WorldWideScience

Sample records for future hadron facilities

  1. LOS ALAMOS: Hadron future

    International Nuclear Information System (INIS)

    Ernst, David J.

    1992-01-01

    At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front

  2. LOS ALAMOS: Hadron future

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, David J.

    1992-11-15

    At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front.

  3. Proceedings of the workshop on future hadron facilities in the US

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the following topics on future hadron facilities: Workshop on future hadron facilities in the US; 30 x 30 TeV-summary report; A high luminosity, 2 x 2 TeV collider in the tevatron tunnel; magnets working group; cryogenics discussion; vacuum report; antiproton source production; injector working group; interaction region working group; lattice/beam dynamics working group; LEBT for high-luminosity colliders; some notes on long-range beam-beam effects for the 2TeV collider; synchrotron radiation masks for high energy proton accelerators. Emittance preservation in a proton synchrotron; beam-beam interaction effects on betatron tunes; analytic solutions for phase trombone modules; and chromatic corrections of RHIC when one or two insertions is at Β* = 0.5m

  4. Proceedings of the workshop on future hadron facilities in the US

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    This report discusses the following topics on future hadron facilities: Workshop on future hadron facilities in the US; 30 {times} 30 TeV-summary report; A high luminosity, 2 {times} 2 TeV collider in the tevatron tunnel; magnets working group; cryogenics discussion; vacuum report; antiproton source production; injector working group; interaction region working group; lattice/beam dynamics working group; LEBT for high-luminosity colliders; some notes on long-range beam-beam effects for the 2TeV collider; synchrotron radiation masks for high energy proton accelerators. Emittance preservation in a proton synchrotron; beam-beam interaction effects on betatron tunes; analytic solutions for phase trombone modules; and chromatic corrections of RHIC when one or two insertions is at {Beta}* = 0.5m.

  5. A report on the Indiana University Workshop on future U.S. hadron facilities

    International Nuclear Information System (INIS)

    Syphers, M.J.

    1995-01-01

    In July 1994 a workshop was held at Indiana University to study and discuss options for future hadron collider facilities in the United States, and to identify related R ampersand D programs. The workshop was conducted under the auspices of the Accelerator Physics, Technologies, and Facilities Working Group of the DPF Long Term Planning Study. Roughly 50 participants from 17 institutions in the U.S. and Europe (CERN) were organized into six working groups to study magnets, cryogenics and vacuum, antiproton sources, injectors, interaction regions, and lattice and beam dynamics. Upgrades to existing facilities (namely, Fermilab) and a post-LHC facility were discussed at the workshop. In this paper, the discussion will focus on the post-LHC facility. One of the specific goals of the workshop was to develop a defensible parameters list for a 30 TeV x 30 TeV hadron collider with luminosity of 1 x 10 34 cm -2 sec -1 . While this accelerator would have only 50% higher energy than the SSC design, it was realized that the role of synchrotron radiation at this energy would significantly enhance the design and operation of the machine. Radiation damping times of a few hours, rather than one day, can be realized thus allowing less intense, but brighter proton beams

  6. WORKSHOPS: Hadron facilities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities

  7. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  8. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere

  9. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  10. Kaon: an advanced hadron facility

    International Nuclear Information System (INIS)

    Oers, W.T.H. van; Manitoba Univ., Winnipeg, MB

    1990-01-01

    An advanced hadron facility KAON has been proposed to be built in Canada. The report of the Project Definition Study has been presented to both levels of Government (federal and provincial) on May 24, 1990, for action in the near future. A short discussion will be given of the scientific motivation. The physics along the intensity and precision frontier is fully complementary to the physics along the energy frontier. Following, a description will be given of the 100 μA, 30 GeV proton synchrotron proposed. The accelerator will consist of five rings using the present 500 MeV cyclotron as an injector. If the project were funded this year, the accelerators would be completed by 1995 or so, with the experimental program starting a year later

  11. Japan Hadron Facility (JHF) project

    International Nuclear Information System (INIS)

    Nagamiya, S.

    1999-01-01

    The Japan Hadron Facility (JHF) is the next accelerator project proposed at KEK to promote exciting sciences by utilising high-intensity proton beams. The project is characterised by three unique features: hadronic beams of the world's highest intensity; a variety of beams from one accelerator complex; frontier sciences to cover a broad research area including nuclear physics, particle physics, material sciences and life sciences by utilising a common accelerator complex. (author)

  12. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  13. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  14. Researches at hadron experiment facility

    International Nuclear Information System (INIS)

    Sawada, Shinya

    2006-01-01

    Some of the nuclear, hadron and elementary particle experiments proposed to hadron experiment facility to use the extracted slow proton beam at J-PARC are overviewed. Characteristic feature of the facility is the secondary beam obtained from the intense proton beam. Nuclear hadron physics experiments and kaon rare decay experiments are presented here as the typical ones. Hypernuclear spectroscopy with S=-2 state is expected to be started as soon as the beam becomes available. The kaon bound systems not only with three nucleons like K-pnn but also more numerous like Li and Be are to be studied systematically. Bound states of two kaons using (K - , K + ) reaction will be challenged. Pentaquark will be searched for and its properties will be studied if it really exists. Nuclear structure studies from the view point of large Bjorken x are planned to be studied by irradiating hydrogen, deuteron or heavier targets with primary proton beam and analyzing generated muon pairs. Properties of vector mesons in nuclear matter are to be studied with the primary beam. Neutral kaon rare decay will be investigated to study CP nonconservation. Large progress of elementary particle physics is anticipated by using the intense proton beam at J-PARC. (S. Funahashi)

  15. Particle theory and intense hadron facilities

    International Nuclear Information System (INIS)

    Ng, J.N.

    1989-05-01

    A brief overview of particle physics that can be done at an intense hadron facility (IHF) is given. The emphasis is placed on testing the standard model, light Higgs boson searches and CP violation, which are areas an IHF can do especially well

  16. Materials science at an Advanced Hadron Facility

    International Nuclear Information System (INIS)

    Pynn, R.

    1988-01-01

    The uses of neutron scattering as a probe for condensed matter phenomena are described briefly and some arguments are given to justify the community's desire for more powerful neutron sources. Appropriate design parameters for a neutron source at an Advanced Hadron Facility are presented, and such a source is compared with other existing and planned spallation neutron sources. 5 refs

  17. Experiments at future hadron colliders

    International Nuclear Information System (INIS)

    Paige, F.E.

    1991-01-01

    This report summarizes signatures and backgrounds for processes in high-energy hadronic collisions, particularly at the SSC. It includes both signatures for new particles -- t quarks, Higgs bosons, new Ζ' bosons, supersymmetric particles, and technicolor particles -- and other experiments which might be done. It is based on the 1990 Snowmass Workshop and on work contained in the Expressions of Interest submitted to the SSC. 46 refs., 19 figs., 1 tab

  18. Nuclear physics at multi-GeV hadron facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    The important contributions Multi-GeV hadron beam facilities can make to the field of Nuclear Physics have been recognized by the community for a decade. Such a facility has featured prominently in each NSAC planning exercise in this period. As Nuclear Physicists realize they must become more concerned with the quark structure of nuclei and the applications of Quantum Chromodynamics to many body systems, the need for experiments at such facilities has become more urgent. In this talk, I will present a personal view of some of the significant recent Nuclear Physics results with multi-GeV hadron facilities, the most important opportunities which can open up to us in the future, and demonstrate how our field must take advantage of these opportunities to progress. I will also report on the recent discussions in the community to make this possible

  19. A High Intensity Hadron Facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1988-01-01

    We have present one of several possibilities for the evolution of the AGS complex into a high intensity hadron facility. One could consider other alternatives, such as using the AGS as the Collector and constructing a new 9-30 GeV machine. We believe the most responsible scenario must minimize the cost and downtime to the ongoing physics program. With a stepwise approach, starting with the Booster, the physics program can evolve without a single major commitment in funds. At each step an evaluation of the funds versus physics merit can be made. As a final aside, each upgrade at the AGS and Booster is presently being implemented to support an interleaved operation of both protons and ions. 1 fig., 6 tabs

  20. Concluding remarks on future facilities

    International Nuclear Information System (INIS)

    Jean-Marie, B.

    1989-12-01

    The principles of some of the facilities and projects for the study of hadron spectroscopy are summarized. The work is focalized on e + e - machines, which are classified according to the quark family they can study: U,D,S quark families, C quark and τ studies and B quark family. The analysis leads to the conclusion that high luminosity e + e - machines are needed to progress in the hadron spectroscopy exploration

  1. Proceedings of the Advanced Hadron Facility accelerator design workshop

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1989-01-01

    The International Workshop on Hadron Facility Technology was held February 22-27, 1988, at the Study Center at Los Alamos National Laboratory. The program included papers on facility plans, beam dynamics, and accelerator hardware. The parallel sessions were particularly lively with discussions of all facets of kaon factory design. The workshop provided an opportunity for communication among the staff involved in hadron facility planning from all the study groups presently active. The recommendations of the workshop include: the need to use h=1 RF in the compressor ring; the need to minimize foil hits in painting schemes for all rings; the need to consider single Coulomb scattering in injection beam los calculations; the need to study the effect of field inhomogeneity in the magnets on slow extraction for the 2.2 Tesla main ring of AHF; and agreement in principle with the design proposed for a joint Los Alamos/TRIUMF prototype main ring RF cavity

  2. Lepton-hadron scattering past and future

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    1985-01-01

    Lepton-hadron scattering experiments have played a key role in the development and verification of the Standard Model. The lectures will summarize the main ideas and experimental results concerning the substructure of the nucleon, the structure of the weak currents and the production of new particles. In a second step it will be discussed how experiments at e-p colliders like HERA can lead beyond the Standard Model by studying the substructure of quarks and leptons, the existence of new kinds of interaction and/or new particles.

  3. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  4. Updates on the optics of the future hadron-hadron collider FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2093721; Boutin, David Jean Henri; Dalena, Barbara; Holzer, Bernhard; Langner, Andy Sven; Schulte, Daniel

    2017-01-01

    The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The layout of FCC-hh has been optimized to a more compact design following recommendations from civil engineering aspects. The updates on the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV. Special emphasis is put on the dispersion suppressors and general beam cleaning sections as well as first considerations of injection and extraction sections.

  5. Future hadron physics: WW, WZ and ZZ final states

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1990-07-01

    A review is made of some interesting topics in future running at hadron colliders: the search for heavy top quarks and possible exotic isosinglet quarks; the search for a heavy Higgs boson; the search for possible strong interactions in the electroweak symmetry-breaking sector. They all lead to the study of final states containing two heavy gauge bosons WW, WZ or ZZ. (author)

  6. Lepton-hadron scattering: past, present and future

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-09-01

    The paper reviews the principal phenomena in lepton-hadron scattering. The subject is discussed under the topic headings: search for substructure in the nucleon; deep inelastic scattering; the role of gluons; partons in nuclei and the EMC effect; weak neutral currents; and future prospects. (UK)

  7. Structure of hadrons. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Knoll, J.; Noerenberg, W.; Wambach, J.

    2001-01-01

    The following topics were dealt with: Hadronic reactions and resonances, structure of mesons, baryons, glueballs, and hybrids, physics with strange and charmed quarks, future projects and facilities. (HSI)

  8. Present and future of hadron spectroscopy at Jefferson Lab

    CERN Document Server

    Battaglieri, M

    2010-01-01

    The CLAS Collaboration is operating the CLAS detector at theThomas Jefferson National Laboratory (JLab) in USA. The unique combination of the detector large acceptance and high intensity of the continuous electron beam of CEBAF has opened the way to a comprehensive study of the hadrons structure in kinematic domain between nuclear and particle physics. Hadron spectroscopy plays a central role in the physics program of the Collaboration. Many exclusive channels have been studied with virtual and real photon beams in a wide kinematic providing key information about the hadron structure as well as the reactions dynamic. In this contribution, the rich physics program covered by present and future experiments will be reviewed.

  9. Control system considerations for the AHF [Advanced Hadron Facility

    International Nuclear Information System (INIS)

    Butler, H.S.

    1989-01-01

    This paper identifies some of the more important issues related to the design of a control system for the Advanced Hadron Facility (AHF). It begins with a brief description of the site layout and how the various accelerators operate in tandem to deliver beam to several experimental areas. Then it focuses on the control system by estimating from existing installations the number of data and control channels to be expected for the AHF. The total comes to 50,000. This channel count is converted to manpower and cost estimates for the control system by extrapolating from other accelerator facilities. Finally, special attention is given to two subsystems -- magnets and diagnostic equipment -- and the impact they will have on the control system. 11 refs., 5 figs., 6 tabs

  10. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  11. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  12. Future Facility: FAIR at GSI

    International Nuclear Information System (INIS)

    Rosner, Guenther

    2007-01-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations

  13. Perspectives at the future accelerator facility FAIR

    International Nuclear Information System (INIS)

    Stroth, J.

    2005-01-01

    The future Facility for Antiproton and Ion Research (FAIR) in Darmstadt will provide ideal conditions for a diverse research programme addressing various aspects of strongly interacting systems, fundamental interactions and dense plasmas. The projected complex combines two new synchrotrons with various storage rings, foresees cooling of beams and permits fixed target as well as in-beam experiments. This presentation will focus on the future research activities at FAIR, which can be grouped into 5 research areas: the structure and reactions of rare isotopes, hadron physics with brilliant antiproton beams, nuclear matter at high densities, atomic physics of antimatter and in strong electromagnetic fields, and laser as well as ion induced plasma physics. Emphasis will be put on the experimental installations addressing nuclear physics with relevance for astrophysics. (author)

  14. Towards an advanced hadron facility at Los Alamos

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1988-01-01

    In the 1987 workshop, it was pointed out that activation of the accelerator is a serious problem. At this workshop, it was suggested that a new type of slow extraction system is needed to reduce the activation. We report on the response to this need. The Los Alamos plan is reviewed including as elements the long lead-time R and D in preparation for a 1993 construction start, a menu of accelerator designs, improved losses at injection and extraction time, active participation in the development of PSR, and accelerated hardware R and D program, and close collaboration with TRIUMF. We review progress on magnets and power supplies, on ceramic vacuum chambers, and on ferrite-turned rf systems. We report on the plan for a joint TRIUMF-Los Alamos main-ring cavity to be tested in PSR in 1989. The problem of beam losses is discussed in detail and a recommendation for a design procedure for the injection system is made. This recommendation includes taking account of single Coulomb scattering, a painting scheme for minimizing foil hits, and a collimator and dump system for containing the expected spills. The slow extraction problem is reviewed and progress on an improved design is discussed. The problem of designing the accelerators for minimum operation and maintenance cost is briefly discussed. The question of the specifications for an advanced hadron facility is raised and it is suggested that the Los Alamos Proposal of a dual energy machine - 1.6 GeV and 60 GeV - is a better match to the needs of the science program than the single-energy proposals made elsewhere. It is suggested that design changes need be made in all of the world's hadron facility proposals to prepare for high-intensity operation

  15. Dosimetric And Fluence Measurements At Hadron Facilities For LHC Radiation Damage Studies

    CERN Document Server

    León-Florián, E

    2001-01-01

    Dosimetry plays an essential role in experiments assessing radiation damage and hardness for the components of detectors to be operated at the future Large Hadron Collider (LHC), CERN (European Laboratory for Particle Physics), Geneva, Switzerland. Dosimetry is used both for calibration of the radiation fields and estimate of fluences and doses during the irradiation tests. The LHC environment will result in a complex radiation field composed of hadrons (mainly neutrons, pions and protons) and photons, each having an energy spectrum ranging from a few keV to several hundreds of MeV or several GeV, even. In this thesis, are exposed the results of measurements of particle fluences and doses at different hadron irradiation facilities: SARA, πE1-PSI and ZT7PS used for testing the radiation hardness of materials and equipment to be used in the future experiments at LHC. These measurements are applied to the evaluation of radiation damage inflicted to various semiconductors (such as silicon) and electronics ...

  16. The future of the Large Hadron Collider and CERN.

    Science.gov (United States)

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  17. Hunting electroweakinos at future hadron colliders and direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cortona, Giovanni Grilli di [SISSA - International School for Advanced Studies,Via Bonomea 265, I-34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, I-34127 Trieste (Italy)

    2015-05-07

    We analyse the mass reach for electroweakinos at future hadron colliders and their interplay with direct detection experiments. Motivated by the LHC data, we focus on split supersymmetry models with different electroweakino spectra. We find for example that a 100 TeV collider may explore Winos up to ∼7 TeV in low scale gauge mediation models or thermal Wino dark matter around 3 TeV in models of anomaly mediation with long-lived Winos. We show moreover how collider searches and direct detection experiments have the potential to cover large part of the parameter space even in scenarios where the lightest neutralino does not contribute to the whole dark matter relic density.

  18. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (first of two) included papers on architecture, beam diagnostics, compressors, and linacs. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended

  19. Unbunched beam electron-proton instability in the PSR and advanced hadron facilities

    International Nuclear Information System (INIS)

    Wang, Tai-Sen; Pisent, A.; Neuffer, D.V.

    1989-01-01

    We studied the possibility of the occurrence of transverse instability induced by trapped electrons in unbunched beams in the Proton Storage Ring and the proposed Advance Hadron Facility (AHF) at Los Alamos, as well as in the proposed Kaon Factory at TRIUMF. We found that the e-p instability may be possible for unbunched beams in the PSR but is unlikely to occur in the advanced hadron facilities. 8 refs., 4 figs

  20. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    Science.gov (United States)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  1. Proceedings of the international workshop on hadron facility technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  2. Precision Muon Tracking at Future Hadron Colliders with sMDT Chambers

    CERN Document Server

    Kortner, Oliver; Müller, Felix; Nowak, Sebastian; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers are a cost-effective technology for high-precision muon tracking. The rate capability of the sMDT chambers has been extensively tested at the Gamma Irradiation Facility at CERN in view of expected rates at future high-energy hadron colliders. Results show that it fulfills the requirements over most of the acceptance of muon detectors. The optimization of the read-out electronics to further increase the rate capability of the detectors is discussed. Chambers of this type are under construction for upgrades of the muon spectrometer of the ATLAS detector at high LHC luminosities. Design and construction procedures have been optimized for mass production while providing a precision of better than 10 micrometers in the sense wire positions and the mechanical stability required to cover large areas.

  3. The future of facility management in Finland

    OpenAIRE

    Boateng, Ernest

    2011-01-01

    The objective of this study was to investigate the feasible future of facility management in Finland in order to provide an overview of the future of facility management. This is intended to serve as a guideline for the educational sector, facility management service companies, and the Facility management association in Finland (FIFMA) for future development. Qualitative method, precisely semi-structured/unstructured interview was adopted to address the problems in this study. The study c...

  4. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended

  5. The Future of Hadrons: The Nexus of Subatomic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2011-09-01

    The author offers brief observations on matters discussed at the XIV International Conference on Hadron Spectroscopy and explore prospects for hadron physics. Quantum chromodynamics (QCD) has been validated as a new law of nature. It is internally consistent up to very high energies, and so could be a complete theory of the strong interactions. Whether QCD is the final answer for the strong interactions is a subject for continuing experimental tests, which are being extended in experimentation at the Large Hadron Collider. Beyond the comparison of perturbative calculations with experiment, it remains critically important to test the confinement hypothesis by searching for free quarks, or for signatures of unconfined color. Sensitive negative searches for quarks continue to be interesting, and the definitive observation of free quarks would be revolutionary. Breakdowns of factorization would compromise the utility of perturbative QCD. Other discoveries that would require small or large revisions to QCD include the observation of new kinds of colored matter beyond quarks and gluons, the discovery that quarks are composite, or evidence that SU(3){sub c} gauge symmetry is the vestige of a larger, spontaneously broken, color symmetry. While probing our underlying theory for weakness or new openings, we have plenty to do to apply QCD to myriad experimental settings, to learn its implications for matter under unusual conditions, and to become more adept at calculating its consequences. New experimental tools provide the means for progress on a very broad front.

  6. Hadronic cross-sections in two photon processes at a future linear collider

    International Nuclear Information System (INIS)

    Godbole, Rohini M.; Roeck, Albert de; Grau, Agnes; Pancheri, Giulia

    2003-01-01

    In this note we address the issue of measurability of the hadronic cross-sections at a future photon collider as well as for the two-photon processes at a future high energy linear e + e - collider. We extend, to higher energy, our previous estimates of the accuracy with which the γ γ cross-section needs to be measured, in order to distinguish between different theoretical models of energy dependence of the total cross-sections. We show that the necessary precision to discriminate among these models is indeed possible at future linear colliders in the Photon Collider option. Further we note that even in the e + e - option a measurement of the hadron production cross-section via γ γ processes, with an accuracy necessary to allow discrimination between different theoretical models, should be possible. We also comment briefly on the implications of these predictions for hadronic backgrounds at the future TeV energy e + e - collider CLIC. (author)

  7. An advanced hadron facility: A combined kaon factory and cold-neutron source

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1987-01-01

    A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H - linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 μAmp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed

  8. Lepton-hadron physics: past, present and future

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1989-07-01

    The scattering of leptons (e, μ, ν) hadrons at high momentum transfer has been the incisive probe of the internal dynamics of the proton. Point-like ''partons'' are found inside the proton. These have the electromagnetic and weak properties expected of quarks, and are in dynamical equilibrium with a sea of virtual quark-antiquark pairs and gluons, the quanta of the strong force. Neutrino scattering has probed the weak coupling of the quarks, and their parity-violating handedness. Weak neutral currents (coupling with the Z 0 boson) were discovered in neutrino scattering, and parity-violating γ-Z 0 interference was observed in electron-deuteron scattering. The higher momentum transfers that will be available at the HERA electron-proton storage ring, now under construction, will expand greatly the kinematic region available to search for new phenomena at and beyond the W,Z energy scale. (author)

  9. Present status and future project on hadron physics with KEK proton synchrotron

    International Nuclear Information System (INIS)

    Masaike, Akira

    1984-01-01

    Recent experimental results on hadron physics using a 12 GeV proton synchrotron at KEK are presented. Several future projects which have been proposed as a post-shutdown program from 1985 including hypernuclear physics, physics with polarized beam and heavy ion beam are also reported. (author)

  10. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  11. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  12. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  13. Safety test facilities - status, needs, future directions

    International Nuclear Information System (INIS)

    Heusener, G.; Cogne, F.

    1979-08-01

    A survey is given of the in-pile programs which are presently or in the near future being performed in the DeBeNe-area and in France. Only those in-pile programs are considered which are dealing with severe accidents that might lead to disruption of major parts of the core. By comparing the needs with the goals of the present programs points are identified which are not sufficiently well covered up till now. The future procedure is described: the existing facilities will be used to the largest possible extent. Whenever it is necessary, upgrading and improvement will be foreseen. Studies of a Test Facility allowing the transient testing of large pin bundles should be continued. The construction of such a facility in Europe in the near future however seems premature

  14. ANKE, a new facility for medium energy hadron physics at COSY-Juelich

    International Nuclear Information System (INIS)

    Barsov, S.; Bechstedt, U.; Bothe, W.; Bongers, N.; Borchert, G.; Borgs, W.; Braeutigam, W.; Buescher, M.; Cassing, W.; Chernyshev, V.; Chiladze, B.; Dietrich, J.; Drochner, M.; Dymov, S.; Erven, W.; Esser, R.; Franzen, A.; Golubeva, Ye.; Gotta, D.; Grande, T.; Grzonka, D.; Hardt, A.; Hartmann, M.; Hejny, V.; Horn, L. van; Jarczyk, L.; Junghans, H.; Kacharava, A.; Kamys, B.; Khoukaz, A.; Kirchner, T.; Klehr, F.; Klein, W.; Koch, H.R.; Komarov, V.I.; Kondratyuk, L.; Koptev, V.; Kopyto, S.; Krause, R.; Kravtsov, P.; Kruglov, V.; Kulessa, P.; Kulikov, A.; Lang, N.; Langenhagen, N.; Lepges, A.; Ley, J.; Maier, R.; Martin, S.; Macharashvili, G.; Merzliakov, S.; Meyer, K.; Mikirtychiants, S.; Mueller, H.; Munhofen, P.; Mussgiller, A.; Nekipelov, M.; Nelyubin, V.; Nioradze, M.; Ohm, H.; Petrus, A.; Prasuhn, D.; Prietzschk, B.; Probst, H.J.; Pysz, K.; Rathmann, F.; Rimarzig, B.; Rudy, Z.; Santo, R.; Paetz Schieck, H.; Schleichert, R.; Schneider, A.; Schneider, Chr.; Schneider, H.; Schwarz, U.; Seyfarth, H.; Sibirtsev, A.; Sieling, U.; Sistemich, K.; Selikov, A.; Stechemesser, H.; Stein, H.J.; Strzalkowski, A.; Watzlawik, K.-H.; Wuestner, P.; Yashenko, S.; Zalikhanov, B.; Zhuravlev, N.; Zwoll, K.; Zychor, I.; Schult, O.W.B.; Stroeher, H.

    2001-01-01

    ANKE is a new experimental facility for the spectroscopy of products from proton-induced reactions on internal targets. It has recently been implemented in the accelerator ring of the cooler synchrotron COSY of the Forschungszentrum Juelich (FZ-Juelich), Germany. The device consists of three dipole magnets, various target installations and dedicated detection systems. It will enable a variety of hadron-physics experiments like meson production in elementary proton-nucleon processes and studies of medium modifications in proton-nucleus interactions

  15. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    Science.gov (United States)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  16. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  17. n_TOF facility past and future

    CERN Document Server

    Vlachoudis, V

    2010-01-01

    The neutron Time of Flight (n_TOF) facility at CERN is a source of high flux of neutrons obtained by the spallation process of 20 GeV/c protons onto a solid lead target and the remarkable beam intensity of the Proton Synchrotron (PS). From November 2008 the n_TOF facility resumed operation after a halt of 4 years due to radio-protection issues. It features a new lead spallation target with a more robust design, more efficient cooling, separate moderator circuit, target area ventilation and most important without any loss of the unique neutron performances of the previous target. Moreover the separate moderator circuit will permit in the future the use of borated or heavy water instead of normal water to reduce the 2.2 MeV gamma background for the neutron capture measurements. The facility has been commissioned in Nov 2008, with performances similar of the previous target and predicted by Monte Carlo simulations. The facility will resume operation for physics from May 2009 with 4 experimental proposals already...

  18. Supernovae and cosmology with future European facilities.

    Science.gov (United States)

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  19. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    Science.gov (United States)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  20. Probing gluon number fluctuation effects in future electron–hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, J.T.; Gonçalves, V.P. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Kugeratski, M.S. [Universidade Federal de Santa Catarina, Campus Joinville, Rua Presidente Prudente de Moraes, 406, CEP 89218-000, Joinville, SC (Brazil)

    2014-10-15

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron–hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive ep observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. Our results indicate that the study of these observables in the future colliders can be useful to constrain the presence of gluon number fluctuations.

  1. Measuring CP nature of top-Higgs couplings at the future Large Hadron electron Collider

    Directory of Open Access Journals (Sweden)

    Baradhwaj Coleppa

    2017-07-01

    Full Text Available We investigate the sensitivity of top-Higgs coupling by considering the associated vertex as CP phase (ζt dependent through the process pe−→t¯hνe in the future Large Hadron electron Collider. In particular the decay modes are taken to be h→bb¯ and t¯ → leptonic mode. Several distinct ζt dependent features are demonstrated by considering observables like cross sections, top-quark polarisation, rapidity difference between h and t¯ and different angular asymmetries. Luminosity (L dependent exclusion limits are obtained for ζt by considering significance based on fiducial cross sections at different σ-levels. For electron and proton beam-energies of 60 GeV and 7 TeV respectively, at L=100 fb−1, the regions above π/5<ζt≤π are excluded at 2σ confidence level, which reflects better sensitivity expected at the Large Hadron Collider. With appropriate error fitting methodology we find that the accuracy of SM top-Higgs coupling could be measured to be κ=1.00±0.17(0.08 at s=1.3(1.8 TeV for an ultimate L=1ab−1.

  2. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  3. International Workshop on Exotic Hadronic Atoms, Deeply Bound Kaonic Nuclear States and Antihydrogen : Present Results, Future Challenges

    CERN Document Server

    Widmann, E; Curceanu, C; Trento 2006; Trento06

    2006-01-01

    These are the miniproceedings of the workshop "Exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges," which was held at the European Centre for Theoretical Nuclear Physics and Related Studies (ECT*), Trento (Italy), June 19-24, 2006. The document includes a short presentation of the topics, the list of participants, and a short contribution from each speaker.

  4. The case for future hadron colliders from B → K (*) μ + μ - decays

    Science.gov (United States)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  5. The future IKO-PION-MUON-facility

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Arnold, H.; Dantzig, R. van; Konijn, J.

    1975-09-01

    Information is given on the pion and muon physics facility planned at the Institute for Nuclear Physics Research (IKO) with special notice of the fluxes of pions and muons expected at this facility, as well as on the structure of these secondary beams

  6. Processes with weak gauge boson pairs at hadron colliders. Precise predictions and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Salfelder, Lukas

    2017-02-08

    In the last years, scattering processes comprising pairs of the massive weak gauge bosons gain more and more attention. Those reactions provide particularly promising means to investigate the very mechanism responsible for electroweak symmetry breaking in the Standard Model of particle physics and to search for new physics entering via the weak sector of the theory. Precisely predicting the differential distributions of the final-state particles in realistic conditions is an essential prerequisite to potentially reveal tiny deviations induced by physics beyond the Standard Model. In this thesis we present a calculation of the next-to-leading order (NLO) electroweak corrections to W-boson pair production at CERNs Large Hadron Collider (LHC), as well as a detailed analysis of vector-boson scattering (VBS) processes at a future high-energy proton.proton collider. In particular, our calculation of the NLO electroweak corrections to the hadronic process pp→W{sup +}W{sup -}→4 leptons takes the leptonic W-boson decays as well as all off-shell effects fully into account and, thus, is the first prediction providing NLO accuracy everywhere in phase space. Employing realistic event selection criteria, we study the influence of the corrections in situations that are typical for the experimental analyses in the high-energy region and for Higgs-boson precision studies in the channel H→WW{sup *}, to which direct W-boson pair production represents an important irreducible background. We observe non-trivial distortions of the differential distributions that, if not properly included in upcoming analyses, could easily be misidentified as first signs of new physics. Furthermore, we compare our predictions to previous results obtained by employing the so-called double-pole approximation. At small and intermediate scales the two approaches show the expected agreement at the level of fractions of a percent, while in the TeV range the differences may easily reach several tens of

  7. Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider

    CERN Document Server

    Klyukhin, V.I.; Berriaud, C.; Curé, B.; Dudarev, A.; Gaddi, A.; Gerwig, H.; Hervé, A.; Mentink, M.; Rolando, G.; Pais Da Silva, H.F.; Wagner, U.; ten Kate, H. H. J.

    2015-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of \\pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from \\pm 2.7...

  8. Superconducting Magnet with the Minimum Steel Yoke for the Hadron Future Circular Collider Detector

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Dudarev, A.; Gaddi, A.; Gerwig, H.; Mentink, M.; Da Silva, H. Pais; Rolando, G.; ten Kate, H. H. J.; Berriaud, C.P.

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T in combination with two superconducting dipole and two conventional toroid magnets is proposed for a FCC-hh experimental setup. The coil of 23.468 m long has seven 3.35 m long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness, and the 0.7 m thick nose disk and four 0.6 m thick end-cap disks each side. The maximum outer diameter of the yoke is 17.7 m; the length is 62.6 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity about \\pm 2.7. The superconducting dipole magnets allow measuring the charged particle momenta in the pseudora...

  9. Calibration of the hadronic calorimeter prototype for a future lepton collider

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Sarah; Garutti, Erika [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The CALICE AHCAL technological prototype is a hadronic calorimeter prototype for a future e{sup +}e{sup -} - collider. It is designed as a sampling calorimeter alternating steel absorber plates and active readout layers, segmented in single plastic scintillator tiles of 3 x 3 x 0.3 cm{sup 3} volume. Each tile is individually coupled to a silicon photomultiplier, read out by a dedicated ASIC with energy measurement and time stamping capability. The high granularity is meant to enable imaging and separation of single showers, for a Particle Flow approach to the jet energy measurement. The prototype aims to establish a scalable solution for an ILC detector. A total of 3456 calorimeter cells need to be inter-calibrated, for this the response to muons is used. The calibration procedure is presented, and the statistic and systematic uncertainties are discussed, which have a direct impact on the constant term of the calorimeter energy resolution. Additionally, the MIP yield in number of fired SiPM pixels can be compared betw een the muon calibration and a test bench calibrations obtained using a Sr sourc e on the single tiles before the assembly of the calorimeter. A good correlation would enable pre-calibation of the single channels on the test bench to be port able to the assemble detector. This hypothesis is checked with the present work.

  10. Hadron physics programs at J-PARC

    Directory of Open Access Journals (Sweden)

    Naruki M.

    2014-06-01

    Full Text Available The J-PARC Hadron Facility is designed as a multipurpose experimental facility for a wide range of particle and nuclear physics programs, aiming to provide the world highest intensity secondary beams. Currently three secondary beam lines; K1.8, K1.8BR and KL together with the test beam line named K1.1BR come into operation. Various experimental programs are proposed at each beam line and some of them have been performed so far. As the first experiment at the J-PARC Hadron Facility, the Θ+ pentaquark was searched for via the pion-induced hadronic reaction in the autumn of 2010. Also experimental programs to search for new hadronic states such as K−pp have started to perform a physics run. The current status and near future programs are introduced.

  11. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Vanderstraeten, Barbara, E-mail: barbara.vanderstraeten@uzgent.be [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium); Verstraete, Jan [Department of Radiation Oncology, University Hospital Gasthuisberg, Leuven (Belgium); De Croock, Roger [Belgian Hadron Therapy Center Foundation, Brussels (Belgium); De Neve, Wilfried; Lievens, Yolande [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium)

    2014-05-01

    Purpose: To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. Methods and Materials: The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Results: Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Conclusions: Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context.

  12. In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility

    International Nuclear Information System (INIS)

    Vanderstraeten, Barbara; Verstraete, Jan; De Croock, Roger; De Neve, Wilfried; Lievens, Yolande

    2014-01-01

    Purpose: To determine the treatment cost and required reimbursement for a new hadron therapy facility, considering different technical solutions and financing methods. Methods and Materials: The 3 technical solutions analyzed are a carbon only (COC), proton only (POC), and combined (CC) center, each operating 2 treatment rooms and assumed to function at full capacity. A business model defines the required reimbursement and analyzes the financial implications of setting up a facility over time; activity-based costing (ABC) calculates the treatment costs per type of patient for a center in a steady state of operation. Both models compare a private, full-cost approach with public sponsoring, only taking into account operational costs. Results: Yearly operational costs range between €10.0M (M = million) for a publicly sponsored POC to €24.8M for a CC with private financing. Disregarding inflation, the average treatment cost calculated with ABC (COC: €29,450; POC: €46,342; CC: €46,443 for private financing; respectively €16,059, €28,296, and €23,956 for public sponsoring) is slightly lower than the required reimbursement based on the business model (between €51,200 in a privately funded POC and €18,400 in COC with public sponsoring). Reimbursement for privately financed centers is very sensitive to a delay in commissioning and to the interest rate. Higher throughput and hypofractionation have a positive impact on the treatment costs. Conclusions: Both calculation methods are valid and complementary. The financially most attractive option of a publicly sponsored COC should be balanced to the clinical necessities and the sociopolitical context

  13. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  14. Evaluating Past and Future USCG Use of Ohmsett Test Facility

    Science.gov (United States)

    2016-10-01

    of Pages 22 22. Price Evaluating Past and Future USCG Use of Ohmsett Test Facility iv UNCLAS//Public | | CG-926 RDC | M. Fitzpatrick, et al...Opportunity Skimming System WEC Wave energy converter Evaluating Past and Future USCG Use of Ohmsett Test Facility x UNCLAS//Public | | CG-926 RDC | M...Date Summary of Effort OCT-NOV 1993 Vessel of Opportunity Skimming System (VOSS) (5 Weeks) APR-JUN 1996 Spilled Oil Recovery System (SORS) (8 Weeks

  15. Status of the 16 T dipole development program for a future hadron collider

    NARCIS (Netherlands)

    Tommasini, Davide; Arbelaez, Diego; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Ballarino, Amalia; Barzi, Emanuela; Bellomo, Giovanni; Benedikt, Michael; Izquierdo Bermudez, Susana; Bordini, Bernardo; Bottura, Luca; Brouwer, Lucas; Buzio, Marco; Caiffi, Barbara; Caspi, Shlomo; Dhalle, Marc; Durante, Maria; De Rijk, Gijs; Fabbricatore, Pasquale; Farinon, Stefania; Ferracin, Paolo; Gao, Peng; Gourlay, Steve; Juchno, Mariusz; Kashikhin, Vadim; Lackner, Friedrich; Lorin, Clement; Marchevsky, Maxim; Marinozzi, Vittorio; Martinez, Teresa; Munilla, Javier; Novitski, Igor; Ogitsu, Toru; Ortwein, Rafal; Perez, Juan Carlos; Petrone, Carlo; Prestemon, Soren; Prioli, Marco; Rifflet, Jean Michel; Rochepault, Etienne; Russenschuck, Stephan; Salmi, Tiina; Savary, Frederic; Schoerling, Daniel; Segreti, Michel; Senatore, Carmine; Sorbi, Massimo; Stenvall, Antti; Todesco, Ezio; Toral, Fernando; Verweij, Arjan P.; Wessel, W.A.J.; Wolf, Felix; Zlobin, Alexander

    A next step of energy increase of hadron colliders beyond the LHC requires high-field superconducting magnets capable of providing a dipolar field in the range of 16 T in a 50 mm aperture with accelerator quality. These characteristics could meet the re-quirements for an upgrade of the LHC to twice

  16. Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans

    CERN Document Server

    Aduszkiewicz, A

    2018-01-01

    NA61/SHINE proposes to continue measurements of hadron and nuclear fragment production properties in reactions induced by hadron and ion beams. The new measurements requested will provide unique data on (i) charm hadron production in Pb+Pb collisions for heavy ion physics, (ii) nuclear fragmentation cross sections for cosmic ray physics and (iii) hadron production in hadron-induced reactions for neutrino physics. The measurements require upgrades of the NA61/SHINE detector that shall increase the data taking rate to about 1 kHz. NA61/SHINE is the only experiment which can conduct the measurements in the near future. In this document the beam request for the early post-LS2 measurements in 2022 is presented. Plans for a continuation of measurements are also discussed.

  17. Commercial facilities in future cities and urban redevelopment

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The future trends of commercial facilities were clarified by interviewing the people concerned in the commercial facilities with large floor area and relatively large energy consumption per unit area such as office building, hospital, hotel, department store, restaurant, educational facilities, sports facilities and urban redevelopment. Since an intelligent building will basically employ the office automation, it is estimated that most of the commercial buildings constructed for the future redevelopment will be intelligent buildings. Hospitals will require the system maintaining the quality of life of individual patient. It is expected that high quality hotels focusing on a touch of high class will be constructed. Department stores will aim at the daily living industry. Future restaurants will need a definite concept. Universities will have to increase new sections according to new students and change in social conditions. It is expected that high quality businesses districts and living quarters in business-centered cities will be planned for urban redevelopment. (4 figs. 3 tabs.)

  18. Gluonic hadrons

    International Nuclear Information System (INIS)

    Close, F.E.

    1987-09-01

    The standard theory of colour forces (Quantum Chromodynamics) suggests that in addition to the familiar hadrons made of quarks, there should exist new states where coloured gluons play an essential dynamical role. The author reviews the theoretical predictions for the properties of these ''glueballs'' and of states containing resonating quarks and gluons. Attempts are made to highlight those features which are common to several models in the literature. Experimental candidates are confronted with the models. No clear cut signal for a gluonic hadron yet exists; consequently what future data are required to determine the constituency of some popular candidates is considered. (author)

  19. European hadrons

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The European Hadron Facility (EHF) is a project for particle and nuclear physics in the 1990s which would consist of a fast cycling high intensity proton synchrotron of about 30 GeV primary energy and providing a varied spectrum of intense high quality secondary beams (polarized protons, pions, muons, kaons, antiprotons, neutrinos). The physics case of this project has been studied over the last two years by a European group of particle and nuclear physicists (EHF Study Group), whilst the conceptual design for the accelerator complex was worked out (and is still being worked on) by an international group of machine experts (EHF Design Study Group). Both aspects have been discussed in recent years in a series of working parties, topical seminars, and workshops held in Freiburg, Trieste, Heidelberg, Karlsruhe, Les Rasses and Villigen. This long series of meetings culminated in the International Conference on a European Hadron Facility held in Mainz from 10-14 March

  20. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  1. Environmental monitoring at CERN: present status and future plans for the Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.; Vojtyla, P.; Wittekind, D.

    1998-01-01

    The present radiological impact of CERN on the environment is negligible. It is assessed that this will also be the case after the Large Hadron Collider starts operation in 2005. Nevertheless, the environmental monitoring programme at CERN will be further extended, so as to demonstrate that the Organization fully complies with standards and limits for environmental impact of nuclear installations as laid down by authorities in the CERN host countries. (P.A.)

  2. Secondary particle background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-01-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC(LHC) √s=40TeV (√s=16TeV) and L=10 33 cm -2 s -1 (L=3x10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the open-quotes task force on radiation levels in the SSC interaction regions.close quotes The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes

  3. Secondary particle in background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-06-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC (LHC) √s = 40 TeV (√s = 16 TeV) and L = 10 33 cm -2 s -1 (L = 3 x 10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the ''task force on radiation levels in the SSC interaction regions.'' The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes. Following Groom's work, extensive Monte Carlo simulations were performed to address the issues of backgrounds and radiation environments for the GEM and SD C3 experiments proposed at the SSC, and for the ATLAS and CMS experiments planned for the LHC. The purpose of the present article is to give a brief summary of some aspects of the methods, assumptions, and calculations performed to date (principally for the SSC detectors), and to stress the relevance of such calculations to the detectors proposed for the study of B-physics in particular

  4. Hadron Physics at FAIR

    International Nuclear Information System (INIS)

    Wiedner, Ulrich

    2011-01-01

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  5. Future directions of accelerator-based NP and HEP facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  6. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sanadhya, Vivek; Lal, Pradeep; Goel, Vijay; Mukhopadhyay, S.; Saha, Shilpi

    2001-01-01

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  7. Design considerations for the semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    CERN Document Server

    Pingault, Antoine

    2016-07-29

    The first technological SDHCAL prototype having been successfully tested, a new phase of R&D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2m^2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  8. Design considerations for the semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    International Nuclear Information System (INIS)

    Pingault, A.

    2016-01-01

    The first technological SDHCAL prototype having been successfully tested, a new phase of R and D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2 m 2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  9. Status, near future and distant future of the Amsterdam electron scattering facility

    International Nuclear Information System (INIS)

    Vries, C. de.

    1982-01-01

    The experimental program with the electron Medium Energy Accelerator (MEA), located in Amsterdam, has been started. The general design features of the accelerator and electron scattering facilities are summarised in an Appendix. Some aspects of the Amsterdam instrumentation are discussed which have shown to be of importance from the point of view of flexibility, reproducibility, ease of tuning for high resolution and other time-saving elements. As such they are believed to be of importance for the design of future - especially third generation - facilities. Some of the on-going and near future experiments are presented, emphasizing those which have become within experimental reach due to the advanced level of instrumentation. Finally preliminary ideas are presented on how to increase the accelerator duty factor in the distant future by adding a pulse stretcher device, while maintaining all of the present buildings and 500 MeV equipment. (Auth.)

  10. Future neutrino oscillation facilities: physics priorities and open issues

    International Nuclear Information System (INIS)

    Blondel, Alain

    2006-01-01

    The recent discovery that neutrinos have masses opens a wide new field of experimentation. Accelerator-made neutrinos are essential in this program. Ideas for future facilities include Superbeam, Beta-beam, or Neutrino Factory, each associated with one or several options for detector systems. We now begin a 'scoping study' aimed at determining a set of key R and D projects enabling the community to propose an ambitious accelerator neutrino program at the turn of this decade. As an introduction to this study, a set of physics priorities, a summary of the perceived virtues and shortcomings of the various options, and a number of open questions are presented

  11. Overview of linac applications at future radioactive beam facilities

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1996-01-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the open-quotes isotope separator on-lineclose quotes (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage

  12. Detectors and flux instrumentation for future neutrino facilities

    CERN Document Server

    Abe, T.; Andreopoulos, C.; Ankowski, A.; Badertscher, A.; Battistoni, G.; Blondel, A.; Bouchez, J.; Bross, A.; Bueno, A.; Camilleri, L.; Campagne, Jean-Eric; Cazes, A.; Cervera-Villanueva, A.; De Lellis, G.; Di Capua, F.; Ellis, Malcolm; Ereditato, A.; Esposito, L.S.; Fukushima, C.; Gschwendtner, E.; Gomez-Cadenas, J.J.; Iwasaki, M.; Kaneyuki, K.; Karadzhov, Y.; Kashikhin, V.; Kawai, Y.; Komatsu, M.; Kozlovskaya, E.; Kudenko, Y.; Kusaka, A.; Kyushima, H.; Longhin, A.; Marchionni, A.; Marotta, A.; McGrew, C.; Menary, S.; Meregaglia, A.; Mezzeto, M.; Migliozzi, P.; Mondal, N.K.; Montanari, C.; Nakadaira, T.; Nakamura, M.; Nakumo, H.; Nakayama, H.; Nelson, J.; Nowak, J.; Ogawa, S.; Peltoniemi, J.; Pla-Dalmau, A.; Ragazzi, S.; Rubbia, A.; Sanchez, F.; Sarkamo, J.; Sato, O.; Selvi, M.; Shibuya, H.; Shozawa, M.; Sobczyk, J.; Soler, F.J.P.; Strolin, Paolo Emilio; Suyama, M.; Tanak, M.; Terranova, F.; Tsenov, R.; Uchida, Y.; Weber, A.; Zlobin, A.

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the $\\delta$-$\\theta_{13}$...

  13. The Physics Perspectives at the Future Accelerator Facility FAIR

    CERN Document Server

    Stroth, J

    2004-01-01

    The physics perspective of the approved future international accelerator Facility for Anti-proton and Ion Research (FAIR) near Darmstadt, Germany will be outlined. The physics programme will comprise many body aspects of matter ranging from macroscopic system like highly correlated plasmas down to the properties of baryons and nuclear matter at high baryon densities. Through fragmentation of intense ion beams investigations with beams of short-lived radioactive nuclei far from stability will be possible. The addressed physics questions concern nuclear structure at the drip-lines, areas of astrophysics and nucleo-synthesis in supernovae and other stellar processes, as well as tests of fundamental symmetry. The structure of baryons and their limits of their existence is the interest of the two large experimental set-ups PANDA and CBM. Finally QED will be studied in extremely strong field effects and also the interaction of ions with matter. The future facility will feature a double-ring synchrotron SIS100/300 a...

  14. Evaluation of the ORNL area for future waste burial facilities

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Byerly, D.W.; Gonzales, S.

    1983-10-01

    Additional waste-burial facilities will be needed at ORNL within this decade. In order to find environmentally acceptable sites, the ORNL area must be systematically evaluated. This document represents the first step in that selection process. Geologic and hydrologic data from the literature and minor field investigations are used to identify more favorable sites for Solid Waste Storage Area (SWSA) 7. Also underway at this time is a companion study to locate a Central Waste Storage Area which could be used in the future to accommodate wastes generated by the X-10, Y-12, and K-25 facilities. From the several watershed options available, the Whiteoak Creek drainage basin is selected as the most promising hydrologic regime. This area contains all past and present waste-disposal facilities and is thus already well monitored. The seven bedrock units within the ORNL area are evaluated as potential burial media. Shales of the Conasauga Group, which are currently used for waste burial in the Whiteoak Creek drainage basin, and the Knox Group are considered the leading candidates. Although the residuum derived from and overlying the Knox dolomite has many favorable characteristics and may be regarded as having a high potential for burial of low-level wastes, at the present it is unproven. Therefore, the Conasauga shales are considered a preferable option for SWSA 7 within the ORNL area. Since the Conasauga interval is currently used for waste burial, it is better understood. One tract in Melton Valley that is underlain by Conasauga shales is nominated for detailed site-characterization studies, and several other tracts are recommended for future exploratory drilling. Exploration is also suggested for a tract in the upper Whiteoak Creek basin where Knox residuum is the shallow subsurface material

  15. GUT models at current and future hadron colliders and implications to dark matter searches

    Science.gov (United States)

    Arcadi, Giorgio; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-08-01

    Grand Unified Theories (GUT) offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ) that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z‧ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z‧ mass for several GUT-models using current and future proton-proton colliders with √{ s} = 13 TeV , 33 TeV ,and 100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  16. GUT models at current and future hadron colliders and implications to dark matter searches

    Directory of Open Access Journals (Sweden)

    Giorgio Arcadi

    2017-08-01

    Full Text Available Grand Unified Theories (GUT offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z′ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z′ mass for several GUT-models using current and future proton–proton colliders with s=13 TeV,33 TeV,and100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  17. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  18. Construction of a hadronic calorimeter prototype for the future CERN LHC high energy accelerator

    International Nuclear Information System (INIS)

    Rival, F.

    1994-06-01

    The study of fragment-fragment correlations at small relative momentum can give informations on the space and time extend of the emitting source, and on the nuclear density, which is one of the variables used in the equation of state. This analysis shows the experimental results obtained with the FOPI detector at GSI Darmstadt, for Au + Au central collisions at 150 and 400 A.MeV. These results are the first studies at such high energies and for heavy systems. Two fragments correlation functions are compared with theoretical calculations of D.H. Boal, including the size of the source as a parameter. We must take into account effects of experimental biases (namely the relative momentum resolution) on the theoretical correlation function, in order to make a comparison with experimental results. The extracted experimental radii correspond to the final phase of the expansion, and the obtained densities are smaller than normal density of nuclear matter. In the final state of the interaction, intermediate mass fragments and their excited states are observed. We note a shift of these excited states at 400 A.MeV, which can be explained by the detector effects. We observe a weak sensibility of the source size versus the centrality of the collision. That can be explained either by a mixing of sources, or by the observation of a source at the end of expansion whose the radius is quite independent of the initial centrality. Energetic particles correspond to smaller size of the source, which can be explained as a higher compression, or as a different stage of the collision. We give some prospectives for the future experiments at GSI-Darmstadt. (author)

  19. CHARM 2010: Experiment summary and future charm facilities

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  20. Development of DCC software dynamic test facility: past and future

    International Nuclear Information System (INIS)

    McDonald, A.M.; Thai, N.D.; Buijs, W.J.

    1996-01-01

    This paper describes a test facility for future dynamic testing of DCC software used in the control computers of CANDU nuclear power stations. It is a network of three computers: the DCC emulator, the dynamic CANDU plant simulator and the testing computer. Shared network files are used for input/output data exchange between computers. The DCC emulator runs directly on the binary image of the DCC software. The dynamic CANDU plant simulator accepts control signals from the DCC emulator and returns realistic plant behaviour. The testing computer accepts test scripts written in AECL Test Language. Both dynamic test and static tests may be performed on the DCC software to verify control program outputs and dynamic responses. (author)

  1. The computer simulation of the hadron calorimeter of the tagged neutrino facilities experiment with the help of 'GHEISHA' program

    International Nuclear Information System (INIS)

    Kadykov, M.G.; Kukhtin, V.V.; Peshekhonov, D.V.; Smirnov, G.I.

    1989-01-01

    The results of the simulation characteristics of the hadron calorimeter using the programm package 'GHEISHA' are presented. The dependence on energy resolution on both initial particle energy and active layer width were investigated. Linearity was tested over an energy range of 5-40 GeV. The results of the simulation are compared with the experimental data. 8 refs.; 7 figs

  2. Hadron interactions

    International Nuclear Information System (INIS)

    Fischer, J.; Kolar, P.; Kundrat, V.

    1988-01-01

    The proceedings contain invited lectures and papers presente at the symposium. Attention was devoted to hadron interactions a high energy in QCD, to the structure and decay of hadrons, the production of hadrons and supersymmetric particles in e + e - and ep collisions, to perturbation theory in quantum field theory, and new supersymmetric extensions of relativistic algebra. (Z.J

  3. Top quark threshold scan and study of detectors for highly granular hadron calorimeters at future linear colliders

    International Nuclear Information System (INIS)

    Tesar, Michal

    2014-01-01

    Two major projects for future linear electron-positron colliders, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), are currently under development. These projects can be seen as complementary machines to the Large Hadron Collider (LHC) which permit a further progress in high energy physics research. They overlap considerably and share the same technological approaches. To meet the ambitious goals of precise measurements, new detector concepts like very finely segmented calorimeters are required. We study the precision of the top quark mass measurement achievable at CLIC and the ILC. The employed method was a t anti t pair production threshold scan. In this technique, simulated measurement points of the t anti t production cross section around the threshold are fitted with theoretical curves calculated at next-to-next-to-leading order. Detector effects, the influence of the beam energy spectrum and initial state radiation of the colliding particles are taken into account. Assuming total integrated luminosity of 100 fb -1 , our results show that the top quark mass in a theoretically well-defined 1S mass scheme can be extracted with a combined statistical and systematic uncertainty of less than 50 MeV. The other part of this work regards experimental studies of highly granular hadron calorimeter (HCAL) elements. To meet the required high jet energy resolution at the future linear colliders, a large and finely segmented detector is needed. One option is to assemble a sandwich calorimeter out of many low-cost scintillators read out by silicon photomultipliers (SiPM). We characterize the areal homogeneity of SiPM response with the help of a highly collimated beam of pulsed visible light. The spatial resolution of the experiment reach the order of 1 μm and allows to study the active area structures within single SiPM microcells. Several SiPM models are characterized in terms of relative photon detection efficiency and probability crosstalk

  4. Report of the International Review Committee of the joint proposal of the Japan Hadron Facility (KEK) and the Neutron Science Project (JAERI)

    International Nuclear Information System (INIS)

    1999-08-01

    The International Review Committee composed of twelve Japanese and foreign experts was set up under the Research Evaluation Committee of JAERI, and has reviewed the proposed joint project combining JAERI's Neutron Science Project and KEK's Japan Hadron Facility into one major facility. The review meeting took place on April 26-27, 1999, at JAERI Head quarters, Tokyo. According to the points of review given in advance, the review was implemented based on the joint project report submitted and presentations of both institutions. The Research Evaluation Committee received the review report and its explanations from the Review Committee on July 5. The Research Evaluation Committee has acknowledged appropriateness of the review results. This report describes the review results. (author)

  5. Nuclear Structure Studies at the Future FAIR facility

    International Nuclear Information System (INIS)

    Rubio, Berta

    2010-01-01

    This article is intended to be an introduction to studies of nuclear structure at the future FAIR facility. It addresses interested readers not necessarily expert in the field. It outlines the physics aims and experiments to be carried out at FAIR in the field of nuclear structure and astrophysics. Starting with a brief description of what can be achieved in experiments with intense, high quality stable beams the article leads the reader to how beams of unstable radioactive nuclei will be produced and exploited at FAIR. The characteristics of the beams from the main separation device, the Super-FRS, are outlined and the limitations they impose on experiment are discussed. The various setups at the three experimental branches associated with the Super-FRS are described. The aims of the various experimental setups, how they complement each other and the physics they will address are all explained. The concept of the r-process of nucleosynthesis is outlined at the beginning and used as a running example of how useful it will be to be able to carry out experiments with beams of short-lived, exotic ions.

  6. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-06-20

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  7. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  8. Froissart type rise of cross sections and predictions for spectra and multiplicities of hadrons at future accelerators

    International Nuclear Information System (INIS)

    Ter-Martirosyan, K.A.

    1986-01-01

    Experimental data of ISR and SPS colliders on σ tot and on the diffraction cone slope [B(s)] t=0 are used for a more precise determination of parameters (s=αp(0)-1 and others) of the supercritical Pomeron. With account of all P n rescatterings it leads to the Froissart type rise of cross sections at high energy. The quark-gluon string model of Pomeron, describing the existing experimental data, leads to predictions for super high energies of spectra of hadrons produced with small p perpendcular , in particular, the values of (dN ch /dy) y=0 , hadron average multiplicities =N-bar ch (ξ) and even their distributions over multiplicity W(N)=S N /σ in . The results are presented as curves and tables for energies √ s=0.9, 2, 4, 10, 20, 40, 10 2 , 10 3 TeV

  9. Hadrons-94

    International Nuclear Information System (INIS)

    Bugrij, G.; Jenkovsky, L.; Martynov, E.

    1994-01-01

    These Proceedings contain the contributions to the Workshop HADRONS-94,held in Uzhgorod between September 7-11,1994. They covers the topics: - elastic and diffractive scattering of hadrons and nuclei; -small-x and spin physics; - meson and baryon spectroscopy; - dual and string models; - collective properties of the strongly interacting matter

  10. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  11. Hadrons-94

    Energy Technology Data Exchange (ETDEWEB)

    Bugrij, G; Jenkovsky, L; Martynov, E [eds.

    1994-12-31

    These Proceedings contain the contributions to the Workshop HADRONS-94,held in Uzhgorod between September 7-11,1994. They covers the topics: - elastic and diffractive scattering of hadrons and nuclei; -small-x and spin physics; - meson and baryon spectroscopy; - dual and string models; - collective properties of the strongly interacting matter.

  12. The user facility FELIX: Past, present and future

    International Nuclear Information System (INIS)

    Meer, A.F.G. van der; Amersfoort, P.W. van

    1995-01-01

    The performance over the past year and the current user-relevant characteristics of the User Facility FELIX will be discussed. Also the existing plans for improving and extending the capabilities and provisions will be presented

  13. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  14. Hadron particle theory

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ''hadrons'' (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future

  15. Summary on experimental facilities and future developments at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With 13 experimental facilities under construction to become available during the first year of SINQ operation, a nearly complete suite of options for users will be made available to carry out research with neutrons at PSI. Three more facilities are under design and will come on line somewhat later. To complete the suite, three more specialized instruments are being evaluated. SINQ being a novel neutron source concept, significant scope for improvement is also seen on the source side. It is a major goal of PSI to exploit these opportunities and to make - among others - use of neutron instruments to carry out the necessary research. (author) 9 figs., 1 tab., 11 refs.

  16. A design of scintillator tiles read out by surface-mounted SiPMs for a future hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Bauss, Bruno; Buescher, Volker; Caudron, Julien; Chau, Phi; Degele, Reinhold; Geib, Karl-Heinrich; Masetti, Lucia; Schaefer, Ulrich; Tapprogge, Stefan; Wanke, Rainer [Institut fuer Physik and PRISMA Detector Lab, Johannes Gutenberg-Universitaet Mainz (Germany)

    2015-07-01

    Precision calorimetry using highly granular sampling calorimeters is being developed based on the particle flow concept within the CALICE collaboration. One design option of a hadron calorimeter is based on silicon photomultipliers (SiPMs) to detect photons generated in plastic scintillator tiles. Driven by the need of automated mass assembly of around ten millions of channels stringently required by the high granularity, we developed a design of scintillator tiles directly coupled with surface-mounted SiPMs. A cavity is created in the center of the bottom surface of each tile to provide enough room for the whole SiPM package and to improve collection of the light produced by incident particles penetrating the tile at different positions. The cavity design has been optimized using a GEANT4-based full simulation model to achieve high response to Minimum Ionizing Particles (MIPs) and also good areal uniformity. Cosmic-ray measurements confirms high 1-MIP response for scintillator tiles with an optimized cavity design. Uniformity measurements by scanning the tile area using focused electrons from a beta source show excellent response uniformity. This optimized design is well beyond the requirements for a precision hadron calorimeter.

  17. Conference on the research facilities for future nuclear power engineering

    International Nuclear Information System (INIS)

    Arkhangel'skij, N.V.

    1996-01-01

    The activity of the European nuclear society Conference (Belgium, June, 1996) is described. The main topics of 60 presented reports are the following ones: necessity of developing new experimental facilities and their parameters; financing prospects and international cooperation in this field

  18. Photon-hadron fragmentation: theoretical situation

    International Nuclear Information System (INIS)

    Peschanski, R.

    1983-07-01

    Using a selection of new experimental results models of hadronic fragmentation and their phenomenological comparison are presented. Indeed a convenient theory of hadronic fragmentation -for instance based on Q.C.D.- does not exist: low transverse momentum fragmentation involves the badly known hadronic long-range forces. Models should clarify the situation in the prospect of an eventual future theory

  19. High temperature combustion facility: present capabilities and future prospects

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ginsberg, T.; Ciccarelli, G.

    1995-01-01

    The high-temperature combustion facility constructed and operated by the Department of Advanced Technology of Brookhaven National Laboratory to support and promote research in the area of hydrogen combustion phenomena in mixtures prototypical to light-water reactor containment atmospheres under potential severe accident conditions is reported. The facility can accommodate combustion research activities encompassing the fields of detonation physics, flame acceleration, and low-speed deflagration in a wide range of combustible gas mixtures at initial temperatures up to 700 K and post-combustion pressures up to 100 atmospheres. Some preliminary test results are presented that provide further evidence that the effect of temperature is to increase the sensitivity of hydrogen-air-steam mixtures to undergo detonation [ru

  20. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  1. Safeguarding future large-scale plutonium bulk handling facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The paper reviews the current status, advantages, limitations and probable future developments of material accountancy and of containment and surveillance. The major limitations on the use of material accountancy in applying safeguards to future plants arise from the uncertainty with which flows and inventories can be measured (0.5 to 1.0%), and the necessity to carry out periodical physical inventories to determine whether material has been diverted. The use of plant instrumentation to determine in-process inventories has commenced and so has the development of statistical methods for the evaluations of the data derived from a series of consecutive material balance periods. The limitations of accountancy can be overcome by increased use of containment and surveillance measures which have the advantage that they are independent of the operator's actions. In using these measures it will be necessary to identify the credible diversion paths, build in sufficient redundancy to reduce false alarm rates, develop automatic data recording and alarming

  2. Independent organ donor facilities: The future of organ donation?

    Science.gov (United States)

    Bruzzone, Paolo

    2014-01-01

    Since 2001 independent Organ Donor Facilities(OFOs) have been proposed within Organ Procurement Organizations (OPOs) with the aim of reducing organ procurement costs 1, cold ischemia time of donor organs and the flight-related risk 2 for donor surgeons, perfusionists and coordinators. An independent OFO has been established in 2001 in St. Louis 3, half away between the 2 Transplant Centers (TCs) (Washington University School of Medicine and St. Louis University) and now includes a two-bed intensive care facility, a complete laboratory, a cardiac catheterization facility, a Computed Tomography (CT) scanner and an operating room. All brain-dead (BD) patients within OPO (Mid-America Transplant Services), after family's informed consent, are transferred, if necessary by an OPO owned and operated airplane, to this facility, where undergo multiorgan harvesting. By doing so the organ acquisition charges (OACs) apparently decreased, as well as delay in recovery, which can affect organ viability and move families to withdraw consent; also risks and tiring of transplant surgeons were reduced. This independent OFO successfully procured in 2001 not only livers, but also pancreas, kidneys, hearts and lungs 4-6. Cold ischemia time was reduced and there was no Primary Non Function (PNF) of harvested organs, but only kidney delayed graft function (DGF). In the past, heart donors were moved to the recipient's hospital. With the development of multiorgan harvesting, usually donor surgeons are sent by the TCs in order to evaluate liver, pancreas, heart and lungs, while the only local surgeons is the "nephrectomist", that in local hospital is not a transplant surgeon. To move a donor, although hemodinamically stable, is always a risk. Finally, the decrease of OAC must balance the extra expenses to create and operate independent OFOs. In all the papers published by the members of this OFO, the control group of the retrospective analysis consisted of less selected BD donors, requiring

  3. Proposed studies of strongly coupled plasmas at the future FAIR and LHC facilities: the HEDgeHOB collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N A [Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Lomonosov, I V [Institute for Problems of Chemical Physics Research, Chernogolovka (Russian Federation); Shutov, A [Institute for Problems of Chemical Physics Research, Chernogolovka (Russian Federation); Udrea, S [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Deutsch, C [LPGP, Universite Paris-Sud, 91405 Orsay (France); Fortov, V E [Institute for Problems of Chemical Physics Research, Chernogolovka (Russian Federation); Gryaznov, V [Institute for Problems of Chemical Physics Research, Chernogolovka (Russian Federation); Hoffmann, D H H [Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Jacobi, J [Institut fuer Angewandte Physik, Universitaet Frankfurt, 60438 Frankfurt (Germany); Kain, V [CERN, 1211 Geneva (Switzerland); Kuster, M [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Ni, P [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Piriz, A R [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Schmidt, R [CERN, 1211 Geneva (Switzerland); Spiller, P [Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Varentsov, D [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Zioutas, K [CERN, 1211 Geneva (Switzerland)

    2006-04-28

    Detailed theoretical studies have shown that intense heavy-ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) (Henning 2004 Nucl. Instrum. Methods B 214 211) at Darmstadt will be a very efficient tool to create high-energy-density (HED) states in matter including strongly coupled plasmas. In this paper we show, with the help of two-dimensional numerical simulations, the interesting physical states that can be achieved considering different beam intensities using zinc as a test material. Another very interesting experiment that can be performed using the intense heavy-ion beam at FAIR will be generation of low-entropy compression of a test material such as hydrogen that is enclosed in a cylindrical shell of a high-Z material such as lead or gold. In such an experiment, one can study the problem of hydrogen metallization and the interiors of giant planets. Moreover, we discuss an interesting method to diagnose the HED matter that is at the centre of the Sun. We have also carried out simulations to study the damage caused by the full impact of the Large Hadron Collider (LHC) beam on a superconducting magnet. An interesting outcome of this study is that the LHC beam can induce HED states in matter.

  4. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  5. Experimental facilities for plate-out investigations and future work

    International Nuclear Information System (INIS)

    Muenchow, K.; Dederichs, H.; Iniotakis, N.; Sackmann, B.

    1981-01-01

    The safety of HTR under normal operation and accident conditions, the possibility of inspection, maintenance and repair or decontamination of single primary components as well as the safety of maintenance personnel are essentially determined by the transport- and deposition behaviour of the non gaseous fission - and activation products in the primary loop of the reactor. A comprehensive program has been started in 1969 in KFA in collaboration with various industrial firms and foreign institutions to investigate these problems. The program includes in-pile and out-pile experiments, simulating reactor conditions and also different laboratory experiments and extensive theoretical investigations. The aim of these efforts is to test experimentally the models and computercodes, which are used for prediction of transport and deposition behaviour of fission products for HTR's as well under normal as under accident conditions. Further more a verified dataset is to be established. In this paper a survey is given of the experimental facilities carried out by KFA or in cooperation with KFA

  6. Future Long-Baseline Neutrino Facilities and Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind [Brookhaven; Edgecock, Rob [Huddersfield U.; Hasegawa, Takuya [KEK, Tsukuba; Patzak, Thomas [APC, Paris; Shiozawa, Masato [Kamioka Observ.; Strait, Jim [Fermilab

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  7. Augmented reality in the slaughterhouse - A future operation facility?

    Directory of Open Access Journals (Sweden)

    Lars Bager Christensen

    2016-05-01

    Full Text Available The present case study sums up the results of an initial attempt to adapt the emerging technology of Augmented Reality (AR to support routine operations performed in Danish slaughterhouse facilities. Our aim is to reveal the applicability of off-the-shelf components and programming platforms to the trimming and boning process for pork bellies. The AR technology has demonstrated lucrative applications in industrial QA procedures and even farm management applications (Wu, Xiao & Guo, 2013 appear to benefit from applying the technology. With the ever-increasing turnover of labour in the meat industry, we investigate here the application of AR-assisted production procedures as a potential management tool and support tool to assist a novice operator in a specific trimming operation. The case study concerns the trimming and cutting of pork bellies, a widely used and versatile procedure in the Danish pork meat industry. Many similar belly products made from similar raw materials are exported to specific customers and markets. Due to biological variability between pigs, final products are produced with variability in yield, despite the fact that the final product qualities are similar. The best management option is to use the correct raw material for each product, thus generating fewer by-products and increasing the volume/weight of the final product. The application of AR to the cutting operation appears to increase the production yield; however, the operators need training in order to benefit fully from the efficiency and capacity of the application rather than adopting the standard procedure of oral communication of instructions.

  8. Digital Hadron Calorimetry

    Science.gov (United States)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  9. Needs of Advanced Safeguards Technologies for Future Nuclear Fuel Cycle (FNFC) Facilities and a Trial Application of SBD Concept to Facility Design of a Hypothetical FNFC Facility

    International Nuclear Information System (INIS)

    Seya, M.; Hajima, R.; Nishimori, N.; Hayakawa, T.; Kikuzawa, N.; Shizuma, T.; Fujiwara, M.

    2010-01-01

    Some of future nuclear fuel cycle (FNFC) facilities are supposed to have the characteristic features of very large throughput of plutonium, low decontamination reprocessing (no purification process; existence of certain amount of fission products (FP) in all process material), full minor actinides (MA) recycle, and treatment of MOX with FP and MA in fuel fabrication. In addition, the following international safeguards requirements have to be taken into account for safeguards approaches of the FNFC facilities. -Application of integrated safeguards (IS) approach; -Remote (unattended) verification; - 'Safeguards by Design' (SBD) concept. These features and requirements compel us to develop advanced technologies, which are not emerged yet. In order to realize the SBD, facility designers have to know important parts of design information on advanced safeguards systems before starting the facility design. The SBD concept requires not only early start of R and D of advanced safeguards technologies (before starting preliminary design of the facility) but also interaction steps between researchers working on safeguards systems and nuclear facility designers. The interaction steps are follows. Step-1; researchers show images of advanced safeguards systems to facility designers based on their research. Step-2; facility designers take important design information on safeguards systems into process systems of demonstration (or test) facility. Step-3; demonstration and improvement of both systems based on the conceptual design. Step-4; Construction of a FNFC facility with the advanced safeguards systems We present a trial application of the SBD concept to a hypothetical FNFC facility with an advanced hybrid K-edge densitometer and a Pu NDA system for spent nuclear fuel assembly using laser Compton scattering (LCS) X-rays and γ-rays and other advanced safeguards systems. (author)

  10. Confinement and hadron-hadron interactions by general relativistic methods

    Science.gov (United States)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  11. Operation of a low-level waste disposal facility and how to prevent problems in future facilities

    International Nuclear Information System (INIS)

    Di Sibio, R.

    1985-01-01

    Operation of a low-level waste facility is an ever increasing problem nationally, and specifically one that could grow to crisis proportion in Pennsylvania. There have been, nevertheless, a variety of changes over the years in the management of low level radioactive waste, particularly with regard to disposal facilities that can avert a crisis condition. A number of companies have been organized thru possible a broad range of services to the nuclear industry, including those that emphasize solidification of waste materials, engineering services, waste management, and transportation to disposal sites across the United States. This paper addresses one particular site and the problems which evolved at that site from an environmental perspective. It is important that it is clearly understood that, although these problems are resolvable, the lessons learned here are critical for the prevention of problems at future facilities. The focus of this paper is on the Maxey Flats, Kentucky disposal facility which was closed in 1977. It must be understood that the regulations for siting, management, burial techniques, waste classification, and the overall management of disposal sites were limited when this facility was in operation

  12. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5. 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future

  13. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5, 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future. copyright 1995 American Institute of Physics

  14. Future facilities for light quark spectroscopy: A perspective based on the LASS experience

    International Nuclear Information System (INIS)

    Ratcliff, B.N.

    1991-10-01

    Some desirable design features of a future facility for the study of light meson spectroscopy in hadroproduction are described and compared with what has been achieved by the LASS spectrometer. A few aspects of next-generation experiments using such a facility are also discussed, including final state sample sizes and performance requirements. The need for complementary production modes and decay channels, and the importance of a broad programmatic approach to the physics are stressed

  15. A Survey of Hadron Therapy Accelerator Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  16. Theory and Experiment for Hadrons on the Light-Front

    CERN Document Server

    Salme, Giovanni

    2016-01-01

    LC2015 belongs to a Conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee (ILCAC), with the aim of promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity was always pursued and it will be emphasized in the next edition, in order to meet one of the main goals of the whole Light-Cone community "to assist in the development of crucial experimental tests of hadron facilities". The scientific program will feature invited as well as contributed talks, selected in collaboration with the Scientific Advisory Committee and the ILCAC. The main topics to be addressed are: * Hadron physics at present and future facilities; * Nonperturbative methods in quantum field theory * AdS/CFT: theory and applications * Light-front theories in QCD and QED * Relativistic methods for nuclear and hadronic structures * Few-body problems onto the Light cone * Lattice gau...

  17. Hadron physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1984-01-01

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain

  18. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  19. QCD and Hadron Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  20. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and

  1. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  2. Japanese Hadron Project

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1990-01-01

    The Japanese Hadron Project (JHP) is aimed at producing various kinds of unstable secondary beams based on high-intensity protons from a new accelerator complex. The 1 GeV protons, first produced from a 1 GeV linac, are transferred to a compressor/stretcher ring, where a sharply-pulsed beam or a stretched continuous beam will be produced. The pulsed beam will be used for a pulsed muon source (M arena) and a spallation neutron source (N arena). A part of the proton beam will be used to produce unstable nuclei, which will be accelerated to several MeV/nucleon (E arena). The purpose and impact of JHP will be described in view of future applications of hadronic beams to nuclear energy and material science. (author)

  3. Event generation and production of signal inputs for the search of dark matter mediator signal at a future hadron collider

    CERN Document Server

    Chalise, Darshan

    2017-01-01

    The interaction between Dark Matter particles and Standard Model particles is possible through a force mediated by a Dark Matter(DM) - Standard Model(SM) mediator. If that mediator decays through a dijet event, the reconstructed invariant mass of the jets will peak at a specific value, in contrast to the smooth QCD background. This analysis is a preliminary work towards the understanding of how changes in detector conditions at the Future Circular Collider affect the sensitivity of the mediator signal. MadGraph 5 was used to produce events with 30 TeV DM mediator and Heppy was used to produce flat n-tuples for ROOT analysis. MadAnalysis 5 was then used to produce histograms of MadGraph events and PyRoot was used to analyze Heppy output. Histograms of invariant mass of the jets after event production through MadGraph as well as after Heppy analysis showed a peak at 30 TeV. This verified the production of a 30 TeV mediator during event production.

  4. Treatment facilities, human resource development, and future prospect of particle beam therapy

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi

    2015-01-01

    The number of particle beam therapy facilities is increasing globally. Among the countries practicing particle beam therapy, Japan is one of the leading countries in the field with four operating carbon-ion therapy facilities and ten operating proton therapy facilities. With the increasing number of particle beam therapy facilities, the human resource development is becoming extremely important, and there has been many such efforts including the Gunma University Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering, which aimed to educate and train the radiation oncologists, medical physicists, accelerator engineers, and radiation biologists to become global leaders in the field of particle beam therapy. In the future, the benefit and effectiveness of particle beam therapy should be discussed and elucidated objectively in a framework of comprehensive cancer care. (author)

  5. International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facilities

    International Nuclear Information System (INIS)

    Abe, T; Aihara, H; Andreopoulos, C; Ankowski, A; Badertscher, A; Battistoni, G; Blondel, A; Bouchez, J; Bross, A; Ellis, M; Bueno, A; Camilleri, L; Campagne, J E; Cazes, A; Cervera-Villanueva, A; De Lellis, G; Di Capua, F; Ereditato, A; Esposito, L S

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the δ-θ 13 parameter space.

  6. Hadron therapy takes off in Europe

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A joint meeting of ULICE, ENLIGHT and PARTNER recently took place in Marburg (Germany). The three initiatives are shaping both the present and the future of hadron therapy in Europe, where new cutting-edge facilities have started to fight cancer with beams of protons and carbon ions.   A pictorial representation of a raster scan on a tumour. (Photo courtesy of HIT/GSI/Siemens.) Thanks to a very active multidisciplinary community consisting of physicists, biologists, radiobiologists, engineers, IT specialists and medical doctors, hadron therapy is taking off in Europe. Indeed, after a few decades during which the innovative technique was mainly used experimentally in Japan, the US and a couple of pioneering laboratory-based facilities in Europe, today an increasing number of hospitals are being equipped with synchrotrons and dedicated treatment rooms. “Asia and Europe are at the forefront of research and use of carbon ions in the treatment of some rare and radio-resistant t...

  7. Late effects from hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  8. HERWIG for Hadron-Hadron physics

    International Nuclear Information System (INIS)

    Seymour, M.H.

    1993-05-01

    HERWIG is a general-purpose particle physics event generator, which includes the simulation of any combination of hard lepton, hadron or photon scattering and soft hadron-hadron collisions in one package. It uses the parton-shower approach for initial-state and final-state QCD radiation, including colour coherence effects and azimuthal correlations both within and between jets. This article describes HERWIG version 5.6, and gives a brief review of the physics underlying HERWIG, with particular emphasis on hadron-hadron collisions. Details are given of the input and control parameters used by the program

  9. Safeguards Licensing Aspects of a Future Gen IV Test Facility - a Case Study

    International Nuclear Information System (INIS)

    Lindell, M. Aberg; Grape, S.; Hakansson, A.; Svaerd, S. Jacobsson

    2010-01-01

    The scope of this study covers safeguards licensing aspects of a possible future Gen IV demonstration facility. As a basis for the investigation, the facility was assumed to be located in Sweden, comprising a lead-cooled fast reactor and a reprocessing plant with fuel fabrication. The aim has been to identify safeguards requirements that may be set by the IAEA and the Swedish Radiation Safety Authority, and also to suggest how the safeguards system could be implemented in practice. The changed usage and handling of nuclear fuel, as compared to that of today, has been examined in order to determine how today's safeguards measures can be modified and extended to meet the needs of the demonstration facility. This work is part of GENIUS, the Swedish Gen IV research and development programme, which emphasizes lead-cooled fast reactors. (author)

  10. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  11. Compaction of solid wastes in countries without disposal facility: A prelude of future troubles

    International Nuclear Information System (INIS)

    Benitez-Navarro, J.C.; Salgado-Mojena, M.

    2002-01-01

    This paper is intended to launch a technical debate, which will lead up to simple recommendations on what to do with compactable solid wastes in countries without disposal facilities. The paper discusses the problems caused by some practical uncertainties in the long-term management of the radioactive solid wastes produced outside the nuclear fuel cycle, in countries belonging to Groups A, B and C. Compaction is the preferred volume reduction method. But the compacted solid wastes are very probably not in a suitable form for future disposal and would need to be processed again in the near future. (author)

  12. Future Direction of the Instrumentation and Control System for Security of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Woo Jin; Kim, Jae Kwang

    2014-01-01

    Instrumentation and control systems are pervasively used as a vital component in modern industries. Nuclear facilities, such as nuclear power plants (NPPs), originally use I and C systems for plant status monitoring, processes control, and many other purposes. After some events that raised security concerns, application areas of I and C systems have been expanded to physical protection of nuclear material and facilities. As nuclear policies over the world are strengthening security issues, the future direction of roles and technical requirements of security related I and C systems is described: An introduction of I and C systems, especially digitalized I and C systems, to security of nuclear facilities requires many careful considerations, such as system integration, verification and validation (V/V), etc. Institute of Nuclear Nonproliferation and Control (KINAC) established 'International Nuclear Nonproliferation and Security Academy, INSA' in 2014. One of the main achievements of INSA is test-bed implementation for technical criteria development of nuclear facilities' physical protection systems (PPSs) as well as for education and training of those systems. The test bed was modified and improved more suitably from the previous version to modern PPSs including state-of-the-art I and C technologies. KINAC is confident in the new test bed to become a fundamental technical basis of security related I and C systems in near future

  13. Framing the national nuclear legacy at the local level: Implications for the future of federal facilities

    International Nuclear Information System (INIS)

    Morrone, Michele; Basta, Tania B.; Somerville, Jennifer

    2012-01-01

    There are several major federal nuclear facilities located in small towns and rural areas of the United States. While many of these facilities were developed in the 1950s to support national defense, in the 1960s and 1970s, some of these shifted their mission to focus on national energy infrastructure. Now, many of these facilities are in a clean-up phase, and local communities are becoming increasingly engaged in influencing decisions about the future of the sites. Communicating with the public in rural communities is challenging when it involves a complicated environmental issue that could have widespread economic impacts. The local media reflect public understanding, so getting a sense of how these media frame issues can be a crucial first step to developing an effective community engagement strategy. A media content analysis of one local newspaper was completed in relation to a major federal nuclear facility. The content analysis is compared to the results of a telephone survey in the region served by the paper and the results suggest that there is a relationship between how the facility is portrayed in local media and public concern. This study has important implications for other nuclear facilities because of the role of local citizens in decision-making. - Highlights: ► Decisions about federal nuclear facilities include local citizen participation. ► Local media can play an important role in public perception of environmental risk. ► Local print media rely on a limited number in of sources for their stories. ► Effective risk communication should begin by understanding local public concerns.

  14. A PARTNERship for hadron therapy

    CERN Multimedia

    2008-01-01

    PARTNER, the Particle Training Network for European Radiotherapy, has recently been awarded 5.6 million euros by the European Commission. The project, which is coordinated by CERN, has been set up to train researchers of the future in hadron therapy and in doing so aid the battle against cancer.

  15. Differential elliptic flow of identified hadrons and constituent quark number scaling at the GSI Facility for Antiproton and Ion Research (FAIR)

    International Nuclear Information System (INIS)

    Bhaduri, Partha Pratim; Chattopadhyay, Subhasis

    2010-01-01

    Differential elliptic flow v 2 (p T ) for identified hadrons is investigated in the FAIR energy regime, employing a hadronic-string transport model (UrQMD) as well as a partonic transport model (AMPT). It is observed that both models show a mass ordering of v 2 at low p T and a switch-over resulting in a baryon-meson crossing at intermediate p T . AMPT generates higher v 2 values compared to UrQMD. In addition, constituent quark number scaling behavior of elliptic flow is addressed. Scaling behavior in terms of the transverse momentum p T is found to be absent for both the partonic and the hadronic model. However, UrQMD and AMPT with a string melting scenario do exhibit an NCQ scaling of v 2 to varying degrees, with respect to the transverse kinetic energy KE T . But the default AMPT, where partonic scatterings are not included, does not show any considerable scaling behavior. A variable α is defined to quantify the degree of KE T scaling. We found that UrQMD gives better scaling than AMPT at FAIR.

  16. Summary: Hadron dynamics sessions

    International Nuclear Information System (INIS)

    Carroll, A.S.; Londergan, J.T.

    1993-01-01

    Four sessions on Hadron Dynamics were organized at this Workshop. The first topic, QCD Exclusive Reactions and Color Transparency, featured talks by Ralston, Heppelman and Strikman; the second, QCD and Inclusive Reactions had talks by Garvey, Speth and Kisslinger. The third dynamics session, Medium Modification of Elementary Interactions had contributions from Kopeliovich, Alves and Gyulassy; the fourth session Pre-QCD Dynamics and Scattering, had talks by Harris, Myhrer and Brown. An additional joint Spectroscopy/Dynamics session featured talks by Zumbro, Johnson and McClelland. These contributions are reviewed briefly in this summary. Two additional joint sessions between Dynamics and η physics are reviewed by the organizers of the Eta sessions. In such a brief review there is no way the authors can adequately summarize the details of the physics presented here. As a result, they concentrate only on brief impressionistic sketches of the physics topics discussed and their interrelations. They include no bibliography in this summary, but simply refer to the talks given in more detail in the Workshop proceedings. They focus on topics which were common to several presentations in these sessions. First, nuclear and particle descriptions of phenomena are now clearly converging, in both a qualitative and quantitative sense; they show several examples of this convergence. Second, an important issue in hadron dynamics is the extent to which elementary interactions are modified in nuclei at high energies and/or densities, and they illustrate some of these medium effects. Finally, they focus on those dynamical issues where hadron facilities can make an important, or even a unique, contribution to the knowledge of particle and nuclear physics

  17. 17th International Workshop on Neutrino Factories and Future Neutrino Facilities Search

    CERN Document Server

    2015-01-01

    NuFact15 is the seventeenth in a series that started in 1999 as an important yearly workshop with emphasis on future neutrino projects. This will be the first edition in Latin America, showing the scientific growth of this field. The main goals of the workshop are to review the progress on studies of future facilities able to improve on measurements of the properties of neutrinos and charged lepton flavor violation as well as new phenomena searches beyond the capabilities of presently planned experiments. Since such progress in the neutrino sector could require innovation in neutrino beams, the role of a neutrino factory within future HEP initiatives will be addressed. The workshops are not only international but also interdisciplinary in that experimenters, theorists and accelerator physicists from the Asian, American and European regions share expertise with the common goal of designing the next generation of experiments.

  18. Accelerator and Technical Sector Seminar: Future neutrino facilities: the neutrino factory

    CERN Multimedia

    2012-01-01

    Thursday 19.January 2012 at 14:15  -  IT Auditorium (bldg. 31 3-004) Future neutrino facilities: the neutrino factory by Gersende Prior / University of Geneva and CERN EN/MEF The neutrino factory is one of the proposed designs for a future intense neutrino beam facility. In its current layout, a high-power proton beam impinges on an Hg jet target producing pions, decaying in turn into muons. In order to reduce the particle beam emittance, the muon transverse momentum is reduced through ionization cooling by a technically demanding set-up made of closely-packed RF cavities alternating with absorbers. In this talk I will present the motivation for building an intense neutrino beam and some of the proposed neutrino facilities' design. I will discuss the challenges inherent to the cooling of muons, possible optimization of the current baseline and the on-going R&D. ________________ ATS Seminars Organisers: H. Burkhardt (BE), S. Sgobba (EN), G. deRijk (TE)

  19. Symmetry tests with intense hadron beams

    International Nuclear Information System (INIS)

    Vogt, E.W.

    1994-08-01

    The Government of Canada has pulled the plug on funding of the KAON facility in Canada. But the science opportunities for symmetry tests with the kinds of beams that KAON would have provided remain. For example, the full intensity of kaons, which KAON would have provided, is needed to find the magnitude and phase of V td and therefore to describe direct CP violation. The combination of K + → π + ν ν - and K L o → π o ν ν - serve this purpose. A variety of other symmetry tests are possible with the kind of intense beams of kaons, antinucleons, other hadrons and neutrinos which KAON would have provided. A perspective will be given for such experiments and their future prospects, now that KAON will not be built. (author). 10 refs., 1 tab., 2 figs

  20. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    CERN Document Server

    Pomp, S; Mayer, S; Reitz, G; Rottger, S; Silari, M; Smit, F D; Vincke, H; Yasuda, H

    2014-01-01

    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europe.

  1. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  2. Fast Flux Test Facility interim examination and maintenance cell: Past, present, and future

    International Nuclear Information System (INIS)

    Vincent, J.R.

    1990-09-01

    The Fast Flux Test Facility Interim Examination and Maintenance Cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The Interim Examination and Maintenance Cell equipment developed and used for the first ten years of operation has been primarily devoted to the disassembly and examination of core component test assemblies. While no major reactor equipment has required remote repair or maintenance, the Interim Examina Examination and Maintenance Cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished. The Interim Examination and Maintenance Cell's demonstrated versatility has shown its capability to support a challenging future. 12 refs., 9 figs

  3. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    Science.gov (United States)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  4. Hadronic physics in electron-positron annihilation

    International Nuclear Information System (INIS)

    Bethke, S.

    1993-01-01

    The author presents an introduction to the study of hadronic physics by means of e + e - processes. After an introduction to the theory of the strong interactions and QCD the current accelerator facilities for such studies are listed. Then the treatment of e + e - annihilation into hadrons by QCD is discussed. Thereafter the studies of hadronic event shapes, jet physics, the tests of the basic quantum numbers of quarks and gluons, the measurement of α S , and the studies of the differences between quark and gluon jets are described. Finally an outlook to further studies of such processes at higher energies is given. (HSI)

  5. An investigation of triply heavy baryon production at hadron colliders

    CERN Document Server

    Gomshi Nobary, M A

    2006-01-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the Ωccc and Ωbbb baryons as the prototypes of triply heavy baryons at the hadron colliders with different . We present and compare the transverse momentum distributions of the differential cross sections, distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  6. An investigation of triply heavy baryon production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gomshi Nobary, M.A. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of) and Center for Theoretical Physics and Mathematics, AEOI, Roosbeh Building, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: mnobary@razi.ac.ir; Sepahvand, R. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2006-05-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the {omega}{sub ccc} and {omega}{sub bbb} baryons as the prototypes of triply heavy baryons at the hadron colliders with different s. We present and compare the transverse momentum distributions of the differential cross sections, p{sub T}{sup min} distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  7. Challenges in Hadron Physics

    OpenAIRE

    Meißner, Ulf-G.

    2004-01-01

    The status of hadron physics at the end of the HADRON07 Conference is reviewed. The latest results presented at the conference, as well as those important developments in the field which were not represented, are included.

  8. QCD in hadron-hadron collisions

    International Nuclear Information System (INIS)

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E T jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction

  9. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  10. Physics at a future Neutrino Factory and super-beam facility

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  11. Physics at a future Neutrino Factory and super-beam facility

    International Nuclear Information System (INIS)

    Bandyopadhyay, A; Choubey, S; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umasankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, S; Geer, S; Campagne, J E; Rolinec, M; Blondel, A

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report.

  12. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  13. 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities

    CERN Document Server

    2015-01-01

    These proceedings present the written contributions from participants of the 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities (NUFACT 2014) that was held at the University of Glasgow (Glasgow, Scotland, United Kingdom) from 25-30 August 2014. This edition of the NUFACT annual meetings, which started in 1999, consisted of 24 plenary and 92 parallel talks and various poster sessions, with the participation of 124 delegates. Furthermore, the International Neutrino Summer School 2014 was held from 10-22 August 2014 at St Andrews, Scotland, in the two weeks before NUFACT 2014. It was intended for young scientists with an interest in neutrino physics in such a way that they would be able to participate and contribute to the NUFACT workshop as well. The objectives of the NUFACT workshops are to review progress on different studies for future accelerator-based neutrino oscillation facilities, with the goal to discover the mass hierarchy of neutrinos, CP violation in the leptonic s...

  14. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  15. Problems of hadron electrodynamics

    International Nuclear Information System (INIS)

    Rekalo, M.P.

    1989-01-01

    Certain directions of hadron electrodynamics referring to testing symmetry properties relatively to C-, P- and T-transformations; determination of fundamental electromagnetic characteristics of hadrons as well as to clarifying the dynamics of electromagnetic processes in which hadrons participate are analyzed briefly. 52 refs

  16. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Science.gov (United States)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  17. PREFACE: 5th DAE-BRNS Workshop on Hadron Physics (Hadron 2011)

    Science.gov (United States)

    Jyoti Roy, Bidyut; Chatterjee, A.; Kailas, S.

    2012-07-01

    The 5th DAE-BRNS Workshop on Hadron Physics was held at the Bhabha Atomic Research Centre (BARC), Mumbai from 31 October to 4 November 2011. This workshop series, supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS, DAE), Govt. of India, began ten years ago with the first one being held at BARC, Mumbai in October 2002. The second one was held at Puri in 2005, organized jointly by Institute of Physics, Bhubneswar and Saha Institute of Nuclear Physics, Kolkata. The 3rd and 4th ones took place, respectively, at Shantineketan in 2006, organized by Visva Bharati University, and at Aligarh in 2008, organized by Aligarh Muslim University, Aligarh. The aim of the present workshop was to bring together the experts and young researchers in the field of hadron physics (both experiment and theory) and to have in-depth discussions on the current research activities in this field. The format of the workshop was: a series of review lectures by various experts from India and abroad, the presentation of advanced research results by researchers in the field, and a review of major experimental programs being planned and pursued in major laboratories in the field of hadron physics, with the aim of providing a platform for the young participants for interaction with their peers. The upcoming international FAIR facility at GSI is a unique future facility for studies of hadron physics in the charm sector and hyper nuclear physics. The Indian hadron physics community is involved in this mega science project and is working with the PANDA collaboration on the development of detectors, simulation and software tools for the hadron physics programme with antiprotons at FAIR. A one-day discussion session was held at this workshop to discuss India-PANDA activities, the current collaboration status and the work plan. This volume presents the workshop proceedings consisting of lectures and seminars which were delivered during the workshop. We are thankful to

  18. Strategy for the future use and disposition of Uranium-233: History, inventories, storage facilities, and potential future uses

    International Nuclear Information System (INIS)

    Bereolos, P.J.; Lewis, L.C.

    1998-06-01

    This document provides background information on the man-made radioisotope 233 U. It is one of a series of four reports that map out potential national strategies for the future use and disposition of 233 U pending action under the National Environmental Policy Act (NEPA). The scope of this report is separated 233 U, where separated refers to nonwaste 233 U or 233 U that has been separated from fission products. Information on other 233 U, such as that in spent nuclear fuel (SNF), is included only to recognize that it may be separated at a later date and then fall under the scope of this report. The background information in this document includes the historical production and current inventory of 233 U, the uses of 233 U, and a discussion of the available facilities for storing 233 U. The considerations for what fraction of the current inventory should be preserved for future use depend on several issues. First, 233 U always contains a small amount of the contaminant isotope 232 U. The decay products of 232 U are highly radioactive and require special handling. The current inventory has a variety of qualities with regard to 232 U content, ranging from 1 to about 200 ppm (on a total uranium basis). It is preferable to use 233 U with the minimum amount of 232 U in all applications. The second issue pertains to other isotopes of uranium mixed in with the 233 U, specifically 235 U and 238 U. A large portion of the inventory has a high quantity of 235 U associated with it. The presence of bulk amounts of 235 U complicates storage because of the added volume needing safeguards and criticality controls. Isotopic dilution using DU may remove safeguards and criticality concerns, but it increases the overall mass and may limit applications that depend on the fissile nature of 233 U. The third issue concerns the packaging of the material. There is no standard packaging (although one is being developed); consequently, the inventory exists in a variety of packages. For some

  19. Planning and managing future space facility projects. [management by objectives and group dynamics

    Science.gov (United States)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  20. Hadron--hadron reactions, high multiplicity

    International Nuclear Information System (INIS)

    Diebold, R.

    1978-09-01

    A coverage of results on high energy and high multiplicity hadron reactions, charm searches and related topics, ultrahigh energy events and exotic phenomena (cosmic rays), and the nuclear effects in high energy collisions and related topics is discussed. 67 references

  1. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    International Nuclear Information System (INIS)

    Reyes, Susana; Anklam, Tom; Meier, Wayne; Campbell, Patrick; Babineau, Dave; Becnel, James; Taylor, Craig; Coons, Jim

    2016-01-01

    licensing activities, and summarize our most recent thoughts on safety and tritium considerations for future nuclear fusion facilities.

  2. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana, E-mail: reyes20@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Anklam, Tom; Meier, Wayne; Campbell, Patrick [Lawrence Livermore National Laboratory, Livermore, CA (United States); Babineau, Dave; Becnel, James [Savannah River National Laboratory, Aiken, SC (United States); Taylor, Craig; Coons, Jim [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-11-01

    licensing activities, and summarize our most recent thoughts on safety and tritium considerations for future nuclear fusion facilities.

  3. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  4. Decisional tool to assess current and future process robustness in an antibody purification facility.

    Science.gov (United States)

    Stonier, Adam; Simaria, Ana Sofia; Smith, Martin; Farid, Suzanne S

    2012-07-01

    Increases in cell culture titers in existing facilities have prompted efforts to identify strategies that alleviate purification bottlenecks while controlling costs. This article describes the application of a database-driven dynamic simulation tool to identify optimal purification sizing strategies and visualize their robustness to future titer increases. The tool harnessed the benefits of MySQL to capture the process, business, and risk features of multiple purification options and better manage the large datasets required for uncertainty analysis and optimization. The database was linked to a discrete-event simulation engine so as to model the dynamic features of biopharmaceutical manufacture and impact of resource constraints. For a given titer, the tool performed brute force optimization so as to identify optimal purification sizing strategies that minimized the batch material cost while maintaining the schedule. The tool was applied to industrial case studies based on a platform monoclonal antibody purification process in a multisuite clinical scale manufacturing facility. The case studies assessed the robustness of optimal strategies to batch-to-batch titer variability and extended this to assess the long-term fit of the platform process as titers increase from 1 to 10 g/L, given a range of equipment sizes available to enable scale intensification efforts. Novel visualization plots consisting of multiple Pareto frontiers with tie-lines connecting the position of optimal configurations over a given titer range were constructed. These enabled rapid identification of robust purification configurations given titer fluctuations and the facility limit that the purification suites could handle in terms of the maximum titer and hence harvest load. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  6. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation

  7. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  8. From magnetized iron bars to amplitude imaging of hadronic reactions

    International Nuclear Information System (INIS)

    Svec, M.

    1989-01-01

    Instruments shape research and determine which discoveries are made. Considering spin observables as carriers of information on nonperturbative QCD dynamics in hadronic reactions, we examine the relevance of amplitude analysis for the design goals of high intensity hadron facilities. New instrumental goals emerge: Hadron facility dedicated to continous measurements of spin observables and to cumulative production of computer images of scattering amplitudes over broad kinematic regions. The facility is viewed as a single instrument and termed spinoscope. We stress its connections to frontier developments in computer industries and to studies of nonperturbative states in condensed matter

  9. DS Mesons in Asymmetric Hot and Dense Hadronic Matter

    Directory of Open Access Journals (Sweden)

    Divakar Pathak

    2015-01-01

    Full Text Available The in-medium properties of DS mesons are investigated within the framework of an effective hadronic model, which is a generalization of a chiral SU(3 model, to SU(4, in order to study the interactions of the charmed hadrons. In the present work, the DS mesons are observed to experience net attractive interactions in a dense hadronic medium, hence reducing the masses of the DS+ and DS- mesons from the vacuum values. While this conclusion holds in both nuclear and hyperonic media, the magnitude of the mass drop is observed to intensify with the inclusion of strangeness in the medium. Additionally, in hyperonic medium, the mass degeneracy of the DS mesons is observed to be broken, due to opposite signs of the Weinberg-Tomozawa interaction term in the Lagrangian density. Along with the magnitude of the mass drops, the mass splitting between DS+ and DS- mesons is also observed to grow with an increase in baryonic density and strangeness content of the medium. However, all medium effects analyzed are found to be weakly dependent on isospin asymmetry and temperature. We discuss the possible implications emanating from this analysis, which are all expected to make a significant difference to observables in heavy ion collision experiments, especially the upcoming Compressed Baryonic Matter (CBM experiment at the future Facility for Antiproton and Ion Research (FAIR, GSI, where matter at high baryonic densities is planned to be produced.

  10. Volcanic harzards studies tailored to future populations and facilities: Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Keating, Gordon N.; Perry, Frank V.; Harrington, Charles; Krier, Don; Valentine, Greg A.; Gaffney, Edward; Cline, Mike

    2004-01-01

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. These studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ((le) 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra

  11. Hadron reaction mechanisms

    International Nuclear Information System (INIS)

    Collins, P.D.B.; Martin, A.D.

    1982-01-01

    The mechanism of hadron scattering at high energies are reviewed in such a way as to combine the ideas of the parton model and quantum chromodynamics (QCD) with Regge theory and phenomenology. After a brief introduction to QCD and the basic features of hadron scattering data, scaling and the dimensional counting rules, the parton structure of hadrons, and the parton model for large momentum transfer processes, including scaling violations are discussed. Hadronic jets and the use of parton ideas in soft scattering processes are examined, attention being paid to Regge theory and its applications in exclusive and inclusive reactions, the relationship to parton exchange being stressed. The mechanisms of hadron production which build up cross sections, and hence the underlying Regge singularities, and the possible overlap of Regge and scaling regions are discussed. It is concluded that the key to understanding hadron reaction mechanisms seems to lie in the marriage of Regge theory with QCD. (author)

  12. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  13. Density oscillations within hadrons

    International Nuclear Information System (INIS)

    Arnold, R.; Barshay, S.

    1976-01-01

    In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr

  14. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    International Nuclear Information System (INIS)

    Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M.G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility

  15. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  16. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Cuttone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Di Rosa, F. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Raffaele, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Russo, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Guatelli, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genova (Italy); Pia, M.G. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genova (Italy)

    2006-01-15

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  17. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  18. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  19. Hadron spectroscopy at RHIC and KAON

    International Nuclear Information System (INIS)

    Chung, S.U.

    1990-01-01

    A description is given of the physics opportunities at RHIC regarding quark-gluon spectroscopy. The basic idea is to isolate with appropriate triggers the sub-processes pomeron + pomeron → hadrons and γ + +γ + → hadrons with the net effective mass of hadrons in the range of 1.0 to 10.0 GeV, in order to study the hadronic states composed of u, d, c, b and gluons. The double-pomeron interactions are expected to produce glueballs and hybrids preferentially, while the two-offshell-photon initial states should couple predominantly to quarkonia and multiquark states. Of particular interest is the possibility of carrying out a CP-violation study in the B decays. The KAON facility, proposed for TRIUMF, Vancouver, Canada, is an intense hadron factory with a proton flux some 25 times higher than that available at the BNL AGS with the Booster. Therefore, a general purpose hadron spectrometer will be able to tackle the problem of studying gluonic and multiquark degrees of freedom in strangeonia. 19 refs., 3 figs

  20. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2014-08-15

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of Sao Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the ''in-flight method'' to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are {sup 6}He, {sup 8}Li, {sup 7}Be, {sup 10}Be, {sup 8}B, {sup 12}B with intensities that can vary from 10{sup 4} to 10{sup 6} pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo ({sup 6}He and {sup 8}B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory. (orig.)

  1. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  2. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  3. Hadron production at SPEAR

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1975-01-01

    A report is given of the knowledge obtained from SPEAR about hadron production in e + e - annihilation since the discovery of the new particles. Included are the SPEAR magnetic detector, the total cross sections, mean charged multiplicity and energy, inclusive momentum spectra, and hadron angular distribution

  4. Hadron-structure

    International Nuclear Information System (INIS)

    De, S.S.

    1989-01-01

    The paper deals with the space-time structure of the sub-atomic world and attempts to construct the fields of the constitutents of the hadrons. Then it is attempted to construct the fields of the hadrons from these micro-fields. (autho r). 24 refs

  5. Statistical Hadronization and Holography

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal...

  6. Perspectives in hadron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richard, J.M. [Universite Joseph Fourier-IN2P3-CNRS, Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (France)

    2005-07-01

    A brief survey is presented of selected recent results on hadron spectroscopy and related theoretical studies. Among the new hadron states, some of them are good candidates for exotic structures: chiral partners of ground-states, hybrid mesons (quark, antiquark and constituent gluon), four-quark states, or meson-meson molecules.

  7. Firetube model and hadron-hadron collisions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.; Kodama, T.; Portes Junior, D.A.

    1992-01-01

    A new version of the fire tube model is developed to describe hadron-hadron collisions at ultrarelativistic energies. Several improvements are introduced in order to include the longitudinal expansion of intermediate fireballs, which remedies the overestimates of the transverse momenta in the previous version. It is found that, within a wide range of incident energies, the model describes well the experimental data for the single particle rapidity distribution, two-body correlations in the pseudo-rapidity, transverse momentum spectra of pions and kaons, the leading particle spectra and the K/π ratio. (author)

  8. Challenges for embedded electronics in systems used in future facilities dedicated to international physics programs

    Energy Technology Data Exchange (ETDEWEB)

    Flament, O.; Bazzoli, S.; Girard, S.; Raimbourg, J.; Sauvestre, J. E. [CEA, DIF, F-91297 Arpajon (France); Baggio, J. [CEA, CESTA, F33830, Le Barp (France); Leray, J. L. [CEA, F-91191 Gif-sur-Yvette (France)

    2009-07-01

    The implementation of equipment with embedded electronic to monitor, control, measure and operate future large facilities dedicated to high energy physics or nuclear fusion are necessary. Reliable operation of these equipment will be achieved through availability and reliability analysis. In several cases, the equipment selection or development approach has to be done by considering a harsh environment in terms of radiations. In order to implement these systems in such environments shielding, location and distance from the source must be considered to reduce, to protect and to avoid radiation effects. People in charge of the choice of the equipment have to take into account and mitigate radiation effects from subsystem to system level. It is beyond the scope of this paper to address all the radiation effects: the electromagnetic effects are not dealt with. This paper is organised as follows: we describe the electronics and semiconductor trends in today applications, then we present the radiation effects and their impact on the device response and eventually we review different ways to mitigate these impacts

  9. Challenges for embedded electronics in systems used in future facilities dedicated to international physics programs

    International Nuclear Information System (INIS)

    Flament, O.; Bazzoli, S.; Girard, S.; Raimbourg, J.; Sauvestre, J. E.; Baggio, J.; Leray, J. L.

    2009-01-01

    The implementation of equipment with embedded electronic to monitor, control, measure and operate future large facilities dedicated to high energy physics or nuclear fusion are necessary. Reliable operation of these equipment will be achieved through availability and reliability analysis. In several cases, the equipment selection or development approach has to be done by considering a harsh environment in terms of radiations. In order to implement these systems in such environments shielding, location and distance from the source must be considered to reduce, to protect and to avoid radiation effects. People in charge of the choice of the equipment have to take into account and mitigate radiation effects from subsystem to system level. It is beyond the scope of this paper to address all the radiation effects: the electromagnetic effects are not dealt with. This paper is organised as follows: we describe the electronics and semiconductor trends in today applications, then we present the radiation effects and their impact on the device response and eventually we review different ways to mitigate these impacts

  10. Radiation impact caused by activation of air from the future GSI accelerator facility fair

    International Nuclear Information System (INIS)

    Gutermuth, F.; Wildermuth, H.; Radon, T.; Fehrenbacher, G.

    2005-01-01

    The Gesellschaft fuer Schwerionenforschung in Darmstadt is planning a new accelerator Facility for Antiproton and Ion Research (FAIR). Two future experimental areas are regarded to be the most decisive points concerning the activation of air. One is the area for the production of antiprotons. A second crucial experimental area is the so-called Super Fragment Separator. The production of radioactive isotopes in air is calculated using the residual nuclei option of the Monte Carlo program FLUKA. The results are compared with the data for the activation of air given by Sullivan and in IAEA report 283. The resulting effective dose is calculated using a program package from the German Federal Office for Radiation Protection, the Bundesamt fuer Stranlenschutz. The results demonstrate that a direct emission of the total radioactivity produced into the air will probably conflict with the limits of the German Radiation Protection Ordinance. Special measures have to be planned in order to reduce the amount of radioactivity released into the air. (authors)

  11. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  12. η{sub c} production associated with light hadrons at the B-factories and the future Super B-factories

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Qin-Rong [Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Sun, Zhan [Guizhou Minzu University, School of Science, Guiyang (China); Zhang, Hong-Fei [Chongqing University of Posts and Telecommunications, School of Science, Chongqing (China); Mo, Xue-Mei [Third Military Medical University, Institute of Digital Medicine, School of Biomedical Engineering, Chongqing (China)

    2016-09-15

    We present a complete study of the associated production of the η{sub c} meson with light hadrons in e{sup +}e{sup -} collisions at the B-factory energy, which is demonstrated to be one of the best laboratories for testing the colour-octet (CO) mechanism. The colour-singlet contributions are evaluated up to O(α{sup 2}α{sub s}{sup 3}), while the CO ones are evaluated up to O(α{sup 2}α{sub s}{sup 2}). For the first time, the angular distribution of the {sup 1}S{sub 0}{sup [8]} production is studied at QCD next-to-leading order. We find that the {sup 1}S{sub 0}{sup [8]} channel dominates the total cross section, while the {sup 1}P{sub 1}{sup [8]} one exhibits its importance in the angular distribution, which turns out to be downward going with respect to cosθ. This can be considered as the most distinct signal for the CO mechanism. (orig.)

  13. Future proton and mixed-field irradiation facilities with slow extraction for LHC operation phase and for LHC upgrades

    CERN Document Server

    Assmann, Ralph Wolfgang; Brugger, Markus; Efthymiopoulos, Ilias; Feldbaumer, Eduard; Garrido, Mar Capeans; Glaser, Maurice; Kramer, Daniel; Linssen, Lucie; Losito, Roberto; Moll, Michael; Rembser, Christoph; Silari, Marco; Thurel, Yves; Tsesmelis, Emmanuel; Vincke, Helmut; CERN. Geneva. The LHC experiments Committee; LHCC

    2010-01-01

    In the present proposal we present the need for improved proton and mixed-field irradiation facilities with slow beam extraction at CERN. Strong needs are expressed by both the detector and accelerator communities and concern the LHC operation era as well as the upgrades of machine and experiments. The current facilities and test areas have a number of limitations and drawbacks. Preliminary studies indicate that there are possibilities for a coherent and cost-effective approach towards improved facilities for the future. The aim of this document is to inform the LHCC and seek its recognition for the need of such facilities. In addition we would appreciate the support of the LHCC for pursuing further implementation studies at a PS East Hall location.

  14. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    Science.gov (United States)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei A.; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L.

    2009-07-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve

  15. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    International Nuclear Information System (INIS)

    Miller, Stephen D; Herwig, Kenneth W; Ren, Shelly; Vazhkudai, Sudharshan S; Jemian, Pete R; Luitz, Steffen; Salnikov, Andrei A; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L

    2009-01-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better

  16. Data Management and its Role in Delivering Science at DOE BES User Facilities - Past, Present, and Future

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Hagen, Mark E.

    2009-01-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better

  17. Data Management and Its Role in Delivering Science at DOE BES User Facilities Past, Present, and Future

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.

    2009-01-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research (1). We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need (2). Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve

  18. Hadron spectroscopy 1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk

  19. Hadron spectroscopy 1987

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk.

  20. Evaluation of alternatives for the future of facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    1978-08-01

    Regulatory considerations are discussed. Alternatives for the continued operation or decommissioning of the state-licensed burial area, the low-level waste treatment facilities, and the NRC licensed burial area are evaluated. Radiological impact analyses were also performed for alternatives on other facilities

  1. Recent results from hadron colliders

    International Nuclear Information System (INIS)

    Frisch, H.J.

    1990-01-01

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs

  2. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  3. QCD and hadron structure

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1995-01-01

    I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it

  4. Hadron physics at Fermilab

    International Nuclear Information System (INIS)

    Ferbel, T.

    1976-01-01

    Recent experimental results from studies of hadron interactions at Fermilab are surveyed. Elastic, total and charge-exchange cross section measurements, diffractive phenomena, and inclusive production, using nuclear as well as hydrogen targets, are discussed in these lectures

  5. Spin in hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)

  6. Hadron multiplicities at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Du Fresne von Hohenesche, Nicolas [Institut fuer Kernphysik, Universitaet Mainz, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    Quark fragmentation functions (FF) D{sub q}{sup h}(z,Q{sup 2}) describe final-state hadronization of quarks q into hadrons h. The FFs can be extracted from hadron multiplicities produced in semi-inclusive deep inelastic scattering. The COMPASS collaboration has recently measured charged hadron multiplicities for identified pions and kaons using a 160 GeV/c muon beam impinging on an iso-scalar target. The data cover a large kinematical range and provide an important input for global QCD analyses of world data at NLO, aiming at the determination of FFs in particular in the strange quark sector. The newest results from COMPASS on pion and kaon multiplicities will be presented.

  7. Hadronic production of glueballs

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1983-01-01

    Local Gauge Invariance of SU(3)/sub c/ and color confinement would require that the only hadrons in the world be glueballs. However, when we add the quarks and obtain QCD it is experimentally clear that quark built states mask the expected glueballs. Thus discovery of glueballs is essential for the viability of QCD. Papers presented at the 1983 International Europhysics Conference on High Energy Physics on the hadronic production of glueballs and searches for glueballs are reviewed

  8. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  9. Hadronization in nuclear matter

    International Nuclear Information System (INIS)

    Anton, G.; Blok, H.P.; Boudard, A.; Kopeliovich, B.

    1993-01-01

    The investigation of the space time structure of quark propagation and hadronization is proposed by studying particle production in deep-inelastic scattering of electrons from nucleons and nuclei with high statistics. A 15 to 30 GeV electron beam impinging on targets of hydrogen, deuterium, helium, carbon and lead is planned to be used and the final state hadrons are to be detected in a large solid angle device. (authors). 48 refs., 13 figs., 4 tabs

  10. Hadron structure functions

    International Nuclear Information System (INIS)

    Martin, F.

    1981-03-01

    The x dependence of hadron structure functions is investigated. If quarks can exist in very low mass states (10 MeV for d and u quarks) the pion structure function is predicted to behave like (1-x) and not (1-x) 2 in a x-region around 1. Relativistic and non-relativistic quark bound state pictures of hadrons are considered together with their relation with the Q 2 evolution of structure functions. Good agreement with data is in general obtained

  11. Color models of hadrons

    International Nuclear Information System (INIS)

    Greenberg, O.W.; Nelson, C.A.

    1977-01-01

    The evidence for a three-valued 'color' degree of freedom in hadron physics is reviewed. The structure of color models is discussed. Consequences of color models for elementary particle physics are discussed, including saturation properties of hadronic states, π 0 →2γ and related decays, leptoproduction, and lepton pair annihilation. Signatures are given which distinguish theories with isolated colored particles from those in which color is permanently bound. (Auth.)

  12. Future use of BI-GAS facility. Final report, Part II. [Other possible uses

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    The 120 tpd BI-GAS pilot plant, intended to produce SNG at high pressure, was completed in 1976. For the next three and a half years, the operator, Stearns-Roger Inc., was engaged in operating the plant while overcoming a series of mechanical problems that have prevented the plant from running at design capacity and pressure. Since July 1980, these problems have apparently been corrected and considerable progress was made. In late 1979, the Yates Congressional Committee directed DOE to investigate the possibility of establishing an entrained-bed gasifier test facility at the site. In January 1981, the DOE established a study group composed of DOE and UOP/SDC personnel to determine how best to use the BI-GAS facility. The group considered four possibilities: Continue operation of the facility in accordance with the technical program plan developed by DOE and Stearns-Roger; modify the plant into an entrained-bed facility for testing components and processes; mothball the facility, or dismantle the facility. The group took the view that modifying the plant into a test facility would increase substantially the amount of engineering data available to the designers of commercial gasification plants. Since it appears that syngas plants will be of commercial interest sooner than SNG plants will, it was decided that the facility should test syngas production components and processes at high pressure. Consequently, it was recommended that: Operation of the plant be continued, both to collect data and to prove the BI-GAS process, as long as the schedule of the technical program plan is met; Begin at once to prepare a detailed design for modifying the BI-GAS plant to a high-pressure, entrained flow syngas test facility; and Implement the modification plan as soon as the BI-GAS process is proven or it becomes apparent that progress is unsatisfactory.

  13. Atomic physics at the future facility for antiproton and ion research: a status report

    International Nuclear Information System (INIS)

    Gumberidze, A

    2013-01-01

    The new international accelerator Facility for Antiproton and Ion Research (FAIR) which is currently under construction in Darmstadt has key features that offer a wide range of exciting new opportunities in the field of atomic physics and related fields. The facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei, in combination with the strong electromagnetic fields generated by high-power lasers, thus allowing to widen atomic physics research into completely new domains. In the current contribution, a short overview of the SPARC (Stored Particle Atomic physics Research Collaboration) research programme at the FAIR facility is given. Furthermore, we present the current strategy for the realization of the envisioned SPARC physics programme at the modularized start version of the FAIR facility. (paper)

  14. THE PROBLEM OF PREPARATION OF FUTURE TEACHERS OF HUMANITARIAN CYCLE SUBJECTS TO THE USE OF EDUCATIONAL PROGRAMMATIC FACILITIES

    Directory of Open Access Journals (Sweden)

    Olena S. Tselykh

    2010-08-01

    Full Text Available The actual questions related to the development of methods and receptions of improvement of preparation of future teachers of humanitarian cycle subjects to application the educational programmatic facilities (EPF in their professional activity are examined in the article. On the basis of the conducted research the level of readiness of students of humanitarian faculties of the South Ukrainian National Pedagogical University by K. D. Ushinskogo is analyzed the noted activity. It is set that application of educational programmatic facilities considerably intensifies professional preparation of future teachers of humanitarian cycle subjects. It is well-proven that teaching technologies which oriented on application of EPF in professional activity can considerably facilitate and improve teacher’s work to high-quality level, increase the level of knowledge and abilities of students.

  15. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Higgs boson; Large Hadron Collider; electroweak symmetry; spin and CP of the Higgs boson ... I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at ...

  16. Sites with nuclear facilities in the state of dismantling and their future from the public perspective

    International Nuclear Information System (INIS)

    Kretz, Simon Philipp

    2015-01-01

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  17. Status and future program of reactor physics experiments in JAERI Critical facilities, FCA and TCA

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Osugi, Toshitaka; Nakajima, Ken; Suzaki, Takenori; Miyoshi, Yoshinori

    1999-01-01

    The critical facilities in JAERI, FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly), have been used to provide integral data for evaluation of nuclear data as well as for development of various types of reactor since they went critical in 1960's. In this paper a review is presented on the experimental programs in both facilities. And the experimental programs in next 5 years are also shown. (author)

  18. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  19. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    International Nuclear Information System (INIS)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas

  20. Progress on ANSTO'S OPAL reactor project and its future importance as the centrepiece of ANSTO'S facilities

    International Nuclear Information System (INIS)

    Smith, I.O.

    2006-01-01

    Full text: After an intensive process of analysis, the Australian government approved the construction of a multi-purpose research reactor in 1997. Following the conduct of a comprehensive tender evaluation process in 1998-2000, INVAP was contracted to construct a 20 MW open pool research reactor and associated neutron beam facilities. The construction of the reactor is now almost complete, and we have commenced cold commissioning. ANSTO has applied for an operating licence, and we hope for a decision on that application in June, following the consideration by the regulator of the results of cold commissioning. The OPAL reactor will provide neutrons to a world-class neutron beam facility, in which a number of the instruments will have the best performance available in the world to date. We intend to establish the Bragg Institute as a regional centre of excellence on neutron beam science, with a significant number of international scientists using the facility to produce cutting edge science in the fields of biology, materials science, food science and other area. The reactor also has extensive irradiation facilities within the reflector vessel. These facilities will be used to produce medical isotopes - ANSTO supplies the bulk of the Australian market and also exports into this region - and for the transmutation doping of silicon ingots for semiconductor manufacture. There are also a number of pneumatically loaded radiation facilities allowing for short term irradiation of samples for such activities as neutron activation analysis

  1. Quark-model study of the hadron structure and the hadron-hadron interaction

    International Nuclear Information System (INIS)

    Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H

    2011-01-01

    Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.

  2. Artificial Neural Networks For Hadron Hadron Cross-sections

    International Nuclear Information System (INIS)

    ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.

    2011-01-01

    In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  3. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  4. Top quark studies at hadron colliders

    International Nuclear Information System (INIS)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented

  5. Top quark studies at hadron colliders

    International Nuclear Information System (INIS)

    Sinervo, P.K.

    1996-08-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D null collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented

  6. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS and FUTURE PLANS

    International Nuclear Information System (INIS)

    LESPERANCE, C.P.

    2007-01-01

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D and D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D and D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009

  7. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    Energy Technology Data Exchange (ETDEWEB)

    LESPERANCE, C.P.

    2007-05-23

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  8. Nuclear-bound quarkonia and heavy-flavor hadrons

    Science.gov (United States)

    Krein, G.; Thomas, A. W.; Tsushima, K.

    2018-05-01

    In our quest to win a deeper understanding of how QCD actually works, the study of the binding of heavy quarkonia and heavy-flavor hadrons to atomic nuclei offers enormous promise. Modern experimental facilities such as FAIR, Jefferson Lab at 12 GeV and J-PARC offer exciting new experimental opportunities to study such systems. These experimental advances are complemented by new theoretical approaches and predictions, which will both guide these experimental efforts and be informed and improved by them. This review will outline the main theoretical approaches, beginning with QCD itself, summarize recent theoretical predictions and relate them both to past experiments and those from which we may expect results in the near future.

  9. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  10. A spallation-based irradiation test facility for fusion and future fission materials

    International Nuclear Information System (INIS)

    Samec, K.; Fusco, Y.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU's FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the proposed DEMO fusion reactor, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550 deg. C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum over a volume occupying one litre. The entire 'TMIF' facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility. (authors)

  11. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  12. Feasibility studies for accessing nucleon structure observables with the PANDA experiment at the future FAIR facility

    International Nuclear Information System (INIS)

    Mora Espi, Maria Carmen

    2012-10-01

    The availability of a high-intensity antiproton beam with momentum up to 15 GeV/c at the future Facility for Antiproton and Ion Research (FAIR) will open a unique opportunity to investigate wide areas of nuclear physics with the PANDA (antiProton ANnihilations at DArmstadt) detector. Part of these investigations concern the Electromagnetic Form Factors of the proton in the time-like region and the study of the transition distribution amplitudes, for which feasibility studies have been performed in this thesis. Moreover, simulations to study the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter of PANDA are presented. This detector is crucial especially for the reconstruction of processes like anti pp→e + e - π 0 , investigated in this work. Different arrangements of dead material were studied. The results show that both, the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter fulfill the requirements for the detection of backward particles, and that this detector is necessary for the reconstruction of the channels of interest. The study of the annihilation channel anti pp→e + e - will improve the knowledge of the electromagnetic form factors in the time-like region, and will help to understand their connection with the electromagnetic form factors in the space-like region. In this thesis the feasibility of a measurement of the anti pp→e + e - cross section with PANDA is studied using Monte-Carlo simulations. The major background channel anti pp→π + π - is taken into account. The results show a 10 9 background suppression factor, which assure a sufficiently clean signal with less than 0.1 % background contamination. The signal can be measured with an efficiency greater than 30 % up to s=14 (GeV/c) 2 . The Electromagnetic Form Factors are extracted from the reconstructed signal and corrected angular distribution. Above this s limit, the low cross section will not allow

  13. Feasibility studies for accessing nucleon structure observables with the PANDA experiment at the future FAIR facility

    Energy Technology Data Exchange (ETDEWEB)

    Mora Espi, Maria Carmen

    2012-10-15

    The availability of a high-intensity antiproton beam with momentum up to 15 GeV/c at the future Facility for Antiproton and Ion Research (FAIR) will open a unique opportunity to investigate wide areas of nuclear physics with the PANDA (antiProton ANnihilations at DArmstadt) detector. Part of these investigations concern the Electromagnetic Form Factors of the proton in the time-like region and the study of the transition distribution amplitudes, for which feasibility studies have been performed in this thesis. Moreover, simulations to study the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter of PANDA are presented. This detector is crucial especially for the reconstruction of processes like anti pp{yields}e{sup +}e{sup -}{pi}{sup 0}, investigated in this work. Different arrangements of dead material were studied. The results show that both, the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter fulfill the requirements for the detection of backward particles, and that this detector is necessary for the reconstruction of the channels of interest. The study of the annihilation channel anti pp{yields}e{sup +}e{sup -} will improve the knowledge of the electromagnetic form factors in the time-like region, and will help to understand their connection with the electromagnetic form factors in the space-like region. In this thesis the feasibility of a measurement of the anti pp{yields}e{sup +}e{sup -} cross section with PANDA is studied using Monte-Carlo simulations. The major background channel anti pp{yields}{pi}{sup +}{pi}{sup -} is taken into account. The results show a 10{sup 9} background suppression factor, which assure a sufficiently clean signal with less than 0.1 % background contamination. The signal can be measured with an efficiency greater than 30 % up to s=14 (GeV/c){sup 2}. The Electromagnetic Form Factors are extracted from the reconstructed signal and corrected

  14. Hadron Dragons strike again

    CERN Multimedia

    2009-01-01

    The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...

  15. Physics at Hadronic Colliders (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  16. Physics at Hadronic Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  17. Physics at Hadronic Colliders (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  18. Physics at Hadronic Colliders (3/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  19. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  20. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2012-01-01

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  1. Hadron spectroscopy in LHCb

    CERN Document Server

    Palano, Antimo

    2018-01-01

    The LHCb experiment is designed to study the properties and decays of heavy flavored hadrons produced in pp collisions at the LHC. The data collected in the LHC Run I enables precision spectroscopy studies of beauty and charm hadrons. The latest results on spectroscopy of conventional and exotic hadrons are reviewed. In particular the discovery of the first charmonium pentaquark states in the $J/\\psi p$ system, the possible existence of four-quark states decaying to $J/\\psi \\phi$ and the confirmation of resonant nature of the $Z_c(4430)^−$ mesonic state are discussed. In the sector of charmed baryons, the observation of five new $\\Omega_c$ states, the observation of the $\\Xi^+_{cc}$ and the study of charmed baryons decaying to $D^0 p$ are presented.

  2. Hadrons at finite temperature

    CERN Document Server

    Mallik, Samirnath

    2016-01-01

    High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...

  3. Pairing in hadron structure

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1981-08-01

    A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)

  4. High energy hadron-hadron collisions. Annual progress report

    International Nuclear Information System (INIS)

    Chou, T.T.

    1979-03-01

    Work on high energy hadron-hadron collisions in the geometrical model, performed under the DOE Contract No. EY-76-S-09-0946, is summarized. Specific items studied include the behavior of elastic hadron scatterings at super high energies and the existence of many dips, the computation of meson radii in the geometrical model, and the hadronic matter current effects in inelastic two-body collisions

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    Science.gov (United States)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Hadron jets in perspective

    International Nuclear Information System (INIS)

    Quigg, C.

    1982-11-01

    The subject of hadron jet studies, to judge by the work presented at this workshop, is a maturing field which is still gathering steam. The very detailed work being done in lepton-lepton and lepton-hadron collisions, the second-generation measurements being carried out at Fermilab, the CERN SPS, and the ISR, and the very high energy hard scatterings being observed at the CERN Collider all show enormous promise for increased understanding. Perhaps we shall yet reach that long-sought nirvana in which high-p/sub perpendicular/ collisions become truly simple

  7. Composite hadron models

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented

  8. Large transverse momenta phenomena in hadron-hadron collisions

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1981-05-01

    The production of particles with large transverse momentum in high energy hadron-hadron collisions is reviewed. The emphasis is placed on the experimental results. These results are discussed in terms of present theoretical ideas on interactions between hadronic constituents, but no attempt is made to review the theoretical work in a comprehensive manner. (author)

  9. High intensity hadron facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1989-01-01

    There is a large and growing community of particle and nuclear physicists around the world who are actively lobbying for the construction of an accelerator that could provide 1-2 orders of magnitude increase in proton intensity above that of the present AGS. There have been a series of proposals from Canada, Europe, Japan, and the USA. They can all be characterized as machines varying in energy from 12-60 GeV and intensities of 30-100 μA. The community of physicists using the AGS are in a unique position however. The AGS is the only machine available that can provide the beams to execute the physics program that this large international community is interested in. The BNL approach to the communities interests involves a stepwise intensity upgrade program. At present the AGS slow extracted beam current is 1 μA. With the completion of the Booster in 1990 and the associated AGS modifications, the current will rise to 4-5 μA. With the subsequent addition of the Stretcher which is under design, the current will rise to 8-10 μA and approximately 100% duty factor. The possibility of a further enhancement to a current level of 40-50 μA CW is now being examined. 2 figures, 6 tables

  10. Power supply design for Hadron Facility

    International Nuclear Information System (INIS)

    Karady, G.; Kansog, J.; Thiessen, H.A.; Schneider, E.

    1987-01-01

    Recently, a study investigated the feasibility of building a large 60 GeV, kaon factory accelerator. This paper presents the conceptual design of the magnet power supplies and energy storage system. In this study the following three systems were investigated: (a) power supply using storage generator; (b) power supply using inductive storage device; and (c) resonant power supplies. These systems were analyzed from both technical and economical points of view. It was found that all three systems are feasible and can be built using commercially available components. From a technical point of view, the system using inductive storage is the most advantageous. The resonant power supply is the most economical solution

  11. Army Invests in Testing Facilities to Support Current and Future Technologies

    National Research Council Canada - National Science Library

    Bochenek, Grace M; Hitchcock, Jennifer

    2007-01-01

    The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) has played a critical role in developing a hybrid electric powerpack designed to meet all anticipated Future Combat Systems...

  12. Fast Flux Test Facility: first three years of operation and future mission

    International Nuclear Information System (INIS)

    Peckinpaugh, C.L.; Newland, D.J.; Evans, E.A.

    1985-03-01

    In summary, the FFTF has proven to be a high performance, versatile test reactor. Results obtained during its first three years of operation - and those to be obtained in the coming years - are building a technology and experience base that is invaluable to future LMRs. The FFTF demonstrates proven LMR technology with a focus for the future and provides the US with international LMR technology leadership

  13. Quark models in hadron physics

    International Nuclear Information System (INIS)

    Phatak, Shashikant C.

    2007-01-01

    In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)

  14. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  15. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  16. The future of the SIRAD SEE facility Ion-Electron Emission Microscopy

    CERN Document Server

    Wyss, J; Kaminski, A; Magalini, A; Nigro, M; Pantano, D; Sedhykh, S

    2002-01-01

    The SIRAD facility is dedicated to radiation damage studies on semiconductor detectors, electronic devices and systems, using proton and ion beams delivered by a 15 MV tandem accelerator. It is routinely used by groups involved in detector development for elementary particle physics, electronic device physics and space applications. In particular, Single Event Effect studies are very important to the latter two activities. Presently, the facility can only characterize the global sensitivity of a device or system to single ion impacts. To map out the sensitivity of a device with micrometric resolution, following an idea developed at SANDIA, we will implement an Ion-Electron Emission Microscope (IEEM) to reconstruct the X,Y and time coordinates of an impacting energetic ion by imaging the secondary electrons emitted by the sample using a standard emission electron microscope and position sensitive detector system. After describing typical Single Event Effect activities at SIRAD we will discuss the basic princip...

  17. Alignment and stability of future machines

    International Nuclear Information System (INIS)

    Shiltsev, V.D.

    1996-06-01

    Leading accelerator laboratories mount serious efforts in alignment and vibration studies concerning stability of future accelerator facilities such as photon and meson factories, future linear colliders (LCs), and hadron supercolliders (HCs). Some 200 publications covered the topic since late 80s, following pioneering works of G.E. Fischer. Four International workshops on accelerator alignment were held since 1989 at SLAC, DESY, CERN and KEK. The SSCL hosted the workshop on vibration control and dynamic alignment (1992). This article briefly covers some present achievements and issues in the field. We discuss major effects and tolerances for the future accelerators, results of measurements up-to-date, correction techniques and make some conclusions

  18. Computing Facilities for AI: A Survey of Present and Near-Future Options

    OpenAIRE

    Fahlman, Scott

    1981-01-01

    At the recent AAAI conference at Stanford, it became apparent that many new AI research centers are being established around the country in industrial and governmental settings and in universities that have not paid much attention to AI in the past. At the same time, many of the established AI centers are in the process of converting from older facilities, primarily based on Decsystem-10 and Decsystem-20 machines, to a variety of newer options. At present, unfortunately, there is no simple an...

  19. Safety issues to be taken into account in designing future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, Didier, E-mail: didier.perrault@irsn.fr

    2016-11-01

    Highlights: • Assess if decay heat removal is a safety function. • Re-study accidents considered for ITER and identify those specific to DEMO. • Limit tritium inventory and optimize main gaseous tritium release routes. • Take into account constraints related to requirements of waste disposal routes. - Abstract: For several years now, the French “Institut de Radioprotection et de Sûreté Nucléaire” has been carrying out expertise of ITER fusion facility safety files at the request of the French “Autorité de Sûreté Nucléaire”. As part of the lengthy process which should lead to mastering nuclear fusion, different fusion facility projects are currently under study throughout the world to be ready to continue building on the work which will take place in the ITER facility. On the basis of the experience acquired during the ITER safety expertise, the IRSN has carried out a preliminary study of the safety issues which seem necessary to take into account right from the earliest design phase of these DEMO facilities. The issues studied have included the decay heat removal, exposure to ionizing radiation, potential accidents, and effluent releases and waste. The study shows that it will be important to give priority to the following actions, given that their results would have a major influence on the design: assess if decay heat removal is a safety function, re-study the accidents considered in the context of the ITER project and identify those specific to DEMO, and optimize each of the main routes for gaseous tritium releases.

  20. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    Science.gov (United States)

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  1. The current status and possible future of the Los Alamos spallation radiation effects facility

    Energy Technology Data Exchange (ETDEWEB)

    Borden, M.J.; Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The Los Alamos Spallation Radiation Effects Facility (LASREF) has been configured for both proton and spallation neutron irradiations since 1985. The facility makes use of the Los Alamos Meson Physics Facility 1 mA 800 MeV proton beam. Environment controlled proton and neutron irradiations have been demonstrated over the past nine years. The current copper beam stop configuration produces a maximum measured neutron flux of 4.6 x 10{sup 17} m{sup {minus}2}s{sup {minus}1} for energies greater than 1 KeV. The maximum proton flux at the center of Gaussian shaped beam is 1.2 x 10{sup 14} protons cm{sup {minus}2}s{sup {minus}1} with beam spot diameter of 3.5 cm at 2{sigma}. Previously published work has shown that the neutron flux can be increased by a factor of ten by changing the beam stop to tungsten and decreasing the diameter. Expertise exists at Los Alamos to further optimize this design to tailor neutron production and spectrum. Consideration and preliminary planning has also been done for increasing the LAMPF proton current from 1 mA to a few mA with a possible maximum of 10 mA. An upgrade of this type would produce current densities comparable to those proposed for the Accelerator-Driven Transmutation Technologies (ADTT) programs.

  2. Integrated Electrical and Thermal Grid Facility - Testing of Future Microgrid Technologies

    Directory of Open Access Journals (Sweden)

    Sundar Raj Thangavelu

    2015-09-01

    Full Text Available This paper describes the Experimental Power Grid Centre (EPGC microgrid test facility, which was developed to enable research, development and testing for a wide range of distributed generation and microgrid technologies. The EPGC microgrid facility comprises a integrated electrical and thermal grid with a flexible and configurable architecture, and includes various distributed energy resources and emulators, such as generators, renewable, energy storage technologies and programmable load banks. The integrated thermal grid provides an opportunity to harness waste heat produced by the generators for combined heat, power and cooling applications, and support research in optimization of combined electrical-thermal systems. Several case studies are presented to demonstrate the testing of different control and operation strategies for storage systems in grid-connected and islanded microgrids. One of the case studies also demonstrates an integrated thermal grid to convert waste heat to useful energy, which thus far resulted in a higher combined energy efficiency. Experiment results confirm that the facility enables testing and evaluation of grid technologies and practical problems that may not be apparent in a computer simulated environment.

  3. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  4. Hadron Therapy for Cancer Treatment

    International Nuclear Information System (INIS)

    Lennox, Arlene

    2003-01-01

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  5. Triggering on hadronic tau decays: ATLAS meets the challenge

    CERN Document Server

    Scarcella, M J; The ATLAS collaboration

    2011-01-01

    Hadronic tau decays play a crucial role in taking Standard Model measurements as well as in the search for physics beyond the Standard Model. However, hadronic tau decays are difficult to identify and trigger on due to their resemblance to QCD jets. Given the large production cross section of QCD processes, designing and operating a trigger system with the capability to efficiently select hadronic tau decays, while maintaining the rate within the bandwidth limits, is a difficult challenge. This contribution will summarize the status and performance of the ATLAS tau trigger system during the 2011 data taking period, emphasizing the key elements of the online selection. Different methods that have been explored to obtain the trigger efficiency curves from data will be shown. Finally, the status of the measurements, which include hadronic tau decays in the final state, will be summarized. In light of the vast statistics collected in 2011, future prospects for triggering on hadronic tau decays in this exciting ne...

  6. Hadronization of dense partonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2006-12-15

    The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.

  7. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  8. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  9. Tau hadronic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...

  10. Chasseur de hadrons

    CERN Document Server

    Eytier, Jean-Louis

    2009-01-01

    Qu'aurait-il proposé comme solutions face aux déboires du LHC, le grand collisionneur du hadrons du CERN, arrêté peu après son démarrage à l'automne 2008? Lucien Edmond André Montanet était un des grands de la physique des particules. (2 pages)

  11. Hadrons in medium

    Indian Academy of Sciences (India)

    manifestly the symmetries of the underlying theory of strong interactions, i.e. ..... Note that such a picture, in which the self-energies of hadrons are generated by ..... An experimental verification of this prediction would be a major step forward in.

  12. Hadronic cascade processes

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.

    1977-01-01

    The analytical treatment of hadronic decay cascades within the framework of the statistical bootstrap model is demonstrated on the basis of a simple variant. Selected problems for a more comprehensive formulation of the model such as angular momentum conservation, quantum statistical effects, and the immediate applicability to particle production processes at high energies are discussed in detail

  13. The large hadron computer

    CERN Multimedia

    Hirstius, Andreas

    2008-01-01

    Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)

  14. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  15. Hadron collider physics

    International Nuclear Information System (INIS)

    Pondrom, L.

    1991-01-01

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs

  16. Proceeding of 26th domestic symposium on present and future of integrity monitoring technology in nuclear power generation facilities

    International Nuclear Information System (INIS)

    2000-06-01

    As the 26th domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as 'Current status and future of integrity monitoring techniques in nuclear power facilities'. Six speakers gave lectures titled as 'Maintenance and integrity monitoring in nuclear power plants', 'Present status of fatigue and creep-fatigue monitoring techniques in the US', 'Fatigue monitoring system in Tsuruga-1 nuclear power station', 'Vibration monitoring technique of rotational machine', 'SCC monitoring with electrochemical noise analysis' and Monitoring technique for corrosive environments and crack shape'. (T. Tanaka)

  17. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    Science.gov (United States)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  18. Progress and future directions for remediation of Hanford facilities and contaminated sites

    International Nuclear Information System (INIS)

    McClain, L.K.; Nemec, J.F.

    1996-01-01

    A great deal of physical progress is being made in the Hanford Environmental Restoration (ER) Project, which is responsible for the portion of work at Hanford that deals with contaminated soil and groundwater, and with inactive nuclear facilities. This work accounts for 10 to 15 percent of the Hanford site budget. (Other US Department of Energy [DOE] programs and contractors are responsible for the high-level liquid waste in underground storage tanks and the spent nuclear fuel). The project open-quotes closed the circleclose quotes on environmental restoration at Hanford this summer when the Environmental Restoration Disposal Facility (ERDF) went into operation and began receiving wastes being excavated from contaminated areas in Hanford's open-quotes 100 Areaclose quotes along the Columbia River. With this milestone event, environmental restoration at Hanford now has a clear path forward: (1) Waste areas along the Columbia River have been identified, volume estimates are being refined, and excavation has started. (2) The million-cubic-yard capacity ERDF is receiving waste from excavation in the 100 Area. (3) Deactivation of the N Reactor will be completed within a year. (4) Numerous other facilities in the 100 Area are being decommissioned, eliminating hazards and reducing the costs of surveillance and maintenance (S ampersand M). (5) A demonstration of long-term protective storage for one of the reactor blocks is in progress. (6) A comprehensive groundwater treatment strategy is in place. This paper describes the Hanford ER project, the progress being made, and the management techniques that are making the project successful

  19. Atomic physics at the future facility for antiproton and ion research: status report 2014

    International Nuclear Information System (INIS)

    Gumberidze, A; Stöhlker, Th; Litvinov, Yu A

    2015-01-01

    In this contribution, a brief overview of the Stored Particle Atomic physics Research Collaboration scientific program at the upcoming Facility for Antiproton and Ion Research (FAIR) is given. The program comprises a very broad range of research topics addressing atomic structure and dynamics in hitherto unexplored regimes, light–matter interactions, lepton pair production phenomena, precision tests of quantum electrodynamics and standard model in the regime of extreme fields and many more. We also present the current strategy for the realization of the envisioned physics program within the modularized start version (MSV) of FAIR. (paper)

  20. Review of past experiments at the FELIX facility and future plans for ITER applications

    International Nuclear Information System (INIS)

    Hua, T.Q.; Turner, L.R.

    1993-01-01

    FELIX is an experimental test facility at Argonne National Laboratory (ANL) for the study of electromagnetic effects in first wall, blanket, shield systems of fusion reactors. From 1983 to 1986 five major test series, including static and dynamic tests, were conducted and are reviewed in this paper. The dynamic tests demonstrated an important coupling effect between eddy currents and motion in a conducting structure. Recently the U.S. has proposed to the ITER Joint Central Team to use FELIX for testing mock-up components to study electromagnetic effects encountered during plasma disruptions and other off-normal events. The near and long term plans for ITER applications are discussed. (author)

  1. Neutron scattering facilities at China Institute of Atomic Energy. Present and future situations

    International Nuclear Information System (INIS)

    Ye, C.T.; Gou, C.; Yang, T.H.

    2001-01-01

    The 15 MW Heavy Water Research Reactor (HWRR) at CIAE in Beijing is the only neutron source available for neutron scattering experiments in China at present. So far totally 5 neutron scattering spectrometers are installed at 4 beam tubes. A 60 MW new research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. A brief description of HWRR, the presently existing neutron scattering equipments at HWRP, CARR, and the neutron scattering facilities to be installed at CARR are presented. (J.P.N.)

  2. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, and summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation

  3. FAIR: a Horizon for Future Charming Physics

    International Nuclear Information System (INIS)

    Ritman, James

    2007-01-01

    The science goals underlying the future international Facility for Antiproton and Ion Research--FAIR--[1] that is being realized in Darmstadt span a broad range of research activities on the structure of matter. One component of this facility is directed towards studies of hadronic matter at the sub-nuclear level with beams of antiprotons. These studies focus on two key aspects: confinement of quarks and the generation of the hadron masses. These goals will be pursued by performing precision measurements of charged and neutral decay products from antiproton-proton annihilation in the charmonium mass region. In this talk I present some of the issues connected to FAIR in which the groups in Cracow and Juelich are extending and intensifying our cooperation

  4. Fast Flux Test Facility interim examination and maintenance cell - past, present, and future

    International Nuclear Information System (INIS)

    Vincent, J.R.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The first 10 yr of operation were mainly devoted to the disassembly and examination of core component test assemblies. While some maintenance was performed on reactor support equipment, such as the closed-loop ex-vessel machine (CLEM) sodium-wetted grapple, 90% of IEM cell availability has been devoted to core component tests. Some test assemblies originally considered for processing in the IEM cell have not been irradiated; others, not originally planned, have been designed, irradiated, and processed. While no major reactor equipment has required remote repair or maintenance, the IEM cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished and are described

  5. High-Energy Physics Strategies and Future Large-Scale Projects

    CERN Document Server

    Zimmermann, F

    2015-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  6. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Science.gov (United States)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  7. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  8. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  9. Hadron Spectroscopy: Seventh International Conference. Proceedings

    International Nuclear Information System (INIS)

    Chung, S.; Willutzki, H.J.

    1998-01-01

    These proceedings represent papers presented at the Seventh International Conference on Hadron Spectroscopy (HADRON close-quote 97) held in Upton, New York in August, 1997. The Conference provided a wonderful opportunity for practitioners of hadron spectroscopy to discuss and exchange the latest information on both theoretical and experimental progress. A wide range of topics was covered at the Conference, including proton-antiproton interactions, glueballs, quantum chromodynamics, quarkonium hybrid meson, long-lived exotic particles and gluon degrees of freedom in meson spectroscopy. The Conference represents results from various collaborations including the Fermilab E690 and E835, Crystal Barrel, the H1 and ZEUS, etc. The facilities represented included CERN-SPS, Fermilab-Main Injector, BNL-RHIC, KEK-JHF, BNL-AGS, Julich-COSY, Uppsala-CELSIUS, SLAC-PEPII and Cornell-CESR, Frascati-DAΦNE, Beijing-BEPC, Bonn-ELSA and CEBAF backslash TJNAF. The papers described the existing capabilities and active research programs at these facilities. The conference was supported by BNL and the U.S. Department of Energy. There were 155 presented, and out of these, 33 have been abstracted for the Energy Science and Technology database

  10. Hadron Therapy: Past, Present and Perspectives

    International Nuclear Information System (INIS)

    Jones, D.T.L

    1999-01-01

    Fast neutron therapy began as long ago as 1938 and subsequently proton, alpha particle, heavy ion, pion and neutron capture therapy have been used. To date it is estimated that in excess of 45000 people have undergone some form of hadron therapy. In the future it is expected that fast neutron therapy will be used for selected tumour types for which neutron are known to show improved cure rates. The future trends in charged particle therapy will be driven by increasing commercialization. The future of neutron capture therapy will depend on current clinical trials with epithermal neutron beams and the development of new tumour-seeking drugs

  11. FORMING OF EMOTIONAL FIRMNESS OF FUTURE PILOTS BY FACILITIES OF PHYSICAL AND PSYCHOPHYZIOLOGICAL PREPARATION

    Directory of Open Access Journals (Sweden)

    Т. Плачинда

    2011-02-01

    Full Text Available The main approaches regarding formation of mental stability of a future pilot and development of their psychophysiological qualities are suggested. The emotional stability indicators and the means of forming emotional firmness in special cases have been described. The author has paid  attention to the importance of psychological state recovery after the flight and the positive role  of physical training and psychophysiological preparation in the formation of professional efficiency of flight crew and professional longevity

  12. Large Hadron Collider manual

    CERN Document Server

    Lavender, Gemma

    2018-01-01

    What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the world’s largest particle smasher – the Large Hadron Collider – at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerator’s greatest discoveries – from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.

  13. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  14. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  15. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  16. Hadron mass corrections in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Accardi, A.; Hobbs, T.; Melnitchouk, W.

    2009-01-01

    We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron h. The hadron mass correction is made by introducing a generalized, finite-Q 2 scaling variable ζ h for the hadron fragmentation function, which approaches the usual energy fraction z h = E h /ν in the Bjorken limit. We systematically examine the kinematic dependencies of the mass corrections to semi-inclusive cross sections, and find that these are even larger than for inclusive structure functions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, Q 2 2 and intermediate x B > 0.3, and will be important to efforts at extracting parton distributions from semi-inclusive processes at intermediate energies.

  17. Hadronization, spin and lifetimes

    International Nuclear Information System (INIS)

    Grossman, Yuval; Nachshon, Itay

    2008-01-01

    Measurements of lifetimes can be done in two ways. For very short lived particles, the width can be measured. For long lived ones, the lifetime can be directly measured, for example, using a displaced vertex. Practically, the lifetime cannot be extracted for particles with intermediate lifetimes. We show that for such cases information about the lifetime can be extracted for heavy colored particles that can be produced with known polarization. For example, a t-like particle with intermediate lifetime hadronizes into a superposition of the lowest two hadronic states, T* and T (the equivalent of B* and B). Depolarization effects are governed by time scales that are much longer than the hadronization time scale, Λ QCD -1 . After a time of order 1/Δm, with Δm≡m(T*)-m(T), half of the initial polarization is lost. The polarization is totally lost after a time of order 1/Γ γ , with Γ γ = Γ(T* → Tγ). Thus, by comparing the initial and final polarization, we get information on the particle's lifetime.

  18. Supersymmetry at hadron supercolliders

    International Nuclear Information System (INIS)

    Dzialo, D.L.

    1989-01-01

    At the next generation of hadron supercolliders, the proposed US Superconducting Supercollider (SSC) and the European Large Hadron Collider (LHC), protons will be collided at such high energy to allow the creation of new particles with masses greater those that have been previously created in the laboratory. One of the most important questions to be resolved at these accelerators is whether or not any supersymmetric extension of the Standard Model is manifest below the TeV scale. It is expected that the strongly-interacting supersymmetric particles, the gluinos and squarks, will be pair-produced in the most abundance there. Light gluinos primarily decay into quarks and the lightest supersymmetric particle, which is assumed to escape detection; this gives the classic supersymmetric signature of events with large missing momentum. It is known, however, that for gluinos of masses larger than just 100 GeV this process is no longer the preferred gluino decay channel. New signals must therefore be sought to either detect these particles, or to set meaningful lower mass limits. It is in this work that such new detection strategies for supersymmetry at hadron supercolliders are proposed. Gluino and squark production rates and decay channels are studied in a model-independent fashion over the entire theoretical mass range of interest. New experimental signatures are proposed and compared with sources of background over a wide region of the parameter space that characterizes different supersymmetric models

  19. The MELOX MOX fabrication facility: history of an industrial success and future prospects

    International Nuclear Information System (INIS)

    Arslan, M.; Jacquet, R.; Krellmann, J.

    2005-01-01

    Along with the La Hague reprocessing plant, MELOX is part of the two industrial facilities that ensure the closure of the nuclear fuel cycle in France. Since started up in 1995, MELOX has specialized into recycling separated plutonium recovered from reprocessing operations performed at La Hague on spent UO 2 fuel. Capitalizing on the unique know-how acquired through thirty years of plutonium-based fuel fabrication at the Cadarache plant, this subsidiary of AREVA group has quickly become a worldwide expert in the industrial process of fabricating MOX: a fuel blend comprised of both uranium and plutonium oxides that allows at safely exploiting the energetic potential of plutonium. In order to address the various factors responsible for this industrial breakthrough, we will first present an overview of MELOX's history in regards of the emergence of a global MOX market. The added-value provided through treatment and recycling operations on spent fuel will be further described in terms of waste volume and radiotoxicity reduction. The emphasis will then be put on the total quality management policy that is at the core of MELOX's corporate strategy. Because MELOX has succeeded in meeting both productivity requirements and stringent quality constraints, it has won confidence from its European and Japanese clients. With increased production capacity of diversified MOX designs, MELOX is demonstrating the industrial efficiency of a new concept of MOX plants that is inspiring large construction projects in Japan, the US, and Russia. (authors)

  20. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun [Korea Atomic Energy Research Institute, Taejon (Korea)

    2001-03-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10{sup 14} nominally at the nose in the D{sub 2}O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  1. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    International Nuclear Information System (INIS)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun

    2001-01-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10 14 nominally at the nose in the D 2 O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  2. Present and future neutrino physics research at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Sanders, G.H.

    1988-01-01

    The Los Alamos Meson Physics Facility is currently the site of two neutrino experiments. A measurement of elastic scattering of electron-neutrinos on electrons is providing confirmation of the destructive interference between the weak neutral and charged currents predicted in the standard electroweak theory. A search for the appearance of /bar/ν//sub e/ is being carried out at the LAMPF beam stop, as well. The status of this experiment is described. A major new initiative is being undertaken to measure neutrino-electron scattering in a large water Cerenkov detector. This meaurement will be precise enough to provide, in combination with the meaurements to be performed at the new generation of high-energy electron-positron colliers, the first experimental study of the standard electrowak theory at the level of one-loop radiative corrections. The detector will also be a vehicle for neutrino-oscillation searches, measurement of neutrinos from supernovae, and other fundamental physics. The apparatus will consist of a neutrino production target and shield surrounded by a water Cerenkov detector. The fiducial volume of water will be approximately 7000 tons, viewed by approximately 13000 20 cm diameter photomultiplier tubes. 11 refs., 6 figs

  3. Exclusive hadron production in two photon reactions

    International Nuclear Information System (INIS)

    Poppe, M.

    1986-02-01

    This paper summarises experimental results on exclusive hadron production in two photon collisions at electron positron storage rings and attempts some interpretation. Experimental know how is described and new suggestions are made for future analyses. New model calculations on resonance form factors and pair production amplitudes are presented. The two photon vertex is decomposed such that experiments can be parameterised with the minimal number of free parameters. Selection rules for off shell photon collisions are given in addition to Yang's theorems. (orig.)

  4. Large Hadron Collider commissioning and first operation.

    Science.gov (United States)

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  5. Really large hadron collider working group summary

    International Nuclear Information System (INIS)

    Dugan, G.; Limon, P.; Syphers, M.

    1996-01-01

    A summary is presented of preliminary studies of three 100 TeV center-of-mass hadron colliders made with magnets of different field strengths, 1.8T, 9.5T and 12.6T. Descriptions of the machines, and some of the major and most challenging subsystems, are presented, along with parameter lists and the major issues for future study

  6. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  7. Performance assessment for future low-level waste disposal facilities at ORNL

    International Nuclear Information System (INIS)

    Lee, D.W.; Kocher, D.C.

    1989-01-01

    This paper discusses the strategy for waste management on the Oak Ridge Reservation (ORR) and the approach to preparing future performance assessments that has evolved from previous performance assessment studies of low-level radioactive waste disposal on the ORR. The strategy for waste management is based on the concept that waste classification should be determined by performance assessment other than the sources of waste. This dose-based strategy for waste classification and management places special importance on the preparation and interpretation of waste disposal performance assessments for selecting appropriate disposal technologies and developing waste acceptance criteria. Additionally, the challenges to be overcome in the preparation of performance assessments are discussed. 7 refs

  8. The role of hadron resonances in hot hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Goity, Jose [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampton Univ., Hampton, VA (United States)

    2017-02-01

    Hadron resonances can play a significant role in hot hadronic matter. Of particular interest for this workshop are the contributions of hyperon resonances. The question about how to quantify the effects of resonances is here addressed. In the framework of the hadron resonance gas, the chemically equilibrated case, relevant in the context of lattice QCD calculations, and the chemically frozen case relevant in heavy ion collisions are discussed.

  9. Preface to the Special Issue: Proceedings of the International Symposium on Strangeness in Nuclear and Hadronic Systems

    International Nuclear Information System (INIS)

    2010-01-01

    The International Symposium on "Strangeness in Nuclear and Hadronic Systems (SENDAI08)" was held at the Tohoku University Centennial Hall from Monday, 15th December, through Thursday, 18th December 2008; while a pre-symposium was also organized on 14th December. About 126 scientists participated in SENDAI08, including more than 46 from abroad. The symposium was organized as the third in the SENDAI symposium series on strangeness nuclear physics, which was initiated by the Tohoku University's experimental nuclear physics group in 1998. This time, it is motivated by recent progress of the research on nuclear and hadronic systems involving strangeness degree of freedom, particularly, by beams of electrons and photons at JLab, FINUDA, SPring8, LNS Tohoku, etc. and also at new facilities that will be completed in the near future such as J-PARC, etc.

  10. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    International Nuclear Information System (INIS)

    Lamm, Michael; Zlobin, Alexander

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory (1)-(2). In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  11. The application of advanced remote systems technology to future waste handling facilities: Waste Systems Data and Development Program

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two FWMS major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment. 5 refs., 7 figs

  12. Quantum chromodynamics and hadron jets

    International Nuclear Information System (INIS)

    Dokshitser, Y.L.; Dyakonov, D.I.

    1979-07-01

    These lectures are devoted to the description of the various properties of hard scattering processes with the participation of hadrons in the framework of Quantum Chromodynamics. We discuss in detail the validity and region of applicability of perturbation theory applied to hadron processes. Particular attention is paid to the question of the structure of quark and gluon jets produced in hard processes (as an example, e + e - annihilation into hadrons). In addition to giving a pedagogical review, we also present new results. (orig.)

  13. Hadron collider physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines

  14. Are Hadrons and Nuclei Open Systems ?

    International Nuclear Information System (INIS)

    Musulmanbekov, G.

    1998-01-01

    Fulltext We propose to consider the structure of hadrons in the frame of stochastic interpretation of quantum mechanics, or stochastic theory, which is based on classical mechanics in stochastic environment. This environment is associated with subquantal vacuum. Stochastic theory is a classical physics without the hypothesis that there are isolated systems in the universe. It has been shown by some authors that stochastic theory is justified by fractal space-time considerations. In our approach hadron is a set of embedded into stochastic vacuum (SV) valence quarks (VQ) ( quark-antiquark in mesons and three quarks in baryons ) oscillating near center of proper frame of the hadron VQ being placed into SV behaves itself as a dislocation (antidislocation) in solids or vortex ( antivortex ) in liquids. Effective interaction between VQs comes from specific polarization of SV around VQs leading to outside suppression on VQs. Polarization of SV around VQ characterizes the distribution of hardonic matter inside a hadron. Oscillation motion of VQs around the origin, going from their interaction with SV, is strongly correlated. VQs being in equilibrium with SV exchange energy at all times with it. Neighborhood of two or more nucleons changes SV polarization around their VQs in such a way that they tend to occupy the state with minimum energy arrange crystalline like structure. Therefore the behavior of hadrons and nuclei is typical for open systems exchanging energy with environment .In this approach the relation between constituent (nonrelativistic ) quarks and current ( relativistic) ones becomes clear and transparent, because it composes the features of both NRQM and bag models. It gives qualitative and in some cases quantitative description of experimental facts concerning nucleon and nuclear structure searched in scattering experiments. Some proposals and predictions for future experiments are given

  15. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  16. Exotic nuclei arena in Japanese Hadron Project

    International Nuclear Information System (INIS)

    Nomura, T.

    1990-04-01

    A description is given on the radioactive beam facility proposed as one of the research arenas in Japanese Hadron Project. The facility consists of a 1 GeV proton linac, an isotope separator on-line (ISOL) and a series of heavy-ion (HI) linacs. Various exotic nuclei produced by 1 GeV proton beam mainly via spallation processes of a thick target, are mass-separated by the ISOL with a high mass-resolving power and are injected into the HI linac with the energy of 1 keV/u. The acceleration is made in three stages using different types of linacs, i.e., split-coaxial RFQ. Interdigital-H, and Alvarez, the maximum energy in each stage being 0.17, 1.4 and 6.5 MeV/u, respectively. A few examples of scientific interests realized in this facility will be briefly discussed. (author)

  17. Charm from hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-04-15

    Ever since the discovery of charmed mesons in electron-positron annihilations at SLAC and DESY, a considerable effort has gone into looking for them in other types of reactions. Both neutrino interactions and photoproduction have provided further data on the production and decay of D mesons, but little has emerged concerning purely hadronic studies.some results from a CERN/Collège de France/Heidelberg/Karlsruhe collaboration using the Split Field Magnet at the CERN Intersecting Storage Rings (ISR) now show definite signs of D meson production in proton-proton collisions.

  18. New Hadronic Spectroscopy

    International Nuclear Information System (INIS)

    Faccini, R.

    2010-01-01

    In the past few years the field of hadron spectroscopy has seen renewed interest due to the publication, initially mostly from B-Factories, of evidences of states that do not match regular spectroscopy, but are rather candidates for bound states with additional quarks or gluons (four quarks for tetraquarks and molecules and two quarks and gluons for hybrids). A huge effort in understanding the nature of this new states and in building a new spectroscopy is ongoing. This paper reviews the experimental and theoretical state of the art on heavy quarkonium exotic spectroscopy, with particular attention on the steps towards a global picture.

  19. Hadron coherent production

    International Nuclear Information System (INIS)

    Dremin, I.M.

    1981-01-01

    The process of the coherent production of hadrons analogous to Cherenkov radiation of photons is considered. Its appearence and qualitative treatment are possible now because it is known from experiment that the real part of the πp (and pp) forward elastic scattering amplitude is positive at high energies. The threshold behaviour of the process as well as very typical angular and psub(T)-distributions where psub(t)-transverse momentum corresponding to the ring structure of the target diagram at rather large angles and to high-psub(T) jet production are emphasized [ru

  20. Aspects of hadronic structure

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1984-01-01

    An overview of the current phenomenological models of hadron structure, whose theoretical basis is the Quantum Chromodynamics (QCD), is presented. A short introduction to the QCD permits to focalize the relevant properties which are attached to those models. Following, bag-like models (in particular, MIT bag and chiral extensions) and potential-like models among them the Karl and Isgur non-relativistic model and a semi-relativistic model, free of the Klein paradox, with equal scalar-vetorial mixture of confinement potential are shortly studied. Enphasis is given to the baryons, treated, basically, as three-quarks systems. (L.C.) [pt

  1. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  2. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  3. Prospects for and tests of hadron calorimetry with silicon

    International Nuclear Information System (INIS)

    Brau, J.E.; Gabriel, T.A.; Rancoita, P.G.

    1989-03-01

    Hadron calorimetry with silicon may provide crucial capabilities in experiments at the high luminosity, high energy colliders of the future, particularly due to silicon's fast intrinsic speed and absolute calibration. The important underlying processes of our understanding of hadron calorimeters are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, the ratio of the most probable electron signal to hadron signal (e/h) is ∼1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. An experimental test of these predictions is underway at CERN by the SICAPO Collaboration. 64 refs., 19 figs

  4. Quark-Hadron Duality in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wally Melnitchouk; Rolf Ent; Cynthia Keppel

    2004-08-01

    The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.

  5. Probing leptophilic dark sectors with hadronic processes

    Science.gov (United States)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-08-01

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.

  6. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  7. Construction of a hadronic calorimeter prototype for the future CERN LHC high energy accelerator; Construction d`un prototype de calorimetre hadronique pour le futur collisionneur a haute energie LHC du CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rival, F

    1994-06-01

    The study of fragment-fragment correlations at small relative momentum can give informations on the space and time extend of the emitting source, and on the nuclear density, which is one of the variables used in the equation of state. This analysis shows the experimental results obtained with the FOPI detector at GSI Darmstadt, for Au + Au central collisions at 150 and 400 A.MeV. These results are the first studies at such high energies and for heavy systems. Two fragments correlation functions are compared with theoretical calculations of D.H. Boal, including the size of the source as a parameter. We must take into account effects of experimental biases (namely the relative momentum resolution) on the theoretical correlation function, in order to make a comparison with experimental results. The extracted experimental radii correspond to the final phase of the expansion, and the obtained densities are smaller than normal density of nuclear matter. In the final state of the interaction, intermediate mass fragments and their excited states are observed. We note a shift of these excited states at 400 A.MeV, which can be explained by the detector effects. We observe a weak sensibility of the source size versus the centrality of the collision. That can be explained either by a mixing of sources, or by the observation of a source at the end of expansion whose the radius is quite independent of the initial centrality. Energetic particles correspond to smaller size of the source, which can be explained as a higher compression, or as a different stage of the collision. We give some prospectives for the future experiments at GSI-Darmstadt. (author). 116 refs.

  8. CP asymmetries in penguin-dominated, hadronic B{sub d} decays: Constraining new physics at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, Stefan [Excellence Cluster Universe, TU Muenchen (Germany)

    2012-07-01

    CP asymmetries in penguin-dominated, hadronic B{sub d} decays into CP eigenstates ({pi}, {eta}, {eta}', {phi}, {omega}, {rho})Ks are predicted to be small in the standard model. These observables will be measured in future facilities (Belle II, SuperB) with very high precision and therefore could be used to test CP violating couplings beyond the Standard Model. We investigate such additional contributions for a general class of models in the framework of QCD factorization at next-to-leading order precision. As an example, we demonstrate how these observables can constrain the parameter space of a generic modification of the Z-penguin.

  9. New hadron spectroscopies

    International Nuclear Information System (INIS)

    Olsen, S.L.

    2014-01-01

    QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex than the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetraquark and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have yet to be identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states –the so-called XYZ mesons– and compare them with expectations for conventional quark-antiquark mesons and the predicted QCD-exotic states. (author)

  10. Hadronic laws from QCD

    International Nuclear Information System (INIS)

    Cahill, R.T.

    1992-01-01

    A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)

  11. The LHCb hadron calorimeter

    International Nuclear Information System (INIS)

    Dzhelyadin, R.I.

    2002-01-01

    The Hadron Calorimeter (HCAL) is designed for the LHCb experiment. The main purpose of the detector is to provide data for the L0 hadron trigger. The HCAL is designed as consisting of two symmetric movable parts of about 500 ton in total getting in touch in operation position without non-instrumented zones. The lateral dimensions of an active area are X=8.4 m width, Y=6.8 m height, and is distanced from the interaction point at Z=13.33 m. Both halves are assembled from stacked up modules. An internal structure consisting of thin iron plates interspaced with scintillating tiles has been chosen. Attention is paid to optimize the detector according to the requirements of the experiment, reducing the spending needed for its construction. Different construction technologies are being discussed. The calorimeter properties have been extensively studied with a variety of prototype on the accelerator beam. The calibration with a radioactive source and module-0 construction experience is discussed

  12. The legacy of the experimental hadron physics programme at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Wilkin, C. [UCL, Physics and Astronomy Department, London (United Kingdom)

    2017-06-15

    The experimental hadronic physics programme at the COoler SYnchrotron of the Forschungszentrum Juelich terminated at the end of 2014. After describing the accelerator and the associated facilities, a review is presented of the major achievements in the field realized over the twenty years of intense research activity. (orig.)

  13. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  14. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  15. Quarkonium production in hadronic collisions

    International Nuclear Information System (INIS)

    Gavai, R.; Schuler, G.A.; Sridhar, K.

    1995-01-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies

  16. Hadron induced leptons and photons

    International Nuclear Information System (INIS)

    Cronin, J.W.

    1977-01-01

    A review of direct production of leptons and photons in hadron-hadron collisions is presented. Production of lepton pairs with large mass is well accounted for by the Drell-Yan process. The origin of direct single leptons is principally due to the production of lepton pairs. A dominant source of lepton pairs is at low effective mass, m [de

  17. Current Status of Exotic Hadrons

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ahmed, Maqsood; Fazal-e-Aleem

    2005-01-01

    Physics of exotic hadrons is in the limelight these days. The models for these baryons are discussed as well as their production and decay processes and methods of their identification. The results of recent experiments in this field are presented, in which some unusual states are observed. These states are candidates for exotic hadrons

  18. A model of hadron structure

    International Nuclear Information System (INIS)

    Migdal, A.B.; Khokhlachev, S.B.; Borue, V.Yu.

    1989-01-01

    The hadron is considered as a stringlike gluon drop with a quark and antiquark near the ends of the 'string' for a meson and with the antiquark replaced by a diquark for a baryon. The softer 'string' modes are the rotations and the longitudinal vibrations. Quantization of these modes enables to describe the hadron spectra. (orig.)

  19. Spin structure of hadronization products

    International Nuclear Information System (INIS)

    Clavelli, L.

    1979-03-01

    We point out that the hypothesis of soft hadronization together with Lorentz invariance strongly constrain the hadronization process ine + e - annihilation. A final stage jet hypothesis is made which satisfies these constraints. The resulting picture leads to testable predictions not obtainable from perturbative QCD. (orig.) [de

  20. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  1. Workshop summary, future prospects and FCC-ee impact on $\\alpha_s$

    CERN Document Server

    d'Enterria, David

    2015-01-01

    The workshop on “High-precision α s measurements from LHC to FCC-ee” –organized in the con- text of the preparation of the Future Circular Collider (FCC) Conceptual Design Report, within the FCC-e + e − “QCD and photon-photon” physics working group activities– discussed the latest advances in the measurement of the strong interaction coupling α s . The meeting brought together leading experts in the field to explore in depth recent theoretical and experimental developments on the determination of α s , new ways to measure this coupling in lepton-lepton, lepton-hadron and hadron-hadron collisions, and in particular the improvements expected at the proposed Future Circular Collider e + e − (FCC-ee) facility.

  2. Massive Cherenkov neutrino facilities?their evolution, their future: Twenty-five years at these International Neutrino Conferences

    International Nuclear Information System (INIS)

    Sulak, Lawrence R.

    2005-01-01

    This review traces the evolution of massive water Cherenkov tracking calorimeters. Pioneering concepts, first presented in this conference a quarter of a century ago, have led to 1) IMB, the first large detector (10kT), which was designed primarily to search for proton decay, and secondarily to be sensitive to supernova neutrinos and atmospheric oscillations, and 2) Dumand, an attempt to initiate the search for TeV astrophysical neutrinos with a prototype for a 1 km 3 telescope. The concepts and initial work on IMB influenced subsequent detectors: Kamiokande, Super-K, SNO, and, in part, Kamland. These detectors have to their credit the elucidation of the physics of atmospheric, solar, reactor and supernova neutrinos. With the advent of the K2K beam, controlled accelerator neutrinos confirm the atmospheric studies. The path breaking developments of Dumand now are incorporated in the high-volume Amanda and Antares detectors, as well as their sequels, IceCube and the proposed Cubic Kilometer detector. The future (ultimate?) facilities have new physics challenges: A high-resolution megaton detector, eventually coupled with an intense accelerator neutrino source, is critical for precision studies of neutrino oscillation parameters and for the potential discovery of CP violation in the lepton sector. The Gigaton TeV neutrino telescopes (IceCube and Cubic Kilometer) seek to open high-energy neutrino astronomy, still an elusive goal. (Amanda, IceCube, and UNO, as well as Minos, Icarus and other large neutrino facilities using non-Cherenkov technologies, are treated in other contributions to this volume.)

  3. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  4. Futures

    DEFF Research Database (Denmark)

    Pedersen, Michael Haldrup

    2017-01-01

    Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores the potenti......Currently both design thinking and critical social science experience an increased interest in speculating in alternative future scenarios. This interest is not least related to the challenges issues of global sustainability present for politics, ethics and design. This paper explores...... the potentials of speculative thinking in relation to design and social and cultural studies, arguing that both offer valuable insights for creating a speculative space for new emergent criticalities challenging current assumptions of the relations between power and design. It does so by tracing out discussions...... of ‘futurity’ and ‘futuring’ in design as well as social and cultural studies. Firstly, by discussing futurist and speculative approaches in design thinking; secondly by engaging with ideas of scenario thinking and utopianism in current social and cultural studies; and thirdly by showing how the articulation...

  5. Future Estimation of Convenience Living Facilities Withdrawal due to Population Decline all Over Japan from 2010 TO 2040 - Focus on Supermarkets, Convenience Stores and Drugstores

    Science.gov (United States)

    Nishimoto, Yuka; Akiyama, Yuki; Shibasaki, Ryosuke

    2016-06-01

    Population explosion is considered to be one of the most crucial problems in the world. However, in Japan, the opposite problem: population decline has become serious now. Japanese population is estimated to decrease by twenty millions in 2040. This negative situation will cause to increase areas where many residents cannot make a daily living all over Japan because many convenience living facilities such as supermarkets, convenience stores and drugstores will be difficult to maintain their market area population due to future population decline. In our research, we used point data of convenience living facilities developed by address geocoding of digital telephone directory and point data of future population projection developed by distribution of Japanese official population projection data proportionally among the building volume of digital residential map, which can monitor building volumes all over Japan. In conclusion, we estimated that various convenience living facilities in Japan will shrink and close by population decline in near future. In particular, it is cleared that approximately 14.7% of supermarkets will be possible to withdraw all over Japan by 2040. In addition, it is cleared that over 40% of supermarkets in some countryside prefectures will be possible to withdraw by 2040. Thus, we estimated future distributions of convenience living facilities that cannot maintain their market area population due to future population decline. Moreover, we estimated the number of people that they will become inconvenience in buying fresh foods.

  6. FUTURE ESTIMATION OF CONVENIENCE LIVING FACILITIES WITHDRAWAL DUE TO POPULATION DECLINE ALL OVER JAPAN FROM 2010 TO 2040 - FOCUS ON SUPERMARKETS, CONVENIENCE STORES AND DRUGSTORES

    Directory of Open Access Journals (Sweden)

    Y. Nishimoto

    2016-06-01

    Full Text Available Population explosion is considered to be one of the most crucial problems in the world. However, in Japan, the opposite problem: population decline has become serious now. Japanese population is estimated to decrease by twenty millions in 2040. This negative situation will cause to increase areas where many residents cannot make a daily living all over Japan because many convenience living facilities such as supermarkets, convenience stores and drugstores will be difficult to maintain their market area population due to future population decline. In our research, we used point data of convenience living facilities developed by address geocoding of digital telephone directory and point data of future population projection developed by distribution of Japanese official population projection data proportionally among the building volume of digital residential map, which can monitor building volumes all over Japan. In conclusion, we estimated that various convenience living facilities in Japan will shrink and close by population decline in near future. In particular, it is cleared that approximately 14.7% of supermarkets will be possible to withdraw all over Japan by 2040. In addition, it is cleared that over 40% of supermarkets in some countryside prefectures will be possible to withdraw by 2040. Thus, we estimated future distributions of convenience living facilities that cannot maintain their market area population due to future population decline. Moreover, we estimated the number of people that they will become inconvenience in buying fresh foods.

  7. HIGH ENERGY HADRON POLARIMETRY

    International Nuclear Information System (INIS)

    BUNCE, G.

    2007-01-01

    Proton polarimetry at RHIC uses the interference of electromagnetic (EM) and hadronic scattering amplitudes. The EM spin-flip amplitude for protons is responsible for the proton's anomalous magnetic moment, and is large. This then generates a significant analyzing power for small angle elastic scattering. RHIC polarimetry has reached a 5% uncertainty on the beam polarization, and seem capable of reducing this uncertainty further. Polarized neutron beams ax also interesting for RHIC and for a polarized electron-polarized proton/ion collider in the fume. In this case, deuterons, for example, have a very small anomalous magnetic moment, making the approach used for protons impractical. Although it might be possible to use quasielastic scattering from the protons in the deuteron to monitor the polarization. 3-He beams can provide polarized neutrons, and do have a large anomalous magnetic moment, making a similar approach to proton polarimetry possible

  8. CMS hadronic forward calorimeter

    International Nuclear Information System (INIS)

    Merlo, J.P.

    1998-01-01

    Tests of quartz fiber prototypes, based on the detection of Cherenkov light from showering particles, demonstrate a detector possessing all of the desirable characteristics for a forward calorimeter. A prototype for the CMS experiment consists of 0.3 mm diameter fibers embedded in a copper matrix. The response to high energy (10-375 GeV) electrons, pions, protons and muons, the light yield, energy and position resolutions, and signal uniformity and linearity, are discussed. The signal generation mechanism gives this type of detector unique properties, especially for the detection of hadronic showers: Narrow, shallow shower profiles, hermeticity and extremely fast signals. The implications for measurements in the high-rate, high-radiation LHC environment are discussed. (orig.)

  9. Hadron physics at TJNAF

    International Nuclear Information System (INIS)

    Eyraud, L; Furget, C.; Goy, J.; Kox, S.; Merchez, F.; Pastor, A.; Real, J.S.; Russew, T.; Tieulent, R.; Voutier, E.

    1997-01-01

    Over these two years, our group has been worked in hadronic physics at Saturn and CEBAF using the polarimeter POLDER. Tensor polarization observables have been measured in the reaction H(p bar, d bar)π + between 580 and 1300 MeV proton energy. The group has also been leader in an experiment, performed in 1997 at CEBAF. By measuring the t 20 polarization of the recoil deuteron produced in the elastic electron-deuteron scattering at large Q 2 , the separation of the charge and quadrupole form-factors of the deuteron will be performed for Q=4.1-6.8 fm -1 . Finally, we were involved in the construction and test of the neutron polarimeter HARP and in the definition of the physics program of the ELFE project. (authors)

  10. Hadronic collision and hadronic structure (an experimental review)

    International Nuclear Information System (INIS)

    Davier, M.

    1975-01-01

    In this set of lectures an attempt is made to present a survey of the available experimental data on hadronic collisions at large transverse momentum, together with their current phenomenological descriptions. In particular, the experimental confirmation of constituent structure is looked at in a critical way. The emphasis throughout is to let the data speak in the most unbiased way and to gather evidence as to the short range structure of the hadronic interactions. Finally the current information on lepton production in hadronic collisions is reviewed

  11. PREFACE: Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  12. R&D for Future Accelerators

    CERN Document Server

    Zimmermann, Frank

    2006-01-01

    Research & development for future accelerators are reviewed. First, I discuss colliding hadron beams, in particular upgrades to the Large Hadron Collider (LHC). This is followed by an overview of new concepts and technologies for lepton ring colliders, with examples taken from VEPP-2000, DAFNE-2, and Super-KEKB. I then turn to recent progress and studies for the multi-TeV Compact Linear Collider (CLIC). Some generic linear-collider research, centered at the KEK Accelerator Test Facility, is described next. Subsequently, I survey the neutrino factory R&D performed in the framework of the US feasibility study IIa, and I also comment on a novel scheme for producing monochromatic neutrinos from an electron-capture beta beam. Finally, I present innovative ideas for a high-energy muon collider and I consider recent experimental progress on laser and plasma acceleration.

  13. Proposed studies of strongly coupled plasmas at the future FAIR and LHC facilities the HEDgeHOB collaboration

    CERN Document Server

    Tahir, N A; Shutov, A; Udrea, S; Deutsch, C; Fortov, V E; Gryaznov, V; Hoffmann, Dieter H H; Jacobi, J; Kain, V; Kuster, M; Ni, P; Piriz, A R; Schmidt, R; Spiller, P; Varentsov, D; Zioutas, K

    2006-01-01

    Detailed theoretical studies have shown that intense heavy-ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) (Henning 2004 Nucl. Instrum. Methods B 214 211) at Darmstadt will be a very efficient tool to create high-energy-density (HED) states in matter including strongly coupled plasmas. In this paper we show, with the help of two-dimensional numerical simulations, the interesting physical states that can be achieved considering different beam intensities using zinc as a test material. Another very interesting experiment that can be performed using the intense heavy-ion beam at FAIR will be generation of low-entropy compression of a test material such as hydrogen that is enclosed in a cylindrical shell of a high-Z material such as lead or gold. In such an experiment, one can study the problem of hydrogen metallization and the interiors of giant planets. Moreover, we discuss an interesting method to diagnose the HED matter that is at the centre of the Sun. We have ...

  14. Muon g-2 theory. The hadronic part

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2017-04-01

    I present a status report of the hadronic vacuum polarization effects for the muon g-2, to be considered as an update of an earlier paper (F. Jegerlehner, 2016). The update concerns recent new inclusive R measurements from KEDR in the energy range 1.84 to 3.72 GeV. For the leading order contributions I find a had(1) μ =(688.07±4.14)[688.77±3.38] x 10 -10 based on e + e - data [incl. τ data], a had(2) μ =(-9.93±0.07) x 10 -10 (NLO) and a had(3) μ =(1.22±0.01) x 10 -10 (NNLO). Collecting recent progress in the hadronic light-by-light scattering I adopt π 0 ,η,η ' [95±12]+axial-vector[8± 3]+scalar [-6 ±1]+π,K loops[-20±5]+quark loops[22±4]+tensor [1±0]+NLO[3±2] which yields a (6) μ (lbl,had)=(103±29) x 10 -11 . With these updates I find a exp μ -a the μ =(31.3±7.7) x 10 -10 a 4.1σ deviation. Recent lattice QCD results and future prospects to improve hadronic contributions are discussed.

  15. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  16. Hadron collider physics 2005. Proceedings

    International Nuclear Information System (INIS)

    Campanelli, M.; Clark, A.; Wu, X.

    2006-01-01

    The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)

  17. Heavy quarks in hadronic collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Peterson, C.

    1982-03-01

    It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data for charm hadron production. The theoretical foundations of the intrinsic charm hypothesis together with its consequences for lepton- and hadron-induced reactions are discussed in some detail. There is no contradiction with the EMC data on F 2 /sup c/ provided the appropriate threshold dependence is taken into account

  18. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  19. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  20. Factorization for short distance hadron-hadron scattering

    International Nuclear Information System (INIS)

    Collins, J.C.; Illinois Inst. of Tech., Chicago; Soper, D.E.; Sterman, G.

    1985-01-01

    We show that factorization holds at leading twist in the Drell-Yang cross section dsigma/dQ 2 dy and related inclusive hadron-hadron cross sections. We review the heuristic arguments for factorization, as well as the difficulties which must be overcome in a proof. We go on to give detailed arguments for the all order cancellation of soft gluons, and to show how this leads to factorization. (orig.)

  1. Simulation of soft hadron hadron collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    An event generator to simulate ultrarelativistic hadron hadron collisions is proposed. It is based on the following main assumptions: the process can be divided into two independent steps, string formation and string fragmentation; strings are formed as a consequence of color exchange between a quark of the projectile and a quark of the target; the fragmentation of strings is the same as in e + e - annihilation or in lepton nucleon scattering. 11 refs., 4 figs

  2. Hadronic energy reconstruction in the CALICE combined calorimeter system

    Energy Technology Data Exchange (ETDEWEB)

    Israeli, Yasmine [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    Future linear electron-positron colliders, ILC and CLIC, aim for precision measurements and discoveries beyond and complementary to the program of the LHC. For this purpose, detectors with the capability for sophisticated reconstruction of final states with energy resolutions substantially beyond the current state of the art are being designed. The CALICE collaboration develops highly granular calorimeters for future colliders, among them silicon-tungsten electromagnetic calorimeters and hadronic calorimeters with scintillators read out by SiPMs. Such a combined system was tested with hadrons at CERN as well as at Fermilab. In this contribution, we report on the energy reconstruction in the combined setup, which requires different intercalibration factors to account for the varying longitudinal sampling of sub-detectors. Software compensation methods are applied to improve the energy resolution and to compensate for the different energy deposit of hadronic and electromagnetic showers.

  3. Hadronic thermodynamics: Is there a limiting temperature

    International Nuclear Information System (INIS)

    Olive, K.E.

    1984-01-01

    The hadron mass spectrum continues to be a topic of theoretical interest and will remain so until there can be some experimental verification in future heavy ion collisions. There are a variety of models such as the bootstrap, dual, bag etc., which all predict an exponentially rising density of states approx.= exp(m/T 0 ), T 0 approx.=160 MeV. Once one assumes an exponential mass spectrum, one generally finds singularities in thermodynamic quantities and hence possibly a limiting temperature at T 0 . In this talk, I point out some possible ways out of this dilemma. (orig./HSI)

  4. Status of the Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Evans, Lyndon R.

    2004-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2007, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this, protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 10 34 cm -2 s -1 The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. The machine is now well into its installation phase, with first beam injection foreseen for spring 2007. A brief status report is given and future prospects are discussed. (orig.)

  5. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  6. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  7. Quark confinement and hadronic interactions

    International Nuclear Information System (INIS)

    Lenz, F.

    1985-01-01

    With the possibility for 'exact' calculations within the framework of a fundamental theory, QCD, the role of models in strong interaction physics is changing radically. The relevance of detailed numerical model studies is diminishing with the development of those exact, numerical approaches to QCD. On the other hand, the insight gained from such purely numerical studies is necessarily limited and must be complemented by the more qualitative but also more intuitive insight gained from model studies. In particular, the subject of hadron-hadron interactions requires model studies to relate the wide variety of strong interaction physics to the fundamental properties of strong interaction physics. The author reports on such model studies of the hadron-hadron interaction

  8. Hadron energy resolution at ICAL

    International Nuclear Information System (INIS)

    Devi, Moon Moon; Ghosh, Anushree; Kaur, Daljeet; Mohan, Lakshmi S.

    2013-01-01

    We have performed a simulation study for determining the hadron energy resolution of INO-ICAL detector within a GEANT4 based simulation framework. We do this by propagating single pions from a fixed or a randomised vertex, as also with the NUANCE (neutrino event generator) generated events in which hadrons are produced in the energy range (0.5 ≤ E ≤ 15 GeV). Hadron interactions produce a shower of hits inside the detector. The energy of hadrons can therefore be reconstructed only by taking these hits into account. Hit distribution for each energy and angle bin has been obtained and analyzed. In order to find the suitable fit for such hit distributions a comparative study has been performed by applying different fit functions and results will be shown

  9. Hadron seagulls and parton jets

    International Nuclear Information System (INIS)

    Satz, H.; Zarmi, Y.

    1976-01-01

    For the lepton production of hadrons in the current fragmentation region it was recently shown that the two-level partonic picture leads to a broadening of the average transverse momentum of the observed secondaries. This ''seagull'' effect is well known for hadron-hadron interactions. In the note it is considered the possibility that parton arguments can explain it here as well and it is discussed what information on the constituent structure of hadrons can be obtained through an investigation of the seagull effect from such a point of view. It is shown that a non trivial seagull effect is a consequence of a simple two step production mechanism and the parton model predicts significant differences between baryon, meson and virtual-photon fragmentation seagull

  10. Fixed target hadron production measurements

    CERN Document Server

    Panman, J

    2009-01-01

    The knowledge of light hadron production cross-sections in proton-nucleus interactions is an important prerequisite to the analysis of a wide variety of experiments. One of the important limiting factors for the precision of accelerator based and atmospheric neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Cosmic-ray experiments detecting extensive air-showers can greatly improve their ability to interpret the data when precise hadron production spectra are available over a large range of energies. Dedicated hadron production experiments have been taking data recently and are now publishing their results. Other experiments have just started their data-taking and plan to supply measurements which can significantly extend the kinematic range in which data will be available. Early measurements at the LHC can extend this range to much higher energies than available up to now. Recent results will be shown and compared with hadronic production models. An outl...

  11. Topological objects in hadron physics

    International Nuclear Information System (INIS)

    Rho, M.

    1988-01-01

    The notion of topological objects in hadronic physics is discussed, with emphasis on the role of the Wess-Zumino term and induced transmutation of quantum numbers in chiral bag models. Some applications to nuclear systems are given

  12. Ericson fluctuations in hadron scattering

    International Nuclear Information System (INIS)

    Frautschi, S.

    1975-01-01

    It is shown that there are resonances with high mass and long lives, at the very least, longer than the 10 -23 second transit time across a hadron. The theoretical and then the experimental approaches to this problem are described

  13. B factory with hadron colliders

    International Nuclear Information System (INIS)

    Lockyer, N.S.

    1990-01-01

    The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)

  14. Anisotropic superfluidity of hadronic matter

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1977-10-01

    From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions

  15. The ATLAS hadronic tau trigger

    International Nuclear Information System (INIS)

    Shamim, Mansoora

    2012-01-01

    The extensive tau physics programs of the ATLAS experiment relies heavily on trigger to select hadronic decays of tau lepton. Such a trigger is implemented in ATLAS to efficiently collect signal events, while keeping the rate of multi-jet background within the allowed bandwidth. This contribution summarizes the performance of the ATLAS hadronic tau trigger system during 2011 data taking period and improvements implemented for the 2012 data collection.

  16. Hadronic τ decays and QCD

    International Nuclear Information System (INIS)

    Davier, M.

    1999-12-01

    Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  17. Hadronic {tau} decays and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Davier, M

    1999-12-01

    Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  18. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  19. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  20. High resolution hadron calorimetry

    International Nuclear Information System (INIS)

    Wigmans, R.

    1987-01-01

    The components that contribute to the signal of a hadron calorimeter and the factors that affect its performance are discussed, concentrating on two aspects; energy resolution and signal linearity. Both are decisively dependent on the relative response to the electromagnetic and the non-electromagnetic shower components, the e/h signal ratio, which should be equal to 1.0 for optimal performance. The factors that determine the value of this ratio are examined. The calorimeter performance is crucially determined by its response to the abundantly present soft neutrons in the shower. The presence of a considerable fraction of hydrogen atoms in the active medium is essential for achieving the best possible results. Firstly, this allows one to tune e/h to the desired value by choosing the appropriate sampling fraction. And secondly, the efficient neutron detection via recoil protons in the readout medium itself reduces considerably the effect of fluctuations in binding energy losses at the nuclear level, which dominate the intrinsic energy resolution. Signal equalization, or compensation (e/h = 1.0) does not seem to be a property unique to 238 U, but can also be achieved with lead and probably even iron absorbers. 21 refs.; 19 figs

  1. Parton Distributions at a 100 TeV Hadron Collider

    NARCIS (Netherlands)

    Rojo, Juan

    2016-01-01

    The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra

  2. J/psi and Υ radiative and hadronic decays

    International Nuclear Information System (INIS)

    Bloom, E.D.

    1987-07-01

    The search for gluonium at the J/psi and Υ is discussed, as well as the search for exotics at the Υ. Reactions discussed include radiative and hadronic decays of the J/psi and the search for radiative decays of the Υ. Future perspectives are also briefly considered. 45 refs., 27 figs

  3. Development of MicroMegas for a Digital Hadronic Calorimeter

    OpenAIRE

    Adloff, Catherine; Blaha, Jan; Espargiliere, Ambroise; Karyotakis, Yannis

    2009-01-01

    Recent developments on the MicroMegas prototypes built by use of the bulk technology with analog and digital readout electronics are presented. The main test beam results of a stack of several MicroMegas prototypes fully comply with the needs of a hadronic calorimeter for future particle physics experiments. A technical solution for a large scale prototype is also introduced.

  4. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    International Nuclear Information System (INIS)

    Stoehlker, Th.; Beier, T.; Beyer, H.F.; Bosch, F.; Braeuning-Demian, A.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Kuehl, Th.; Liesen, D.; Mann, R.; Mokler, P.H.; Quint, W.; Schuch, R.; Warczak, A.

    2005-01-01

    In the current report a short overview about the envisioned program of the atomic physics research collaboration SPARC (Stored Particle Atomic Research Collaboration, at the new international accelerator Facility for Antiproton and Ion Research (FAIR) at GSI is given. In addition, a condensed description of the planned experimental areas devoted to atomic physics research at the new facility is presented

  5. Statistical hadronization and hadronic micro-canonical ensemble II

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics. The micro-canonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient and fast computation of averages, which can be further improved in the limit of very large clusters. We have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of the multi-Poisson distribution as proposal matrix dramatically improves the computation performance. However, due to the correlation of subsequent samples, this method proves to be generally less robust and effective than the importance sampling method. (orig.)

  6. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  7. Tracking and vertexing for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Johnson, R.; Purohit, M.; Weidemann, A.W.

    1993-01-01

    In this note, the authors report on some of the activities of the Tracking and Vertexing Working Group of this Workshop. Track and vertex finding is essential to exploit the high production rate of B-mesons at hadron accelerators, both for triggering and analysis. Here, they review the tracking and vertex-finding systems of some of the major existing and proposed collider and fixed-target experiments at existing and future hadron accelerators, with a view towards their usefulness for B-physics. The capabilities of both general-purpose detectors and those of dedicated B-physics experiments are considered

  8. Possible B{sup (*)} anti K hadronic molecule state

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Cheng-Jian [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Dian-Yong [Southeast University, School of Physics, Nanjing (China)

    2017-06-15

    In the present work, the possibility of the observed structure X(5568) or X(5616) as a hadronic molecule is investigated via its decay properties. Our estimations of the strong decay mode indicate that the hadronic molecule interpretation cannot be excluded since the determined parameter value is located in the empirical region. However, the unnatural large coupling constants indicate the molecular interpretation may be questionable. In addition, the radiative decays of the neutral partners of the X(5568) and X(5616) are estimated, which can be a test of the molecular interpretation in the future experiments. (orig.)

  9. Hadron-nucleus interactions in the nucleon resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Gessler, Stefanie

    2017-06-15

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N{sup *} resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton

  10. Hadron-nucleus interactions in the nucleon resonance region

    International Nuclear Information System (INIS)

    Gessler, Stefanie

    2017-06-01

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N * resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton

  11. Identifying Multiquark Hadrons from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-01-01

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  12. Reply to the SPSC questions on Addendum CERN-SPSC-2018-008 entitled Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans

    CERN Document Server

    Aduszkiewicz, A

    2018-01-01

    This document presents answers of the NA61/SHINE Collaborations to the SPSC questions on the addendum CERN-SPSC-2018-008 (referred to as ''Addendum'') to the NA61/SHINE proposal. Addendum requests an extension of the NA61/SHINE measurements beyond the Long Shutdown 2 and approval of the first physics data taking in 2022. The SPSC requested NA61/SHINE to consider a possibility to start the first physics data taking in 2021. NA61/SHINE concludes that this is possible and requests beam time in 2021 for detector commissioning and tests as well as for data taking with hadron (for neutrino physics) and Pb (for open charm measurements in Pb+Pb collisions) beams. The critical issue is timely flow of financial resources needed for the hardware of the detector upgrade.

  13. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  14. Analytic amplitudes for hadronic forward scattering: COMPETE update

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B.; Cudell, J.R.; Ezhela, V.V.; Gauron, P.; Kang, K.; Kuyanov, Yu.V.; Lugovsky, S.B.; Martynov, E.; Razuvaev, E.A.; Tkachenko, N.P

    2003-04-01

    We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare their predictions to all available forward data (pp, p-bar p, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp and p-bar p colliders, and on the total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for {gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV.

  15. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  16. Electromagnetic response of a highly granular hadronic calorimeter

    International Nuclear Information System (INIS)

    Adloff, C.; Blaha, J.; Blaising, J.J.

    2010-12-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  17. Status and hadron physics program of J-PARC

    Directory of Open Access Journals (Sweden)

    Ozawa K.

    2012-12-01

    Full Text Available Current status and hadron physics programs of Japan Accelerator Research Complex (J-PARC are reported. Several physics programs are proposed at the Hadron Hall of J-PARC. Strangeness and hyper nuclear physics is undertaken at K1.8 beam line. Study of meson nucleon bound system is underway at K1.8BR beam line. After the earthquake, all beam line components and experimental setups are reassembled. Protons are successfully accelerated in the last December and hadron physics experiments are resumed in this February. In this manuscript, status of on-going experiment and near future plans of such physics programs are reported. Especially, a new beam line for a primary protons and high momentum secondary particles is proposed to study meson properties in nucleus.

  18. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  19. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  20. Hadronic tau decays and QCD

    CERN Document Server

    Hocker, Andreas

    1997-01-01

    We present new results for the r hadronic spectral functions analysis using data accumulated by the ALEPH detector at LEP during the years 1991-94. The vector and the axial-vector spectral functions are determined from their respective unfolded, i.e., physical invariant mass spectra. The r vector and axial-vector hadronic widths and certain spectral moments are exploited to measure a, and nonperturbative contributions at the r mass scale. The best, and experimentally and theoretically most robust, determination of a,(Mr) is obtained from the inclusive (V + A) fit that yields a,(Mr) = 0.349 ± 0.018 giving a,(Mz) = 0.1 212 ± 0.0022 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the r hadronic width to masses smaller than the r mass.

  1. Composite hadrons and relativistic nuclei

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1978-01-01

    Lectures are presented describing a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence its name, the constituent interchange model CIM. The CIM is a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states (singlet dominance). The hard scattering expansion, incoherence problems, nuclear wave functions and counting rules, interaction between nuclei, pion and proton yields and form factors, structure functions and nonscaling, massive lepton pairs, hadrons at large transverse momentum, and quark-quark scattering are treated. 49 references

  2. The COMPASS Hadron Spectroscopy Programme

    CERN Document Server

    Austregesilo, A

    2011-01-01

    COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...

  3. Phenomenological studies of hadronic collisions

    International Nuclear Information System (INIS)

    van Zijl, M.

    1987-04-01

    Several aspects of hadronic collisions are studied in a phenomenological framework. A Monte Carlo model for initial state parton showers, using a backwards evolution scheme, is presented. Comparisons with experimental data and analytical calculations are made. The consequence of using different fragmentation model on the determination of α s is also investigated. It is found that the different fragmentation models lead to the reconstruction of significantly α s values. Finally the possibility of having several independent parton-parton interactions in a hadron-hadron collision is studied. A model is developed, which takes into account the effects of variable impact parameters. This is implemented in a Monte Carlo computer program and extensive comparisons with experimental data are carried out. There is clear evidence in favour of multiple interactions with variable impact parameters. (author)

  4. Dijet imbalance in hadronic collisions

    International Nuclear Information System (INIS)

    Boer, Danieel; Mulders, Piet J.; Pisano, Cristian

    2009-01-01

    The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of initial state partons inside unpolarized hadrons that can arise in the presence of nonzero parton transverse momentum. Transversely polarized quarks and linearly polarized gluons produce specific azimuthal dependences of the two jets that in principle are not suppressed. Their effects cannot be isolated just by looking at the angular deviation from the back-to-back situation; rather they enter jet broadening observables. In this way they directly affect the extraction of the average transverse momentum of unpolarized partons that is thought to be extracted. We discuss appropriately weighted cross sections to isolate the additional contributions.

  5. On the hadron mass decomposition

    Science.gov (United States)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  6. Heavy quark hadron mass scale

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1994-01-01

    Without the spin interactions the hardron masses within a multiplet are degenerate. The light quark hadron degenerate mulitplet mass spectrum is extended from the 3 quark ground state multiplets at J P =0 - , 1/2 + , 1 - to include the excited states which follow the spinorial decomposition of SU(2)xSU(2). The mass scales for the 4, 5, 6, .. quark hadrons are obtained from the degenerate multiplet mass m 0 /M=n 2 /α with n=4, 5, 6, .. The 4, 5, 6, .. quark hadron degenerate multiplet masses follow by splitting of the heavy quark mass scales according to the spinorial decomposition of SU(2)xSU(2). (orig.)

  7. On the hadron mass decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2018-02-15

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)

  8. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  9. The Tevatron Hadron Collider: A short history

    International Nuclear Information System (INIS)

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade

  10. Muon g-2 theory. The hadronic part

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-04-15

    I present a status report of the hadronic vacuum polarization effects for the muon g-2, to be considered as an update of an earlier paper (F. Jegerlehner, 2016). The update concerns recent new inclusive R measurements from KEDR in the energy range 1.84 to 3.72 GeV. For the leading order contributions I find a{sup had(1)}{sub μ}=(688.07±4.14)[688.77±3.38] x 10{sup -10} based on e{sup +}e{sup -} data [incl. τ data], a{sup had(2)}{sub μ}=(-9.93±0.07) x 10{sup -10} (NLO) and a{sup had(3)}{sub μ}=(1.22±0.01) x 10{sup -10} (NNLO). Collecting recent progress in the hadronic light-by-light scattering I adopt π{sup 0},η,η{sup '}[95±12]+axial-vector[8± 3]+scalar [-6 ±1]+π,K loops[-20±5]+quark loops[22±4]+tensor [1±0]+NLO[3±2] which yields a{sup (6)}{sub μ}(lbl,had)=(103±29) x 10{sup -11}. With these updates I find a{sup exp}{sub μ}-a{sup the}{sub μ}=(31.3±7.7) x 10{sup -10} a 4.1σ deviation. Recent lattice QCD results and future prospects to improve hadronic contributions are discussed.

  11. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  12. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  13. Charmed hadron production by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S

    1983-02-03

    Charmed hadron production has been studied using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative rates of D/sup 0/, D/sup +/, F/sup +/, and ..lambda..sub(c)/sup +/ production have been measured - the fraction of D mesons is 69 +- 8/10%. Momentum, transverse momentum, Feynman X, and fragmentation (Z) distributions are presented. The mean Z for charmed hadrons is 0.59 +- 0.03 (+- 0.03). Charmed target fragments have been observed.

  14. Very high multiplicity hadron processes

    International Nuclear Information System (INIS)

    Mandzhavidze, I.; Sisakyan, A.

    2000-01-01

    The paper contains a description of a first attempt to understand the extremely inelastic high energy hadron collisions, when the multiplicity of produced hadrons considerably exceeds its mean value. Problems with existing model predictions are discussed. The real-time finite-temperature S-matrix theory is built to have a possibility to find model-free predictions. This allows one to include the statistical effects into consideration and build the phenomenology. The questions to experiment are formulated at the very end of the paper

  15. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  16. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  17. Mechanism of rising cross sections in hadron-hadron collisions

    International Nuclear Information System (INIS)

    Gershtejn, S.S.; Logunov, A.A.

    1985-01-01

    The interaction of sea constituents with each other and valence quarks, occurring in high-energy hadron collisions, is shown to explain the experimentally observed law for the rise of total cross sections, as well as the energy value at which this rise starts and the difference in these energy values for πN, KN and NN(N-barN) reactions

  18. Stochastic evolutions and hadronization of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1984-01-01

    Stochastic ingredients of high energy hadronic collisions are analyzed, with emphasis on multiplicity distributions. The conceptual simplicity of the k-cell negative binomial distribution is related to the evolution of probability distributions via the Fokker-Planck and related equations. The connection to underlying field theory ideas is sketched. 17 references

  19. Hadron-hadron potentials from lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Rabitsch, K.

    1997-10-01

    Problems in nuclear physics generally involve several nucleons due to the composite structure of the atomic nucleus. To study such systems one has to solve the Schroedinger equation and therefore has to know a nucleon-nucleon potential. Experimental data and theoretical considerations indicate that nucleons consist of constituent particles, called quarks. Today, Quantum Chromodynamics (QCD) is believed to be the fundamental theory of strong interactions. Consequently, one should try to understand the nucleon-nucleon interaction from first principles of QCD. At nucleonic distances the strong coupling constant is large. Thus, a perturbative treatment of QCD low energy phenomena is not adequate. However, the formulation of QCD on a four-dimensional Euclidean lattice (lattice QCD) makes it possible to address the nonperturbative aspects of the theory. This approach has already produced valuable results. For example, the confinement of quarks in a nucleon has been demonstrated, and hadron masses have been calculated In this thesis various methods to extract the hadron-hadron interactions from first principles of lattice QCD are presented. One possibility is to consider systems of two static hadrons. A comparison of results in pure gluonic vacuum and with sea quarks is given for both the confinement and the deconfinement phase of QCD. Numerical simulations yield attractive potentials in the overlap region of the hadrons for all considered systems. In the deconfinement phase the resulting potentials are shallower reflecting the dissolution of the hadrons. A big step towards the simulation of realistic two-hadron systems on the lattice is the consideration of mesons consisting of dynamic valence quarks. This is done for the two most important fermionic discretization schemes in the pure gluonic vacuum. A calculation in coordinate space utilizing Kogut-Susskind fermions for the valence quarks yields meson-meson potentials with a long ranged interaction, an intermediate

  20. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  1. Detectors and luminosity for hadron colliders

    International Nuclear Information System (INIS)

    Diebold, R.

    1983-01-01

    Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector

  2. Physics at hadron colliders: Experimental view

    International Nuclear Information System (INIS)

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs

  3. Is there a hadronic Ramsauer effect

    International Nuclear Information System (INIS)

    Urban, M.

    1980-01-01

    We show that a good part of the hadronic resonances could very well not be resonances at all. We extend the principle of Ramsauer effect of atomic physics to other Physics' areas and especially to hadronic physics

  4. Precision kaon and hadron physics with KLOE

    International Nuclear Information System (INIS)

    Bossi, F.; De Lucia, E.; Lee-Franzini, J.; Miscetti, S.; Palutan, M.

    2008-01-01

    We describe the KLOE detector at DAΦNE, the Frascati φ, and its physics program. We begin with a brief description of the detector design and operation. Kaon physics is a major topic of investigation with KLOE thanks in part to the unique availability of pure K S , K L , K ± beams at a φ. We have measured all significant branching ratios of all kaon species, the K L and K ± lifetimes and the K → π form factor's t dependence. From the measurements we verify the validity of Cabibbo unitarity and lepton universality. We have studied properties of light scalar and pseudoscalar mesons with unprecedented accuracy. We have measured the e + e - → π + π - cross-section necessary for computing the major part of the hadronic contribution to the muon anomaly. The methods employed in all the above measurements as well as the φ leptonic width, precision mass measurements and searches for forbidden or extremely rare decays of kaons and η-mesons arc described. The impact of our results on flavor and hadron physics to date, as well as an outlook for further improvement in the near future, are discussed

  5. Lifetimes of charm and beauty hadrons

    International Nuclear Information System (INIS)

    Bellini, G.; Dornan, P.J.

    1997-01-01

    Major breakthroughs have been achieved in the determination of the lifetimes of charm and beauty hadrons. Much larger data samples than previously have become available and new experimental devices and techniques have been developed and employed. The lifetimes of all weakly decaying singly charmed hadrons have been measured, some with an accuracy of a few percent. The difference in the shortest lifetime - τ(Ω c ) - and the longest one - τ(D + ) - is given by a factor of close to ten. The experimental status of beauty lifetimes, while less complete, has still reached a new level of quality and is now better than 5% for the commoner states. New theoretical tools, based mainly on heavy quark expansions, have been developed; they incorporate as well as transcend earlier phenomenological descriptions. The observed pattern in the charm lifetime ratios is reproduced in a semi-quantitative manner as well as could be expected; as far as the beauty lifetime ratios are concerned some problems may well be emerging. The maturity level achieved in the measurements bodes quite well for future challenges where reliable and efficient tracking of the decay vertices will be crucial. (orig.)

  6. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility fair at GSI

    International Nuclear Information System (INIS)

    Radon, T.; Gutermuth, F.; Fehrenbacher, G.

    2005-01-01

    The Gesellschaft fuer Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of ∼15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam. (authors)

  7. Monte Carlo simulations for the shielding of the future high-intensity accelerator facility FAIR at GSI.

    Science.gov (United States)

    Radon, T; Gutermuth, F; Fehrenbacher, G

    2005-01-01

    The Gesellschaft für Schwerionenforschung (GSI) is planning a significant expansion of its accelerator facilities. Compared to the present GSI facility, a factor of 100 in primary beam intensities and up to a factor of 10,000 in secondary radioactive beam intensities are key technical goals of the proposal. The second branch of the so-called Facility for Antiproton and Ion Research (FAIR) is the production of antiprotons and their storage in rings and traps. The facility will provide beam energies a factor of approximately 15 higher than presently available at the GSI for all ions, from protons to uranium. The shielding design of the synchrotron SIS 100/300 is shown exemplarily by using Monte Carlo calculations with the FLUKA code. The experimental area serving the investigation of compressed baryonic matter is analysed in the same way. In addition, a dose comparison is made for an experimental area operated with medium energy heavy-ion beams. Here, Monte Carlo calculations are performed by using either heavy-ion primary particles or proton beams with intensities scaled by the mass number of the corresponding heavy-ion beam.

  8. Heavy flavour hadron spectroscopy: An overview

    Indian Academy of Sciences (India)

    2014-10-31

    Oct 31, 2014 ... A comprehensive overview and some of the theoretical attempts towards understanding heavy flavour hadron spectroscopy are presented. Apart from the conventional quark structure (quark, antiquarks structure for the mesons and three-quarks structure of baryons) of hadrons, multiquark hadrons the ...

  9. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  10. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  11. Gluonic excitations in hadronic spectroscopy

    International Nuclear Information System (INIS)

    Close, F.E.

    1983-09-01

    Theoretical expectations are described for new forms of hadronic matter containing gluons as excitable degrees of freedom. Particular attention is paid to hybrid states containing both quarks and gluons. Recent work on the spectroscopy of hybrid mesons and hybrid baryons is reviewed. Comparisons of bag model, lattice QCD and QCD sum rule predictions are made and some confrontation with data attempted. (author)

  12. Dimensional Reduction and Hadronic Processes

    International Nuclear Information System (INIS)

    Signer, Adrian; Stoeckinger, Dominik

    2008-01-01

    We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.

  13. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  14. Hard QCD at hadron colliders

    International Nuclear Information System (INIS)

    Moch, S.

    2008-02-01

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)

  15. Top production at hadron colliders

    Indian Academy of Sciences (India)

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including ...

  16. Hadron production simulation by FLUKA

    CERN Document Server

    Battistoni, G; Ferrari, A; Ranft, J; Roesler, S; Sala, P R

    2013-01-01

    For the purposes of accelerator based neutrino experiments, the simulation of parent hadron production plays a key role. In this paper a quick overview of the main ingredients of the PEANUT event generator implemented in the FLUKA Monte Carlo code is given, together with some benchmarking examples.

  17. Electroweak results from hadron colliders

    International Nuclear Information System (INIS)

    Demarteau, Marcel

    1997-01-01

    A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings

  18. Feigenbaum constants in hadron collisions

    International Nuclear Information System (INIS)

    Batunin, A.V.

    1991-01-01

    The coincidence is found between the law n ch (s) growth in hadron collisions for symmetric rapidity intervals and the law of growth of the number of elements in limit 2 m -cycles for one-dimensional quadratic maps when a govering parameter is varied. Fractal structure of the corresponding attractor underlies intermittency phenomenon in the multiplicity distribution of particles. 12 refs.; 1 fig

  19. LHCB : Exotic hadrons at LHCb

    CERN Multimedia

    Salazar De Paula, Leandro

    2015-01-01

    The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.

  20. Hadronic decays of $W$ bosons

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, III, Richard Paul [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1997-01-01

    We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb -1 data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).

  1. CERN's Large Hadron Collider project

    Science.gov (United States)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  2. CERN's Large Hadron Collider project

    International Nuclear Information System (INIS)

    Fearnley, Tom A.

    1997-01-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B

  3. Charmed hadrons in nuclear medium

    NARCIS (Netherlands)

    Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the

  4. Hadron interactions in quark models

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1987-01-01

    Some recent developments on the study of quark degrees of freedom in hadron scattering at intermediate energy are reviewed. Physical foundations of the P-matrix approach and the Quark Compound Bag method are discussed including applications to pion-pion, pion-nucleon, nucleon-nucleon and three-nucleon systems

  5. Polarization effects in hadron fragmentation

    International Nuclear Information System (INIS)

    Lednicky, R.

    1984-01-01

    Hadron polarization (spin alignment) and polarization asymmetry are discussed in terms of the quark recombination model with the spin-orbit interaction taken into account. It is shown that predictions of this model are at least in qualitative agreement with experimental data. Various polarization mechanisms in terms of this model and the possibility of their checking are also discussed

  6. A highly granular semi-digital hadron calorimeter for a future linear e + e − collider and a model independent Higgs boson measurement in the ZH→qq+X channel

    CERN Document Server

    Haddad, Yacine

    The International Linear Collider (ILC) is a concept for a linear electron-positron accelerator with a centre-of-mass energy of up to 1 TeV. Its main purpose is the precise measurement of particles discovered by the LHC such as the Higgs boson particle. The International Large Detector (ILD) is one of its detector concepts, specifically designed for the usage of Particle Flow Algorithms requiring highly granular calorimeters. Within the CALICE collaboration, several prototypes of such calorimeters, exploring different technologies, have been developed and tested. This thesis focuses on one of them: a semi-digital hadron calorimeter (SDHCAL) equipped with Glass Resistive Plate Chambers (GRPC) sensors. It is a sampling calorimeter composed of 48 layers segmented in cells of one square centimetre for a total of half a millions channels. The first part of the present thesis describes the analysis of the data taken during beam tests at CERN, in which the detector was operated in a trigger less mode; saving of all ...

  7. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    Science.gov (United States)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  8. Heavy hadron spectroscopy: A quark model perspective

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.; Caramés, T.F.; Garcilazo, H.

    2013-01-01

    We present recent results of hadron spectroscopy and hadron–hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron–hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory

  9. Correlations in electron-positron, lepton-hadron and hadron-hadron collisions

    International Nuclear Information System (INIS)

    Koch, W.

    1982-11-01

    Recent results on two-particle correlations in rapidity space, forward-backward multiplicity correlations, charge correlations, flavour and baryon number correlations as well as Bose-Einstein correlations of identical particles are reviewed. Particular emphasis is given to the data from e + e - annihilation which serve in many respects as reference point in the interpretation of correlation phenomena observed in hadronic reactions. (orig.)

  10. Hadronic EDM constraints on orbifold GUTs

    International Nuclear Information System (INIS)

    Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru

    2005-01-01

    We point out that the null results of the hadronic electric dipole moment (EDM) searches constrain orbifold grand unified theories (GUTs), where the GUT symmetry and supersymmetry (SUSY) are both broken by boundary conditions in extra dimensions and it leads to rich fermion and sfermion flavor structures. A marginal chromoelectric dipole moment (CEDM) of the up quark is induced by the misalignment between the CP violating left- and right-handed up-type squark mixings, in contrast to the conventional four-dimensional SUSY GUTs. The up quark CEDM constraint is found to be as strong as those from charged lepton flavor violation (LFV) searches. The interplay between future EDM and LFV experiments will probe the structures of the GUTs and the SUSY breaking mediation mechanism

  11. Coulomb interference and bending slope in hadron-hadron scattering

    International Nuclear Information System (INIS)

    Pereira, Flavio I.; Ferreira, Erasmo

    1994-01-01

    With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)

  12. Hadronic photon-photon interactions at high energies

    International Nuclear Information System (INIS)

    Engel, R.; Siegen Univ.; Ranft, J.

    1996-01-01

    Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model contains contributions from direct, resolved soft and resolved hard interactions. All free parameters of the model are determined in fits to hadron-hadron and photon-hadron cross section data. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. (author)

  13. Electric and magnetic polarizabilities of hadrons via elastic Compton scattering at KAON

    International Nuclear Information System (INIS)

    Moinester, M.A.; Blecher, M.

    1990-08-01

    The study of dynamic properties of hadrons presents a challenge. Among the most basic of these are the electric and magnetic polarizabilities describing the electromagnetic structure of hadrons. They characterize the induced transient dipole moments of hadrons in an external electromagnetic field. During gamma-hadron Compton scattering the lowest order scattering is determined by the charge and magnetic moment. The next order scattering is determined by the induced dipole moments. The dipole polarizabilities probe the rigidity of the internal structure of baryons and mesons, the dipole moments being induced by the rearrangement of the hadron constituents driven by the presence of the electric and magnetic fields of the photon during scattering. A sophisticated understanding of hadrons within the framework of QCD will be tested, in part, by the prediction of these quantities. For the light charged pion, chiral symmetry leads to a precise prediction for the polarizabilities. For the heavier charged kaon, chiral perturbation theory can be applied to predict the polarizabilities. For these cases, the experimental polarizabilities subject the underlying chiral symmetry and chiral perturbation techniques of QCD to new and serious tests. Here the physics of electromagnetic polarizabilities is first described, followed by a review of previous experimental and theoretical polarizability results for the proton, neutron, pion, and kaon. A brief description is then given of how polarizabilities for these hadrons can be studied at the proposed TRIUMF KAON facility. (36 refs., 4 figs.)

  14. What can we learn from high-energy hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Tow, D.M.

    1979-12-01

    High-energy hadron-nucleus (hA) collisions provide the exciting possibility of giving information about the spacetime development of hadron-hadron interactions and therefore differentiating various multiparticle production models. Some of the major developments in this field during the past decade, both experimentally and theoretically are reviewed. Several general features of the data are pointed out, and several classes of models are discussed. A recently proposed simple spacetime model for high-energy hA collisions is elaborated. Comments are made on the extension to nucleus-nucleus interactions and the future outlook

  15. Low-energetic hadron interactions in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Feege, Nils

    2011-12-01

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m 3 scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a collider

  16. Low-energetic hadron interactions in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2011-12-15

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m{sup 3} scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a

  17. Supersymmetry across the Hadronic Spectrum

    Directory of Open Access Journals (Sweden)

    Hans Günter Dosch

    2017-01-01

    Full Text Available Semiclassical light-front bound-state equations for hadrons are presented and compared with experiment. The essential dynamical feature is the holographic approach; that is, the hadronic equations in four-dimensional Minkowski space are derived as holograms of classical equations in a 5-dimensional anti-de Sitter space. The form of the equations is constrained by the imposed superconformal algebra, which fixes the form of the light-front potential. If conformal symmetry is strongly broken by heavy quark masses, the combination of supersymmetry and the classical action in the 5-dimensional space still fixes the form of the potential. By heavy quark symmetry, the strength of the potential is related to the heavy quark mass. The contribution is based on several recent papers in collaboration with Stan Brodsky and Guy de Téramond.

  18. Hadron therapy information sharing prototype

    CERN Document Server

    Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose

    2013-01-01

    The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.

  19. Quantum groups in hadron phenomenology

    International Nuclear Information System (INIS)

    Gavrilik, A.M.

    1997-01-01

    We show that application of quantum unitary groups, in place of ordinary flavor SU(n f ), to such static aspects of hadron phenomenology as hadron masses and mass formulas is indeed fruitful. So-called q-deformed mass formulas are given for octet baryons 1/2 + and decuplet baryons 3/2 + , as well as for the case of vector mesons 1 - involving heavy flavors. For deformation parameter q, rigid fixation of values is used. New mass sum rules of remarkable accuracy are presented. As shown in decuplet case, the approach accounts for effects highly nonlinear in SU(3)-breaking. Topological implication (possible connection with knots) for singlet vector mesons and the relation q ↔ Θ c (Cabibbo angle) in case of baryons are considered

  20. Hadron therapy physics and simulations

    CERN Document Server

    d’Ávila Nunes, Marcos

    2014-01-01

    This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It covers the mechanisms of protons and carbon ions at the molecular level (DNA breaks and proteins 53BP1 and RPA), the physics and mathematics of accelerators (Cyclotron and Synchrotron), microdosimetry measurements (with new results so far achieved), and Monte Carlo simulations in hadron therapy using FLUKA (CERN) and MCHIT (FIAS) software. The text also includes information about proton therapy centers and carbon ion centers (PTCOG), as well as a comparison and discussion of both techniques in treatment planning and radiation monitoring. This brief is suitable for newcomers to medical physics as well as seasoned specialists in radiation oncology.

  1. Antimicrobial stewardship in long-term care facilities in Belgium: a questionnaire-based survey of nursing homes to evaluate initiatives and future developments

    Directory of Open Access Journals (Sweden)

    François Kidd

    2016-03-01

    Full Text Available Abstract Background The use of antimicrobials is intense and often inappropriate in long-term care facilities. Antimicrobial resistance has increased in acute and chronic care facilities, including those in Belgium. Evidence is lacking concerning antimicrobial stewardship programmes in chronic care settings. The medical coordinator practicing in Belgian nursing homes is a general practitioner designated to coordinate medical activity. He is likely to be the key position for effective implementation of such programmes. The aim of this study was to evaluate past, present, and future developments of antimicrobial stewardship programmes by surveying medical coordinators working in long-term care facilities in Belgium. Methods We conducted an online questionnaire-based survey of 327 Belgian medical coordinators. The questionnaire was composed of 33 questions divided into four sections: characteristics of the respondents, organisational frameworks for implementation of the antimicrobial stewardship programme, tools to promote appropriate antimicrobial use and priorities of action. Questions were multiple choice, rating scale, or free text. Results A total of 39 medical coordinators (12 % completed the questionnaire. Past or present antimicrobial stewardship initiatives were reported by 23 % of respondents. The possibility of future developments was rated 2.7/5. The proposed key role of medical coordinators was rated <3/5 by 36 % of respondents. General practitioners, nursing staff, and hospital specialists are accepted as important roles. The use of antimicrobial guidelines was reported by only 19 % of respondents. Education was considered the cornerstone for any future developments. Specific diagnostic recommendations were considered useful, but chest x-rays were judged difficult to undertake. The top priority identified was to reduce unnecessary treatment of asymptomatic urinary infections. Conclusions Our study shows that the implementation of

  2. New possibilities for exotic hadrons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1987-01-01

    New theoretical ideas and experimental evidence for exotic hadrons are presented. A new exciting candidate is an anticharmed baryon; i.e., a bound state of a nucleon and an F (now called D 3 ). New experimental evidence for four-quark exotic mesons presented at this conference is discussed. The confusion in the E-iota region and the pseudoscalar spectrum still await further experimental clarification

  3. Hard processes in hadronic interactions

    International Nuclear Information System (INIS)

    Satz, H.; Wang, X.N.

    1995-01-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks' duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley

  4. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  5. Hadron Structure '87. Volume 14

    International Nuclear Information System (INIS)

    Krupa, D.

    1988-01-01

    Out of the 21 papers and 41 short communications presented at the conference, the proceedings contain the full texts of 12 papers and 35 short communications. All these contributions have been inputted to INIS. The topics covered include nonperturbative calculations in the field theory, in QCD in particular; particle production in hadron-nucleus and nucleus-nucleus collisions and the quark-gluon plasma; and recent experimental results in the field. (A.K.)

  6. Hadrons, the simplest gentilionic systems

    International Nuclear Information System (INIS)

    Cattani, M.S.D.

    1987-11-01

    Basic quantum mechanical properties of systems constituted by two and three gentileons are deduced in this paper. By using Pauli's theorem and symmetry properties of the intermediate states it is shown that, in some cases, gentileons must have half-odd-integral spin. As an immediate and natural result of our theoretical analysis, we show how fundamental observed properties of composed hadrons can be predicted from first principles assuming quarks as spin 1/2 gentileons. (author) [pt

  7. Hadronic resonances at FAIR energies

    International Nuclear Information System (INIS)

    Vogel, Sascha

    2013-01-01

    These proceedings cover the analysis of hadronic resonances in heavy ion collisions. The model used for these studies is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The model will be briefly explained, resonance observables will be highlighted and various kinematical issues will be investigated. Special emphasis will be put on the FAIR energy regime, especially highlighting the Compressed Baryonic Matter (CBM) program.

  8. Prospects for and tests of hadron calorimetry with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [Univ. of Oregon, OR (United States). Dept. of Physics; Gabriel, Tony A. [Oak Ridge National Lab., TN (United States); Rancoita, P. G. [INFN, Milan (Italy)

    1989-03-01

    Hadron calorimetry with silicon may provide crucial capabilities in experiments at the high luminosity, high energy colliders of the future, particularly due to silicon's fast intrinsic speed and absolute calibration. The important underlying processes of our understanding of hadron calorimeters are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, the ratio of the most probable electron signal to hadron signal (e/h) is approx.1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. An experimental test of these predictions is underway at CERN by the SICAPO Collaboration. 64 refs., 19 figs.

  9. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  10. Opening address [for the International Conference on Hadron Spectroscopy

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.

    1985-01-01

    Some historical perspective and comments are presented on some aspects of the present state of the field of hadron interactions and its potential future. Included in the discussion are the results of pion-nucleon cross sections measurements of the 1950's, the ''double pole'' of the A2 (which later was found to be wrong), and the local gauge invariant SU(3)/sub color/ and QCD. 9 refs., 9 figs

  11. Theory Overview of Electroweak Physics at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M. [Fermilab

    2016-09-03

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  12. Opening address (for the International Conference on Hadron Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Lindenbaum, S.J.

    1985-01-01

    Some historical perspective and comments are presented on some aspects of the present state of the field of hadron interactions and its potential future. Included in the discussion are the results of pion-nucleon cross sections measurements of the 1950's, the ''double pole'' of the A2 (which later was found to be wrong), and the local gauge invariant SU(3)/sub color/ and QCD. 9 refs., 9 figs. (LEW)

  13. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  14. Signatures of Parton Exogamy in e+ e- -> W+ W- -> hadrons

    OpenAIRE

    Ellis, John; Geiger, Klaus

    1997-01-01

    We propose possible signatures of `exogamous' combinations between partons in the different W+ and W- hadron showers in e+e- -> W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10 % between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W decays hadronically and the other leptonically,...

  15. The X-Ray Pebble Recirculation Experiment (X-PREX): Facility Description, Preliminary Discrete Element Method Simulation Validation Studies, and Future Test Program

    International Nuclear Information System (INIS)

    Laufer, Michael R.; Bickel, Jeffrey E.; Buster, Grant C.; Krumwiede, David L.; Peterson, Per F.

    2014-01-01

    This paper presents a facility description, preliminary results, and future test program of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Preliminary experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. Finally, this paper discusses additional studies in progress relevant to the design and analysis of pebble bed reactor cores including pebble recirculation in cylindrical core geometries and evaluation of forces on shut down blades inserted directly into a packed pebble bed. (author)

  16. Radioactive effluents and present and future radiation exposure to the population from nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Bonka, H.; Edelhauser, H.; Gans, I.; Wolter, R.

    1977-01-01

    As this time ten light water cooled nuclear power plants are operated outside of nuclear research centers in the Federal Republic of Germany. A review of the releases of radioactivity in gaseous and liquid effluents shows that increasing operational experience and improved technology combined with restrictive licensing policy and comprehensive control systems have resulted in decreasing release rates. Therefore radiation exposure to the population and critical groups calculated from these release rates on a local scale via different exposure pathways have been low until now. Predictions of future radiation exposure are based on the energy program of the Federal Republic of Germany up to 1985 and continuing forecasts for future energy demands, release rates of new reactor types and reprocessing plants being taken into account. In calculations of exposures to the population local models are combined with regional models superimposing contributions from sources in the Federal Republic and neighbouring countries and with a global multi-compartment model. If, with view to a continued development of the present state of science and technology in connection with major reprocessing plants, retention rates from 90-99% are assumed to be obtainable for H 3 and Kr 85, 99,5-99,9% for iodine and approximately 90% for C 14 from reprocessing plants, it can be demonstrated that also the future radiation exposure can be kept below the dose limits established in the Federal Republic of Germany

  17. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    International Nuclear Information System (INIS)

    Tahir, N A; Weick, H; Iwase, H

    2005-01-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump

  18. Observation of charmless hadronic B decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the {\\sc aleph} detector at {\\sc lep} . The probability that these events come from background sources is estimated to b e less than $10^{-6}$. The average branching ratio of weakly decaying B hadrons (a mixture of $\\bd$, $\\bs$ and $\\lb$ weighted by their production cross sections and lifetimes , here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be $\\Br(\\btohh) = \\resultBR$. The relative branching fraction $\\rratio$, where $\\rs$ is the ratio of $\\bs$ to $\\bd$ decays in the sample, is measured to be $\\resultR$. %Branching ratio upper limits are also obtained for a variety In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons.

  19. Future radioactive environmental pollution in the Federal Republic of Germany by radionuclides from nuclear facilities in normal operation

    International Nuclear Information System (INIS)

    Bonka, H.; Schulten, R.; Bruessermann, K.; Schwarz, G.; Bieselt, R.; Winske, P.; Brenk, D.; Vogt, K.J.; Darvas, J.; Laser, M.; Schnez, H.

    1975-07-01

    Based on important gaseous and liquid radioactive effluents, mainly T, 85 Kr, 129 I, 131 I, and 133 Xe, from modern nuclear power plants and corresponding reprocessing plants and on a prediction of the nuclear power plant capacity expansion over a period of approximately 100 years, the future radiation exposure is examined. In the studies the local and regional radiation exposure due to waste air as well as the potential radiation exposure due to liquid effluent into running waters and their use for drinking water purposes are involved. The global effects are dealt with. The results are compared with the variation of the natural radiation exposure of the population in the FRG. There is evidence that the future additional radiation dose will be within the limits of the fluctuation of the natural radiation exposure if it is possible to retain the nuclides T and 85 Kr at a rate of about 90% to 99% and iodine at rate of about 99% to 99.8% in the first great reprocessing plants. (orig./HP) [de

  20. Hadron physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it