The outline of radiation control method at TRP has already been described. This paper briefly describes our experiences and the capabilities of Radiological Information Management System (RIMS) for the safety operation of TRP, followed by radiation exposure control and activity discharge control as examples. By operating the RIMS, the conditions of workplace such as dose equivalent rate and air-contamination are easily and rapidly grasped to take prompt countermeasures for radiological protection, localization and elimination of contamination, and also the past experience data are properly applied to new radiological works to reduce exposures associated with routine and special repetitive maintenance operations at TRP. Finally, authors would like to emphasize that the form and system for radiological control of reprocessing plant has been established throughout our 15-year-experience at TRP. (author)

  6. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  7. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using

  8. JAEA-Tokai tandem annual report 2012. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Tsukada, Kazuaki; Koura, Hiroyuki

    2014-03-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator and superconducting booster from April 1, 2012 to March 31, 2013. Thirty-one summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  9. Guideline for design and construction radiation monitoring equipments for Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Miyabe, Kenjiro; Ninomiya, Kazushige; Jin, Kazumi; Morifuji, Masayuki; Nemoto, Kazuhiko; Sato, Akira; Kawai, Keiichi

    1999-12-01

    Various kind of radiation monitoring equipment are used in radiation controlled area at each facility of Tokai reprocessing plant. These equipments have been designed and constructed based on the users requirements, and permitted by governmental regulation office. And, design has been carried out in consideration of the adoption of the new technology and our operational experience. Then, it has been used effectively for the radiation control of the facilities. This report summarizes the technical requirements that should be taken into consideration in the design and installation of radiation monitoring equipments. These requirements are fundamentally applicable when the equipments of the new facilities will be designed or the present instruments will be replaced. (author)

  10. Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance

    Science.gov (United States)

    Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg

    2010-01-01

    An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

  11. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  12. Adaptively smoothed seismicity earthquake forecasts for Italy

    Directory of Open Access Journals (Sweden)

    Yan Y. Kagan

    2010-11-01

    Full Text Available We present a model for estimation of the probabilities of future earthquakes of magnitudes m ≥ 4.95 in Italy. This model is a modified version of that proposed for California, USA, by Helmstetter et al. [2007] and Werner et al. [2010a], and it approximates seismicity using a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We have estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog, and a longer instrumental and historic catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and reliable, we used small earthquakes of m ≥ 2.95 to reveal active fault structures and 29 probable future epicenters. By calibrating the model with these two catalogs of different durations to create two forecasts, we intend to quantify the loss (or gain of predictability incurred when only a short, but recent, data record is available. Both forecasts were scaled to five and ten years, and have been submitted to the Italian prospective forecasting experiment of the global Collaboratory for the Study of Earthquake Predictability (CSEP. An earlier forecast from the model was submitted by Helmstetter et al. [2007] to the Regional Earthquake Likelihood Model (RELM experiment in California, and with more than half of the five-year experimental period over, the forecast has performed better than the others.

  13. Understanding Great Earthquakes in Japan's Kanto Region

    Science.gov (United States)

    Kobayashi, Reiji; Curewitz, Daniel

    2008-10-01

    Third International Workshop on the Kanto Asperity Project; Chiba, Japan, 16-19 February 2008; The 1703 (Genroku) and 1923 (Taisho) earthquakes in Japan's Kanto region (M 8.2 and M 7.9, respectively) caused severe damage in the Tokyo metropolitan area. These great earthquakes occurred along the Sagami Trough, where the Philippine Sea slab is subducting beneath Japan. Historical records, paleoseismological research, and geophysical/geodetic monitoring in the region indicate that such great earthquakes will repeat in the future.

  14. A way to synchronize models with seismic faults for earthquake forecasting

    DEFF Research Database (Denmark)

    González, Á.; Gómez, J.B.; Vázquez-Prada, M.

    2006-01-01

    Numerical models are starting to be used for determining the future behaviour of seismic faults and fault networks. Their final goal would be to forecast future large earthquakes. In order to use them for this task, it is necessary to synchronize each model with the current status of the actual....... Earthquakes, though, provide indirect but measurable clues of the stress and strain status in the lithosphere, which should be helpful for the synchronization of the models. The rupture area is one of the measurable parameters of earthquakes. Here we explore how it can be used to at least synchronize fault...... models between themselves and forecast synthetic earthquakes. Our purpose here is to forecast synthetic earthquakes in a simple but stochastic (random) fault model. By imposing the rupture area of the synthetic earthquakes of this model on other models, the latter become partially synchronized...

  15. Instructions on the nuclear critical accident and how to correspond to future

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2000-01-01

    The nuclear accident occurred at Tokai Works of the JCO Co., Ltd. is a simple but disallowable one formed by neglecting possibility of nuclear fission chain reaction, one of three dangers specific to nuclear power facilities and by feeding middle concentrated uranium solution with more than critical mass into a precipitation tank. As a man consumed most of his life to nuclear power, it is to occur a critical accident forming about 50 previous examples in the world and about 10 victims at Tokai-mura the most earnestly promoting its experiment and analysis and to generate new victims, what was thought to be the most regrettable in this accident. How the previous experiences and results in Tokai-mura could be transmitted to the JCO Co., Ltd. ? This was a large alarm-bell for persons engaging to R and D on nuclear power. As this accident was much deplorable and apological for the common public, it must be carried out to thoroughly analyze its causes, to establish its future responses, and to promote its essential countermeasures. As it is important to open informations on its contents, it is hopeful not to over-exaggerate and over-differentiate the accident, to calmly and scientifically analyze the risk as well as in the other accidents, and to construct actually effective countermeasures. (G.K.)

  16. Study on neutron dosimetry in JNC Tokai Works

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2003-03-01

    The author developed the neutron reference calibration fields using a {sup 252}Cf standard source surrounded with PMMA (polymethylmethacrylates) moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are concentric, annular cylinders made of lead-contained PMMA with a thickness of 13.5, 35.0, 59.5 and 77.0mm, and the {sup 252}Cf source is guided to the geometric center of moderators by the pneumatic system. These fields can provide the moderated neutron spectra very similar to those encountered around the globe-boxes of the fabrication process of MOX (PuO{sub 2}-UO{sub 2} mixed oxide) fuel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP4B and the measurements by the INS-type Bonner multi-sphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields were characterized in terms of the neutron fluence rate, spectral composition and ambient dose equivalent rate, and have served for the response-characterization of various neutron survey instruments. (author)

  17. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  18. Development of new treatment process for low level radioactive waste at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Horiguchi, Kenichi; Sugaya, Atsushi; Saito, Yasuo; Tanaka, Kenji; Akutsu, Shigeru; Hirata, Toshiaki

    2009-01-01

    The Low-level radioactive Waste Treatment Facility (LWTF) was constructed at the Tokai Reprocessing Plant (TRP) and cold testing has been carried out since 2006. The waste which will be treated in the LWTF is combustible/incombustible solid waste and liquid waste. In the LWTF, the combustible/incombustible solid waste will be incinerated. The liquid waste will be treated by a radio-nuclides removal process and subsequently solidified in cement. This report describes the essential technologies of the LWTF and results of R and D work for the nitrate-ion decomposition technology for the liquid waste. (author)

  19. Maintenance management of emergency power supply equipment (uninterruptible power supply) in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nishida, Kyosuke; Hiyama, Hisao; Shibata, Satomi; Iwasaki, Shogo; Inami, Shinichi

    2009-01-01

    Uninterruptible power supply systems are installed in the Tokai reprocessing plant in preparation for the emergency case that the commercial power supply is stopped by an accidental or intentional interruption in the supply of electricity. The uninterruptible power supply system particularly provides a temporary power source to the important devices for the radiation control of nuclear critical monitoring in the plant. Thus, the system is potentially important and essential for nuclear plants. The paper reports the current activities such as regular inspections, replacement of parts and system update, to maintain the function of uninterruptible power supply systems. (author)

  20. Strong-motion characteristics and source process during the Suruga Bay earthquake in 2009 through observed records on rock sites

    International Nuclear Information System (INIS)

    Shiba, Yoshiaki; Sato, Hiroaki; Kuriyama, Masayuki

    2010-01-01

    On 11 August 2009, a moderate earthquake of M 6.5 occurred in the Suruga Bay region, south of Shizuoka prefecture. During this event, JMA Seismic Intensity reached 6 lower in several cities around the hypocenter, and at Hamaoka nuclear power plant of Chubu Electric Power reactors were automatically shutdown due to large ground motions. Though the epicenter is located at the eastern edge of source area for the assumed great Tokai earthquake of M 8, this event is classified into the intra-plate (intra-slab) earthquake, due to its focal depth lower than that of the plate boundary and fault geometry supposed from the moment tensor solution. Dense strong-motion observation network has been deployed mainly on the rock outcrops by our institute around the source area, and the waveform data of the main shock and several aftershocks were obtained at 13 stations within 100 km from the hypocenter. The observed peak ground motions and velocity response spectral amplitudes are both obviously larger than the empirical attenuation relations derived from the inland and plate-boundary earthquake data, which displays the characteristics of the intra-slab earthquake faulting. Estimated acceleration source spectra of the main shock also exhibit the short period level about 1.7 times larger than the average of those for past events, and it corresponds with the additional term in the attenuation curve of the peak ground acceleration for the intra-plate earthquake. Detailed source process of the main shock is inferred using the inversion technique. The initial source model is assumed to be composed of two distinct fault planes according to the minute aftershock distribution. Estimated source model shows that large slip occurred near the hypocenter and at the boundary region between two fault planes where the rupture transfers from primary to secondary fault. Furthermore the broadband source inversion using velocity motions in the frequency up to 5 Hz demonstrates the high effective

  1. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes.

    Science.gov (United States)

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities' preparedness and response capabilities and to mitigate future consequences. An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model's algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties.

  2. On anti-earthquake design procedure of equipment and pipings in near future

    International Nuclear Information System (INIS)

    Shibata, H.

    1981-01-01

    The requirement of anti-earthquake design of nuclear power plants is getting severe year by year. The author will try to discuss how to control its severity and how to find a proper design procedure for licensing of new plants under such severe requirements. On the other hand we suffered from the enormous volumes of documents. To decrease such volumes, the format of documents should be standardized as well as the design procedure standardization. Starting from this point, we need the research and development on the following subjects: i) Standardization of design procedure. ii) Standardization of document. iii) Establishment of standard review procedure using computer. iv) Standardization of earthquake-resistant designed equipment. v) Standardization of anti-earthquake design procedure of piping systems. vi) Introducing margin evaluation procedure to design procedure. vii) Introducing proving test procedure of active component to design procedure. viii) Establishment of evaluation of human reliability in design, fabrication, inspection procedures. ix) Establishment of the proper relation of seismic trigger level and post-earthquake design procedures. (orig./HP)

  3. JAEA-Tokai tandem annual report 2010. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    Matsuda, Makoto; Takeuchi, Suehiro

    2011-12-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2010 to March 31, 2011. Thirty-six summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  4. JAEA-Tokai tandem annual report 2013. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    Osa, Akihiko; Nishio, Katsuhisa; Tsukada, Kazuaki; Ishikawa, Norito; Toh, Yosuke; Koura, Hiroyuki; Ohkubo, Nariaki; Matsuda, Makoto

    2016-12-01

    The Japan Atomic Energy Agency (JAEA)-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator and superconducting booster from April 1, 2013 to March 31, 2014. Thirty-one summary reports were categorized into seven research/development fields: (1) accelerator operation, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  5. JAEA-Tokai tandem annual report 2010. April 1, 2010 - March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Makoto; Takeuchi, Suehiro [Japan Atomic Energy Agency, Nuclear Science Research Institute, Tokai, Ibaraki (Japan); Chiba, Satoshi; Mitsuoka, Shin-ichi; Tsukada, Kazuaki [Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan); Ishikawa, Norito; Toh, Yosuke [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2011-12-15

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2010 to March 31, 2011. Thirty-six summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  6. JAEA-Tokai tandem annual report 2011. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Tsukada, Kazuaki; Koura, Hiroyuki

    2014-04-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2011 to March 31, 2012. Twenty-seven summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. (author)

  7. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  8. Prospective testing of Coulomb short-term earthquake forecasts

    Science.gov (United States)

    Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.

    2009-12-01

    Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of

  9. Data base pertinent to earthquake design basis

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1988-01-01

    Mitigation of earthquake risk from impending strong earthquakes is possible provided the hazard can be assessed, and translated into appropriate design inputs. This requires defining the seismic risk problem, isolating the risk factors and quantifying risk in terms of physical parameters, which are suitable for application in design. Like all other geological phenomena, past earthquakes hold the key to the understanding of future ones. Quantificatio n of seismic risk at a site calls for investigating the earthquake aspects of the site region and building a data base. The scope of such investigations is il lustrated in Figure 1 and 2. A more detailed definition of the earthquake problem in engineering design is given elsewhere (Sharma, 1987). The present document discusses the earthquake data base, which is required to support a seismic risk evaluation programme in the context of the existing state of the art. (author). 8 tables, 10 figs., 54 refs

  10. Dose reduction and cost-benefit analysis at Japan`s Tokai No. 2 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi [Japan Atomic Power Co., Otemachi (Japan)

    1995-03-01

    In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company`s headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which was less than the initial target value.

  11. CN earthquake prediction algorithm and the monitoring of the future strong Vrancea events

    International Nuclear Information System (INIS)

    Moldoveanu, C.L.; Radulian, M.; Novikova, O.V.; Panza, G.F.

    2002-01-01

    The strong earthquakes originating at intermediate-depth in the Vrancea region (located in the SE corner of the highly bent Carpathian arc) represent one of the most important natural disasters able to induce heavy effects (high tool of casualties and extensive damage) in the Romanian territory. The occurrence of these earthquakes is irregular, but not infrequent. Their effects are felt over a large territory, from Central Europe to Moscow and from Greece to Scandinavia. The largest cultural and economical center exposed to the seismic risk due to the Vrancea earthquakes is Bucharest. This metropolitan area (230 km 2 wide) is characterized by the presence of 2.5 million inhabitants (10% of the country population) and by a considerable number of high-risk structures and infrastructures. The best way to face strong earthquakes is to mitigate the seismic risk by using the two possible complementary approaches represented by (a) the antiseismic design of structures and infrastructures (able to support strong earthquakes without significant damage), and (b) the strong earthquake prediction (in terms of alarm intervals declared for long, intermediate or short-term space-and time-windows). The intermediate term medium-range earthquake prediction represents the most realistic target to be reached at the present state of knowledge. The alarm declared in this case extends over a time window of about one year or more, and a space window of a few hundreds of kilometers. In the case of Vrancea events the spatial uncertainty is much less, being of about 100 km. The main measures for the mitigation of the seismic risk allowed by the intermediate-term medium-range prediction are: (a) verification of the buildings and infrastructures stability and reinforcement measures when required, (b) elaboration of emergency plans of action, (c) schedule of the main actions required in order to restore the normality of the social and economical life after the earthquake. The paper presents the

  12. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  13. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  14. JAEA-Tokai tandem annual report 2009. April 1, 2009 - March 31, 2010

    International Nuclear Information System (INIS)

    Matsuda, Makoto; Takeuchi, Suehiro

    2010-12-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2009 to March 31, 2010. Fifty-seven summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. The fifty-seven summary reports are indexed individually. (J.P.N.)

  15. JAEA-Tokai tandem annual report 2008. April 1, 2008 - March 31, 2009

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Chiba, Satoshi; Mitsuoka, Shinichi

    2009-11-01

    The JAEA-Tokai tandem accelerator complex has been used in various research fields such as nuclear science and material science by researchers not only of JAEA but also from universities, research institutes and industrial companies. This annual report covers developments of accelerators and research activities carried out using the tandem accelerator, superconducting booster, and radioactive nuclear beam accelerator, from April 1, 2008 to March 31, 2009. Fifty-five summary reports were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. This report also lists publications, meetings, personnel, committee members, cooperative researches and common use programs. The fifty-five summary reports are indexed individually. (J.P.N.)

  16. JAEA-Tokai tandem annual report 2007. April 1, 2007 - March 31, 2008

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Chiba, Satoshi; Ishikawa, Norito; Mitsuoka, Shinichi; Ishii, Tetsuro; Matsuda, Makoto

    2008-11-01

    The JAEA-Tokai tandem accelerator facility has been used in various research fields of heavy-ion nuclear science and material science not only by JAEA personnel but also by researchers from universities, institutes and companies. This annual report describes a summary of research activities carried out in the period between April 1, 2007 and March 31, 2008. The forty-nine summary reports from users were categorized into seven research/development fields: (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, (7) radiation effects in materials. Also contained are lists of publications, meetings, technical staff, researchers in JAEA and cooperative researchers with universities. The 49 of the presented papers are indexed individually. (J.P.N.)

  17. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  18. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  19. The NFI TOKAI SD System - management of the capabilities of operators in fuel fabrication plants

    International Nuclear Information System (INIS)

    Fukushima, T.

    2008-01-01

    Since the JCO criticality accident occurred in 1999, even more emphasis has been placed on the management of nuclear safety in Japan. This is particularly true for the education of operators and the observance of operational procedures. Even prior to this accident, Nuclear Fuel Industries, Ltd., NFI, regarded the education and development of skilled operators very seriously and we have developed an education system, called the SD system (Skill Development system), to assure the careful education of the operators and the improvement of their skill in order to prevent human error events. Our education system in the Tokai works, is explained. (author)

  20. The killing effects of ultraviolet light and x-rays on free-living nematode, Rhabditidae tokai

    International Nuclear Information System (INIS)

    Ishii, Naoaki; Suzuki, Kenshi

    1980-01-01

    The life-shortening effects of ultraviolet light (UV) and X-rays were investigated with a strain of free-living nematode, Rhabditidae tokai. UV exhibited a significant life-shortening effect on adult worms, and it also inhibited growth of larvae, hatching of eggs and reproduction. Sensitivity to UV was decreased with increasing ages. In contrast, nematodes showed a marked resistance to X-rays. Data were obtained suggesting that X-ray-induced single-strand breaks in DNA can be rapidly and efficiently rejoined by a repair mechanism. Malformations were observed when immature larvae were irradiated with X-rays. (author)

  1. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  2. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  3. Annual report on activities of Radiation Protection Division at JNC Tokai Works in fiscal year of 2001

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko

    2002-08-01

    This annual report is summary of the activities of Radiation Protection Division at JNC Tokai Works in fiscal year of 2001. This report consists of the introduction of the radiation control in working area of the reprocessing plant, the MOX fuel fabrication facilities and laboratories, the discharges control of these facilities, the personal dosimetry, the environmental monitoring, the control of radiation standards and calibration, the maintenance of radiation measurement instruments, the safety study, the technical support for outside organizations and other activities. (author)

  4. Fire and explosion incident at bituminization demonstration facility of PNC Tokai works, on march 11, 1997

    International Nuclear Information System (INIS)

    Miura, A.; Sato, Y.; Koyama, T.; Omori, E.; Kato, Y.; Suzuki, H.; Norjiri, I.; Yamanouchi, T.

    2001-01-01

    On March 11, a fire and explosion incident occurred at the Bituminization Demonstration Facility (BDF) of Tokai Reprocessing Plant in Power Reactor and Nuclear Fuel Development Corporation (PNC). Soon after the incident, PNC (now reorganized to JNC) started to investigate the facility damage, operational records around the incident, technical notes including facility design and reviews of R and D results, operators witness and to perform several analysis, tests and calculations. This paper describes outline and cause of the incident which were concluded based on the results of continuous serious investigation, analysis and calculation. (author)

  5. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro; Mai, Paul Martin; Yasuda, Tomohiro; Mori, Nobuhito

    2014-01-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  6. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro

    2014-09-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  7. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  8. Time-dependent earthquake probability calculations for southern Kanto after the 2011 M9.0 Tohoku earthquake

    Science.gov (United States)

    Nanjo, K. Z.; Sakai, S.; Kato, A.; Tsuruoka, H.; Hirata, N.

    2013-05-01

    Seismicity in southern Kanto activated with the 2011 March 11 Tohoku earthquake of magnitude M9.0, but does this cause a significant difference in the probability of more earthquakes at the present or in the To? future answer this question, we examine the effect of a change in the seismicity rate on the probability of earthquakes. Our data set is from the Japan Meteorological Agency earthquake catalogue, downloaded on 2012 May 30. Our approach is based on time-dependent earthquake probabilistic calculations, often used for aftershock hazard assessment, and are based on two statistical laws: the Gutenberg-Richter (GR) frequency-magnitude law and the Omori-Utsu (OU) aftershock-decay law. We first confirm that the seismicity following a quake of M4 or larger is well modelled by the GR law with b ˜ 1. Then, there is good agreement with the OU law with p ˜ 0.5, which indicates that the slow decay was notably significant. Based on these results, we then calculate the most probable estimates of future M6-7-class events for various periods, all with a starting date of 2012 May 30. The estimates are higher than pre-quake levels if we consider a period of 3-yr duration or shorter. However, for statistics-based forecasting such as this, errors that arise from parameter estimation must be considered. Taking into account the contribution of these errors to the probability calculations, we conclude that any increase in the probability of earthquakes is insignificant. Although we try to avoid overstating the change in probability, our observations combined with results from previous studies support the likelihood that afterslip (fault creep) in southern Kanto will slowly relax a stress step caused by the Tohoku earthquake. This afterslip in turn reminds us of the potential for stress redistribution to the surrounding regions. We note the importance of varying hazards not only in time but also in space to improve the probabilistic seismic hazard assessment for southern Kanto.

  9. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe

    Science.gov (United States)

    Wald, Lisa A.; Wald, David J.; Schwarz, Stan; Presgrave, Bruce; Earle, Paul S.; Martinez, Eric; Oppenheimer, David

    2008-01-01

    At the beginning of 2006, the U.S. Geological Survey (USGS) Earthquake Hazards Program (EHP) introduced a new automated Earthquake Notification Service (ENS) to take the place of the National Earthquake Information Center (NEIC) "Bigquake" system and the various other individual EHP e-mail list-servers for separate regions in the United States. These included northern California, southern California, and the central and eastern United States. ENS is a "one-stop shopping" system that allows Internet users to subscribe to flexible and customizable notifications for earthquakes anywhere in the world. The customization capability allows users to define the what (magnitude threshold), the when (day and night thresholds), and the where (specific regions) for their notifications. Customization is achieved by employing a per-user based request profile, allowing the notifications to be tailored for each individual's requirements. Such earthquake-parameter-specific custom delivery was not possible with simple e-mail list-servers. Now that event and user profiles are in a structured query language (SQL) database, additional flexibility is possible. At the time of this writing, ENS had more than 114,000 subscribers, with more than 200,000 separate user profiles. On a typical day, more than 188,000 messages get sent to a variety of widely distributed users for a wide range of earthquake locations and magnitudes. The purpose of this article is to describe how ENS works, highlight the features it offers, and summarize plans for future developments.

  10. Meeting the Challenge of Earthquake Risk Globalisation: Towards the Global Earthquake Model GEM (Sergey Soloviev Medal Lecture)

    Science.gov (United States)

    Zschau, J.

    2009-04-01

    Earthquake risk, like natural risks in general, has become a highly dynamic and globally interdependent phenomenon. Due to the "urban explosion" in the Third World, an increasingly complex cross linking of critical infrastructure and lifelines in the industrial nations and a growing globalisation of the world's economies, we are presently facing a dramatic increase of our society's vulnerability to earthquakes in practically all seismic regions on our globe. Such fast and global changes cannot be captured with conventional earthquake risk models anymore. The sciences in this field are, therefore, asked to come up with new solutions that are no longer exclusively aiming at the best possible quantification of the present risks but also keep an eye on their changes with time and allow to project these into the future. This does not apply to the vulnerablity component of earthquake risk alone, but also to its hazard component which has been realized to be time-dependent, too. The challenges of earthquake risk dynamics and -globalisation have recently been accepted by the Global Science Forum of the Organisation for Economic Co-operation and Development (OECD - GSF) who initiated the "Global Earthquake Model (GEM)", a public-private partnership for establishing an independent standard to calculate, monitor and communicate earthquake risk globally, raise awareness and promote mitigation.

  11. The Future of Earthquake Relocation Tools

    Science.gov (United States)

    Lecocq, T.; Caudron, C.

    2010-12-01

    Many scientists around the world use earthquake relocation software for their research. Some use "known" software like HYPODD or COMPLOC, while others use their own algorithms and codes. Often, beginners struggle to get one tool running or to properly configure input parameters. This Poster will be witness of debates that will take place during the Meeting, for example adressing questions like "Which program for which application?" ; "Standardized In/Outs?" , "Tectonic / Volcanic / Other ?" ; "All programs inside one single Super-Package?" ; "Common/Base Bibliography for the Relocation-Beginner?" ; "Continuous or Layered Velocity Model?" etc... We will also present the scheme of a Super-Package we are working on, grouping HYPODD [Waldhauser 2001], COMPLOC [Lin&Shearer 2006], LOTOS [Koulakov 2009] ; allowing standard in/outs for the 3 programs, and thus, the comparison of their outputs.

  12. Proposal of a nuclear cycle research and development plan in Tokai works. The roadmap from LWR cycle to FBR cycle

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Abe, Tomoyuki; Kashimura, Takuo; Nagai, Toshihisa; Maeda, Seichiro; Yamaguchi, Toshiya; Kuroki, Ryoichiro

    2003-07-01

    The Generation-II Project Task Force Team has investigated a research and development plan of a future nuclear fuel cycle in Tokai works for about three months from December 19, 2002. First we have discussed about the present condition of Japanese nuclear fuel cycle and have recognized it as the following. The relation of the technology between the LWR-cycle and the FBR-cycle is not clear. MOX Fuel Use in Light Water Reactors is important to establish technology of the FBR fuel cycle. Radioactive waste disposal issue is urgent. Next we have proposed the three basic policies on R and D plan of nuclear fuel cycle in consideration of the F.S. on FBR-cycle. Establishment and advancement of 'the tough nuclear fuel cycle'. Early establishment of the FBR cycle technology to be able to supply energy stably for long-term. Establishment of the radioactive waste treatment and disposal technology, and optimization of nuclear fuel cycle technology from the viewpoint of radioactive waste. And we have proposed the Japanese technical holder system to integrate all LWR and FBR cycle technology. (author)

  13. Remote repair and inspection technics in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Koyama, Kenji; Ishibashi, Yuzo; Otani, Yosikuni

    1986-01-01

    Tokai reprocessing plant of Power Reactor and Nuclear Fuel Development Corp. is the only factory in Japan which treats 0.7 t/day of the spent fuel from LWR power stations and recovers remaining uranium and newly produced plutonium. Since the reprocessing plant started the hot test in September, 1977, about eight years have elapsed, and 233 t of spent fuel was treated as of August, 1985. During this period, the development of various remote working techniques have been carried out to cope with the failure of equipment and to strengthen the preventive maintenance of equipment. In this report, the development of the techniques for the remote repair of leaking dissolving tanks and the development of the remote inspection system for confirming the soundness of equipment in cells are described. In nuclear facilities, from the viewpoint of the reduction of radiation exposure accompanying the works under high radiation, labor saving, the increase of capacity factor by shortening the period of repair works, the improvement of safety and reliability of the facilities by perfecting checkup and inspection and so on, it is strongly desired to put robots in practical use for maintenance and inspection. (Kako, I.)

  14. Prevention of strong earthquakes: Goal or utopia?

    Science.gov (United States)

    Mukhamediev, Sh. A.

    2010-11-01

    In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic

  15. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    Science.gov (United States)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  16. Ionospheric detection of tsunami earthquakes: observation, modeling and ideas for future early warning

    Science.gov (United States)

    Occhipinti, G.; Manta, F.; Rolland, L.; Watada, S.; Makela, J. J.; Hill, E.; Astafieva, E.; Lognonne, P. H.

    2017-12-01

    Detection of ionospheric anomalies following the Sumatra and Tohoku earthquakes (e.g., Occhipinti 2015) demonstrated that ionosphere is sensitive to earthquake and tsunami propagation: ground and oceanic vertical displacement induces acoustic-gravity waves propagating within the neutral atmosphere and detectable in the ionosphere. Observations supported by modelling proved that ionospheric anomalies related to tsunamis are deterministic and reproducible by numerical modeling via the ocean/neutral-atmosphere/ionosphere coupling mechanism (Occhipinti et al., 2008). To prove that the tsunami signature in the ionosphere is routinely detected we show here perturbations of total electron content (TEC) measured by GPS and following tsunamigenic earthquakes from 2004 to 2011 (Rolland et al. 2010, Occhipinti et al., 2013), nominally, Sumatra (26 December, 2004 and 12 September, 2007), Chile (14 November, 2007), Samoa (29 September, 2009) and the recent Tohoku-Oki (11 Mars, 2011). Based on the observations close to the epicenter, mainly performed by GPS networks located in Sumatra, Chile and Japan, we highlight the TEC perturbation observed within the first 8 min after the seismic rupture. This perturbation contains information about the ground displacement, as well as the consequent sea surface displacement resulting in the tsunami. In addition to GNSS-TEC observations close to the epicenter, new exciting measurements in the far-field were performed by airglow measurement in Hawaii show the propagation of the internal gravity waves induced by the Tohoku tsunami (Occhipinti et al., 2011). This revolutionary imaging technique is today supported by two new observations of moderate tsunamis: Queen Charlotte (M: 7.7, 27 October, 2013) and Chile (M: 8.2, 16 September 2015). We finally detail here our recent work (Manta et al., 2017) on the case of tsunami alert failure following the Mw7.8 Mentawai event (25 October, 2010), and its twin tsunami alert response following the Mw7

  17. Remote Triggering of the Mw 6.9 Hokkaido Earthquake as a Result of the Mw 6.6 Indonesian Earthquake on September 11, 2008

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2012-01-01

    Full Text Available Only just recently, the phenomenon of earthquakes being triggered by a distant earthquake has been well established. Yet, most of the triggered earthquakes have been limited to small earthquakes (M < 3. Also, the exact triggering mechanism for earthquakes is still not clear. Here I show how one strong earthquake (Mw = 6.6 is capable of triggering another (Mw = 6.9 at a remote distance (~4750 km. On September 11, 2008, two strong earthquakes with magnitudes (Mw of 6.6 and 6.9 hit respectively in Indonesia and Japan within a short interval of ~21 minutes time. Careful examination of broadband seismograms recorded in Japan shows that the Hokkaido earthquake occurred just as the surface waves generated by the Indonesia earthquake arrived. Although the peak dynamic stress estimated at the focus of the Hokkaido earthquake was just reaching the lower bound for the capability of triggering earthquakes in general, a more plausible mechanism for triggering an earthquake might be attributed to the change of a fault property by fluid infiltration. These observations suggest that the Hokkaido earthquake was likely triggered from a remote distance by the surface waves generated from the Indonesia earthquake. If some more cases can be observed, a temporal warning of possible interaction between strong earthquakes might be concerned in the future.

  18. Corrosion evaluation of uranyl nitrate solution evaporator and denitrator in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Yamanaka, Atsushi; Hashimoto, Kowa; Uchida, Toyomi; Shirato, Yoji; Isozaki, Toshihiko; Nakamura, Yoshinobu

    2011-01-01

    The Tokai reprocessing plant (TRP) adopted the PUREX method in 1977 and has reprocessed spent nuclear fuel of 1140 tHM (tons of heavy metals) since then. The reprocessing equipment suffers from various corrosion phenomena because of high nitric acidity, solution ion concentrations, such as uranium, plutonium, and fission products, and temperature. Therefore, considering corrosion performance in such a severe environment, stainless steels, titanium steel, and so forth were employed as corrosion resistant materials. The severity of the corrosive environment depends on the nitric acid concentration and the temperature of the solution, and uranium in the solution reportedly does not significantly affect the corrosion of stainless steels and controls the corrosion rates of titanium steel. The TRP equipment that handles uranyl nitrate solution operates at a low nitric acid concentration and has not experienced corrosion problems until now. However, there is a report that corrosion rates of some stainless steels increase in proportion to rising uranium concentrations. The equipment that handles the uranyl nitrate solution in the TRP includes the evaporators, which concentrate uranyl nitrate to a maximum concentration of about 1000 gU/L (grams of uranium per liter), and the denitrator, where uranyl nitrate is converted to UO 3 powder at about 320degC. These equipments are therefore required to grasp the degree of the progress of corrosion to handle high-temperature and high-concentration uranyl nitrate. The evaluation of this equipment on the basis of thickness measurement confirmed only minor corrosion and indicated that the equipment would be fully adequate for future operation. (author)

  19. JAEA-Tokai TANDEM annual report 2006. April 1, 2006 - March 31, 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This annual report describes a summary of each research activity, which has been carried out using the JAEA-Tokai tandem accelerator with the energy booster from April 1, 2006 to March 31, 2007. The forty-eight summary reports were categorized into seven research/development fields, i.e., (1) accelerator operation and development, (2) nuclear structure, (3) nuclear reaction, (4) nuclear chemistry, (5) nuclear theory, (6) atomic physics and solid state physics, and (7) radiation effects in materials, in addition, lists of publications, personnel and cooperative researches with universities are contained. Regarding the number of summaries each of the fields is as follows: accelerator operation and development - 11, nuclear structure - 11, nuclear reaction - 6, nuclear chemistry - 5, nuclear theory - 4, atomic physics and solid state physics - 3, radiation effects in materials - 8. The 48 of the presented papers are indexed individually. (J.P.N.)

  20. Free-electron laser research-and-development and utilization program at Tokai, JAERI

    International Nuclear Information System (INIS)

    Kawarasaki, Yuuki

    1992-01-01

    The free-electron laser (FEL) research and development (R and D) and utilization program now underway at the Linac Laboratory, Tokai Research Establishment, JAERI, is presented together with the current status of the R and D. Specific feature of this program is at the points that the R and D period will range over a long time, around a decade, tentatively divided into three developmental phases, aiming at the final utilization in a field of nuclear energy industry and the FEL here under R and D is based on a superconducting (SC) linear accelerator (linac) which will in later phases be incorporated with addition of more SC-cavity modules for beam energy increase and with adoption of rather novel accelerator technique: beam recirculation both for further energy increase and for power economy by beam energy recovery. Application scheme is additionally discussed. (author)

  1. Earthquake risk assessment of building structures

    International Nuclear Information System (INIS)

    Ellingwood, Bruce R.

    2001-01-01

    During the past two decades, probabilistic risk analysis tools have been applied to assess the performance of new and existing building structural systems. Structural design and evaluation of buildings and other facilities with regard to their ability to withstand the effects of earthquakes requires special considerations that are not normally a part of such evaluations for other occupancy, service and environmental loads. This paper reviews some of these special considerations, specifically as they pertain to probability-based codified design and reliability-based condition assessment of existing buildings. Difficulties experienced in implementing probability-based limit states design criteria for earthquake are summarized. Comparisons of predicted and observed building damage highlight the limitations of using current deterministic approaches for post-earthquake building condition assessment. The importance of inherent randomness and modeling uncertainty in forecasting building performance is examined through a building fragility assessment of a steel frame with welded connections that was damaged during the Northridge Earthquake of 1994. The prospects for future improvements in earthquake-resistant design procedures based on a more rational probability-based treatment of uncertainty are examined

  2. Future of Earthquake Early Warning: Quantifying Uncertainty and Making Fast Automated Decisions for Applications

    Science.gov (United States)

    Wu, Stephen

    Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications. Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake. To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that

  3. The HayWired Earthquake Scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    ForewordThe 1906 Great San Francisco earthquake (magnitude 7.8) and the 1989 Loma Prieta earthquake (magnitude 6.9) each motivated residents of the San Francisco Bay region to build countermeasures to earthquakes into the fabric of the region. Since Loma Prieta, bay-region communities, governments, and utilities have invested tens of billions of dollars in seismic upgrades and retrofits and replacements of older buildings and infrastructure. Innovation and state-of-the-art engineering, informed by science, including novel seismic-hazard assessments, have been applied to the challenge of increasing seismic resilience throughout the bay region. However, as long as people live and work in seismically vulnerable buildings or rely on seismically vulnerable transportation and utilities, more work remains to be done.With that in mind, the U.S. Geological Survey (USGS) and its partners developed the HayWired scenario as a tool to enable further actions that can change the outcome when the next major earthquake strikes. By illuminating the likely impacts to the present-day built environment, well-constructed scenarios can and have spurred officials and citizens to take steps that change the outcomes the scenario describes, whether used to guide more realistic response and recovery exercises or to launch mitigation measures that will reduce future risk.The HayWired scenario is the latest in a series of like-minded efforts to bring a special focus onto the impacts that could occur when the Hayward Fault again ruptures through the east side of the San Francisco Bay region as it last did in 1868. Cities in the east bay along the Richmond, Oakland, and Fremont corridor would be hit hardest by earthquake ground shaking, surface fault rupture, aftershocks, and fault afterslip, but the impacts would reach throughout the bay region and far beyond. The HayWired scenario name reflects our increased reliance on the Internet and telecommunications and also alludes to the

  4. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  5. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  6. Chemical forms and discharge ratios to stack and sea of tritium from Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Mikami, Satoshi; Akiyama, Kiyomitsu; Miyabe, Kenjiro

    2002-03-01

    Chemical forms and discharge ratios to stack and sea of tritium form Tokai Reprocessing Plant of Japan Nuclear Cycle Development Institute (JNC) were investigated by analyzing monitoring data. It was ascertained that approximately 70-80% of tritium discharged from the main stack was tritiated water vapor (HTO) and approximately 20-30% was tritiated hydrogen (HT) as a result of analyzing the data taken from reprocessing campaign's in 1994, 1995, 1996, 1997, 2000 and 2001, and also that the amount of tritium released from the stack was less than 1% of tritium inventory in spent fuel and the amount of tritium released into sea was approximately 20-40% of inventory. (author)

  7. Impact of the Christchurch earthquakes on hospital staff.

    Science.gov (United States)

    Tovaranonte, Pleayo; Cawood, Tom J

    2013-06-01

    On September 4, 2010 a major earthquake caused widespread damage, but no loss of life, to Christchurch city and surrounding areas. There were numerous aftershocks, including on February 22, 2011 which, in contrast, caused substantial loss of life and major damage to the city. The research aim was to assess how these two earthquakes affected the staff in the General Medicine Department at Christchurch Hospital. Problem To date there have been no published data assessing the impact of this type of natural disaster on hospital staff in Australasia. A questionnaire that examined seven domains (demographics, personal impact, psychological impact, emotional impact, impact on care for patients, work impact, and coping strategies) was handed out to General Medicine staff and students nine days after the September 2010 earthquake and 14 days after the February 2011 earthquake. Response rates were ≥ 99%. Sixty percent of responders were earthquakes, respectively. A fifth to a third of people had to find an alternative route of transport to get to work but only eight percent to 18% took time off work. Financial impact was more severe following the February earthquake, with 46% reporting damage of >NZ $1,000, compared with 15% following the September earthquake (P earthquake than the September earthquake (42% vs 69%, P earthquake but this rose to 53% after the February earthquake (12/53 vs 45/85, P earthquake but this dropped significantly to 15% following the February earthquake (27/53 vs 13/62, P earthquakes upon General Medicine hospital staff. The effect was widespread with minor financial impact during the first but much more during the second earthquake. Moderate psychological impact was experienced in both earthquakes. This data may be useful to help prepare plans for future natural disasters. .

  8. Earthquake Loss Scenarios: Warnings about the Extent of Disasters

    Science.gov (United States)

    Wyss, M.; Tolis, S.; Rosset, P.

    2016-12-01

    It is imperative that losses expected due to future earthquakes be estimated. Officials and the public need to be aware of what disaster is likely in store for them in order to reduce the fatalities and efficiently help the injured. Scenarios for earthquake parameters can be constructed to a reasonable accuracy in highly active earthquake belts, based on knowledge of seismotectonics and history. Because of the inherent uncertainties of loss estimates however, it would be desirable that more than one group calculate an estimate for the same area. By discussing these estimates, one may find a consensus of the range of the potential disasters and persuade officials and residents of the reality of the earthquake threat. To model a scenario and estimate earthquake losses requires data sets that are sufficiently accurate of the number of people present, the built environment, and if possible the transmission of seismic waves. As examples we use loss estimates for possible repeats of historic earthquakes in Greece that occurred between -464 and 700. We model future large Greek earthquakes as having M6.8 and rupture lengths of 60 km. In four locations where historic earthquakes with serious losses have occurred, we estimate that 1,000 to 1,500 people might perish, with an additional factor of four people injured. Defining the area of influence of these earthquakes as that with shaking intensities larger and equal to V, we estimate that 1.0 to 2.2 million people in about 2,000 settlements may be affected. We calibrate the QLARM tool for calculating intensities and losses in Greece, using the M6, 1999 Athens earthquake and matching the isoseismal information for six earthquakes, which occurred in Greece during the last 140 years. Comparing fatality numbers that would occur theoretically today with the numbers reported, and correcting for the increase in population, we estimate that the improvement of the building stock has reduced the mortality and injury rate in Greek

  9. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  10. Earthquake safety program at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Freeland, G.E.

    1985-01-01

    Within three minutes on the morning of January 24, 1980, an earthquake and three aftershocks, with Richter magnitudes of 5.8, 5.1, 4.0, and 4.2, respectively, struck the Livermore Valley. Two days later, a Richter magnitude 5.4 earthquake occurred, which had its epicenter about 4 miles northwest of the Lawrence Livermore National Laboratory (LLNL). Although no one at the Lab was seriously injured, these earthquakes caused considerable damage and disruption. Masonry and concrete structures cracked and broke, trailers shifted and fell off their pedestals, office ceilings and overhead lighting fell, and bookcases overturned. The Laboratory was suddenly immersed in a site-wide program of repairing earthquake-damaged facilities, and protecting our many employees and the surrounding community from future earthquakes. Over the past five years, LLNL has spent approximately $10 million on its earthquake restoration effort for repairs and upgrades. The discussion in this paper centers upon the earthquake damage that occurred, the clean-up and restoration efforts, the seismic review of LLNL facilities, our site-specific seismic design criteria, computer-floor upgrades, ceiling-system upgrades, unique building seismic upgrades, geologic and seismologic studies, and seismic instrumentation. 10 references

  11. Demonstration of an automated electromanometer for measurement of solution in accountability vessels in the Tokai Reprocessing Plant (part II)

    International Nuclear Information System (INIS)

    Yamonouchi, T.; Fukuari, Y.; Hayashi, M.; Komatsu, M.; Suyama, N.; Uchida, T.

    1982-01-01

    This report describes the results of an operational field test of the automated electromanometer system installed at the input accountability vessel (251V10) and the plutonium product accountability vessel (266V23) in the Tokai Reprocessing Plant. This system has been in use since September 1979 when it was installed in the PNC plant by BNL as part of Task-E, one of the thirteen tasks, in the Tokai Advanced Safeguards Technology Exercise (TASTEX) program. The first report on the progress of this task was published by S. Suda, et al., in the Proceedings of the INMM 22nd Annual Meeting. In this paper, further results of measurement and data analysis are shown. Also, the reliability and applicability of this instrument for accountability, safeguards, and process control purposes are investigated using the data of 106 batches for 251V10 and 40 batches for 266V23 obtained during two campaigns in 1981. There were small but significant differences relative to the plant's measurements for both vessels of 251V10 and 266V23; however, the difference for 251V10 was slightly decreased in the latest vessel calibration. Initially, there were many spurious signals originating with the raw data caused by a software error in the system. However, almost normal conditions were obtained after corrections of the program were made

  12. The HayWired earthquake scenario—We can outsmart disaster

    Science.gov (United States)

    Hudnut, Kenneth W.; Wein, Anne M.; Cox, Dale A.; Porter, Keith A.; Johnson, Laurie A.; Perry, Suzanne C.; Bruce, Jennifer L.; LaPointe, Drew

    2018-04-18

    The HayWired earthquake scenario, led by the U.S. Geological Survey (USGS), anticipates the impacts of a hypothetical magnitude-7.0 earthquake on the Hayward Fault. The fault is along the east side of California’s San Francisco Bay and is among the most active and dangerous in the United States, because it runs through a densely urbanized and interconnected region. One way to learn about a large earthquake without experiencing it is to conduct a scientifically realistic scenario. The USGS and its partners in the HayWired Coalition and the HayWired Campaign are working to energize residents and businesses to engage in ongoing and new efforts to prepare the region for such a future earthquake.

  13. Treatment results of the Tokai-POSG 8610HR pilot protocol for children with high-risk acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, Teruaki; Inoue, Noriko [Hamamatsu Medical Univ., Shizuoka (Japan); Horibe, Keizo [and others

    1997-10-01

    We reported the treatment results of Tokai-POSG 8610HR pilot protocol for children with high-risk acute lymphoblastic leukemia (ALL). From Oct. 1986 to Jan. 1991, 43 eligible children were enrolled, who had one or more following high-risk factors: age{>=}10 years old, initial white blood cell count (WBC) of 50,000/{mu}l or more, and extramedullary leukemia. All patients received induction therapy consisting of vincristine, dexamethasone, cyclophosphamide and daunorubicin, followed by central nervous system prophylaxis by 24 Gy cranial irradiation, consolidation therapy and cyclic maintenance by multidrugs for 3 years after diagnosis. Complete remission was achieved in 39 patients. The 5-year event-free survival (EFS) rate was 72.6{+-}7.1%. The only factor of an adverse association with EFS was a initial WBC of 10,000/{mu}l or more (p=0.002) in the 24 patients who were 10 years old or over. The factors related to a negative survival were male gender (p=0.031) and an initial WBC of 10,000/{mu}l or more (p=0.0012) in 43 patients. The major toxicities of the therapy were pancreatitis and allergic reaction due to{sub L}-ASP administration, and growth hormone deficiency due to cranial irradiation. Tokai 8610HR pilot protocol was a promising regimen, but further intensive chemotherapy was needed for improvement or the prognosis of the older patients with high initial WBC greater than 10,000/{mu}l. (author)

  14. Treatment results of the Tokai-POSG 8610HR pilot protocol for children with high-risk acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Hongo, Teruaki; Inoue, Noriko; Horibe, Keizo

    1997-01-01

    We reported the treatment results of Tokai-POSG 8610HR pilot protocol for children with high-risk acute lymphoblastic leukemia (ALL). From Oct. 1986 to Jan. 1991, 43 eligible children were enrolled, who had one or more following high-risk factors: age≥10 years old, initial white blood cell count (WBC) of 50,000/μl or more, and extramedullary leukemia. All patients received induction therapy consisting of vincristine, dexamethasone, cyclophosphamide and daunorubicin, followed by central nervous system prophylaxis by 24 Gy cranial irradiation, consolidation therapy and cyclic maintenance by multidrugs for 3 years after diagnosis. Complete remission was achieved in 39 patients. The 5-year event-free survival (EFS) rate was 72.6±7.1%. The only factor of an adverse association with EFS was a initial WBC of 10,000/μl or more (p=0.002) in the 24 patients who were 10 years old or over. The factors related to a negative survival were male gender (p=0.031) and an initial WBC of 10,000/μl or more (p=0.0012) in 43 patients. The major toxicities of the therapy were pancreatitis and allergic reaction due to L -ASP administration, and growth hormone deficiency due to cranial irradiation. Tokai 8610HR pilot protocol was a promising regimen, but further intensive chemotherapy was needed for improvement or the prognosis of the older patients with high initial WBC greater than 10,000/μl. (author)

  15. Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST

    Directory of Open Access Journals (Sweden)

    Maura Murru

    2010-11-01

    Full Text Available This study describes three earthquake occurrence models as applied to the whole Italian territory, to assess the occurrence probabilities of future (M ≥5.0 earthquakes: two as short-term (24 hour models, and one as long-term (5 and 10 years. The first model for short-term forecasts is a purely stochastic epidemic type earthquake sequence (ETES model. The second short-term model is an epidemic rate-state (ERS forecast based on a model that is physically constrained by the application to the earthquake clustering of the Dieterich rate-state constitutive law. The third forecast is based on a long-term stress transfer (LTST model that considers the perturbations of earthquake probability for interacting faults by static Coulomb stress changes. These models have been submitted to the Collaboratory for the Study of Earthquake Predictability (CSEP for forecast testing for Italy (ETH-Zurich, and they were locked down to test their validity on real data in a future setting starting from August 1, 2009.

  16. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau

    Science.gov (United States)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin

    2015-04-01

    The India-Eurasia's collision produces N-S compression and results in large thrust fault in the southern edge of the Tibetan Plateau. Differential eastern flow of the lower crust of the plateau leads to large strike-slip faults and normal faults within the plateau. From 1904 to 2014, more than 30 earthquakes of Mw > 6.5 occurred sequentially in this distinctive tectonic environment. How did the stresses evolve during the last 110 years, how did the earthquakes interact with each other? Can this knowledge help us to forecast the future seismic hazards? In this essay, we tried to simulate the evolution of the stress field and the earthquake sequence in the Tibetan plateau within the last 110 years with a 2-D finite element model. Given an initial state of stress, the boundary condition was constrained by the present-day GPS observation, which was assumed as a constant rate during the 110 years. We calculated stress evolution year by year, and earthquake would occur if stress exceed the crustal strength. Stress changes due to each large earthquake in the sequence was calculated and contributed to the stress evolution. A key issue is the choice of initial stress state of the modeling, which is actually unknown. Usually, in the study of earthquake triggering, people assume the initial stress is zero, and only calculate the stress changes by large earthquakes - the Coulomb failure stress changes (Δ CFS). To some extent, this simplified method is a powerful tool because it can reveal which fault or which part of a fault becomes more risky or safer relatively. Nonetheless, it has not utilized all information available to us. The earthquake sequence reveals, though far from complete, some information about the stress state in the region. If the entire region is close to a self-organized critical or subcritical state, earthquake stress drop provides an estimate of lower limit of initial state. For locations no earthquakes occurred during the period, initial stress has to be

  17. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    and collapse prevention in future earthquakes, a five-step road map has been purposed.

  18. Numerical tsunami simulations in the western Pacific Ocean and East China Sea from hypothetical M 9 earthquakes along the Nankai trough

    Science.gov (United States)

    Harada, Tomoya; Satake, Kenji; Furumura, Takashi

    2017-04-01

    We carried out tsunami numerical simulations in the western Pacific Ocean and East China Sea in order to examine the behavior of massive tsunami outside Japan from the hypothetical M 9 tsunami source models along the Nankai Trough proposed by the Cabinet Office of Japanese government (2012). The distribution of MTHs (maximum tsunami heights for 24 h after the earthquakes) on the east coast of China, the east coast of the Philippine Islands, and north coast of the New Guinea Island show peaks with approximately 1.0-1.7 m,4.0-7.0 m,4.0-5.0 m, respectively. They are significantly higher than that from the 1707 Ho'ei earthquake (M 8.7), the largest earthquake along the Nankai trough in recent Japanese history. Moreover, the MTH distributions vary with the location of the huge slip(s) in the tsunami source models although the three coasts are far from the Nankai trough. Huge slip(s) in the Nankai segment mainly contributes to the MTHs, while huge slip(s) or splay faulting in the Tokai segment hardly affects the MTHs. The tsunami source model was developed for responding to the unexpected occurrence of the 2011 Tohoku Earthquake, with 11 models along the Nanakai trough, and simulated MTHs along the Pacific coasts of the western Japan from these models exceed 10 m, with a maximum height of 34.4 m. Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with the Corioli's force and bottom friction (Satake, 1995) in the area of 115-155 ° E and 8° S-40° N. Because water depth of the East China Sea is shallower than 200 m, the tsunami propagation is likely to be affected by the ocean bottom fiction. The 30 arc-seconds gridded bathymetry data provided by the General Bathymetric Chart of the Oceans (GEBCO-2014) are used. For long propagation of tsunami we simulated tsunamis for 24 hours after the earthquakes. This study was supported by the"New disaster mitigation research project on Mega thrust earthquakes around Nankai

  19. Direction of reprocessing technology development based on 30 years operation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nomura, S; Tanaka, T.; Ohshima, H.

    2006-01-01

    Full text: Full text: Recent global interest focuses the possibility of recycling of spent fuel with advanced fast reactor fuel cycle system. Goal of closed fuel cycle is to achieve the maximum use of uranium resources and minimum disposal of waste by multi recycle of TRU as a competitive nuclear energy system. The future reprocessing and fuel fabrication system should be synchronized completely with the advanced reactor system and waste treatment and disposal back-end system to complete closed fuel cycle. To realize such system, current reprocessing system should be changed to handle Pu-U-Minor Actinide with more reductions in the cost and less waste volume, as well as an inherent proliferation resistance. For the successful industrialization of advanced reprocessing technology, it is necessary to combine three key elements of R and D efforts, engineering base demonstration and experiences of plant operation. Tokai Reprocessing Facilities licensed a maximum capacity of 0.7tHM/day began a hot operation in 1977 and reprocessed l,100tHM U02 spent fuel and 20tHM ATR-MOX with a continuous technological improvements under IAEA full scope safeguards. With 30 years experience, candidate of key technologies proposed for realizing the next advanced reprocessing are as follows: 1) Simplified co-extraction process of Pu-Np-U by using multistage centrifugal extractors in stead of pulsed columns; 2) Corrosion free components in acid condition by using corrosion resistant refractory alloys and ceramics; 3) Co-conversion technology to MA containing MOX powder by micro-wave heating method for a short process for MA containing MOX pellets fabrication; 4) Advanced verification of high level radioactive liquid waste combining separation technology of TRU and LLFP elements; 5) Advanced chemical analysis and monitoring system for TRU elements in a plant. These advanced reprocessing technologies will be applied mainly to reprocess the LWR spent fuel accumulated past and future

  20. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadayoshi; Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Oyanagi, Katsumi [Japan Radiation Engineering Co., Ltd., Hitachi, Ibaraki (Japan)

    2002-09-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, {sup 241}Am-Be and {sup 252}Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  1. Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field

    International Nuclear Information System (INIS)

    Yoshida, Tadayoshi; Tsujimura, Norio

    2002-01-01

    Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, 241 Am-Be and 252 Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)

  2. 2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile

    NARCIS (Netherlands)

    Nealy, Jennifer L.; Herman, Matthew W.; Moore, Ginevra L.; Hayes, Gavin P.; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E.

    2017-01-01

    In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985.

  3. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  4. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    Science.gov (United States)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  5. Incorporating human-triggered earthquake risks into energy and water policies

    Science.gov (United States)

    Klose, C. D.; Seeber, L.; Jacob, K. H.

    2010-12-01

    A comprehensive understanding of earthquake risks in urbanized regions requires an accurate assessment of both urban vulnerabilities and hazards from earthquakes, including ones whose timing might be affected by human activities. Socioeconomic risks associated with human-triggered earthquakes are often misconstrued and receive little scientific, legal, and public attention. Worldwide, more than 200 damaging earthquakes, associated with industrialization and urbanization, were documented since the 20th century. Geomechanical pollution due to large-scale geoengineering activities can advance the clock of earthquakes, trigger new seismic events or even shot down natural background seismicity. Activities include mining, hydrocarbon production, fluid injections, water reservoir impoundments and deep-well geothermal energy production. This type of geohazard has impacts on human security on a regional and national level. Some planned or considered future engineering projects raise particularly strong concerns about triggered earthquakes, such as for instance, sequestration of carbon dioxide by injecting it deep underground and large-scale natural gas production in the Marcellus shale in the Appalacian basin. Worldwide examples of earthquakes are discussed, including their associated losses of human life and monetary losses (e.g., 1989 Newcastle and Volkershausen earthquakes, 2001 Killari earthquake, 2006 Basel earthquake, 2010 Wenchuan earthquake). An overview is given on global statistics of human-triggered earthquakes, including depths and time delay of triggering. Lastly, strategies are described, including risk mitigation measures such as urban planning adaptations and seismic hazard mapping.

  6. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  7. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    Earthquakes have claimed approximately 8 million lives over the last 2,000 years (Dunbar, Lockridge and others, 1992) and fatality rates are likely to continue to rise with increased population and urbanizations of global settlements especially in developing countries. More than 75% of earthquake-related human casualties are caused by the collapse of buildings or structures (Coburn and Spence, 2002). It is disheartening to note that large fractions of the world's population still reside in informal, poorly-constructed & non-engineered dwellings which have high susceptibility to collapse during earthquakes. Moreover, with increasing urbanization half of world's population now lives in urban areas (United Nations, 2001), and half of these urban centers are located in earthquake-prone regions (Bilham, 2004). The poor performance of most building stocks during earthquakes remains a primary societal concern. However, despite this dark history and bleaker future trends, there are no comprehensive global building inventories of sufficient quality and coverage to adequately address and characterize future earthquake losses. Such an inventory is vital both for earthquake loss mitigation and for earthquake disaster response purposes. While the latter purpose is the motivation of this work, we hope that the global building inventory database described herein will find widespread use for other mitigation efforts as well. For a real-time earthquake impact alert system, such as U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER), (Wald, Earle and others, 2006), we seek to rapidly evaluate potential casualties associated with earthquake ground shaking for any region of the world. The casualty estimation is based primarily on (1) rapid estimation of the ground shaking hazard, (2) aggregating the population exposure within different building types, and (3) estimating the casualties from the collapse of vulnerable buildings. Thus, the

  8. A Sex Disparity Among Earthquake Victims.

    Science.gov (United States)

    Ardagh, Michael; Standring, Sarah; Deely, Joanne M; Johnston, David; Robinson, Viki; Gulliver, Pauline; Richardson, Sandra; Dierckx, Alieke; Than, Martin

    2016-02-01

    Understanding who is most vulnerable during an earthquake will help health care responders prepare for future disasters. We analyzed the demography of casualties from the Christchurch earthquake in New Zealand. The demography of the total deceased, injured, and hospitalized casualties of the Christchurch earthquake was compared with that of the greater Christchurch population, the Christchurch central business district working population, and patients who presented to the single acute emergency department on the same month and day over the prior 10 years. Sex data were compared to scene of injury, context of injury, clinical characteristics of injury, and injury severity scores. Significantly more females than males were injured or killed in the entire population of casualties (P20% were injured at commercial or service localities (444/2032 males [22%]; 1105/4627 females [24%]). Adults aged between 20 and 69 years (1639/2032 males [81%]; 3717/4627 females [80%]) were most frequently injured. Where people were and what they were doing at the time of the earthquake influenced their risk of injury.

  9. The maximum earthquake in future T years: Checking by a real catalog

    International Nuclear Information System (INIS)

    Pisarenko, V.F.; Rodkin, M.V.

    2015-01-01

    The studies of disaster statistics are being largely carried out in recent decades. Some recent achievements in the field can be found in Pisarenko and Rodkin (2010). An important aspect in the seismic risk assessment is the using historical earthquake catalogs and the combining historical data with instrumental ones since historical catalogs cover very long time periods and can improve seismic statistics in the higher magnitude domain considerably. We suggest the new statistical technique for this purpose and apply it to two historical Japan catalogs and the instrumental JMA catalog. The main focus of these approaches is on the occurrence of disasters of extreme sizes as the most important ones from practical point of view. Our method of statistical analysis of the size distribution in the uppermost range of extremely rare events was suggested, based on maximum size M max (τ) (e.g. earthquake energy, ground acceleration caused by earthquake, victims and economic losses from natural catastrophes, etc.) that will occur in a prescribed time interval τ. A new approach to the problem discrete data that we called “the magnitude spreading” is suggested. This method reduces discrete random value to continuous ones by addition a small uniformly distributed random components. We analyze this method in details and apply it to verification of parameters derived from two historical catalogs: the Usami earthquake catalog (599–1884) and the Utsu catalog (1885–1925). We compare their parameters with ones derived from the instrumental JMA catalog (1926–2014). The results of this verification are following: The Usami catalog is incompatible with the instrumental one, whereas parameters estimated from the Utsu catalog are statistically compatible in the higher magnitude domain with sample of M max (τ) derived from the JMA catalog

  10. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  11. Post-Earthquake Reconstruction — in Context of Housing

    Science.gov (United States)

    Sarkar, Raju

    Comprehensive rescue and relief operations are always launched with no loss of time with active participation of the Army, Governmental agencies, Donor agencies, NGOs, and other Voluntary organizations after each Natural Disaster. There are several natural disasters occurring throughout the world round the year and one of them is Earthquake. More than any other natural catastrophe, an earthquake represents the undoing of our most basic pre-conceptions of the earth as the source of stability or the first distressing factor due to earthquake is the collapse of our dwelling units. Earthquake has affected buildings since people began constructing them. So after each earthquake a reconstruction of housing program is very much essential since housing is referred to as shelter satisfying one of the so-called basic needs next to food and clothing. It is a well-known fact that resettlement (after an earthquake) is often accompanied by the creation of ghettos and ensuing problems in the provision of infrastructure and employment. In fact a housing project after Bhuj earthquake in Gujarat, India, illustrates all the negative aspects of resettlement in the context of reconstruction. The main theme of this paper is to consider few issues associated with post-earthquake reconstruction in context of housing, all of which are significant to communities that have had to rebuild after catastrophe or that will face such a need in the future. Few of them are as follows: (1) Why rebuilding opportunities are time consuming? (2) What are the causes of failure in post-earthquake resettlement? (3) How can holistic planning after an earthquake be planned? (4) What are the criteria to be checked for sustainable building materials? (5) What are the criteria for success in post-earthquake resettlement? (6) How mitigation in post-earthquake housing can be made using appropriate repair, restoration, and strengthening concepts?

  12. The current situation of the NDL Great East Japan Earthquake Archive 'HINAGIKU'

    International Nuclear Information System (INIS)

    Suwa, Yasuko

    2014-01-01

    On March 7, 2013, the National Diet Library (NDL) started full-scale operation of the NDL Great East Japan Earthquake Archive 'HINAGIKU'. Hinagiku is the Searching Portal that enables integrated search and utilization of sound and videos, pictures, websites, etc., about the Great East Japan Earthquake. Its aim is to hand down all records and lessons to future generations and to utilize them for the restoration and reconstruction of the affected areas and for disaster prevention measures. Since its release last year, Hinagiku has been enlarging search targets in cooperation with related institutions. In this article, I will give an overview of the NDL Great East Japan Earthquake Archive and discuss about its challenges for the future. (author)

  13. Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios

    KAUST Repository

    Goda, Katsuichiro; Yasuda, Tomohiro; Mai, Paul Martin; Maruyama, Takuma; Mori, Nobuhito

    2017-01-01

    In this study, earthquake rupture models for future mega-thrust earthquakes in the Nankai–Tonankai subduction zone are developed by incorporating the main characteristics of inverted source models of the 2011 Tohoku earthquake. These scenario

  14. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    level of shaking intensity with empirical models of fatality losses calibrated on past earthquakes in each country. Non-seismic detections and macroseismic questionnaires collected online are combined to identify as many as possible of the felt earthquakes regardless their magnitude. Non seismic detections include Twitter earthquake detections, developed by the US Geological Survey, where the number of tweets containing the keyword "earthquake" is monitored in real time and flashsourcing, developed by the EMSC, which detect traffic surges on its rapid earthquake information website caused by the natural convergence of eyewitnesses who rush to the Internet to investigate the cause of the shaking that they have just felt. All together, we estimate that the number of detected felt earthquakes is around 1 000 per year, compared with the 35 000 earthquakes annually reported by the EMSC! Felt events are already the subject of the web page "Latest significant earthquakes" on EMSC website (http://www.emsc-csem.org/Earthquake/significant_earthquakes.php) and of a dedicated Twitter service @LastQuake. We will present the identification process of the earthquakes that matter, the smartphone application itself (to be released in May) and its future evolutions.

  15. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    Science.gov (United States)

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  16. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  17. The SCEC/USGS dynamic earthquake rupture code verification exercise

    Science.gov (United States)

    Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.

    2009-01-01

    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous

  18. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  19. Our response to the earthquake at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirakawa, Tomoshi

    2008-01-01

    When the Miyagi Offshore earthquake occurred on August 16, 2005, all three units at the Onagawa NPS were shut down automatically according to the Strong Seismic Acceleration' signal. Our inspection after the earthquake confirmed there was no damage to the equipment of the nuclear power plants, but the analysis of the response spectrum observed at the bedrock showed the earthquake had exceeded the 'design-basis earthquake', at certain periods, so that we implemented a review of the seismic safety of plant facilities. In the review, the ground motion of Miyagi Offshore Earthquake which are predicted to occur in the near future were reexamined based on the observation data, and then 'The Ground Motion for Safety Check' surpassing the supposed ground motion of the largest earthquake was established. The seismic safety of plant facilities, important for safety, was assured. At present, No.1 to No.3 units at Onagawa NPS have returned to normal operation. (author)

  20. Mitigating the consequences of future earthquakes in historical centres: what perspectives from the joined use of past information and geological-geophysical surveys?

    Science.gov (United States)

    Terenzio Gizzi, Fabrizio; Moscatelli, Massimiliano; Potenza, Maria Rosaria; Zotta, Cinzia; Simionato, Maurizio; Pileggi, Domenico; Castenetto, Sergio

    2015-04-01

    To mitigate the damage effects of earthquakes in urban areas and particularly in historical centres prone to high seismic hazard is an important task to be pursued. As a matter of fact, seismic history throughout the world informs us that earthquakes have caused deep changes in the ancient urban conglomerations due to their high building vulnerability. Furthermore, some quarters can be exposed to an increase of seismic actions if compared with adjacent areas due to the geological and/or topographical features of the site on which the historical centres lie. Usually, the strategies aimed to estimate the local seismic hazard make only use of the geological-geophysical surveys. Thorough this approach we do not draw any lesson from what happened as a consequences of past earthquakes. With this in mind, we present the results of a joined use of historical data and traditional geological-geophysical approach to analyse the effects of possible future earthquakes in historical centres. The research activity discussed here is arranged into a joint collaboration between the Department of Civil Protection of the Presidency of Council of Ministers, the Institute of Environmental Geology and Geoengineering and the Institute of Archaeological and Monumental Heritage of the National (Italian) Research Council. In order to show the results, we discuss the preliminary achievements of the integrated study carried out on two historical towns located in Southern Apennines, a portion of the Italian peninsula exposed to high seismic hazard. Taking advantage from these two test sites, we also discuss some methodological implications that could be taken as a reference in the seismic microzonation studies.

  1. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  2. Japan Catastrophic Earthquake and Tsunami in Fukushima Daiichi NPP; Is it Beyond Design Basis Accident or a Design Deficiency and Operator Unawareness?

    International Nuclear Information System (INIS)

    Gaafar, M.A.; Refeat, R.M.; EL-Kady, A.A.

    2012-01-01

    On March 11, 2011 a catastrophic earthquake and tsunami struck the north east coast of Japan. This catastrophe damaged fully or partially the six units of the Fukushima Daiichi Nuclear Power Plant.Questions were raised following the aftermath, whether it is beyond design basis accident caused by severe natural event or a failure by the Japanese authorities to plan to deal with such accident. There are many indications that the Utility of Fukushima Daiichi NPP, Tokyo Electric Power Company (TEPCO), did not pay enough attention to numerous facts about the incompatibility of the site and several design defects in the plant units. In fact there are three other NPP sites nearby Fukushima Daiichi Plant (about 30 to 60 Km far from Fukushima Daiichi NPP), with different site characteristics, which survived the same catastrophic earthquake and tsunami, but they were automatically turned into a safe shutdown state. These plants sites are Fukushima Daini Plant (4 units), Onagawa Plant (3 units) and Tokai Daini (II) Plant (one unit). In this paper, the aftermath Fukushima Daiichi plant integrity is pointed out. Some facts about the site and design concerns which could have implications on the accident are discussed. The response of Japan Authority is outlined and some remarks about their actions are underlined. The impacts of this disaster on the Nuclear Power Program worldwide are also discussed.

  3. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  4. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    basis to disclose an acting earthquake shear stress S at top of the tectonic plate is established at the depth of 600-800m (Window). This concept is supported by outcome of the Japanese government stress measurement made at the epicenter of the Kobe earthquake of 1995, where S is found to be less than 5 MPa. At the same time S at the earthquake active Ashio mining district was found to be 36 MPa (90 percent of maximum S) at Window. These findings led to formulation of a quantitative method proposed to monitor earthquake triggering potential in and around any growing earthquake stress nucleus along shallow active faults. For future earthquake time prediction, the Stressmeter can be applied first to survey general distribution of earthquake shear stress S along major active faults. A site with its shear stress greater than 30 MPa may be identified as a site of growing stress nucleus. A Stressmeter must be permanently buried at the site to monitor future stress growth toward a possible triggering by mathematical analysis of the stress excursion dynamics. This is made possible by the automatic stress measurement capability of the Stressmeter at a frequency up to 100 times per day. The significance of this approach is a possibility to save lives by time-prediction of a forthcoming major earthquake with accuracy in hours and minutes.

  5. [Medium- and long-term health effects of the L'Aquila earthquake (Central Italy, 2009) and of other earthquakes in high-income Countries: a systematic review].

    Science.gov (United States)

    Ripoll Gallardo, Alba; Alesina, Marta; Pacelli, Barbara; Serrone, Dario; Iacutone, Giovanni; Faggiano, Fabrizio; Della Corte, Francesco; Allara, Elias

    2016-01-01

    to compare the methodological characteristics of the studies investigating the middle- and long-term health effects of the L'Aquila earthquake with the features of studies conducted after other earthquakes occurred in highincome Countries. a systematic comparison between the studies which evaluated the health effects of the L'Aquila earthquake (Central Italy, 6th April 2009) and those conducted after other earthquakes occurred in comparable settings. Medline, Scopus, and 6 sources of grey literature were systematically searched. Inclusion criteria comprised measurement of health outcomes at least one month after the earthquake, investigation of earthquakes occurred in high-income Countries, and presence of at least one temporal or geographical control group. out of 2,976 titles, 13 studies regarding the L'Aquila earthquake and 51 studies concerning other earthquakes were included. The L'Aquila and the Kobe/Hanshin- Awaji (Japan, 17th January 1995) earthquakes were the most investigated. Studies on the L'Aquila earthquake had a median sample size of 1,240 subjects, a median duration of 24 months, and used most frequently a cross sectional design (7/13). Studies on other earthquakes had a median sample size of 320 subjects, a median duration of 15 months, and used most frequently a time series design (19/51). the L'Aquila studies often focussed on mental health, while the earthquake effects on mortality, cardiovascular outcomes, and health systems were less frequently evaluated. A more intensive use of routine data could benefit future epidemiological surveillance in the aftermath of earthquakes.

  6. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  7. Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    Science.gov (United States)

    Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2013-12-01

    discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.

  8. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  9. A prospective earthquake forecast experiment in the western Pacific

    Science.gov (United States)

    Eberhard, David A. J.; Zechar, J. Douglas; Wiemer, Stefan

    2012-09-01

    Since the beginning of 2009, the Collaboratory for the Study of Earthquake Predictability (CSEP) has been conducting an earthquake forecast experiment in the western Pacific. This experiment is an extension of the Kagan-Jackson experiments begun 15 years earlier and is a prototype for future global earthquake predictability experiments. At the beginning of each year, seismicity models make a spatially gridded forecast of the number of Mw≥ 5.8 earthquakes expected in the next year. For the three participating statistical models, we analyse the first two years of this experiment. We use likelihood-based metrics to evaluate the consistency of the forecasts with the observed target earthquakes and we apply measures based on Student's t-test and the Wilcoxon signed-rank test to compare the forecasts. Overall, a simple smoothed seismicity model (TripleS) performs the best, but there are some exceptions that indicate continued experiments are vital to fully understand the stability of these models, the robustness of model selection and, more generally, earthquake predictability in this region. We also estimate uncertainties in our results that are caused by uncertainties in earthquake location and seismic moment. Our uncertainty estimates are relatively small and suggest that the evaluation metrics are relatively robust. Finally, we consider the implications of our results for a global earthquake forecast experiment.

  10. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses of specific action to mitigate the seismic risks from strong deep Vrancea earthquakes should be considered as key to future development projects, including: - Early warning system for industrial facilities; - Short and long term prediction program of strong Vrancea earthquakes; - Seismic hazard map of Romania; - Seismic microzonation of large populated cities; - Shake map; - Seismic tomography of dams for avoiding disasters. The quality of life and the security of infrastructure (including human services, civil and industrial structures, financial infrastructure, information transmission and processing systems) in every nation are increasingly vulnerable to disasters caused by events that have geological, atmospheric, hydrologic, and technological origins. As UN Secretary General Kofi Annan pointed out, 'Building a culture of prevention is not easy. While the costs of prevention have to be paid in the present, its benefits lie in a distant future'. In other words: Prevention pays off. This may not always become apparent immediately, but, in the long run, the benefits from prevention measures will always outweigh their costs by far. Romania is an earthquake prone area and these main specific actions are really contributing to seismic risk mitigation. These specific actions are provided for in Law nr. 372/March 18,2004 -'The National Program of Seismic Risk Management'. (authors)

  11. Crud removal with deep bed type condensate demineralizer in Tokai-2 BWR

    International Nuclear Information System (INIS)

    Abe, Ayumi; Takiguchi, Hideki; Numata, Kunio; Saito, Toshihiko

    1996-01-01

    The major objective and functions for the installation of the deep bed type condensate polishers in BWR power plants is to remove both ionic impurities caused by sea water leakage and suspended impurities called crud mainly consisting of metal oxides which are produced from metal corrosion. In considering the reduction of occupational radiation exposure level, it is extremely important to remove the crud effectively. In recent Japanese BWR power plants, condensate pre-filters with powdered ion exchange resins or with hollow fiber membrane have been installed to remove the crud at the upper stream of the deep bed polishers. In such plants, the crud removal is conventionally the secondary objective for the deep bed polishers. The Japan Atomic Power Company has introduced the small particle ion exchange resin and a soak regeneration method since April 1985, and then applied the low cross-linked resin since July 1995 at Tokai-2 Power Station, to improve the crud removal performance by using only deep bed type condensate demineralizer, and as a result condensate demineralizer outlet iron level has been kept below 1 ppb since 1991

  12. Evaporation of low-activity-level liquid waste at Tokai Reprocessing Plant, 1

    International Nuclear Information System (INIS)

    Nojima, Yasuo; Nemoto, Yuichi; Fukushima, Misao; Shibuya, Jun; Miyahara, Kenji

    1983-01-01

    The operation of Tokai reprocessing plant started in 1977. The determination of the decontamination factors (DF) of the evaporators for low activity level liquid waste (LALW) has been made through the operation. This paper deals with the examination of the first evaporator located at the LALW treatment plant. The operational principle and condition of the evaporator system are briefly explained. The effects of wire-mesh demisters and liquid properties on the decontamination factor were examined in this study. The results are summarized as follows: (1) The DF decreased with the increasing vapor mass velocity on account of entrainment. (2) The DF was able to be improved by using wire-mesh demisters when the vapor mass velocity was less than 2,500 kg/m 2 h. Practically, the most suitable vapor velocity for the evaporator was around 2,000 kg/m 2 h. (3) The DF in the evaporator for 137 Cs, 144 Ce, 90 Sr and 106 Ru was between 10 3 and 10 4 . Regarding 106 Ru, the DF in acid evaporation was less than that in alkaline evaporation. (Aoki, K.)

  13. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes

    Science.gov (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Jin, Xueshen; Liu, Zhihui; Paradisopoulou, Parthena; He, Zhang

    2013-10-01

    Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M ⩾ 5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.

  14. Introduction: seismology and earthquake engineering in Mexico and Central and South America.

    Science.gov (United States)

    Espinosa, A.F.

    1982-01-01

    The results from seismological studies that are used by the engineering community are just one of the benefits obtained from research aimed at mitigating the earthquake hazard. In this issue of Earthquake Information Bulletin current programs in seismology and earthquake engineering, seismic networks, future plans and some of the cooperative programs with different internation organizations are described by Latin-American seismologists. The article describes the development of seismology in Latin America and the seismological interest of the OAS. -P.N.Chroston

  15. Health hazard of the Tokai mura nuclear accident. Unnecessary fear and improper health checks should be eliminated

    International Nuclear Information System (INIS)

    Takebe, Hiraku

    2000-01-01

    Three workers were heavily exposed to radiations in the Tokai mura nuclear accident, and one of them died due to the acute effects of radiations. Doses for the heavily exposed persons were estimated to be 2.5, 10 and 18 Sv, according to the Science and Technology Agency. Workers who tried to stop the chain reaction by breaking the water pipe were estimated to have been exposed up to 120 mSv. Possible doses for other workers and residents in the neighborhoods were estimated to be less than 10 mSv, with a few workers with slightly higher film badge records. After the accident, many reports in mass-media warned that the exposed persons may develop cancers and leukemias in future and follow-up healthcare should be needed. Judging from our knowledge of the extensive epidemiological survey of the atomic bomb survivors in Hiroshima and Nagasaki, these reports are very misleading. There would be absolutely no or extremely small possibility of developing any health hazard among the workers and the residents except for the three unfortunate heavily exposed workers. If so-called follow-up health checks would involve x-ray diagnosis for cancers, the radiation doses by the diagnosis would exceed the exposure by the accident. Also, the test for the DNA damage applied to some workers and residents is not reliable at all, and could cause unnecessary fear among the persons who were mistakingly said to be of high-risk. (author)

  16. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas fault.

    Science.gov (United States)

    Shelly, David R

    2010-06-11

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between approximately 3 and approximately 6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  17. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault

    Science.gov (United States)

    Shelly, David R.

    2010-01-01

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  18. Earthquakes of Garhwal Himalaya region of NW Himalaya, India: A study of relocated earthquakes and their seismogenic source and stress

    Science.gov (United States)

    R, A. P.; Paul, A.; Singh, S.

    2017-12-01

    Since the continent-continent collision 55 Ma, the Himalaya has accommodated 2000 km of convergence along its arc. The strain energy is being accumulated at a rate of 37-44 mm/yr and releases at time as earthquakes. The Garhwal Himalaya is located at the western side of a Seismic Gap, where a great earthquake is overdue atleast since 200 years. This seismic gap (Central Seismic Gap: CSG) with 52% probability for a future great earthquake is located between the rupture zones of two significant/great earthquakes, viz. the 1905 Kangra earthquake of M 7.8 and the 1934 Bihar-Nepal earthquake of M 8.0; and the most recent one, the 2015 Gorkha earthquake of M 7.8 is in the eastern side of this seismic gap (CSG). The Garhwal Himalaya is one of the ideal locations of the Himalaya where all the major Himalayan structures and the Himalayan Seimsicity Belt (HSB) can ably be described and studied. In the present study, we are presenting the spatio-temporal analysis of the relocated local micro-moderate earthquakes, recorded by a seismicity monitoring network, which is operational since, 2007. The earthquake locations are relocated using the HypoDD (double difference hypocenter method for earthquake relocations) program. The dataset from July, 2007- September, 2015 have been used in this study to estimate their spatio-temporal relationships, moment tensor (MT) solutions for the earthquakes of M>3.0, stress tensors and their interactions. We have also used the composite focal mechanism solutions for small earthquakes. The majority of the MT solutions show thrust type mechanism and located near the mid-crustal-ramp (MCR) structure of the detachment surface at 8-15 km depth beneath the outer lesser Himalaya and higher Himalaya regions. The prevailing stress has been identified to be compressional towards NNE-SSW, which is the direction of relative plate motion between the India and Eurasia continental plates. The low friction coefficient estimated along with the stress inversions

  19. A real-time monitoring system for the assessment of stability and performance of in abandoned room and pillar lignite mines

    International Nuclear Information System (INIS)

    Aydan, O.; Tano, H.; Sakamoto, A.; Yamada, N.; Sugiura, K.

    2005-01-01

    The authors have been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region. These abandoned lignite mines were in operation until 1960's. There is a great concern about the stability of these abandoned mines during large earthquakes. The 2003 Miyagi Hokubu earthquake caused great damage to abandoned mines and resulted in collapses. The authors describe an integrated real-time monitoring system and they report some measured data up to now. The responses of monitoring system during a large roof collapse under gravitational condition as well as during and after two earthquakes are presented and their implications are discussed. (authors)

  20. A real-time monitoring system for the assessment of stability and performance of in abandoned room and pillar lignite mines

    Energy Technology Data Exchange (ETDEWEB)

    Aydan, O. [Tokai Univ., Dept.of Marine Civil Engineering, Shizuoka (Japan); Tano, H. [Nihon Univ., Dept. of Civil Engineering, Koriyama (Japan); Sakamoto, A.; Yamada, N.; Sugiura, K. [Tobishima Construction Company, Nagoya Branch (Japan)

    2005-07-01

    The authors have been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region. These abandoned lignite mines were in operation until 1960's. There is a great concern about the stability of these abandoned mines during large earthquakes. The 2003 Miyagi Hokubu earthquake caused great damage to abandoned mines and resulted in collapses. The authors describe an integrated real-time monitoring system and they report some measured data up to now. The responses of monitoring system during a large roof collapse under gravitational condition as well as during and after two earthquakes are presented and their implications are discussed. (authors)

  1. Transient Aseismic Slip in the Cascadia Subduction Zone: From Monitoring to Useful Real-time Hazards Information

    Science.gov (United States)

    Roeloffs, E. A.; Beeler, N. M.

    2010-12-01

    aseismic slip near the expected Parkfield hypocenter. In Japan, the Tokai Earthquake Prediction Experiment assesses strainmeter and tiltmeter anomalies based on their consistency with slip near the anticipated nucleation point of the next Tokai earthquake. Earthquake scientists unfamiliar with these two projects often presume that releasing uncertain “pre-event” information will have negative consequences, such as dangerous, unnecessary evacuations. Emergency managers are better qualified to plan effective communication, but many have experience only with post-earthquake information, and multi-state and international discussions are stymied by lack of funds for non-federal officials to travel outside their states or countries. Both the Parkfield and Tokai efforts have included pre-planning with emergency management officials. The critical public message remains that communities must plan for major Cascadia earthquakes to occur without warning. But every effort should still be made to recognize a foreshock or aseismic precursor, which could save lives in Cascadia coastal communities facing tsunami impact 10-20 minutes after a seismic rupture. Even if no pre-earthquake signals are observed, geodetic data will track post-seismic deformation, which may contain clues to the timing of large aftershocks.

  2. New characteristics of intensity assessment of Sichuan Lushan "4.20" M s7.0 earthquake

    Science.gov (United States)

    Sun, Baitao; Yan, Peilei; Chen, Xiangzhao

    2014-08-01

    The post-earthquake rapid accurate assessment of macro influence of seismic ground motion is of significance for earthquake emergency relief, post-earthquake reconstruction and scientific research. The seismic intensity distribution map released by the Lushan earthquake field team of the China Earthquake Administration (CEA) five days after the strong earthquake ( M7.0) occurred in Lushan County of Sichuan Ya'an City at 8:02 on April 20, 2013 provides a scientific basis for emergency relief, economic loss assessment and post-earthquake reconstruction. In this paper, the means for blind estimation of macroscopic intensity, field estimation of macro intensity, and review of intensity, as well as corresponding problems are discussed in detail, and the intensity distribution characteristics of the Lushan "4.20" M7.0 earthquake and its influential factors are analyzed, providing a reference for future seismic intensity assessments.

  3. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  4. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    Science.gov (United States)

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  5. The changing health priorities of earthquake response and implications for preparedness: a scoping review.

    Science.gov (United States)

    Cartwright, C; Hall, M; Lee, A C K

    2017-09-01

    Earthquakes have substantial impacts on mortality in low- and middle-income countries (LMIC). The academic evidence base to support Disaster Risk Reduction activities in LMIC settings is, however, limited. We sought to address this gap by identifying the health and healthcare impacts of earthquakes in LMICs and to identify the implications of these findings for future earthquake preparedness. Scoping review. A scoping review was undertaken with systematic searches of indexed databases to identify relevant literature. Key study details, findings, recommendations or lessons learnt were extracted and analysed across individual earthquake events. Findings were categorised by time frame relative to earthquakes and linked to the disaster preparedness cycle, enabling a profile of health and healthcare impacts and implications for future preparedness to be established. Health services need to prepare for changing health priorities with a shift from initial treatment of earthquake-related injuries to more general health needs occurring within the first few weeks. Preparedness is required to address mental health and rehabilitation needs in the medium to longer term. Inequalities of the impact of earthquakes on health were noted in particular for women, children, the elderly, disabled and rural communities. The need to maintain access to essential services such as reproductive health and preventative health services were identified. Key preparedness actions include identification of appropriate leaders, planning and training of staff. Testing of plans was advocated within the literature with evidence that this is possible in LMIC settings. Whilst there are a range of health and healthcare impacts of earthquakes, common themes emerged in different settings and from different earthquake events. Preparedness of healthcare systems is essential and possible, in order to mitigate the adverse health impacts of earthquakes in LMIC settings. Preparedness is needed at the community

  6. Large earthquake rates from geologic, geodetic, and seismological perspectives

    Science.gov (United States)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  7. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  8. The Alaska earthquake, March 27, 1964: lessons and conclusions

    Science.gov (United States)

    Eckel, Edwin B.

    1970-01-01

    subsidence was superimposed on regional tectonic subsidence to heighten the flooding damage. Ground and surface waters were measurably affected by the earthquake, not only in Alaska but throughout the world. Expectably, local geologic conditions largely controlled the extent of structural damage, whether caused directly by seismic vibrations or by secondary effects such as those just described. Intensity was greatest in areas underlain by thick saturated unconsolidated deposits, least on indurated bedrock or permanently frozen ground, and intermediate on coarse well-drained gravel, on morainal deposits, or on moderately indurated sedimentary rocks. Local and even regional geology also controlled the distribution and extent of the earthquake's effects on hydrologic systems. In the conterminous United States, for example, seiches in wells and bodies of surface water were controlled by geologic structures of regional dimension. Devastating as the earthquake was, it had many long-term beneficial effects. Many of these were socioeconomic or engineering in nature; others were of scientific value. Much new and corroborative basic geologic and hydrologic information was accumulated in the course of the earthquake studies, and many new or improved investigative techniques were developed. Chief among these, perhaps, were the recognition that lakes can be used as giant tiltmeters, the refinement of methods for measuring land-level changes by observing displacements of barnacles and other sessile organisms, and the relating of hydrology to seismology by worldwide study of hydroseisms in surface-water bodies and in wells. The geologic and hydrologic lessons learned from studies of the Alaska earthquake also lead directly to better definition of the research needed to further our understanding of earthquakes and of how to avoid or lessen the effects of future ones. Research is needed on the origins and mechanisms of earthquakes, on crustal structure, and on the generation of tsunamis and

  9. Present state of the monitoring for internal contamination at Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akaishi, J.; Fukuda, H.; Mizushita, S.

    1980-01-01

    At Tokai Research Establishment, JAERI, over one thousand people work in hot areas such as reactors, accelerators, chemical laboratories and waste treatment plants. The monitoring for internal contamination of this personnel is presented. Routine and special monitoring are carried out. The object of the former is to check for the presence of significant contamination, and that of the latter is to estimate body burden and committed dose equivalent, if necessary. Heavy shield and shadow shield whole body counters, a low energy lung counter and a wound monitor are used to detect the internal contamination due to γ or chi ray emitters, and bioassay technique is used for α or β emitters and uranium. The results of the monitoring until now are presented. (H.K.)

  10. Environmental Health assessment 200 Days after Earthquake-Affected Region in East Azerbaijan Earthquake, North-Western of Iran, 2012

    Directory of Open Access Journals (Sweden)

    Alihossein Zeinalzadeh

    2017-04-01

    Full Text Available Evaluating of health status and explore the challenges of health problems that threaten human life following disasters and major earthquakes providing windows of opportunities for health care providers in future planning of disasters. The main purpose of this report was to survey the environmental sanitation statues after 200 days of the affected populations in earthquakes of East Azerbaijan, northwestern of Iran, 2012. The survey was carried out in earthquake zones 200 days after the occurrence of the earthquake. A single stage cluster sampling from among 95 villages damaged in the earthquake of 2012 East Azerbaijan of three towns Ahar, Varzeghan and Heris were selected. The data were collected with questionnaire, site visits and evaluation of water and sanitation. In a twin Earthquake, East Azerbaijan province that 399 villages of Ahar, Varzeghan, Heris, Tabriz and Kaleibar cities were affected and 356 (89.2 % villages were destroyed between 30-100%.  Evaluation of water and sanitation infrastructure after 200 days, shown that only half of these villages consumed healthy water with high coverage and adequate. Half of the villages in 200 days after the earthquake were covered safe drinking water (treated drinking water. The bacteriological quality of drinking-water supply of the affected area was assessed in randomly collected 146 samples from this region and ten (6.8% reported as unsuitable. Solid waste management facilities in residents have not been acceptable that affect public health. Solid waste disposal was done by district residents (cooperation rural residents 68.4%, 36.8% and 76.3% in Ahar, Varzeghan and Heris, respectively. Overall, the impact of infectious and communicable diseases after Earthquake was reported 42.1% (16 villages in the Varzeghan. The lack of geographical view with a focus in mountainous and rural areas, partial support and dispersion of earthquake-stricken people in affected villages and lack of participatory need

  11. Fractals and Forecasting in Earthquakes and Finance

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.

    2011-12-01

    It is now recognized that Benoit Mandelbrot's fractals play a critical role in describing a vast range of physical and social phenomena. Here we focus on two systems, earthquakes and finance. Since 1942, earthquakes have been characterized by the Gutenberg-Richter magnitude-frequency relation, which in more recent times is often written as a moment-frequency power law. A similar relation can be shown to hold for financial markets. Moreover, a recent New York Times article, titled "A Richter Scale for the Markets" [1] summarized the emerging viewpoint that stock market crashes can be described with similar ideas as large and great earthquakes. The idea that stock market crashes can be related in any way to earthquake phenomena has its roots in Mandelbrot's 1963 work on speculative prices in commodities markets such as cotton [2]. He pointed out that Gaussian statistics did not account for the excessive number of booms and busts that characterize such markets. Here we show that both earthquakes and financial crashes can both be described by a common Landau-Ginzburg-type free energy model, involving the presence of a classical limit of stability, or spinodal. These metastable systems are characterized by fractal statistics near the spinodal. For earthquakes, the independent ("order") parameter is the slip deficit along a fault, whereas for the financial markets, it is financial leverage in place. For financial markets, asset values play the role of a free energy. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In the case of financial models, the probabilities are closely related to implied volatility, an important component of Black-Scholes models for stock valuations. [2] B. Mandelbrot, The variation of certain speculative prices, J. Business, 36, 294 (1963)

  12. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  13. Flash sourcing, or rapid detection and characterization of earthquake effects through website traffic analysis

    Directory of Open Access Journals (Sweden)

    Laurent Frobert

    2011-06-01

    Full Text Available

    This study presents the latest developments of an approach called ‘flash sourcing’, which provides information on the effects of an earthquake within minutes of its occurrence. Information is derived from an analysis of the website traffic surges of the European–Mediterranean Seismological Centre website after felt earthquakes. These surges are caused by eyewitnesses to a felt earthquake, who are the first who are informed of, and hence the first concerned by, an earthquake occurrence. Flash sourcing maps the felt area, and at least in some circumstances, the regions affected by severe damage or network disruption. We illustrate how the flash-sourced information improves and speeds up the delivery of public earthquake information, and beyond seismology, we consider what it can teach us about public responses when experiencing an earthquake. Future developments should improve the description of the earthquake effects and potentially contribute to the improvement of the efficiency of earthquake responses by filling the information gap after the occurrence of an earthquake.

  14. Introduction to the focus section on the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Hough, Susan E.

    2015-01-01

    It has long been recognized that Nepal faces high earthquake hazard, with the most recent large (Mw>7.5) events in 1833 and 1934. When the 25 April 2015Mw 7.8 Gorkha earthquake struck, it appeared initially to be a realization of worst fears. In spite of its large magnitude and proximity to the densely populated Kathmandu valley, however, the level of damage was lower than anticipated, with most vernacular structures within the valley experiencing little or no structural damage. Outside the valley, catastrophic damage did occur in some villages, associated with the high vulnerability of stone masonry construction and, in many cases, landsliding. The unexpected observations from this expected earthquake provide an urgent impetus to understand the event itself and to better characterize hazard from future large Himalayan earthquakes. Toward this end, articles in this special focus section present and describe available data sets and initial results that better illuminate and interpret the earthquake and its effects.

  15. The Philippine historical earthquakecatalog: its development, current stateand future directions

    OpenAIRE

    Bautista, M. L. P.; Bautista, B. C.

    2004-01-01

    This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines...

  16. Feasibility Study of Earthquake Early Warning in Hawai`i For the Mauna Kea Thirty Meter Telescope

    Science.gov (United States)

    Okubo, P.; Hotovec-Ellis, A. J.; Thelen, W. A.; Bodin, P.; Vidale, J. E.

    2014-12-01

    Earthquakes, including large damaging events, are as central to the geologic evolution of the Island of Hawai`i as its more famous volcanic eruptions and lava flows. Increasing and expanding development of facilities and infrastructure on the island continues to increase exposure and risk associated with strong ground shaking resulting from future large local earthquakes. Damaging earthquakes over the last fifty years have shaken the most heavily developed areas and critical infrastructure of the island to levels corresponding to at least Modified Mercalli Intensity VII. Hawai`i's most recent damaging earthquakes, the M6.7 Kiholo Bay and M6.0 Mahukona earthquakes, struck within seven minutes of one another off of the northwest coast of the island in October 2006. These earthquakes resulted in damage at all thirteen of the telescopes near the summit of Mauna Kea that led to gaps in telescope operations ranging from days up to four months. With the experiences of 2006 and Hawai`i's history of damaging earthquakes, we have begun a study to explore the feasibility of implementing earthquake early warning systems to provide advanced warnings to the Thirty Meter Telescope of imminent strong ground shaking from future local earthquakes. One of the major challenges for earthquake early warning in Hawai`i is the variety of earthquake sources, from shallow crustal faults to deeper mantle sources, including the basal decollement separating the volcanic pile from the ancient oceanic crust. Infrastructure on the Island of Hawai`i may only be tens of kilometers from these sources, allowing warning times of only 20 s or less. We assess the capability of the current seismic network to produce alerts for major historic earthquakes, and we will provide recommendations for upgrades to improve performance.

  17. Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios

    KAUST Repository

    Goda, Katsuichiro

    2017-02-23

    In this study, earthquake rupture models for future mega-thrust earthquakes in the Nankai–Tonankai subduction zone are developed by incorporating the main characteristics of inverted source models of the 2011 Tohoku earthquake. These scenario ruptures also account for key features of the national tsunami source model for the Nankai–Tonankai earthquake by the Central Disaster Management Council of the Japanese Government. The source models capture a wide range of realistic slip distributions and kinematic rupture processes, reflecting the current best understanding of what may happen due to a future mega-earthquake in the Nankai–Tonankai Trough, and therefore are useful for conducting probabilistic tsunami hazard and risk analysis. A large suite of scenario rupture models is then used to investigate the variability of tsunami effects in coastal areas, such as offshore tsunami wave heights and onshore inundation depths, due to realistic variations in source characteristics. Such investigations are particularly valuable for tsunami hazard mapping and evacuation planning in municipalities along the Nankai–Tonankai coast.

  18. Lessons of L'Aquila for Operational Earthquake Forecasting

    Science.gov (United States)

    Jordan, T. H.

    2012-12-01

    The L'Aquila earthquake of 6 Apr 2009 (magnitude 6.3) killed 309 people and left tens of thousands homeless. The mainshock was preceded by a vigorous seismic sequence that prompted informal earthquake predictions and evacuations. In an attempt to calm the population, the Italian Department of Civil Protection (DPC) convened its Commission on the Forecasting and Prevention of Major Risk (MRC) in L'Aquila on 31 March 2009 and issued statements about the hazard that were widely received as an "anti-alarm"; i.e., a deterministic prediction that there would not be a major earthquake. On October 23, 2012, a court in L'Aquila convicted the vice-director of DPC and six scientists and engineers who attended the MRC meeting on charges of criminal manslaughter, and it sentenced each to six years in prison. A few weeks after the L'Aquila disaster, the Italian government convened an International Commission on Earthquake Forecasting for Civil Protection (ICEF) with the mandate to assess the status of short-term forecasting methods and to recommend how they should be used in civil protection. The ICEF, which I chaired, issued its findings and recommendations on 2 Oct 2009 and published its final report, "Operational Earthquake Forecasting: Status of Knowledge and Guidelines for Implementation," in Aug 2011 (www.annalsofgeophysics.eu/index.php/annals/article/view/5350). As defined by the Commission, operational earthquake forecasting (OEF) involves two key activities: the continual updating of authoritative information about the future occurrence of potentially damaging earthquakes, and the officially sanctioned dissemination of this information to enhance earthquake preparedness in threatened communities. Among the main lessons of L'Aquila is the need to separate the role of science advisors, whose job is to provide objective information about natural hazards, from that of civil decision-makers who must weigh the benefits of protective actions against the costs of false alarms

  19. USGS Tweet Earthquake Dispatch (@USGSted): Using Twitter for Earthquake Detection and Characterization

    Science.gov (United States)

    Liu, S. B.; Bouchard, B.; Bowden, D. C.; Guy, M.; Earle, P.

    2012-12-01

    desktop computer at the time of the detections. The continuously updating map displays geolocated tweets arriving after the detection and plots epicenters of recent earthquakes. When available, seismograms from nearby stations are displayed as an additional form of verification. A time series of tweets-per-minute is also shown to illustrate the volume of tweets being generated for the detected event. Future additions are being investigated to provide a more in-depth characterization of the seismic events based on an analysis of tweet text and content from other social media sources.

  20. Coulomb Failure Stress Accumulation in Nepal After the 2015 Mw 7.8 Gorkha Earthquake: Testing Earthquake Triggering Hypothesis and Evaluating Seismic Hazards

    Science.gov (United States)

    Xiong, N.; Niu, F.

    2017-12-01

    A Mw 7.8 earthquake struck Gorkha, Nepal, on April 5, 2015, resulting in more than 8000 deaths and 3.5 million homeless. The earthquake initiated 70km west of Kathmandu and propagated eastward, rupturing an area of approximately 150km by 60km in size. However, the earthquake failed to fully rupture the locked fault beneath the Himalaya, suggesting that the region south of Kathmandu and west of the current rupture are still locked and a much more powerful earthquake might occur in future. Therefore, the seismic hazard of the unruptured region is of great concern. In this study, we investigated the Coulomb failure stress (CFS) accumulation on the unruptured fault transferred by the Gorkha earthquake and some nearby historical great earthquakes. First, we calculated the co-seismic CFS changes of the Gorkha earthquake on the nodal planes of 16 large aftershocks to quantitatively examine whether they were brought closer to failure by the mainshock. It is shown that at least 12 of the 16 aftershocks were encouraged by an increase of CFS of 0.1-3 MPa. The correspondence between the distribution of off-fault aftershocks and the increased CFS pattern also validates the applicability of the earthquake triggering hypothesis in the thrust regime of Nepal. With the validation as confidence, we calculated the co-seismic CFS change on the locked region imparted by the Gorkha earthquake and historical great earthquakes. A newly proposed ramp-flat-ramp-flat fault geometry model was employed, and the source parameters of historical earthquakes were computed with the empirical scaling relationship. A broad region south of the Kathmandu and west of the current rupture were shown to be positively stressed with CFS change roughly ranging between 0.01 and 0.5 MPa. The maximum of CFS increase (>1MPa) was found in the updip segment south of the current rupture, implying a high seismic hazard. Since the locked region may be additionally stressed by the post-seismic relaxation of the lower

  1. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  2. Application of laser scanning technique in earthquake protection of Istanbul's historical heritage buildings

    Science.gov (United States)

    Çaktı, Eser; Ercan, Tülay; Dar, Emrullah

    2017-04-01

    Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.

  3. Earthquake recurrence and magnitude and seismic deformation of the northwestern Okhotsk plate, northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.

    2011-02-01

    Recorded seismicity from the northwestern Okhotsk plate, northeast Asia, is currently insufficient to account for the predicted slip rates along its boundaries due to plate tectonics. However, the magnitude-frequency relationship for earthquakes from the region suggests that larger earthquakes are possible in the future and that events of ˜Mw 7.5 which should occur every ˜100-350 years would account for almost all the slip of the plate along its boundaries due to Eurasia-North America convergence. We use models for seismic slip distribution along the bounding faults of Okhotsk to conclude that relatively little aseismic strain release is occurring and that larger future earthquakes are likely in the region. Our models broadly support the idea of a single Okhotsk plate, with the large majority of tectonic strain released along its boundaries.

  4. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    Science.gov (United States)

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  5. Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts

    Directory of Open Access Journals (Sweden)

    Stefan Wiemer

    2010-11-01

    Full Text Available On August 1, 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP launched a prospective and comparative earthquake predictability experiment in Italy. The goal of this CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented 18 five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We have considered here the twelve time-independent earthquake forecasts among this set, and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. We present the results of the tests that measure the consistencies of the forecasts according to past observations. As well as being an evaluation of the time-independent forecasts submitted, this exercise provides insight into a number of important issues in predictability experiments with regard to the specification of the forecasts, the performance of the tests, and the trade-off between robustness of results and experiment duration. We conclude with suggestions for the design of future earthquake predictability experiments.

  6. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  7. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  8. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  9. Using Smartphones to Detect Earthquakes

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2012-12-01

    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  10. Present state of the monitoring for internal contamination at Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akaishi, J.; Fukuda, H.; Mizushita, S.

    1980-01-01

    Results are presented of internal contamination surveys carried out since 1969 at Tokai Research Establishment. Routine monitoring sometimes revealed significant internal contamination for tritium workers, but almost never for others. The number of subjects for special monitoring varied according to the activities. In 1965, the number of subjects for special monitoring was nearly 300, due to a reactor repair that year. In recent years, the number or special monitoring has been several tens or so. With regard to special monitoring, the workers with significant internal contamination were less than 50%. The internal dose (50 years) estimated for the majority of subjects was of mrem order. During the past 15 years, only several cases of exposure of rem order were found. The highest dose experienced was about 4 rems ( 131 I thyroid) (U.K.)

  11. Physics of Earthquake Disaster: From Crustal Rupture to Building Collapse

    Science.gov (United States)

    Uenishi, Koji

    2018-05-01

    Earthquakes of relatively greater magnitude may cause serious, sometimes unexpected failures of natural and human-made structures, either on the surface, underground, or even at sea. In this review, by treating several examples of extraordinary earthquake-related failures that range from the collapse of every second building in a commune to the initiation of spontaneous crustal rupture at depth, we consider the physical background behind the apparently abnormal earthquake disaster. Simple but rigorous dynamic analyses reveal that such seemingly unusual failures actually occurred for obvious reasons, which may remain unrecognized in part because in conventional seismic analyses only kinematic aspects of the effects of lower-frequency seismic waves below 1 Hz are normally considered. Instead of kinematics, some dynamic approach that takes into account the influence of higher-frequency components of waves over 1 Hz will be needed to anticipate and explain such extraordinary phenomena and mitigate the impact of earthquake disaster in the future.

  12. A short history of Japanese historical seismology: past and the present

    Science.gov (United States)

    Matsu'ura, Ritsuko S.

    2017-12-01

    Since seismicity in Japan is fairly high, Japanese interest in historical seismicity can be traced back to the nineth century, only a few centuries after the formation of the ancient ruling state. A 1000 years later, 2 years earlier than the modern seismological society was founded, the research on historical seismology started in Japan in 1878. By the accumulation for the recent 140 years, the present Japanese seismologists can read many historical materials without reading cursive scripts. We have a convenient access to the historical information related to earthquakes, in the modern characters of 27,759 pages. We now have 214 epicenters of historical earthquakes from 599 ad to 1872. Among them, 134 events in the early modern period were assigned hypocentral depths and proper magnitudes. The intensity data of 8700 places by those events were estimated. These precise intensity data enabled us to compare the detailed source areas of pairs of repeated historical earthquakes, such as the 1703 Genroku earthquake with the 1923 Kanto earthquake, and the 1707 Hoei earthquake with the summation of the 1854 Ansei Tokai and Ansei Nankai earthquakes. It is revealed that the focal area of the former larger event cannot completely include those of the latter smaller earthquakes, although those were believed to be typical sets of characteristic interplate earthquakes at the Sagami trough and at the Nankai trough. Research on historical earthquakes is very important to assess the seismic hazard in the future. We still have one-fifth events of the early modern period to be analyzed in detail. The compilation of places experienced high intensities in the modern events is also necessary. For the ancient and medieval periods, many equivocal events are still left. The further advance of the interdisciplinary research on historical seismology is necessary.

  13. An open repository of earthquake-triggered ground-failure inventories

    Science.gov (United States)

    Schmitt, Robert G.; Tanyas, Hakan; Nowicki Jessee, M. Anna; Zhu, Jing; Biegel, Katherine M.; Allstadt, Kate E.; Jibson, Randall W.; Thompson, Eric M.; van Westen, Cees J.; Sato, Hiroshi P.; Wald, David J.; Godt, Jonathan W.; Gorum, Tolga; Xu, Chong; Rathje, Ellen M.; Knudsen, Keith L.

    2017-12-20

    Earthquake-triggered ground failure, such as landsliding and liquefaction, can contribute significantly to losses, but our current ability to accurately include them in earthquake-hazard analyses is limited. The development of robust and widely applicable models requires access to numerous inventories of ground failures triggered by earthquakes that span a broad range of terrains, shaking characteristics, and climates. We present an openly accessible, centralized earthquake-triggered groundfailure inventory repository in the form of a ScienceBase Community to provide open access to these data with the goal of accelerating research progress. The ScienceBase Community hosts digital inventories created by both U.S. Geological Survey (USGS) and non-USGS authors. We present the original digital inventory files (when available) as well as an integrated database with uniform attributes. We also summarize the mapping methodology and level of completeness as reported by the original author(s) for each inventory. This document describes the steps taken to collect, process, and compile the inventories and the process for adding additional ground-failure inventories to the ScienceBase Community in the future.

  14. Proposal as to Efficient Collection and Exploitation of Earthquake Damage Information and Verification by Field Experiment at Toyohashi City

    Science.gov (United States)

    Zama, Shinsaku; Endo, Makoto; Takanashi, Ken'ichi; Araiba, Kiminori; Sekizawa, Ai; Hosokawa, Masafumi; Jeong, Byeong-Pyo; Hisada, Yoshiaki; Murakami, Masahiro

    Based on the earlier study result that the gathering of damage information can be quickly achieved in a municipality with a smaller population, it is proposed that damage information is gathered and analyzed using an area roughly equivalent to a primary school district as a basic unit. The introduction of this type of decentralized system is expected to quickly gather important information on each area. The information gathered by these communal disaster prevention bases is sent to the disaster prevention headquarters which in turn feeds back more extensive information over a wider area to the communal disaster prevention bases. Concrete systems have been developed according to the above mentioned framework, and we performed large-scale experiments on simulating disaster information collection, transmission and on utilization for smooth responses against earthquake disaster with collaboration from Toyohashi City, Aichi Prefecture, where is considered to suffer extensive damage from the Tokai and Tonankai Earthquakes with very high probability of the occurrence. Using disaster information collection/transmission equipments composed of long-distance wireless LAN, a notebook computer, a Web camera and an IP telephone, city staffs could easily input and transmit the information such as fire, collapsed houses and impassable roads, which were collected by the inhabitants participated in the experiment. Headquarters could confirm such information on the map automatically plotted, and also state of each disaster-prevention facility by means of Web-cameras and IP telephones. Based on the damage information, fire-spreading, evaluation, and traffic simulations were automatically executed at the disaster countermeasure office and their results were displayed on the large screen to utilize for making decisions such as residents' evacuation. These simulated results were simultaneously displayed at each disaster-prevention facility and were served to make people understand the

  15. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  16. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  17. Surveillance system using the CCTV at the fuel transfer pond in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Hayakawa, T.; Fukuhara, J.; Ochiai, K.; Ohnishi, T.; Ogata, Y.; Okamoto, H.

    1991-01-01

    The Fuel Transfer Pond (FTP) in the Tokai Reprocessing Plant (TRP) is a strategic point for safeguards. Spent fuels, therefore, in the FTP have been surveyed by the surveillance system using the underwater CCTV. This system was developed through the improvement of devices composed of cameras and VCRs and the provision of tamper resistance function as one of the JASPAS (Japan Support Program for Agency Safeguards) program. The purpose of this program is to realize the continuous surveillance of the slanted tunnel through which the spent fuel on the conveyor is moved from the FTP to the Mechanical Processing Cell (MPC). This paper reports that, when this surveillance system is applied to an inspection device, the following requirements are needed: To have the ability of continuous and unattended surveillance of the spent fuel on the conveyor path from the FTP to the MPC; To have the tamper resistance function for continuous and unattended surveillance of the spent fuel

  18. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  19. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    Science.gov (United States)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  20. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    Science.gov (United States)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  1. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair

    2014-09-21

    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  2. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair; André n, Margareta; Kristmannsdó ttir, Hrefna; Stockmann, Gabrielle; Mö rth, Carl-Magnus; Sveinbjö rnsdó ttir, Á rny; Jonsson, Sigurjon; Sturkell, Erik; Guð rú nardó ttir, Helga Rakel; Hjartarson, Hreinn; Siegmund, Heike; Kockum, Ingrid

    2014-01-01

    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  3. Quantitative Earthquake Prediction on Global and Regional Scales

    International Nuclear Information System (INIS)

    Kossobokov, Vladimir G.

    2006-01-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  4. Quantitative Earthquake Prediction on Global and Regional Scales

    Science.gov (United States)

    Kossobokov, Vladimir G.

    2006-03-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  5. Geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan

    Science.gov (United States)

    Garrett, Ed; Fujiwara, Osamu; Garrett, Philip; Heyvaert, Vanessa M. A.; Shishikura, Masanobu; Yokoyama, Yusuke; Hubert-Ferrari, Aurélia; Brückner, Helmut; Nakamura, Atsunori; De Batist, Marc

    2016-04-01

    The Nankai-Suruga Trough, lying immediately south of Japan's densely populated and highly industrialised southern coastline, generates devastating great earthquakes (magnitude > 8). Intense shaking, crustal deformation and tsunami generation accompany these ruptures. Forecasting the hazards associated with future earthquakes along this >700 km long fault requires a comprehensive understanding of past fault behaviour. While the region benefits from a long and detailed historical record, palaeoseismology has the potential to provide a longer-term perspective and additional insights. Here, we summarise the current state of knowledge regarding geological evidence for past earthquakes and tsunamis, incorporating literature originally published in both Japanese and English. This evidence comes from a wide variety of sources, including uplifted marine terraces and biota, marine and lacustrine turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. We enhance available results with new age modelling approaches. While publications describe proposed evidence from > 70 sites, only a limited number provide compelling, well-dated evidence. The best available records allow us to map the most likely rupture zones of eleven earthquakes occurring during the historical period. Our spatiotemporal compilation suggests the AD 1707 earthquake ruptured almost the full length of the subduction zone and that earthquakes in AD 1361 and 684 were predecessors of similar magnitude. Intervening earthquakes were of lesser magnitude, highlighting variability in rupture mode. Recurrence intervals for ruptures of the a single seismic segment range from less than 100 to more than 450 years during the historical period. Over longer timescales, palaeoseismic evidence suggests intervals ranging from 100 to 700 years. However, these figures reflect thresholds of evidence creation and preservation as well as genuine recurrence intervals. At present, we have

  6. Effects of the criticality accident at Tokai-mura on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko; Hayashi, Chikio

    2000-01-01

    The objective of our study was to clarify the effects on the public's attitude of nuclear power and the criticality accident that occurred at the JCO plant in Tokai-mura, Ibaraki Prefecture. For this purpose, we conducted an awareness survey in the Kansai and Kanto areas two months after the accident. Analysis was made on the basis of the comparison of the survey results with the data that the Institute of Nuclear Safety System had accumulated through continuous awareness surveys on nuclear power generation (regular surveys) since 1993. The public's reactions were twofold. On one hand, there were emotional reactions about accidents in nuclear facilities and a reduction in the sense of security. On the other hand, there were reactions concerning the image of nuclear power plant workers and demand on electricity utilities for enhanced employee education and training. The latter reactions correspond to the problems pointed out after the JCO accident. Regarding the utilization of nuclear power generation, the opinion that 'the utilization of nuclear power generation is unavoidable' accounts for 60% of those surveyed. With the opinion that 'nuclear power generation should be utilized' added, 70% of those surveyed take an affirmative attitude to nuclear power utilization. This situation has remained about the same since 1998, the year before the JCO accident. Using the quantification method III to analyze a number of questionnaires about nuclear power generation such as the anxiety about it, we determined overall attitude indexes regarding nuclear power to perform a time sequence comparison. The comparison shows that the attitude after the JCO accident tended to be more negative than in 1998. However, no significant difference in the overall indexes is seen between 1993 and 1998. Judging the comparison results on the basis of the time span starting in 1993 allows us to conclude that the JCO accident has not greatly contributed to worsening the attitude towards nuclear

  7. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  8. [Comparative analysis of the clinical characteristics of orthopedic inpatients in Lushan and Wenchuan earthquakes].

    Science.gov (United States)

    Shi, Xiao-Jun; Wang, Guang-Lin; Pei, Fu-Xing; Song, Yue-Ming; Yang, Tian-Fu; Tu, Chong-Qi; Huang, Fu-Guo; Liu, Hao; Lin, Wei

    2013-10-18

    To systematically analyze and compare the clinical characteristics of orthopedic inpatients in Lushan and Wenchuan earthquake, so as to provide useful references for future earthquakes injury rescue. Based on the orthopedic inpatients in Lushan and Wenchuan earthquakes, the data of the age, gender, injury causes, body injured parts and speed of transport were classified and compared. The duration of patients admitted to hospital lasted long and the peak appeared late in Wenchuan earthquake, which is totally opposed to Lushan earthquake. There was no significant difference in the patient's age and gender between the two earthquakes. However, the occurrence rate of crush syndrome, amputation, gas gangrene, vascular injury and multiple organ dysfunction syndrome (MODS) in Wenchuan earthquake was much higher than that in Lushan earthquake. Blunt traumas or crush-related injuries (79.6%) are the major injury cause in Wenchuan earthquake, however, high falling injuries and falls (56.8%) are much higher than blunt trauma or crush-related injuries (39.2%) in Lushan earthquake. The incidence rate of foot fractures, spine fractures and multiple fractures in Lushan earthquake was higher than that in Wenchuan earthquake, but that of open fractures and lower limb fractures was lower than that in Wenchuan earthquake. The rapid rescue scene is the cornerstone of successful treatment, early rescue and transport obviously reduce the incidence of the wound infection, crush syndrome, MODS and amputation. Popularization of correct knowledge of emergency shelters will help to reduce the damage caused by blindly jumping or escaping while earthquake happens.

  9. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  10. The characteristic of the building damage from historical large earthquakes in Kyoto

    Science.gov (United States)

    Nishiyama, Akihito

    2016-04-01

    The Kyoto city, which is located in the northern part of Kyoto basin in Japan, has a long history of >1,200 years since the city was initially constructed. The city has been a populated area with many buildings and the center of the politics, economy and culture in Japan for nearly 1,000 years. Some of these buildings are now subscribed as the world's cultural heritage. The Kyoto city has experienced six damaging large earthquakes during the historical period: i.e., in 976, 1185, 1449, 1596, 1662, and 1830. Among these, the last three earthquakes which caused severe damage in Kyoto occurred during the period in which the urban area had expanded. These earthquakes are considered to be inland earthquakes which occurred around the Kyoto basin. The damage distribution in Kyoto from historical large earthquakes is strongly controlled by ground condition and earthquakes resistance of buildings rather than distance from estimated source fault. Therefore, it is necessary to consider not only the strength of ground shaking but also the condition of building such as elapsed years since the construction or last repair in order to more accurately and reliably estimate seismic intensity distribution from historical earthquakes in Kyoto. The obtained seismic intensity map would be helpful for reducing and mitigating disaster from future large earthquakes.

  11. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  12. Design of the vitrification plant for HLLW generated from the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Vematsu, K.

    1986-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is now designing a vitrification plant. This plant is for the solidification of high-level liquid waste (HLLW) which is generated from the Tokai Reprocessing Plant, and for the demonstration of the vitrification technology. The detailed design of the plant which started in 1982 was completed in 1984. At present the design improvement is being made for the reduction of construction cost and for the licensing which is going to be applied in 1986. The construction will be started in autumn 1987. The plant has a large shielded cell with low flow ventilation, and employs rack-mounted module system and high performance two-armed servomanipulator system to accomplish the fully remote operations and maintenance. The vitrification of HLLW is based on the liquid-fed Joule-heated ceramic melter process. The processing capacity is equivalent to the reprocessing of 0.7 ton of heavy metals per day. The glass production rate is about 9 kg/h, and about 300 kg of glass is poured periodically from the bottom of the melter into a canister. Produced glass is stored under the forced air cooling condition

  13. Prediction of Global Damage and Reliability Based Upon Sequential Identification and Updating of RC Structures Subject to Earthquakes

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Skjærbæk, P. S.; Köylüoglu, H. U.

    The paper deals with the prediction of global damage and future structural reliability with special emphasis on sensitivity, bias and uncertainty of these predictions dependent on the statistically equivalent realizations of the future earthquake. The predictions are based on a modified Clough......-Johnston single-degree-of-freedom (SDOF) oscillator with three parameters which are calibrated to fit the displacement response and the damage development in the past earthquake....

  14. Time-decreasing hazard and increasing time until the next earthquake

    International Nuclear Information System (INIS)

    Corral, Alvaro

    2005-01-01

    The existence of a slowly always decreasing probability density for the recurrence times of earthquakes in the stationary case implies that the occurrence of an event at a given instant becomes more unlikely as time since the previous event increases. Consequently, the expected waiting time to the next earthquake increases with the elapsed time, that is, the event moves away fast to the future. We have found direct empirical evidence of this counterintuitive behavior in two worldwide catalogs as well as in diverse regional catalogs. Universal scaling functions describe the phenomenon well

  15. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  16. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  17. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  18. The JCO criticality accident at Tokai-mura, Japan: an overview of the sampling campaign and preliminary results

    International Nuclear Information System (INIS)

    Komura, K.; Yamamoto, M.; Muroyama, T.; Murata, Y.; Nakanishi, T.; Hoshi, M.; Takada, J.; Ishikawa, M.; Takeoka, S.; Kitagawa, K.; Suga, S.; Endo, S.; Tosaki, N.; Mitsugashira, T.; Hara, M.; Hashimoto, T.; Takano, M.; Yanagawa, Y.; Tsuboi, T.; Ichimasa, M.; Ichimasa, Y.; Imura, H.; Sasajima, E.; Seki, R.; Saito, Y.; Kondo, M.; Kojima, S.; Muramatsu, Y.; Yoshida, S.; Shibata, S.; Yonehara, H.; Watanabe, Y.; Kimura, S.; Shiraishi, K.; Ban-nai, T.; Sahoo, S.K.; Igarashi, Y.; Aoyama, M.; Hirose, K.; Uehiro, T.; Doi, T.; Tanaka, A.; Matsuzawa, T.

    2000-01-01

    A criticality accident occurred on September 30, 1999 at the uranium conversion facility of the JCO Company Ltd. in Tokai-mura, Japan. A collaborating scientific investigation team was organized in two groups, the first to carry out research on the environmental impact (the environmental research group) and the second to assess the radiation effects on residents (the biological research group). This report concerns only the activities of the environmental research group. Four investigative teams were sent on different dates to the accident site and its vicinity to collect samples. About 400 samples were collected and subjected to analysis. An outline of the sampling campaign is presented here along with a brief chronology of the accident and the preliminary key results obtained by the independent research group are summarised in this Special Issue of the Journal of Environmental Radioactivity

  19. Report of the third seminar on nuclear physics at the energy region of the JAERI tandem-booster accelerator February 27-28, 1992, Tokai, Japan

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Oshima, Masumi; Ikezoe, Hiroshi; Nagame, Yuichiro; Shinohara, Nobuo

    1992-09-01

    A seminar on new experiments to be studied and new experimental apparatus suitable for the JAERI tandem-booster accelerator being under construction was held at Tokai Research Establishment of JAERI in the period from February 27 to 28, 1992. Sixty eight participants from universities and from JAERI attended to discuss the following items: 1. Physics at low temperature, 2. Nuclear structure at high spin and at high excitation energy, 3. Application of unstable beam and their spectroscopy, 4. Nuclear reaction at intermediate energy, 5. New facilities. (author)

  20. Rehabilitation and retrofitting of RC nuclear facilities against earthquake with FRP

    International Nuclear Information System (INIS)

    Mukherjee, Abhijit

    2011-01-01

    Reinforced concrete construction is very common in nuclear facilities. Natural calamities such as earthquakes, overloading and corrosion are some factors that can severely reduce the capacity and life of these structures unless they are rehabilitated, or more preferably retrofitted. Recent developments in the field of fiber reinforced polymers (FRPs) have resulted in the development of highly efficient construction materials. The FRPs are unaffected by electro-mechanical deterioration and can resist corrosive effects of acids, alkalis, salts and similar aggregates under a wide range of temperatures. This novel technique of rehabilitation is very effective and fast for earthquake affected structures and retrofitting of structures against future earthquakes. In the present paper important developments in this field from its origin to the recent times have been presented. (author)

  1. The Great East-Japan Earthquake and devastating tsunami. An update and lessons from the past great earthquakes in Japan since 1923

    International Nuclear Information System (INIS)

    Ishigaki, Akemi; Higashi, Hikari; Sakamoto, Takako; Shibahara, Shigeki

    2013-01-01

    Japan has a long history of fighting against great earthquakes that cause structural damage/collapses, fires and/or tsunami. On March 11, 2011 at 14:46 (Friday), the Great East-Japan Earthquake (magnitude 9.0) attacked the Tohoku region (northeastern Japan), which includes Sendai City. The earthquake generated a devastating tsunami, leading to unprecedented disasters (∼18,500 victims) in coastal areas of Iwate, Miyagi and Fukushima prefectures, despite the fact that people living in the Tohoku region are well trained for tsunami-evacuation procedures, with the mindset of ''Tsunami, ten-den-ko.'' This code means that each person should evacuate individually upon an earthquake. Sharing this rule, children and parents can escape separately from schools, houses or workplaces, without worrying about each other. The concept of ten-den-ko (individual evacuation) is helpful for people living in coastal areas of earthquake-prone zones around the world. It is also important to construct safe evacuation centers, because the March 11 th tsunami killed people who had evacuated to evacuation sites. We summarize the current conditions of people living in the disaster-stricken areas, including the consequences of the Fukushima nuclear accident. We also describe the disaster responses as the publisher of the Tohoku Journal of Experimental Medicine (TJEM), located in Sendai, with online support from Tokyo. In 1923, the Great Kanto Earthquake (magnitude 7.9) evoked a massive fire that destroyed large areas of Tokyo (∼105,000 victims), including the print company for TJEM, but the Wistar Institute printed three TJEM issues in 1923 in Philadelphia. Mutual aid relationships should be established between distant cities to survive future disasters. (author)

  2. The Great East-Japan Earthquake and devastating tsunami: an update and lessons from the past Great Earthquakes in Japan since 1923.

    Science.gov (United States)

    Ishigaki, Akemi; Higashi, Hikari; Sakamoto, Takako; Shibahara, Shigeki

    2013-04-01

    Japan has a long history of fighting against great earthquakes that cause structural damage/collapses, fires and/or tsunami. On March 11, 2011 at 14:46 (Friday), the Great East-Japan Earthquake (magnitude 9.0) attacked the Tohoku region (northeastern Japan), which includes Sendai City. The earthquake generated a devastating tsunami, leading to unprecedented disasters (~18,500 victims) in coastal areas of Iwate, Miyagi and Fukushima prefectures, despite the fact that people living in the Tohoku region are well trained for tsunami-evacuation procedures, with the mindset of "Tsunami, ten-den-ko." This code means that each person should evacuate individually upon an earthquake. Sharing this rule, children and parents can escape separately from schools, houses or workplaces, without worrying about each other. The concept of ten-den-ko (individual evacuation) is helpful for people living in coastal areas of earthquake-prone zones around the world. It is also important to construct safe evacuation centers, because the March 11(th) tsunami killed people who had evacuated to evacuation sites. We summarize the current conditions of people living in the disaster-stricken areas, including the consequences of the Fukushima nuclear accident. We also describe the disaster responses as the publisher of the Tohoku Journal of Experimental Medicine (TJEM), located in Sendai, with online support from Tokyo. In 1923, the Great Kanto Earthquake (magnitude 7.9) evoked a massive fire that destroyed large areas of Tokyo (~105,000 victims), including the print company for TJEM, but the Wistar Institute printed three TJEM issues in 1923 in Philadelphia. Mutual aid relationships should be established between distant cities to survive future disasters.

  3. Measurement of mean radon concentrations in the Tokai districts

    International Nuclear Information System (INIS)

    Iida, Takao; Ikebe, Yukimasa; Yamanishi, Hirokuni

    1989-01-01

    This paper describes an electrostatic integrating radon monitor designed for the environmental radon monitoring and longterm measurements of mean radon concentrations in outdoor and indoor air. The position of the collecting electrode within the monitor was determined based on the calculation of the internal electric field. The radon exchange rate between the monitor and the outside air through the filter was 0.75 h -1 . The exchange rate can make the radon concentration inside the monitor to follow thoroughly the outside concentration. Since the electrostatic collection of RaA + ( 218 Po + ) atoms depends on the humidity of the air, the inside of the monitor was dehumidified with a diphosphorus pentaoxide (P 2 O 5 ) drying agent which is powerful and dose not absorb radon gas. From the relationship between track density and radon exposure, the calibration factor was derived to be 0.52 ± 0.002 tracks cm -2 (Bq m -3 h) -1 . The detection limit of mean radon level is 1.2 Bq m -3 for an exposure time fo 2 months. The mean radon concentrations in various environments were measured through the year using the monitors this developed. The annual mean outdoor radon level in the Tokai districts was 7.0 Bq m -3 . The mean radon concentrations was found to vary from 3.5 to 11.7 Bq m -3 depending upon the geographical conditions even in this relatively small region. The annual indoor radon concentrations at Nagoya and Sapporo ranged from 6.4 to 11.9 Bq m -3 and from 15.5 to 121.1 Bq m -3 , respectively, with the type of building material and the ventilation rate. The mean radon concentrations in tightly built houses selected at Sapporo are about 10 times as high as those in drafty houses at Nagoya. (author)

  4. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  5. Three dimensional viscoelastic simulation on dynamic evolution of stress field in North China induced by the 1966 Xingtai earthquake

    Science.gov (United States)

    Chen, Lian-Wang; Lu, Yuan-Zhong; Liu, Jie; Guo, Ruo-Mei

    2001-09-01

    Using three dimensional (3D) viscoelastic finite element method (FEM) we study the dynamic evolution pattern of the coseismic change of Coulomb failure stress and postseismic change, on time scale of hundreds years, of rheological effect induced by the M S=7.2 Xingtai earthquake on March 22, 1966. Then, we simulate the coseismic disturbance in stress field in North China and dynamic change rate on one-year scale caused by the Xingtai earthquake and Tangshan earthquake during 15 years from 1966 to 1980. Finally, we discuss the triggering of a strong earthquake to another future strong earthquake.

  6. The 2015 Nepal Earthquake(s): Lessons Learned From the Disability and Rehabilitation Sector's Preparation for, and Response to, Natural Disasters.

    Science.gov (United States)

    Landry, Michel D; Sheppard, Phillip S; Leung, Kit; Retis, Chiara; Salvador, Edwin C; Raman, Sudha R

    2016-11-01

    The frequency of natural disasters appears to be mounting at an alarming rate, and the degree to which people are surviving such traumatic events also is increasing. Postdisaster survival often triggers increases in population and individual disability-related outcomes in the form of impairments, activity limitations, and participation restrictions, all of which have an important impact on the individual, his or her family, and their community. The increase in postdisaster disability-related outcomes has provided a rationale for the increased role of the disability and rehabilitation sector's involvement in emergency response, including physical therapists. A recent major earthquake that has drawn the world's attention occurred in the spring of 2015 in Nepal. The response of the local and international communities was large and significant, and although the collection of complex health and disability issues have yet to be fully resolved, there has been a series of important lessons learned from the 2015 Nepal earthquake(s). This perspective article outlines lessons learned from Nepal that can be applied to future disasters to reduce overall disability-related outcomes and more fully integrate rehabilitation in preparation and planning. First, information is presented on disasters in general, and then information is presented that focuses on the earthquake(s) in Nepal. Next, field experience in Nepal before, during, and after the earthquake is described, and actions that can and should be adopted prior to disasters as part of disability preparedness planning are examined. Then, the emerging roles of rehabilitation providers such as physical therapists during the immediate and postdisaster recovery phases are discussed. Finally, approaches are suggested that can be adopted to "build back better" for, and with, people with disabilities in postdisaster settings such as Nepal. © 2016 American Physical Therapy Association.

  7. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  8. Performance of masonry structures during earthquake-2005 in kashmir

    International Nuclear Information System (INIS)

    Javed, M.

    2008-01-01

    The Kashmir earthquake of October 8th, 2005 was one of the deadliest earthquakes according to the number of fatalities in the history of indo-Pakistan subcontinent. More than 70,000 people were killed, mainly due to collapse of masonry buildings being widely used in Kashmir and Northern Pakistan. Major causes of damages/ collapse of masonry buildings were: poor quality of mortar, undressed stones, flexible roofs not bonded to supporting walls, lateral thrust from inclined roofs, unbraced parapet and gable walls, non-anchored infilled walls, wide openings without surrounding reinforcement, heavy roofs resting on poor quality masonry walls, etc. A critical review of damages to masonry structures is presented in the paper along with measures that need to be taken in future construction. In order to minimize the losses in masonry structures in case of future seismic activities, strategies such as loss assessment are discuss, a part of which has already been taken as a research project by the authors. (author)

  9. Impact-based earthquake alerts with the U.S. Geological Survey's PAGER system: what's next?

    Science.gov (United States)

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Garcia, D.; So, E.; Hearne, M.

    2012-01-01

    In September 2010, the USGS began publicly releasing earthquake alerts for significant earthquakes around the globe based on estimates of potential casualties and economic losses with its Prompt Assessment of Global Earthquakes for Response (PAGER) system. These estimates significantly enhanced the utility of the USGS PAGER system which had been, since 2006, providing estimated population exposures to specific shaking intensities. Quantifying earthquake impacts and communicating estimated losses (and their uncertainties) to the public, the media, humanitarian, and response communities required a new protocol—necessitating the development of an Earthquake Impact Scale—described herein and now deployed with the PAGER system. After two years of PAGER-based impact alerting, we now review operations, hazard calculations, loss models, alerting protocols, and our success rate for recent (2010-2011) events. This review prompts analyses of the strengths, limitations, opportunities, and pressures, allowing clearer definition of future research and development priorities for the PAGER system.

  10. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  11. Monitoring of low-level radioactive liquid effluent in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Mizutani, Tomoko; Koarashi, Jun; Takeishi, Minoru

    2009-01-01

    The Tokai reprocessing plant (TRP), the first reprocessing plant in Japan, has discharged low-level liquid wastes to the Pacific Ocean since the start of its operation in 1977. We have performed liquid effluent monitoring to realize an appropriate radioactive discharge control. Comparing simple and rapid analytical methods with labor-intensive radiochemical analyses demonstrated that the gross-alpha and gross-beta activities agreed well with the total activities of plutonium isotopes ( 238 Pu and 239+240 Pu) and major beta emitters (e.g., 90 Sr and 137 Cs), respectively. The records of the radioactive liquid discharge from the TRP showed that the normalized discharges of all nuclides, except for 3 H, were three or four orders of magnitude lower than those from the Sellafield and La Hague reprocessing plants. This was probably due to the installation of multistage evaporators in the liquid waste treatment process in 1980. The annual public doses for a hypothetical person were estimated to be less than 0.2 μSv y -1 from the aquatic pathway. Plutonium radioactivity ratios ( 238 Pu/ 239+240 Pu) of liquid effluents were determined to be 1.3-3.7, while those of the seabed sediment samples collected around the discharge point were 0.003-0.059, indicating no remarkable accumulation of plutonium in the regional aquatic environment. Thus, we concluded that there were no significant radiological effects on the public and the aquatic environment during the past 30-year operation of the TRP. (author)

  12. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  13. Building Inventory Database on the Urban Scale Using GIS for Earthquake Risk Assessment

    Science.gov (United States)

    Kaplan, O.; Avdan, U.; Guney, Y.; Helvaci, C.

    2016-12-01

    The majority of the existing buildings are not safe against earthquakes in most of the developing countries. Before a devastating earthquake, existing buildings need to be assessed and the vulnerable ones must be determined. Determining the seismic performance of existing buildings which is usually made with collecting the attributes of existing buildings, making the analysis and the necessary queries, and producing the result maps is very hard and complicated procedure that can be simplified with Geographic Information System (GIS). The aim of this study is to produce a building inventory database using GIS for assessing the earthquake risk of existing buildings. In this paper, a building inventory database for 310 buildings, located in Eskisehir, Turkey, was produced in order to assess the earthquake risk of the buildings. The results from this study show that 26% of the buildings have high earthquake risk, 33% of the buildings have medium earthquake risk and the 41% of the buildings have low earthquake risk. The produced building inventory database can be very useful especially for governments in dealing with the problem of determining seismically vulnerable buildings in the large existing building stocks. With the help of this kind of methods, determination of the buildings, which may collapse and cause life and property loss during a possible future earthquake, will be very quick, cheap and reliable.

  14. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  15. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  16. e-Science on Earthquake Disaster Mitigation by EUAsiaGrid

    Science.gov (United States)

    Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong

    2010-05-01

    Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the

  17. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  18. Trajectories of posttraumatic growth and depreciation after two major earthquakes.

    Science.gov (United States)

    Marshall, Emma M; Frazier, Patricia; Frankfurt, Sheila; Kuijer, Roeline G

    2015-03-01

    This study examined trajectories of posttraumatic growth or depreciation (i.e., positive or negative life change) in personal strength and relationships after 2 major earthquakes in Canterbury, New Zealand using group-based trajectory modeling. Participants completed questionnaires regarding posttraumatic growth or depreciation in personal strength and relationship domains 1 month after the first earthquake in September 2010 (N = 185) and 3 months (n = 156) and 12 months (n = 144) after the more severe February 2011 earthquake. Three classes of growth or depreciation patterns were found for both domains. For personal strength, most of the participants were grouped into a "no growth or depreciation" class and smaller proportions were grouped into either a "posttraumatic depreciation" or "posttraumatic growth" class. The 3 classes for relationships all reported posttraumatic growth, differing only in degree. None of the slopes were significant for any of the classes, indicating that levels of growth or depreciation reported after the first earthquake remained stable when assessed at 2 time points after the second earthquake. Multinomial logistic regression analyses examining pre- and postearthquake predictors of trajectory class membership revealed that those in the "posttraumatic growth" personal strength class were significantly younger and had significantly higher pre-earthquake mental health than those in the "posttraumatic depreciation" class. Sex was the only predictor of the relationship classes: No men were assigned to the "high posttraumatic growth" class. Implications and future directions are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  20. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  1. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  2. Home seismometer for earthquake early warning

    Science.gov (United States)

    Horiuchi, Shigeki; Horiuchi, Yuko; Yamamoto, Shunroku; Nakamura, Hiromitsu; Wu, Changjiang; Rydelek, Paul A.; Kachi, Masaaki

    2009-02-01

    The Japan Meteorological Agency (JMA) has started the practical service of Earthquake Early Warning (EEW) and a very dense deployment of receiving units is expected in the near future. The receiving/alarm unit of an EEW system is equipped with a CPU and memory and is on-line via the internet. By adding an inexpensive seismometer and A/D converter, this unit is transformed into a real-time seismic observatory, which we are calling a home seismometer. If the home seismometer is incorporated in the standard receiving unit of EEW, then the number of seismic observatories will be drastically increased. Since the background noise inside a house caused by human activity may be very large, we have developed specialized software for on-site warning using the home seismometer. We tested our software and found that our algorithm can correctly distinguish between noise and earthquakes for nearly all the events.

  3. The costs and benefits of reconstruction options in Nepal using the CEDIM FDA modelled and empirical analysis following the 2015 earthquake

    Science.gov (United States)

    Daniell, James; Schaefer, Andreas; Wenzel, Friedemann; Khazai, Bijan; Girard, Trevor; Kunz-Plapp, Tina; Kunz, Michael; Muehr, Bernhard

    2016-04-01

    Over the days following the 2015 Nepal earthquake, rapid loss estimates of deaths and the economic loss and reconstruction cost were undertaken by our research group in conjunction with the World Bank. This modelling relied on historic losses from other Nepal earthquakes as well as detailed socioeconomic data and earthquake loss information via CATDAT. The modelled results were very close to the final death toll and reconstruction cost for the 2015 earthquake of around 9000 deaths and a direct building loss of ca. 3 billion (a). A description of the process undertaken to produce these loss estimates is described and the potential for use in analysing reconstruction costs from future Nepal earthquakes in rapid time post-event. The reconstruction cost and death toll model is then used as the base model for the examination of the effect of spending money on earthquake retrofitting of buildings versus complete reconstruction of buildings. This is undertaken future events using empirical statistics from past events along with further analytical modelling. The effects of investment vs. the time of a future event is also explored. Preliminary low-cost options (b) along the line of other country studies for retrofitting (ca. 100) are examined versus the option of different building typologies in Nepal as well as investment in various sectors of construction. The effect of public vs. private capital expenditure post-earthquake is also explored as part of this analysis, as well as spending on other components outside of earthquakes. a) http://www.scientificamerican.com/article/experts-calculate-new-loss-predictions-for-nepal-quake/ b) http://www.aees.org.au/wp-content/uploads/2015/06/23-Daniell.pdf

  4. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  5. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak

    Science.gov (United States)

    von Huene, Roland E.; Miller, John J.; Weinrebe, Wilhelm

    2012-01-01

    Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.

  6. Seismic measures and defence in depth of nuclear power plant. Lessons learned from the great east Japan earthquake

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro

    2011-01-01

    The Great East Japan Earthquake occurred in March 11, 2011 brought about severe accident at nuclear power plant, which gave significant lessons to nuclear experts concerned with safety measures. Concepts of defence in depth was basic philosophy to assure safety of nuclear power plant even against uncertainties exceeding design basis. This concept consisted of prevention, monitoring, and action to mitigate consequences of failures such as a series of physical barriers between the reactor core and the environment, which were called multiple safety systems, each with backup and designed to accommodate human error. As for natural disaster, depth of recognition of characteristic of natural phenomena and its effect and engineering judgment was of prime importance. Different waveforms of ground motion at Fukushima and Onagawa at the Great East Japan Earthquake showed that design ground motion should have large uncertainties. To cope with uncertainties of ground motion, robust seismic measures based on experience were such as design of static seismic intensity and rigid structure of natural period less than 0.1 sec. As for tsunami, defence in depth measures were prepared for the cooling of reactor core, spent fuel and related electric generation equipment with taking into account 1) time lag between tsunami generation and arrival, 2) tsunami affected area could be limited by coastal levee or anti-inundation measure, 3) system redundancy could be assured by different locations of equipments and 4) repair works could be done by shipment of replacement equipment from outside due to limitation of affected regional area. Success examples of Onagawa, Tokai unit 2, Fukushima Daiichi unit 6 and Fukushima Daini Nuclear Power Plants could suggest definite tsunami defence in depth measures. Containment vent system as final heat sink and emergency condenser as reactor core cooling at outage should be properly utilized for Fukushima Daiichi unit 1 Nuclear Power Plant. (T. Tanaka)

  7. Long-term perspectives on giant earthquakes and tsunamis at subduction zones

    Science.gov (United States)

    Satake, K.; Atwater, B.F.; ,

    2007-01-01

    Histories of earthquakes and tsunamis, inferred from geological evidence, aid in anticipating future catastrophes. This natural warning system now influences building codes and tsunami planning in the United States, Canada, and Japan, particularly where geology demonstrates the past occurrence of earthquakes and tsunamis larger than those known from written and instrumental records. Under favorable circumstances, paleoseismology can thus provide long-term advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks. Such variation in rupture mode, known from written history at a few subduction zones, is also characteristic of earthquake histories inferred from geology on the Pacific Rim. Copyright ?? 2007 by Annual Reviews. All rights reserved.

  8. Playing against nature: improving earthquake hazard mitigation

    Science.gov (United States)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  9. Temporal distribution of earthquakes using renewal process in the Dasht-e-Bayaz region

    Science.gov (United States)

    Mousavi, Mehdi; Salehi, Masoud

    2018-01-01

    Temporal distribution of earthquakes with M w > 6 in the Dasht-e-Bayaz region, eastern Iran has been investigated using time-dependent models. Based on these types of models, it is assumed that the times between consecutive large earthquakes follow a certain statistical distribution. For this purpose, four time-dependent inter-event distributions including the Weibull, Gamma, Lognormal, and the Brownian Passage Time (BPT) are used in this study and the associated parameters are estimated using the method of maximum likelihood estimation. The suitable distribution is selected based on logarithm likelihood function and Bayesian Information Criterion. The probability of the occurrence of the next large earthquake during a specified interval of time was calculated for each model. Then, the concept of conditional probability has been applied to forecast the next major ( M w > 6) earthquake in the site of our interest. The emphasis is on statistical methods which attempt to quantify the probability of an earthquake occurring within a specified time, space, and magnitude windows. According to obtained results, the probability of occurrence of an earthquake with M w > 6 in the near future is significantly high.

  10. Probabilistic earthquake risk assessment as a tool to improve safety and explanatory adequacy

    International Nuclear Information System (INIS)

    Itoi, Tatsuya

    2015-01-01

    This paper explains the concept of probabilistic earthquake risk assessment, mainly from the viewpoint as a tool to improve safety and explanatory adequacy. The definition of risk is the expected value of undesirable effect in an engineering meaning that is likely to occur in the future, and it is defined in risk management as the triplet of scenario (what can happen), frequency, and impact. As for the earthquake risk assessment of a nuclear power plant, the fragility of structure / system / component (SSC) against earthquake (so-called earthquake fragility) is assessed, and by combining with the earthquake hazard that has been separately obtained, the occurrence frequency and impact of the accident are obtained. From the view of the authors, earthquake risk assessment is for the purpose of decision-making, and is not intended to calculate the probability in a scientifically rigorous manner. For ensuring the quality of risk assessment, the table of 'Expert utilization standards for the evaluation of epistemological uncertainty' is used. Sole quantitative risk assessment is not necessarily sufficient for risk management. It would be important to find how to build the 'framework for comprehensive decision-making.' (A.O.)

  11. Multiple parameter biodosimetry of exposed workers from the JCO criticality accident in Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, William F. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States)

    2002-03-01

    Full text: On 30 September 1999, three workers at the JCO (Japan Nuclear Fuel Conversion Corporation) uranium fuel processing facility in Tokai-mura, Ibaraki Prefecture, Japan, were severely exposed to neutrons and gamma rays. In this issue of the journal, Nishimura et al report the measurement of {sup 32}P in urine from the three victims for early estimation of neutron exposure levels. This is one of several reports that estimate doses received by the exposed workers and residents, based on biological responses, radiation monitoring/transport codes, and other opportunistic dosimetric approaches. The higher relative biological effectiveness (RBE) of neutrons for life-threatening radiation injury justifies efforts to establish a neutron biodosimetry capability. Accurate estimation of the exposure dose by cytogenetic-based chromosome aberration assays, however, requires knowledge of the neutron component in the mixed neutron and gamma radiation scenario. Dose responses for dicentric and ring type chromosome aberration yields measured in peripheral blood lymphocytes are responsive to radiation quality. Protocols for dose assessment by cytogenetic-chromosome aberration assays are internationally accepted. Analytic approaches using cytogenetic chromosome aberrations are established for dose assessment in mixed neutron and gamma radiation accidents. Use of the premature chromosome condensation, or PCC, assay now permits these measurements even at unusually high doses of gamma and neutron radiation. Hayata and colleagues measured ring-type chromosome aberrations in interphase cells by use of the PCC-ring assay to estimate dose for the three severely exposed patients in this accident. Ring-type aberrations are formed in higher yields after neutron versus gamma radiation but these ring-aberrations do not provide a unique signature response specific for neutron exposures. Intense research efforts are currently underway to identify more specific chromosome aberration and

  12. Stable isotope ratios of the atmospheric CH4, CO2 and N2O in Tokai-mura

    International Nuclear Information System (INIS)

    Porntepkasemsan, Boonsom; Andoh, Mariko A.; Amano, Hikaru

    2000-11-01

    This report presents the results and interpretation of stable isotope ratios of the atmospheric CH 4 , CO 2 and N 2 O from a variety of sources in Tokai-mura. The seasonal changes of δ 13 CH 4 , δ 13 CO 2 and δ 15 N 2 O were determined under in-situ conditions in four sampling sites and one control site. Such measurements are expected to provide a useful means of estimating the transport mechanisms of the three trace gases in the environment. These isotopic signatures were analyzed by Isotope Ratio Mass Spectrometer (IRMS, Micromass Isoprime). Our data showed the significant seasonal fluctuation in the Hosoura rice paddy during the entire growing season in 1999. Possible causes for the variation are postulated. Additional measurements on soil properties and on organic δ 13 C in rice plant are suggested. Cited outstanding original papers are summarized in the references. (author)

  13. Earthquake precursory events around epicenters and local active faults

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    shakes, mapping foreshocks and aftershocks, and following changes in the above-mentioned precursors prior to past earthquake instances all over the globe. Our analyses also encompass the geographical location and extents of local and regional faults which are considered as important factors during earthquakes. The co-analysis of direct and indirect observation for precursory events is considered as a promising method for possible future successful earthquake predictions. With proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will be able to identify anomalies due to seismic activity in the earth's crust.

  14. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  15. Structural damages of L'Aquila (Italy earthquake

    Directory of Open Access Journals (Sweden)

    H. Kaplan

    2010-03-01

    Full Text Available On 6 April 2009 an earthquake of magnitude 6.3 occurred in L'Aquila city, Italy. In the city center and surrounding villages many masonry and reinforced concrete (RC buildings were heavily damaged or collapsed. After the earthquake, the inspection carried out in the region provided relevant results concerning the quality of the materials, method of construction and the performance of the structures. The region was initially inhabited in the 13th century and has many historic structures. The main structural materials are unreinforced masonry (URM composed of rubble stone, brick, and hollow clay tile. Masonry units suffered the worst damage. Wood flooring systems and corrugated steel roofs are common in URM buildings. Moreover, unconfined gable walls, excessive wall thicknesses without connection with each other are among the most common deficiencies of poorly constructed masonry structures. These walls caused an increase in earthquake loads. The quality of the materials and the construction were not in accordance with the standards. On the other hand, several modern, non-ductile concrete frame buildings have collapsed. Poor concrete quality and poor reinforcement detailing caused damage in reinforced concrete structures. Furthermore, many structural deficiencies such as non-ductile detailing, strong beams-weak columns and were commonly observed. In this paper, reasons why the buildings were damaged in the 6 April 2009 earthquake in L'Aquila, Italy are given. Some suggestions are made to prevent such disasters in the future.

  16. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  17. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  18. Research on Collection of Earthquake Disaster Information from the Crowd

    Science.gov (United States)

    Nian, Z.

    2017-12-01

    In China, the assessment of the earthquake disasters information is mainly based on the inversion of the seismic source mechanism and the pre-calculated population data model, the real information of the earthquake disaster is usually collected through the government departments, the accuracy and the speed need to be improved. And in a massive earthquake like the one in Mexico, the telecommunications infrastructure on ground were damaged , the quake zone was difficult to observe by satellites and aircraft in the bad weather. Only a bit of information was sent out through maritime satellite of other country. Thus, the timely and effective development of disaster relief was seriously affected. Now Chinese communication satellites have been orbiting, people don't only rely on the ground telecom base station to keep communication with the outside world, to open the web page,to land social networking sites, to release information, to transmit images and videoes. This paper will establish an earthquake information collection system which public can participate. Through popular social platform and other information sources, the public can participate in the collection of earthquake information, and supply quake zone information, including photos, video, etc.,especially those information made by unmanned aerial vehicle (uav) after earthqake, the public can use the computer, potable terminals, or mobile text message to participate in the earthquake information collection. In the system, the information will be divided into earthquake zone basic information, earthquake disaster reduction information, earthquake site information, post-disaster reconstruction information etc. and they will been processed and put into database. The quality of data is analyzed by multi-source information, and is controlled by local public opinion on them to supplement the data collected by government departments timely and implement the calibration of simulation results ,which will better guide

  19. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  20. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  1. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  2. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  3. Rupture distribution of the 1977 western Argentina earthquake

    Science.gov (United States)

    Langer, C.J.; Hartzell, S.

    1996-01-01

    Teleseismic P and SH body waves are used in a finite-fault, waveform inversion for the rupture history of the 23 November 1977 western Argentina earthquake. This double event consists of a smaller foreshock (M0 = 5.3 ?? 1026 dyn-cm) followed about 20 s later by a larger main shock (M0 = 1.5 ?? 1027 dyn-cm). Our analysis indicates that these two events occurred on different fault segments: with the foreshock having a strike, dip, and average rake of 345??, 45??E, and 50??, and the main shock 10??, 45??E, and 80??, respectively. The foreshock initiated at a depth of 17 km and propagated updip and to the north. The main shock initiated at the southern end of the foreshock zone at a depth of 25 to 30 km, and propagated updip and unilaterally to the south. The north-south separation of the centroids of the moment release for the foreshock and main shock is about 60 km. The apparent triggering of the main shock by the foreshock is similar to other earthquakes that have involved the failure of multiple fault segments, such as the 1992 Landers, California, earthquake. Such occurrences argue against the use of individual, mapped, surface fault or fault-segment lengths in the determination of the size and frequency of future earthquakes.

  4. Earthquake Forecasting Methodology Catalogue - A collection and comparison of the state-of-the-art in earthquake forecasting and prediction methodologies

    Science.gov (United States)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2015-04-01

    Earthquake forecasting and prediction has been one of the key struggles of modern geosciences for the last few decades. A large number of approaches for various time periods have been developed for different locations around the world. A categorization and review of more than 20 of new and old methods was undertaken to develop a state-of-the-art catalogue in forecasting algorithms and methodologies. The different methods have been categorised into time-independent, time-dependent and hybrid methods, from which the last group represents methods where additional data than just historical earthquake statistics have been used. It is necessary to categorize in such a way between pure statistical approaches where historical earthquake data represents the only direct data source and also between algorithms which incorporate further information e.g. spatial data of fault distributions or which incorporate physical models like static triggering to indicate future earthquakes. Furthermore, the location of application has been taken into account to identify methods which can be applied e.g. in active tectonic regions like California or in less active continental regions. In general, most of the methods cover well-known high-seismicity regions like Italy, Japan or California. Many more elements have been reviewed, including the application of established theories and methods e.g. for the determination of the completeness magnitude or whether the modified Omori law was used or not. Target temporal scales are identified as well as the publication history. All these different aspects have been reviewed and catalogued to provide an easy-to-use tool for the development of earthquake forecasting algorithms and to get an overview in the state-of-the-art.

  5. Recognition of earthquake-prone nodes, a case study for North Vietnam (M ⩾ 5.0

    Directory of Open Access Journals (Sweden)

    Nguyen Huu Tuyen

    2012-05-01

    Full Text Available Morphostructural nodes in North Vietnam are delineated with the morphostructural zoning (MZ method, and classified into seismogenic and non-seismogenic nodes. The compiled morphostructural map (scale 1: 1000000 shows a three-level hierarchical structure of blocks, boundary zones, and nodes. The identified nodes are classified with the pattern-recognition algorithm CORA-3 into those that are prone to generate M ⩾ 5.0 earthquakes and those that are not. Some of the earthquake-prone nodes coincide with epicenters of M ⩾ 5.0 earthquakes that have occurred; others may coincide with such events in the future.

  6. The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans.

    Science.gov (United States)

    Kumazaki, T; Hori, H; Osawa, S; Ishii, N; Suzuki, K

    1982-11-11

    The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans have been determined. The rotifer has two 5S rRNA species that are composed of 120 and 121 nucleotides, respectively. The sequences of these two 5S rRNAs are the same except that the latter has an additional base at its 3'-terminus. The 5S rRNAs from the two nematode species are both 119 nucleotides long. The sequence similarity percents are 79% (Brachionus/Rhabditis), 80% (Brachionus/Caenorhabditis), and 95% (Rhabditis/Caenorhabditis) among these three species. Brachionus revealed the highest similarity to Lingula (89%), but not to the nematodes (79%).

  7. [Responding to patients with home mechanical ventilation after the Great East Japan Earthquake and during the planned power outages. How should we be prepared for a future disaster ?].

    Science.gov (United States)

    Takechi, Yukako

    2011-12-01

    The unprecedented earthquake(magnitude-9 in the Japanese seismic intensity scale)hit off the east coast of Japan on March 11, 2011. Consequently, there were planned power outages in the area nearby Tokyo to avoid massive blackouts caused by a stoppage of Fukushima nuclear plants.Our clinic located in Kawasaki city was also hit by the earthquake(magnitude- 5).During the period of two months(March and April 2011), we had a total of 52 patients with home respiratory care (5-TPPV, 11-NPPV and 36-HOT)at that time.Two out of three 24 hour-TPPV users had no external battery.After the earthquake, there was a 7-hour electricity failure in some areas, and a patient with ASV(adaptive servo ventilator)was living there.Moreover, 3-hour/day power outages were carried out from March 14 to March 28, affecting people's everyday lives. However, the patient had no harmful influences from the power failure because a ventilation company lent us an external battery(4-9 hour life capacity)for the patients, and we were able to avoid an emergency situation caused by the power failure.In conclusion, we ought to be prepared for patients with home mechanical ventilation in the future toward unforeseen large scale power outages.

  8. Geosphere Stability for long-term isolation of radioactive waste. Case study for hydrological change with earthquakes and faulting

    International Nuclear Information System (INIS)

    Niwa, Masakazu

    2016-01-01

    Appropriate estimation and safety assessment for long-term changes in geological environment are essential to an improvement of reliability for geological disposal. Specifically, study on faults is important for understanding regional groundwater flow as well as an assessment as a trigger of future earthquakes. Here, possibility of changes in permeability of faulted materials induced by earthquakes was examined based on monitoring data of groundwater pressure before and after the 2011 off the Pacific coast of Tohoku Earthquake. (author)

  9. Rapid characterization of the 2015 Mw 7.8 Gorkha, Nepal, earthquake sequence and its seismotectonic context

    Science.gov (United States)

    Hayes, Gavin; Briggs, Richard; Barnhart, William D.; Yeck, William; McNamara, Daniel E.; Wald, David J.; Nealy, Jennifer; Benz, Harley M.; Gold, Ryan D.; Jaiswal, Kishor S.; Marano, Kristin; Earle, Paul S.; Hearne, Mike; Smoczyk, Gregory M.; Wald, Lisa A.; Samsonov, Sergey

    2015-01-01

    Earthquake response and related information products are important for placing recent seismic events into context and particularly for understanding the impact earthquakes can have on the regional community and its infrastructure. These tools are even more useful if they are available quickly, ahead of detailed information from the areas affected by such earthquakes. Here we provide an overview of the response activities and related information products generated and provided by the U.S. Geological Survey National Earthquake Information Center in association with the 2015 M 7.8 Gorkha, Nepal, earthquake. This group monitors global earthquakes 24  hrs/day and 7  days/week to provide rapid information on the location and size of recent events and to characterize the source properties, tectonic setting, and potential fatalities and economic losses associated with significant earthquakes. We present the timeline over which these products became available, discuss what they tell us about the seismotectonics of the Gorkha earthquake and its aftershocks, and examine how their information is used today, and might be used in the future, to help mitigate the impact of such natural disasters.

  10. The Tokai-mura JCO criticality accident and the activities of the accident countermeasure support team of Electric Power Companies, Japan

    International Nuclear Information System (INIS)

    Ogawa, Junko

    2000-01-01

    A criticality accident occurred at the JCO Tokai-mura nuclear fuel processing plant on September 30, 1999. This accident brought the damages which were unrivaled in the history of atomic energy development in Japan, seriously influencing the citizen life to such an extent as requesting for 320,000 inhabitants within 10 kilometers radius to stay indoors for as long as 18 hours. However, it could be said that though three workers suffered fatal injuries, no substantial hazards were made upon the regional inhabitants due to little release of radioactive substances. This video recorded the activities of the Accident Countermeasure Support Team of the Electric Power Companies immediately after the accident occurred, showing the chronological overview of the particulars of the accident. (author)

  11. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes

    Science.gov (United States)

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  12. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  13. Review Article: A comparison of flood and earthquake vulnerability assessment indicators

    Science.gov (United States)

    de Ruiter, Marleen C.; Ward, Philip J.; Daniell, James E.; Aerts, Jeroen C. J. H.

    2017-07-01

    In a cross-disciplinary study, we carried out an extensive literature review to increase understanding of vulnerability indicators used in the disciplines of earthquake- and flood vulnerability assessments. We provide insights into potential improvements in both fields by identifying and comparing quantitative vulnerability indicators grouped into physical and social categories. Next, a selection of index- and curve-based vulnerability models that use these indicators are described, comparing several characteristics such as temporal and spatial aspects. Earthquake vulnerability methods traditionally have a strong focus on object-based physical attributes used in vulnerability curve-based models, while flood vulnerability studies focus more on indicators applied to aggregated land-use classes in curve-based models. In assessing the differences and similarities between indicators used in earthquake and flood vulnerability models, we only include models that separately assess either of the two hazard types. Flood vulnerability studies could be improved using approaches from earthquake studies, such as developing object-based physical vulnerability curve assessments and incorporating time-of-the-day-based building occupation patterns. Likewise, earthquake assessments could learn from flood studies by refining their selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies for exploring risk assessment methodologies across different hazard types.

  14. Promise and problems in using stress triggering models for time-dependent earthquake hazard assessment

    Science.gov (United States)

    Cocco, M.

    2001-12-01

    Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to

  15. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    Science.gov (United States)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  16. A procedure for assessing seismic hazard generated by Vrancea earthquakes and its application. III. A method for developing isoseismal and isoacceleration maps. Applications

    International Nuclear Information System (INIS)

    Enescu, D.; Enescu, B.D.

    2007-01-01

    A method for developing isoseismal and isoacceleration maps assumedly valid for future strong earthquakes (M GR > 6.7) is described as constituting the third stage of a procedure for assessing the seismic hazard generated by Vrancea earthquakes. The method relies on the results of the former two stages given by Enescu et al., and on further developments that are presented in this paper. Moreover, it is based on instrument recording data. Major earthquakes taking place in Vrancea (November 10, 1940 - M GR 7.4, March 4, 1977 - M GR = 7.2 and the strongest possible) were examined as a way to test the method. The method is also applied for an earthquake of magnitude M GR = 6.7. Given the successful results of the tests, the method can by used for predicting isoseismal and isoacceleration maps for future Vrancea earthquakes of various magnitudes M GR ≥ 6.7. (authors)

  17. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  18. A methodology to estimate earthquake effects on fractures intersecting canister holes

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.; Wallmann, P.; Thomas, A.; Follin, S. [Golder Assocites Inc. (Sweden)

    1997-03-01

    A literature review and a preliminary numerical modeling study were carried out to develop and demonstrate a method for estimating displacements on fractures near to or intersecting canister emplacement holes. The method can be applied during preliminary evaluation of candidate sites prior to any detailed drilling or underground excavation, utilizing lineament maps and published regression relations between surface rupture trace length and earthquake magnitude, rupture area and displacements. The calculated displacements can be applied to lineament traces which are assumed to be faults and may be the sites for future earthquakes. Next, a discrete fracture model is created for secondary faulting and jointing in the vicinity of the repository. These secondary fractures may displace due to the earthquake on the primary faults. The three-dimensional numerical model assumes linear elasticity and linear elastic fracture mechanics which provides a conservative displacement estimate, while still preserving realistic fracture patterns. Two series of numerical studies were undertaken to demonstrate how the methodology could be implemented and how results could be applied to questions regarding site selection and performance assessment. The first series illustrates how earthquake damage to a hypothetical repository for a specified location (Aespoe) could be estimated. A second series examined the displacements induced by earthquakes varying in magnitude from 6.0 to 8.2 as a function of how close the earthquake was in relation to the repository. 143 refs, 25 figs, 7 tabs.

  19. A methodology to estimate earthquake effects on fractures intersecting canister holes

    International Nuclear Information System (INIS)

    La Pointe, P.; Wallmann, P.; Thomas, A.; Follin, S.

    1997-03-01

    A literature review and a preliminary numerical modeling study were carried out to develop and demonstrate a method for estimating displacements on fractures near to or intersecting canister emplacement holes. The method can be applied during preliminary evaluation of candidate sites prior to any detailed drilling or underground excavation, utilizing lineament maps and published regression relations between surface rupture trace length and earthquake magnitude, rupture area and displacements. The calculated displacements can be applied to lineament traces which are assumed to be faults and may be the sites for future earthquakes. Next, a discrete fracture model is created for secondary faulting and jointing in the vicinity of the repository. These secondary fractures may displace due to the earthquake on the primary faults. The three-dimensional numerical model assumes linear elasticity and linear elastic fracture mechanics which provides a conservative displacement estimate, while still preserving realistic fracture patterns. Two series of numerical studies were undertaken to demonstrate how the methodology could be implemented and how results could be applied to questions regarding site selection and performance assessment. The first series illustrates how earthquake damage to a hypothetical repository for a specified location (Aespoe) could be estimated. A second series examined the displacements induced by earthquakes varying in magnitude from 6.0 to 8.2 as a function of how close the earthquake was in relation to the repository. 143 refs, 25 figs, 7 tabs

  20. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  1. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  2. Effects of the criticality accident at Tokai-mura on the public's attitude to nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kitada, Atsuko [Institute of Social Research, Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Hayashi, Chikio [The Institute of Statistical Mathematics, Tokyo (Japan)

    2000-09-01

    The objective of our study was to clarify the effects on the public's attitude of nuclear power and the criticality accident that occurred at the JCO plant in Tokai-mura, Ibaraki Prefecture. For this purpose, we conducted an awareness survey in the Kansai and Kanto areas two months after the accident. Analysis was made on the basis of the comparison of the survey results with the data that the Institute of Nuclear Safety System had accumulated through continuous awareness surveys on nuclear power generation (regular surveys) since 1993. The public's reactions were twofold. On one hand, there were emotional reactions about accidents in nuclear facilities and a reduction in the sense of security. On the other hand, there were reactions concerning the image of nuclear power plant workers and demand on electricity utilities for enhanced employee education and training. The latter reactions correspond to the problems pointed out after the JCO accident. Regarding the utilization of nuclear power generation, the opinion that 'the utilization of nuclear power generation is unavoidable' accounts for 60% of those surveyed. With the opinion that 'nuclear power generation should be utilized' added, 70% of those surveyed take an affirmative attitude to nuclear power utilization. This situation has remained about the same since 1998, the year before the JCO accident. Using the quantification method III to analyze a number of questionnaires about nuclear power generation such as the anxiety about it, we determined overall attitude indexes regarding nuclear power to perform a time sequence comparison. The comparison shows that the attitude after the JCO accident tended to be more negative than in 1998. However, no significant difference in the overall indexes is seen between 1993 and 1998. Judging the comparison results on the basis of the time span starting in 1993 allows us to conclude that the JCO accident has not greatly contributed to worsening

  3. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  4. Next generation neutron scattering at Neutron Science Center project in JAERI

    International Nuclear Information System (INIS)

    Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.

    1997-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)

  5. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  6. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  7. Anomalous variations of lithosphere magnetic field before several earthquakes

    Science.gov (United States)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  8. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  9. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  10. R and D on seismic emergency information system

    International Nuclear Information System (INIS)

    2001-06-01

    performed and hypocenter and earthquake motion around 30 km of JAERI-Tokai are transmitted by E-mail and homepage through Inter-Net in a few minutes. Seismometer network, surface soil database and amplification functions were prepared for the examination of estimation methodologies. Demonstration data of the prototype system against the Tokai area was also prepared to examine the applicability. (author)

  11. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  12. Superconducting Gravimeters Detect Gravity Fluctuations Induced by Mw 5.7 Earthquake Along South Pacific Rise Few Hours Before the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Directory of Open Access Journals (Sweden)

    Keliang Zhang Jin Ma

    2014-01-01

    Full Text Available Gravity changes sometimes appear before a big earthquake. To determine the possible sources is important for recognizing the mechanism and further geodynamic studies. During the first two hours on March 11 before the Mw 9.0 Tohoku-Oki earthquake, the non-tidal gravity time series of superconducting gravimeters worldwide showed low-frequency (< 0.10 Hz fluctuations with amplitude of ~1 to 4 × 10-8 ms-2 lasting ~10 - 20 minutes. Through comparing global seismicity with the arrival times of seismic waves, we find that the fluctuations were induced by the Mw 5.7 earthquake that occurred at 0:14:54.68 at (53.27°S, 118.18°W along the eastern South Pacific Rise. Several body waves such as P, S are clearly recorded in the station with ~400 km distance to the hypocenter. The fluctuations are in response to the waves that propagate with a velocity of about 4 km s-1. Their amplitudes are proportional to the inverse of the epicentral distances even though the fluctuations of European sites were overlapped with waves associated with a smaller, i.e., Mw 2.6, event in Europe during this period. That is, the Mw 5.7 earthquake induced remarkable gravity fluctuations over long distances at stations all over the world. As such, the foreshocks with larger magnitudes occurred before the Mw 9.0 earthquake would have more significant influence on the gravity recordings and the seismic-wave induced component should be removed during the analysis of anomalies prior to a great earthquake in future studies.

  13. Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective

    Science.gov (United States)

    Ziony, Joseph I.

    1985-01-01

    Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The

  14. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  15. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  16. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    Science.gov (United States)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  17. The second eddy current testing of zircaloy tube samples from the OECD Halden reactor project at Reactor Fuel Examination Facility, Tokai, JAERI

    International Nuclear Information System (INIS)

    Ohwada, Isao; Nishino, Yasuharu

    1986-07-01

    The Reactor Fuel Examination Facility in Tokai/JAERI (Japan Atomic Energy Research Institute) joined to the second round robin programme on eddy current test of the Halden/IFE. In the programme, two zircaloy tube samples with some artificial defects were provided for measurements. To clarify the locations in axial and azimuthal directions, types and dimensions of the provided artificial defects, measured signals from eddy current test were analysed in comparison with the known defects on the calibration tube. As a result, fourteen defects were determined from the measurements. Then, the location, the type and the relative dimension of them were also revealed. The results of those eddy current test are described in this paper. (author)

  18. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  19. The 2015 Nepal earthquake disaster: lessons learned one year on.

    Science.gov (United States)

    Hall, M L; Lee, A C K; Cartwright, C; Marahatta, S; Karki, J; Simkhada, P

    2017-04-01

    The 2015 earthquake in Nepal killed over 8000 people, injured more than 21,000 and displaced a further 2 million. One year later, a national workshop was organized with various Nepali stakeholders involved in the response to the earthquake. The workshop provided participants an opportunity to reflect on their experiences and sought to learn lessons from the disaster. One hundred and thirty-five participants took part and most had been directly involved in the earthquake response. They included representatives from the Ministry of Health, local and national government, the armed forces, non-governmental organizations, health practitioners, academics, and community representatives. Participants were divided into seven focus groups based around the following topics: water, sanitation and hygiene, hospital services, health and nutrition, education, shelter, policy and community. Facilitated group discussions were conducted in Nepalese and the key emerging themes are presented. Participants described a range of issues encountered, some specific to their area of expertize but also more general issues. These included logistics and supply chain challenges, leadership and coordination difficulties, impacts of the media as well as cultural beliefs on population behaviour post-disaster. Lessons identified included the need for community involvement at all stages of disaster response and preparedness, as well as the development of local leadership capabilities and community resilience. A 'disconnect' between disaster management policy and responses was observed, which may result in ineffective, poorly planned disaster response. Finding time and opportunity to reflect on and identify lessons from disaster response can be difficult but are fundamental to improving future disaster preparedness. The Nepal Earthquake National Workshop offered participants the space to do this. It garnered an overwhelming sense of wanting to do things better, of the need for a Nepal-centric approach

  20. An information infrastructure for earthquake science

    Science.gov (United States)

    Jordan, T. H.; Scec/Itr Collaboration

    2003-04-01

    The Southern California Earthquake Center (SCEC), in collaboration with the San Diego Supercomputer Center, the USC Information Sciences Institute,IRIS, and the USGS, has received a large five-year grant from the NSF's ITR Program and its Geosciences Directorate to build a new information infrastructure for earthquake science. In many respects, the SCEC/ITR Project presents a microcosm of the IT efforts now being organized across the geoscience community, including the EarthScope initiative. The purpose of this presentation is to discuss the experience gained by the project thus far and lay out the challenges that lie ahead; our hope is to encourage cross-discipline collaboration in future IT advancements. Project goals have been formulated in terms of four "computational pathways" related to seismic hazard analysis (SHA). For example, Pathway 1 involves the construction of an open-source, object-oriented, and web-enabled framework for SHA computations that can incorporate a variety of earthquake forecast models, intensity-measure relationships, and site-response models, while Pathway 2 aims to utilize the predictive power of wavefield simulation in modeling time-dependent ground motion for scenario earthquakes and constructing intensity-measure relationships. The overall goal is to create a SCEC "community modeling environment" or collaboratory that will comprise the curated (on-line, documented, maintained) resources needed by researchers to develop and use these four computational pathways. Current activities include (1) the development and verification of the computational modules, (2) the standardization of data structures and interfaces needed for syntactic interoperability, (3) the development of knowledge representation and management tools, (4) the construction SCEC computational and data grid testbeds, and (5) the creation of user interfaces for knowledge-acquisition, code execution, and visualization. I will emphasize the increasing role of standardized

  1. Revolutionising engineering education in the Middle East region to promote earthquake-disaster mitigation

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2014-09-01

    Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enrol on engineering courses through lenient admission policies that do not compromise academic standards. This strategy has generated an influx of students who must be carefully educated to enhance their professional knowledge and social capital to assist in future earthquake-disaster risk-reduction efforts. However, the majority of Middle Eastern engineering students are unaware of the valuable acquired engineering skills and knowledge in building the resilience of their communities to earthquake disasters. As the majority of the countries in the Middle East are exposed to seismic hazards and are vulnerable to destructive earthquakes, engineers have become indispensable assets and the first line of defence against earthquake threats. This article highlights the contributions of some of the engineering innovations in advancing technologies and techniques for effective disaster mitigation and it calls for the incorporation of earthquake-disaster-mitigation education into academic engineering programmes in the Eastern Mediterranean region.

  2. Role of the professional helper in disaster intervention: examples from the Wenchuan Earthquake in China.

    Science.gov (United States)

    Wang, Xiying; Lum, Terry Y

    2013-01-01

    This article highlights the different roles that social workers played in disaster intervention after the Wenchuan earthquake. Using 3 stages (i.e., rescue, temporary relocation, and reconstruction) as a time framework, we describe social workers' roles, their performance, and the achievements and challenges they faced while providing service to the people and communities affected by the earthquake. Moreover, we draw conclusions on best practices and lessons learned, and make recommendations for future practices and research.

  3. Construction and design defects in the residential buildings and observed earthquake damage types in Turkey

    Science.gov (United States)

    Cogurcu, M. T.

    2015-04-01

    Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Kocaeli earthquake had an approximate death toll of more than 20 000, and in 2011 the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-seismic steel detailing and inappropriate structural systems including several architectural irregularities. In this study, the general characteristics of Turkish building stock and the deficiencies observed in structural systems are explained, and illustrative figures are given with reference to the Turkish Earthquake Code 2007. The poor concrete quality, lack of lateral or transverse reinforcement in beam-column joints and column confinement zones, high stirrup spacings, under-reinforced columns and over-reinforced beams are the primary causes of failures. Other deficiencies include weak-column-stronger-beam formations, insufficient seismic joint separations, soft-story or weak-story irregularities and short columns. Similar construction and design mistakes are also observed in other countries situated on active earthquake belts. Existing buildings still have these undesirable characteristics, and so to prepare for future earthquakes they must be rehabilitated.

  4. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  5. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  6. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  7. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  8. Complex rupture during the 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  9. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  10. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  11. Results of Questionnaire for the member of JHPS concerning the criticality accident at Tokai

    International Nuclear Information System (INIS)

    2000-01-01

    During the investigation of the criticality accident at Tokai occurring on Sep. 30, 1999, the project team in Japan Health Physics Society (JHPS) carried out a questionnaire for the member on the accident and this paper summarized its results. The effective answer was obtained in 36% of members. Major questions (and frequent answers) were: media of information obtained (internet 33%, TV and radio 22%, and newspaper 19%); concerning actions done by Japanese and local governments, the recommendation on Sep. 30 at 15:00 of evacuation for people living in the area within the radius of 350 m (necessary 92%), timing of its release on Oct. 2 at 18:30 (appropriate 41% and too late 36%) and its information to the people (more information needed 60%) and the recommendation on Sep. 30 at 22:30 of in-door refuge within 10 km radius (unnecessary 43% and necessary 41%), timing of its release on Oct. 1 at 16:40 (too late 49%) and its information to the people (more information needed 63%); and safety declaration for food etc. on Oct. 2 at 18:30 (necessary 92%). Based on above results and free description on the questionnaire, JHPS considered the necessity of described systems of JHPS for emergency.(K.H.)

  12. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  13. Statistical Evaluations of Variations in Dairy Cows’ Milk Yields as a Precursor of Earthquakes

    Science.gov (United States)

    Yamauchi, Hiroyuki; Hayakawa, Masashi; Asano, Tomokazu; Ohtani, Nobuyo; Ohta, Mitsuaki

    2017-01-01

    Simple Summary There are many reports of abnormal changes occurring in various natural systems prior to earthquakes. Unusual animal behavior is one of these abnormalities; however, there are few objective indicators and to date, reliability has remained uncertain. We found that milk yields of dairy cows decreased prior to an earthquake in our previous case study. In this study, we examined the reliability of decreases in milk yields as a precursor for earthquakes using long-term observation data. In the results, milk yields decreased approximately three weeks before earthquakes. We have come to the conclusion that dairy cow milk yields have applicability as an objectively observable unusual animal behavior prior to earthquakes, and dairy cows respond to some physical or chemical precursors of earthquakes. Abstract Previous studies have provided quantitative data regarding unusual animal behavior prior to earthquakes; however, few studies include long-term, observational data. Our previous study revealed that the milk yields of dairy cows decreased prior to an extremely large earthquake. To clarify whether the milk yields decrease prior to earthquakes, we examined the relationship between earthquakes of various magnitudes and daily milk yields. The observation period was one year. In the results, cross-correlation analyses revealed a significant negative correlation between earthquake occurrence and milk yields approximately three weeks beforehand. Approximately a week and a half beforehand, a positive correlation was revealed, and the correlation gradually receded to zero as the day of the earthquake approached. Future studies that use data from a longer observation period are needed because this study only considered ten earthquakes and therefore does not have strong statistical power. Additionally, we compared the milk yields with the subionospheric very low frequency/low frequency (VLF/LF) propagation data indicating ionospheric perturbations. The results showed

  14. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  15. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  16. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  17. Recent Mega-Thrust Tsunamigenic Earthquakes and PTHA

    Science.gov (United States)

    Lorito, S.

    2013-05-01

    The occurrence of several mega-thrust tsunamigenic earthquakes in the last decade, including but not limited to the 2004 Sumatra-Andaman, the 2010 Maule, and 2011 Tohoku earthquakes, has been a dramatic reminder of the limitations in our capability of assessing earthquake and tsunami hazard and risk. However, the increasingly high-quality geophysical observational networks allowed the retrieval of most accurate than ever models of the rupture process of mega-thrust earthquakes, thus paving the way for future improved hazard assessments. Probabilistic Tsunami Hazard Analysis (PTHA) methodology, in particular, is less mature than its seismic counterpart, PSHA. Worldwide recent research efforts of the tsunami science community allowed to start filling this gap, and to define some best practices that are being progressively employed in PTHA for different regions and coasts at threat. In the first part of my talk, I will briefly review some rupture models of recent mega-thrust earthquakes, and highlight some of their surprising features that likely result in bigger error bars associated to PTHA results. More specifically, recent events of unexpected size at a given location, and with unexpected rupture process features, posed first-order open questions which prevent the definition of an heterogeneous rupture probability along a subduction zone, despite of several recent promising results on the subduction zone seismic cycle. In the second part of the talk, I will dig a bit more into a specific ongoing effort for improving PTHA methods, in particular as regards epistemic and aleatory uncertainties determination, and the computational PTHA feasibility when considering the full assumed source variability. Only logic trees are usually explicated in PTHA studies, accounting for different possible assumptions on the source zone properties and behavior. The selection of the earthquakes to be actually modelled is then in general made on a qualitative basis or remains implicit

  18. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  19. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  20. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  1. PROPOSAL FOR IMPROVEMENT OF BUINESS CONTINUITY PLAN (BCP) BASED ON THE LESSONS OF THE GREAT EAST JAPAN EARTHQUAKE

    Science.gov (United States)

    Maruya, Hiroaki

    For most Japanese companies and organizations, the enormous damage of the Great East Japan Earthquake was more than expected. In addition to great tsunami and earthquake motion, the lack of electricity and fuel disturbed to business activities seriously, and they should be considered important constraint factors in future earthquakes. Furthermore, disruption of supply chains also led considerable decline of production in many industries across Japan and foreign countries. Therefore it becomes urgent need for Japanese government and industries to utilize the lessons of the Great Earthquake and execute effective countermeasures, considering great earthquakes such as Tonankai & Nankai earthquakes and Tokyo Inland Earthquakes. Obviously most basic step is improving earthquake-resistant ability of buildings and facilities. In addition the spread of BCP and BCM to enterprises and organizations is indispensable. Based on the lessons, the BCM should include the point of view of the supply chain management more clearly, and emphasize "substitute strategy" more explicitly because a company should survive even if it completely loses its present production base. The central and local governments are requested, in addition to develop their own BCP, to improve related systematic conditions for BCM of the private sectors.

  2. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  3. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  4. Injuries and Traumatic Psychological Exposures Associated with the South Napa Earthquake - California, 2014.

    Science.gov (United States)

    Attfield, Kathleen R; Dobson, Christine B; Henn, Jennifer B; Acosta, Meileen; Smorodinsky, Svetlana; Wilken, Jason A; Barreau, Tracy; Schreiber, Merritt; Windham, Gayle C; Materna, Barbara L; Roisman, Rachel

    2015-09-11

    On August 24, 2014, at 3:20 a.m., a magnitude 6.0 earthquake struck California, with its epicenter in Napa County (1). The earthquake was the largest to affect the San Francisco Bay area in 25 years and caused significant damage in Napa and Solano counties, including widespread power outages, five residential fires, and damage to roadways, waterlines, and 1,600 buildings (2). Two deaths resulted (2). On August 25, Napa County Public Health asked the California Department of Public Health (CDPH) for assistance in assessing postdisaster health effects, including earthquake-related injuries and effects on mental health. On September 23, Solano County Public Health requested similar assistance. A household-level Community Assessment for Public Health Emergency Response (CASPER) was conducted for these counties in two cities (Napa, 3 weeks after the earthquake, and Vallejo, 6 weeks after the earthquake). Among households reporting injuries, a substantial proportion (48% in Napa and 37% in western Vallejo) reported that the injuries occurred during the cleanup period, suggesting that increased messaging on safety precautions after a disaster might be needed. One fifth of respondents overall (27% in Napa and 9% in western Vallejo) reported one or more traumatic psychological exposures in their households. These findings were used by Napa County Mental Health to guide immediate-term mental health resource allocations and to conduct public training sessions and education campaigns to support persons with mental health risks following the earthquake. In addition, to promote community resilience and future earthquake preparedness, Napa County Public Health subsequently conducted community events on the earthquake anniversary and provided outreach workers with psychological first aid training.

  5. The ordered network structure of M {>=} 6 strong earthquakes and its prediction in the Jiangsu-South Yellow Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Men, Ke-Pei [Nanjing Univ. of Information Science and Technology (China). College of Mathematics and Statistics; Cui, Lei [California Univ., Santa Barbara, CA (United States). Applied Probability and Statistics Dept.

    2013-05-15

    The the Jiangsu-South Yellow Sea region is one of the key seismic monitoring defence areas in the eastern part of China. Since 1846, M {>=} 6 strong earthquakes have showed an obvious commensurability and orderliness in this region. The main orderly values are 74 {proportional_to} 75 a, 57 {proportional_to} 58 a, 11 {proportional_to} 12 a, and 5 {proportional_to} 6 a, wherein 74 {proportional_to} 75 a and 57 {proportional_to} 58 a with an outstanding predictive role. According to the information prediction theory of Wen-Bo Weng, we conceived the M {>=} 6 strong earthquake ordered network structure in the South Yellow Sea and the whole region. Based on this, we analyzed and discussed the variation of seismicity in detail and also made a trend prediction of M {>=} 6 strong earthquakes in the future. The results showed that since 1998 it has entered into a new quiet episode which may continue until about 2042; and the first M {>=} 6 strong earthquake in the next active episode will probably occur in 2053 pre and post, with the location likely in the sea area of the South Yellow Sea; also, the second and the third ones or strong earthquake swarm in the future will probably occur in 2058 and 2070 pre and post. (orig.)

  6. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  7. Disease and injury trends among evacuees in a shelter located at the epicenter of the 2016 Kumamoto earthquakes, Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Sato, Takushi; Yoneda, Toru; Kishida, Yoshiomi; Yamamoto, Sumie; Sakai, Taro; Sashiyama, Hiroshi; Takahashi, Shuko; Orui, Hayato; Kato, Daisuke; Hasegawa, Taro; Suzuki, Yoshihiro; Okamoto, Maki; Hayashi, Hideki; Suganami, Shigeru

    2017-06-16

    Two huge earthquakes struck Kumamoto, Japan, in April 2016, forcing residents to evacuate. Few studies have reported early-phase disease and injury trends among evacuees following major inland earthquakes. We evaluated the trends among evacuees who visited a medical clinic in a shelter located at the epicenter of the 2016 Kumamoto earthquakes. The clinic opened on April 15, the day after the foreshock, and closed 3 weeks later. We reviewed medical charts related to 929 outpatient visits and conducted descriptive analyses. The evacuees experienced mild injuries and common diseases. The types of diseases changed weekly. Elderly people needed medical support for longer than other age groups. Future earthquakes may be inevitable, but establishing arrangements for medical needs or making precautions for infectious diseases in shelters could reduce the effects of earthquake-related health problems.

  8. Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence

    Directory of Open Access Journals (Sweden)

    L. M. Matias

    2013-01-01

    Full Text Available The Gulf of Cadiz, as part of the Azores-Gibraltar plate boundary, is recognized as a potential source of big earthquakes and tsunamis that may affect the bordering countries, as occurred on 1 November 1755. Preparing for the future, Portugal is establishing a national tsunami warning system in which the threat caused by any large-magnitude earthquake in the area is estimated from a comprehensive database of scenarios. In this paper we summarize the knowledge about the active tectonics in the Gulf of Cadiz and integrate the available seismological information in order to propose the generation model of destructive tsunamis to be applied in tsunami warnings. The fault model derived is then used to estimate the recurrence of large earthquakes using the fault slip rates obtained by Cunha et al. (2012 from thin-sheet neotectonic modelling. Finally we evaluate the consistency of seismicity rates derived from historical and instrumental catalogues with the convergence rates between Eurasia and Nubia given by plate kinematic models.

  9. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    Science.gov (United States)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  10. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    Science.gov (United States)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  11. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake

    Science.gov (United States)

    Debbarma, Jimmi; Martin, Stacey S.; Suresh, G.; Ahsan, Aktarul; Gahalaut, Vineet K.

    2017-10-01

    On 3 January 2017, a MW 5.6 earthquake occurred in Dhalai district in Tripura (India), at 14:39:03 IST (09:09:03 UTC) with an epicentre at 24.018°N ± 4.9 km and 91.964°E ± 4.4 km, and a focal depth of 31 ± 6.0 km. The focal mechanism solution determined after evaluating data from seismological observatories in India indicated a predominantly strike-slip motion on a steeply dipping plane. The estimated focal depth and focal mechanism solution places this earthquake in the Indian plate that lies beneath the overlying Indo-Burmese wedge. As in the 2016 Manipur earthquake, a strong motion record from Shillong, India, appears to suggest site amplification possibly due to topographic effects. In the epicentral region in Tripura, damage assessed from a field survey and from media reports indicated that the macroseismic intensity approached 6-7 EMS with damage also reported in adjacent parts of Bangladesh. A striking feature of this earthquake were the numerous reports of liquefaction that were forthcoming from fluvial locales in the epicentral region in Tripura, and at anomalous distances farther north in Bangladesh. The occurrence of the 2017 Manu earthquake emphasises the hazard posed by intraplate earthquakes in Tripura and in the neighbouring Bengal basin region where records of past earthquakes are scanty or vague, and where the presence of unconsolidated deltaic sediments and poor implementation of building codes pose a significant societal and economic threat during larger earthquakes in the future.

  12. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  13. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  14. Determination of Road Functionality for Küçükçekmece District Following a Scenario Earthquake for Istanbul

    Directory of Open Access Journals (Sweden)

    Betül Ergün Konukcu

    2016-03-01

    Full Text Available Istanbul has been affected by earthquakes throughout its history. The most recent earthquake to shake Istanbul was on August 17 1999, along the North Anatolian Fault, 12 km southeast of the Izmit Province, with a magnitude of 7.4. Following the 1999 Izmit earthquake, the earthquake risk in Istanbul started to draw attention and many scientific studies were conducted on the potential earthquake risk in this city. Based on these studies, predictions are that Istanbul is going to face a major earthquake in the near future and this will cause severe damage to the built environment. It is estimated that the damage caused by the anticipated earthquake will be extensive as a consequence of Istanbul’s low quality building stock of Istanbul. The buildings that have the possibility of being damaged cause debris around them. If roadside buildings collapsed during the earthquake, the scattered parts of the buildings could cause roads to lose their functionality. Not only building damage but also transportation damage analysis is necessary to use risk mitigation studies and decisions, being that experiences showed that the functionality of transportation structure effects post-earthquake emergency response and recovery operation seriously. This study aims to reveal a method for road functionality in Küçükçekçekmece following a potential Istanbul Earthquake by using building collapse direction and bridge damage.

  15. Earthquake Early Warning: A Prospective User's Perspective (Invited)

    Science.gov (United States)

    Nishenko, S. P.; Savage, W. U.; Johnson, T.

    2009-12-01

    With more than 25 million people at risk from high hazard faults in California alone, Earthquake Early Warning (EEW) presents a promising public safety and emergency response tool. EEW represents the real-time end of an earthquake information spectrum which also includes near real-time notifications of earthquake location, magnitude, and shaking levels; as well as geographic information system (GIS)-based products for compiling and visually displaying processed earthquake data such as ShakeMap and ShakeCast. Improvements to and increased multi-national implementation of EEW have stimulated interest in how such information products could be used in the future. Lifeline organizations, consisting of utilities and transportation systems, can use both onsite and regional EEW information as part of their risk management and public safety programs. Regional EEW information can provide improved situational awareness to system operators before automatic system protection devices activate, and allow trained personnel to take precautionary measures. On-site EEW is used for earthquake-actuated automatic gas shutoff valves, triggered garage door openers at fire stations, system controls, etc. While there is no public policy framework for preemptive, precautionary electricity or gas service shutdowns by utilities in the United States, gas shut-off devices are being required at the building owner level by some local governments. In the transportation sector, high-speed rail systems have already demonstrated the ‘proof of concept’ for EEW in several countries, and more EEW systems are being installed. Recently the Bay Area Rapid Transit District (BART) began collaborating with the California Integrated Seismic Network (CISN) and others to assess the potential benefits of EEW technology to mass transit operations and emergency response in the San Francisco Bay region. A key issue in this assessment is that significant earthquakes are likely to occur close to or within the BART

  16. U.B.C.: Past, present and future

    International Nuclear Information System (INIS)

    Wall, W.D.

    1993-01-01

    This report documents the involvement of the International Conference of Building Officials (ICBO) in hazard mitigation, particularly in relation to earthquakes. It encompasses the history of the Uniform Building Code TM (U.B.C) provisions as they apply to earthquake hazard mitigation. Also discussed is Executive Order 12699. Conference membership services and benefits are reviewed and the future of ICBO, building codes and hazard mitigation are examined. The U.B.C. seismic provisions make a vast contribution to the design of buildings for seismic safety

  17. Application of Incremental Dynamic Analysis (IDA) Method for Studying the Dynamic Behavior of Structures During Earthquakes

    OpenAIRE

    Javanpour, M.; Zarfam, P.

    2017-01-01

    Prediction of existing buildings’ vulnerability by future earthquakes is one of the most essential topics in structural engineering. Modeling steel structures is a giant step in determining the damage caused by the earthquake, as such structures are increasingly being used in constructions. Hence, two same-order steel structures with two types of structural systems were selected (coaxial moment frames and moment frame). In most cases, a specific structure needs to satisfy several functional l...

  18. Initiatives to Reduce Earthquake Risk of Developing Countries

    Science.gov (United States)

    Tucker, B. E.

    2008-12-01

    The seventeen-year-and-counting history of the Palo Alto-based nonprofit organization GeoHazards International (GHI) is the story of many initiatives within a larger initiative to increase the societal impact of geophysics and civil engineering. GHI's mission is to reduce death and suffering due to earthquakes and other natural hazards in the world's most vulnerable communities through preparedness, mitigation and advocacy. GHI works by raising awareness in these communities about their risk and about affordable methods to manage it, identifying and strengthening institutions in these communities to manage their risk, and advocating improvement in natural disaster management. Some of GHI's successful initiatives include: (1) creating an earthquake scenario for Quito, Ecuador that describes in lay terms the consequences for that city of a probable earthquake; (2) improving the curricula of Pakistani university courses about seismic retrofitting; (3) training employees of the Public Works Department of Delhi, India on assessing the seismic vulnerability of critical facilities such as a school, a hospital, a police headquarters, and city hall; (4) assessing the vulnerability of the Library of Tibetan Works and Archives in Dharamsala, India; (5) developing a seismic hazard reduction plan for a nonprofit organization in Kathmandu, Nepal that works to manage Nepal's seismic risk; and (6) assisting in the formulation of a resolution by the Council of the Organization for Economic Cooperation and Development (OECD) to promote school earthquake safety among OECD member countries. GHI's most important resource, in addition to its staff and Board of Trustees, is its members and volunteer advisors, who include some of the world's leading earth scientists, earthquake engineers, urban planners and architects, from the academic, public, private and nonprofit sectors. GHI is planning several exciting initiatives in the near future. One would oversee the design and construction of

  19. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  20. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  1. Consideration for standard earthquake vibration (1). The Niigataken Chuetsu-oki Earthquake in 2007

    International Nuclear Information System (INIS)

    Ishibashi, Katsuhiko

    2007-01-01

    Outline of new guideline of quakeproof design standard of nuclear power plant and the standard earthquake vibration are explained. The improvement points of new guideline are discussed on the basis of Kashiwazaki-Kariwa Nuclear Power Plant incidents. The fundamental limits of new guideline are pointed. Placement of the quakeproof design standard of nuclear power plant, JEAG4601 of Japan Electric Association, new guideline, standard earthquake vibration of new guideline, the Niigataken Chuetsu-oki Earthquake in 2007 and damage of Kashiwazaki-Kariwa Nuclear Power Plant are discussed. The safety criteria of safety review system, organization, standard and guideline should be improved on the basis of this earthquake and nuclear plant accident. The general knowledge, 'a nuclear power plant is not constructed in the area expected large earthquake', has to be realized. Preconditions of all nuclear power plants should not cause damage to anything. (S.Y.)

  2. Earthquake Emergency Education in Dushanbe, Tajikistan

    Science.gov (United States)

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  3. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  4. Dose evaluation based on {sup 24}Na activity in the human body at the JCO criticality accident in Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Takumaro; Tsujimura, Norio; Tasaki, Takashi; Kanai, Katsuta; Kurihara, Osamu; Hayashi, Naomi; Shinohara, Kunihiko [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2001-09-01

    {sup 24}Na in the human body, activated by neutrons emitted at the JCO criticality accident, was observed for 62 subjects, where 148 subjects were measured by the whole body counter of JNC Tokai Works. The 148 subjects, including JCO employees and the contractors, residents neighboring the site and emergency service officers, were measured by the whole-body counter. The neutron-energy spectrum around the facility was calculated using neutron transport codes (ANISN and MCNP), and the relation between an amount of activated sodium in human body and neutron dose was evaluated from the calculated neutron energy spectrum and theoretical neutron capture probability by the human body. The maximum {sup 24}Na activity in the body was 7.7 kBq (83 Bq({sup 24}Na)/g({sup 23}Na)) and the relevant effective dose equivalent was 47 mSv. (author)

  5. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    Science.gov (United States)

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  6. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  7. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    Science.gov (United States)

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  8. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  9. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  10. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  11. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  12. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  13. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  14. Long-term predictability of regions and dates of strong earthquakes

    Science.gov (United States)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    parameters and seismic events. Further development of the H-104 method is the plotting of H-104 trajectories in two-dimensional time coordinates. The method provides the dates of future earthquakes for several (3-4) sequential time intervals multiple of 104 days. The H-104 method could be used together with the empirical scheme for short-term earthquake prediction reducing the date uncertainty. Using the H-104 method, it is developed the following long-term forecast of seismic activity. 1. The total number of M6+ earthquakes expected in the time frames: - 10.01-07.02: 14; - 08.02-08.03: 17; - 09.03-06.04: 9. 3. The potential days of M6+ earthquakes expected in the period of 10.01.2016-06.04.2016 are the following: - in January: 17, 18, 23, 24, 26, 28, 31; - in February: 01, 02, 05, 12, 15, 18, 20, 23; - in March: 02, 04, 05, 07 (M7+ is possible), 09, 10, 17 (M7+ is possible), 19, 20 (M7+ is possible), 23 (M7+ is possible), 30; - in April: 02, 06. The work was financially supported by the Ministry of Education and Science of the Russian Federation (contract No. 14.577.21.0109, project UID RFMEFI57714X0109)

  15. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  16. Interviewing insights regarding the fatalities inflicted by the 2011 Great East Japan Earthquake

    Science.gov (United States)

    Ando, M.; Ishida, M.; Hayashi, Y.; Mizuki, C.; Nishikawa, Y.; Tu, Y.

    2013-09-01

    One hundred fifty survivors of the 11 March 2011 Great East Japan Earthquake (Tohoku-oki earthquake) (Mw = 9.0) were interviewed to study the causes of deaths from the associated tsunami in coastal areas of Tohoku. The first official tsunami warning underestimated the height of the tsunami and 40% of the interviewees did not obtain this warning due to immediate blackouts and a lack of communication after the earthquake. Many chose to remain in dangerous locations based on the underestimated warning and their experiences with previous smaller tsunamis and/or due to misunderstanding the mitigating effects of nearby breakwaters in blocking incoming tsunamis. Some delayed their evacuation to perform family safety checks, and in many situations, the people affected misunderstood the risks involved in tsunamis. In this area, three large tsunamis have struck in the 115 yr preceding the 2011 tsunami. These tsunamis remained in the collective memory of communities, and numerous measures against future tsunami damage, such as breakwaters and tsunami evacuation drills, had been implemented. Despite these preparedness efforts, approximately 18 500 deaths and cases of missing persons occurred. The death rate with the age of 65 and above was particularly high, four times higher than that with other age groups. These interviews indicate that deaths resulted from a variety of reasons, but if residents had taken immediate action after the major ground motion stopped, most residents might have been saved. Education about the science behind earthquakes and tsunamis could help save more lives in the future.

  17. Communication system for emergency

    International Nuclear Information System (INIS)

    Ajioka, Yoshiteru

    1996-01-01

    People are apprehensive that a strong earthquake with a magnitude of nearly 8 may occur in Tokai area. The whole area of Shizuoka Prefecture has been specified as the specially strengthened region for earthquake disaster measures. This report outlines the communication system for emergency with respect to atomic disaster caused by an earthquake. Previously, wireless receiving system is stationed in the whole area to simultaneously inform the related news to the residents and so, communications with them are possible at any time by using the system. Since mobile wireless receiving sets are stationed in all town halls, self defense organizations and all the places of refuge, mutual communications are possible. These communication system can be utilized for either earthquake or nuclear disaster. Further, Shizuoka general information network system has been established as a communication system for anti-disaster organization and a wireless network via a communication satellite, ''super bird'' has been constructed in addition to the ground network. Therefore, the two communication routes became usable at emergency and the systems are available in either of nuclear disaster or earthquake. (M.N.)

  18. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  19. In-plant measurements of gamma-ray transmissions for precise K-edge and passive assay of plutonium concentration and isotopic abundance in product solutions at the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Asakura, Y.; Kondo, I.; Masui, J.; Shoji, K.; Russo, P.A.; Hsue, S.T.; Sprinkle, J.K. Jr.; Johnson, S.S.

    1982-01-01

    A field test has been carried out for more than 2 years for determination of plutonium concentration by K-edge absorption densitometry and for determination of plutonium isotopic abundance by transmission-corrected passive gamma-ray spectrometry. This system was designed and built at Los Alamos National Laboratory and installed at the Tokai reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation as a part of the Tokai Advanced Safeguards Technology Exercise (TASTEX). For K-edge measurement of plutonium concentration, the transmissions at two discrete gamma-ray energies are measured using the 121.1- and 122.1-keV gamma rays from 75 Se and 57 Co. Intensities of the plutonium passive gamma rays in the energy regions between 38 and 51 keV and between 129 and 153 keV are used for determination of the isotopic abundances. More than 200 product solution samples have been measured in a timely fashion during these 2 years. The relative precisions and accuracies of the plutonium concentration measurement are shown to be within 0.6% (1 sigma) in these applications, and those for plutonium isotopic abundances are within 3% for 238 Pu, 0.4% for 239 Pu, 1.2% for 240 Pu, 1.3% for 241 Pu, and 7% for 242 Pu. The time required is 10 min for the concentration assay, 10 min for the isotopics assay, and about 15 min for handling procedures in the laboratory

  20. Revisiting the November 27, 1945 Makran (Mw=8.2) interplate earthquake

    Science.gov (United States)

    Zarifi, Z.; Raeesi, M.

    2012-04-01

    good confirm signals of a mature cycle of earthquake to the west of the rupture area of the 1945 event. These evidences include distribution of extensional earthquakes at intermediate depths and compressional events in the overriding plate. Revisiting the 1945 earthquake can provide lessons for understanding the behavior of MSZ and its future large events.

  1. Seismicity map tools for earthquake studies

    Science.gov (United States)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  2. Earthquake at 40 feet

    Science.gov (United States)

    Miller, G. J.

    1976-01-01

    The earthquake that struck the island of Guam on November 1, 1975, at 11:17 a.m had many unique aspects-not the least of which was the experience of an earthquake of 6.25 Richter magnitude while at 40 feet. My wife Bonnie, a fellow diver, Greg Guzman, and I were diving at Gabgab Beach in teh outer harbor of Apra Harbor, engaged in underwater phoyography when the earthquake struck. 

  3. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  4. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  5. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  6. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  7. Vrancea earthquakes. Courses for specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes in the Carpathian-Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 Km occur. For example, the ruptured area migrated from 150 km to 180 km (November 10,1940, M w = 7.7) from 90 km to 110 km (March 4, 1977, M w 7.4), from 130 km to 150 km (August 30, 1986, M w = 7.1) and from 70 km to 90 km (May 30, 1990, M w = 6.9) depth. The depth interval between 110 km and 130 km remains not ruptured since 1802, October 26, when it was the strongest earthquake occurred in this part of Central Europe. The magnitude is assumed to be M w = 7.9 - 8.0 and this depth interval is a natural candidate for the next strong Vrancea event. While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses for specific actions to mitigate the seismic risk given by strong deep Vrancea earthquakes should be considered as key for development actions: - Early warning system for industrial facilities. Early warning is more than a technological instrument to detect, monitor and submit warnings. It should become part of a management information system for decision-making in the context of national institutional frameworks for disaster management and part of national and local strategies and programmers for risk mitigation; - Prediction program of Vrancea strong earthquakes of short and long term; - Hazard seismic map of Romania. The wrong assessment of the seismic hazard can lead to dramatic situations as those from Bucharest or Kobe. Before the 1977 Vrancea earthquake, the city of Bucharest was designed to intensity I = VII (MMI) and the real intensity was I = IX1/2-X (MMI); - Seismic microzonation of large populated

  8. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  9. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  10. Posttraumatic growth and reduced suicidal ideation among adolescents at month 1 after the Sichuan Earthquake.

    Science.gov (United States)

    Yu, Xiao-nan; Lau, Joseph T F; Zhang, Jianxin; Mak, Winnie W S; Choi, Kai Chow; Lui, Wacy W S; Zhang, Jianxin; Chan, Emily Y Y

    2010-06-01

    This study investigated posttraumatic growth (PTG) and reduced suicidal ideation among Chinese adolescents at one month after the occurrence of the Sichuan Earthquake. A cross-sectional survey was administered to 3324 high school students in Chengdu, Sichuan. The revised Posttraumatic Growth Inventory for Children and the Children's Revised Impact of Event Scale assessed PTG and posttraumatic stress disorder (PTSD), respectively. Multivariate analysis showed that being in junior high grade 2, having probable PTSD, visiting affected areas, possessing a perceived sense of security from teachers, and being exposed to touching news reports and encouraging news reports were associated with probable PTG; the reverse was true for students in senior high grade 1 or senior high grade 2 who had experienced prior adversities. Among the 623 students (19.3% of all students) who had suicidal ideation prior to the earthquake, 57.4% self-reported reduced suicidal ideation when the pre-earthquake and post-earthquake situations were compared. Among these 623 students, the multivariate results showed that being females, perceived sense of security obtained from teachers and exposure to encouraging news reports were factors associated with reduced suicidal ideation; the reverse was true for experience of pre-earthquake corporal punishment and worry about severe earthquakes in the future. The study population was not directly hit by the earthquake. This study is cross-sectional and no baseline data were collected prior to the occurrence of the earthquake. The earthquake resulted in PTG and reduced suicidal ideation among adolescents. PTSD was associated with PTG. Special attention should be paid to teachers' support, contents of media reports, and students' experience of prior adversities. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Earthquake predictions using seismic velocity ratios

    Science.gov (United States)

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  12. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  13. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  14. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    Science.gov (United States)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  15. Data logger system of Tokai (I) Nuclear Power Station, the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Machida, Akira; Chikahata, Kiyomitsu; Nakamura, Mamoru; Nanbu, Taketoshi; Kawakami, Hiroshi

    1977-01-01

    The Tokai(I) nuclear power station, the Japan Atomic Power Company, was commissioned in July, 1966. In this station, temperatures of about 700 points are monitored and recorded with a data logger. However, the logger was manufactured some 15 years ago, therefore it is now old-fashioned, and has caused frequent failures these 2 or 3 years. So it was decided to replace it with a new one, and the process control computer, U-300 system including CRT display, has been adopted considering the latest trend in U.K. The control and monitoring system in this station is not a centralized control system, but a distributed control system divided into three control rooms, namely main control room, turbine generator control room and fuel exchanger (cask machine) control room. Therefore for grasping the complete plant conditions at the main control room, the system has not been convenient, and the centralization of data processing has been desired from the viewpoint of operation. The new logger system is composed so as to facilitate the centralized monitoring in the main control room, considering the above requirement. It has been improved so as to have seven important functions in addition to the existing functions. Hardware and software of this system are briefly explained. The new system was started up in February 1977, and is now operating well, though some early failures were experienced. (Wakatsuki, Y.)

  16. The ordered network structure and prediction summary for M ≥ 7 earthquakes in Xinjiang region of China

    International Nuclear Information System (INIS)

    Men, Ke-Pei; Zhao, Kai

    2014-01-01

    M ≥ 7 earthquakes have showed an obvious commensurability and orderliness in Xinjiang of China and its adjacent region since 1800. The main orderly values are 30 a x k (k = 1, 2, 3), 11 ∝ 12 a, 41 ∝ 43 a, 18 ∝ 19 a, and 5 ∝ 6 a. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered network structure analysis with complex network technology, we focus on the prediction summary of M ≥ 7 earthquakes by using the ordered network structure, and add new information to further optimize network, hence construct the 2D- and 3D-ordered network structure of M ≥ 7 earthquakes. In this paper, the network structure revealed fully the regularity of seismic activity of M ≥ 7 earthquakes in the study region during the past 210 years. Based on this, the Karakorum M7.1 earthquake in 1996, the M7.9 earthquake on the frontier of Russia, Mongol, and China in 2003, and two Yutian M7.3 earthquakes in 2008 and 2014 were predicted successfully. At the same time, a new prediction opinion is presented that the future two M ≥ 7 earthquakes will probably occur around 2019-2020 and 2025-2026 in this region. The results show that large earthquake occurred in defined region can be predicted. The method of ordered network structure analysis produces satisfactory results for the mid-and-long term prediction of M ≥ 7 earthquakes.

  17. The global historical and future economic loss and cost of earthquakes during the production of adaptive worldwide economic fragility functions

    Science.gov (United States)

    Daniell, James; Wenzel, Friedemann

    2014-05-01

    Over the past decade, the production of economic indices behind the CATDAT Damaging Earthquakes Database has allowed for the conversion of historical earthquake economic loss and cost events into today's terms using long-term spatio-temporal series of consumer price index (CPI), construction costs, wage indices, and GDP from 1900-2013. As part of the doctoral thesis of Daniell (2014), databases and GIS layers for a country and sub-country level have been produced for population, GDP per capita, net and gross capital stock (depreciated and non-depreciated) using studies, census information and the perpetual inventory method. In addition, a detailed study has been undertaken to collect and reproduce as many historical isoseismal maps, macroseismic intensity results and reproductions of earthquakes as possible out of the 7208 damaging events in the CATDAT database from 1900 onwards. a) The isoseismal database and population bounds from 3000+ collected damaging events were compared with the output parameters of GDP and net and gross capital stock per intensity bound and administrative unit, creating a spatial join for analysis. b) The historical costs were divided into shaking/direct ground motion effects, and secondary effects costs. The shaking costs were further divided into gross capital stock related and GDP related costs for each administrative unit, intensity bound couplet. c) Costs were then estimated based on the optimisation of the function in terms of costs vs. gross capital stock and costs vs. GDP via the regression of the function. Losses were estimated based on net capital stock, looking at the infrastructure age and value at the time of the event. This dataset was then used to develop an economic exposure for each historical earthquake in comparison with the loss recorded in the CATDAT Damaging Earthquakes Database. The production of economic fragility functions for each country was possible using a temporal regression based on the parameters of

  18. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  19. Profile and procedures for fractures among 1323 fracture patients from the 2010 Yushu earthquake, China.

    Science.gov (United States)

    Kang, Peng; Tang, Bihan; Liu, Yuan; Liu, Xu; Shen, Yan; Liu, Zhipeng; Yang, Hongyang; Zhang, Lulu

    2016-11-01

    The injuries caused by earthquakes are often complex and of various patterns. Our study included all fracture inpatients from the Yushu earthquake (1323 in total), to learn more about the incidence and distribution of fractures during earthquakes. A retrospective study of the clinical characteristics of hospitalized fracture patients after the 2010 Yushu earthquake was conducted from December 20 to 25, 2010.We reviewed medical records of hospitalized patients who had been evacuated from the Yushu earthquake area between April 14 and June 15, 2010, from 57 hospitals, and also reviewed more than 100 documents assembled from daily medical rescue and disease prevention reports submitted by the frontline rescue organizations. In total, 78.0% of fracture patients were admitted to the hospital within 3 days after the earthquake. There were 1323 patients who presented with 1539 fractures. The most common fracture occurred in the lower limbs, followed by spinal, pelvic, and shoulder-upper limb fractures. The end of the thoracic vertebra and the lumbar vertebra were the high-risk sites for vertebral fractures. A total of 38 patients became paraplegic. A 2-level spatial clustering was detected among the 193 patients presenting with 2 fractures. Analysis profiles of the injuries and clinical features of patients with earthquake-related fractures will positively impact rescue efforts and the treatment of fracture injuries caused by possible future natural disasters. We should assemble orthopedic-related medications and surgical equipment, and allocate them promptly after a major earthquake. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Aftershock stress analysis of the April 2015 Mw 7.8 Gorkha earthquake from the NAMASTE project

    Science.gov (United States)

    Pant, M.; Velasco, A. A.; Karplus, M. S.; Patlan, E.; Ghosh, A.; Nabelek, J.; Kuna, V. M.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.

    2016-12-01

    Continental collision between the Indian plate and the Eurasian plate, converging at 45 mm/yr, has uplifted the northern part of Nepal forming the Himalaya. Because of this convergence, the region has experienced large, devastating earthquakes, including the 1934 Mw 8.4 Nepal-Bihar earthquake and two recent earthquakes on April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2. These quakes killed thousands of people and caused billion dollars of property loss. Despite some recent geologic and geophysical studies of this area, many tectonic questions remain unanswered. Shortly after the Gorkha earthquake, we deployed a seismic network, NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake), to study the aftershocks of these two large events. Our network included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) that spanned the Gorkha rupture area. The deployment extends from south of the Main Frontal Thrust (MFT) to the Main Central Thrust region (MCT), and it to recorded aftershocks for more than ten months from June 2015 to May 2016. We are leveraging high-precision earthquake locations by measuring and picking P-wave first-motion arrival polarity to develop a catalog of focal mechanisms for the larger aftershocks. We will use this catalog to correlate the seismicity and stress related of the Indo-Eurasian plate margin, hoping to address questions regarding the complex fault geometries and future earthquake hazards at this plate margin.

  1. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    International Nuclear Information System (INIS)

    Vazquez, Justin A; Caracappa, Peter F; Xu, X George

    2014-01-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools. (paper)

  2. The severity of an earthquake

    Science.gov (United States)

    ,

    1997-01-01

    The severity of an earthquake can be expressed in terms of both intensity and magnitude. However, the two terms are quite different, and they are often confused. Intensity is based on the observed effects of ground shaking on people, buildings, and natural features. It varies from place to place within the disturbed region depending on the location of the observer with respect to the earthquake epicenter. Magnitude is related to the amount of seismic energy released at the hypocenter of the earthquake. It is based on the amplitude of the earthquake waves recorded on instruments

  3. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Directory of Open Access Journals (Sweden)

    Zhi-hui Dong

    2011-01-01

    Full Text Available PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT. METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR = 2.2; p<0.001. Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05 or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05 were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01. Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01. Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001. Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  4. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    Science.gov (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  5. The socioeconomic impact of international aid: a qualitative study of healthcare recovery in post-earthquake Haiti and implications for future disaster relief.

    Science.gov (United States)

    Kligerman, Maxwell; Walmer, David; Bereknyei Merrell, Sylvia

    2017-05-01

    We assessed healthcare provider perspectives of international aid four years after the Haiti Earthquake to better understand the impact of aid on the Haitian healthcare system and learn best practices for recovery in future disaster contexts. We conducted 22 semi-structured interviews with the directors of local, collaborative, and aid-funded healthcare facilities in Leogane, Haiti. We coded and analysed the interviews using an iterative method based on a grounded theory approach of data analysis. Healthcare providers identified positive aspects of aid, including acute emergency relief, long-term improved healthcare access, and increased ease of referrals for low-income patients. However, they also identified negative impacts of international aid, including episodes of poor quality care, internal brain drain, competition across facilities, decrease in patient flow to local facilities, and emigration of Haitian doctors to abroad. As Haiti continues to recover, it is imperative for aid institutions and local healthcare facilities to develop a more collaborative relationship to transition acute relief to sustainable capacity building. In future disaster contexts, aid institutions should specifically utilise quality of care metrics, NGO Codes of Conduct, Master Health Facility Lists, and sliding scale payment systems to improve disaster response.

  6. Disaster mitigation science for Earthquakes and Tsunamis -For resilience society against natural disasters-

    Science.gov (United States)

    Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Isouchi, C.; Fujisawa, K.

    2017-12-01

    thrust earthquakes around Nankai/Ryukyu subduction zone', and `SATREPS project of earthquake and tsunami disaster mitigation in the Marmara region and disaster education in Turkey'. Furthermore, we have to progress the natural disaster mitigation science against destructive natural disaster in the near future.

  7. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  8. What caused a large number of fatalities in the Tohoku earthquake?

    Science.gov (United States)

    Ando, M.; Ishida, M.; Nishikawa, Y.; Mizuki, C.; Hayashi, Y.

    2012-04-01

    the 1960 Chile tsunami, which was significantly smaller than that of the 11 March tsunami. This sense of "knowing" put their lives at high risk. 5. Some local residents believed that with the presence of a breakwater, only slight flooding would occur. 6. Many people did not understand why tsunami is created under the sea. Therefore, relation of earthquake and tsunami is not quite linked to many people. These interviews made it clear that many deaths resulted because current technology and earthquake science underestimated tsunami heights, warning systems failed, and breakwaters were not strong or high enough. However, even if these problems occur in future earthquakes, better knowledge regarding earthquakes and tsunami hazards could save more lives. In an elementary school when children have fresh brain, it is necessary for them to learn the basic mechanism of tsunami generation.

  9. Can earthquake fissures predispose hillslopes to landslides? - Evidence from Central and East Asia

    Science.gov (United States)

    Sidle, Roy C.; Gomi, Takashi; Rajapbaev, Muslim; Chyngozhoev, Nurstan

    2017-04-01

    earthquakes, occurrence of debris flows was limited. Instead, most landslides travelled limited distances and consisted of ruptured soil blocks. Large, parallel fissures developed along ridgelines and convex slopes, providing opportunities for preferential flow to initiate mass wasting during later heavy rainfalls. The progressive deterioration of ridgelines could change future catchment drainage patterns. Additionally, sediment accumulated in headwater channels from the initial earthquake-triggered landslides may mobilize as devastating debris flows after additional sediment loading during a large storm. As such, cascading effects of prior earthquakes on later mass wasting appear evident in both regions.

  10. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  11. Turkish Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  12. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  13. Global earthquake fatalities and population

    Science.gov (United States)

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  14. Instruction system upon occurrence of earthquakes

    International Nuclear Information System (INIS)

    Inagaki, Masakatsu; Morikawa, Matsuo; Suzuki, Satoshi; Fukushi, Naomi.

    1987-01-01

    Purpose: To enable rapid re-starting of a nuclear reactor after earthquakes by informing various properties of encountered earthquake to operators and properly displaying the state of damages in comparison with designed standard values of facilities. Constitution: Even in a case where the maximum accelerations due to the movements of earthquakes encountered exceed designed standard values, it may be considered such a case that equipments still remain intact depending on the wave components of the seismic movements and the vibration properties inherent to the equipments. Taking notice of the fact, the instruction device comprises a system that indicates the relationship between the seismic waveforms of earthquakes being encountered and the scram setting values, a system for indicating the comparison between the floor response spectrum of the seismic waveforms of the encountered earthquakes and the designed floor response spectrum used for the design of the equipments and a system for indicating those equipments requiring inspection after the earthquakes. Accordingly, it is possible to improve the operationability upon scram of a nuclear power plant undergoing earthquakes and improve the power saving and safety by clearly defining the inspection portion after the earthquakes. (Kawakami, Y.)

  15. How fault geometry controls earthquake magnitude

    Science.gov (United States)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  16. Measuring the size of an earthquake

    Science.gov (United States)

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Earthquakes range broadly in size. A rock-burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat Island earthquake in the Aleutian arc involved a 650-kilometer length of the Earth's crust. Earthquakes can be even smaller and even larger. If an earthquake is felt or causes perceptible surface damage, then its intensity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic areas or at great focal depths and are either simply not felt or their felt pattern does not really indicate their true size.

  17. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  18. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  19. Earthquakes; May-June 1982

    Science.gov (United States)

    Person, W.J.

    1982-01-01

    There were four major earthquakes (7.0-7.9) during this reporting period: two struck in Mexico, one in El Salvador, and one in teh Kuril Islands. Mexico, El Salvador, and China experienced fatalities from earthquakes.

  20. Geographic variation of clinically diagnosed mood and anxiety disorders in Christchurch after the 2010/11 earthquakes.

    Science.gov (United States)

    Hogg, Daniel; Kingham, Simon; Wilson, Thomas M; Griffin, Edward; Ardagh, Michael

    2014-11-01

    The 22nd February 2011 Christchurch earthquake killed 185 people, injured over 8000, damaged over 100,000 buildings and on-going aftershocks maintained high anxiety levels. This paper examines the dose of exposure effect of earthquake damage assessments, earthquake intensity measures, liquefaction and lateral spreading on mood and anxiety disorders in Christchurch after this event. We hypothesise that such disorders are more likely to develop in people who have experienced greater exposure to these impacts within their neighborhood than others who have been less exposed, but also live in the city. For this purpose, almost all clinically diagnosed incident and relapsed cases in Christchurch in a 12 months period after the 2011 earthquake were analysed. Spatio-temporal cluster analysis shows that people living in the widely affected central and eastern parts after the 2010/11 earthquakes have a 23% higher risk of developing a mood or anxiety disorder than people living in other parts of the city. Generally, mood and anxiety-related disorders increase with closer proximity to damage from liquefaction and moderate to major lateral spreading, as well as areas that are more likely to suffer from damage in future earthquakes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Coping with the challenges of early disaster response: 24 years of field hospital experience after earthquakes.

    Science.gov (United States)

    Bar-On, Elhanan; Abargel, Avi; Peleg, Kobi; Kreiss, Yitshak

    2013-10-01

    To propose strategies and recommendations for future planning and deployment of field hospitals after earthquakes by comparing the experience of 4 field hospitals deployed by The Israel Defense Forces (IDF) Medical Corps in Armenia, Turkey, India and Haiti. Quantitative data regarding the earthquakes were collected from published sources; data regarding hospital activity were collected from IDF records; and qualitative information was obtained from structured interviews with key figures involved in the missions. The hospitals started operating between 89 and 262 hours after the earthquakes. Their sizes ranged from 25 to 72 beds, and their personnel numbered between 34 and 100. The number of patients treated varied from 1111 to 2400. The proportion of earthquake-related diagnoses ranged from 28% to 67% (P earthquakes, patient caseload and treatment requirements varied widely. The variables affecting the patient profile most significantly were time until deployment, total number of injured, availability of adjacent medical facilities, and possibility of evacuation from the disaster area. When deploying a field hospital in the early phase after an earthquake, a wide variability in patient caseload should be anticipated. Customization is difficult due to the paucity of information. Therefore, early deployment necessitates full logistic self-sufficiency and operational versatility. Also, collaboration with local and international medical teams can greatly enhance treatment capabilities.

  2. Replacement of the criticality accident alarm system in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Momose, Takumaro; Suzuki, Kei; Kawai, Keiichi

    2008-01-01

    A Criticality Accident Alarm System (CAAS) was installed as part of criticality safety management for use in reducing the radiation workers could be exposed to in the rare case of a criticality accident. The initial CAAS version was installed the Tokai Reprocessing Plant (TRP) in the 1980s. It includes units that can detect gamma-rays or neutron-rays released in criticality accidents (CADs), one of which consists of three plastic scintillation gamma detectors and three solid state neutron detectors with fissile material, and in being highly reliable utilizes the 2 out of 3 voting system. The purpose of this study is to give the design principles and procedures for determining the adequate relocation of the CADs within the TRP. The optimal places for the CADs to be relocated to were determined using a conservative evaluation method. Firstly, equipment needing to be monitored for criticality accidents was selected with consideration given to the risk of excessive exposure to workers. Secondly, the detection threshold of a minimum accident was set to be an increase in power of 10 15 fissions/s occurring within a rise-time of between 0.5 ms and 1 s. The sum of neutron and gamma doses of a minimum accident (10 15 fissions) was 0.3 Gy at an unshielded distance of 1 m. Finally, doses at where the CADs were installed were evaluated using parameters calculated with MCNP and ANISN. As a result, the alarm trip level of both the gamma detector and the neutron detector being set at 2.0 mGy/h enabled minimum criticality accidents to be conservatively detected. These results were then applied to the new CAD positions. (author)

  3. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    Science.gov (United States)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for

  4. Mortality in the l'aquila (central Italy) earthquake of 6 april 2009.

    Science.gov (United States)

    Alexander, David; Magni, Michele

    2013-01-07

    This paper presents the results of an analysis of data on mortality in the magnitude 6.3 earthquake that struck the central Italian city and province of L'Aquila during the night of 6 April 2009. The aim is to create a profile of the deaths in terms of age, gender, location, behaviour during the tremors, and other aspects. This could help predict the pattern of casualties and priorities for protection in future earthquakes. To establish a basis for analysis, the literature on seismic mortality is surveyed. The conclusions of previous studies are synthesised regarding patterns of mortality, entrapment, survival times, self-protective behaviour, gender and age. These factors are investigated for the data set covering the 308 fatalities in the L'Aquila earthquake, with help from interview data on behavioural factors obtained from 250 survivors. In this data set, there is a strong bias towards victimisation of young people, the elderly and women. Part of this can be explained by geographical factors regarding building performance: the rest of the explanation refers to the vulnerability of the elderly and the relationship between perception and action among female victims, who tend to be more fatalistic than men and thus did not abandon their homes between a major foreshock and the main shock of the earthquake, three hours later. In terms of casualties, earthquakes commonly discriminate against the elderly and women. Age and gender biases need further investigation and should be taken into account in seismic mitigation initiatives.

  5. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)

    1998-12-31

    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  6. Insights into earthquake hazard map performance from shaking history simulations

    Science.gov (United States)

    Stein, S.; Vanneste, K.; Camelbeeck, T.; Vleminckx, B.

    2017-12-01

    Why recent large earthquakes caused shaking stronger than predicted by earthquake hazard maps is under debate. This issue has two parts. Verification involves how well maps implement probabilistic seismic hazard analysis (PSHA) ("have we built the map right?"). Validation asks how well maps forecast shaking ("have we built the right map?"). We explore how well a map can ideally perform by simulating an area's shaking history and comparing "observed" shaking to that predicted by a map generated for the same parameters. The simulations yield shaking distributions whose mean is consistent with the map, but individual shaking histories show large scatter. Infrequent large earthquakes cause shaking much stronger than mapped, as observed. Hence, PSHA seems internally consistent and can be regarded as verified. Validation is harder because an earthquake history can yield shaking higher or lower than that predicted while being consistent with the hazard map. The scatter decreases for longer observation times because the largest earthquakes and resulting shaking are increasingly likely to have occurred. For the same reason, scatter is much less for the more active plate boundary than for a continental interior. For a continental interior, where the mapped hazard is low, even an M4 event produces exceedances at some sites. Larger earthquakes produce exceedances at more sites. Thus many exceedances result from small earthquakes, but infrequent large ones may cause very large exceedances. However, for a plate boundary, an M6 event produces exceedance at only a few sites, and an M7 produces them in a larger, but still relatively small, portion of the study area. As reality gives only one history, and a real map involves assumptions about more complicated source geometries and occurrence rates, which are unlikely to be exactly correct and thus will contribute additional scatter, it is hard to assess whether misfit between actual shaking and a map — notably higher

  7. Earthquake-relief APWR (Advanced Pressurized Water Reactor) plants

    International Nuclear Information System (INIS)

    Yoshinaga, Hidekazu; Oshibe, Toshihiro; Yamaura, Yoshihisa; Kokubo, Eiji

    1999-01-01

    The anti-seismic design conditions for nuclear power stations are extremely severe in Japan. Therefore, various measures, including the increase in building wall thickness and in the number of equipment supports, need to be implemented to satisfy the necessary anti-seismic design. This is one of the causes of the increase in the construction cost of power stations. Meanwhile, a seismic isolation system, which mitigates an input earthquake motion, has been attracting attention in the general construction industry since the Great Hansin Earthquake in 1995. An increasing number of buildings employing such a system have been constructed. The system is being more popular and socially accepted. At the same time, the anti-seismic nuclear power stations have already been operated in France and South Africa. Various reviews and researches are promoted in Japan to adopt the seismic isolation system in nuclear power stations. The building and equipment designs when the seismic isolation system is applied to APWR are reviewed based on the experience in Japan and overseas. Specifically, reviews were conducted on the following items and their technical and economical feasibility has been well confirmed: Earthquake-relief equipment properties. Building design. Equipment design. The reliability and economy on the building and equipment designs shall further be enhanced in order to maximize the advantages of seismic isolation system in the future. (author)

  8. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  9. Scientific, Engineering, and Financial Factors of the 1989 Human-Triggered Newcastle Earthquake in Australia

    Science.gov (United States)

    Klose, C. D.

    2006-12-01

    This presentation emphasizes the dualism of natural resources exploitation and economic growth versus geomechanical pollution and risks of human-triggered earthquakes. Large-scale geoengineering activities, e.g., mining, reservoir impoundment, oil/gas production, water exploitation or fluid injection, alter pre-existing lithostatic stress states in the earth's crust and are anticipated to trigger earthquakes. Such processes of in- situ stress alteration are termed geomechanical pollution. Moreover, since the 19th century more than 200 earthquakes have been documented worldwide with a seismic moment magnitude of 4.5losses of triggered earthquakes. An hazard assessment, based on a geomechanical crust model, shows that only four deep coal mines were responsible for triggering this severe earthquake. A small-scale economic risk assessment identifies that the financial loss due to earthquake damage has reduced mining profits that have been re-invested in the Newcastle region for over two centuries beginning in 1801. Furthermore, large-scale economic risk assessment reveals that the financial loss is equivalent to 26% of the Australian Gross Domestic Product (GDP) growth in 1988/89. These costs account for 13% of the total costs of all natural disasters (e.g., flooding, drought, wild fires) and 94% of the costs of all earthquakes recorded in Australia between 1967 and 1999. In conclusion, the increasing number and size of geoengineering activities, such as coal mining near Newcastle or planned carbon dioxide Geosequestration initiatives, represent a growing hazard potential, which can negatively affect socio-economic growth and sustainable development. Finally, hazard and risk degrees, based on geomechanical-mathematical models, can be forecasted in space and over time for urban planning in order to prevent economic losses of human-triggered earthquakes in the future.

  10. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    Science.gov (United States)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    of biased uncertainty of the back projection. Preliminary results from the Venezuela data set shows an East to West rupture propagation along the fault with sub-Rayleigh rupture speed, consistent with a compact source with two significant asperities which are confirmed by source time function obtained from Green’s function deconvolution and other source inversion results. These efforts could lead the Venezuela National Seismic Network to play a prominent role in the timely characterization of the rupture process of large earthquakes in the Caribbean, including the future ruptures along the yet unbroken segments of the Enriquillo fault system.

  11. 33 CFR 222.4 - Reporting earthquake effects.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting earthquake effects. 222..., DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.4 Reporting earthquake effects. (a) Purpose. This... significant earthquakes. It primarily concerns damage surveys following the occurrences of earthquakes. (b...

  12. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  13. Stress Drops of Earthquakes on the Subducting Pacific Plate in the South-East off Hokkaido, Japan

    Science.gov (United States)

    Saito, Y.; Yamada, T.

    2013-12-01

    using the model of Madariaga (1976). The estimated values of stress drop range from 1 to 10 MPa with a little number of outliers(Fig.(a)). Fig.(b) shows the spatial distribution of stress drops in south-east off Hokkaido, Japan. We found that earthquakes occurred around 42N 145E had larger stress drops. We are going to analyze smaller earthquakes and investigate the spatial pattern of the stress drop in the future. Fig. (a) Estimated values of stress drop with respect to seismic moments of earthquakes. (b) Spatial distribution of stress drops.

  14. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  15. Earthquake data base for Romania

    International Nuclear Information System (INIS)

    Rizescu, M.; Ghica, D.; Grecu, B.; Popa, M.; Borcia, I. S.

    2002-01-01

    A new earthquake database for Romania is being constructed, comprising complete earthquake information and being up-to-date, user-friendly and rapidly accessible. One main component of the database consists from the catalog of earthquakes occurred in Romania since 984 up to present. The catalog contains information related to locations and other source parameters, when available, and links to waveforms of important earthquakes. The other very important component is the 'strong motion database', developed for strong intermediate-depth Vrancea earthquakes where instrumental data were recorded. Different parameters to characterize strong motion properties as: effective peak acceleration, effective peak velocity, corner periods T c and T d , global response spectrum based intensities were computed and recorded into this database. Also, information on the recording seismic stations as: maps giving their positioning, photographs of the instruments and site conditions ('free-field or on buildings) are included. By the huge volume and quality of gathered data, also by its friendly user interface, the Romania earthquake data base provides a very useful tool for geosciences and civil engineering in their effort towards reducing seismic risk in Romania. (authors)

  16. Mapping Tectonic Stress Using Earthquakes

    International Nuclear Information System (INIS)

    Arnold, Richard; Townend, John; Vignaux, Tony

    2005-01-01

    An earthquakes occurs when the forces acting on a fault overcome its intrinsic strength and cause it to slip abruptly. Understanding more specifically why earthquakes occur at particular locations and times is complicated because in many cases we do not know what these forces actually are, or indeed what processes ultimately trigger slip. The goal of this study is to develop, test, and implement a Bayesian method of reliably determining tectonic stresses using the most abundant stress gauges available - earthquakes themselves.Existing algorithms produce reasonable estimates of the principal stress directions, but yield unreliable error bounds as a consequence of the generally weak constraint on stress imposed by any single earthquake, observational errors, and an unavoidable ambiguity between the fault normal and the slip vector.A statistical treatment of the problem can take into account observational errors, combine data from multiple earthquakes in a consistent manner, and provide realistic error bounds on the estimated principal stress directions.We have developed a realistic physical framework for modelling multiple earthquakes and show how the strong physical and geometrical constraints present in this problem allow inference to be made about the orientation of the principal axes of stress in the earth's crust

  17. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  18. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    Science.gov (United States)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  19. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  20. New Geological Evidence of Past Earthquakes and Tsunami Along the Nankai Trough, Japan

    Science.gov (United States)

    De Batist, M. A. O.; Heyvaert, V.; Hubert-Ferrari, A.; Fujiwara, O.; Shishikura, M.; Yokoyama, Y.; Brückner, H.; Garrett, E.; Boes, E.; Lamair, L.; Nakamura, A.; Miyairi, Y.; Yamamoto, S.

    2015-12-01

    The east coast of Japan is prone to tsunamigenic megathrust earthquakes, as tragically demonstrated in 2011 by the Tōhoku earthquake (Mw 9.0) and tsunami. The Nankai Trough subduction zone, to the southwest of the area affected by the Tōhoku disaster and facing the densely populated and heavily industrialized southern coastline of central and west Japan, is expected to generate another megathrust earthquake and tsunami in the near future. This subduction zone is, however, segmented and appears to be characterized by a variable rupture mode, involving single- as well as multi-segment ruptures, which has immediate implications for their tsunamigenic potential, and also renders the collection of sufficiently long time records of past earthquakes and tsunami in this region fundamental for an adequate hazard and risk assessment. Over the past three decades, Japanese researchers have acquired a large amount of geological evidence of past earthquakes and tsunami, in many cases extending back in time for several thousands of years. This evidence includes uplifted marine terraces, turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. Despite these efforts, current understanding of the behaviour of the subduction zone still remains limited, due to site-specific evidence creation and preservation thresholds and issues over alternative hypotheses for proposed palaeoseismic evidence and insufficiently precise chronological control. Within the QuakeRecNankai project we are generating a long and coherent time series of megathrust earthquake and tsunami recurrences along the Nankai Trough subduction zone by integrating all existing evidence with new geological records of paleo-tsunami in the Lake Hamana region and of paleo-earthquakes from selected lakes in the Mount Fuji area. We combine extensive fieldwork in coastal plain areas and lakes, with advanced sedimentological and geochemical analyses and innovative dating techniques.