WorldWideScience

Sample records for future global emissions

  1. Influence of economic factors on future global emissions

    International Nuclear Information System (INIS)

    Duffey, R.B.; Poehnell, T.G.; Miller, A.I.; Tamm, J.A.

    2001-01-01

    The climate change debate is really about economics, and reducing greenhouse gas (GHG) emissions and climate change potential at a reasonable and acceptable cost for everyone. In this paper, we examine the major economic factors behind defining climate change policies that relate to reducing GHG emissions, and the value to be placed on CO 2 . We examine the impacts and the 'cost of carbon' based on the studies of GHG reduction strategies in the US and the European Union (EU). We show that a series of self-defeating assumptions have been used in the latest analyses regarding relative future energy and power costs, and hence future GHG emissions. We estimate: the 'natural value' of GHG emissions based on world economic factors, the value of electricity and energy based on world data, the cost advantage of using a given new technology, and the value of avoided GHG emissions in future global and national climate change projections. The use of electricity is shown to be key in aiding economic growth for the entire world. Using the latest Intergovernmental Panel on Climate Change (IPCC) 2000 climate change projections as a base, we reflect the impacts of differing energy prices on future global climate conditions and GHG reductions. We conduct a similar analysis for Canada using the latest 'Energy in Canada 2000' projections. We show how the use of advanced technology for the traditional production of electricity, and for hydrogen-based transportation fuels, can stabilize global emissions and assist in managing adverse climate change conditions without causing economic penalties. The method we develop is sufficiently general that it can be used for valuing the economic impact of the emission reductions for any technology. We estimate the embedded value and potential economic benefit of nuclear technology and electric contribution for both the world economy to 2100, and for the latest projections for Canada to 2020. (author)

  2. A probabilistic approach to examine the impacts of mitigation policies on future global PM emissions from on-road vehicles

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Bond, T. C.; Streets, D. G.

    2012-12-01

    There is deficiency in the determination of emission reduction potential in the future, especially with consideration of uncertainty. Mitigation measures for some economic sectors have been proposed, but few studies provide an evaluation of the amount of PM emission reduction that can be obtained in future years by different emission reduction strategies. We attribute the absence of helpful mitigation strategy analysis to limitations in the technical detail of future emission scenarios, which result in the inability to relate technological or regulatory intervention to emission changes. The purpose of this work is to provide a better understanding of the potential benefits of mitigation policies in addressing global and regional emissions. In this work, we introduce a probabilistic approach to explore the impacts of retrofit and scrappage on global PM emissions from on-road vehicles in the coming decades. This approach includes scenario analysis, sensitivity analysis and Monte Carlo simulations. A dynamic model of vehicle population linked to emission characteristics, SPEW-Trend, is used to estimate future emissions and make policy evaluations. Three basic questions will be answered in this work: (1) what contribution can these two programs make to improve global emissions in the future? (2) in which regions are such programs most and least effective in reducing emissions and what features of the vehicle fleet cause these results? (3) what is the level of confidence in the projected emission reductions, given uncertain parameters in describing the dynamic vehicle fleet?

  3. Current and future trends in global landfill gas generation and emissions

    International Nuclear Information System (INIS)

    Meadows, M.; Franklin, C.; Campbell, D.

    1996-01-01

    This paper assesses the magnitude and distribution of current and future methane generation and emissions from landfill on a world-wide basis. It also estimates the current and future global potential for energy recovery from landfill methane. The mass of methane emitted from land disposal of wastes in any country depends on the waste management strategy of that country. In turn, the waste management strategy of a country depends on its population size, relative proportion living in rural or urban regions and the economic development of the country. We estimate by 2010 there will be a large increase in global methane emissions from solid wastes disposed on land. This increase will be largely from developing regions of the world. The main factor driving this increase is a population shift from rural to urban areas, particularly in regions of highest population, i.e. China and India. This will lead to a greater concentration of waste generation, in turn leading to increased disposal of wastes in deeper sites. In addition increased industrialisation and improved standard of living in regions of high population, will increase the mass of waste disposed of per person and the degradable carbon content of the waste, i.e. the waste will become more like waste from developed countries. In contrast, methane emissions from waste disposed on land in developed countries is likely to decrease by 2010, mainly as result of increased collection and combustion of landfill methane. (Author)

  4. Mercury from wildfires: Global emission inventories and sensitivity to 2000-2050 global change

    Science.gov (United States)

    Kumar, Aditya; Wu, Shiliang; Huang, Yaoxian; Liao, Hong; Kaplan, Jed O.

    2018-01-01

    We estimate the global Hg wildfire emissions for the 2000s and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally and regionally by 18% for South America, 14% for Africa and 13% for Eurasia. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions globally (+28%) and regionally (+19% North America, +20% South America, +24% Africa, +41% Eurasia). Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

  5. The impact of reducing car weight on global emissions: the future fleet in Great Britain

    Science.gov (United States)

    Serrenho, André Cabrera; Norman, Jonathan B.; Allwood, Julian M.

    2017-05-01

    Current European policies define targets for future direct emissions of new car sales that foster a fast transition to electric drivetrain technologies. However, these targets do not consider the emissions produced in electricity generation and material production, and therefore fail to incentivise car manufacturers to consider the benefits of vehicle weight reduction. In this paper, we examine the potential benefits of limiting the average weight and altering the material composition of new cars in terms of global greenhouse gas emissions produced during the use phase, electricity generation and material production. We anticipate the emissions savings for the future car fleet in Great Britain until 2050 for various alternative futures, using a dynamic material flow analysis of ferrous metals and aluminium, and considering an evolving demand for car use. The results suggest that fostering vehicle weight reduction could produce greater cumulative emissions savings by 2050 than those obtained by incentivising a fast transition to electric drivetrains, unless there is an extreme decarbonization of the electricity grid. Savings promoted by weight reduction are immediate and do not depend on the pace of decarbonization of the electricity grid. Weight reduction may produce the greatest savings when mild steel in the car body is replaced with high-strength steel. This article is part of the themed issue 'Material demand reduction'.

  6. Current and future levels of mercury atmospheric pollution on a global scale

    Science.gov (United States)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  7. Current and future levels of mercury atmospheric pollution on a global scale

    Directory of Open Access Journals (Sweden)

    J. M. Pacyna

    2016-10-01

    Full Text Available An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013 and future (2035 air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions, including mercury depletion events, were estimated to be 5207 t year−1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %, followed by biomass burning (9 %. A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has

  8. Emissions associated with meeting the future global wheat demand: A case study of UK production under climate change constraints

    International Nuclear Information System (INIS)

    Röder, Mirjam; Thornley, Patricia; Campbell, Grant; Bows-Larkin, Alice

    2014-01-01

    Highlights: • Conflicts between adapting to climate change, food security and reducing emissions. • Climate change likely to limit wheat production in the southern hemisphere. • Climate change yield benefits marginally increase emissions per unit of product. • Improved yield will result in higher total production emissions. • Production-based inventories discourage an increase in production. - Abstract: Climate change, population growth and socio-structural changes will make meeting future food demands extremely challenging. As wheat is a globally traded food commodity central to the food security of many nations, this paper uses it as an example to explore the impact of climate change on global food supply and quantify the resulting greenhouse gas emissions. Published data on projected wheat production is used to analyse how global production can be increased to match projected demand. The results show that the largest projected wheat demand increases are in areas most likely to suffer severe climate change impacts, but that global demand could be met if northern hemisphere producers exploit climate change benefits to increase production and narrow their yield gaps. Life cycle assessment of different climate change scenarios shows that in the case of one of the most important wheat producers (the UK) it may be possible to improve yields with an increase of only 0.6% in the emission intensity per unit of wheat produced in a 2 °C scenario. However, UK production would need to rise substantially, increasing total UK wheat production emissions by 26%. This demonstrates how national emission inventories and associated targets do not incentivise minimisation of global greenhouse gas emissions while meeting increased food demands, highlighting a triad of challenges: meeting the rising demand for food, adapting to climate change and reducing emissions

  9. Determinants and predictability of global wildfire emissions

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2012-08-01

    Full Text Available Biomass burning is one of the largest sources of atmospheric trace gases and aerosols globally. These emissions have a major impact on the radiative balance of the atmosphere and on air quality, and are thus of significant scientific and societal interest. Several datasets have been developed that quantify those emissions on a global grid and offered to the atmospheric modelling community. However, no study has yet attempted to systematically quantify the dependence of the inferred pyrogenic emissions on underlying assumptions and input data. Such a sensitivity study is needed for understanding how well we can currently model those emissions and what the factors are that contribute to uncertainties in those emission estimates.

    Here, we combine various satellite-derived burned area products, a terrestrial ecosystem model to simulate fuel loads and the effect of fire on ecosystem dynamics, a model of fuel combustion, and various emission models that relate combusted biomass to the emission of various trace gases and aerosols. We carry out simulations with varying parameters for combustion completeness and fuel decomposition rates within published estimates, four different emissions models and three different global burned-area products. We find that variations in combustion completeness and simulated fuel loads have the largest impact on simulated global emissions for most species, except for some with highly uncertain emission factors. Variation in burned-area estimates also contribute considerably to emission uncertainties. We conclude that global models urgently need more field-based data for better parameterisation of combustion completeness and validation of simulated fuel loads, and that further validation and improvement of burned area information is necessary for accurately modelling global wildfire emissions. The results are important for chemical transport modelling studies, and for simulations of biomass burning impacts on the

  10. Global fate of POPs: Current and future research directions

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek

    2007-01-01

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks

  11. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions

    OpenAIRE

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin

    2013-01-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inven...

  12. Self-organized global control of carbon emissions

    Science.gov (United States)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  13. Global fate of POPs: Current and future research directions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States)], E-mail: lohmann@gso.uri.edu; Breivik, Knut [Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, PO Box 1033, NO-0315 Oslo (Norway); Dachs, Jordi [Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, Barcelona 08034 (Spain); Muir, Derek [Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R4A6 (Canada)

    2007-11-15

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks.

  14. Act locally, trade globally. Emissions trading for climate policy

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Climate policy raises a number of challenges for the energy sector, the most significant being the transition from a high to a low-CO2 energy path in a few decades. Emissions trading has become the instrument of choice to help manage the cost of this transition, whether used at international or at domestic level. Act Locally, Trade Globally, offers an overview of existing trading systems, their mechanisms, and looks into the future of the instrument for limiting greenhouse gas emissions. Are current markets likely to be as efficient as the theory predicts? What is, if any, the role of governments in these markets? Can domestic emissions trading systems be broadened to activities other than large stationary energy uses? Can international emissions trading accommodate potentially diverse types of emissions targets and widely different energy realities across countries? Are there hurdles to linking emissions trading systems based on various design features? Can emissions trading carry the entire burden of climate policy, or will other policy instruments remain necessary? In answering these questions, Act Locally, Trade Globally seeks to provide a complete picture of the future role of emissions trading in climate policy and the energy sector.

  15. Demographic controls of future global fire risk

    Science.gov (United States)

    Knorr, W.; Arneth, A.; Jiang, L.

    2016-08-01

    Wildfires are an important component of terrestrial ecosystem ecology but also a major natural hazard to societies, and their frequency and spatial distribution must be better understood. At a given location, risk from wildfire is associated with the annual fraction of burned area, which is expected to increase in response to climate warming. Until recently, however, only a few global studies of future fire have considered the effects of other important global environmental change factors such as atmospheric CO2 levels and human activities, and how these influence fires in different regions. Here, we contrast the impact of climate change and increasing atmospheric CO2 content on burned area with that of demographic dynamics, using ensembles of climate simulations combined with historical and projected population changes under different socio-economic development pathways for 1901-2100. Historically, humans notably suppressed wildfires. For future scenarios, global burned area will continue to decline under a moderate emissions scenario, except for low population growth and fast urbanization, but start to increase again from around mid-century under high greenhouse gas emissions. Contrary to common perception, we find that human exposure to wildfires increases in the future mainly owing to projected population growth in areas with frequent wildfires, rather than by a general increase in burned area.

  16. Decoupling of greenhouse gas emissions from global agricultural production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis....

  17. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1998-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  18. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  19. Past, Present, and Future Anthropogenic Emissions over Asia: a Regional Air Quality Modeling Perspective

    Science.gov (United States)

    Woo, Jung-Hun; Jung, Bujeon; Choi, Ki-Chul; Seo, Ji-Hyun; Kim, Tae Hyung; Park, Rokjin J.; Youn, Daeok; Jeong, Jaein; Moon, Byung-Kwon; Yeh, Sang-Wook

    2010-05-01

    Climate change will also affect future regional air quality which has potential human health, ecosystem, and economic implications. To analyze the impacts of climate change on Asian air quality, the NIER (National Institute of Environmental Research, Korea) integrated modeling framework was developed based on global-to-regional climate and atmospheric chemistry models. In this study, we developed emission inventories for the modeling framework for 1980~2100 with an emphasis on Asia emissions. Two emission processing systems which have functions of emission projection, spatial/temporal allocation, and chemical speciation have been also developed in support of atmospheric chemistry models including GEOS-Chem and Models-3/CMAQ. Asia-based emission estimates, projection factors, temporal allocation parameters were combined to improve regional modeling capability of past, present and future air quality over Asia. The global CO emissions show a 23% decrease from the years 1980 to 2000. For the future CO (from year 2000 to 2100), the A2 scenario shows a 95% increase due to the B40 (Residential-Biofuel) sector of Western Africa, Eastern Africa and East Asia and the F51 (Transport Road-Fossil fuel) sector of Middle East, USA and South Asia. The B1 scenario, however, shows a 79% decrease of emissions due to B40 and F51 sectors of East Asia, South Asia and USA for the same period. In many cases, Asian emissions play important roles for global emission increase or decrease depending on the IPCC scenarios considered. The regional ozone forming potential will be changed due to different VOC/NOx emission ratio changes in the future. More similarities and differences of Asian emission characteristics, in comparison with its global counterpart, are investigated.

  20. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    Science.gov (United States)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  1. How much do direct livestock emissions actually contribute to global warming?

    Science.gov (United States)

    Reisinger, Andy; Clark, Harry

    2018-04-01

    Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John

  2. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  3. Global emissions inventories

    International Nuclear Information System (INIS)

    Dignon, J.

    1995-07-01

    Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions

  4. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  5. Decomposing the impact of alternative technology sets on future carbon emissions growth

    International Nuclear Information System (INIS)

    Fisher-Vanden, Karen; Schu, Kathryn; Sue Wing, Ian; Calvin, Katherine

    2012-01-01

    What are the drivers of future global carbon dioxide (CO 2 ) emissions growth and how would the availability of key energy supply technologies change their relative importance? In this paper, we apply a novel index number decomposition technique to the results of a multi-region, multi-sector computable general equilibrium model to quantify the influence of five factors on the growth of future carbon emissions: (1) growth in global economic activity; (2) shifts in the regional composition of gross world product; (3) shifts in the sectoral composition of regions' GDP; (4) changes in sectors' energy–output ratios; and (5) changes in the CO 2 intensity of energy sources. We elucidate how the relative importance of these factors changes in response to the imposition of a global carbon tax and alternative assumptions about the future availability of key energy supply technologies. Rising global economic activity and shifts in regional composition put upward pressure on emissions while changes in energy and emission intensity and the sectoral output mix have attenuating effects. A global emission tax that increases over time slows economic expansion and shifts the fuel mix, with the most pronounced impacts on China, India, and Russia. Limited availability of carbon capture and storage, nuclear, and hydroelectric generation all lead to upward shifts in the long-run marginal abatement cost curve, causing some countries to choose to pay the tax rather than abate. - Highlights: ► Index number decomposition is used to quantify the influence of five factors. ► The relative importance of these factors in response to alternative assumptions is measured. ► A global emission tax that increases over time slows economic expansion and shifts the fuel mix. ► Limited technology availability mean some countries to choose to pay the tax rather than abate.

  6. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie

  7. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  8. Significance of Future Biogenic and Fire Emissions on Regional Aerosol Burden

    Science.gov (United States)

    Lim, A.; Tai, A. P. K.; Val Martin, M.

    2017-12-01

    Land-use and land cover changes have been found to substantially affect atmospheric aerosols and climate worldwide1,2, but the complex mechanisms and pathways involved in the interactions between terrestrial processes and aerosols are not well understood. Here we use a global coupled aerosol chemistry-climate-land model (CESM with CAM5 using Modal Aerosol Module 3 and CLM4.5 in Satellite Phenology mode) to investigate how aerosols respond to future climate and land-use changes, and in turn, affects cloud cover and other hydrometeorological variables in the long term. Time-sliced simulations are conducted for a base year (2000) as a base case; then three future projected scenarios for year 2050 driven by land-use and climate projections following the Representative Concentration Pathways RCP8.53 are conducted. The first scenario considers future projected biogenic emissions, allowing us to investigate the effect of increased plant activity and enhanced biogenic emissions due to future land-use and climate on aerosol burden. The second scenario considers future biomass burning emissions, allowing us to investigate the effect of increased biomass burning emissions due to future land-use and climate on aerosol burden. The third scenario combines the projected changes in the two emissions. We find that both biogenic and biomass burning emissions contribute significantly to local aerosol and cloud condensation nuclei (CCN) concentrations. The contribution from biogenic emissions to local aerosol burden is smaller in magnitude (10% to 20%), but the effects are ubiquitous in many places globally. Meanwhile, the contribution from biomass burning emissions can be much higher in magnitude (63%)4, but concentrated in heavily burned regions and occurs only during burning season. Effects of both emissions are not additive since a larger flux of emissions causes greater deposition. The resulting further impacts of land-use change on regional hydrometeorology are also explored

  9. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus

    2018-01-01

    We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.

  10. Greenhouse gas emissions for the EU in four future scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lesschen, J.P.; Rienks, W.; Staritsky, I. [Alterra, Wageningen-UR, Wageningen (Netherlands); Eickhout, B.; Prins, A.G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands)

    2009-12-15

    The European Common Agricultural Policy (CAP) will be revised in the near future. A proposed agricultural policy reform will affect many dimensions of the sustainable development of agriculture. One of these dimensions are greenhouse gas (GHG) emissions. The objective of this study was to assess the impact of four scenarios of the future, from the Eururalis study, and the effects of CAP options on GHG emissions from agriculture. The results provide an indication of the range of GHG emissions between the four diverging base scenarios and the differences with current emission levels in Member States and on EU level. Analysis of the possible impact of the measures on GHG emissions showed that this would be much larger from mitigation measures than from CAP options. Full implementation of the mitigation measures could lead to a reduction in GHG emissions from agriculture of 127 Mt CO2 equivalents. This is about a quarter of current GHG emissions from agriculture. Promoting mitigation measures, therefore, is more effective for reducing GHG emissions from agriculture, than influencing income and price subsidies within the CAP. On the global scale, CAP options hardly play a role in total GHG emissions from land use. Much more important are developments in global population, economic growth, policies and technological developments, as depicted in the various scenarios.

  11. Global emission projections for the transportation sector using dynamic technology modeling

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2014-06-01

    largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a robust and plausible projection of what future emissions may be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.

  12. Dissecting Future Aerosol Emissions. Warming Tendencies and Mitigation Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Streets, D.G. [Decision and Information Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

    2007-04-15

    Future global emissions of aerosols will play an important role in governing the nature and magnitude of future anthropogenic climate change. We present in this paper a number of future scenarios of emissions of black carbon (BC) and organic carbon (OC) by world region, which we combine with sulfate (SO4) assessed in terms of the emissions of its precursor, SO2. We find that aerosol emissions from the household and industrial sectors are likely to decline along almost all future pathways. Transportation emissions, however, are subject to complex interacting forces that can lead to either increases or decreases. Biomass burning declines in many scenarios, but the Amazon rainforests remain vulnerable if unsustainable economic growth persists. East Asia is the key region for primary aerosols, and trends in China will have a major bearing on the direction and magnitude of releases of BC (expected reductions in the range of 640-1290 Gg), OC (reductions of 520-1900 Gg), and SO2 (ranging from an increase of 21 Tg to a reduction of 30 Tg). Analysis of joint BC, OC, and SO2 emission changes identifies a number of key world regions and economic sectors that could be effectively targeted for aerosol reductions.

  13. Current and future levels of mercury atmospheric pollution on global scale

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-01-01

    An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury world-wide are presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  14. Grazing the Commons. Global Carbon Emissions Forever?

    Energy Technology Data Exchange (ETDEWEB)

    Melenberg, B. [CentER and Department of Econometrics and Operations Research, Tilburg University, Tilburg (Netherlands); Vollebergh, H.R.J. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Dijkgraaf, E. [SEOR-ECRi and Tinbergen Institute, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2011-02-15

    This paper presents the results from our investigation of the per-capita, long-term relation between carbon dioxide emissions and gross domestic product (GDP) for the world, obtained with the use of a new, flexible estimator. Consistent with simple economic growth models, we find that regional, population-weighted per-capita emissions systematically increase with income (scale effect) and usually decline over time (composition and technology effect). Both our in-sample results and out-of-sample scenarios indicate that this negative time effect is unlikely to compensate for the upward-income effect at a global level, in the near future. In particular, even if China's specialization in carbon-intensive industrial sectors would come to a halt, recent trends outside China make a reversal of the overall global trend very unlikely.

  15. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 mg m3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere’s near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth’s surface with a global average reduction in shortwave radiation of 1.2 W m2 . This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR’s CCSM simulation, which does not include the advanced chemistry and aerosol

  16. Current and future levels of mercury atmospheric pollution on a global scale

    NARCIS (Netherlands)

    Pacyna, J. M.; Travnikov, O.; De Simone, F.; Hedgecock, I. M.; Sundseth, K.; Pacyna, E. G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K.

    2016-01-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  17. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  18. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  19. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    would be significantly higher. The commercial refrigeration sub sector and the air conditioning (stationary and mobile) sector will account for about 75% of F-gas emissions in 2050. In most sectors, emissions from developing countries will exceed emissions from developed countries. Large banks of HFCs will cause F-gas emissions well beyond 2050. In order to limit F-gas emissions, it appears crucial to consider measures to reduce emissions from all sectors in both developed and developing countries. The current post- Kyoto negotiation process might provide an opportunity to address these issues within a wider scope. A switch from substances that cause global warming to climate friendly alternatives is considered inevitable to be undertaken in the near future in developed countries. Developing countries, in contrast, are facing the chance to replace ozonedepleting substances directly by climate friendly alternatives, and could hence benefit from technologies developed in the last decades. The study does not exclude other scenarios on future HFC emissions. Like earlier projections, it underlines the urgent need for mitigation measures of F-gas emissions. (orig.)

  20. Estimated HCFC-22 emissions for 1990-2050 in China and the increasing contribution to global emissions

    Science.gov (United States)

    Li, Zhifang; Bie, Pengju; Wang, Ziyuan; Zhang, Zhaoyang; Jiang, Hanyu; Xu, Weiguang; Zhang, Jianbo; Hu, Jianxin

    2016-05-01

    Chlorodifluoromethane (CHClF2, HCFC-22) is a widely used refrigerant and foaming agent that is not only an ozone-depleting substance (ozone depletion potential (ODP), 0.04) but also a greenhouse gas (global warming potential (GWP), 1780). A comprehensive historical emission inventory for 1990-2014 was produced using a bottom-up method, and a projection through to 2050 was made for China. The results demonstrated that historical emissions increased sharply from 0.2 Gg/yr in 1990 to 127.2 Gg/yr in 2014. Room air-conditioners (RACs), industrial and commercial refrigeration (ICR), and extruded polystyrene (XPS) were three primary emission sources, and accounted for an average of 95.4% of the total emissions over the period studied. The percentage of global HCFC-22 emissions originating from China significantly increased from 0.1% in 1990 to 31.6% in 2012, with an average growth rate of 1.4% per year. Under the Montreal Protocol phasing-out (MPPO) scenario, future emissions were expected to reach a peak of 133.5 Gg/yr in 2016 and then continuously decline to 10.2 Gg/yr in 2050. The accumulative reduction for 2015-2050 would be 5533.8 Gg (equivalent to 221.4 CFC-11-eq Gg and 9850.1 CO2-eq Tg), which is approximately equivalent to the total CO2 emission for China in 2012 (9900 Tg) (Olivier et al., 2013), compared with the no Montreal Protocol scenario (NMP). Under the MPPO scenario, two cases were analyzed to explore the future emission ranges in China. A comparison between the two cases implied that the choice of emission reduction policy will have a considerable impact on HCFC-22 emissions.

  1. Development of a forecast model for global air traffic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2012-07-01

    The thesis describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects. (orig.)

  2. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  3. Global health and economic impacts of future ozone pollution

    International Nuclear Information System (INIS)

    Selin, N E; Nam, K M; Reilly, J M; Paltsev, S; Prinn, R G; Webster, M D; Wu, S

    2009-01-01

    We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis - Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model of climate and chemistry effects of projected future emissions. We use EPPA-HE to assess the human health damages (including mortality and morbidity) caused by ozone pollution, and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be $580 billion (year 2000$) and that mortalities from acute exposure will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.

  4. Globally significant greenhouse-gas emissions from African inland waters

    Science.gov (United States)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  5. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    Science.gov (United States)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  6. Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions

    Science.gov (United States)

    Benveniste, Hélène; Boucher, Olivier; Guivarch, Céline; Le Treut, Hervé; Criqui, Patrick

    2018-01-01

    Nationally Determined Contributions (NDCs), submitted by Parties to the United Nations Framework Convention on Climate Change before and after the 21st Conference of Parties, summarize domestic objectives for greenhouse gas (GHG) emissions reductions for the 2025-2030 time horizon. In the absence, for now, of detailed guidelines for the format of NDCs, ancillary data are needed to interpret some NDCs and project GHG emissions in 2030. Here, we provide an analysis of uncertainty sources and their impacts on 2030 global GHG emissions based on the sole and full achievement of the NDCs. We estimate that NDCs project into 56.8-66.5 Gt CO2eq yr-1 emissions in 2030 (90% confidence interval), which is higher than previous estimates, and with a larger uncertainty range. Despite these uncertainties, NDCs robustly shift GHG emissions towards emerging and developing countries and reduce international inequalities in per capita GHG emissions. Finally, we stress that current NDCs imply larger emissions reduction rates after 2030 than during the 2010-2030 period if long-term temperature goals are to be fulfilled. Our results highlight four requirements for the forthcoming ‘climate regime’: a clearer framework regarding future NDCs’ design, an increasing participation of emerging and developing countries in the global mitigation effort, an ambitious update mechanism in order to avoid hardly feasible decarbonization rates after 2030 and an anticipation of steep decreases in global emissions after 2030.

  7. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  8. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  9. Global emissions and models of photochemically active compounds

    International Nuclear Information System (INIS)

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-01-01

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1 degree x 1 degree grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings

  10. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  11. Revised spatially distributed global livestock emissions

    Science.gov (United States)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  12. Learning from global emissions scenarios

    International Nuclear Information System (INIS)

    O'Neill, Brian C; Nakicenovic, Nebojsa

    2008-01-01

    Scenarios of global greenhouse gas emissions have played a key role in climate change analysis for over twenty years. Currently, several research communities are organizing to undertake a new round of scenario development in the lead-up to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). To help inform this process, we assess a number of past efforts to develop and learn from sets of global greenhouse gas emissions scenarios. We conclude that while emissions scenario exercises have likely had substantial benefits for participating modeling teams and produced insights from individual models, learning from the exercises taken as a whole has been more limited. Model comparison exercises have typically focused on the production of large numbers of scenarios while investing little in assessing the results or the production process, perhaps on the assumption that later assessment efforts could play this role. However, much of this assessment potential remains untapped. Efforts such as scenario-related chapters of IPCC reports have been most informative when they have gone to extra lengths to carry out more specific comparison exercises, but in general these assessments do not have the remit or resources to carry out the kind of detailed analysis of scenario results necessary for drawing the most useful conclusions. We recommend that scenario comparison exercises build-in time and resources for assessing scenario results in more detail at the time when they are produced, that these exercises focus on more specific questions to improve the prospects for learning, and that additional scenario assessments are carried out separately from production exercises. We also discuss the obstacles to better assessment that might exist, and how they might be overcome. Finally, we recommend that future work include much greater emphasis on understanding how scenarios are actually used, as a guide to improving scenario production.

  13. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  14. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use

    DEFF Research Database (Denmark)

    Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy

    2017-01-01

    Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is th......Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.......). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901–2 100 based on the dynamic global vegetation...... model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century...

  15. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock.

    Science.gov (United States)

    Wolf, Julie; Asrar, Ghassem R; West, Tristram O

    2017-09-29

    distinguish livestock methane emissions from those of other sectors in future top-down studies. The revised estimates allow improved reconciliation of top-down and bottom-up estimates of methane emissions, will facilitate the development and evaluation of Earth system models, and provide consistent regional and global Tier 1 estimates for environmental assessments.

  16. China's transportation energy consumption and CO2 emissions from a global perspective

    International Nuclear Information System (INIS)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-01-01

    Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO 2 ) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO 2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO 2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO 2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO 2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products. -- Highlights: •Transport sector in China are analyzed from a global perspective. •Passenger transport turnover reduction and modal shifts is less sensitive to carbon price. •Bio-fuel, electricity and H 2 will play an important role for carbon mitigation in transport sector. •The transport sector is more difficult to decarbonize than other sectors

  17. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  18. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-01-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874

  19. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  20. Trends in global CO2 emissions. 2013 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy); Muntean, M. [Institute for Environment and Sustainability IES, Joint Research Centre JRC, Ispra (Italy)

    2013-10-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2012 and updates last year's assessment. This assessment focuses on the changes in annual CO2 emissions from 2011 to 2012, and includes not only fossil-fuel combustion on which the BP reports are based, but also incorporates other relevant CO2 emissions sources including flaring of waste gas during gas and oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. The report clarifies the CO2 emission sources covered, and describes the methodology and data sources. More details are provided in Annex 1 over the 2010-2012 period, including a discussion of the degree of uncertainty in national and global CO2 emission estimates. Chapter 2 presents a summary of recent CO2 emission trends, per main country or region, including a comparison between emissions per capita and per unit of Gross Domestic Product (GDP), and of the underlying trend in fossil-fuel production and use, non-fossil energy and other CO2 sources. Specific attention is given to developments in shale gas and oil production and oil sands production and their impact on CO2 emissions. To provide a broader context of global emissions trends, international greenhouse gas mitigation targets and agreements are also presented, including different perspectives of emission accounting per country. In particular, annual trends with respect to the Kyoto Protocol target and Cancun agreements and cumulative global CO2 emissions of the last decade are compared with scientific literature that analyses global emissions in relation to the target of 2{sup 0}C maximum global warming in the 21st century, which was adopted in the UN climate negotiations. In addition, we briefly discuss the rapid development and implementation of various emission trading schemes, because of their increasing importance as a cross-cutting policy instrument for mitigating

  1. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J.G.J.; Peters, J.A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  2. Trends in global CO2 emissions. 2012 Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, J. G.J.; Peters, J. A.H.W. [PBL Netherlands Environmental Assessment Agency, Den Haag (Netherlands); Janssens-Maenhout, G. [Institute for Environment and Sustainability IES, European Commission' s Joint Research Centre JRC, Ispra (Italy)

    2012-07-15

    This report discusses the results of a trend assessment of global CO2 emissions up to 2011 and updates last year's assessment. This assessment focusses on the changes in annual CO2 emissions from 2010 to 2011, and includes not only fossil fuel combustion on which the BP reports are based, but also incorporates all other relevant CO2 emissions sources including flaring of waste gas during oil production, cement clinker production and other limestone uses, feedstock and other non-energy uses of fuels, and several other small sources. After a short description of the methods used (Chapter 2), we first present a summary of recent CO2 emission trends, by region and by country, and of the underlying trend of fossil fuel use, non-fossil energy and of other CO2 sources (Chapter 3). To provide a broader context of the global trends we also assess the cumulative global CO2 emissions of the last decade, i.e. since 2000, and compare it with scientific literature that analyse global emissions in relation to the target of 2C maximum global warming in the 21st century, which was adopted in the UN climate negotiations (Chapter 4). Compared to last year's report, Annex 1 includes a more detailed and updated discussion of the uncertainty in national and global CO2 emission estimates.

  3. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems

    International Nuclear Information System (INIS)

    Raptis, Catherine E.; Pfister, Stephan

    2016-01-01

    Large quantities of heat are rejected into freshwater bodies from power plants employing once-through cooling systems, often leading to temperature increases that disturb aquatic ecosystems. The objective of this work was to produce a high resolution global picture of power-related freshwater thermal emissions and to analyse the technological, geographical and chronological patterns behind them. The Rankine cycle was systematically solved for ∼2400 generating units with once-through cooling systems, distinguishing between simple and cogenerative cycles, giving the rejected heat as a direct output. With large unit sizes, low efficiencies, and high capacity factors, nuclear power plants reject 3.7 GW heat into freshwater on average, contrasting with 480 MW rejected from coal and gas power plants. Together, nuclear and coal-fuelled power plants from the 1970s and 1980s account for almost 50% of the rejected heat worldwide, offering motivation for their phasing out in the future. Globally, 56% of the emissions are rejected into rivers, pointing to potential areas of high thermal pollution, with the rest entering lakes and reservoirs. The outcome of this work can be used to further investigate the identified thermal emission hotspots, and to calculate regionalized water temperature increase and related impacts in environmental, energy-water nexus studies and beyond. - Highlights: • The thermodynamic cycles of ∼2400 power units with once-through cooling were solved. • Global freshwater heat emissions depend on technology, geography & chronology. • Half the global emissions come from nuclear and coal plants from the 70s & 80s. • Hotspots of freshwater thermal emissions were identified globally. • Global georeferenced emissions are available for use in water temperature models.

  4. Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs

    Science.gov (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.

    2017-12-01

    Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future

  5. Global sulfur emissions from 1850 to 2000.

    Science.gov (United States)

    Stern, David I

    2005-01-01

    The ASL database provides continuous time-series of sulfur emissions for most countries in the World from 1850 to 1990, but academic and official estimates for the 1990s either do not cover all years or countries. This paper develops continuous time series of sulfur emissions by country for the period 1850-2000 with a particular focus on developments in the 1990s. Global estimates for 1996-2000 are the first that are based on actual observed data. Raw estimates are obtained in two ways. For countries and years with existing published data I compile and integrate that data. Previously published data covers the majority of emissions and almost all countries have published emissions for at least 1995. For the remaining countries and for missing years for countries with some published data, I interpolate or extrapolate estimates using either an econometric emissions frontier model, an environmental Kuznets curve model, or a simple extrapolation, depending on the availability of data. Finally, I discuss the main movements in global and regional emissions in the 1990s and earlier decades and compare the results to other studies. Global emissions peaked in 1989 and declined rapidly thereafter. The locus of emissions shifted towards East and South Asia, but even this region peaked in 1996. My estimates for the 1990s show a much more rapid decline than other global studies, reflecting the view that technological progress in reducing sulfur based pollution has been rapid and is beginning to diffuse worldwide.

  6. Greater future global warming inferred from Earth's recent energy budget.

    Science.gov (United States)

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  7. Estimating the marginal cost of reducing global fossil fuel CO2 emissions

    International Nuclear Information System (INIS)

    Edmonds, J.; Barns, D.W.; McDonald, S.

    1992-01-01

    This paper estimates the marginal, total, and average cost and effectiveness of carbon taxes applied either by the Organization for Economic Cooperation and Development (OECD) members alone, or as part of a global cooperative strategy, to reduce potential future emissions and their direct implications for employment in the US coal industry. Two sets of cases are examined, one set in which OECD members acts alone, and another set in which the world acts in concert. In each case set taxes are examined which achieve four alternative levels of emissions reduction: halve the rate of emissions growth, no emissions growth, 20% reduction from 1988 levels, and 50% reduction from 1988 levels. For the global cooperation case, carbon tax rates of $32, $113, $161, and $517 per metric ton of carbon (mtC) were needed in the year 2025 to achieve the objectives. Total costs were respectively $40, $178, $253, and $848 billions of 1990 US dollars per year in the year 2025. Average costs were $32, $55, $59, and $135 per mtC. Costs were significantly higher in the cases in which the OECD members states acted alone. OECD member states, acting alone, could not reduce global emissions by 50% or 20% relative to 1988, given reference case assumptions regarding developing and recently planned nations economic growth

  8. Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

    NARCIS (Netherlands)

    Olivier JGJ; LAE

    1995-01-01

    An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the

  9. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Science.gov (United States)

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  10. A human-scale perspective on global warming: Zero emission year and personal quotas

    Science.gov (United States)

    Rojas, Maisa; Mac Lean, Claudia

    2017-01-01

    This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the “well below 2°C” warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work’s primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2. PMID:28628676

  11. A human-scale perspective on global warming: Zero emission year and personal quotas.

    Science.gov (United States)

    de la Fuente, Alberto; Rojas, Maisa; Mac Lean, Claudia

    2017-01-01

    This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the "well below 2°C" warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work's primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the "well below 2°C" and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the "well below 2°C" and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2.

  12. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  13. Estimates of future climate based on SRES emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd; Sygna, Linda; Fuglestvedt, Jan S.; Berntsen, Terje

    2000-02-14

    The preliminary emission scenarios in the Special Report on Emission Scenario (SRES) developed by the Intergovernmental Panel on Climate Change (IPCC), will eventually replace the old IS92 scenarios. By running these scenarios in a simple climate model (SCM) we estimate future temperature increase between 1.7 {sup o}C and 2.8 {sup o}C from 1990 to to 2100. The global sea level rise over the same period is between 0.33 m and 0.45 m. Compared to the previous IPCC scenarios (IS92) the SRES scenarios generally results in changes in both development over time and level of emissions, concentrations, radiative forcing, and finally temperature change and sea level rise. The most striking difference between the IS92 scenarios and the SRES scenarios is the lower level of SO{sub 2} emissions. The range in CO{sub 2} emissions is also expected to be narrower in the new scenarios. The SRES scenarios result in a narrower range both for temperature change and sea level rise from 1990 to 2100 compared to the range estimated for the IS92 scenarios. (author)

  14. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  15. The IGAC activity for the development of global emissions inventories: Description and initial results

    International Nuclear Information System (INIS)

    Benkovitz, C.M.; Graedel, T.E.

    1992-02-01

    Modeling assessments of the atmospheric chemistry, air quality and climatic conditions of the past, present and future require as input inventories of emissions of the appropriate chemical species constructed on appropriate spatial and temporal scales. The task of the Global Emissions Inventories Activity (GEIA) of the International Global Atmospheric Chemistry Project (IGAC) is the production of global inventories suitable for a range of research applications. Current GEIA programs are generally based on addressing emissions by species; these include CO 2 , NH 3 /N 2 O, SO 2 /NO x , CFC, volatile organic compounds and radioisotopes. In addition a separate program to inventory emissions from biomass burning is also being structured, plus an additional program to address data management issues for all the developing inventories. Program priorities are based on current knowledge and tasks needed to produce the desired inventories. This paper will discuss the different types of global inventories to be developed by the GEIA programs, their key characteristics, and areas to be addressed in the compilation of such inventories. Results of the first GEIA task, a survey of existing inventories and auxiliary data, will be presented. The survey included status assessments for the available inventory information for nineteen different atmospheric species or groups of species on global and regional scales and over time. Of this entire body of information, the only inventory regarded as satisfactory was that for the global emissions of CFCs. An implication of the results of these assessments is that properly gridded emissions inventories are badly needed to support atmospheric modeling calculations on a variety of spatial and temporal scales. Initial studies in the development of global inventories of sulfur dioxide, currently the most advanced GEIA program, will be presented and discussed

  16. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    Science.gov (United States)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  17. Greenhouse gas emission reduction scenarios for BC : meeting the twin objectives of temperature stabilization and global equity

    International Nuclear Information System (INIS)

    Campbell, C.R.

    2008-08-01

    Greenhouse gas (GHG) emissions reduction strategies are needed in order to prevent rises in global temperatures. This report presented 6 GHG emission scenarios conducted to understand the kind of contribution that the province of British Columbia (BC) might make towards reducing global warming in the future. Short, medium, and longer term GHG reduction targets were benchmarked. The University of Victoria earth system climate model was used to calculate emission pathways where global average temperature did not exceed 2 degrees C above pre-industrial values, and where atmospheric GHGs were stabilized at 400 ppm of carbon dioxide equivalent (CO 2 e). Global carbon emission budgets of the total amount of GHG emissions permissible between now and 2100 were identified. A carbon emission budget for 2008 to 2100 was then developed based on the population of BC. Average annual emission reduction rates for the world and for BC were also identified. It was concluded that dramatically reduced emissions will be insufficient to achieve an equilibrium temperature less than 2 degrees C above pre-industrial levels. Global reductions of greater than 80 per cent are needed to prevent unacceptable levels of ocean acidification. Results suggested that carbon sequestration technologies may need to be used to remove CO 2 from the atmosphere by artificial means. 38 refs., 5 tabs., 4 figs

  18. Estimating future energy use and CO2 emissions of the world's cities

    International Nuclear Information System (INIS)

    Singh, Shweta; Kennedy, Chris

    2015-01-01

    This paper develops a tool for estimating energy-related CO 2 emissions from the world's cities based on regression models. The models are developed considering climatic (heating-degree-days) and urban design (land area per person) independent variables. The tool is applied on 3646 urban areas for estimating impacts on urban emissions of a) global transitioning to Electric Vehicles, b) urban density change and c) IPCC climate change scenarios. Results show that urban density decline can lead to significant increase in energy emissions (upto 346% in electricity & 428% in transportation at 2% density decline by 2050). Among the IPCC climate scenarios tested, A1B is the most effective in reducing growth of emissions (upto 12% in electricity & 35% in heating). The tool can further be improved by including more data in the regression models along with inclusion of other relevant emissions and climatic variables. - Highlights: • A tool for estimation of energy related emissions for urban areas is developed. • Heating degree days and urbanized area per capita are driving variables for urban energy consumption. • Global transition to EVs can only mitigate transportation emissions if GHG intensity of electricity grid is reduced. • Density decline of urban areas can lead to exponential increase of energy related emissions. • Climate change scenarios can slightly reduce the growth of energy related emissions increase by 2050. - A tool for estimation of global impact of urban systems on energy related emissions was developed that can simulate the impact of future scenarios (climate change, urban design etc)

  19. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    Directory of Open Access Journals (Sweden)

    James Hansen

    Full Text Available We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  20. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J; Hearty, Paul J; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  1. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; hide

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  2. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  3. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Gaveau, David L A; Mickley, Loretta J; Margono, Belinda A; Myers, Samuel S

    2015-01-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010–2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations

  4. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  5. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  6. Future coal production outlooks in the IPCC Emission Scenarios: Are they plausible?

    International Nuclear Information System (INIS)

    Hoeoek, Mikael

    2010-10-01

    Anthropogenic climate change caused by CO 2 emissions is strongly and fundamentally linked to the future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Coal, with its 26% share of world energy, is a major source of greenhouse gas emissions and commonly seen as a key contributor to anthropogenic climate change. SRES contains a wide array of different coal production outlooks, ranging from a complete coal phase-out by 2100 to a roughly tenfold increase from present world production levels. Scenarios with high levels of global warming also have high expectations on future fossil fuel production. The assumptions on resource availability are in SRES based on Rogner's assessment of world hydrocarbon resources from 1997, where it is stated that 'the sheer size of the fossil resource base makes fossil sources an energy supply option for many centuries to come'. Regarding the future coal production it is simply assumed to be dependent on economics, accessibility, and environmental acceptance. It is also generally assumed that coal is abundant, and will thus take a dominating part in the future energy system. Depletion, geographical location and geological parameters are not given much influence in the scenario storylines. This study quantifies what the coal production projection in SRES would imply in reality. SRES is riddled with future production projections that would put unreasonable expectation on just a few countries or regions. Is it reasonable to expect that China, among the world's largest coal reserve and resource holder and producer, would increase their production by a factor of 8 over the next 90 years, as implied by certain scenarios? Can massive increases in global coal output really be justified from historical trends or will reality rule out some production outlooks as implausible? The fundamental assumptions

  7. Future coal production outlooks in the IPCC Emission Scenarios: Are they plausible?

    Energy Technology Data Exchange (ETDEWEB)

    Hoeoek, Mikael

    2010-10-15

    Anthropogenic climate change caused by CO{sub 2} emissions is strongly and fundamentally linked to the future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Coal, with its 26% share of world energy, is a major source of greenhouse gas emissions and commonly seen as a key contributor to anthropogenic climate change. SRES contains a wide array of different coal production outlooks, ranging from a complete coal phase-out by 2100 to a roughly tenfold increase from present world production levels. Scenarios with high levels of global warming also have high expectations on future fossil fuel production. The assumptions on resource availability are in SRES based on Rogner's assessment of world hydrocarbon resources from 1997, where it is stated that 'the sheer size of the fossil resource base makes fossil sources an energy supply option for many centuries to come'. Regarding the future coal production it is simply assumed to be dependent on economics, accessibility, and environmental acceptance. It is also generally assumed that coal is abundant, and will thus take a dominating part in the future energy system. Depletion, geographical location and geological parameters are not given much influence in the scenario storylines. This study quantifies what the coal production projection in SRES would imply in reality. SRES is riddled with future production projections that would put unreasonable expectation on just a few countries or regions. Is it reasonable to expect that China, among the world's largest coal reserve and resource holder and producer, would increase their production by a factor of 8 over the next 90 years, as implied by certain scenarios? Can massive increases in global coal output really be justified from historical trends or will reality rule out some production outlooks as implausible? The

  8. Greater future global warming inferred from Earth’s recent energy budget

    Science.gov (United States)

    Brown, Patrick T.; Caldeira, Ken

    2017-12-01

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  9. Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2011-08-01

    Full Text Available Due to its effects on the atmospheric lifetime of methane, the burdens of tropospheric ozone and growth of secondary organic aerosol, isoprene is central among the biogenic compounds that need to be taken into account for assessment of anthropogenic air pollution-climate change interactions. Lack of process-understanding regarding leaf isoprene production as well as of suitable observations to constrain and evaluate regional or global simulation results add large uncertainties to past, present and future emissions estimates. Focusing on contemporary climate conditions, we compare three global isoprene models that differ in their representation of vegetation and isoprene emission algorithm. We specifically aim to investigate the between- and within model variation that is introduced by varying some of the models' main features, and to determine which spatial and/or temporal features are robust between models and different experimental set-ups. In their individual standard configurations, the models broadly agree with respect to the chief isoprene sources and emission seasonality, with maximum monthly emission rates around 20–25 Tg C, when averaged by 30-degree latitudinal bands. They also indicate relatively small (approximately 5 to 10 % around the mean interannual variability of total global emissions. The models are sensitive to changes in one or more of their main model components and drivers (e.g., underlying vegetation fields, climate input which can yield increases or decreases in total annual emissions of cumulatively by more than 30 %. Varying drivers also strongly alters the seasonal emission pattern. The variable response needs to be interpreted in view of the vegetation emission capacities, as well as diverging absolute and regional distribution of light, radiation and temperature, but the direction of the simulated emission changes was not as uniform as anticipated. Our results highlight the need for modellers to evaluate their

  10. The future(s) of emission allowances

    International Nuclear Information System (INIS)

    Rosenzweig, K.M.; Villarreal, J.A.

    1993-01-01

    The Clean Air Act Amendments of 1990 (CAAA) established a sulfur dioxide emission allowance system to be implemented by the US Environmental Protection Agency (EPA). Under the two-phase implementation of the program, electric utilities responsible for approximately 70 percent of SO 2 emissions in the United States will be issued emission allowances, each representing authorization to emit one ton of sulfur dioxide during a specified calendar year or a later year. Allowances will be issued to utilities with electric-generating units affected by the CAAA limits, as well as to certain entities which may choose to opt-in to the program. Each utility or other emission source must hold a number of allowances at least equal to its total SO 2 emissions during any given year. Unused allowances may be sold, traded, or held in inventory for use against SO 2 emissions in future years. Anyone can buy and hold allowances, including affected utilities, non-utility companies, SO 2 allowances brokers and dealers, environmental groups, and individuals. During Phase I of the program, allowances equivalent to approximately 6.4 million tons of SO 2 emissions will be allocated annually to a group of 110 large, high-SO 2 -emitting power plants. In Phase II, virtually all power-generating utilities (representing approximately 99.4 percent of total US utility emissions) will be subject to the program. The number of allowances issued will increase to approximately 8.9 million a year, with certain special allocations raising the actual number issued to 9.48 million between the years 2000 to 2009, and 8.95 million yearly thereafter. Thus, the CAAA goal of annual emissions of 9 million tons should be achieved by 2010, when virtually all US emission sources will be participating in the program

  11. The construction and application of the AMSR-E global microwave emissivity database

    International Nuclear Information System (INIS)

    Lijuan, Shi; Wenbo, Wu; Yubao, Qiu; Jingjing, Niu

    2014-01-01

    Land surface microwave emissivity is an important parameter to describe the characteristics of terrestrial microwave radiation, and is the necessary input amount for inversion various geophysical parameters. We use brightness temperature of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and synchronous land surface temperature and atmospheric temperature-humidity profile data obtained from the MODIS which aboard on satellite AQUA the same as AMSR-E, to retrieved microwave emissivity under clear sky conditions. After quality control, evaluation and design, the global microwave emissivity database of AMSR-E under clear sky conditions is established. This database include 2002–2011 years, different regions, different surface coverage, dual-polarized, 6.9,10.65, 18.7, 23.8, 36.5 and 89GHz, ascending and descending orbit, spatial resolution 25km, global 0.05 degrees, instantaneous and half-month averaged emissivity data. The database can provide the underlying surface information for precipitation algorithm, water-vapor algorithm, and long-resolution mode model (General Circulation Model (GCM) etc.). It also provides underlying surface information for the satellite simulator, and provides basic prior knowledge of land surface radiation for future satellite sensors design. The emissivity database or the fast emissivity obtained can get ready for climate model, energy balance, data assimilation, geophysical model simulation, inversion and estimates of the physical parameters under the cloud cover conditions

  12. Top-down model estimates, bottom-up inventories, and future projections of global natural and anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Davidson, E. A.; Kanter, D.

    2013-12-01

    Nitrous oxide (N2O) is the third most abundantly emitted greenhouse gas and the largest remaining emitted ozone depleting substance. It is a product of nitrifying and denitrifying bacteria in soils, sediments and water bodies. Humans began to disrupt the N cycle in the preindustrial era as they expanded agricultural land, used fire for land clearing and management, and cultivated leguminous crops that carry out biological N fixation. This disruption accelerated after the industrial revolution, especially as the use of synthetic N fertilizers became common after 1950. Here we present findings from a new United Nations Environment Programme report, in which we constrain estimates of the anthropogenic and natural emissions of N2O and consider scenarios for future emissions. Inventory-based estimates of natural emissions from terrestrial, marine and atmospheric sources range from 10 to 12 Tg N2O-N/yr. Similar values can be derived for global N2O emissions that were predominantly natural before the industrial revolution. While there was inter-decadal variability, there was little or no consistent trend in atmospheric N2O concentrations between 1730 and 1850, allowing us to assume near steady state. Assuming an atmospheric lifetime of 120 years, the 'top-down' estimate of pre-industrial emissions of 11 Tg N2O-N/yr is consistent with the bottom-up inventories for natural emissions, although the former includes some modest pre-industrial anthropogenic effects (probably business-as-usual scenarios over the period 2013-2050 is ~102 Tg N2O-N; equivalent to ~48 Gt CO2e or ~2730 kt ozone depleting potential. The impact of growing demand for biofuels is highly uncertain, ranging from trivial to the most significant N2O source to date, depending on the types of plants, their nutrient management, the amount of land used for their cultivation, and the fates of their waste products.

  13. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  14. Climate and health implications of future aerosol emission scenarios

    Science.gov (United States)

    Partanen, Antti-Ilari; Landry, Jean-Sébastien; Damon Matthews, H.

    2018-02-01

    Anthropogenic aerosols have a net cooling effect on climate and also cause adverse health effects by degrading air quality. In this global-scale sensitivity study, we used a combination of the aerosol-climate model ECHAM-HAMMOZ and the University of Victoria Earth System Climate Model to assess the climate and health effects of aerosols emissions from three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and two new (LOW and HIGH) aerosol emission scenarios derived from RCP4.5, but that span a wider spectrum of possible future aerosol emissions. All simulations had CO2 emissions and greenhouse gas forcings from RCP4.5. Aerosol forcing declined similarly in the standard RCP aerosol emission scenarios: the aerosol effective radiative forcing (ERF) decreased from -1.3 W m-2 in 2005 to between -0.1 W m-2 and -0.4 W m-2 in 2100. The differences in ERF were substantially larger between LOW (-0.02 W m-2 in 2100) and HIGH (-0.8 W m-2) scenarios. The global mean temperature difference between the simulations with standard RCP aerosol emissions was less than 0.18 °C, whereas the difference between LOW and HIGH reached 0.86 °C in 2061. In LOW, the rate of warming peaked at 0.48 °C per decade in the 2030s, whereas in HIGH it was the lowest of all simulations and never exceeded 0.23 °C per decade. Using present-day population density and baseline mortality rates for all scenarios, PM2.5-induced premature mortality was 2 371 800 deaths per year in 2010 and 525 700 in 2100 with RCP4.5 aerosol emissions; in HIGH, the premature mortality reached its maximum value of 2 780 800 deaths per year in 2030, whereas in LOW the premature mortality at 2030 was below 299 900 deaths per year. Our results show potential trade-offs in aerosol mitigation with respect to climate change and public health as ambitious reduction of aerosol emissions considerably increased warming while decreasing mortality.

  15. Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry?

    Science.gov (United States)

    Christine Wiedinmyer; Xuexi Tie; Alex Guenther; Ron Neilson; Claire. Granier

    2006-01-01

    Isoprene is emitted from vegetation to the atmosphere in significant quantities, and it plays an important role in the reactions that control tropospheric oxidant concentrations. As future climatic and land-cover changes occur, the spatial and temporal variations, as well as the magnitude of these biogenic isoprene emissions, are expected to change. This paper presents...

  16. Future fire emissions associated with projected land use change in Indonesia

    Science.gov (United States)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  17. Energy use and CO2 emissions of China's industrial sector from a global perspective

    International Nuclear Information System (INIS)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-01-01

    The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO 2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO 2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. - Highlights: • Eleven industrial subsectors in China are detail analyzed from a global perspective. • Industrial energy use and CO 2 emissions will approach a plateau between 2030 and 2040. • Industrial CHP and CCS are truly encouraged by carbon tax. • Some degree of industrial sector electrification are observed by carbon tax

  18. Modeling the response of forest isoprene emissions to future increases in atmospheric CO2 concentration and changes in climate (Invited)

    Science.gov (United States)

    Monson, R. K.; Heald, C. L.; Guenther, A. B.; Wilkinson, M.

    2009-12-01

    Isoprene emissions from plants to the atmosphere are sensitive to changes in temperature, light and atmospheric CO2 concentration in both the short- (seconds-to-minutes) and long-term (hours-to-months). We now understand that the different time constants for these responses are due to controls by different sets of biochemical and physiological processes n leaves. Progress has been made in the past few years toward converting this process-level understanding into quantitative models. In this talk, we consider this progress with special emphasis on the short- and long-term responses to atmospheric CO2 concentration and temperature. A new biochemically-based model is presented for describing the CO2 responses, and the model is deployed in a global context to predict interactions between the influences of temperature and CO2 on the global isoprene emission rate. The model is based on the theory of enzyme-substrate kinetics, particularly with regard to those reactions that produce puruvate or glyceraldehyde 3-phosphate, the two chloroplastic substrates for isoprene biosynthesis. In the global model, when we accounted for CO2 inhibition of isoprene emission in the long-term response, we observed little impact on present-day global isoprene emission (increase from 508 to 523 Tg C yr-1). However, the large increases in future isoprene emissions predicted from past models which are due to a projected warmer climate, were entirely offset by including the CO2 effects. The isoprene emission response to CO2 was dominated by the long-term growth environment effect, with modulations of 10% or less from the short-term effect. We use this analysis as a framework for grounding future global models of isoprene emission in biochemical and physiological observations.

  19. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    Science.gov (United States)

    Davis, S. J.; Caldeira, K.; Matthews, D.

    2010-12-01

    If current greenhouse gas (GHG) concentrations remain constant, the world would be committed to several centuries of increasing global mean temperatures and sea level rise. By contrast, near elimination of anthropogenic CO2 emissions would be required to produce diminishing GHG concentrations consistent with stabilization of mean temperatures. Yet long-lived energy and transportation infrastructure now operating can be expected to contribute substantial CO2 emissions over the next 50 years. Barring widespread retrofitting of existing power plants with carbon capture and storage (CCS) technologies or the early decommissioning of serviceable infrastructure, these “committed emissions” represent infrastructural inertia which may be the primary contributor to total future warming commitment. With respect to GHG emissions, infrastructural inertia may be thought of as having two important and overlapping components: (i) infrastructure that directly releases GHGs to the atmosphere, and (ii) infrastructure that contributes to the continued production of devices that emit GHGs to the atmosphere. For example, the interstate highway and refueling infrastructure in the United States facilitates continued production of gasoline-powered automobiles. Here, we focus only on the warming commitment from infrastructure that directly releases CO2 to the atmosphere. Essentially, we answer the question: What if no additional CO2-emitting devices (e.g., power plants, motor vehicles) were built, but all the existing CO2-emitting devices were allowed to live out their normal lifetimes? What CO2 levels and global mean temperatures would we attain? Of course, the actual lifetime of devices may be strongly influenced by economic and policy constraints. For instance, a ban on new CO2-emitting devices would create tremendous incentive to prolong the lifetime of existing devices. Thus, our scenarios are not realistic, but offer a means of gauging the threat of climate change from existing

  20. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions.

    Science.gov (United States)

    Hertel, Thomas W; Ramankutty, Navin; Baldos, Uris Lantz C

    2014-09-23

    There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing.

  1. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions

    Science.gov (United States)

    Hertel, Thomas W.; Ramankutty, Navin; Baldos, Uris Lantz C.

    2014-01-01

    There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing. PMID:25201962

  2. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    Science.gov (United States)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  3. The contribution of China's emissions to global climate forcing.

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-17

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  4. Mercury Emissions: The Global Context

    Science.gov (United States)

    Mercury emissions are a global problem that knows no national or continental boundaries. Mercury that is emitted to the air can travel thousands of miles in the atmosphere before it is eventually deposited back to the earth.

  5. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  6. Future emissions pathways consistent with limiting warming to 1.5°C

    Science.gov (United States)

    Millar, R.; Fuglestvedt, J. S.; Grubb, M.; Rogelj, J.; Skeie, R. B.; Friedlingstein, P.; Forster, P.; Frame, D. J.; Pierrehumbert, R.; Allen, M. R.

    2016-12-01

    The stated aim of the 2015 UNFCCC Paris Agreement is `holding the increase in global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit temperature increases to 1.5°C'. We show that emissions reductions proportional to those achieved in an ambitious mitigation scenario, RCP2.6, but beginning in 2017, give a median estimated peak warming of 1.5°C, with a likely (66% probability) range of uncertainty of 1.2-2.0°C. Such a scenario would be approximately consistent with the most ambitious interpretation of the 2030 emissions pledges, but requires reduction rates exceeding 0.3GtC/yr/yr after 2030. A steady reduction at less than half this rate would achieve the same temperature outcome if initiated in 2020. Limiting total CO2 emissions after 2015 to 200GtC would limit future warming to likely less than 0.6°C above present, consistent with 1.5°C above pre-industrial, based on the distribution of responses of the CMIP5 Earth System, but the CMIP5 simulations do not correspond to scenarios that aim to limit warming to such low levels. If future CO2 emissions are successfully adapted to the emerging climate response so as to limit warming in 2100 to 0.6°C above present, and non-CO2 emissions follow the ambitious RCP2.6 scenario, then we estimate that resulting CO2 emissions will unlikely be restricted to less than 250GtC given current uncertainties in climate system response, although still-poorly-modelled carbon cycle feedbacks, such as release from permafrost, may encroach on this budget. Even under a perfectly successful adaptive mitigation regime, emissions consistent with limiting warming to 0.6°C above present are unlikely to be greater than 500GtC.These estimates suggest the 1.5°C goal may not yet be geophysically insurmountable but will nevertheless require, at minimum, the full implementation of the most ambitious interpretation of the Paris pledges followed by accelerated and more fundamental changes in our

  7. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    NARCIS (Netherlands)

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    Abstract In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios

  8. Air toxic emissions from burning of biomass globally-preliminary results

    International Nuclear Information System (INIS)

    Ward, D.E.; Hao, W.M.

    1992-01-01

    Emissions of trace gases, particles, and air toxic substances in the smoke plumes from biomass fires are of importance to global climate change. The potential impact of the air toxic emissions on the human population of specific regions globally is another major concern. The toxic materials are produced in high concentrations in areas of heavy biomass burning, e.g., Amazon Basin and Central/southern Africa. We provide new estimates of air toxics based on the combustion efficiency (percent of total carbon released as CO 2 ) for fires burning in different ecosystems on a global basis. Estimates of total biomass consumed on a global basis range from 2 to 10 Pg (1 petagram = 10 15 g) per year. We apply emission factors for various air toxics (g of emission released per kg of fuel consumed) to the estimate of global biomass consumption of 6.4 Pg per year. The principal air toxics analyzed in this paper include: Total particulate matter, CO, formaldehyde, acetaldehyde, acrolein, benzene, toluene, o-xylene, m, p-xylene, benzo[a]pyrene, and polycyclic organic material. The total emissions calculated for these materials on a yearly global basis are: 75, 362, 4.9, 1.5, 1.5, 2.1, 2.1, 0.3, 0.6, 0.001, 0.026, Tg (1 teragram = 10 12 g) per year, respectively. Biomass burning in the United States contributes less than 3% to the total global emissions

  9. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  10. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    Science.gov (United States)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  11. Zero emission targets as long-term global goals for climate protection

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Schaeffer, Michiel; Hare, William; Meinshausen, Malte; Knutti, Reto; Alcamo, Joseph

    2015-01-01

    Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO 2 ). Halting global warming thus requires virtually zero annual CO 2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO 2 emissions between 2060 and 2070, with net negative CO 2 emissions thereafter. Because of residual non-CO 2 emissions, net zero is always reached later for total GHG emissions than for CO 2 . Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO 2 emissions. (letter)

  12. The global distribution of ammonia emissions from seabird colonies

    Science.gov (United States)

    Riddick, S. N.; Dragosits, U.; Blackall, T. D.; Daunt, F.; Wanless, S.; Sutton, M. A.

    2012-08-01

    Seabird colonies represent a significant source of atmospheric ammonia (NH3) in remote maritime systems, producing a source of nitrogen that may encourage plant growth, alter terrestrial plant community composition and affect the surrounding marine ecosystem. To investigate seabird NH3 emissions on a global scale, we developed a contemporary seabird database including a total seabird population of 261 million breeding pairs. We used this in conjunction with a bioenergetics model to estimate the mass of nitrogen excreted by all seabirds at each breeding colony. The results combined with the findings of mid-latitude field studies of volatilization rates estimate the global distribution of NH3 emissions from seabird colonies on an annual basis. The largest uncertainty in our emission estimate concerns the potential temperature dependence of NH3 emission. To investigate this we calculated and compared temperature independent emission estimates with a maximum feasible temperature dependent emission, based on the thermodynamic dissociation and solubility equilibria. Using the temperature independent approach, we estimate global NH3 emissions from seabird colonies at 404 Gg NH3 per year. By comparison, since most seabirds are located in relatively cold circumpolar locations, the thermodynamically dependent estimate is 136 Gg NH3 per year. Actual global emissions are expected to be within these bounds, as other factors, such as non-linear interactions with water availability and surface infiltration, moderate the theoretical temperature response. Combining sources of error from temperature (±49%), seabird population estimates (±36%), variation in diet composition (±23%) and non-breeder attendance (±13%), gives a mid estimate with an overall uncertainty range of NH3 emission from seabird colonies of 270 [97-442] Gg NH3 per year. These emissions are environmentally relevant as they primarily occur as "hot-spots" in otherwise pristine environments with low anthropogenic

  13. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  14. Constraining global methane emissions and uptake by ecosystems

    International Nuclear Information System (INIS)

    Spahni, R.; Wania, R.; Neef, L.; Van Weele, M.; Van Velthoven, P.; Pison, I.; Bousquet, P.

    2011-01-01

    Natural methane (CH 4 ) emissions from wet ecosystems are an important part of today's global CH 4 budget. Climate affects the exchange of CH 4 between ecosystems and the atmosphere by influencing CH 4 production, oxidation, and transport in the soil. The net CH 4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH 4 emissions for different ecosystems: northern peat-lands (45 degrees-90 degrees N), naturally inundated wetlands (60 degrees S-45 degrees N), rice agriculture and wet mineral soils. Mineral soils are a potential CH 4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003-2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH 4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a significant reduction in the emissions from northern peat-lands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH 4 over the period 1990-2008. Over the whole period we infer an increase of global ecosystem CH 4 emissions of +1.11 TgCH 4 yr -1 , not considering potential additional changes in wetland extent. The increase in simulated CH 4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long term decline of the atmospheric CH 4 growth rate from 1990

  15. Future generations, environmental ethics, and global environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey, renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.

  16. A New Global Open Source Marine Hydrocarbon Emission Site Database

    Science.gov (United States)

    Onyia, E., Jr.; Wood, W. T.; Barnard, A.; Dada, T.; Qazzaz, M.; Lee, T. R.; Herrera, E.; Sager, W.

    2017-12-01

    Hydrocarbon emission sites (e.g. seeps) discharge large volumes of fluids and gases into the oceans that are not only important for biogeochemical budgets, but also support abundant chemosynthetic communities. Documenting the locations of modern emissions is a first step towards understanding and monitoring how they affect the global state of the seafloor and oceans. Currently, no global open source (i.e. non-proprietry) detailed maps of emissions sites are available. As a solution, we have created a database that is housed within an Excel spreadsheet and use the latest versions of Earthpoint and Google Earth for position coordinate conversions and data mapping, respectively. To date, approximately 1,000 data points have been collected from referenceable sources across the globe, and we are continualy expanding the dataset. Due to the variety of spatial extents encountered, to identify each site we used two different methods: 1) point (x, y, z) locations for individual sites and; 2) delineation of areas where sites are clustered. Certain well-known areas, such as the Gulf of Mexico and the Mediterranean Sea, have a greater abundance of information; whereas significantly less information is available in other regions due to the absence of emission sites, lack of data, or because the existing data is proprietary. Although the geographical extent of the data is currently restricted to regions where the most data is publicly available, as the database matures, we expect to have more complete coverage of the world's oceans. This database is an information resource that consolidates and organizes the existing literature on hydrocarbons released into the marine environment, thereby providing a comprehensive reference for future work. We expect that the availability of seafloor hydrocarbon emission maps will benefit scientific understanding of hydrocarbon rich areas as well as potentially aiding hydrocarbon exploration and environmental impact assessements.

  17. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  18. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  19. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  20. Contribution of air conditioning adoption to future energy use under global warming

    Science.gov (United States)

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  1. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  2. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    Sagar, A.D.

    1995-01-01

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective and immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed

  3. Building Trust in Emissions Reporting. Global Trends in Emissions Trading Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Kruijd, J.; Walrecht, A.; Laseur, J.; Schoolderman, H.; Gledhill, R.

    2007-02-15

    This report highlights the key characteristics of the world's main emission trading schemes, presents a new vision for compliance in emissions trading and calls for global action to develop this. Climate change is now at the top of the political and business agenda. Al Gore's 'An Inconvenient Truth', the Stern Review and the now almost daily press coverage of climate change science and impacts have engaged many of the global leaders in government and in business. Emissions trading is increasingly seen as a central plank in the response to climate change. But market mechanisms like this depend on trust and confidence. Any widespread or systemic failure, as a result of deficient monitoring and reporting, flawed compliance processes or fraud, could undermine confidence in markets and regulation and jeopardise the crucial policy goals that they are designed to address. Key to this trust are the three central criteria of transparency, accountability and integrity. The PricewaterhouseCoopers report looks at how the patchwork of trading schemes that are emerging around the globe stacks up against these criteria. Despite good intentions across the board, the general picture is one of new and immature markets, inconsistent and complex compliance frameworks and risk. PricewaterhouseCoopers make the case for urgent and coordinated action to develop a framework of generally accepted principles and practice that will underpin trust and efficiency in these new markets - in effect, a new Global Emissions Compliance Language.

  4. Building Trust in Emissions Reporting. Global Trends in Emissions Trading Schemes

    International Nuclear Information System (INIS)

    Kruijd, J.; Walrecht, A.; Laseur, J.; Schoolderman, H.; Gledhill, R.

    2007-02-01

    This report highlights the key characteristics of the world's main emission trading schemes, presents a new vision for compliance in emissions trading and calls for global action to develop this. Climate change is now at the top of the political and business agenda. Al Gore's 'An Inconvenient Truth', the Stern Review and the now almost daily press coverage of climate change science and impacts have engaged many of the global leaders in government and in business. Emissions trading is increasingly seen as a central plank in the response to climate change. But market mechanisms like this depend on trust and confidence. Any widespread or systemic failure, as a result of deficient monitoring and reporting, flawed compliance processes or fraud, could undermine confidence in markets and regulation and jeopardise the crucial policy goals that they are designed to address. Key to this trust are the three central criteria of transparency, accountability and integrity. The PricewaterhouseCoopers report looks at how the patchwork of trading schemes that are emerging around the globe stacks up against these criteria. Despite good intentions across the board, the general picture is one of new and immature markets, inconsistent and complex compliance frameworks and risk. PricewaterhouseCoopers make the case for urgent and coordinated action to develop a framework of generally accepted principles and practice that will underpin trust and efficiency in these new markets - in effect, a new Global Emissions Compliance Language

  5. The large contribution of projected HFC emissions to future climate forcing.

    Science.gov (United States)

    Velders, Guus J M; Fahey, David W; Daniel, John S; McFarland, Mack; Andersen, Stephen O

    2009-07-07

    The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9-19% (CO(2)-eq. basis) of projected global CO(2) emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6-13 years of CO(2) emissions near 2050. This percentage increases to 28-45% compared with projected CO(2) emissions in a 450-ppm CO(2) stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050.

  6. Sharing a quota on cumulative carbon emissions

    International Nuclear Information System (INIS)

    Raupach, Michael R.; Davis, Steven J.; Peters, Glen P.; Andrew, Robbie M.; Canadell, Josep G.; Ciais, Philippe

    2014-01-01

    Any limit on future global warming is associated with a quota on cumulative global CO 2 emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to an equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2 C warming limit (relative to pre-industrial levels), the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions. (authors)

  7. The contribution of China’s emissions to global climate forcing

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-01

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on “common but differentiated responsibilities” reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China’s present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China’s relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China’s strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China’s eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  8. Geographical spread of global emissions: Within-country inequalities are large and increasing

    International Nuclear Information System (INIS)

    Sauter, Caspar; Grether, Jean-Marie; Mathys, Nicole A.

    2016-01-01

    In spite of the extensive literature on greenhouse gas emission inequalities at the world-wide level, most of the evidence so far has been based on country-level data. However, the within-country dimension matters for both the implementation and the policy formation of climate policies. As a preliminary step towards a better understanding of within-country inequalities, this paper measures their extent for the two major greenhouse gases, CO_2 and CH_4, over the 1970–2008 period. Using Theil-index decompositions, we show that within-country inequalities account for the bulk of global inequality, and tend to increase over the sample period, in contrast with diminishing between-country inequalities. Including differences across sectors reveals that between-sector inequalities matter more than between-country inequalities, and between-sector inequalities become the dominant source of global inequality at the end of the sample period in the CO_2 case. Finally, estimated social tensions arising from the disconnection between emissions and future damages turn out to be increasing as soon as within-country disparities are taken into account. These orders of magnitude should be kept in mind while discussing the efficiency and fairness of alternative paths in combating global warming. - Highlights: • We estimate global spatial CO_2 and CH_4 inequality using grid data for 1970–2008. • Overall spatial emission inequality is constant for CO_2 and increasing for CH_4. • Within-country inequality is rising and constitutes the main bulk of overall inequality. • An important part of within country inequality is due to differences among sectors. • The gap between emitters and victims is rising within countries.

  9. Global health impacts and costs due to mercury emissions.

    Science.gov (United States)

    Spadaro, Joseph V; Rabl, Ari

    2008-06-01

    Since much of the emission is in the form of metallic Hg whose atmospheric residence time is long enough to cause nearly uniform mixing in the hemisphere, much of the impact is global. This article presents a first estimate of global average neurotoxic impacts and costs by defining a comprehensive transfer factor for ingestion of methyl-Hg as ratio of global average dose rate and global emission rate. For the dose-response function (DRF) we use recent estimates of IQ decrement as function of Hg concentration in blood, as well as correlations between blood concentration and Hg ingestion. The cost of an IQ point is taken as $18,000 in the United States and applied in other countries in proportion to per capita GDP, adjusted for purchase power parity. The mean estimate of the global average of the marginal damage cost per emitted kg of Hg is about $1,500/kg, if one assumes a dose threshold of 6.7 mug/day of methyl-Hg per person, and $3,400/kg without threshold. The average global lifetime impact and cost per person at current emission levels are 0.02 IQ points lost and $78 with and 0.087 IQ points and $344 without threshold. These results are global averages; for any particular source and emission site the impacts can be quite different. An assessment of the overall uncertainties indicates that the damage cost could be a factor 4 smaller or larger than the median estimate (the uncertainty distribution is approximately log normal and the ratio median/mean is approximately 0.4).

  10. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  11. Global time trends in PAH emissions from motor vehicles

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EF PAH) for motor vehicles were evaluated quantitatively based on thousands of EF PAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EF PAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EF PAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EF PAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  12. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  13. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  14. New global fire emission estimates and evaluation of volatile organic compounds

    Science.gov (United States)

    C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja

    2010-01-01

    A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...

  15. EU effect: Exporting emission standards for vehicles through the global market economy.

    Science.gov (United States)

    Crippa, M; Janssens-Maenhout, G; Guizzardi, D; Galmarini, S

    2016-12-01

    Emission data from EDGAR (Emissions Database for Global Atmospheric Research), rather than economic data, are used to estimate the effect of policies and of the global exports of policy-regulated goods, such as vehicles, on global emissions. The results clearly show that the adoption of emission standards for the road transport sector in the two main global markets (Europe and North America) has led to the global proliferation of emission-regulated vehicles through exports, regardless the domestic regulation in the country of destination. It is in fact more economically convenient for vehicle manufacturers to produce and sell a standard product to the widest possible market and in the greatest possible amounts. The EU effect (European Union effect) is introduced as a global counterpart to the California effect. The former is a direct consequence of the penetration of the EURO standards in the global markets by European and Japanese manufacturers, which effectively export the standard worldwide. We analyze the effect on PM 2.5 emissions by comparing a scenario of non-EURO standards against the current estimates provided by EDGAR. We find that PM 2.5 emissions were reduced by more than 60% since the 1990s worldwide. Similar investigations on other pollutants confirm the hypothesis that the combined effect of technological regulations and their diffusion through global markets can also produce a positive effect on the global environment. While we acknowledge the positive feedback, we also demonstrate that current efforts and standards will be totally insufficient should the passenger car fleets in emerging markets reach Western per capita figures. If emerging countries reach the per capita vehicle number of the USA and Europe under current technological conditions, then the world will suffer pre-1990 emission levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Global and regional emission estimates for HCFC-22

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2012-11-01

    Full Text Available HCFC-22 (CHClF2, chlorodifluoromethane is an ozone-depleting substance (ODS as well as a significant greenhouse gas (GHG. HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA and a few Northern Hemisphere air samples (mostly from Trinidad Head using the Advanced Global Atmospheric Gases Experiment (AGAGE instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP, as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4, and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates

  17. Quantifying the Global Marine Biogenic Nitrogen Oxides Emissions

    Science.gov (United States)

    Su, H.; Wang, S.; Lin, J.; Hao, N.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Nitrogen oxides (NOx) are among the most important molecules in atmospheric chemistry and nitrogen cycle. The NOx over the ocean areas are traditionally believed to originate from the continental outflows or the inter-continental shipping emissions. By comparing the satellite observations (OMI) and global chemical transport model simulation (GEOS-Chem), we suggest that the underestimated modeled atmospheric NO2 columns over biogenic active ocean areas can be possibly attributed to the biogenic source. Nitrification and denitrification in the ocean water produces nitrites which can be further reduced to NO through microbiological processes. We further report global distributions of marine biogenic NO emissions. The new added emissions improve the agreement between satellite observations and model simulations over large areas. Our model simulations manifest that the marine biogenic NO emissions increase the atmospheric oxidative capacity and aerosol formation rate, providing a closer link between atmospheric chemistry and ocean microbiology.

  18. 50% REDUCTION IN GLOBAL GHG EMISSION BY 2050 AND ITS IMPLICATION

    Science.gov (United States)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    To prevent the global temperature increase by two degrees, global greenhouse gas emission in 2050 should be cut by half relative to its 1990 level. This study shows following three things by using multi regions and sectors recursive dynamic type computable general equilibrium model. One is the feasibility of that global emission target. The others are the counter measures and the impact on the macro economy, if that target were feasible. In addition, the scenarios with and without international emission trading are implemented and the effect of the trading is analyzed. As a result, that target can be achieved. The marginal abatement cost is 750/tCO2-eq in 2050. Energy efficiency improvement, renewable energy and carbon capture and storage technologies are the main players as counter measures. If the emission trading is available freely, GDP loss is 4.5% globally in 2050. Otherwise, the loss is increased to 6.1%. The emission trading mechanism is also one of the important measures.

  19. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  20. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  1. Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

    1985-12-01

    Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

  2. Negative emissions from stopping deforestation and forest degradation, globally.

    Science.gov (United States)

    Houghton, Richard A; Nassikas, Alexander A

    2018-01-01

    Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change. © 2017 John Wiley & Sons Ltd.

  3. Future changes in global warming potentials under representative concentration pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, Andy [New Zealand Agricultural Greenhouse Gas Research Centre, PO Box 10002, Wellington 6143 (New Zealand); Meinshausen, Malte [Earth System Analysis, Potsdam Institute for Climate Impact Research (Germany); Manning, Martin, E-mail: andy.reisinger@nzagrc.org.nz [Climate Change Research Institute, Victoria University of Wellington (New Zealand)

    2011-04-15

    Global warming potentials (GWPs) are the metrics currently used to compare emissions of different greenhouse gases under the United Nations Framework Convention on Climate Change. Future changes in greenhouse gas concentrations will alter GWPs because the radiative efficiencies of marginal changes in CO{sub 2}, CH{sub 4} and N{sub 2}O depend on their background concentrations, the removal of CO{sub 2} is influenced by climate-carbon cycle feedbacks, and atmospheric residence times of CH{sub 4} and N{sub 2}O also depend on ambient temperature and other environmental changes. We calculated the currently foreseeable future changes in the absolute GWP of CO{sub 2}, which acts as the denominator for the calculation of all GWPs, and specifically the GWPs of CH{sub 4} and N{sub 2}O, along four representative concentration pathways (RCPs) up to the year 2100. We find that the absolute GWP of CO{sub 2} decreases under all RCPs, although for longer time horizons this decrease is smaller than for short time horizons due to increased climate-carbon cycle feedbacks. The 100-year GWP of CH{sub 4} would increase up to 20% under the lowest RCP by 2100 but would decrease by up to 10% by mid-century under the highest RCP. The 100-year GWP of N{sub 2}O would increase by more than 30% by 2100 under the highest RCP but would vary by less than 10% under other scenarios. These changes are not negligible but are mostly smaller than the changes that would result from choosing a different time horizon for GWPs, or from choosing altogether different metrics for comparing greenhouse gas emissions, such as global temperature change potentials.

  4. NOx emissions trading: Precursor to future growth

    International Nuclear Information System (INIS)

    Colella, A.

    1993-01-01

    Title I of the Clean Air Act Amendments (CAAA) of 1990 specified the framework for enhanced regulation in ozone non-attainment areas with increasingly stringent requirements dependent on the area classification - marginal, moderate, serious, severe or extreme. Before the CAAA were passed, only volatile organic compounds (VOCs) were regulated as precursors to ozone formation, Now, by statute, emissions of nitrogen oxides (NO x ) are also regulated as ozone precursor. Under the CAAA, new sources and modifications of existing sources are subject to Title I permitting requirements in ozone non-attainment areas if emissions of NO x and/or VOCs exceed certain triggering levels. For many new or facility expansion projects, especially power generation, the NO x thresholds are easily exceeded thus triggering Title I non-attainment new source review which requires application of control technology to new equipment which results in the Lowest Achievable Emission Rate (LAER), and securing emission reductions either internally or from other major sources to offset the increased emission from the new or modified source. The selection of a LAER technology is generally within an applicant's control. An applicant can determine up-front the engineering and cost considerations associated with LAER technology is assessing a project's viability. However, without a clear source of emission offsets of a means to secure them, assessing project viability could be difficult if not impossible. No available emission offsets means no industrial growth. For sources of NO x undergoing Title I new source review, a regional or state banking system that facilitates NO x emissions trading is needed as a precursor to future growth. This paper presents an overview of EPA's Emissions Trading Policy and Title I new source review offset provisions. Industry's concerns about emissions trading and recommendations for future trading programs are presented

  5. European air quality in the 2030's and 2050's: Impacts of global and regional emission trends and of climate change

    International Nuclear Information System (INIS)

    Lacressonniere, G.; Peuch, V.H.; Vautard, R.

    2014-01-01

    A chemistry-transport model using two-way nested regional (Europe) and global domains is used to evaluate the effects of climate and emission changes on air quality over Europe for the 2030's and 2050's, by comparison with the emissions and climate of the recent past. We investigated the pollutant levels under the implementations of reduced anthropogenic emissions (NOx, SO 2 , etc) over Europe and, at the global scale, under the Representative Concentrations Pathways (RCP8.5) scenario produced by the Fifth Assessment Report (AR5) of IPCC. The simulations show an increase in surface ozone in northwestern Europe and a decrease in southern areas in the future horizons studied here. Over Europe, average O 3 levels steadily increase with a rate of around 3 mg m 3 per decade in summer. For this pollutant, the contributions of long range transport over the Northern Hemisphere and climate changes have been assessed and appear to counterbalance and even slightly outweigh the effects of European reductions in precursors' anthropogenic emissions. The tropospheric ozone budget is found to be dominated by enhanced stratosphere-troposphere exchanges in future climate while the chemical budget is significantly reduced. Our results show that a NOx-limited chemical regime will stretch over most of Europe, including especially Western France in the future. These findings allow supporting efficient future precursor emissions abatement strategies in order to limit O 3 pollution and maintain or improve air quality standards in Europe. (authors)

  6. Global radiative effects of solid fuel cookstove aerosol emissions

    Science.gov (United States)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  7. Future Global Mortality from Changes in Air Pollution Attributable to Climate Change

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; hide

    2017-01-01

    Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  8. Global Fire Emissions Indicators, Grids: 1997-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Fire Emissions Indicators, Grids: 1997-2015 contain a time-series of rasters from 1997 to 2015 for total area burned (hectares) and total carbon content...

  9. Globalization: prospects of future international cooperation

    International Nuclear Information System (INIS)

    Dinu, I.P.

    2001-01-01

    As the world is moving into a new millennium, its energy needs are increasing. Next to nuclear generation alternative there is no power that creates more concern because of the many global and public issues and because of a large impact over the future. There is much discussion about globalization at this end of millenium, when human kind has already experienced atomic bomb and Chernobyl is haunting our dreams. But many benefits of nuclear in all area of life leads us to idea we have to assess before to choose, apply individual by local needs and policy and - most important - not impede the future generation to choose, its turn. (author)

  10. Origin of path independence between cumulative CO2 emissions and global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-11-01

    Observations and GCMs exhibit approximate proportionality between cumulative carbon dioxide (CO2) emissions and global warming. Here we identify sufficient conditions for the relationship between cumulative CO2 emissions and global warming to be independent of the path of CO2 emissions; referred to as "path independence". Our starting point is a closed form expression for global warming in a two-box energy balance model (EBM), which depends explicitly on cumulative emissions, airborne fraction and time. Path independence requires that this function can be approximated as depending on cumulative emissions alone. We show that path independence arises from weak constraints, occurring if the timescale for changes in cumulative emissions (equal to ratio between cumulative emissions and emissions rate) is small compared to the timescale for changes in airborne fraction (which depends on CO2 uptake), and also small relative to a derived climate model parameter called the damping-timescale, which is related to the rate at which deep-ocean warming affects global warming. Effects of uncertainties in the climate model and carbon cycle are examined. Large deep-ocean heat capacity in the Earth system is not necessary for path independence, which appears resilient to climate modeling uncertainties. However long time-constants in the Earth system carbon cycle are essential, ensuring that airborne fraction changes slowly with timescale much longer than the timescale for changes in cumulative emissions. Therefore path independence between cumulative emissions and warming cannot arise for short-lived greenhouse gases.

  11. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  12. Shaping the future or meeting the challenge? The federal constitutional proposals and global warming

    International Nuclear Information System (INIS)

    Bankes, N.

    1991-01-01

    Recent Canadian federal constitutional proposals, presented in a report entitled Shaping Canada's Future Together, have the objective of establishing the basis for a federation capable of confronting global economic, security, and environmental challenges through the 21st century. Global solutions to these problems, such as the warming caused by the greenhouse effect, must be applied by each country. The proposals are evaluated according to the support they give the federal government in the negotiation and execution of an international agreement on greenhouse gas emissions. It is concluded that compared to other jurisdictions, the Canadian government is particularly badly equipped for carrying out such a task with regard to the present distribution of powers. The proposals do not aid to resolve this problem and even aggravate it in some instances. For example, a proposal to stabilize greenhouse gas emissions or impose cutbacks by a system of marketable emission permits would in effect create a new set of property and civil rights in the provinces. Implementing such a set of rights would have to be done in cooperation with the provinces, which would be difficult, and if implemented, it would entrench a laissez-faire approach to economics which would not always serve the goal of environmental protection. 18 refs

  13. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  14. Model for calculating regional energy use, industrial production and greenhouse gas emissions for evaluating global climate scenarios

    International Nuclear Information System (INIS)

    Vries, H.J.M. de; Olivier, J.G.J.; Wijngaart, R.A. van den; Kreileman, G.J.J.; Toet, A.M.C.

    1994-01-01

    In the integrated IMAGE 2.0 model the 'Energy-Industry System' is implemented as a set of models to develop global scenarios for energy use and industrial processes and for the related emissions of greenhouse gases on a region specific basis. The Energy-Economy model computes total energy use, with a focus on final energy consumption in end-use sectors, based on economic activity levels and the energy conservation potential (end-use approach). The Industrial Production and Consumption model computes the future levels of activities other than energy use, which lead to greenhouse gas emissions, based on relations with activities defined in the Energy-Economy model. These two models are complemented by two emissions models, to compute the associated emissions by using emission factors per compound and per activity defined. For investigating energy conservation and emissions control strategy scenarios various techno-economic coefficients in the model can be modified. In this paper the methodology and implementation of the 'Energy-Industry System' models is described as well as results from their testing against data for the period 1970-1990. In addition, the application of the models is presented for a specific scenario calculation. Future extensions of the models are in preparation. 59 refs., 17 figs., 21 tabs

  15. Global Gridded Emission Inventories of Pentabrominated Diphenyl Ether (PeBDE)

    Science.gov (United States)

    Li, Yi-Fan; Tian, Chongguo; Yang, Meng; Jia, Hongliang; Ma, Jianmin; Li, Dacheng

    2010-05-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants widely used in many everyday products such as cars, furniture, textiles, and other electronic equipment. The commercial PBDEs have three major technical mixtures: penta-(PeBDE), octa-(OBDE) and decabromodiphenyl ethers (DeBDE). PeBDE is a mixture of several BDE congeners, such as BDE-47, -99, and -100, and has been included as a new member of persistent organic pollutants (POPs) under the 2009 Stockholm Convention. In order to produce gridded emission inventories of PeBDE on a global scale, information of production, consumption, emission, and physiochemical properties of PeBDE have been searched for published papers, government reports, and internet publications. A methodology to estimate the emissions of PeBDE has been developed and global gridded emission inventories of 2 major congener in PeBDE mixture, BDE-47 and -99, on a 1 degree by 1degree latitude/longitude resolution for 2005 have been compiled. Using these emission inventories as input data, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP) model was used to simulate the transport of these chemicals and their concentrations in air were calculated for the year of 2005. The modeled air concentration of BDE-47 and -99 were compared with the monitoring air concentrations of these two congeners in the same year obtained from renowned international/national monitoring programs, such as Global Atmospheric Passive Sampling (GAPS), the Integrated Atmospheric Deposition Network (IADN), and the Chinese POPs Soil and Air Monitoring Program (SAMP), and significant correlations between the modeled results and the monitoring data were found, indicating the high quality of the produced emission inventories of BDE-47 and -99. Keywords: Pentabrominated Diphenyl Ether (PeBDE), Emission Inventories, Global, Model

  16. Effects of aerosol emission pathways on future warming and human health

    Science.gov (United States)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from -1.3 W m-2 to -0.4 W m-2 (RCP8.5) and -0.2 W m-2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was -1.6 W m-2 (HIGH) and practically zero (LOW). The difference in global mean temperature

  17. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    Science.gov (United States)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  18. The effects of Norwegian gas export on the global CO2 emission

    International Nuclear Information System (INIS)

    1996-01-01

    This report analyses how a limitation of Norway's gas export might affect the global CO 2 emission. In principle, a reduction of this export can lead to decreased or increased CO 2 emission depending on changes in several conditions that individually have conflicting emission effects. What the total effect will be can only become clear after a thorough empirical analysis of the supply and demand structure. The model calculations presented in the report show that the global emission will probably increase if Norway reduces the gas export. A gas export reduction of 10 million tonne oil equivalents in 2015 will increase the global emission by 1.4 and 7.5 million tonne CO 2 depending on the assumption made for alternative gas supplies to the European market and for market conditions in the importing countries. 4 refs., 32 figs., 44 tabs

  19. From carbonization to decarbonization?-Past trends and future scenarios for China's CO2 emissions

    International Nuclear Information System (INIS)

    Steckel, Jan Christoph; Jakob, Michael; Marschinski, Robert; Luderer, Gunnar

    2011-01-01

    Along the lines of the Kaya identity, we perform a decomposition analysis of historical and projected emissions data for China. We compare the results with reduction requirements implied by globally cost-effective mitigation scenarios and official Chinese policy targets. For the years 1971-2000 we find that the impact of high economic growth on emissions was partially compensated by a steady fall in energy intensity. However, the end - and even reversal - of this downward trend, along with a rising carbon intensity of energy, resulted in rapid emission growth during 2000-2007. By applying an innovative enhanced Kaya-decomposition method, we also show how the persistent increase in the use of coal has caused carbon intensity to rise throughout the entire time-horizon of the analysis. These insights are then compared to model scenarios for future energy system developments generated by the ReMIND-R model. The analysis reaffirms China's indispensable role in global efforts to implement any of three exemplary stabilization targets (400, 450, or 500 ppm CO 2 -only), and underscore the increasing importance of carbon intensity for the more ambitious targets. Finally, we compare China's official targets for energy intensity and carbon intensity of GDP to projections for global cost-effective stabilization scenarios, finding them to be roughly compatible in the short-to-mid-term. - Highlights: → An extended Kaya-decomposition is applied to historical data and ReMIND-R scenario results for China. → Reversing a historic trend, energy intensity has increased in recent years. → The contribution of coal in increasing carbon intensity and emissions has been constant in the past. → Decarbonization becomes increasingly important with increasingly ambitious climate targets. → Chinese targets for carbon intensity of GDP are in line with a 450 ppm CO 2 -only stabilization scenario.

  20. Impact of H{sub 2} emissions of a global hydrogen economy on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Grooss, Jens-Uwe; Feck, Thomas; Vogel, Baerbel; Riese, Martin [Forschungszentrum Juelich (Germany)

    2010-07-01

    ''Green'' hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H{sub 2}) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H{sub 2} that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H{sub 2} can occur along the whole hydrogen process chain which increase the tropospheric H{sub 2} burden. The impact of these emissions is investigated. Figure 1 is a sketch that clarifies the path way and impact of hydrogen in the stratosphere. The air follows the Brewer-Dobson circulation in which air enters the stratosphere through the tropical tropopause, ascends then to the upper stratosphere and finally descends in polar latitudes within a typical transport time frame of 4 to 8 years. (orig.)

  1. The Future of Global Social Work

    Directory of Open Access Journals (Sweden)

    Miriam Potocky-Tripodi

    2005-05-01

    Full Text Available This article addresses the social work within the context of internationalism and globalization. Based on an examination of published documents on international social work in the past decade, the authors make an evidence-based projection of what is likely to occur in the future of global social work. Finally, the authors make a social work values-based projection of what should occur.

  2. The Global Nuclear Futures Model: A Dynamic Simulation Tool for Energy Strategies

    International Nuclear Information System (INIS)

    Bixler, N.E.

    2002-01-01

    The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW). (author)

  3. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin; Fath, Brian D.

    2014-01-01

    Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, ‘urban ecosystem modeling (UEM)’ is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation. - Highlights: • Urban ecosystems modeling (UEM) is defined in an interdisciplinary context. • State-of-the-art models for UEM are critically reviewed and compared. • An integrated framework for explicit UEM is proposed under global change. - State-of-the-art models of urban ecosystem modeling (UEM) are reviewed for rational urban management and emissions mitigation

  4. Historical and future perspectives of global soil carbon response to climate and land-use changes

    Science.gov (United States)

    Eglin, T.; Ciais, P.; Piao, S. L.; Barre, P.; Bellassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Koven, C.; Reichstein, M.; Smith, P.

    2010-11-01

    ABSTRACT In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901-2000 and the period 2000-2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere. In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

  5. Mapping 1995 global anthropogenic emissions of mercury

    Science.gov (United States)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1°×1° latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg emissions and its three main chemical species: elemental gaseous Hg, divalent gaseous Hg, and particle-associated Hg are presented. The main emissions occur in southeast Asia (particularly in China), South Africa, Central and Eastern Europe, and the Eastern United States. These are the regions where coal combustion is the main source of electricity and heat production. Waste incineration adds to these emissions in the Eastern United States. Emissions of total Hg and its three species are quite similar in terms of their (global) spatial distributions. They reflect the worldwide distribution of coal consumption in large power plants, industrial burners, and small combustion units, such as residential and commercial furnaces.

  6. Influence of travel behavior on global CO2 emissions

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Vries, B. de

    2013-01-01

    Travel demand is rising steeply and its contribution to global CO2 emissions is increasing. Different studies have shown possible mitigation through technological options, but so far few studies have evaluated the implications of changing travel behavior on global travel demand, energy use and CO2

  7. On the quality of global emission inventories. Approaches, methodologies, input data and uncertainties

    International Nuclear Information System (INIS)

    Olivier, J.G.J.

    2002-01-01

    Four key scientific questions will be investigated: (1) How does a user define the 'quality' of a global (or national) emission inventory? (Chapter 2); (2) What determines the quality of a global emission inventory? (Chapters 2 and 7); (3) How can inventory quality be achieved in practice and expressed in quantitative terms ('uncertainty')? (Chapters 3 to 6); and (4) What is the preferred approach for compiling a global emission inventory, given the practical limitations and the desired inventory quality? (Chapters 7 and 8)

  8. Role of volcanic forcing on future global carbon cycle

    Directory of Open Access Journals (Sweden)

    J. F. Tjiputra

    2011-06-01

    Full Text Available Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with a business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller eruptions similar to Pinatubo in amplitude, but set to occur frequently, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before it returns to the warming trend. Therefore, the climate change is approximately delayed by several decades, and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. Our climate-carbon feedback analysis shows that future volcanic eruptions induce positive feedbacks (i.e., more carbon sink on both the terrestrial and oceanic carbon cycle. The feedback signal on the ocean is consistently smaller than the terrestrial counterpart and the feedback strength is proportionally related to the frequency of the volcanic eruption events. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45 % increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by a reduced CO2 partial pressure gradient between the ocean and the atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even

  9. Renewable: A key component of our global energy future

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  10. Long term energy and emission implications of a global shift to electricity-based public rail transportation system

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Kim, Son H.

    2015-01-01

    With high reliance on light-duty vehicles in the present, the future of global transportation system is also geared towards private modes, which has significant energy and emission implications. Public transportation has been argued as an alternative strategy for meeting the rising transportation demands of the growing world, especially the poor, in a sustainable and energy efficient way. The present study analyzes an important yet under-researched question – what are the long-term energy and emission implications of an electric rail based passenger transportation system for meeting both long and short distance passenter transportation needs? We analyze a suite of electric rail share scenarios with and without climate policy. In the reference scenario, the transportation system will evolve towards dominance of fossil based light-duty vehicles. We find that an electric rail policy is more successful than an economy wide climate policy in reducing transport sector energy demand and emissions. Economy wide emissions however can only be reduced through a broader climate policy, the cost of which can be reduced by hundreds of billions of dollars across the century when implemented in combination with the transport sector focused electric rail policy. Moreover, higher share of electric rail enhances energy security for oil importing nations and reduces vehicular congestion and road infrastructure requirement as well. -- Highlights: •Economy wide carbon price policy will have little impact on transportation emissions. •Focused energy and emission mitigation policies required for transportation sector. •Large global shift towards electric rail based public transport is one possible option. •Transport sector focused policy will have marginal impact on total global emissions. •A combined transport sector and economy wide policy can reduce costs significantly

  11. Global distribution of methane emissions, emission trends, and OH trends inferred from an inversion of GOSAT data for 2010-2015

    Science.gov (United States)

    Maasakkers, J. D.; Jacob, D.; Payer Sulprizio, M.; Hersher, M.; Scarpelli, T.; Turner, A. J.; Sheng, J.; Bloom, A. A.; Bowman, K. W.; Parker, R.

    2017-12-01

    We present a global inversion of methane sources and sinks using GOSAT satellite data from 2010 up to 2015. The inversion optimizes emissions and their trends at 4° × 5° resolution as well as the interannual variability of global OH concentrations. It uses an analytical approach that quantifies the information content from the GOSAT observations and provides full error characterization. We show how the analytical approach can be applied in log-space, ensuring the positivity of the posterior. The inversion starts from state-of-science a priori emission inventories including the Gridded EPA inventory for US anthropogenic emissions, detailed oil and gas emissions for Canada and Mexico, EDGAR v4.3.2 for anthropogenic emissions in other countries, the WetCHARTs product for wetlands, and our own estimates for geological seeps. Inversion results show lower emissions over Western Europe and China than predicted by EDGAR v4.3.2 but higher emissions over Japan. In contrast to previous inversions that used incorrect patterns in a priori emissions, we find that the EPA inventory does not underestimate US anthropogenic emissions. Results for trends show increasing emissions in the tropics combined with decreasing emissions in Europe, and a decline in OH concentrations contributing to the global methane trend.

  12. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    Science.gov (United States)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  13. Global Emissions of Terpenoid VOCs from Terrestrial Vegetation in the Last Millennium

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Navarro, J. C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A. M.; Kaplan, J. O.; Guenther, Alex B.; Arneth, A.; Riipinen, I.

    2014-06-16

    We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8 GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signicant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 15 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% 19 20 less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8GUESS), for isoprene and monoterpenes. We found the millennial trends ofglobal isoprene emissions to be mostly a*ected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid

  14. How to globally reduce the greenhouse gas emissions from sewage systems?

    International Nuclear Information System (INIS)

    Batz, S. de; Bonardet, P.; Trouve, J.P.

    2007-01-01

    A reliable and exhaustive measurement of the global greenhouse gas emissions from a given sewage plant must be performed prior to the implementation of any abatement measure. The method presented in this paper takes into consideration both the direct emissions but also the indirect ones generated by the plant activity and identified using a life cycle-type approach. Three examples of projects or realizations are presented in this paper to illustrate the different means of abatement of greenhouse gas emissions from a sewage plant in a global way. The first example concerns a project of abatement of the electricity consumption of a plant for sludges and fats digestion and biogas valorization. A 85% global abatement of CO 2 emissions is obtained thanks to the substitution of the aerobic digestion process by an anaerobic one. The second example presents an optimization of the greenhouse gas emissions of the municipal sewage plant of Valenton (Paris region) thanks to a valorization of sludges as fertilizers and fuels and to the recovery of the process heat. The last example concerns the Seine-aval sewage plant which gathers several projects of improvement: setting up of a second biogas turbine, redesign of the heat loop, use of river transport for a significant abatement of greenhouse gas emissions. (J.S.)

  15. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.

    Science.gov (United States)

    Porter, Stephen D; Reay, David S; Higgins, Peter; Bomberg, Elizabeth

    2016-11-15

    Research on loss & waste of food meant for human consumption (FLW) and its environmental impact typically focuses on a single or small number of commodities in a specific location and point in time. However, it is unclear how trends in global FLW and potential for climate impact have evolved. Here, by utilising the Food and Agriculture Organization's food balance sheet data, we expand upon existing literature. Firstly, we provide a differentiated (by commodity, country and supply chain stage) bottom-up approach; secondly, we conduct a 50-year longitudinal analysis of global FLW and its production-phase greenhouse gas (GHG) emissions; and thirdly, we trace food wastage and its associated emissions through the entire food supply chain. Between 1961 and 2011 the annual amount of FLW by mass grew a factor of three - from 540Mt to 1.6Gt; associated production-phase (GHG) emissions more than tripled (from 680Mt to 2.2Gt CO2e). A 44% increase in global average per capita FLW emissions was also identified - from 225kg CO2e in 1961 to 323kg CO2e in 2011. The regional weighting within this global average changing markedly over time; in 1961 developed countries accounted for 48% of FLW and less than a quarter (24%) in 2011. The largest increases in FLW-associated GHG emissions were from developing economies, specifically China and Latin America - primarily from increasing losses in fruit and vegetables. Over the period examined, cumulatively such emissions added almost 68Gt CO2e to the atmospheric GHG stock; an amount the rough equivalent of two years of emissions from all anthropogenic sources at present rates. Building up from the most granular data available, this study highlights the growth in the climate burden of FLW emissions, and thus the need to improve efficiency in food supply chains to mitigate future emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Global EDGAR v4.1 emissions of air pollutants: analysis of impacts of emissions abatement in industry and road transport on regional and global scale

    Science.gov (United States)

    Janssens-Maenhout, G.; Olivier, J. G.; Doering, U. M.; van Aardenne, J.; Monni, S.; Pagliari, V.; Peters, J. A.

    2010-12-01

    The new version v4.1 of the Emission Database for Global Atmospheric Research (EDGAR) compiled by JRC and PBL provides independent estimates of the global anthropogenic emissions and emission trends of precursors of tropospheric ozone (CO, NMVOC, NOx) and acidifying substances (NOx, NH3, SO2) for the period 1970-2005. All emissions are detailed at country level consistently using the same technology-based methodology, combining activity data (international statistics) from publicly available sources and to the extent possible emission factors as recommended by the EMEP/EEA air pollutant emission inventory guidebook. By using high resolution global grid maps per source category of area sources and point sources, we also compiled datasets with annual emissions on a 0.1x0.1 degree grid, as input for atmospheric models. We provide full and up-to-date inventories per country, also for developing countries. Moreover, the time series back in time to 1970 provides for the trends in official national inventories a historic perspective. As part of our objective to contribute to more reliable inventories by providing a reference emissions database for emission scenarios, inventory comparisons and for atmospheric modellers, we strive to transparently document all data sources used and assumptions made where data was missing, in particular for assumptions made on the shares of technologies where relevant. Technology mixes per country or region were taken from other data sources (such as the Platts database) or estimated using other sources or countries as proxy. The evolution in the adoption of technologies world-wide over the 35 years covered by EDGAR v4.1 will be illustrated for the power industry and the road transport sectors, in particular for Europe and the US. Similarly the regional and global impacts of implemented control measures and end-of pipe abatements will be illustrated by the examples of - NOx and SO2 end-of pipe abatements being implemented since the late

  17. Contribution of milk production to global greenhouse gas emissions. An estimation based on typical farms.

    Science.gov (United States)

    Hagemann, Martin; Ndambi, Asaah; Hemme, Torsten; Latacz-Lohmann, Uwe

    2012-02-01

    Studies on the contribution of milk production to global greenhouse gas (GHG) emissions are rare (FAO 2010) and often based on crude data which do not appropriately reflect the heterogeneity of farming systems. This article estimates GHG emissions from milk production in different dairy regions of the world based on a harmonised farm data and assesses the contribution of milk production to global GHG emissions. The methodology comprises three elements: (1) the International Farm Comparison Network (IFCN) concept of typical farms and the related globally standardised dairy model farms representing 45 dairy regions in 38 countries; (2) a partial life cycle assessment model for estimating GHG emissions of the typical dairy farms; and (3) standard regression analysis to estimate GHG emissions from milk production in countries for which no typical farms are available in the IFCN database. Across the 117 typical farms in the 38 countries analysed, the average emission rate is 1.50 kg CO(2) equivalents (CO(2)-eq.)/kg milk. The contribution of milk production to the global anthropogenic emissions is estimated at 1.3 Gt CO(2)-eq./year, accounting for 2.65% of total global anthropogenic emissions (49 Gt; IPCC, Synthesis Report for Policy Maker, Valencia, Spain, 2007). We emphasise that our estimates of the contribution of milk production to global GHG emissions are subject to uncertainty. Part of the uncertainty stems from the choice of the appropriate methods for estimating emissions at the level of the individual animal.

  18. Emission scenarios for a global hydrogen economy and the consequences for global air pollution

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lamarque, J.F.; van Vuuren, D.P.; Kram, T.; Eerens, H.

    2011-01-01

    Hydrogen is named as possible energy carrier for future energy systems. However, the impact of large-scale hydrogen use on the atmosphere is uncertain. Application of hydrogen in clean fuel cells reduces emissions of air pollutants, but emissions from hydrogen production and leakages of molecular

  19. Analysis of emission data from global commercial aviation: 2004 and 2006

    Directory of Open Access Journals (Sweden)

    J. T. Wilkerson

    2010-07-01

    Full Text Available The global commercial aircraft fleet in 2006 flew 31.26 million flights, burned 188.20 million metric tons of fuel, and covered 38.68 billion kilometers. This activity emitted substantial amounts of fossil-fuel combustion products within the upper troposphere and lower stratosphere that affect atmospheric composition and climate. The emissions products, such as carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur compounds, and particulate matter, are not emitted uniformly over the Earth, so understanding the temporal and spatial distributions is important for modeling aviation's climate impacts. Global commercial aircraft emission data for 2004 and 2006, provided by the Volpe National Transportation Systems Center, were computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT. Continuous improvement in methodologies, including changes in AEDT's horizontal track methodologies, and an increase in availability of data make some differences between the 2004 and 2006 inventories incomparable. Furthermore, the 2004 inventory contained a significant over-count due to an imperfect data merge and daylight savings error. As a result, the 2006 emissions inventory is considered more representative of actual flight activity. Here, we analyze both 2004 and 2006 emissions, focusing on the latter, and provide corrected totals for 2004. Analysis of 2006 flight data shows that 92.5% of fuel was burned in the Northern Hemisphere, 69.0% between 30N and 60N latitudes, and 74.6% was burned above 7 km. This activity led to 162.25 Tg of carbon from CO2 emitted globally in 2006, more than half over three regions: the United States (25.5%, Europe (14.6, and East Asia (11.1. Despite receiving less than one percent of global emissions, the Arctic receives a uniformly dispersed concentration of emissions with 95.2% released at altitude where they have longer residence time than surface emissions. Finally, 85.2% of all

  20. Analysis of emission data from global commercial aviation: 2004 and 2006

    Science.gov (United States)

    Wilkerson, J. T.; Jacobson, M. Z.; Malwitz, A.; Balasubramanian, S.; Wayson, R.; Fleming, G.; Naiman, A. D.; Lele, S. K.

    2010-07-01

    The global commercial aircraft fleet in 2006 flew 31.26 million flights, burned 188.20 million metric tons of fuel, and covered 38.68 billion kilometers. This activity emitted substantial amounts of fossil-fuel combustion products within the upper troposphere and lower stratosphere that affect atmospheric composition and climate. The emissions products, such as carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur compounds, and particulate matter, are not emitted uniformly over the Earth, so understanding the temporal and spatial distributions is important for modeling aviation's climate impacts. Global commercial aircraft emission data for 2004 and 2006, provided by the Volpe National Transportation Systems Center, were computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT). Continuous improvement in methodologies, including changes in AEDT's horizontal track methodologies, and an increase in availability of data make some differences between the 2004 and 2006 inventories incomparable. Furthermore, the 2004 inventory contained a significant over-count due to an imperfect data merge and daylight savings error. As a result, the 2006 emissions inventory is considered more representative of actual flight activity. Here, we analyze both 2004 and 2006 emissions, focusing on the latter, and provide corrected totals for 2004. Analysis of 2006 flight data shows that 92.5% of fuel was burned in the Northern Hemisphere, 69.0% between 30N and 60N latitudes, and 74.6% was burned above 7 km. This activity led to 162.25 Tg of carbon from CO2 emitted globally in 2006, more than half over three regions: the United States (25.5%), Europe (14.6), and East Asia (11.1). Despite receiving less than one percent of global emissions, the Arctic receives a uniformly dispersed concentration of emissions with 95.2% released at altitude where they have longer residence time than surface emissions. Finally, 85.2% of all flights by number in 2006

  1. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  2. Global warming and its implication to emission reduction strategies for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming; Chen, Dong; Ren, Zhengen [CSIRO Climate Adaptation Flagship and CSIRO Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), P.O. Box 56, Graham Road, Highett, Victoria 3190 (Australia)

    2011-04-15

    Carbon emission reduction schemes by improving residential building energy performance are often developed and assessed upon the assumption of current or stationary climates. This study investigated the heating and cooling (H-C) energy requirements and corresponding carbon emissions of residential houses in different climatic conditions in relation to global warming. This included assessing and quantifying the efficacy of emission reduction schemes based on emission reduction capacity (ERC). ERC represents the percentage of projected carbon emission reduction under changing climate in a specific year compared to the expected reduction by a scheme at current or stationary climates. It is shown that in a heating-dominated region with a cold climate or temperate climate with cold winter, ERC is projected to increase (or the projected emission reduction is higher than the expected reduction under the emission reduction scheme) in the presence of global warming. In contrast, in a cooling-dominated region with a hot dry or hot humid climate or an H-C balanced temperate climate, ERC is projected to decline. This implies that emission reductions will be lower than those initially targeted by the emission reduction scheme without consideration of global warming. Additionally, to reflect the changing carbon emission over years due to climate change, the average emission reduction capacity (AERC) was also proposed for the assessment of reduction schemes. It was concluded that the design and assessment of carbon emission reduction schemes for residential buildings need to move beyond its assumptions of a current or stationary climate to take into account climate change impacts. (author)

  3. Global fire emissions estimates during 1997–2016

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2017-09-01

    Full Text Available Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1 new burned area estimates with contributions from small fires, (2 a revised fuel consumption parameterization optimized using field observations, (3 modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4 fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25° and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s were 2.2  ×  1015 grams of carbon per year (Pg C yr−1 during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1 and minimum in 2013 (1.8 Pg C yr−1. These estimates were 11 % higher than our previous estimates (GFED3 during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %, mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 % to better match estimates from field studies, primarily in savannas and

  4. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  5. The future tourism mobility of the world population: Emission growth versus climate policy

    NARCIS (Netherlands)

    Dubois, G.; Ceron, J.P.; Peeters, P.M.; Gössling, S.

    2011-01-01

    Much of global passenger transport is linked to tourism. The sector is therefore of interest in studying global mobility trends and transport-related emissions. In 2005, tourism was responsible for around 5% of all CO2 emissions, of which 75% were caused by passenger transport. Given the rapid

  6. Compilation of a global inventory of emissions of nitrous oxide

    NARCIS (Netherlands)

    Bouwman, A.F.

    1995-01-01

    A global inventory with 1°x1° resolution was compiled of emissions of nitrous oxide (N 2 O) to the atmosphere, including emissions from soils under natural vegetation, fertilized agricultural land, grasslands and animal excreta, biomass burning, forest clearing,

  7. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Ivar Korsbakken, Jan; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian A; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M S; Munro, David R.; Nabel, Julia E M S; Nakaoka, Shin Ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Van Der Laan-Luijkx, Ingrid T.; Van Der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future

  8. Uncertain long-run emissions targets, CO2 price and global energy transition. A general equilibrium approach

    International Nuclear Information System (INIS)

    Durand-Lasserve, Olivier; Smeers, Yves; Pierru, Axel

    2010-01-01

    The persistent uncertainty about mid-century CO 2 emissions targets is likely to affect not only the technological choices that energy-producing firms will make in the future but also their current investment decisions. We illustrate this effect on CO 2 price and global energy transition within a MERGE-type general-equilibrium model framework, by considering simple stochastic CO 2 policy scenarios. In these scenarios, economic agents know that credible long-run CO 2 emissions targets will be set in 2020, with two possible outcomes: either a hard cap or a soft cap. Each scenario is characterized by the relative probabilities of both possible caps. We derive consistent stochastic trajectories - with two branches after 2020 - for prices and quantities of energy commodities and CO 2 emissions permits. The impact of uncertain long-run CO 2 emissions targets on prices and technological trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule with risk premia observed for certain scenarios. (author)

  9. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium

    Science.gov (United States)

    Acosta Navarro, J C; Smolander, S; Struthers, H; Zorita, E; Ekman, A M L; Kaplan, J O; Guenther, A; Arneth, A; Riipinen, I

    2014-01-01

    We investigated the millennial variability (1000 A.D.–2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr−1 (13% and 19% less than during 1750–1850 and 1000–1200, respectively), and LPJ-GUESS emissions were 323 TgC yr−1(15% and 20% less than during 1750–1850 and 1000–1200, respectively). Monoterpene emissions were 89 TgC yr−1(10% and 6% higher than during 1750–1850 and 1000–1200, respectively) in MEGAN, and 24 TgC yr−1 (2% higher and 5% less than during 1750–1850 and 1000–1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr−1(10% and 4% higher than during 1750–1850 and 1000–1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation. PMID:25866703

  10. Global estimation of CO emissions using three sets of satellite data for burned area

    Science.gov (United States)

    Jain, Atul K.

    Using three sets of satellite data for burned areas together with the tree cover imagery and a biogeochemical component of the Integrated Science Assessment Model (ISAM) the global emissions of CO and associated uncertainties are estimated for the year 2000. The available fuel load (AFL) is calculated using the ISAM biogeochemical model, which accounts for the aboveground and surface fuel removed by land clearing for croplands and pasturelands, as well as the influence on fuel load of various ecosystem processes (such as stomatal conductance, evapotranspiration, plant photosynthesis and respiration, litter production, and soil organic carbon decomposition) and important feedback mechanisms (such as climate and fertilization feedback mechanism). The ISAM estimated global total AFL in the year 2000 was about 687 Pg AFL. All forest ecosystems account for about 90% of the global total AFL. The estimated global CO emissions based on three global burned area satellite data sets (GLOBSCAR, GBA, and Global Fire Emissions Database version 2 (GFEDv2)) for the year 2000 ranges between 320 and 390 Tg CO. Emissions from open fires are highest in tropical Africa, primarily due to forest cutting and burning. The estimated overall uncertainty in global CO emission is about ±65%, with the highest uncertainty occurring in North Africa and Middle East region (±99%). The results of this study suggest that the uncertainties in the calculated emissions stem primarily from the area burned data.

  11. A global gas flaring black carbon emission rate dataset from 1994 to 2012

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.

    2016-11-01

    Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994-2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure.

  12. Assessing historical global sulfur emission patterns for the period 1850--1990

    Energy Technology Data Exchange (ETDEWEB)

    Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  13. Global and regional drivers of land-use emissions 1961-2013

    Science.gov (United States)

    Davis, S. J.; Burney, J. A.; Pongratz, J.; Hansis, E.

    2017-12-01

    Historically, human land use, including conversion of natural landscapes, has disrupted ecosystems worldwide, degraded global biodiversity, and added tremendous quantities of greenhouse gases (GHGs) to the atmosphere1-5. Yet, in contrast to fossil fuel emissions, trends and drivers of land use and related GHG emissions are usually assessed only for specific regions, processes, or products. Here, we present a comprehensive, country-level inventory of greenhouse gas (GHG) emissions from land use and land-use change from 1961-2013, decompose the demographic, economic and technical drivers of these emissions, and assess the sensitivity of results to different units of measurement and accounting assumptions. Globally, annual land use emissions (CO2-eq) have decreased between 1961 and 2013 (-32% in our central case), reflecting a balance between steady increases in agricultural production per capita (+42%) and equally persistent declines in the land required per unit of agricultural production (-65%), and emissions per area of land used (-41%). A few regions, processes, and products account for the majority of land use emissions: Latin America, Southeast Asia, and sub-Saharan Africa represent 55% of net cumulative emissions 1961-2013, conversion to cropland and pasture and enteric fermentation represent 103%, and cereal, dairy and beef products together represent 83%. Our results suggest that the emissions intensity of agricultural production is a particularly important indicator of agriculture's climate impact, where targeted reductions could substantially reduce that impact.

  14. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  15. Assessment of Global Emissions, Local Emissions and Immissions of Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Georg Erdmann

    2009-08-01

    Full Text Available This paper assesses and compares existing and new technologies for space heating in Germany (e.g., heat pumps, and solar thermal and wood pellet systems in terms of their environmental impacts. The various technologies were analyzed within the context of the new German legislation. The assessment was carried out on three levels: 1. Global emissions: a life cycle assessment was carried out in order to find the global environmental footprint of the various technologies; 2. Local emissions: the effects of local emissions on human health were analyzed; and 3. Immissions: the immissions were evaluated for the various technologies using a dispersion calculation. A special feature of this study is the substitution of frequently used database emission values by values obtained from field studies and our own measurements. The results show large differences between the different technologies: while electric heat pumps performed quite well in most categories, wood pellet systems performed the best with respect to climate change. The latter, however, are associated with high impacts in other environmental impact categories and on a local scale. The promotion of some technologies (especially systems based on fuel oil, a mixture of fuel oil and rapeseed oil, or a mixture of natural gas and biomethane by the newly introduced German legislation is doubtful. In terms of the immissions of wood pellet systems, it can be concluded that, even for extremely unfavorable meteorological conditions, the regulatory limits are not exceeded and the heating systems have a negligible influence on the total PM load in the ambient air.

  16. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales

    International Nuclear Information System (INIS)

    Frölicher, Thomas L; Paynter, David J

    2015-01-01

    The transient climate response to cumulative carbon emissions (TCRE) is a highly policy-relevant quantity in climate science. The TCRE suggests that peak warming is linearly proportional to cumulative carbon emissions and nearly independent of the emissions scenario. Here, we use simulations of the Earth System Model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to show that global mean surface temperature may increase by 0.5 °C after carbon emissions are stopped at 2 °C global warming, implying an increase in the coefficient relating global warming to cumulative carbon emissions on multi-centennial timescales. The simulations also suggest a 20% lower quota on cumulative carbon emissions allowed to achieve a policy-driven limit on global warming. ESM estimates from the Coupled Model Intercomparison Project Phase 5 (CMIP5–ESMs) qualitatively agree on this result, whereas Earth System Models of Intermediate Complexity (EMICs) simulations, used in the IPCC 5th assessment report to assess the robustness of TCRE on multi-centennial timescales, suggest a post-emissions decrease in temperature. The reason for this discrepancy lies in the smaller simulated realized warming fraction in CMIP5–ESMs, including GFDL ESM2M, than in EMICs when carbon emissions increase. The temperature response to cumulative carbon emissions can be characterized by three different phases and the linear TCRE framework is only valid during the first phase when carbon emissions increase. For longer timescales, when emissions tape off, two new metrics are introduced that better characterize the time-dependent temperature response to cumulative carbon emissions: the equilibrium climate response to cumulative carbon emissions and the multi-millennial climate response to cumulative carbon emissions. (letter)

  17. Role of innovative technologies under the global zero emissions scenarios

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Konishi, Satoshi; Ishihara, Keiichi; Tezuka, Tetsuo; Yasuoka, Rieko; Nishio, Masahiro

    2016-01-01

    Highlights: • We modeled a zero emissions scenario based on the A1T scenario of IPCC-SRES. • We conducted global modeling by minimizing costs of energy, biomass, and materials. • A variety of advanced technology innovations were considered and incorporated. • Results suggest that zero emissions scenario may be possible in this century. • We revealed energy supply structure under the zero emissions scenarios. - Abstract: This study investigated zero emissions scenarios with following two originalities compared to various existing studies. One is that we based on A1T society of SRES (Special Report on Emissions Scenario) of IPCC (Intergovernmental Panel on Climate Change) compared to existing studies on those of B1 or B2. The second one is that various innovative technologies were considered and incorporated, such as biomass energy with carbon capture and storage (BECCS), and advanced nuclear technologies including hydrogen or synfuel production. We conducted global modeling over the period 2010–2150 in which energy, materials, and biomass and foods supply costs were minimized by linear programming. We found following features of energy supply structure in A1T scenario. Since the electric demand in A1T scenario in 2100 is two times larger than the others, (1) renewable energy which solely produce electricity, nuclear, and fossil energy with CCS (FECCS) especially coal are main sources of electricity, (2) renewable which can supply heat, namely BECCS and geothermal, satisfies the sector, and (3) hydrogen from coal is introduced in transport sector. It can be concluded that the zero emission energy systems with global economic growth will be possible, by development and deployment of ambitious advanced energy technologies.

  18. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  19. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  20. A High Resolution Technology-based Emissions Inventory for Nepal: Present and Future Scenario

    Science.gov (United States)

    Sadavarte, P.; Das, B.; Rupakheti, M.; Byanju, R.; Bhave, P.

    2016-12-01

    A comprehensive regional assessment of emission sources is a major hindrance for a complete understanding of the air quality and for designing appropriate mitigation solutions in Nepal, a landlocked country in foothills of the Himalaya. This study attempts, for the first time, to develop a fine resolution (1km × 1km) present day emission inventory of Nepal with a higher tier approach using our understanding of the currently used technologies, energy consumption used in various energy sectors and its resultant emissions. We estimate present-day emissions of aerosols (BC, OC and PM2.5), trace gases (SO2, CO, NOX and VOC) and greenhouse gases (CO2, N2O and CH4) from non-open burning sources (residential, industry, transport, commercial) and open-burning sources (agriculture and municipal solid waste burning) for the base year 2013. We used methodologies published in literatures, and both primary and secondary data to estimate energy production and consumption in each sector and its sub-sector and associated emissions. Local practices and activity rates are explicitly accounted for energy consumption and dispersed often under-documented emission sources like brick manufacturing, diesel generator sets, mining, stone crushing, solid waste burning and diesel use in farms are considered. Apart from pyrogenic source of CH4 emissions, methanogenic and enteric fermentation sources are also accounted. Region-specific and newly measured country-specific emission factors are used for emission estimates. Activity based proxies are used for spatial and temporal distribution of emissions. Preliminary results suggest that 80% of national energy consumption is in residential sector followed by industry (8%) and transport (7%). More than 90% of the residential energy is supplied by biofuel which needs immediate attention to reduce emissions. Further, the emissions would be compared with other contemporary studies, regional and global datasets and used in the model simulations to

  1. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    Science.gov (United States)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  2. Future aridity under conditions of global climate change

    Science.gov (United States)

    Asadi Zarch, Mohammad Amin; Sivakumar, Bellie; Malekinezhad, Hossein; Sharma, Ashish

    2017-11-01

    Global climate change is anticipated to cause some major changes in hydroclimatic conditions around the world. As aridity is a reliable indicator of potential available water, assessment of its changes under future climatic conditions is important for proper management of water. This study employs the UNESCO aridity/humidity index, which is a derivative of precipitation (P) and potential evapotranspiration (PET), for assessment of aridity. Historical (1901-2005) simulations and future (2006-2100) projections of 22 global climate models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are studied. The Nested Bias Correction (NBC) approach is used to correct possible biases of precipitation (simulated directly by the GCMs) and PET (estimated by applying FAO56-Penman-Monteith model on simulated parameters of the GCMs). To detect future aridity changes, the areal extents of the aridity zones in the past and future periods as well as through four sub-periods (2006-2025, 2026-2050, 2051-2075, and 2076-2100) of the future are compared. The results indicate that changes in climate will alter the areal extents of aridity zones in the future. In general, from the first sub-period towards the last one, the area covered by hyper-arid, arid, semi-arid, and sub-humid zones will increase (by 7.46%, 7.01%, 5.80%, and 2.78%, respectively), while the area of the humid regions will decrease (by 4.76%), suggesting that there will be less water over the global land area in the future. To understand the cause of these changes, precipitation and PET are also separately assumed to be stationary throughout the four future sub-periods and the resulting aridity changes are then analyzed. The results reveal that the aridity changes are mostly caused by the positive PET trends, even though the slight precipitation increase lessens the magnitude of the changes.

  3. Isoprene emission response to drought and the impact on global atmospheric chemistry

    Science.gov (United States)

    Jiang, Xiaoyan; Guenther, Alex; Potosnak, Mark; Geron, Chris; Seco, Roger; Karl, Thomas; Kim, Saewung; Gu, Lianhong; Pallardy, Stephen

    2018-06-01

    Biogenic isoprene emissions play a very important role in atmospheric chemistry. These emissions are strongly dependent on various environmental conditions, such as temperature, solar radiation, plant water stress, ambient ozone and CO2 concentrations, and soil moisture. Current biogenic emission models (i.e., Model of Emissions of Gases and Aerosols from Nature, MEGAN) can simulate emission responses to some of the major driving variables, such as short-term variations in temperature and solar radiation, but the other factors are either missing or poorly represented. In this paper, we propose a new modelling approach that considers the physiological effects of drought stress on plant photosynthesis and isoprene emissions for use in the MEGAN3 biogenic emission model. We test the MEGAN3 approach by integrating the algorithm into the existing MEGAN2.1 biogenic emission model framework embedded into the global Community Land Model of the Community Earth System Model (CLM4.5/CESM1.2). Single-point simulations are compared against available field measurements at the Missouri Ozarks AmeriFlux (MOFLUX) field site. The modelling results show that the MEGAN3 approach of using of a photosynthesis parameter (Vcmax) and soil wetness factor (βt) to determine the drought activity factor leads to better simulated isoprene emissions in non-drought and drought periods. The global simulation with the MEGAN3 approach predicts a 17% reduction in global annual isoprene emissions, in comparison to the value predicted using the default CLM4.5/MEGAN2.1 without any drought effect. This reduction leads to changes in surface ozone and oxidants in the areas where the reduction of isoprene emissions is observed. Based on the results presented in this study, we conclude that it is important to simulate the drought-induced response of biogenic isoprene emission accurately in the coupled Earth System model.

  4. Industry in the 5th Environmental Outlook. Background information and final conclusions on the future development of environmental pressure (emissions) due to industrial production in the Netherlands

    International Nuclear Information System (INIS)

    Wesselink, L.G.; Elzenga, H.E.; Booij, H.; Peek, K.; Thomas, R.; Duvoort, G.L.; Van Schijndel, M.W.

    2001-01-01

    The present and future development of environmental pressure (here emissions) due to industrial production in the Netherlands are discussed. Results were - strongly aggregated - also presented in the 5th Environmental Outlook. We studied developments in production levels, energy use and emissions of Dutch industry and the effect of environmental policy measures, in the period 1980-2020. We used monitoring data for the period 1980-1998 en two scenarios (Global Competition and European Coordination) for the subsequent 1998-2020 period. It is concluded, that future CO2 emissions due to industrial production will continue to increase, that emissions of fluorinated (Kyoto) gasses will strongly decrease and that emissions of NOx, SO2, VOS en fine particles will continue to decrease. Yet, current environmental policy is insufficient to meet national Dutch emission targets of NOx, SO2, VOS in 2010

  5. Energy demand futures by global models : Projections of a complex system

    NARCIS (Netherlands)

    Edelenbosch, O.Y.

    2018-01-01

    The energy demand sectors industry, transport and buildings are together directly responsible for around 51 % of the global energy-related CO2 emissions and indirectly drive the emissions in the energy supply sectors. The demand sectors are characterized by many subsectors, technologies,

  6. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Blasing, T.J.

    1992-01-01

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO 2 ), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co 2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO 2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co 2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  7. Simplifiying global biogeochemistry models to evaluate methane emissions

    Science.gov (United States)

    Gerber, S.; Alonso-Contes, C.

    2017-12-01

    Process-based models are important tools to quantify wetland methane emissions, particularly also under climate change scenarios, evaluating these models is often cumbersome as they are embedded in larger land-surface models where fluctuating water table and the carbon cycle (including new readily decomposable plant material) are predicted variables. Here, we build on these large scale models but instead of modeling water table and plant productivity we provide values as boundary conditions. In contrast, aerobic and anaerobic decomposition, as well as soil column transport of oxygen and methane are predicted by the model. Because of these simplifications, the model has the potential to be more readily adaptable to the analysis of field-scale data. Here we determine the sensitivity of the model to specific setups, parameter choices, and to boundary conditions in order to determine set-up needs and inform what critical auxiliary variables need to be measured in order to better predict field-scale methane emissions from wetland soils. To that end we performed a global sensitivity analysis that also considers non-linear interactions between processes. The global sensitivity analysis revealed, not surprisingly, that water table dynamics (both mean level and amplitude of fluctuations), and the rate of the carbon cycle (i.e. net primary productivity) are critical determinants of methane emissions. The depth-scale where most of the potential decomposition occurs also affects methane emissions. Different transport mechanisms are compensating each other to some degree: If plant conduits are constrained, methane emissions by diffusive flux and ebullition compensate to some degree, however annual emissions are higher when plants help to bypass methanotrophs in temporally unsaturated upper layers. Finally, while oxygen consumption by plant roots help creating anoxic conditions it has little effect on overall methane emission. Our initial sensitivity analysis helps guiding

  8. Future-proofing global health: Governance of priorities.

    Science.gov (United States)

    Bennett, Belinda; Cohen, I Glenn; Davies, Sara E; Gostin, Lawrence O; Hill, Peter S; Mankad, Aditi; Phelan, Alexandra L

    2018-05-01

    The year 2015 was a significant anniversary for global health: 15 years since the adoption of the Millennium Development Goals and the creation of the Global Alliance for Vaccines and Immunization, followed two years later by the Global Fund to Fight AIDS, TB and Malaria. 2015 was also the 10-year anniversary of the adoption of the International Health Regulations (May 2005) and the formal entering into force of the Framework Convention on the Tobacco Control (February 2005). The anniversary of these frameworks and institutions illustrates the growth and contribution of 'global' health diplomacy. Each initiative has also revealed on-going issues with compliance, sustainable funding and equitable attention in global health governance. In this paper, we present four thematic challenges that will continue to challenge prioritisation within global health governance into the future unless addressed: framing and prioritising within global health governance; identifying stakeholders of the global health community; understanding the relationship between health and behaviour; and the role of governance and regulation in supporting global health.

  9. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  10. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  11. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  12. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  13. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    Science.gov (United States)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; hide

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  14. Global mega forces: Implications for the future of natural resources

    Science.gov (United States)

    George H. Kubik

    2012-01-01

    The purpose of this paper is to provide an overview of leading global mega forces and their importance to the future of natural resource decisionmaking, policy development, and operation. Global mega forces are defined as a combination of major trends, preferences, and probabilities that come together to produce the potential for future high-impact outcomes. These...

  15. Global drivers of future river flood risk

    Science.gov (United States)

    Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; van Beek, Ludovicus P. H.; Bierkens, Marc F. P.; Bouwman, Arno; Jongman, Brenden; Kwadijk, Jaap C. J.; Ligtvoet, Willem; Lucas, Paul L.; van Vuuren, Detlef P.; Ward, Philip J.

    2016-04-01

    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We present the first global future river flood risk projections that separate the impacts of climate change and socio-economic development. The projections are based on an ensemble of climate model outputs, socio-economic scenarios, and a state-of-the-art hydrologic river flood model combined with socio-economic impact models. Globally, absolute damage may increase by up to a factor of 20 by the end of the century without action. Countries in Southeast Asia face a severe increase in flood risk. Although climate change contributes significantly to the increase in risk in Southeast Asia, we show that it is dwarfed by the effect of socio-economic growth, even after normalization for gross domestic product (GDP) growth. African countries face a strong increase in risk mainly due to socio-economic change. However, when normalized to GDP, climate change becomes by far the strongest driver. Both high- and low-income countries may benefit greatly from investing in adaptation measures, for which our analysis provides a basis.

  16. Towards continuous global measurements and optimal emission estimates of NF3

    Science.gov (United States)

    Arnold, T.; Muhle, J.; Salameh, P.; Harth, C.; Ivy, D. J.; Weiss, R. F.

    2011-12-01

    We present an analytical method for the continuous in situ measurement of nitrogen trifluoride (NF3) - an anthropogenic gas with a global warming potential of ~16800 over a 100 year time horizon. NF3 is not included in national reporting emissions inventories under the United Nations Framework Convention on Climate Change (UNFCCC). However, it is a rapidly emerging greenhouse gas due to emission from a growing number of manufacturing facilities with increasing output and modern end-use applications, namely in microcircuit etching, and in production of flat panel displays and thin-film photovoltaic cells. Despite success in measuring the most volatile long lived halogenated species such as CF4, the Medusa preconcentration GC/MS system of Miller et al. (2008) is unable to detect NF3 under remote operation. Using altered techniques of gas separation and chromatography after initial preconcentration, we are now able to make continuous atmospheric measurements of NF3 with average precisions NF3 produced. Emission factors are shown to have reduced over the last decade; however, rising production and end-use have caused the average global atmospheric concentration to double between 2005 and 2011 i.e. half the atmospheric NF3 present today originates from emissions after 2005. Finally we show the first continuous in situ measurements from La Jolla, California, illustrating how global deployment of our technique could improve the temporal and spatial scale of NF3 'top-down' emission estimates over the coming years. These measurements will be important for independent verification of emissions should NF3 be regulated under a new climate treaty.

  17. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    Science.gov (United States)

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  18. Evaluation of the Committed Carbon Emissions and Global Warming due to the Permafrost Carbon Feedback

    Science.gov (United States)

    Elshorbany, Y. F.; Schaefer, K. M.; Jafarov, E. E.; Yumashev, D.; Hope, C.

    2017-12-01

    We quantify the increase in carbon emissions and temperature due to Permafrost Carbon feedback (PCF), defined as the amplification of anthropogenic warming due to carbon emissions from thawing permafrost (i.e., of near-surface layers to 3 m depth). We simulate the Committed PCF emissions, the cumulative total emissions from thawing permafrost by 2300 for a given global temperature increase by 2100, and investigate the resulting global warming using the Simple Biosphere/Carnegie-Ames-Stanford Approach SiBCASA model. We estimate the committed PCF emissions and warming for the Fifth Assessment Report, Representative Concentration Pathway scenarios 4.5 and 8.5 using two ensembles of five projections. For the 2 °C warming target of the global climate change treaty, committed PCF emissions increase to 24 Gt C by 2100 and 76 Gt C by 2300 and the committed PCF warming is 0.23 °C by 2300. Our calculations show that as the global temperature increase by 2100 approaches 5.8 °C, the entire stock of frozen carbon thaws out, resulting in maximum committed PCF emissions of 560 Gt C by 2300.

  19. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  20. Global health benefits of mitigating ozone pollution with methane emission controls.

    Science.gov (United States)

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  1. Timing of carbon emissions from global forest clearance

    Science.gov (United States)

    J. Mason Earles; Sonia Yeh; Kenneth E. Skog

    2012-01-01

    Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions1. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating...

  2. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    International Nuclear Information System (INIS)

    Lacey, Forrest; Henze, Daven

    2015-01-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  3. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    Science.gov (United States)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  4. Simulation analysis of the possibility of introducing massive renewable energy and nuclear fuel cycle in the scenario to halve global CO2 emissions by the year 2050

    International Nuclear Information System (INIS)

    Hosoya, Yoshifumi; Komiyama, Ryoichi; Fujii, Yasumasa

    2011-01-01

    There is growing attention to the regulation of greenhouse gas (GHG) emissions to mitigate the global warming. Hence, the target of 50% reduction of global GHG emissions by the year 2050 has been investigated in this paper. The authors have been revising the regionally disaggregated world energy model which is formulated as a large scale linear optimization model from the aspect of nuclear and photovoltaic power generation technologies. This paper explains the structure of the revised world energy model considering the intermittent characteristics of photovoltaic power generation derived from the changes in weather conditions. And also this paper shows the simulation results to halve global CO 2 emissions by the year 2050 and evaluates the long-term technological options such as nuclear fuel cycle and renewable energies. Finally the authors discuss the future step for extensive revision of the energy model. (author)

  5. The Australian coal industry: now, and the future under carbon dioxide emission restrictions

    International Nuclear Information System (INIS)

    Cain, D.A.

    1990-01-01

    Coal produces more carbon dioxide per unit of combustion energy than other fossil fuels. Therefore, reducing coal consumption is commonly advocated as one way to control greenhouse gas emissions and hence predicted global warming. Australia is highly dependent on coal, both as a primary energy source and as a major export commodity. Action to reduce carbon dioxide emissions by substantially decreasing coal consumption would have a very serious impact on the Australian coal industry and the Australian economy. Australia's dependence on coal and the potential conflict between the objective of further processing Australia's mineral exports and calls to limit carbon dioxide emissions is described. The effect on coal consumption of one scenario for reducing Australia's carbon dioxide emissions from electricity generation and possible effects of global carbon dioxide emission reductions on world coal trade are discussed. 24 refs., 2 tabs., 4 figs

  6. Zero emission targets as long-term global goals for climate protection

    NARCIS (Netherlands)

    Rogelj, Joeri; Schaeffer, M.; Meinshausen, M.; Knutti, R.

    2015-01-01

    Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO2). Halting global warming thus requires virtually zero annual CO2 emissions at some point. Policymakers have now incorporated this

  7. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  8. Energy future 2050

    Energy Technology Data Exchange (ETDEWEB)

    Syri, S; Kainiemi, L; Riikonen, V [Aalto Univ. School of Engineering, Espoo (Finland). Dept. of Energy Technology

    2011-07-01

    The track was organized by the Department of Energy Technology, School of Engineering, at Aalto University. Energy future 2050 -track introduced participants to the global long-term challenges of achieving a sustainable energy supply. According to the Intergovernmental Panel on Climate Change (IPCC), effective climate change mitigation would require the global greenhouse gas emissions to be reduced by 50-85% from the present level by 2050. For industrialized countries, this would probably mean a practically carbon-neutral economy and energy supply, as developing countries need more possibilities for growth and probably enter stricter emission reduction commitments with some delay. In the beginning of the workshop, students were introduced to global energy scenarios and the challenge of climate change mitigation. Students worked in three groups with the following topics: How to gain public acceptance of Carbon (dioxide) Capture and Storage (CCS) ? Personal emissions trading as a tool to achieve deep emission cuts, How to get rid of fossil fuel subsidies? Nordic cases are peat use in Finland and Sweden. (orig.)

  9. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC

    International Nuclear Information System (INIS)

    Paudel, Rajendra; Mahowald, Natalie M; Hess, Peter G M; Meng, Lei; Riley, William J

    2016-01-01

    An understanding of potential factors controlling methane emissions from natural wetlands is important to accurately project future atmospheric methane concentrations. Here, we examine the relative contributions of climatic and environmental factors, such as precipitation, temperature, atmospheric CO 2 concentration, nitrogen deposition, wetland inundation extent, and land-use and land-cover change, on changes in wetland methane emissions from preindustrial to present day (i.e., 1850–2005). We apply a mechanistic methane biogeochemical model integrated in the Community Land Model version 4.5 (CLM4.5), the land component of the Community Earth System Model. The methane model explicitly simulates methane production, oxidation, ebullition, transport through aerenchyma of plants, and aqueous and gaseous diffusion. We conduct a suite of model simulations from 1850 to 2005, with all changes in environmental factors included, and sensitivity studies isolating each factor. Globally, we estimate that preindustrial methane emissions were higher by 10% than present-day emissions from natural wetlands, with emissions changes from preindustrial to the present of +15%, −41%, and −11% for the high latitudes, temperate regions, and tropics, respectively. The most important change is due to the estimated change in wetland extent, due to the conversion of wetland areas to drylands by humans. This effect alone leads to higher preindustrial global methane fluxes by 33% relative to the present, with the largest change in temperate regions (+80%). These increases were partially offset by lower preindustrial emissions due to lower CO 2 levels (10%), shifts in precipitation (7%), lower nitrogen deposition (3%), and changes in land-use and land-cover (2%). Cooler temperatures in the preindustrial regions resulted in our simulations in an increase in global methane emissions of 6% relative to present day. Much of the sensitivity to these perturbations is mediated in the model by

  10. Global radioxenon emission inventory based on nuclear power reactor reports.

    Science.gov (United States)

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  11. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  12. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  13. Evolving diesel common rail technology for future low emission standards

    Energy Technology Data Exchange (ETDEWEB)

    Schoeppe, D.; Bercher, P.; Guerrassi, N.; Spadafora, P. [Delphi Diesel Systems, Paris (France)

    2005-07-01

    The Diesel fuel injection equipment will remain a key element for Diesel engine technology evolution. Achieving emission targets at competitive prices has been and will continue to be a major technical challenge to the engine manufacturer. Delphi is continously developing its Common Rail System and its components for fulfill future stricter emission legislation while simultaneously improving performance on noise, fuel consumption and power output. The outstanding and unique injector concept combined with innovative control strategies has largely contributed to the improvement of exhaust emission and performance, consumption and NVH over the lifetime of Diesel vehicles. Recently, Euro 4 common rail applications have been introduced on several applications by adding further capability such as multiple injection, small-injected quantity control and improved atomization. This papers will describe the latest Common Rail System developments that Delphi will introduce into the market to comply with future legislative emission targets. Further, a novel common rail injector will be presented, that uses a revolutionary, direct acting operating principle, where the nozzle is directly operated by a piezo actuator, without the use of a servo-hydraulic flow circuit. The superior performance of this injector concept will be shown, especially with regard to it's near square rate injection shape, minimum quantity capability as well as multiple injection performance. The direct acting operating principle allows rapid opening and closing of the injector, without compromising pilot quantity capability. The emission benefit obtained by such opening and closing behavior will be shown. Finally, based on the findings discussed, the papers will conclude on key features of future common rail systems. (orig.)

  14. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Science.gov (United States)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-03-01

    Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  15. Do differences in future sulfate emission pathways matter for near-term climate? A case study for the Asian monsoon

    Science.gov (United States)

    Bartlett, Rachel E.; Bollasina, Massimo A.; Booth, Ben B. B.; Dunstone, Nick J.; Marenco, Franco; Messori, Gabriele; Bernie, Dan J.

    2018-03-01

    Anthropogenic aerosols could dominate over greenhouse gases in driving near-term hydroclimate change, especially in regions with high present-day aerosol loading such as Asia. Uncertainties in near-future aerosol emissions represent a potentially large, yet unexplored, source of ambiguity in climate projections for the coming decades. We investigated the near-term sensitivity of the Asian summer monsoon to aerosols by means of transient modelling experiments using HadGEM2-ES under two existing climate change mitigation scenarios selected to have similar greenhouse gas forcing, but to span a wide range of plausible global sulfur dioxide emissions. Increased sulfate aerosols, predominantly from East Asian sources, lead to large regional dimming through aerosol-radiation and aerosol-cloud interactions. This results in surface cooling and anomalous anticyclonic flow over land, while abating the western Pacific subtropical high. The East Asian monsoon circulation weakens and precipitation stagnates over Indochina, resembling the observed southern-flood-northern-drought pattern over China. Large-scale circulation adjustments drive suppression of the South Asian monsoon and a westward extension of the Maritime Continent convective region. Remote impacts across the Northern Hemisphere are also generated, including a northwestward shift of West African monsoon rainfall induced by the westward displacement of the Indian Ocean Walker cell, and temperature anomalies in northern midlatitudes linked to propagation of Rossby waves from East Asia. These results indicate that aerosol emissions are a key source of uncertainty in near-term projection of regional and global climate; a careful examination of the uncertainties associated with aerosol pathways in future climate assessments must be highly prioritised.

  16. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  17. EnerFuture Energy Scenarios to 2035 'Understanding our Energy Future'. Key graphs and analysis, Enerdata - Global Energy Forecasting - February 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The EnerFuture service provides projections to 2035 of energy supply and demand across the world, powered by the POLES model, to help you with what to expect in the energy industry in the mid-term. Our energy forecasting team have developed three key energy scenarios (Balance, Emergence and Renaissance) to illustrate possible futures. Balance scenario: Balance provides an outlook of the energy system up to 2035 based on current policies and trends. Sustained growth of China and other emerging countries is a powerful driver of global energy demand, but confirmed energy policy commitments in several regions play a key role in controlling the pace of growth. However, non-coordinated policies result in soaring CO_2 emissions across the world and energy prices rise. Emergence scenario: This scenario explores the implications of more stringent climate policies, with more ambitious efforts on energy efficiency, initiatives to phase out fossil fuel subsidies and a real emergence of renewable technologies. Europe goes beyond its -20% targets by 2020, and the OECD and emerging countries meet their Copenhagen objectives. Following this, a new green deal is launched to reduce world emissions by a factor of 2 by 2050. Renaissance scenario: With strong efforts in the exploitation and production of unconventional oil and gas resources, the world encounters a fossil fuels renaissance with the appearance of new key actors and ultimately new geopolitical configurations changing the energy independence of several countries. For climate efforts, this new paradigm leads to progressively weaker policies. Further analysis and key findings are available here: - Increasing economic activity and wealth drives energy consumption, in a balance between energy prices and innovation; - As Non-OECD exceeds OECD oil demand, massive financial flows underlie the shifts in global oil trade; - Optimistic resource assumptions and moderate production costs would lead to an oil production Renaissance

  18. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  19. Effects of emissions change, climate change and long-range transport on regional modeling of future U.S. particulate matter pollution and speciation

    Science.gov (United States)

    He, Hao; Liang, Xin-Zhong; Wuebbles, Donald J.

    2018-04-01

    This study investigates the future U.S. PM2.5 pollution under multiple emissions scenarios, climate states, and long-range transport (LRT) effects using the regional Community Multi-scale Air Quality (CMAQ) model integrated with a regional climate model. CMAQ with fixed chemical lateral boundary conditions (LBCs) successfully reproduces the present-day PM2.5 pollution and its major species in rural and suburban areas, but has some discrepancies in urban areas such as the Los Angeles Basin, where detailed emissions and meteorology conditions cannot be resolved by the 30 km grid. Its performance is slightly worsened when using dynamic chemical LBCs from global chemical transport model (CTM) simulations, which provide cleaner conditions into the CMAQ lateral boundaries. Under future Intergovernmental Panel on Climate Change (IPCC) emission scenarios, CMAQ projects large PM2.5 reductions (∼40% for A1B and ∼20% for A1Fi scenario) in the eastern United States, but slight to moderate increases (∼5% for A1B and ∼10% for A1Fi) in the western United States. The projected increases are particularly large (up to 30%) near the Mexico-U.S. border, suggesting that Mexico is a major source for future U.S. PM2.5 pollution. The effect from climate change alone is estimated to increase PM2.5 levels ubiquitously (∼5% for both A1B and A1Fi) over the United States, except for a small decrease in the Houston, Texas area, where anthropogenic non-methane volatile organic compounds (NMVOCs) emissions dominate. This climate penalty, however, is substantially smaller than effects of emissions change, especially in the eastern United States. Future PM2.5 pollution is affected substantially (up to -20%) by changes in SO2 emissions and moderately (3-5%) by changes in NOx and NH3 emissions. The long-range transport (LRT) effects, which are estimated by comparing CMAQ simulations with fixed and dynamic LBCs, are regional dependent, causing up to 10-20% decrease over the western United

  20. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    Science.gov (United States)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  1. Spatial and Temporal Trends in Global Emissions of Nitrogen Oxides from 1960 to 2014.

    Science.gov (United States)

    Huang, Tianbo; Zhu, Xi; Zhong, Qirui; Yun, Xiao; Meng, Wenjun; Li, Bengang; Ma, Jianmin; Zeng, Eddy Y; Tao, Shu

    2017-07-18

    The quantification of nitrogen oxide (NO x ) emissions is critical for air quality modeling. Based on updated fuel consumption and emission factor databases, a global emission inventory was compiled with high spatial (0.1° × 0.1°), temporal (monthly), and source (87 sources) resolutions for the period 1960 to 2014. The monthly emission data have been uploaded online ( http://inventory.pku.edu.cn ), along with a number of other air pollutant and greenhouse gas data for free download. Differences in source profiles, not global total quantities, between our results and those reported previously were found. There were significant differences in total and per capita emissions and emission intensities among countries, especially between the developing and developed countries. Globally, the total annual NO x emissions finally stopped increasing in 2013 after continuously increasing over several decades, largely due to strict control measures taken in China in recent years. Nevertheless, the peak year of NO x emissions was later than for many other major air pollutants. Per capita emissions, either among countries or over years, follow typical inverted U-shaped environmental Kuznets curves, indicating that the emissions increased during the early stage of development and were restrained when socioeconomic development reached certain points. Although the trends are similar among countries, the turning points of developing countries appeared sooner than those of developed countries in terms of development status, confirming late-move advantages.

  2. Comparison of global inventories of CO_2 emissions from biomass burning during 2002–2011 derived from multiple satellite products

    International Nuclear Information System (INIS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong

    2015-01-01

    This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.

  3. Uncertain long-run emissions targets, CO{sub 2} price and global energy transition: A general equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Durand-Lasserve, Olivier, E-mail: olivier.durand@uclouvain.b [Universite Catholique de Louvain (UCL), CORE, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium); Pierru, Axel, E-mail: axel.pierru@ifp.f [IFP, Economics Department, 232 Avenue Napoleon Bonaparte, 92852 Rueil-Malmaison (France); Smeers, Yves, E-mail: yves.smeers@uclouvain.ac.b [Universite Catholique de Louvain (UCL), CORE, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium)

    2010-09-15

    The persistent uncertainty about mid-century CO{sub 2} emissions targets is likely to affect not only the technological choices that energy-producing firms will make in the future but also their current investment decisions. We illustrate this effect on CO{sub 2} price and global energy transition within a MERGE-type general-equilibrium model framework, by considering simple stochastic CO{sub 2} policy scenarios. In these scenarios, economic agents know that credible long-run CO{sub 2} emissions targets will be set in 2020, with two possible outcomes: either a 'hard cap' or a 'soft cap'. Each scenario is characterized by the relative probabilities of both possible caps. We derive consistent stochastic trajectories-with two branches after 2020-for prices and quantities of energy commodities and CO{sub 2} emissions permits. The impact of uncertain long-run CO{sub 2} emissions targets on prices and technological trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule with risk premia observed for certain scenarios.

  4. Uncertain long-run emissions targets, CO{sub 2} price and global energy transition. A general equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Durand-Lasserve, Olivier; Smeers, Yves [Universite Catholique de Louvain (UCL), CORE, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium); Pierru, Axel [IFP, Economics Department, 232 Avenue Napoleon Bonaparte, 92852 Rueil-Malmaison (France)

    2010-09-15

    The persistent uncertainty about mid-century CO{sub 2} emissions targets is likely to affect not only the technological choices that energy-producing firms will make in the future but also their current investment decisions. We illustrate this effect on CO{sub 2} price and global energy transition within a MERGE-type general-equilibrium model framework, by considering simple stochastic CO{sub 2} policy scenarios. In these scenarios, economic agents know that credible long-run CO{sub 2} emissions targets will be set in 2020, with two possible outcomes: either a hard cap or a soft cap. Each scenario is characterized by the relative probabilities of both possible caps. We derive consistent stochastic trajectories - with two branches after 2020 - for prices and quantities of energy commodities and CO{sub 2} emissions permits. The impact of uncertain long-run CO{sub 2} emissions targets on prices and technological trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule with risk premia observed for certain scenarios. (author)

  5. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  6. Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015 contains country tabulations from 1997 to 2015 for the total area burned (hectares) and...

  7. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  8. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.

    Science.gov (United States)

    Dangal, Shree R S; Tian, Hanqin; Zhang, Bowen; Pan, Shufen; Lu, Chaoqun; Yang, Jia

    2017-10-01

    Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various scales from regional to global, but the long-term trend, regional variation and drivers of methane (CH 4 ) emission remain unclear. In this study, we use Intergovernmental Panel on Climate Change (IPCC) Tier II guidelines to quantify the evolution of CH 4 emissions from ruminant livestock during 1890-2014. We estimate that total CH 4 emissions in 2014 was 97.1 million tonnes (MT) CH 4 or 2.72 Gigatonnes (Gt) CO 2 -eq (1 MT = 10 12 g, 1 Gt = 10 15 g) from ruminant livestock, which accounted for 47%-54% of all non-CO 2 GHG emissions from the agricultural sector. Our estimate shows that CH 4 emissions from the ruminant livestock had increased by 332% (73.6 MT CH 4 or 2.06 Gt CO 2 -eq) since the 1890s. Our results further indicate that livestock sector in drylands had 36% higher emission intensity (CH 4 emissions/km 2 ) compared to that in nondrylands in 2014, due to the combined effect of higher rate of increase in livestock population and low feed quality. We also find that the contribution of developing regions (Africa, Asia and Latin America) to the total CH 4 emissions had increased from 51.7% in the 1890s to 72.5% in the 2010s. These changes were driven by increases in livestock numbers (LU units) by up to 121% in developing regions, but decreases in livestock numbers and emission intensity (emission/km 2 ) by up to 47% and 32%, respectively, in developed regions. Our results indicate that future increases in livestock production would likely contribute to higher CH 4 emissions, unless effective strategies to mitigate GHG emissions in livestock system are implemented. © 2017 John Wiley & Sons Ltd.

  9. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities

    Science.gov (United States)

    Ward, Daniel S.; Shevliakova, Elena; Malyshev, Sergey; Rabin, Sam

    2018-01-01

    Globally, fires are a major source of carbon from the terrestrial biosphere to the atmosphere, occurring on a seasonal cycle and with substantial interannual variability. To understand past trends and variability in sources and sinks of terrestrial carbon, we need quantitative estimates of global fire distributions. Here we introduce an updated version of the Fire Including Natural and Agricultural Lands model, version 2 (FINAL.2), modified to include multiday burning and enhanced fire spread rate in forest crowns. We demonstrate that the improved model reproduces the interannual variability and spatial distribution of fire emissions reported in present-day remotely sensed inventories. We use FINAL.2 to simulate historical (post-1700) fires and attribute past fire trends and variability to individual drivers: land use and land cover change, population growth, and lightning variability. Global fire emissions of carbon increase by about 10% between 1700 and 1900, reaching a maximum of 3.4 Pg C yr-1 in the 1910s, followed by a decrease to about 5% below year 1700 levels by 2010. The decrease in emissions from the 1910s to the present day is driven mainly by land use change, with a smaller contribution from increased fire suppression due to increased human population and is largest in Sub-Saharan Africa and South Asia. Interannual variability of global fire emissions is similar in the present day as in the early historical period, but present-day wildfires would be more variable in the absence of land use change.

  10. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    Science.gov (United States)

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  11. Scaling future tropical cyclone damage with global mean temperature

    Science.gov (United States)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  12. Potential for reducing global carbon emissions from electricity production-A benchmarking analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Zhou, P.; Tay, L.P.

    2011-01-01

    We present five performance indicators for electricity generation for 129 countries using the 2005 data. These indicators, measured at the national level, are the aggregate CO 2 intensity of electricity production, the efficiencies of coal, oil and gas generation and the share of electricity produced from non-fossil fuels. We conduct a study on the potential for reducing global energy-related CO 2 emissions from electricity production through simple benchmarking. This is performed based on the last four performance indicators and the construction of a cumulative curve for each of these indicators. It is found that global CO 2 emissions from electricity production would be reduced by 19% if all these indicators are benchmarked at the 50th percentile. Not surprisingly, the emission reduction potential measured in absolute terms is the highest for large countries such as China, India, Russia and the United States. When the potential is expressed as a percentage of a country's own emissions, few of these countries appear in the top-five list. - Research highlights: → We study variations in emissions per kWh of electricity generated among countries. → We analyze emissions from electricity production through benchmarking. → Estimates of reduction in emissions are made based on different assumptions.

  13. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  14. Estimating current and future global urban domestic material consumption

    Science.gov (United States)

    Baynes, Timothy Malcolm; Kaviti Musango, Josephine

    2018-06-01

    Urban material resource requirements are significant at the global level and these are expected to expand with future urban population growth. However, there are no global scale studies on the future material consumption of urban areas. This paper provides estimates of global urban domestic material consumption (DMC) in 2050 using three approaches based on: current gross statistics; a regression model; and a transition theoretic logistic model. All methods use UN urban population projections and assume a simple ‘business-as-usual’ scenario wherein historical aggregate trends in income and material flow continue into the future. A collation of data for 152 cities provided a year 2000 world average DMC/capita estimate, 12 tons/person/year (±22%), which we combined with UN population projections to produce a first-order estimation of urban DMC at 2050 of ~73 billion tons/year (±22%). Urban DMC/capita was found to be significantly correlated (R 2 > 0.9) to urban GDP/capita and area per person through a power law relation used to obtain a second estimate of 106 billion tons (±33%) in 2050. The inelastic exponent of the power law indicates a global tendency for relative decoupling of direct urban material consumption with increasing income. These estimates are global and influenced by the current proportion of developed-world cities in the global population of cities (and in our sample data). A third method employed a logistic model of transitions in urban DMC/capita with regional resolution. This method estimated global urban DMC to rise from approximately 40 billion tons/year in 2010 to ~90 billion tons/year in 2050 (modelled range: 66–111 billion tons/year). DMC/capita across different regions was estimated to converge from a range of 5–27 tons/person/year in the year 2000 to around 8–17 tons/person/year in 2050. The urban population does not increase proportionally during this period and thus the global average DMC/capita increases from ~12 to ~14 tons

  15. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    International Nuclear Information System (INIS)

    Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Selin, Noelle E.; Olivier, Jos G.J.; Guizzardi, Diego; Maas, Rob; Dentener, Frank

    2014-01-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg 0 ) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg 2+ ) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg 0 , has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg 0 emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can

  16. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    Energy Technology Data Exchange (ETDEWEB)

    Muntean, Marilena, E-mail: marilena.muntean@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Janssens-Maenhout, Greet [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Song, Shaojie; Selin, Noelle E. [Massachusetts Institute of Technology, Cambridge, MA (United States); Olivier, Jos G.J. [PBL Netherlands Environment Assessment Agency, Bilthoven (Netherlands); Guizzardi, Diego [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Maas, Rob [RIVM National Institute for Public Health and Environment, Bilthoven (Netherlands); Dentener, Frank [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2014-10-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg{sup 0}) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg{sup 2+}) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg{sup 0}, has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg{sup 0} emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The

  17. Global distribution of N2O emissions from aquatic systems : natural emissions and anthropogenic effects

    NARCIS (Netherlands)

    Seitzinger, S.P.; Styles, R.V.; Kroeze, C.

    2000-01-01

    Context Abstract: Atmospheric concentrations of nitrous oxide, a greenhouse gas, are increasing due to human activities. Our analysis suggests that a third of global anthropogenic N2O emission is from aquatic sources (rivers, estuaries, continental shelves) and the terrestrial sources comprise the

  18. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  19. Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials

    Directory of Open Access Journals (Sweden)

    Lijie Wang

    2011-11-01

    Full Text Available This paper considers the Global Thermodynamic Potential (GTP indicator to perform a unified assessment of greenhouse gas (GHG emissions, and to systematically reveal the emission embodiment in the production, consumption, and international trade of the Chinese economy in 2007 as the most recent year available with input-output table and updated inventory data. The results show that the estimated total direct GHG emissions by the Chinese economy in 2007 amount to 10,657.5 Mt CO2-eq by the GTPs with 40.6% from CH4 emissions in magnitude of the same importance as CO2 emissions. The five sectors of Electric Power/Steam and Hot Water Production and Supply, Smelting and Pressing of Ferrous and Nonferrous Metals, Nonmetal Mineral Products, Agriculture, and Coal Mining and Dressing, are responsible for 83.3% of the total GHG emissions with different emission structures. The demands of coal and coal-electricity determine the structure of emission embodiment to an essential extent. The Construction sector holds the top GHG emissions embodied in both domestic production and domestic consumption. The GHG emission embodied in gross capital formation is more than those in other components of final demand characterized by extensive investment and limited household consumption. China is a net exporter of embodied GHG emissions, with a remarkable share of direct emission induced by international trade, such as textile products, industrial raw materials, and primary machinery and equipment products exports. The fractions of CH4 in the component of embodied GHG emissions in the final demand are much greater than those fractions calculated by the Global Warming Potentials, which highlight the importance of CH4 emissions for the case of China and indicate the essential effect of CH4 emissions on global climate change. To understand the full context to achieve GHG emission mitigation, this study provides a new insight to address China’s GHG emissions status and

  20. Marine nitrous oxide emissions: An unknown liability for the international water sector

    International Nuclear Information System (INIS)

    Short, Michael D.; Peters, Gregory M.; Peirson, William L.; Ashbolt, Nicholas J.

    2013-01-01

    Highlights: • IPCC methodology for indirect marine nitrous oxide (N 2 O) emissions does not exist. • The water sector has an unknown N 2 O emissions liability from marine sewage disposal. • We model global sewage-nitrogen (N) emissions to coastal oceans during 1970–2050. • Emission factors for marine N 2 O will enable water sector N 2 O emissions accounting. • Industry benefits will include future revenue streams and better N emissions policy. -- Abstract: Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N 2 O) emissions from sewage management are both highly uncertain and incomplete; a major methodological gap relates to the calculation of indirect N 2 O emissions from sewage disposed to marine environments. Here we apply a novel approach to estimate past and future global sewage-nitrogen emissions to coastal oceans and the potential marine N 2 O emissions linked to this nitrogen source. Then, by estimating the future cost associated with this largely uncharacterized emission source, we demonstrate the industry significance of developing a methodology for estimating N 2 O emissions from marine receiving environments. The capacity to accurately estimate, monitor and report GHG emissions has important consequences for informing future policy decisions regarding both mitigation and adaptation. A robust N 2 O emissions estimation methodology for sewage-nitrogen disposed to coastal oceans will allow the international water sector to more accurately and comprehensively inventory its N 2 O emissions. This will in turn allow for proper accounting of related future emissions liabilities while also enabling the sector to capitalize on any future economic returns linked to this source – providing much-needed capital to support the sector's future infrastructure and climate change adaptation challenges

  1. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    Science.gov (United States)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    The aim of this study is the estimation of the future emissions in the area of the large urban center of Thessaloniki (Greece) with emphasis on the emissions originated from the maritime sector within the port area of the city which are presented in detail. In addition, the contribution of the future anthropogenic emissions to atmospheric pollution levels in Thessaloniki focusing on PM levels is studied. A 2km spatial resolution anthropogenic gaseous and particulate matter emission inventory has been compiled for the port city of Thessaloniki for the year 2010 with the anthropogenic emission model MOSESS, developed by Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki. MOSESS was used for the estimation of emissions from several emission sources (road transport, central heating, industries, maritime sector etc) while the natural emission model NEMO was implemented for the calculation of dust, sea salt and biogenic emissions. Maritime emissions originated from the various processes inside the area of the port (harbor operations such as stockpiles, loading/unloading operations, machineries etc) as well as from the maritime transport sector including passenger ships, cargo shipping, inland waterways vessels (e.g. pleasure crafts) and fish catching ships. Ship emissions were estimated for the three operation modes; cruising, maneuvering and hotelling. For the calculation of maritime emissions, the activity data used were provided by local and national authorities (e.g.Thessaloniki Port Authority S.A.). Pollutant anthropogenic emissions were projected to the year 2020. The emissions from all the anthropogenic sources except for the maritime sector were projected using factors provided by the GAINS model. Future emissions from the maritime activities were estimated on the basis of the future activity data provided by the Port Authority and of the legislation for shipping in the future. Future maritime emissions are determined by the vessels

  2. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  3. Food, Paper, Wood, or Energy? Global Trends and Future Swedish Forest Use

    Directory of Open Access Journals (Sweden)

    Erik Westholm

    2010-12-01

    Full Text Available This paper presents a futures study of international forest trends. The study, produced as part of the Swedish Future Forest program, focuses on global changes of importance for future Swedish forest use. It is based on previous international research, policy documents, and 24 interviews with selected key experts and/or actors related to the forest sector, and its findings will provide a basis for future research priorities. The forest sector, here defined as the economic, social, and cultural contributions to life and human welfare derived from forest and forest-based activities, faces major change. Four areas stand out as particularly important: changing energy systems, emerging international climate policies, changing governance systems, and shifting global land use systems. We argue that global developments are, and will be, important for future Swedish forest use. The forest sector is in transition and forest-, energy, climate- and global land use issues are likely to become increasingly intertwined. Therefore, the “forest sector” must be disembedded and approached as an open system in interplay with other systems.

  4. Combating global warming. Possible rules, regulations and administrative arrangements for a global market in CO2 emission entitlements

    International Nuclear Information System (INIS)

    1994-12-01

    When in 1991 the UNCTAD secretariat launched its research into the idea of controlling carbon dioxide emissions through a system of 'tradeable permits', there was little support for this approach. Some felt that the idea was premature and should not detract from efforts to introduce more conventional measures, such as environmental taxes and new regulations. However, in a few short years, the idea of using tradeable market-based instruments to combat global warming has gained widespread acceptance. The UNCTAD secretariat's 1992 study on a global system of tradeable carbon emission entitlements (UNCTAD/RDP/DFP/1), was widely regarded as a major breakthrough in this area. This study argued that tradeable permits were both an efficient means of controlling man-made carbon dioxide emissions at minimum cost, and an effective mechanism for transferring resources to developing countries and countries in transition, to help them to contribute to the international effort to abate emissions of greenhouse gases. The study contained a detailed assessment of key technical elements of a tradeable CO 2 entitlements system, including permit allocation techniques, resource transfers, equity/distributional implications, institutional and administrative requirements. The present publication explores the institutional requirements for both policy-making and the organization of a global market in CO 2 emission allowances. It shows that one can start with a simple pilot scheme based on the joint implementation of commitments, which constitutes the cornerstone of the Framework Convention, and evolve gradually to a more complete system on the basis of 'learning by doing'. Since the use of markets can dramatically lower the cost of controlling greenhouse gas emissions, it is clearly in the self-interest of major emitters to act as 'market leaders' willing to pioneer

  5. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  6. Global Sulfur Emissions in the 1990s

    OpenAIRE

    David I. Stern

    2003-01-01

    This paper provides global and individual country estimates of sulfur emissions from 1991-2000. Raw estimates are obtained in two ways. For countries and years with published data I compile that data from the available sources. For the remaining countries and for missing years for countries with some published data, I use either the decomposition model estimated by Stern (2002), the first differences environmental Kuznets curve model estimated by Stern and Common (2001), or a simple extrapola...

  7. Abatement of atmospheric emissions in North America: Progress to date and promise for the future

    International Nuclear Information System (INIS)

    Ellis, E.C.; Erbes, R.E.; Grott, J.K.

    1990-01-01

    Much progress has been made in acidic rain abatement in North America. This progress is examined with a focus on man-made emissions of sulfur dioxide and nitrogen oxides that contribute to acidic deposition. A review of US historical trends of SO 2 and nitrogen oxides emissions since 1900 and projections of future emissions through the end of this century shoe emissions of SO 2 decreasing from a peak in 1970 of 29 Tg/yr to about 26 Tg/yr, but nitrogen oxides emissions continuing an upward trend to about 25 Tg/yr. In Canada, SO 2 , NO and NO 2 emissions are less than 20% of those in the US, and the trends are similar, with SO 2 showing future decreases and NO and NO 2 continuing to increase. Future industry in North America is expected to emit much lower levels of SO 2 , NO, and NO 2 . Technology is also available to limit nitrogen oxides emissions from future motor vehicles. Recent acidic deposition legislation in the US Congress to reduce electric utility and industrial emissions of SO 2 by 9 to 13 Tg/yr is reviewed. The estimates of the cost to implement the proposals range from $2 billion to $23 billion over a 5-year period. Retrofitting existing utility and industrial boilers for maximum SO 2 , NO, and NO 2 reduction carries the highest price tag. Several environmental policy options are explored for preventing emission increases and also promoting decreases in future emissions of SO 2 , NO, and NO 2 in North America. Focus on nitrogen oxides emissions may be critical because population growth could cause significant increases in NO and NO 2 from motor vehicle use

  8. Global pyrogeography: the current and future distribution of wildfire.

    Directory of Open Access Journals (Sweden)

    Meg A Krawchuk

    Full Text Available Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade. We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research

  9. Global pyrogeography: the current and future distribution of wildfire.

    Science.gov (United States)

    Krawchuk, Meg A; Moritz, Max A; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global

  10. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  11. Personalized Telehealth in the Future: A Global Research Agenda.

    Science.gov (United States)

    Dinesen, Birthe; Nonnecke, Brandie; Lindeman, David; Toft, Egon; Kidholm, Kristian; Jethwani, Kamal; Young, Heather M; Spindler, Helle; Oestergaard, Claus Ugilt; Southard, Jeffrey A; Gutierrez, Mario; Anderson, Nick; Albert, Nancy M; Han, Jay J; Nesbitt, Thomas

    2016-03-01

    As telehealth plays an even greater role in global health care delivery, it will be increasingly important to develop a strong evidence base of successful, innovative telehealth solutions that can lead to scalable and sustainable telehealth programs. This paper has two aims: (1) to describe the challenges of promoting telehealth implementation to advance adoption and (2) to present a global research agenda for personalized telehealth within chronic disease management. Using evidence from the United States and the European Union, this paper provides a global overview of the current state of telehealth services and benefits, presents fundamental principles that must be addressed to advance the status quo, and provides a framework for current and future research initiatives within telehealth for personalized care, treatment, and prevention. A broad, multinational research agenda can provide a uniform framework for identifying and rapidly replicating best practices, while concurrently fostering global collaboration in the development and rigorous testing of new and emerging telehealth technologies. In this paper, the members of the Transatlantic Telehealth Research Network offer a 12-point research agenda for future telehealth applications within chronic disease management.

  12. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  13. Update and improvement of the global krypton-85 emission inventory

    International Nuclear Information System (INIS)

    Ahlswede, Jochen; Hebel, Simon; Ross, J. Ole; Schoetter, Robert; Kalinowski, Martin B.

    2013-01-01

    Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent. - Highlights: ► Krypton-85 is mainly produced in nuclear reactors and released during reprocessing. ► Krypten-85 can be possibly used as an indicator for clandestine reprocessing. ► This work provides an up-to-date global krypton-85 emission inventory. ► The inventory includes emissions from all possible artificial sources.

  14. The utility of the historical record in assessing future carbon budgets

    Science.gov (United States)

    Millar, R.; Friedlingstein, P.; Allen, M. R.

    2017-12-01

    It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.

  15. Sustaining the future: the role of nuclear power in meeting future world energy needs

    International Nuclear Information System (INIS)

    Duffey, R.; Sun, Y.

    2003-01-01

    A description is given of recently informed analyses showing the potential that nuclear power has in meeting global energy demands. For both the electricity and transportation sectors, we can quantify the beneficial effects on the environment, and we show how nuclear power deserves credit for its role in assisting future world energy, environmental and economic sustainability. The continuing expansion of the world's and Asia's energy needs, coupled with the need to reduce greenhouse gas (GHG) and other emissions, will require new approaches for large scale energy production and use. This is particularly important for China and Asia with respect to meeting both the energy demand and sustainability challenges. We show and explore the role of nuclear power for large-scale energy applications, including electricity production and hydrogen for transportation. Advanced nuclear technologies, such as those like CANDU's next generation ACR, can meet future global energy market needs, avoid emissions, and mitigate the potential for global climate change. We use the latest IPCC Scenarios out to the year 2100 as a base case, but correct them to examine the sensitivity to large scale nuclear and hydrogen fuel penetration. We show a significant impact of nuclear energy on energy market penetration, and in reducing GHGs and other emissions in the coming century, particularly in the industrial developing world and in Asia. This is achieved without needing emissions credits, as are used or needed as economic support for other sources, or for subsidies via emissions trading schemes. Nuclear power offers the relatively emissions-free means, both to provide electricity for traditional applications and, by electrolytic production of hydrogen, to extend its use deep into the transportation sector. For the published IPCC Marker Scenarios for Asia we show the reduction in GHG emissions when electrolysis using electricity from nuclear power assists the introduction of hydrogen as a fuel

  16. Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations

    Directory of Open Access Journals (Sweden)

    F. Dentener

    2003-01-01

    Full Text Available The trend and interannual variability of methane sources are derived from multi-annual simulations of tropospheric photochemistry using a 3-D global chemistry-transport model. Our semi-inverse analysis uses the fifteen years (1979--1993 re-analysis of ECMWF meteorological data and annually varying emissions including photo-chemistry, in conjunction with observed CH4 concentration distributions and trends derived from the NOAA-CMDL surface stations. Dividing the world in four zonal regions (45--90 N, 0--45 N, 0--45 S, 45--90 S we find good agreement in each region between (top-down calculated emission trends from model simulations and (bottom-up estimated anthropogenic emission trends based on the EDGAR global anthropogenic emission database, which amounts for the period 1979--1993 2.7 Tg CH4 yr-1. Also the top-down determined total global methane emission compares well with the total of the bottom-up estimates. We use the difference between the bottom-up and top-down determined emission trends to calculate residual emissions. These residual emissions represent the inter-annual variability of the methane emissions. Simulations have been performed in which the year-to-year meteorology, the emissions of ozone precursor gases, and the stratospheric ozone column distribution are either varied, or kept constant. In studies of methane trends it is most important to include the trends and variability of the oxidant fields. The analyses reveals that the variability of the emissions is of the order of 8Tg CH4 yr-1, and likely related to wetland emissions and/or biomass burning.

  17. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  18. Carbon dioxide emissions from fossil fuel use: Recent performance and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Michael

    1998-12-01

    This publication gives an overview and discusses carbon dioxide emissions from fossil fuel use worldwide. Main themes discussed in this connection cover recent performance and future prospects. Some proposals on the reduction of CO{sub 2} emissions are given

  19. The role of urbanization in the global carbon cycle

    Directory of Open Access Journals (Sweden)

    Galina eChurkina

    2016-01-01

    Full Text Available Urban areas account for more than 70% of CO2 emissions from burning fossil fuels. Urban expansion in tropics is responsible for 5% of the annual emissions from land use change. Here I show that the effect of urbanization on the global carbon cycle extends beyond these emissions. I quantify the contribution of urbanization to the major carbon fluxes and pools globally and identify gaps crucial for predicting the evolution of the carbon cycle in the future. Urban residents currently control ~22 (12-40 % of the land carbon uptake (112 PgC/yr and ~24 (15-39 % of the carbon emissions (117 PgC/yr from land globally. Urbanization resulted in the creation of new carbon pools on land such as buildings (~6.7 PgC and landfills (~30 PgC. Together these pools store 1.6 (±0.3 % of the total vegetation and soil carbon pools globally. The creation and maintenance of these new pools has been associated with high emissions of CO2, which are currently better understood than the processes associated with the dynamics of these pools and accompanying uptake of carbon. Predictions of the future trajectories of the global carbon cycle will require a much better understanding of how urban development affects the carbon cycle over the long term.

  20. Assessment of Current and Future Air Pollutant Emission Reduction Technologies for Marine Diesel Engines

    Science.gov (United States)

    2014-02-01

    Liquefied Natural Gas and Methanol – Dimethyl Ether. 6.3.1 Biodiesel An extensive review across many transportation sectors of the emissions of...33 6.3.1 Biodiesel ...problems. SOx emissions from shipping represent about 60% of global transport SOx emissions. 2.4 Nitrogen Oxides (NOx) The amount of NOx in engines

  1. Modeling temporal variations in global residential energy consumption and pollutant emissions

    International Nuclear Information System (INIS)

    Chen, Han; Huang, Ye; Shen, Huizhong; Chen, Yilin; Ru, Muye; Chen, Yuanchen; Lin, Nan; Su, Shu; Zhuo, Shaojie; Zhong, Qirui; Wang, Xilong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2016-01-01

    Highlights: • Space-for-time substitution was tested for seasonality of residential energy. • Regression models were developed to simulate global residential energy consumption. • Factors affecting the temporal trend in residential energy use were identified. • Climate warming will induce changes in residential energy use and emissions. - Abstract: Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO_2, SO_2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

  2. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda

    2018-01-01

    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  3. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Science.gov (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.

    2018-01-01

    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  4. Air Contamination by Mercury, Emissions and Transformations-a Review.

    Science.gov (United States)

    Gworek, Barbara; Dmuchowski, Wojciech; Baczewska, Aneta H; Brągoszewska, Paulina; Bemowska-Kałabun, Olga; Wrzosek-Jakubowska, Justyna

    2017-01-01

    The present and future air contamination by mercury is and will continue to be a serious risk for human health. This publication presents a review of the literature dealing with the issues related to air contamination by mercury and its transformations as well as its natural and anthropogenic emissions. The assessment of mercury emissions into the air poses serious methodological problems. It is particularly difficult to distinguish between natural and anthropogenic emissions and re-emissions from lands and oceans, including past emissions. At present, the largest emission sources include fuel combustion, mainly that of coal, and "artisanal and small-scale gold mining" (ASGM). The distinctly highest emissions can be found in South and South-East Asia, accounting for 45% of the global emissions. The emissions of natural origin and re-emissions are estimated at 45-66% of the global emissions, with the largest part of emissions originating in the oceans. Forecasts on the future emission levels are not unambiguous; however, most forecasts do not provide for reductions in emissions. Ninety-five percent of mercury occurring in the air is Hg 0 -GEM, and its residence time in the air is estimated at 6 to 18 months. The residence times of its Hg II -GOM and that in Hg p -TPM are estimated at hours and days. The highest mercury concentrations in the air can be found in the areas of mercury mines and those of ASGM. Since 1980 when it reached its maximum, the global background mercury concentration in the air has remained at a relatively constant level.

  5. Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes?

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2008-08-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC are a chief uncertainty in calculating the burdens of important atmospheric compounds like tropospheric ozone or secondary organic aerosol, reflecting either imperfect chemical oxidation mechanisms or unreliable emission estimates, or both. To provide a starting point for a more systematic discussion we review here global isoprene and monoterpene emission estimates to-date. We note a surprisingly small variation in the predictions of global isoprene emission rate that is in stark contrast with our lack of process understanding and the small number of observations for model parameterisation and evaluation. Most of the models are based on similar emission algorithms, using fixed values for the emission capacity of various plant functional types. In some cases, these values are very similar but differ substantially in other models. The similarities with regard to the global isoprene emission rate would suggest that the dominant parameters driving the ultimate global estimate, and thus the dominant determinant of model sensitivity, are the specific emission algorithm and isoprene emission capacity. But the models also differ broadly with regard to their representation of net primary productivity, method of biome coverage determination and climate data. Contrary to isoprene, monoterpene estimates show significantly larger model-to-model variation although variation in terms of leaf algorithm, emission capacities, the way of model upscaling, vegetation cover or climatology used in terpene models are comparable to those used for isoprene. From our summary of published studies there appears to be no evidence that the terrestrial modelling community has been any more successful in "resolving unknowns" in the mechanisms that control global isoprene emissions, compared to global monoterpene emissions. Rather, the proliferation of common parameterization schemes within a large variety of model platforms

  6. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  7. Importance of Sulfate Aerosol in Evaluating the Relative Contributions of Regional Emissions to the Historical Global Temperature Change

    International Nuclear Information System (INIS)

    Andronova, N.; Schlesinger, M.

    2004-01-01

    During the negotiations of the Kyoto Protocol the delegation of Brazil presented an approach for distributing the burden of emissions reductions among the Parties based on the effect of their cumulative historical emissions on the global-average near-surface temperature. The Letter to the Parties does not limit the emissions to be considered to be only greenhouse gas (GHG) emissions. Thus, in this paper we explore the importance of anthropogenic SOx emissions that are converted to sulfate aerosol in the atmosphere, together with the cumulative greenhouse gas emissions, in attributing historical temperature change. We use historical emissions and our simple climate model to estimate the relative contributions to global warming of the regional emissions by four Parties: OECD90, Africa and Latin America, Asia, and Eastern Europe and the Former Soviet Union. Our results show that for most Parties the large warming contributed by their GHG emissions is largely offset by the correspondingly large cooling by their SOx emissions. Thus, OECD90 has become the dominant contributor to recent global warming following its large reduction in SOx emissions after 1980

  8. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  9. Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model

    Science.gov (United States)

    Xu, Rongting; Tian, Hanqin; Lu, Chaoqun; Pan, Shufen; Chen, Jian; Yang, Jia; Zhang, Bowen

    2017-07-01

    To accurately assess how increased global nitrous oxide (N2O) emission has affected the climate system requires a robust estimation of the preindustrial N2O emissions since only the difference between current and preindustrial emissions represents net drivers of anthropogenic climate change. However, large uncertainty exists in previous estimates of preindustrial N2O emissions from the land biosphere, while preindustrial N2O emissions on the finer scales, such as regional, biome, or sector scales, have not been well quantified yet. In this study, we applied a process-based Dynamic Land Ecosystem Model (DLEM) to estimate the magnitude and spatial patterns of preindustrial N2O fluxes at the biome, continental, and global level as driven by multiple environmental factors. Uncertainties associated with key parameters were also evaluated. Our study indicates that the mean of the preindustrial N2O emission was approximately 6.20 Tg N yr-1, with an uncertainty range of 4.76 to 8.13 Tg N yr-1. The estimated N2O emission varied significantly at spatial and biome levels. South America, Africa, and Southern Asia accounted for 34.12, 23.85, and 18.93 %, respectively, together contributing 76.90 % of global total emission. The tropics were identified as the major source of N2O released into the atmosphere, accounting for 64.66 % of the total emission. Our multi-scale estimates provide a robust reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere

  10. Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model

    Directory of Open Access Journals (Sweden)

    R. Xu

    2017-07-01

    Full Text Available To accurately assess how increased global nitrous oxide (N2O emission has affected the climate system requires a robust estimation of the preindustrial N2O emissions since only the difference between current and preindustrial emissions represents net drivers of anthropogenic climate change. However, large uncertainty exists in previous estimates of preindustrial N2O emissions from the land biosphere, while preindustrial N2O emissions on the finer scales, such as regional, biome, or sector scales, have not been well quantified yet. In this study, we applied a process-based Dynamic Land Ecosystem Model (DLEM to estimate the magnitude and spatial patterns of preindustrial N2O fluxes at the biome, continental, and global level as driven by multiple environmental factors. Uncertainties associated with key parameters were also evaluated. Our study indicates that the mean of the preindustrial N2O emission was approximately 6.20 Tg N yr−1, with an uncertainty range of 4.76 to 8.13 Tg N yr−1. The estimated N2O emission varied significantly at spatial and biome levels. South America, Africa, and Southern Asia accounted for 34.12, 23.85, and 18.93 %, respectively, together contributing 76.90 % of global total emission. The tropics were identified as the major source of N2O released into the atmosphere, accounting for 64.66 % of the total emission. Our multi-scale estimates provide a robust reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere

  11. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation

    Directory of Open Access Journals (Sweden)

    K. Miyazaki

    2017-01-01

    underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr−1 and 2014 (47.5 Tg N yr−1.

  12. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    Directory of Open Access Journals (Sweden)

    Liam Wagner

    Full Text Available The United Nations Conference on Climate Change (Paris 2015 reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1 is used to forecast global energy demand growth (International Energy Agency and BP, which is driven by an increase of the global population (UN, energy use per person and real GDP (World Bank and Maddison. Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  13. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    Science.gov (United States)

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  14. Movement of global warming issues

    International Nuclear Information System (INIS)

    Sugiyama, Taishi

    2015-01-01

    This paper summarizes the report of IPCC (Intergovernmental Panel on Climate Change), and the movement of the global warming issues as seen from the United Nations Framework Convention on Climate Change (Conference of the Parties: COP) and the policy discussions in Japan. From the Fifth Assessment Report published by IPCC, it shows the following items: (1) increasing trends of greenhouse effect gas emissions during 1970 and 2010, (2) trends in world's greenhouse effect gas emissions according to income segment, and (3) factor analysis of changes in greenhouse effect gas emissions. Next, it takes up the greenhouse gas emission scenario of IPCC, shows the scenario due to temperature rise pattern, and introduces the assumption of emission reduction due to BECCS. Regarding the 2 deg. scenario that has become a hot topic in international negotiations, it describes the reason for difficulties in its implementation. In addition, as the international trends of global warming, it describes the agreement of numerical targets for emissions at COP3 (Kyoto Conference) and the subsequent movements. Finally, it introduces Japan's measures against global warming, as well as the future movement. (A.O.)

  15. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  16. Fusion power in a future low carbon global electricity system

    DEFF Research Database (Denmark)

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  17. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    Science.gov (United States)

    Xiang, Bin; Montzka, Stephen A.; Miller, Scot M.; Elkins, James W.; Moore, Fred L.; Atlas, Elliot L.; Miller, Ben R.; Weiss, Ray F.; Prinn, Ronald G.; Wofsy, Steven C.

    2014-01-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. PMID:25422438

  18. Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions

    International Nuclear Information System (INIS)

    Smith, Jo; Nayak, Dali Rani; Smith, Pete

    2014-01-01

    Onshore wind energy is a key component of the renewable energies used by governments to reduce carbon emissions from electricity production, but will carbon emissions be reduced when wind farms are located on carbon-rich peatands? Wind farms are often located in uplands because most are of low agricultural value, are distant from residential areas, and are windy. Many UK uplands are peatlands, with layers of accumulated peat that represent a large stock of soil carbon. When peatlands are drained for construction there is a higher risk of net carbon loss than for mineral soils. Previous work suggests that wind farms sited on peatlands can reduce net carbon emissions if strictly managed for maximum retention of carbon. Here we show that, whereas in 2010, most sites had potential to provide net carbon savings, by 2040 most sites will not reduce carbon emissions even with careful management. This is due to projected changes in the proportion of fossil fuels used to generate electricity. The results suggest future policy should avoid constructing wind farms on undegraded peatlands unless drainage of peat is minimal and the volume excavated in foundations can be significantly reduced compared to energy output. - Highlights: • Future wind farms located on undegraded peats will not reduce carbon emissions. • This is due to projected changes in fossil fuels used to generate electricity. • Future policy should avoid constructing wind farms on undegraded peats

  19. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  20. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    Science.gov (United States)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  1. Bird Species and Climate Change. The Global Status Report. A synthesis of current scientific understanding of anthropogenic climate change impacts on global bird species now, and projected future effects

    International Nuclear Information System (INIS)

    Wormworth, J.; Mallon, K.

    2006-01-01

    The results of a global analysis of current and future impacts of climate change on birds are presented. The report reviews more than 200 research reports to assemble a clear and consistent picture of climatic risk to this important animal group, illustrated with numerous examples and case studies. It is found that: climate change now affects bird species' behaviour, ranges and population dynamics; some bird species are already experiencing strong negative impacts from climate change; and in future, subject to greenhouse gas emissions levels and climatic response, climate change will put large numbers of bird species at risk of extinction, with estimates of extinction rates varying from 2 to 72%, depending on the region, climate scenario and potential for birds to shift to new habitat

  2. Bird Species and Climate Change. The Global Status Report. A synthesis of current scientific understanding of anthropogenic climate change impacts on global bird species now, and projected future effects

    Energy Technology Data Exchange (ETDEWEB)

    Wormworth, J.; Mallon, K. [Climate Risk Pty Limited, Fairlight (Australia)

    2006-07-01

    The results of a global analysis of current and future impacts of climate change on birds are presented. The report reviews more than 200 research reports to assemble a clear and consistent picture of climatic risk to this important animal group, illustrated with numerous examples and case studies. It is found that: climate change now affects bird species' behaviour, ranges and population dynamics; some bird species are already experiencing strong negative impacts from climate change; and in future, subject to greenhouse gas emissions levels and climatic response, climate change will put large numbers of bird species at risk of extinction, with estimates of extinction rates varying from 2 to 72%, depending on the region, climate scenario and potential for birds to shift to new habitat.

  3. Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data

    Directory of Open Access Journals (Sweden)

    D. Stroppiana

    2010-12-01

    Full Text Available We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture. Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3 and 1422 Tg CO (VGT. Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100% and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31% and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64–74%, 23–32% and 3–4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month and spatial (0.5° × 0.5° cell dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions.

  4. Carbon emissions and economic development: future trajectories based on historical experience

    International Nuclear Information System (INIS)

    Heil, M.T.

    2001-01-01

    This paper estimates the historic relationship between carbon emissions and GDP using data across countries and across time. We combine this relationship with plausible projections for GDP and population growth to construct a model that offers insights into the likely path of global emissions in the next century. In addition, we experiment with a method for incorporating oil prices into the model. Our analysis provides independent confirmation of the business-as-usual forecasts generated by the larger structural models. (author)

  5. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  6. Control of mercury emissions: policies, technologies, and future trends

    OpenAIRE

    Rhee, Seung-Whee

    2015-01-01

    Seung-Whee Rhee Department of Environmental Engineering, Kyonggi University, Suwon, Republic of Korea Abstract: Owing to the Minamata Convention on Mercury and the Global Mercury Partnership, policies and regulations on mercury management in advanced countries were intensified by a mercury phaseout program in the mercury control strategy. In developing countries, the legislative or regulatory frameworks on mercury emissions are not established specifically, but mercury management is designed...

  7. Contributions of projected land use to global radiative forcing ascribed to local sources

    Science.gov (United States)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2013-12-01

    With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas

  8. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  9. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  10. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Dumortier, Jerome; Hayes, Dermot J; Carriquiry, Miguel; Elobeid, Amani; Fabiosa, Jacinto F; Dong, Fengxia; Du Xiaodong; Martin, Pamela A; Mulik, Kranti

    2012-01-01

    We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of US beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO 2 -equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally. (letter)

  11. The role of the Arctic in future global petroleum supply

    OpenAIRE

    Lars Lindholt; Solveig Glomsrød

    2011-01-01

    The Arctic has a substantial share of global petroleum resources, but at higher costs than in most other petroleum provinces. Arctic states and petroleum companies are carefully considering the potential for future extraction in the Arctic. This paper studies the oil and gas supply from 6 arctic regions during 2010-2050 along with global economic growth and different assumptions regarding petroleum prices and resource endowments. Supply is calculated based on a global model of oil and gas mar...

  12. Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US

    International Nuclear Information System (INIS)

    Guo Jie; Zou Lele; Wei Yiming

    2010-01-01

    This paper attempts to discuss the CO 2 emissions embodied in Sino-US international trade using a sector approach. Based on an input-output model established in this study, we quantify the impact of Sino-US international trade on national and global CO 2 emissions. Our initial findings reveal that: In 2005, the US reduced 190.13 Mt CO 2 emissions through the consumption of imported goods from China, while increasing global CO 2 emissions by about 515.25 Mt. Similarly, China reduced 178.62 Mt CO 2 emissions through the consumption of US goods, while reducing global CO 2 emissions by 129.93 Mt. Sino-US international trade increased global CO 2 emissions by 385.32 Mt as a whole, of which the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors contributed an 86.71% share. Therefore, we suggest that accelerating the adjustment of China's trade structure and export of US advanced technologies and experience related to clean production and energy efficiency to China as the way to reduce the negative impact of Sino-US trade on national and global CO 2 emissions. This behavior should take into account the processing and manufacturing industries as a priority, especially the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors.

  13. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    Hoppenau, S.

    1992-01-01

    A model on the educational level is described to estimate effective future atmospheric CO 2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO 2 emissions. The model can be handled on a PC or even on a pocket calculator

  14. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  15. CO2 emissions driven by wind are produced at global scale

    Science.gov (United States)

    Rosario Moya, M.; Sánchez-Cañete, Enrique P.; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; López-Ballesteros, Ana; Oyonarte, Cecilio; Domingo, Francisco

    2017-04-01

    emissions occur globally and therefore, their contribution to the global NEE requires further investigation in order to better understand its drivers.

  16. Global environment and cogeneration

    International Nuclear Information System (INIS)

    Miyahara, Atsushi

    1992-01-01

    The environment problems on global scale have been highlighted in addition to the local problems due to the rapid increase of population, the increase of energy demand and so on. The global environment summit was held in Brazil. Now, global environment problems are the problems for mankind, and their importance seems to increase toward 21st century. In such circumstances, cogeneration can reduce carbon dioxide emission in addition to energy conservation, therefore, attention has been paid as the countermeasure for global environment. The background of global environment problems is explained. As to the effectiveness of cogeneration for global environment, the suitability of city gas to environment, energy conservation, the reduction of carbon dioxide and nitrogen oxides emission are discussed. As for the state of spread of cogeneration, as of March, 1992, those of 2250 MW in terms of power generation capacity have been installed in Japan. It is forecast that cogeneration will increase hereafter. As the future systems of cogeneration, city and industry energy center conception, industrial repowering, multiple house cogeneration and fuel cells are described. (K.I.)

  17. The future of nuclear power worldwide and the role of the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    2008-01-01

    This presentation is entitled, 'The Future of Nuclear Power Worldwide and the Role of the Global Nuclear Energy Partnership', and the core message in one sentence is: When we look at the challenges of meeting our growing energy demands, providing for energy security and reducing greenhouse gas emissions, we must conclude that nuclear power has to play a significant and growing role in meeting these challenges. Similarly, the mission of the Global Nuclear Energy Partnership is to foster the safe and secure worldwide expansion of nuclear energy. GNEP comes at a crucial time in the burgeoning expansion of nuclear power. It is the only comprehensive proposal to close the nuclear fuel cycle in the United States, and engage the international community to minimize proliferation risks as well as provide and benefit from cooperation in policy formation, technical support, and technology and infrastructure development. Nuclear power's poised renaissance is encouraging, but it will require public support, expanded R and D activities and facilities, and increases in human capital needed for wide-scale construction and operation of new nuclear plants. Despite recent political currents, Germany can, too, become a part of this renaissance and become a full partner in the global partnership that shares a common vision for nuclear power's expansion. (orig.)

  18. Scientific Achievements of Global ENA Imaging and Future Outlook

    Science.gov (United States)

    Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.

    2017-12-01

    Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their

  19. Carbon dioxide emissions from Russia's electricity sector: future scenarios

    International Nuclear Information System (INIS)

    Steenhof, Paul A.; Hill, Malcolm R.

    2006-01-01

    This article investigates future greenhouse gas emission scenarios for Russia's electricity sector, a topic of importance since Russia's ratification of the Kyoto Protocol in November 2004. Eleven scenarios are constructed to the year 2020 considering economic and technological details in both the demand and supply sides of the sector. The scenarios are based upon a thorough review of the different factors controlling carbon dioxide emissions, including potential economic growth, changes in energy efficiency and technological development, and that Russia may export large amounts of natural gas to European and Asian markets. The most likely scenario is that Russia will double industrial output over the next 10 years, increase energy efficiency in the demand sector, will remain consistent to the goals of the Energy Strategy 2020 and will implement more efficient technology in the electricity supply sector. Consequently, carbon dioxide emissions will still be 102 million tonnes below 1990 levels in 2010, representing a significant source for emission reduction credits available to be sold on international markets or transferred to the next crediting period. (Author)

  20. Potential for reducing global carbon emissions from electricity production-A bench marking analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ang, B.W.; Zhou, P.; Tay, L.P. [National University of Singapore (Singapore). Department of Industrial and Systems Engineering

    2011-05-15

    We present five performance indicators for electricity generation for 129 countries using the 2005 data. These indicators, measured at the national level, are the aggregate CO{sub 2} intensity of electricity production, the efficiencies of coal, oil and gas generation and the share of electricity produced from non-fossil fuels. We conduct a study on the potential for reducing global energy-related CO{sub 2} emissions from electricity production through simple bench marking. This is performed based on the last four performance indicators and the construction of a cumulative curve for each of these indicators. It is found that global CO{sub 2} emissions from electricity production would be reduced by 19% if all these indicators are benchmarked at the 50th percentile. Not surprisingly, the emission reduction potential measured in absolute terms is the highest for large countries such as China, India, Russia and the United States. When the potential is expressed as a percentage of a country's own emissions, few of these countries appear in the top-five list. 14 refs., 8 figs., 4 tabs.

  1. Predicting future UK housing stock and carbon emissions

    International Nuclear Information System (INIS)

    Natarajan, Sukumar; Levermore, Geoffrey J.

    2007-01-01

    This paper presents a novel method for exploring future transformations in the UK housing stock. The method is shown to be more robust and faster than existing methods through various tests. A Java-based implementation of the method in a new model of the UK housing stock, DECarb, is examined using a back-cast scenario from 1970 to 1996. The results show an average difference of -5.4% between predicted and actual energy demand. Comparison with predicted carbon emissions from the BRE's BREHOMES model shows a difference of around -0.9% for the same period. These results suggest that DECarb is likely to be an effective tool in examining future scenarios since the same objects and processes used in back-casting in the model are also used in forecasting. The model has an open framework and could therefore significantly benefit ongoing domestic and non-domestic climate futures research. (author)

  2. Delay-induced rebounds in CO2 emissions and critical time-scales to meet global warming targets

    Science.gov (United States)

    Manoli, Gabriele; Katul, Gabriel G.; Marani, Marco

    2016-12-01

    While climate science debates are focused on the attainment of peak anthropogenic CO2 emissions and policy tools to reduce peak temperatures, the human-energy-climate system can hold "rebound" surprises beyond this peak. Following the second industrial revolution, global per capita CO2 emissions (cc) experienced a punctuated growth of about 100% every 60 years, mainly attributable to technological development and its global spread. A model of the human-energy-climate system capable of reproducing past punctuated dynamics shows that rebounds in global CO2 emissions emerge due to delays intrinsic to the diffusion of innovations. Such intrinsic delays in the adoption and spread of low-carbon emitting technologies, together with projected population growth, upset the warming target set by the Paris Agreement. To avoid rebounds and their negative climate effects, model calculations show that the diffusion of climate-friendly technologies must occur with lags one-order of magnitude shorter (i.e., ˜6 years) than the characteristic timescale of past punctuated growth in cc. Radically new strategies to globally implement the technological advances at unprecedented rates are needed if the current emission goals are to be achieved.

  3. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    International Nuclear Information System (INIS)

    BENKOVITZ, C.M.

    2002-01-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO(sub x), particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations

  4. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  5. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  6. Impact of reformulated gasoline on emissions from current and future vehicles

    International Nuclear Information System (INIS)

    Colucci, J.M.; Benson, J.D.

    1993-01-01

    Gasolines reformulated specifically for reducing vehicle emissions will result in the most significant changes in the U.S. refining industry since the advent of unleaded gasoline. This paper will review the results from the Auto/Oil Air Quality Improvement Research Program showing the beneficial effects on vehicle emissions of individually decreasing gasoline aromatic, olefin and sulfur contents, 90% distillation temperature, and Reid vapor pressure, and of adding oxygenates. The paper discusses the importance of reformulated gasolines for reducing emissions from existing vehicles by complying with requirements in the Clean Air Act and California's Low Emission Vehicle/Clean Fuels Program. It will show the importance of controlling Vehicle/Clean Fuels Program. It will show the importance of controlling specific aromatic and olefin compounds in gasoline, and it will discuss how automotive manufacturers will utilize reformulated gasolines to meet future stringent vehicle emission standards

  7. The future of global health education: training for equity in global health

    Directory of Open Access Journals (Sweden)

    Lisa V. Adams

    2016-11-01

    Full Text Available Abstract Background Among academic institutions in the United States, interest in global health has grown substantially: by the number of students seeking global health opportunities at all stages of training, and by the increase in institutional partnerships and newly established centers, institutes, and initiatives to house global health programs at undergraduate, public health and medical schools. Witnessing this remarkable growth should compel health educators to question whether the training and guidance that we provide to students today is appropriate, and whether it will be applicable in the next decade and beyond. Given that “global health” did not exist as an academic discipline in the United States 20 years ago, what can we expect it will look like 20 years from now and how can we prepare for that future? Discussion Most clinicians and trainees today recognize the importance of true partnership and capacity building in both directions for successful international collaborations. The challenge is in the execution of these practices. There are projects around the world where this is occurring and equitable partnerships have been established. Based on our experience and observations of the current landscape of academic global health, we share a perspective on principles of engagement, highlighting instances where partnerships have thrived, and examples of where we, as a global community, have fallen short. Conclusions As the world moves beyond the charity model of global health (and its colonial roots, it is evident that the issue underlying ethical global health practice is partnership and the pursuit of health equity. Thus, achieving equity in global health education and practice ought to be central to our mission as educators and advisors when preparing trainees for careers in this field. Seeking to eliminate health inequities wherever they are ingrained will reveal the injustices around the globe and in our own cities and

  8. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    Science.gov (United States)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national

  9. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  10. Exploring future scenarios for the global supply chain of tuna

    Science.gov (United States)

    Mullon, C.; Guillotreau, P.; Galbraith, E. D.; Fortilus, J.; Chaboud, C.; Bopp, L.; Aumont, O.; Kaplan, D.

    2017-06-01

    The abundance of tuna, an important top predator that ranges throughout tropical and subtropical oceans, is now largely determined by fishing activity. Fishing activity, in turn, is determined by the interaction of fish availability, fishing capacity, fishing costs and global markets for tuna products. In the face of overfishing, the continued sustainable supply of tuna is likely to require improved global governance, that would benefit from modeling frameworks capable of integrating market forces with the availability of fish in order to consider alternative future projections. Here we describe such a modeling framework, in which we develop several simple, contrasting scenarios for the development of the tuna supply chain in order to illustrate the utility of the approach for global evaluation of management strategies for tuna and other complex, stock-structured fisheries. The model includes multiple national and multi-national fishing fleets, canneries and fresh/frozen markets, and connects these to global consumers using a network of flows. The model is calibrated using recent data on fish catch, cannery and fresh/frozen production, and consumption. Scenarios explore the control on future outcomes in the global tuna fishery by representing, in a simple way, the effects of (1) climate change, (2) changes in the global demand for tuna, and (3) changes in the access to fishing grounds (marine reserves). The results emphasize the potential importance of increasing demand in provoking a global collapse, and suggest that controlling tuna production by limiting technical efficiency is a potential countermeasure. Finally we discuss the outcomes in terms of potential extensions of the scenario approach allowed by this global network model of the tuna supply chain.

  11. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  12. The Influence of Emission Location on the Magnitude and Spatial Distribution of Aerosols' Climate Effects

    Science.gov (United States)

    Persad, G.; Caldeira, K.

    2017-12-01

    The global distribution of anthropogenic aerosol emissions has evolved continuously since the preindustrial era - from 20th century North American and Western European emissions hotspots to present-day South and East Asian ones. With this comes a relocation of the regional radiative, dynamical, and hydrological impacts of aerosol emissions, which may influence global climate differently depending on where they occur. A lack of understanding of this relationship between aerosol emissions' location and their global climate effects, however, obscures the potential influence that aerosols' evolving geographic distribution may have on global and regional climate change—a gap which we address in this work. Using a novel suite of experiments in the CESM CAM5 atmospheric general circulation model coupled to a slab ocean, we systematically test and analyze mechanisms behind the relative climate impact of identical black carbon and sulfate aerosol emissions located in each of 8 past, present, or projected future major emissions regions. Results indicate that historically high emissions regions, such as North America and Western Europe, produce a stronger cooling effect than current and projected future high emissions regions. Aerosol emissions located in Western Europe produce 3 times the global mean cooling (-0.34 °C) as those located in East Africa or India (-0.11 °C). The aerosols' in-situ radiative effects remain relatively confined near the emissions region, but large distal cooling results from remote feedback processes - such as ice albedo and cloud changes - that are excited more strongly by emissions from certain regions than others. Results suggest that aerosol emissions from different countries should not be considered equal in the context of climate mitigation accounting, and that the evolving geographic distribution of aerosol emissions may have a substantial impact on the magnitude and spatial distribution of global climate change.

  13. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth

    International Nuclear Information System (INIS)

    Mosnier, A.; Havlík, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A.

    2013-01-01

    We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies. - Highlights: ► We model the impact of the U.S. renewable fuel standard (RFS2). ► RFS2 would require more agricultural land and nitrogen globally. ► Increasing the mandates reduce GHG emissions within the U.S. ► Increasing the mandates increase GHG emissions in the rest of the world. ► Total GHG emissions increase with higher levels of mandate; higher share of corn-ethanol; lower productivity growth

  14. Problems in the Relationship between CO2 Emissions and Global Warming

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2005-03-01

    Full Text Available In the analysis of environmental conditions and impacts, the viewpoint that greenhouse gases, primarily anthropogenic (industrial, human carbon dioxide, play a determining role in the change of global temperatures, ( the increase experienced in the last one and a half decade, has been given widespread publicity recently. Coal-fired power plants are the first to blame for the increase in atmospheric CO2 concentrations in the last two centuries. The study indicates possibilities to increase the efficiency of coal-fired power plants, which would involve a considerable reduction in CO2 emissions with an identical production volume of electrical energy. On the basis of the analysis of the amount of fossil fuels used, the amount of CO2 emissions and changes in the concentrations of atmospheric CO2, it is shown that no correlation can be proved between the factors investigated and changes in global temperatures.

  15. First space-based derivation of the global atmospheric methanol emission fluxes

    Directory of Open Access Journals (Sweden)

    T. Stavrakou

    2011-05-01

    Full Text Available This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005. A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr−1 with a contribution of 100 Tg yr−1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr−1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55 % and Indonesia (up to 58 %, whereas more moderate reductions are recorded in the Eastern US (20–25 % and Central Africa (25–35 %. On the other hand, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5 and Western US (factor of 2, probably due to a source of methanol specific to these ecosystems which

  16. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Stolarski, Richard S; Waugh, Darryn W; Douglass, Anne R; Oman, Luke D

    2015-01-01

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) will become increasingly important in determining the future of the ozone layer. N 2 O increases lead to increased production of nitrogen oxides (NO x ), contributing to ozone depletion. CO 2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N 2 O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO 2 and N 2 O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO 2 and N 2 O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  17. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  18. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    Science.gov (United States)

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  19. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  20. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Linwood Pendleton

    Full Text Available Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'. Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  1. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  2. Global organic carbon emissions from primary sources from 1960 to 2009

    Science.gov (United States)

    Huang, Ye; Shen, Huizhong; Chen, Yilin; Zhong, Qirui; Chen, Han; Wang, Rong; Shen, Guofeng; Liu, Junfeng; Li, Bengang; Tao, Shu

    2015-12-01

    In an attempt to reduce uncertainty, global organic carbon (OC) emissions from a total of 70 sources were compiled at 0.1° × 0.1° resolution for 2007 (PKU-OC-2007) and country scale from 1960 to 2009. The compilation took advantage of a new fuel-consumption data product (PKU-Fuel-2007) and a series of newly published emission factors (EFOC) in developing countries. The estimated OC emissions were 32.9 Tg (24.1-50.6 Tg as interquartile range), of which less than one third was anthropogenic in origin. Uncertainty resulted primarily from variations in EFOC. Asia, Africa, and South America had high emissions mainly because of residential biomass fuel burning or wildfires. Per-person OC emission in rural areas was three times that of urban areas because of the relatively high EFOC of residential solid fuels. Temporal trend of anthropogenic OC emissions depended on rural population, and was influenced primarily by residential crop residue and agricultural waste burning. Both the OC/PM2.5 ratio and emission intensity, defined as quantity of OC emissions per unit of fuel consumption for all sources, of anthropogenic OC followed a decreasing trend, indicating continuous improvement in combustion efficiency and control measures.

  3. Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    K. Sudo

    2012-03-01

    Full Text Available A data assimilation system has been developed to estimate global nitrogen oxides (NOx emissions using OMI tropospheric NO2 columns (DOMINO product and a global chemical transport model (CTM, the Chemical Atmospheric GCM for Study of Atmospheric Environment and Radiative Forcing (CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over eastern China, the eastern United States, southern Africa, and central-western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.

  4. Greenhouse gas emissions from Swiss agriculture since 1990: implications for environmental policies to mitigate global warming

    Energy Technology Data Exchange (ETDEWEB)

    Leifeld, Jens [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)]. E-mail: jens.leifeld@fal.admin.ch; Fuhrer, Juerg [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)

    2005-08-01

    Agricultural greenhouse gas (GHG) emissions contribute significantly to global warming, and environmental protection strategies have thus to integrate emission reduction measures from this source. In Switzerland, legislation together with monetary incentives has forced primarily integrated, and to a lesser extend organic farming, both covering nowadays more than 95% of the agriculturally useful area. Though reducing greenhouse gas emissions was not a primary intention of this reorganisation, the measures were successful in reducing the overall emissions of nitrous oxide and methane by 10% relative to 1990. A reduction of the animal herd, namely of dairy cattle, non-dairy cattle and swine, and decreasing inputs of mineral N are the main contributors to the achieved emission reduction. Crop productivity was not negatively affected and milk productivity even increased, referring to the ecological potential of agricultural reorganisation that has been tapped. Total meat production declined proportional to the animal herd. Stabilised animal numbers and fertiliser use during the last 4 years refer to an exhaustion of future reduction potentials without further legislative action because this stabilisation is most likely due to the adaptation to the production guidelines. A comparison of emission trends and carbon sequestration potentials in the broader context of the EU15 reveals that nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) have been reduced more efficiently most probably due to the measures taken, but that sequestration potentials are smaller than in the EU15 mainly because of differences in the agricultural structure. The change from an intensified towards a more environmental sound integrated production has a significant reduction potential, but in any case, agriculture will remain a net GHG source in spite of emission mitigation and carbon sequestration.

  5. N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios

    Directory of Open Access Journals (Sweden)

    H. Lotze-Campen

    2012-10-01

    Full Text Available Reactive nitrogen (Nr is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.

  6. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from remotely sensed data.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo

    2017-07-01

    Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2  > 0.8) and continental levels (R 2  > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2  80%) but showed small variations through the years (<40%).

  7. Chinese CO2 emission flows have reversed since the global financial crisis.

    Science.gov (United States)

    Mi, Zhifu; Meng, Jing; Guan, Dabo; Shan, Yuli; Song, Malin; Wei, Yi-Ming; Liu, Zhu; Hubacek, Klaus

    2017-11-23

    This study seeks to estimate the carbon implications of recent changes in China's economic development patterns and role in global trade in the post-financial-crisis era. We utilised the latest socioeconomic datasets to compile China's 2012 multiregional input-output (MRIO) table. Environmentally extended input-output analysis and structural decomposition analysis (SDA) were applied to investigate the driving forces behind changes in CO 2 emissions embodied in China's domestic and foreign trade from 2007 to 2012. Here we show that emission flow patterns have changed greatly in both domestic and foreign trade since the financial crisis. Some economically less developed regions, such as Southwest China, have shifted from being a net emission exporter to being a net emission importer. In terms of foreign trade, emissions embodied in China's exports declined from 2007 to 2012 mainly due to changes in production structure and efficiency gains, while developing countries became the major destination of China's export emissions.

  8. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  9. Governing Global Climate Change: Past Achievements, Future Prospects

    Directory of Open Access Journals (Sweden)

    Ella Kokotsis

    2014-11-01

    Full Text Available The cumulative effects of a significantly changing climate are projected to have disastrous implications on the world’s natural habitats, and along with that, are projected to drastically increase the rate and likelihood of violent conflict globally, particularly in high-density, urban, poverty hotspots. Limiting the effects of a changing climate is thus critical in influencing multiple societal goals including equitable sustainable development, human health, biodiversity, food security and access to reliable energy sources. This paper argues that the G7/8 has led global climate governance in ways other international environmental institu­tions have largely failed to do. It has done so largely by placing climate protection at the forefront of its policy objectives, alongside economic, health, energy and security goals, and reaching consensus repeatedly amongst its leaders on the impor­tance of stabilizing emissions through energy efficiency, conservation, investment and technological innovation. Moreover, this chapter argues that the summit’s predominant capability, its constricted participation, democratic convergence and political cohesion – as well as the combined effects of global shocks – have all had positive impacts on the G7/8’s success in mitigating climate change. Following a detailed process-tracing exercise over the summit’s 40-year history in which clear surges and retreats on global climate governance are outlined, this paper concludes by assessing the G7/8’s accountability record on climate mitigation and outlines a set of prescriptive recommendations, allowing for the delivery of a more tangible, coherent, results-driven accountability process for global climate governance.

  10. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  11. The effect of future outdoor air pollution on human health and the contribution of climate change

    Science.gov (United States)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  12. Global CO_2-energy emissions in 2007. China becomes the largest emitter along with the United States - June 2008

    International Nuclear Information System (INIS)

    2008-01-01

    China becomes the largest emitter along with the United States. Contents: 1990-2007 evolution (key figures of Yearly average evolutions); Global CO_2-energy emissions in 2007: 27,3 GtCO_2; Global CO_2-energy emissions have increased by 3,2% in 2007, largely driven by China. Since 1990, China has more than doubled its CO_2-energy emissions, to reach the same emission level as the USA in 2007. Two very contrasting tendencies appear since 1990: stabilization of emissions in Annex B countries, boom in China and India. Since 1990, more than half of CO_2-energy emissions growth is (logically) due to coal. (authors)

  13. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets

    Science.gov (United States)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin

    2017-09-01

    A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.

  14. Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA

    Directory of Open Access Journals (Sweden)

    Chia-Lin Chang

    2017-10-01

    Full Text Available Recent research shows that the efforts to limit climate change should focus on reducing the emissions of carbon dioxide over other greenhouse gases or air pollutants. Many countries are paying substantial attention to carbon emissions to improve air quality and public health. The largest source of carbon emissions from human activities in some countries in Europe and elsewhere is from burning fossil fuels for electricity, heat, and transportation. The prices of fuel and carbon emissions can influence each other. Owing to the importance of carbon emissions and their connection to fossil fuels, and the possibility of [1] Granger (1980 causality in spot and futures prices, returns, and volatility of carbon emissions, crude oil and coal have recently become very important research topics. For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily futures prices for carbon emissions. For the European Union (EU, there are no daily spot prices for coal or carbon emissions, but there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily prices will be used to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, crude oil, and coal. As the estimators are based on quasi-maximum likelihood estimators (QMLE under the incorrect assumption of a normal distribution, we modify the likelihood ratio (LR test to a quasi-likelihood ratio test (QLR to test the multivariate conditional volatility Diagonal BEKK model, which estimates and tests volatility spillovers, and has valid regularity conditions and asymptotic properties, against the alternative Full BEKK model, which also estimates volatility spillovers, but has valid regularity conditions and asymptotic properties only under the null hypothesis of zero off-diagonal elements. Dynamic hedging strategies by using optimal hedge ratios are suggested to analyse market fluctuations in the

  15. Dynamics of the oil transition: Modeling capacity, depletion, and emissions

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Plevin, Richard J.; Farrell, Alexander E.

    2010-01-01

    The global petroleum system is undergoing a shift to substitutes for conventional petroleum (SCPs). The Regional Optimization Model for Emissions from Oil Substitutes, or ROMEO, models this oil transition and its greenhouse gas impacts. ROMEO models the global liquid fuel market in an economic optimization framework, but in contrast to other models it solves each model year sequentially, with investment and production optimized under uncertainty about future prevailing prices or resource quantities. ROMEO includes more hydrocarbon resource types than integrated assessment models of climate change. ROMEO also includes the carbon intensities and costs of production of these resources. We use ROMEO to explore the uncertainty of future costs, emissions, and total fuel production under a number of scenarios. We perform sensitivity analysis on the endowment of conventional petroleum and future carbon taxes. Results show incremental emissions from production of oil substitutes of ∼ 0-30 gigatonnes (Gt) of carbon over the next 50 years (depending on the carbon tax). Also, demand reductions due to the higher cost of SCPs could reduce or eliminate these increases. Calculated emissions are highly sensitive to the endowment of conventional oil and less sensitive to a carbon tax.

  16. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-10-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar-Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  17. Photosynthesis-dependent Isoprene Emission from Leaf to Planet in a Global Carbon-chemistry-climate Model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zeng, Y.; Kiang, N. Y.; Alienov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; hide

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the FarquharBallBerry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50 of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 6496) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr1 that increases by 30 in the artificial absence of plant water stress and by 55 for potential natural vegetation.

  18. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, Almut; Schurgers, G.; Amelynck, C.; Goldstein, Allen H.; Guenther, Alex B.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, Karena A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serca, D.

    2013-10-22

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball- Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96 %) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  19. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework

    NARCIS (Netherlands)

    Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D A; Brogaard, Sara; Van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut

    2016-01-01

    We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS

  20. Global Water Availability and Requirements for Future Food Production

    NARCIS (Netherlands)

    Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K.

    2011-01-01

    This study compares, spatially explicitly and at global scale, per capita water availability and water requirements for food production presently (1971-2000) and in the future given climate and population change (2070-99). A vegetation and hydrology model Lund-Potsdam-Jena managed Land (LPJmL) was

  1. Explosive growth in African combustion emissions from 2005 to 2030

    International Nuclear Information System (INIS)

    Liousse, C; Rosset, R; Assamoi, E; Criqui, P; Granier, C

    2014-01-01

    Emissions of gases and particles from the combustion of fossil fuels and biofuels in Africa are expected to increase significantly in the near future due to the rapid growth of African cities and megacities. There is currently no regional emissions inventory that provides estimates of anthropogenic combustion for the African continent. This work provides a quantification of the evolution of African combustion emissions from 2005 to 2030, using a bottom-up method. This inventory predicts very large increases in black carbon, organic carbon, CO, NO x , SO 2 and non-methane hydrocarbon emissions if no emission regulations are implemented. This paper discusses the effectiveness of scenarios involving certain fuels, specific to Africa in each activity sector and each region (western, eastern, northern and southern Africa), to reduce the emissions. The estimated trends in African emissions are consistent with emissions provided by global inventories, but they display a larger range of values. African combustion emissions contributed significantly to global emissions in 2005. This contribution will increase more significantly by 2030: organic carbon emissions will for example make up 50% of the global emissions in 2030. Furthermore, we show that the magnitude of African anthropogenic emissions could be similar to African biomass burning emissions around 2030. (paper)

  2. Global-scale hydrological response to future glacier mass loss

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2018-01-01

    Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1-4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (`peak water') is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

  3. [Spatiotemporal variations of natural wetland CH4 emissions over China under future climate change].

    Science.gov (United States)

    Liu, Jian-gong; Zhu, Qiu-an; Shen, Yan; Yang, Yan-zheng; Luo, Yun-peng; Peng, Chang-hui

    2015-11-01

    Based on a new process-based model, TRIPLEX-GHG, this paper analyzed the spatio-temporal variations of natural wetland CH4 emissions over China under different future climate change scenarios. When natural wetland distributions were fixed, the amount of CH4 emissions from natural wetland ecosystem over China would increase by 32.0%, 55.3% and 90.8% by the end of 21st century under three representative concentration pathways (RCPs) scenarios, RCP2. 6, RCP4.5 and RCP8.5, respectively, compared with the current level. Southern China would have higher CH4 emissions compared to that from central and northern China. Besides, there would be relatively low emission fluxes in western China while relatively high emission fluxes in eastern China. Spatially, the areas with relatively high CH4 emission fluxes would be concentrated in the middle-lower reaches of the Yangtze River, the Northeast and the coasts of the Pearl River. In the future, most natural wetlands would emit more CH4 for RCP4.5 and RCP8.5 than that of 2005. However, under RCP2.6 scenario, the increasing trend would be curbed and CH4 emissions (especially from the Qinghai-Tibet Plateau) begin to decrease in the late 21st century.

  4. Spatial-Temporal Variations of Embodied Carbon Emission in Global Trade Flows: 41 Economies and 35 Sectors

    OpenAIRE

    Jing Tian; Hua Liao; Ce Wang

    2014-01-01

    The spatial-temporal variations of embodied carbon emissions in international trade at global scope are still unclear. This paper studies the variations of outflows and inflows of embodied carbon emissions at 35-disaggregated sectors level of 41 countries and regions, and an integrated world input-output model is employed. It also examines what would happen if there were not international trade flows in China, USA and Finland, the representatives of three different levels of the global balanc...

  5. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  6. Evaluation of the FEERv1.0 Global Top-Down Biomass Burning Emissions Inventory over Africa

    Science.gov (United States)

    Ellison, L.; Ichoku, C. M.

    2014-12-01

    With the advent of the Fire Energetics and Emissions Research (FEER) global top-down biomass burning emissions product from NASA Goddard Space Flight Center, a subsequent effort is going on to analyze and evaluate some of the main (particulate and gaseous) constituents of this emissions inventory against other inventories of biomass burning emissions over the African continent. There is consistent and continual burning during the dry season in NSSA of many small slash-and-burn fires that, though may be relatively small fires individually, collectively contribute 20-25% of the global total carbon emissions from biomass burning. As a top-down method of estimating biomass-burning emissions, FEERv1.0 is able to yield higher and more realistic emissions than previously obtainable using bottom-up methods. Results of such comparisons performed in detail over Africa will be discussed in this presentation. This effort is carried out in conjunction with a NASA-funded interdisciplinary research project investigating the effects of biomass burning on the regional climate system in Northern Sub-Saharan Africa (NSSA). Essentially, that project aims to determine how fires may have affected the severe droughts that plagued the NSSA region in recent history. Therefore, it is imperative that the biomass burning emissions input data over Africa be as accurate as possible in order to obtain a confident understanding of their interactions and feedbacks with the hydrological cycle in NSSA.

  7. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    Science.gov (United States)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire

  8. High estimates of supply constrained emissions scenarios for long-term climate risk assessment

    International Nuclear Information System (INIS)

    Ward, James D.; Mohr, Steve H.; Myers, Baden R.; Nel, Willem P.

    2012-01-01

    The simulated effects of anthropogenic global warming have become important in many fields and most models agree that significant impacts are becoming unavoidable in the face of slow action. Improvements to model accuracy rely primarily on the refinement of parameter sensitivities and on plausible future carbon emissions trajectories. Carbon emissions are the leading cause of global warming, yet current considerations of future emissions do not consider structural limits to fossil fuel supply, invoking a wide range of uncertainty. Moreover, outdated assumptions regarding the future abundance of fossil energy could contribute to misleading projections of both economic growth and climate change vulnerability. Here we present an easily replicable mathematical model that considers fundamental supply-side constraints and demonstrate its use in a stochastic analysis to produce a theoretical upper limit to future emissions. The results show a significant reduction in prior uncertainty around projected long term emissions, and even assuming high estimates of all fossil fuel resources and high growth of unconventional production, cumulative emissions tend to align to the current medium emissions scenarios in the second half of this century. This significant finding provides much-needed guidance on developing relevant emissions scenarios for long term climate change impact studies. - Highlights: ► GHG emissions from conventional and unconventional fossil fuels modelled nationally. ► Assuming worst-case: large resource, high growth, rapid uptake of unconventional. ► Long-term cumulative emissions align well with the SRES medium emissions scenario. ► High emissions are unlikely to be sustained through the second half of this century. ► Model designed to be easily extended to test other scenarios e.g. energy shortages.

  9. Emissions from international shipping. Pt. 2: Impact of future technologies - scenarios for the years 2020 and 2050

    International Nuclear Information System (INIS)

    Eyring, V.; Lauer, A.; Lemper, B.

    2004-01-01

    We use the today's fleet-average emission factors of the most important ship exhausts to calculate emission scenarios for the future. To develop plausible future scenarios we first discuss upcoming regulations and compliance with future regulations through technological improvements. We present geographically resolved emission inventory forecast scenarios for the years 2020 and 2050. The scenarios are based on some very strict assumptions of future ship traffic demand and technological improvements. The future ship traffic demand scenario is mainly determined by the economic growth and the growth in world seaborne trade and distinguishes between different ship types. The annual growth rates of sea trade volumes and expected vessel traffic density is assumed to be smaller for today's most frequently sailed routes (in particular east-west-trades) than for those that are currently less frequently sailed (in particular south-north-trades). This leads to an adjustment of the number of ships sailing the different shipping routes in 2020 and even stronger in 2050. For the future technology scenarios we assume a diesel-only fleet in 2020 resulting in an estimated fuel consumption of 422 million metric tons (Mt) and 1226 Tg CO 2 emissions. For 2050 one scenario for fuel consumption assumes that 25% of the fuel consumed by a diesel-only fleet can be saved by using future alternative propulsion plants, resulting in a fuel consumption of 422 Mt and 1339 Tg CO 2 emissions in 2050. The other scenario is a business-as-usual scenario for a diesel-only fleet even in 2050 and gives an estimate of 646 Mt and 1783 Tg CO 2 emissions in 2050. Dependent on how rapid technology improvements for diesel engines are introduced we present four different technology scenarios. (orig.)

  10. Double or quits?: The global future of civil nuclear energy

    International Nuclear Information System (INIS)

    Beck, Peter; Grimston, Malcolm

    2004-01-01

    Among the many disputes in the field of energy, in many countries none appear to be as acrimonious as those surrounding nuclear power. Its supporters are confident that nuclear power will have an important long-term future on the global energy scene, while its critics are equally confident that its days are numbered and that it was only developed to provide a political fig-leaf for a nuclear weapons programme. Both sides believe the other to be thoroughly biased or stupid and there is little constructive debate between them. As the disputes rage, especially over such issues as the management of nuclear waste, the economics and safety of nuclear power compared with other sources of electricity, the possible links with nuclear weapons and the attitude of the public towards the industry, decision-making is either paralysed or dominated by those who shout loudest. As a result, governments, industry and the financial sector have in recent years found it increasingly difficult to develop policy in this field. Deciding about future energy developments requires balanced and trustworthy information about issues such as the relative environmental effects of different options, the safety of installations, economics and the availability of resources. This is of particular importance now because world energy use is expected to continue to grow significantly during this century, particularly in less developed countries. In the same period, global emissions of greenhouse gases, especially carbon dioxide, will have to be severely curbed. To meet both these requirements may well involve a step change away from being able to meet growing energy needs by depending on an ever increasing supply of carboniferous fossil fuel. To address this situation, the Royal Institute of International Affairs undertook a two-year research project, aimed at providing information from the standpoint of an organization with no vested interest in either the pro or the anti camp, but close connections to

  11. Are Emissions of Restricted Halocarbons in the USA and Canada Still Globally Significant?

    Science.gov (United States)

    Hurst, D. F.; Romashkin, P. A.; Hall, B. D.; Elkins, J. W.; Lin, J. C.; Gerbig, C.; Daube, B. C.; Wofsy, S. C.

    2004-12-01

    The global manufacture of halocarbons regulated by the Montreal Protocol has dropped substantially in response to the January 1, 1996, production phase-out deadline (1994 for halons) for developed (Article 5) countries like the United States and Canada. Contemporary emissions of these ozone-depleting substances (ODS) emanate from ongoing production in developing countries and releases of banked halocarbons world-wide. ODS emissions in developing nations can be appraised from reported production figures, but not so for developed nations where recent manufacture is negligible. Emissions in the United States and Canada are increasingly difficult to estimate because of limited information about bank sizes and release rates in the post-production era. In addition, regional- or national-scale emission estimates should no longer be derived wholly from localized measurements because of the potentially patchy spatial distributions of modern emissions. We estimate ODS emissions in the USA and Canada from >1000 simultaneous, in situ measurements each of CO and six restricted halocarbons (CFC-11, CFC-12, CFC-113, methyl chloroform, carbon tetrachloride, and halon-1211) in and above the planetary boundary layer during the 2003 CO2 Budget and Regional Airborne - North America (COBRA-NA 2003) study. The data obtained during 87 flight hours are geographically extensive (>30,000 km) including two 11,000 km flight circuits across both countries. More than 50 pollution "events" with statistically significant ODS:CO emission ratios were sampled, and for each event we have determined a flux footprint using the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The model also calculates footprint-weighted average population densities and CO fluxes which we convert to footprint-weighted average ODS fluxes using the measured ODS:CO emission ratios. Statistically robust relationships between footprint-averaged ODS fluxes and population densities for several ODS indicate that

  12. The Seasonal and Spatial Distribution of Carbon Dioxide Emissions from Fossil Fuels in Asia

    Science.gov (United States)

    Gregg, J. S.; Andres, R. J.

    2006-12-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  13. The effect of trade between China and the UK on national and global carbon dioxide emissions

    International Nuclear Information System (INIS)

    Li, You; Hewitt, C.N.

    2008-01-01

    We estimate the amount of carbon dioxide embodied in bi-lateral trade between the UK and China in 2004. Developing and applying the method of Shui and Harriss [2006. The role of CO 2 embodiment in US-China trade. Energy Policy 34, 4063-4068], the most recently available data on trade and CO 2 emissions have been updated and adjusted to calculate the CO 2 emissions embodied in the commodities traded between China and the UK. It was found that through trade with China, the UK reduced its CO 2 emissions by approximately 11% in 2004, compared with a non-trade scenario in which the same type and volume of goods are produced in the UK. In addition, due to the greater carbon-intensity and relatively less efficient production processes of Chinese industry, China-UK trade resulted in an additional 117 Mt of CO 2 to global CO 2 emissions in the same one year period, compared with a non-trade scenario in which the same type and volume of goods are produced in the UK. This represents an additional 19% to the reported national CO 2 emissions of the UK (555 Mt/y in 2004) and 0.4% of global emissions. These findings suggest that, through international trade, very significant environmental impacts can be shifted from one country to another, and that international trade can (but does not necessarily) result in globally increased greenhouse gas emissions. These results are additional to the environmental consequences of transporting goods, which are not robustly quantified here. (author)

  14. Nitrous Oxide (N2O) emissions from human waste in 1970-2050

    NARCIS (Netherlands)

    Strokal, M.; Kroeze, C.

    2014-01-01

    Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment

  15. Future urban land expansion and implications for global croplands.

    Science.gov (United States)

    Bren d'Amour, Christopher; Reitsma, Femke; Baiocchi, Giovanni; Barthel, Stephan; Güneralp, Burak; Erb, Karl-Heinz; Haberl, Helmut; Creutzig, Felix; Seto, Karen C

    2017-08-22

    Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.

  16. EU Action against Climate Change. EU emissions trading. An open scheme promoting global innovation

    International Nuclear Information System (INIS)

    2005-01-01

    The European Union is committed to global efforts to reduce the greenhouse gas emissions from human activities that threaten to cause serious disruption to the world's climate. Building on the innovative mechanisms set up under the Kyoto Protocol to the 1992 United Nations Framework Convention on Climate Change (UNFCCC) - joint implementation, the clean development mechanism and international emissions trading - the EU has developed the largest company-level scheme for trading in emissions of carbon dioxide (CO2), making it the world leader in this emerging market. The emissions trading scheme started in the 25 EU Member States on 1 January 2005

  17. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles

    NARCIS (Netherlands)

    Wagner-Riddle, Claudia; Congreves, Katelyn A.; Abalos Rodriguez, Diego; Berg, Aaron A.; Brown, Shannon E.; Ambadan, Jaison Thomas; Gao, Xiaopeng; Tenuta, Mario

    2017-01-01

    Seasonal freezing induces large thaw emissions of nitrous oxide, a trace gas that contributes to stratospheric ozone destruction and atmospheric warming. Cropland soils are by far the largest anthropogenic source of nitrous oxide. However, the global contribution of seasonal freezing to nitrous

  18. A Global Outlook to the Carbon Dioxide Emissions in the World and Emission Factors of the Thermal Power Plants in Turkey

    International Nuclear Information System (INIS)

    Atimtay, Aysel T.

    2003-01-01

    World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO 2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO 2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO 2 , NO x and CO 2 . The estimated results show that CO 2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO 2 emissions in 2020

  19. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  20. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  1. High-resolution atmospheric emission inventory of the argentine energy sector. Comparison with edgar global emission database

    Directory of Open Access Journals (Sweden)

    S. Enrique Puliafito

    2017-12-01

    Full Text Available This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution, of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road, residential and commercial. The following pollutants were included: greenhouse gases (CO2, CH4, N2O, ozone precursors (CO, NOx, VOC and other specific air quality indicators such as SO2, PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%; followed by electricity generation, with 40.9 Tg (28%; residential + commercial, with 31.24 Tg (22%; and cement and refinery production, with 14.3 Tg (10%. This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km, the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km2 of ozone precursors gases and 11.5 Mg/km2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining

  2. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Directory of Open Access Journals (Sweden)

    N. Unger

    2013-10-01

    Full Text Available We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs, prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96% and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr−1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  3. Greenhouse gas emissions related to agriculture and land-use practices

    International Nuclear Information System (INIS)

    Burke, L.M.; Lashof, D.A.

    1990-01-01

    This paper reports on the effects of increasing trace gas concentrations and concomitant climate change on agriculture which are likely to be substantial. With cropland and pasture now covering 2 , CH 4 , and N 2 O. Land clearing for agriculture and other purposes is responsible for 10 to 30% of total net CO 2 emissions; the rest is due to fossil fuel combustion. In addition, intentional burning of agricultural wastes, grasslands, and forests makes a significant contribution to global emissions of CO, CH 4 , NO x and N 2 O. Methane emissions from anaerobic respiration in rice (Oryza sativa L.) paddies and domestic animal remains account for 30 to 50% of the global total, making agriculture the dominant anthropogenic source of this gas. The amount of N 2 O emitted as a result of N fertilizer applications is highly uncertain, but may be on the order of 10% of total N 2 O emissions. Future agricultural greenhouse gas emissions will be affected by population growth, economic development, and agricultural practices. Greenhouse gas emissions are likely to increase substantially in the future unless steps are taken to control them. Investigating potential approaches to reducing these emissions while expanding production presents a major challenge to the agricultural research community

  4. Managing traffic induced emissions in the future Beirut Central Business District

    International Nuclear Information System (INIS)

    El-Fadel, Mutasem; Sbayti, Hayssam; Kayssi, Isam; Baaj, Hadi

    2003-01-01

    The increased urbanization of the Greater Beirut Area (GBA) over the past years has led severe traffic congestion due to a deficient transportation system and significant reliance on private vehicles as the primary passenger transport mode. As a result, air quality is continuously deteriorating particularly in densely populated areas. Beirut Central District (BCD), the center of economic growth in the GBA, is expected to witness adverse air quality impacts in the medium and long-term future. Hence, there is a growing need to couple the efficiency of transport activities with acceptable air quality since both factors affect the welfare of residents. The objective of the study was to evaluate the impact of selected traffic management alternatives and emission reduction strategies on air quality in the BCD area. Four traffic alternatives and three emission reduction strategies were analyzed for their effect on emission factors, total emissions and exposure levels

  5. Global Knowledge Futures: Articulating the Emergence of a New Meta-level Field

    Directory of Open Access Journals (Sweden)

    Jennifer M. Gidley

    2013-06-01

    Full Text Available In this paper I articulate a new meta-level field of studies that I call global knowledge futures—a field through which other emerging transdisciplinary fields can be integrated to cohere knowledge at a higher level. I contrast this with the current dominant knowledge paradigm of the global knowledge economy with its fragmentation, commodification and instrumentalism based on neoliberal knowledge capitalism. I take a big-picture, macrohistorical lens to the new thinking and new knowledge patterns that are emerging within the evolution of consciousness discourse. I explore three discourses: postformal studies, integral studies and planetary studies—using a fourth discourse, futures studies, to provide a macro-temporal framing. By extending the meta-fields of postformal, integral and planetary studies into a prospective future dimension, I locate areas of development where these leading-edge discourses can be brought into closer dialogue with each other. In this meeting point of four boundary-spanning discourses I identify the new meta-level field of global knowledge futures, grounded in human thinking capacities, such as creativity, imagination, dialogue and collaboration.

  6. Electron emission and work function-Past, present and future

    International Nuclear Information System (INIS)

    Yamamoto, Shigehiko

    2005-01-01

    The history of electron emission is reviewed from a standpoint of the work function and the applications. For years, in the field of thermionic emission, a great deal of efforts have been devoted to search for low work function materials with a high melting temperature, while the reduction of the local change in time of the work function rather than the work function itself has been the main issue of field emission investigations. High brightness and long life are the central targets of the emission material investigations for the scientific instrument application, while high current density and low power consumption are the guiding principles for the display application. In both fields, field emission has recently become dominant in research and development. In all above cases, the main issue in the future research works will be to analyze the work function in atomic level and thereby to understand the mechanism of the work function reduction by atom adsorption, the change in time of the local work function leading to the current fluctuation, and the relationship between microscopic and macroscopic work functions. Our attempt is discussed, where the work function in atomic level is measured by utilizing the STM technique and it is made clear how far the work function in atomic level extends its influence over the neighboring sites. As a result, a simple relationship is established between microscopic and macroscopic work functions

  7. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    Science.gov (United States)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to

  8. Bi-lateral CO_2 emissions embodied in Australia–China trade

    International Nuclear Information System (INIS)

    Jayanthakumaran, Kankesu; Liu, Ying

    2016-01-01

    This paper quantifies the CO_2 emissions embodied in bi-lateral trade between Australia and China using a sectoral input–output model. The results revealed: (1) that China performs lower than Australia in clean technology in the primary, manufacturing, energy sectors due to their overuse of coal and inefficient sectoral production processes, and (2) that China had a 30.94 Mt surplus of bi-lateral CO_2 emissions in 2010–2011 and (3) overall global emissions were reduced by 20.19 Mt through Australia–China trade in 2010–2011. The result indicates that the greater the energy efficient a country among the trading partners the lower will be the overall global CO_2 emissions. Global emissions decreased mainly because China consumed Australian primary products rather than producing them. Australia is an energy efficient producer of primary products relative to China. The bilateral trade compositions and trade volume played an important role in lowering global emissions and therefore one can view proposed China Australia Free trade Agreement positively in reducing global emissions. However, for the sustainable development, China should strengthen clean energy use and both countries should adopt measures to create an emission trading scheme in order to avoid protectionism in the form of future border price adjustments. - Highlights: •Primary (Australia) and manufactured (China) exports are a unique combination. •Quantifies CO_2 emissions embodied in bi-lateral trade between Australia and China. •Global emissions reduce because China consume Australian primary. •Australia is energy efficient producer of primary products relative to China. •Results support more trade with appropriate trade composition and volume.

  9. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    Science.gov (United States)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from 1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  10. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  11. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm.

    Directory of Open Access Journals (Sweden)

    Haruna Chiroma

    Full Text Available Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2 from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC CO2 emissions from petroleum consumption have motivated this research.The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods.An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.

  12. Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm.

    Science.gov (United States)

    Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd; Gital, Abdulsalam Ya'u; Shuib, Liyana; Abubakar, Adamu I; Rahman, Muhammad Zubair; Herawan, Tutut

    2015-01-01

    Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.

  13. Nitrous oxide (N2O). Emission inventory and options for control in the Netherlands

    NARCIS (Netherlands)

    Kroeze C; LAE

    1994-01-01

    This study was initiated to overview current knowledge on nitrous oxide (N2O). The report reviews atmospheric behaviour of N2O, global sources and sinks, Dutch emissions in 1990, options to reduce emissions, and past and future emissions. Despite the uncertainties involved, it is likely that without

  14. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

    Science.gov (United States)

    Obrist, Daniel; Kirk, Jane L; Zhang, Lei; Sunderland, Elsie M; Jiskra, Martin; Selin, Noelle E

    2018-03-01

    most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg 0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.

  15. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    Science.gov (United States)

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  16. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  17. Concerning the debate on electric-powered-vehicle emissions

    International Nuclear Information System (INIS)

    Sporckmann, B.

    1994-01-01

    The fact that electric-powered vehicles do not emit pollutants locally is obvious and must be considered as the main motive for their use. The global air pollution situation can only be of secondary importance because within the foreseeable future emissions linked to the use of electric-powered vehicles will remain within the variation width of power generation emissions that is not to be influenced. All the same, it is indispensable to consider the global situation. The author compares electric-powered vehicles with conventional ones by referring to the power generation of all federal German states. (orig.) [de

  18. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2016-08-01

    Full Text Available As formaldehyde (HCHO is a high-yield product in the oxidation of most volatile organic compounds (VOCs emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs on the global scale over 2005–2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM in order to minimize the discrepancy between the observed and modeled HCHO columns. The top–down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top–down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5 and isoprene emissions (MEGAN-MACC and GUESS-ES. The inversion indicates a moderate decrease (ca. 20 % in the average annual global fire and isoprene emissions, from 2028 Tg C in the a priori to 1653 Tg C for burned biomass, and from 343 to 272 Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formaldehyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top–down fire fluxes (30–50 % are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Amazonia (in 2005, 2007, and 2010, bushfires in Australia (in 2006 and 2011, and peat burning in Indonesia (in 2006 and 2009, whereas

  20. Distributional aspects of emissions in climate change integrated assessment models

    International Nuclear Information System (INIS)

    Cantore, Nicola

    2011-01-01

    The recent failure of Copenhagen negotiations shows that concrete actions are needed to create the conditions for a consensus over global emission reduction policies. A wide coalition of countries in international climate change agreements could be facilitated by the perceived fairness of rich and poor countries of the abatement sharing at international level. In this paper I use two popular climate change integrated assessment models to investigate the path and decompose components and sources of future inequality in the emissions distribution. Results prove to be consistent with previous empirical studies and robust to model comparison and show that gaps in GDP across world regions will still play a crucial role in explaining different countries contributions to global warming. - Research highlights: → I implement a scenario analysis with two global climate change models. → I analyse inequality in the distribution of emissions. → I decompose emissions inequality components. → I find that GDP per capita is the main Kaya identity source of emissions inequality. → Current rich countries will mostly remain responsible for emissions inequality.

  1. A Future-Oriented, Globally Based Curriculum Model for Industrial Technology.

    Science.gov (United States)

    Hacker, Michael

    1982-01-01

    Presents a future-oriented curriculum approach for industrial technology programs. Major global issues provide the basic structure for curriculum development. These issues include energy management, resource management, technological advancement, and international relations. Rationales for industrial technology are discussed and a curriculum…

  2. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  3. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  4. Global climate targets and future consumption level: an evaluation of the required GHG intensity

    International Nuclear Information System (INIS)

    Girod, Bastien; Van Vuuren, Detlef Peter; Hertwich, Edgar G

    2013-01-01

    Discussion and analysis on international climate policy often focuses on the rather abstract level of total national and regional greenhouse gas (GHG) emissions. At some point, however, emission reductions need to be translated to consumption level. In this article, we evaluate the implications of the strictest IPCC representative concentration pathway for key consumption categories (food, travel, shelter, goods, services). We use IPAT style identities to account for possible growth in global consumption levels and indicate the required change in GHG emission intensity for each category (i.e. GHG emission per calorie, person kilometer, square meter, kilogram, US dollar). The proposed concept provides guidance for product developers, consumers and policymakers. To reach the 2 °C climate target (2.1 tCO 2 -eq. per capita in 2050), the GHG emission intensity of consumption has to be reduced by a factor of 5 in 2050. The climate targets on consumption level allow discussion of the feasibility of this climate target at product and consumption level. In most consumption categories products in line with this climate target are available. For animal food and air travel, reaching the GHG intensity targets with product modifications alone will be challenging and therefore structural changes in consumption patterns might be needed. The concept opens up possibilities for further research on potential solutions on the consumption and product level to global climate mitigation. (letter)

  5. The Future of Education for All as a Global Regime of Educational Governance

    Science.gov (United States)

    Tikly, Leon

    2017-01-01

    The article considers the future of Education for All (EFA) understood as a global regime of educational governance. The article sets out an understanding of global governance, world order, power, and legitimacy within which EFA is embedded. It explains what is meant by EFA as a regime of global governance and as part of a "regime…

  6. Global environmental concerns

    International Nuclear Information System (INIS)

    Siddiqi, T.A.

    1990-01-01

    Increased concern about global climate change is leading to an examination of options for reducing the emissions of gases believed to be the principal contributors to the Greenhouse Effect. Carbon dioxide is believed to be the largest contributor to such an effect, and the use of fossil fuels is the largest source of carbon dioxide emissions. geothermal energy is likely to receive increased attention in the years ahead as a way to reduce emissions of CO 2 . Several countries in Asia and the Pacific already have active geothermal programs. The Philippines have the second-largest installed geothermal capacity in the world. Japan and New Zealand have used geothermal energy for several decades. The present and future contributions of geothermal energy to the overall energy supply and reductions in carbon dioxide emissions in Asia and the Pacific are discussed in this paper

  7. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    Science.gov (United States)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  8. Global perspectives on future nuclear energy utilisation

    International Nuclear Information System (INIS)

    Watts, G.L.

    1998-01-01

    This paper is presented as an overview of the nuclear sector from a global perspective. The aim is to show that nuclear power does have a future but that this will only be fully realised when the industry is able to demonstrate that it is part of the solution to the world's energy and environmental difficulties rather than part of the problem. The paper looks at the projected world energy demand as the population increases and countries develop, showing that nuclear power is required to meet this demand. In presenting nuclear power as a solution, the paper addresses the challenges facing us such as public confidence, environmental opposition, political issues and finance. It addresses the debate over reprocessing and direct disposal of irradiated nuclear fuel and looks at the competition from other fuels. The paper suggests how the industry might approach these issues such that nuclear power is indeed regarded globally as a solution to some of the worlds most pressing problems. (author)

  9. How to Achieve CO2 Emission Reduction Goals: What 'Jazz' and 'Symphony' Can Offer

    International Nuclear Information System (INIS)

    Rose, K.

    2013-01-01

    Achieving CO 2 emission reduction goals remains one of today's most challenging tasks. Global energy demand will grow for many decades to come. In many regions of the world cheap fossil fuels seem to be the way forward to meet ever growing energy demand. However, there are negative consequences to this, most notably increasing emission levels. Politicians and industry therefore must accept that make hard choices in this generation need to be made to bring about real changes for future generations and the planet to limit CO 2 emissions and climate change. In his presentation, prof. Rose will provide an insight into how CO 2 emission reduction goals can be set and achieved and how a balance between future energy needs and supply can be realised in the long run up to 2050 both globally and regionally. This will be done based on WEC's own leading analysis in this area, namely it recently launched World Energy Scenarios: composing energy futures to 2050 report and WEC's scenarios, Jazz and Symphony. WEC's full analysis, the complete report and supporting material is available online at: http://www.worldenergy.org/publications/2013/world-energy-scenarios-composing-energy-futures-to-2050.(author)

  10. Mitigation potential and global health impacts from emissions pricing of food commodities

    Science.gov (United States)

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Wiebe, Keith; Godfray, H. Charles J.; Rayner, Mike; Scarborough, Peter

    2017-01-01

    The projected rise in food-related greenhouse gas emissions could seriously impede efforts to limit global warming to acceptable levels. Despite that, food production and consumption have long been excluded from climate policies, in part due to concerns about the potential impact on food security. Using a coupled agriculture and health modelling framework, we show that the global climate change mitigation potential of emissions pricing of food commodities could be substantial, and that levying greenhouse gas taxes on food commodities could, if appropriately designed, be a health-promoting climate policy in high-income countries, as well as in most low- and middle-income countries. Sparing food groups known to be beneficial for health from taxation, selectively compensating for income losses associated with tax-related price increases, and using a portion of tax revenues for health promotion are potential policy options that could help avert most of the negative health impacts experienced by vulnerable groups, whilst still promoting changes towards diets which are more environmentally sustainable.

  11. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  12. Exploring the undulating plateau: the future of global oil supply.

    Science.gov (United States)

    Jackson, Peter M; Smith, Leta K

    2014-01-13

    In this paper, we analyse the factors that will influence long-term oil supply and describe the future form of the global oil supply profile as an 'undulating plateau' rather than an irreversible, short-term peak or an ever upward trend of increasing production. The ultimate transition from a world of relatively plentiful and cheap oil to one of tight supply and high cost will be slow and challenging. An understanding of the signposts for the future path of supply and the drivers of that profile will be critical to managing the transition. The ultimate form of the global supply curve may well be dictated by demand evolution rather than a limited resource endowment in the longer term. Several factors will probably control future global oil supply. We believe that the scale of global oil resource will not constitute a physical supply limit for at least the next two or three decades. However, all categories of oil resources are already more expensive to develop than in the past, requiring high oil prices to stimulate supply growth. Lower rates of oil demand growth relative to economic growth, combined with more challenging supply growth, will probably lead to an undulating plateau sometime after 2040, with demand from non-Organization for Economic Cooperation and Development states continuing to dominate. Upstream investment requirements and oil price volatility will increase towards and beyond the undulating production plateau. In this new world, high oil prices will induce demand destruction, fuel substitution and ever increasing energy efficiency. As we discuss below, the fundamental differences between the IHS Cambridge Energy Research Associates' (IHS CERA) view of the future of oil supply and many peak oil supply models are the timing of the onset of a dramatic slowdown in the rate of growth of supply and the existence or otherwise of a production plateau. We do not dispute that supply will plateau and eventually fall; the question is when, how and at what price

  13. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    Science.gov (United States)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  14. Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios

    Science.gov (United States)

    Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.

    2017-12-01

    Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  15. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  16. Future Emissions from Railway Traffic

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1998-01-01

    In investigation of the expected development in factors which influence railway energy consumption and emissions. Traffic factors such as train speed, load, an occupancy were considered. Tehcnical factors such an emissions factors, fleet composition and train weight were also considered. An estim......In investigation of the expected development in factors which influence railway energy consumption and emissions. Traffic factors such as train speed, load, an occupancy were considered. Tehcnical factors such an emissions factors, fleet composition and train weight were also considered...

  17. Emission Data For Climate-Chemistry Interactions

    Science.gov (United States)

    Smith, S. J.

    2012-12-01

    Data on anthropogenic and natural emissions of reactive species are a critical input for studies of atmospheric chemistry and climate. The availability and characteristics of anthropogenic emissions data that can be used for such studies are reviewed and pathways for future work discuss Global and regional datasets for historical and future emissions are available, but their characteristics and applicability for specific studies differ. For the first time, a coordinated set of historical emissions (Lamarque et al 2010) and the future projections (van Vuurren et al. 2011) have been developed for use in the CMIP5 and ACCMIP long-term simulation comparison projects. These data have decadal resolution and were designed for long-term, global simulations. These data, however, lack finer-scale spatial and temporal detail that might be needed for some studies. Robust and timely updates of emissions data is generally lacking, although recent updates will be presented. While historical emission data is often treated as known, emissions are uncertain, even though this uncertainty is rarely quantified. Uncertainty varies by species and location. Inverse modeling is starting to indicate where emission data may be uncertain, which opens the way to improving these data overall. Further interaction between the chemistry modeling and inventory development communities are needed. Future projections are intrinsically uncertain, and while institutions and processes are in place to develop and review long-term century-scale scenarios, a need has remained for a wider range in shorter-term (e.g., several decade) projections. Emissions and scenario development communities have been working to fill this need. Communication across disciplines of the assumptions embedded in emissions projections remains a challenge. Atmospheric chemistry models are a central tool needed for studying chemistry-climate interactions. Simpler models, however, are also needed in order to examine interactions

  18. Influence of emissions on regional atmospheric mercury concentrations

    Directory of Open Access Journals (Sweden)

    Bieser J.

    2013-04-01

    Full Text Available Mercury is a global pollutant that is rapidly transported in the atmosphere. Unlike the majority of air pollutants the background concentrations of mercury play a major role for the atmospheric concentrations on a hemispheric scale. In this study the influence of regional anthropogenic emissions in comparison to the global emissions on mercury concentrations over Europe are investigated. For this purpose an advanced threedimensional model system is used that consists of three components. The emission model SMOKE-EU, the meteorological model COSMO-CLM, and the chemistry transport model (CTM CMAQ. A variety of sensitivity runs is performed in order to determine the influence of different driving factors (i.e. boundary conditions, anthropogenic and natural emissions, emission factors, meteorological fields on the atmoshperic concentrations of different mercury species. This study is part of the European FP7 project GMOS (Global Mercury Observation System. The aim is to identify the most important drivers for atmospheric mercury in order to optimize future regional modelling studies in the course of the GMOS project. Moreover, the model results are used to determine areas of interest for air-plane based in-situ measurements which are also part of GMOS.

  19. Global environment outlook GEO5. Environment for the future we want

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    The main goal of UNEP's Global Environment Outlook (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers. The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts. Part 1 - State and trends of the global environment; Part 2 - Policy options from the regions; Part 3 - Opportunities for a global response.

  20. Global environment outlook GEO5. Environment for the future we want

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    The main goal of UNEP's Global Environment Outlook (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers. The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts. Part 1 - State and trends of the global environment; Part 2 - Policy options from the regions; Part 3 - Opportunities for a global response.

  1. Future Greenhouse Gas and Local Pollutant Emissions for India: Policy Links and Disjoints

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Project Management Cell, NATCOM Project, Winrock International India, 7, Poorvi Marg, Vasant Vihar, New Delhi - 110057 (India); Shukla, P.R. [Public Systems Group, Indian Institute of Management, Vastrapur, Ahmedabad 380015 (India); Ghosh, D. [Kennedy School of Government, Harvard University (United States); Kapshe, M.; Rajesh, N. [Indian Institute of Management, Vastrapur, Ahmedabad 380015 (India)

    2003-07-01

    This paper estimates the future greenhouse gas (GHG) and local pollutant emissions for India under various scenarios. The reference scenario assumes continuation of the current official policies of the Indian government and forecasts of macro-economic, demographic and energy sector indicators. Other scenarios analyzed are the economic growth scenarios (high and low), carbon mitigation scenario, sulfur mitigation scenario and frozen (development) scenario. The main insight is that GHG and local pollutant emissions from India, although connected, do not move in synchronization in future and have a disjoint under various scenarios. GHG emissions continue to rise while local pollutant emissions decrease after some years. GHG emission mitigation therefore would have to be pursued for its own sake in India. National energy security concerns also favor this conclusion since coal is the abundant national resource while most of the natural gas has to be imported. The analysis of contributing factors to this disjoint indicates that sulfur reduction in petroleum oil products and penetration of flue gas desulfurisation technologies are the two main contributors for sulfur dioxide (SO2) mitigation. The reduction in particulate emissions is mainly due to enforcing electro-static precipitator efficiency norms in industrial units, with cleaner fuels and vehicles also contributing substantially. These policy trends are already visible in India. Another insight is that high economic growth is better than lower growth to mitigate local pollution as lack of investible resources limits investments in cleaner environmental measures. Our analysis also validates the environmental Kuznets' curve for India as SO2 emissions peak around per capita GDP of US$ 5,300-5,400 (PPP basis) under various economic growth scenarios.

  2. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    Science.gov (United States)

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop

  3. Future trends in environmental mercury concentrations: implications for prevention strategies

    Directory of Open Access Journals (Sweden)

    Sunderland Elsie M

    2013-01-01

    Full Text Available Abstract In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological thresholds in vulnerable regions like the Arctic. Most future emissions scenarios project a growth or stabilization of anthropogenic mercury releases relative to present-day levels. At these emissions levels, inputs of mercury to ecosystems are expected to increase substantially in the future, in part due to growth in the legacy reservoirs of mercury in oceanic and terrestrial ecosystems. Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply large quantities of marine fish to the global seafood market are projected to increase by more than 50% by 2050. Fish mercury levels and subsequent human and biological exposures are likely to also increase because production of MeHg in ocean ecosystems is driven by the supply of available inorganic mercury, among other factors. Analyses that only consider changes in primary anthropogenic emissions are likely to underestimate the severity of future deposition and concentration increases associated with growth in mercury reservoirs in the land and ocean. We therefore recommend that future policy analyses consider the fully coupled interactions among short and long-lived reservoirs of mercury in the atmosphere, ocean, and terrestrial ecosystems. Aggressive anthropogenic emission reductions are needed to reduce MeHg exposures and associated health impacts on humans and wildlife and protect the integrity of one of the last wild-food sources globally. In the near-term, public health advice on safe fish consumption choices such as smaller species, younger fish, and harvests

  4. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012

    Directory of Open Access Journals (Sweden)

    G. Huang

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors, with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA. Global annual grid maps with a resolution of 0.1°  ×  0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK as examples.

  5. A visão brasileira da futura ordem global Brazil's vision of the future global order

    Directory of Open Access Journals (Sweden)

    Daniel Flemes

    2010-12-01

    Full Text Available Este artigo visa desdobrar a concepção brasileira da futura ordem global localizada entre os polos extremos de um concerto de grandes potências e de uma ordem mundial multirregional. O autor demonstra como os formuladores de política externa brasileira contribuem para um tipo de ordem global que oferece espaço de manobra para a potência emergente. As opções de política externa do Brasil são limitadas, diante do superior poder material (hard power das grandes potências estabelecidas. A estratégia de soft balancing do Brasil envolve estratégias institucionais, como a formação de coalizões diplomáticas limitadas ou alianças para restringir o poder das grandes potências estabelecidas. O Brasil tem estado entre os mais poderosos condutores de mudança incremental na diplomacia mundial e é beneficiado em grande parte pelas conectadas mudanças de poder global. Em uma ordem global moldada por grandes potências por meio de arranjos e instituições internacionais, esses jogadores que efetivamente operam em ambos como inovadores, construtores de coalizões e porta-vozes, ao mesmo tempo em que preservam grande parcela de soberania e autonomia, têm o potencial de influenciar substancialmente os resultados da futura política global.This article aims to unfold the Brazilian conception of the future global order located between the extreme poles of a concert of great powers and a multiregional world order. The author demonstrates how Brazilian foreign policy makers contribute to the kind of global order, which offers most room to manoeuvre to the rising power. The foreign policy options of Brazil are limited in view of the superior hard power of the established great powers. Brazil's soft balancing strategy involves institutional strategies such as the formation of limited diplomatic coalitions or ententes to constrain the power of the established great powers. Brazil has been amongst the most powerful drivers of incremental change in

  6. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios

    Directory of Open Access Journals (Sweden)

    P. Sicard

    2017-10-01

    Full Text Available The impact of ground-level ozone (O3 on vegetation is largely under-investigated at the global scale despite large areas worldwide that are exposed to high surface O3 levels. To explore future potential impacts of O3 on vegetation, we compared historical and projected surface O3 concentrations simulated by six global atmospheric chemistry transport models on the basis of three representative concentration pathways emission scenarios (i.e. RCP2.6, 4.5, 8.5. To assess changes in the potential surface O3 threat to vegetation at the global scale, we used the AOT40 metric. Results point out a significant exceedance of AOT40 in comparison with the recommendations of UNECE for the protection of vegetation. In fact, many areas of the Northern Hemisphere show that AOT40-based critical levels will be exceeded by a factor of at least 10 under RCP8.5. Changes in surface O3 by 2100 worldwide range from about +4–5 ppb in the RCP8.5 scenario to reductions of about 2–10 ppb in the most optimistic scenario, RCP2.6. The risk of O3 injury for vegetation, through the potential O3 impact on photosynthetic assimilation, decreased by 61 and 47 % under RCP2.6 and RCP4.5, respectively, and increased by 70 % under RCP8.5. Key biodiversity areas in southern and northern Asia, central Africa and North America were identified as being at risk from high O3 concentrations.

  7. Carbon dioxide emissions and climate change: policy implications for the cement industry

    International Nuclear Information System (INIS)

    Rehan, R.; Nehdi, M.

    2005-01-01

    There is growing awareness that the cement industry is a significant contributor to global carbon dioxide (CO 2 ) emissions. It is expected that this industry will come under increasing regulatory pressures to reduce its emissions and contribute more aggressively to mitigating global warming. It is important that the industry's stakeholders become more familiar with greenhouse gas (GHG) emission and associated global warming issues, along with emerging policies that may affect the future of the industry. This paper discusses climate change, the current and proposed actions for mitigating its effects, and the implications of such actions for the cement industry. International negotiations on climate change are summarized and mechanisms available under the Kyoto Protocol for reducing greenhouse gas emissions are explained. The paper examines some of the traditional and emerging policy instruments for greenhouse gas emissions and analyses their merits and drawbacks. The applicability, effectiveness and potential impact of these policy instruments for the global cement industry in general and the Canadian cement industry in particular are discussed with recommendations for possible courses of action

  8. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  9. U.S. Government Supports Low Emission Economic Growth

    Energy Technology Data Exchange (ETDEWEB)

    2015-11-01

    Countries around the world face the challenge of maintaining long-term sustainable economic growth and development under the threat of climate change. By identifying and pursuing a sustainable development pathway now, they are better positioned to reach their economic growth goals while addressing climate change impacts and lowering greenhouse gas (GHG) emissions. Low emission development strategies - development plans that promote sustainable social and economic development while reducing long-term GHG emissions - provide a pathway to preparing for a global low emission future. Partner country governments are working with the U.S. government through the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to further their national development objectives.

  10. The link between a global 2 °C warming threshold and emissions in years 2020, 2050 and beyond

    International Nuclear Information System (INIS)

    Huntingford, Chris; Lowe, Jason A; Gohar, Laila K; Bowerman, Niel H A; Allen, Myles R; Raper, Sarah C B; Smith, Stephen M

    2012-01-01

    In the Copenhagen Accord, nations agreed on the need to limit global warming to two degrees to avoid potentially dangerous climate change, while in policy circles negotiations have placed a particular emphasis on emissions in years 2020 and 2050. We investigate the link between the probability of global warming remaining below two degrees (above pre-industrial levels) right through to year 2500 and what this implies for emissions in years 2020 and 2050, and any long-term emissions floor. This is achieved by mapping out the consequences of alternative emissions trajectories, all in a probabilistic framework and with results placed in a simple-to-use set of graphics. The options available for carbon dioxide-equivalent (CO 2 e) emissions in years 2020 and 2050 are narrow if society wishes to stay, with a chance of more likely than not, below the 2 °C target. Since cumulative emissions of long-lived greenhouse gases, and particularly CO 2 , are a key determinant of peak warming, the consequence of being near the top of emissions in the allowable range for 2020 is reduced flexibility in emissions in 2050 and higher required rates of societal decarbonization. Alternatively, higher 2020 emissions can be considered as reducing the probability of limiting warming to 2 °C. We find that the level of the long-term emissions floor has a strong influence on allowed 2020 and 2050 emissions for two degrees of global warming at a given probability. We place our analysis in the context of emissions pledges for year 2020 made at the end of and since the 2009 COP15 negotiations in Copenhagen. (letter)

  11. Comparison of regional and global land cover products and the implications for biogenic emission modeling.

    Science.gov (United States)

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T

    2015-10-01

    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  12. The Future Revisited: Can Global Learning Still Save the World?

    Science.gov (United States)

    Van Hook, Steven R.

    2018-01-01

    This article provides a twelve-year review of my "OJDLA" article ("Online Journal of Distance Learning Administration," University of West Georgia) on the future of global learning, and updates related to issues such as societal need, technologies, course design, administration affairs, faculty support, and student service.

  13. Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways

    Science.gov (United States)

    Lenton, Andrew; Matear, Richard J.; Keller, David P.; Scott, Vivian; Vaughan, Naomi E.

    2018-04-01

    Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr-1) over the period 2020-2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ˜ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020-2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.

  14. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    Science.gov (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  15. Effects of Climate Change on Global Food Production from SRES Emissions and Socioeconomic Scenarios

    Data.gov (United States)

    National Aeronautics and Space Administration — Effects of Climate Change on Global Food Production from SRES Emissions and Socioeconomic Scenarios is an update to a major crop modeling study by the NASA Goddard...

  16. Measuring a fair and ambitious climate agreement using cumulative emissions

    International Nuclear Information System (INIS)

    Peters, Glen P; Andrew, Robbie M; Solomon, Susan; Friedlingstein, Pierre

    2015-01-01

    Policy makers have called for a ‘fair and ambitious’ global climate agreement. Scientific constraints, such as the allowable carbon emissions to avoid exceeding a 2 °C global warming limit with 66% probability, can help define ambitious approaches to climate targets. However, fairly sharing the mitigation challenge to meet a global target involves human values rather than just scientific facts. We develop a framework based on cumulative emissions of carbon dioxide to compare the consistency of countries’ current emission pledges to the ambition of keeping global temperatures below 2 °C, and, further, compare two alternative methods of sharing the remaining emission allowance. We focus on the recent pledges and other official statements of the EU, USA, and China. The EU and US pledges are close to a 2 °C level of ambition only if the remaining emission allowance is distributed based on current emission shares, which is unlikely to be viewed as ‘fair and ambitious’ by others who presently emit less. China’s stated emissions target also differs from measures of global fairness, owing to emissions that continue to grow into the 2020s. We find that, combined, the EU, US, and Chinese pledges leave little room for other countries to emit CO 2 if a 2 °C limit is the objective, essentially requiring all other countries to move towards per capita emissions 7 to 14 times lower than the EU, USA, or China by 2030. We argue that a fair and ambitious agreement for a 2 °C limit that would be globally inclusive and effective in the long term will require stronger mitigation than the goals currently proposed. Given such necessary and unprecedented mitigation and the current lack of availability of some key technologies, we suggest a new diplomatic effort directed at ensuring that the necessary technologies become available in the near future. (letter)

  17. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  18. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions reductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO2 concentrations. That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries’ cumulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006―2050), a 470 ppmv atmospheric CO2 concentration target was set. According to the following four objective indicators―total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005―all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this proposal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of

  19. Global patterns of current and future road infrastructure

    Science.gov (United States)

    Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.

    2018-06-01

    Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

  20. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-11-01

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  1. Decadal trends in global CO emissions as seen by MOPITT

    Science.gov (United States)

    Yin, Y.; Chevallier, F.; Ciais, P.; Broquet, G.; Fortems-Cheiney, A.; Pison, I.; Saunois, M.

    2015-12-01

    Negative trends of carbon monoxide (CO) concentrations are observed in the recent decade by both surface measurements and satellite retrievals over many regions of the globe, but they are not well explained by current emission inventories. Here, we analyse the observed CO concentration decline with an atmospheric inversion that simultaneously optimizes the two main CO sources (surface emissions and atmospheric hydrocarbon oxidations) and the main CO sink (atmospheric hydroxyl radical OH oxidation). Satellite CO column retrievals from Measurements of Pollution in the Troposphere (MOPITT), version 6, and surface observations of methane and methyl chloroform mole fractions are assimilated jointly for the period covering 2002-2011. Compared to the model simulation prescribed with prior emission inventories, trends in the optimized CO concentrations show better agreement with that of independent surface in situ measurements. At the global scale, the atmospheric inversion primarily interprets the CO concentration decline as a decrease in the CO emissions (-2.3 % yr-1), more than twice the negative trend estimated by the prior emission inventories (-1.0 % yr-1). The spatial distribution of the inferred decrease in CO emissions indicates contributions from western Europe (-4.0 % yr-1), the United States (-4.6 % yr-1) and East Asia (-1.2 % yr-1), where anthropogenic fuel combustion generally dominates the overall CO emissions, and also from Australia (-5.3 % yr-1), the Indo-China Peninsula (-5.6 % yr-1), Indonesia (-6.7 % y-1), and South America (-3 % yr-1), where CO emissions are mostly due to biomass burning. In contradiction with the bottom-up inventories that report an increase of 2 % yr-1 over China during the study period, a significant emission decrease of 1.1 % yr-1 is inferred by the inversion. A large decrease in CO emission factors due to technology improvements would outweigh the increase in carbon fuel combustions and may explain this decrease. Independent

  2. Developing Strategies for Islamic Banks to Face the Future Challenges of Financial Globalization

    OpenAIRE

    Al Ajlouni, Ahmed

    2004-01-01

    Developing Strategies for Islamic Banks to Face the Future Challenges of Financial Globalization Ahmed Al-Ajlouni Abstract This study aims at forming strategic response to assess the ability of Islamic banks in benefiting from the opportunities that may be provided by financial globalization and limits its threats, through assessing the capability of Islamic banks to meet the requirements and challenges of financial globalization, then suggests the suitable strategies that may be ...

  3. Bridges to Global Citizenship: Ecologically Sustainable Futures Utilising Children's Literature in Teacher Education

    Science.gov (United States)

    Bradbery, Debbie

    2013-01-01

    Developing an understanding of the importance of a sustainable future is vital in helping children to become "global citizens". Global citizens are those willing to take responsibility for their own actions, respect and value diversity and see themselves as contributors to a more peaceful and sustainable world. Children's…

  4. U.S. ozone air quality under changing climate and anthropogenic emissions.

    Science.gov (United States)

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  5. Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets

    Science.gov (United States)

    Damon Matthews, H.; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R.

    2018-01-01

    The Environmental Research Letters focus issue on ‘Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets’ was launched in 2015 to highlight the emerging science of the climate response to cumulative emissions, and how this can inform efforts to decrease emissions fast enough to avoid dangerous climate impacts. The 22 research articles published represent a fantastic snapshot of the state-or-the-art in this field, covering both the science and policy aspects of cumulative emissions and carbon budget research. In this Review and Synthesis, we summarize the findings published in this focus issue, outline some suggestions for ongoing research needs, and present our assessment of the implications of this research for ongoing efforts to meet the goals of the Paris climate agreement.

  6. Evaluation of Global Photosynthesis and BVOC Emission Covariance with Climate in NASA ModelE2-Y

    Science.gov (United States)

    Unger, N.

    2012-12-01

    Terrestrial gross primary productivity (GPP), a measure of the total amount of CO2 removed from the atmosphere every year to fuel photosynthesis, is the largest global carbon flux. GPP is vital for human welfare as the basis for food and fiber, and provides the crucial ecosystem service of reducing the accumulation of fossil fuel CO2 in the atmosphere. Land plants emit a significant fraction of the assimilated carbon back to the atmosphere in the form of biogenic volatile organic compounds (BVOCs). Isoprene is the dominant BVOC emission with an estimated global source of 200-660 TgC/yr. Global monoterpene emission estimates range from 30-130 TgC/yr. BVOC photochemical oxidation exerts a profound impact on the distribution and variability of the short-lived climate forcers: ozone, biogenic secondary organic aerosol and methane. Here, we apply multiple observational datasets from a suite of platforms to evaluate an updated global chemistry-climate model that is coupled to a new vegetation biophysics scheme incorporating photosynthesis-dependent BVOC emissions (NASA ModelE2-Y). A fixed vegetation structure dataset based on 8 plant functional types and prescribed phenology including crop planting and harvesting gives GPP of 128 PgC/yr and a global isoprene source of 200TgC/yr. The model GPP captures 85% of the annual average zonal mean variability in a FLUXNET-derived global dataset that was generated by data orientated diagnostic upscaling. We assess model BVOC emission climatology against a comprehensive database of campaign-average above canopy flux measurements and surface concentrations of isoprene and monoterpene collected between 1995-2010 across a wide range of ecosystem types, regions and seasons (> 25 flux estimates; > 22 surface concentration values). We evaluate the diurnal, seasonal and interannual integrity of the model BVOC variability against 9 sites for isoprene and 4 sites for monoterpene. The model captures ~60% of the variability in the time

  7. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    Science.gov (United States)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  8. Update and improvement of the global krypton-85 emission inventory.

    Science.gov (United States)

    Ahlswede, Jochen; Hebel, Simon; Ross, J Ole; Schoetter, Robert; Kalinowski, Martin B

    2013-01-01

    Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Science.gov (United States)

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-11-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70-75% of the modelled monthly aerosol optical depth (AOD) in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions). Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  10. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  11. Inverse modelling estimates of N2O surface emissions and stratospheric losses using a global dataset

    Science.gov (United States)

    Thompson, R. L.; Bousquet, P.; Chevallier, F.; Dlugokencky, E. J.; Vermeulen, A. T.; Aalto, T.; Haszpra, L.; Meinhardt, F.; O'Doherty, S.; Moncrieff, J. B.; Popa, M.; Steinbacher, M.; Jordan, A.; Schuck, T. J.; Brenninkmeijer, C. A.; Wofsy, S. C.; Kort, E. A.

    2010-12-01

    Nitrous oxide (N2O) levels have been steadily increasing in the atmosphere over the past few decades at a rate of approximately 0.3% per year. This trend is of major concern as N2O is both a long-lived Greenhouse Gas (GHG) and an Ozone Depleting Substance (ODS), as it is a precursor of NO and NO2, which catalytically destroy ozone in the stratosphere. Recently, N2O emissions have been recognised as the most important ODS emissions and are now of greater importance than emissions of CFC's. The growth in atmospheric N2O is predominantly due to the enhancement of surface emissions by human activities. Most notably, the intensification and proliferation of agriculture since the mid-19th century, which has been accompanied by the increased input of reactive nitrogen to soils and has resulted in significant perturbations to the natural N-cycle and emissions of N2O. There exist two approaches for estimating N2O emissions, the so-called 'bottom-up' and 'top-down' approaches. Top-down approaches, based on the inversion of atmospheric measurements, require an estimate of the loss of N2O via photolysis and oxidation in the stratosphere. Uncertainties in the loss magnitude contribute uncertainties of 15 to 20% to the global annual surface emissions, complicating direct comparisons between bottom-up and top-down estimates. In this study, we present a novel inversion framework for the simultaneous optimization of N2O surface emissions and the magnitude of the loss, which avoids errors in the emissions due to incorrect assumptions about the lifetime of N2O. We use a Bayesian inversion with a variational formulation (based on 4D-Var) in order to handle very large datasets. N2O fluxes are retrieved at 4-weekly resolution over a global domain with a spatial resolution of 3.75° x 2.5° longitude by latitude. The efficacy of the simultaneous optimization of emissions and losses is tested using a global synthetic dataset, which mimics the available atmospheric data. Lastly, using real

  12. A review of the global emissions, transport and effects of heavy metals in the environment

    International Nuclear Information System (INIS)

    Friedman, J.R.; Ashton, W.B.; Rapoport, R.D.

    1993-06-01

    The purpose of this report is to describe the current state of knowledge regarding the sources and quantities of heavy metal emissions, their transport and fate, their potential health and environmental effects, and strategies to control them. The approach is to review the literature on this topic and to consult with experts in the field. Ongoing research activities and research needs are discussed. Estimates of global anthropogenic and natural emissions indicate that anthropogenic emissions are responsible for most of the heavy metals released into the atmosphere and that industrial activities have had a significant impact on the global cycling of trace metals. The largest anthropogenic sources of trace metals are coal combustion and the nonferrous metal industry. Atmospheric deposition is an important pathway by which trace metals enter the environment. Atmospheric deposition varies according to the solubility of the element and the length of time it resides in the atmosphere. Evidence suggests that deposition is influenced by other chemicals in the atmosphere, such as ozone and sulfur dioxide. Trace metals also enter the environment through leaching. Existing emissions-control technologies such as electrostatic precipitators, baghouses, and scrubbers are designed to remove other particulates from the flue gas of coal-fired power plants and are only partially effective at removing heavy metals. Emerging technologies such as flue gas desulfurization, lignite coke, and fluidized bed combustion could further reduce emissions. 108 refs

  13. The NPT regime, present and future global security: an American view

    International Nuclear Information System (INIS)

    Thompson, Sam.

    1987-01-01

    Although not perfect, an international non-proliferation regime as set out by the IAEA and Non-Proliferation Treaty is in existence. The history of the involvement of the United States in the development of this regime is mentioned as a background to explaining the current approach of the Reagan Administration to non-proliferation. Trends and challenges which may affect future global security are then identified and discussed. The author is optimistic about the future. (U.K.)

  14. Rolling towards a cleaner future: the development of Canadian locomotive emissions regulations

    International Nuclear Information System (INIS)

    2010-12-01

    In 2006, the Government of Canada published a notice of intent that it would develop regulations aimed at reducing anthropogenic criteria air contaminants and greenhouse gas emissions. The Government now intends to develop railway emissions regulations for criteria air contaminants under the Railway Safety Act. The Railway Safety Act not only provides the legislative basis for developing regulations governing railways, it also gives the authority for developing the rules governing federally regulated railroads to the Minister of Transport. For the future, Transport Canada will be responsible for developing regulations governing the rail sector. The transportation sector is a substantial emitter of criteria air contaminants, so rail transportation is a key element of the current work. This paper seeks to give a framework for consultations with stakeholders and facilitate dialogue. It collects feedback from stakeholders on the design of a Canadian regulatory regime for locomotive-generated criteria air contaminant emissions. Canadian railways have managed locomotive air contaminant emissions since 1995.

  15. Uncertainty in the Future Distribution of Tropospheric Ozone over West Africa due to Variability in Anthropogenic Emissions Estimates between 2025 and 2050

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2011-01-01

    Full Text Available Particle and trace gas emissions due to anthropogenic activity are expected to increase significantly in West Africa over the next few decades due to rising population and more energy intensive lifestyles. Here we perform 3D global chemistry-transport model calculations for 2025 and 2050 using both a “business-as-usual” (A1B and “clean economy” (B1 future anthropogenic emission scenario to focus on the changes in the distribution and uncertainties associated with tropospheric O3 due to the various projected emission scenarios. When compared to the present-day troposphere we find that there are significant increases in tropospheric O3 for the A1B emission scenario, with the largest increases being located in the lower troposphere near the source regions and into the Sahel around 15–20°N. In part this increase is due to more efficient NOx re-cycling related to increases in the background methane concentrations. Examining the uncertainty across different emission inventories reveals that there is an associated uncertainty of up to ~20% in the predicted increases at 2025 and 2050. For the upper troposphere, where increases in O3 have a more pronounced impact on radiative forcing, the uncertainty is influenced by transport of O3 rich air from Asia on the Tropical Easterly Jet.

  16. Possibility of full-cooperation in curbing global warming: Procrastination tendency and new principles

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y

    2001-07-01

    Global commons such as the global atmosphere have the characteristic, in addition to that of minimum contribution threshold, that whilst the preservation cost is immediate, the benefits belong to future generations. It is derived that, based on the ideas of present-biased preference and naive belief on future selves, full-cooperation to cut greenhouse gasses emissions is procrastinated until the game structure is fundamentally changed. Principles on the assignment of entitlement to the global common pool resources are reexamined, and a new incentive scheme for developing countries to join in cooperative actions is proposed (au)

  17. Possibility of full-cooperation in curbing global warming: Procrastination tendency and new principles

    International Nuclear Information System (INIS)

    Ueda, Y.

    2001-01-01

    Global commons such as the global atmosphere have the characteristic, in addition to that of minimum contribution threshold, that whilst the preservation cost is immediate, the benefits belong to future generations. It is derived that, based on the ideas of present-biased preference and naive belief on future selves, full-cooperation to cut greenhouse gasses emissions is procrastinated until the game structure is fundamentally changed. Principles on the assignment of entitlement to the global common pool resources are reexamined, and a new incentive scheme for developing countries to join in cooperative actions is proposed (au)

  18. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  19. Relevance of future snowfall level height in the Peruvian Andes for glacier loss in the 21st century under different emission scenarios

    Science.gov (United States)

    Schauwecker, Simone; Kronenberg, Marlene; Rohrer, Mario; Huggel, Christian; Endries, Jason; Montoya, Nilton; Neukom, Raphael; Perry, Baker; Salzmann, Nadine; Schwarb, Manfred; Suarez, Wilson

    2017-04-01

    In many regions of Peru, the competition for limited hydrological resources already represents a large risk for conflicts. In this context, and within the circumstances of climate change, there is a great interest in estimating the future loss of Peruvian glaciers. Solid precipitation on glaciers, which affects the shortwave radiation budget via its effects on albedo, in general reduces ablation. For that reason, the height of the upper level of the transition zone between liquid and solid precipitation (snowfall level height) is considered to play a critical role. This snowfall level height is linked to air temperature. The observed and projected warming of the atmosphere is therefore affecting the glaciers amongst others by changing the snowfall level height. Despite the potential significance of these changes for Peruvian glaciers, the relations between snowfall level heights, glacier extents and climate scenarios have been poorly investigated so far. In our study, we first analyse the snowfall level heights over the Peruvian Cordilleras. Second, we investigate the relationship between the present snowfall level heights and current glacier extents. As a third step, we derive projected changes of snowfall level heights from GCMs for the RCP2.6 and 8.5 emission scenarios and use them to roughly estimate the end of XXI century glaciation for the Peruvian Cordilleras. Our results indicate a large difference in future glacier extent between the high-emission (pessimistic) RCP8.5 and the low-emission (optimistic) RCP2.6. If global emissions can be substantially reduced, a significant part of the glaciated area of Peru can be maintained. On the contrary, if mitigation is unsuccessful, most of the glacier mass in Peru will be lost during the 21st century. In both cases, but even more so for the high-emission scenario, adaptation will play a critical role and should focus on improvements in water resource management which is essential on a local to regional scale. Air

  20. Greenhouse gas (N2O emission from Portuguese estuaries

    Directory of Open Access Journals (Sweden)

    Célia Gonçalves

    2014-07-01

    Tagus, Minho and Lima estuaries are source of N2O to the atmosphere. Particularly, in Lima estuary anthropogenic N input seems to play an important role on N2O emission. However, in a global perspective N2O attained emissions represent a reduced fraction (2O yr-1, Barnes and Upstill-Goddard, 2011. Values are comparable with those registered in some Portuguese estuaries and other European less eutrophic estuaries. However, it is known that higher N2O emissions in estuaries may occur during winter and spring (Sun et al., 2014. Thus, these systems may represent on an annual basis a larger source of N2O, which can only be clarified in future studies. Only a full comprehension of the global estuarine nitrogen cycle will provide an efficient basis of scientific knowledge for sustainably management of such ecosystems and ultimately reduce N2O emissions.

  1. Transportation Emissions: some basics

    DEFF Research Database (Denmark)

    Kontovas, Christos A.; Psaraftis, Harilaos N.

    2016-01-01

    transportation and especially carbon dioxide emissions are at the center stage of discussion by the world community through various international treaties, such as the Kyoto Protocol. The transportation sector also emits non-CO2 pollutants that have important effects on air quality, climate, and public health......Transportation is the backbone of international trade and a key engine driving globalization. However, there is growing concern that the Earth’s atmospheric composition is being altered by human activities, including transportation, which can lead to climate change. Air pollution from....... The main purpose of this chapter is to introduce some basic concepts that are relevant in the quest of green transportation logistics. First, we present the basics of estimating emissions from transportation activities, the current statistics and future trends, as well as the total impact of air emissions...

  2. Tourism Curriculum in a Global Perspective: Past, Present, and Future

    Science.gov (United States)

    Wattanacharoensil, Walanchalee

    2014-01-01

    This article summarizes the development of tourism curricula over the past 20 years from the perspective of global tourism. The paper proposes a generic framework for a future tourism curriculum on the basis of a review of literature in the American, British, and other European contexts. The proposed tourism curriculum aims to create well-rounded…

  3. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses

    International Nuclear Information System (INIS)

    Zou, Dexuan; Li, Steven; Li, Zongyan; Kong, Xiangyong

    2017-01-01

    Highlights: • A new global particle swarm optimization (NGPSO) is proposed. • NGPSO has strong convergence and desirable accuracy. • NGPSO is used to handle the economic emission dispatch with or without transmission losses. • The equality constraint can be satisfied by solving a quadratic equation. • The inequality constraints can be satisfied by using penalty function method. - Abstract: A new global particle swarm optimization (NGPSO) algorithm is proposed to solve the economic emission dispatch (EED) problems in this paper. NGPSO is different from the traditional particle swarm optimization (PSO) algorithm in two aspects. First, NGPSO uses a new position updating equation which relies on the global best particle to guide the searching activities of all particles. Second, it uses the randomization based on the uniform distribution to slightly disturb the flight trajectories of particles during the late evolutionary process. The two steps enable NGPSO to effectively execute a number of global searches, and thus they increase the chance of exploring promising solution space, and reduce the probabilities of getting trapped into local optima for all particles. On the other hand, the two objective functions of EED are normalized separately according to all candidate solutions, and then they are incorporated into one single objective function. The transformation steps are very helpful in eliminating the difference caused by the different dimensions of the two functions, and thus they strike a balance between the fuel cost and emission. In addition, a simple and common penalty function method is employed to facilitate the satisfactions of EED’s constraints. Based on these improvements in PSO, objective functions and constraints handling, high-quality solutions can be obtained for EED problems. Five examples are chosen to testify the performance of three improved PSOs on solving EED problems with or without transmission losses. Experimental results show that

  4. Future needs for ship emission abatement and technical measures

    Directory of Open Access Journals (Sweden)

    Teresa ANTES

    2013-01-01

    Full Text Available The International Maritime Organization (IMO has revised air pollution regulations in MARPOL Annex VI. In 2012 Emission Control Areas (ECA will limit fuel sulphur content to 1% and from 2015 to 0.1%. NOx emissions based on ships engine speed are also reduced for new vessels (2012 & 2016. Facing this legislation, ship owners have the alternative either to operate ships with costly low-sulphur fuels, or to keep using HFO but together with a gas cleaning equipment at the ship stack in order to reduce the rejected amount of SO2 gas in the atmosphere. To achieve this requirement, research and development organizations came out with proposing a solution that uses a device for cleaning exhaust gas of marine diesel engines. The paper presents a short communication about the DEECON project, which aim is to create a novel on-board after-treatment unit more advanced than any currently available. Each sub-unit of the system will be optimized to remove a specific primary pollutant. In particular, the technology within the DEECON system is based on novel or improved abatement techniques for reducing SOx, NOx, Particulate Matter (PM, CO and Volatile Organic Compounds (VOC. Some of these technologies are completely new for the maritime sector and they will represent a breakthrough in the reduction of the atmospheric emissions of ships, moving forward the performance of exhaust gas cleaning systems and fostering and anticipating the adoption of future and tighter regulatory requirements. In addition, an after-treatment strategy enables the possible adoption of alternative fuels, which often have their own emissions characteristics.

  5. Environmental Upgrading in Global Value Chains

    DEFF Research Database (Denmark)

    Poulsen, René Taudal; Ponte, Stefano; Sornn-Friese, Henrik

    2018-01-01

    Ports are crucial hubs in the functioning of the global economy, and maritime transport is a major emitter of air pollutants. Ports have considerable potential for promoting environmental upgrading in maritime transport and along global value chains more generally, but so far have been only...... partially successful in doing so. We examine results, limitations and future potential of voluntary initiatives that have been carried out by selected European and North American port authorities, which are considered frontrunners in environmental management. Drawing from the insights of global value chain...... their organizational and physical boundaries: by lowering tool implementation complexity through stronger collaboration within global value chains; and by enhancing emission visibility through alliances with cargo-owners and regulators....

  6. Future reef decalcification under a business-as-usual CO2 emission scenario.

    Science.gov (United States)

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.

  7. The limits of bioenergy for mitigating global lifecycle greenhouse gas emissions from fossil fuels.

    OpenAIRE

    Staples, Mark; Malina, Robert; Barrett, Steven

    2017-01-01

    In this Article we quantify the optimal allocation and deployment of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce lifecycle emissions attributable to combustion-fired electricity and heat, and liquid transportation fuels, by a maximum of 4.9-38.7 Gt CO2e, or 9-68%, and that offsetting fossil fuel-fired electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting fossil fuelderived ...

  8. A multinational model for CO2 reduction: defining boundaries of future CO2 emissions in nine countries

    International Nuclear Information System (INIS)

    Kram, Tom; Hill, Douglas.

    1996-01-01

    A need to make substantial future reductions in greenhouse gas emissions would require major changes in national energy systems. Nine industrialized countries have explored the technical boundaries of CO 2 emission restrictions during the next 40 to 50 years using comparable scenario assumptions and a standard model, MARKAL. Quantitative results for the countries are shown side by side in a set of energy maps that compare the least-cost evolution of the national energy systems by the main factors that contribute to CO 2 emissions. The ability to restrict future CO 2 emissions and the most cost-effective measures for doing so differ among the countries; an international agreement that would mandate substantial emission restrictions among countries by an equal percentage reduction is clearly impossible. The results are a first step toward a basis for allocating such international reductions, and the multinational process by which they were produced provides an example for further international greenhouse gas abatement costing studies. (Author)

  9. Physics for future Presidents - nuclear power, terrorism, global warming; La physique expliquee a notre futur president - Nucleaire, terrorisme, rechauffement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard A.

    2011-04-26

    This book explains the science behind the concerns that our nation faces in the immediate future. It outlines the tools of terrorists, the dangers of nuclear power, and the reality of global warming. As citizens who will elect future presidents of the most powerful and influential countries in the world, we need to know-truly understand if Iran's nascent nuclear capability is a genuine threat to the West, if biochemical weapons are likely to be developed by terrorists, if there are viable alternatives to fossil fuels that should be nurtured and supported by the government, if nuclear power should be encouraged, and if global warming is actually happening. This book is written in everyday, nontechnical language on the science behind the concerns that our nations faces in the immediate future. This book is translated from 'Physics for Future Presidents: The Science Behind the Headlines', published by W. W. Norton and Company in August 2008. Contents: 1 - Terrorism: Nine-eleven, Terrorist nukes, The next terrorist attack, Biological terrorism; 2 - Energy: Key energy surprises, Solar Power, The end of oil; 3 - Nukes: Radioactivity and death, Radioactive decay, Nuclear weapons, Nuclear madness, Nuclear power, Nuclear waste, Controlled fusion; 4 - Space: Space and satellites, Gravity applications, Humans in space, Spying with invisible light; 5 - Global Warming: A brief history of climate, The greenhouse effect, A very likely cause, Evidence, Non-solutions, The fruit on the ground, New technologies

  10. Energy and ethics. Ethical aspects of a future global power generation; Energie und Ethik. Ethische Aspekte zukuenftiger globaler Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, C.F. [Duisburg-Essen Univ. (Germany). Inst. fuer Philosophie; Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Essen (Germany)

    2008-07-01

    The article deals with ethical questions regarding a future global energy supply by considering the normative aspects of economic efficiency, long-term liabilities, environmental sustainability, social acceptability and distributive equity. Regarding the ethical issues dealt with in the debate on the global energy supply, in particular two postulates arise: Both an improvement in knowledge and an improvement in the categories and procedures of ethical reflection are required. (orig.)

  11. The Future of Low-Carbon Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B. [Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,; Brown, Nicholas R. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802; Slaybaugh, Rachel [Department of Nuclear Engineering, University of California, Berkeley, California 94720; Wilks, Theresa [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Stewart, Emma [Lawrence Livermore National Laboratory, Livermore, California 94550; McCoy, Sean T. [Global Security, E Program, Lawrence Livermore National Laboratory, Livermore, California 94550

    2017-10-17

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed, along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.

  12. EnerFuture: Long Term Energy Scenarios 'Understanding our energy future'. Key graphs and analysis, Enerdata - Global Energy Forecasting

    International Nuclear Information System (INIS)

    2011-01-01

    Enerdata analyses 4 future energy scenarios accounting for 2 economic growth assumptions combined with 2 alternative carbon emission mitigation policies. In this study, a series of analyses supported by graphs assess the energy consumption and intensity forecasts in emerging and developed markets. In particular, one analysis is dedicated to energies competition, including gas, coal and renewable energies. (authors)

  13. Global supply and demand of metals in the future.

    Science.gov (United States)

    Backman, Carl-Magnus

    2008-01-01

    This article is a short review on the subject of diminishing mineral resources in a world with increasing population. The concepts of reserves, resources, and life index are described. A forecast is made on the global consumption in the year 2050 of the metals iron (Fe), aluminum (Al), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb). Evidence indicates that a physical depletion of metals does not occur (fixed stock paradigm) but certain metals will become too expensive to extract (opportunity cost paradigm). The future demand for cadmium (Cd), mercury (Hg), arsenic (As), and selenium (Se) is presented. Finally, some metals presently of great interest for mineral prospectors that may have an important role in the future society are presented.

  14. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping

    International Nuclear Information System (INIS)

    Dedes, Eleftherios K.; Hudson, Dominic A.; Turnock, Stephen R.

    2012-01-01

    The combination of a prime mover and an energy storage device for reduction of fuel consumption has successfully been used in automotive industry. The shipping industry has utilised this for conventional submarines. The potential of a load levelling strategy through use of a hybrid battery–diesel–electric propulsion system is investigated. The goal is to reduce exhaust gas emissions by reducing fuel oil consumption through consideration of a re-engineered ship propulsion system. This work is based on operational data for a shipping fleet containing all types of bulk carriers. The engine loading and the energy requirements are calculated, and sizing of suitable propulsion and the battery storage system are proposed. The changes in overall emissions are estimated and the potential for fuel savings identified. The efficiency of the system depends on the storage medium type, the availability of energy and the displacement characteristics of the examined vessels. These results for the global fleet indicate that savings depending on storage system, vessel condition and vessel type could be up to 0.32 million tonnes in NO x , 0.07 million tonnes in SO x and 4.1 million tonnes in CO 2 . These represent a maximum 14% of reduction in dry bulk sector and 1.8% of world's fleet emissions. - Highlights: ► Global shipping makes a significant contribution to CO 2 , SO x and NO x emissions. ► We examine noon reports from a fleet of bulk carriers to identify the amount engine is operating off design. ► A hybrid propulsion system is proposed that uses multiple diesel–electric generators and battery storage. ► Analysis indicates hybrid may give an attractive rate of return as well as emissions savings in emissions. ► Implementation will require review of class society regulations.

  15. Co2 emission scenarios for next centuries to obtain more complete simulations of the global warming

    International Nuclear Information System (INIS)

    Michelini, M.

    2001-01-01

    In the framework of a punctual Modeling of the Greenhouse Effect (report RT/ERG/2001/1) it is necessary to set CO2 Emission Scenarios for the next Centuries in order to obtain the complete evolution of the global warming. Some methodologies are described to approach such long term previsions. From the demand side, the growth of the consumes (which are affected by population and development) is correlated (supply side) with the technical-economic-environmental Evaluation of the future diffusion of classic sources (experienced in the past centuries) and of new Technologies and renewable sources. The previsions of the world population Growth are derived from the UNFPA publications. The degree of economic Development of the world Population in the very long term is obtained by simulating the Evolution of the Population across four main Areas characterized by different pro-capita consumes. Using these criteria two different Scenarios have been set-up and put into comparison with the SRES Scenarios published in the Third Assessment Report-WG1 of the IPCC. The cut at the year 2100 of the SRES Scenarios is also discussed. Simulations of the Global Warming in the long term have been performed with the two scenarios. These results are discussed together with the results of the Simulations reported by IPCC [it

  16. Future emission scenarios for chemicals that may deplete stratospheric ozone

    International Nuclear Information System (INIS)

    Hammitt, J.K; Camm, Frank; Mooz, W.E.; Wolf, K.A.; Bamezai, Anil; Connel, P.S.; Wuebbles, D.J.

    1990-01-01

    Scenarios are developed for long-term future emissions of seven of the most important manmade chemicals that may deplete ozone and the corresponding effect on stratospheric ozone concentrations is calculated using a one-dimensional atmospheric model. The scenarios are based on detailed analysis of the markets for products that use these chemicals and span a central 90% probability interval for the chemicals joint effect on calculated ozone abundance, assuming no additional regulations. (author). 22 refs., 2 figs., 5 tabs

  17. The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Directory of Open Access Journals (Sweden)

    C. Textor

    2007-08-01

    Full Text Available The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA and one with unified emissions, injection heights, and particle sizes at the source (ExpB. Surprisingly, harmonization of aerosol sources has only a small impact on the simulated inter-model diversity of the global aerosol burden, and consequently global optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols and parameterizations of aerosol microphysics (e.g., the split between deposition pathways and to a lesser extent by the spatial and temporal distributions of the (precursor emissions.

    The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversities for these two species were caused by a few outliers. The experiment also showed that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.

    These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies.

  18. Present and future emissions of HAPs from crematories in China

    Science.gov (United States)

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Xiong, Chengcheng; Pan, Tao; Nie, Lei; Wu, Xiaoqing; Li, Jing; Wang, Wei; Gao, Jiajia; Zhu, Chuanyong; Wang, Kun

    2016-01-01

    China is the most populous country in the world. The amount of death population has reached 9.65 million and 49.5% of human corpses are cremated by about 1700 crematories spread throughout the country in 2012, leading to considerable discharge of various hazardous air pollutants (HAPs) into the atmosphere and great concerns on regional air quality and health risks for surrounding residents. By using the practicable or best available emission factors, for the first time, a multiple-year emission inventory of typical hazardous air pollutants discharged from crematories in the Chinese mainland, has been established for the historical period of 1990-2012, and the future trends of HAPs emissions until 2030 are forecasted based on three scenarios analysis. Our results show that the total emissions have gradually increased to 906 t of NOX, 443 t of SO2, 2713 t of CO, 477.7 t of PM, 377 t of HCl, 36 t of H2S, 25 t of NH3, 62 t of NMVOCs, 592 kg of Hg, 48 kg of Pb, 14 kg of Cd, 53 kg of As, 40 kg of Cr, 37 kg of Cu, 51 kg of Ni, and 96 g of PCDD/Fs as TEQ (toxic equivalent quantity) by the year 2012. Under the business-as-usual (BAU) scenario, various HAPs emitted from cremators would continuously increase with an average growth rate of 3% till to 2030; whereas the emissions will peak at around 2015 and then decline gradually with varied speed under the two improved control scenarios. To mitigate the associated air pollution and health risks caused by crematories, it is of great necessary for implementing more strict emission standards, applying combustion optimization and requiring installation of best available flue gas purification system, as well as powerful supervision for sound operation of crematories.

  19. Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere

    International Nuclear Information System (INIS)

    Scholes, Mary; Andreae, M.O.

    2000-01-01

    Tropical regions, with their high biological activity, have the potential to emit large amounts of trace gases and aerosols to the atmosphere. This can take the form of trace gas fluxes from soils and vegetation, where gaseous species are produced and consumed by living organisms, or of smoke emissions from vegetation fires. In the last decade, considerable scientific effort has gone into quantifying these fluxes from the African continent. We find that both biogenic and pyrogenic emissions have a powerful impact on regional and global atmospheric chemistry, particularly on photooxidation processes and tropospheric ozone. The emissions of radiatively active gases and aerosols from the African continent are likely to have a significant climatic effect, but presently available data are not sufficient for reliable quantitative estimates of this effect

  20. Implications of emission inventory choice for modeling fire-related pollution in the U.S.

    Science.gov (United States)

    Koplitz, S. N.; Nolte, C. G.; Pouliot, G.

    2017-12-01

    Wildland fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. Within the U.S., wildland fires can account for more than 30% of total annual PM2.5 emissions. In order to represent the influence of fire emissions on atmospheric composition, regional and global chemical transport models (CTMs) rely on fire emission inventories developed from estimates of burned area (i.e. fire size and location). Burned area can be estimated using a range of top-down and bottom-up approaches, including satellite-derived remote sensing and on-the-ground incident reports. While burned area estimates agree with each other reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. vary by more than a factor of 3. Differences in burned area estimation methods lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire INventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated fire-related PM2.5 and ozone concentrations across the contiguous U.S. due solely to the emission inventory used. Preliminary results indicate that the estimated contribution to national annual average PM2.5 from wildland fire in 2011 is highest using GFED4s emissions (1.0 µg m-3) followed by NEI (0.7 µg m-3) and FINN (0.3 µg m-3), with comparisons varying significantly by region and season. Understanding the sensitivity of modeling fire-related PM2.5 and ozone in the U.S. to fire emission inventory choice will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global

  1. New science for global sustainability? The institutionalisation of knowledge co-production in Future Earth

    NARCIS (Netherlands)

    van der Hel, S.C.

    2016-01-01

    In the context of complex and unprecedented issues of global change, calls for new modes of knowledge production that are better equipped to address urgent challenges of global sustainability are increasingly frequent. This paper presents a case study of the new major research programme “Future

  2. Trends and Possible Future Developments in Global Forest-Product Markets—Implications for the Swedish Forest Sector

    Directory of Open Access Journals (Sweden)

    Ragnar Jonsson

    2011-01-01

    Full Text Available This paper analyzes trends and possible future developments in global wood-product markets and discusses implications for the Swedish forest sector. Four possible futures, or scenarios, are considered, based on qualitative scenario analysis. The scenarios are distinguished principally by divergent futures with respect to two highly influential factors driving change in global wood-product markets, whose future development is unpredictable. These so-called critical uncertainties were found to be degrees to which: (i current patterns of globalization will continue, or be replaced by regionalism, and (ii concern about the environment, particularly climate change, related policy initiatives and customer preferences, will materialize. The overall future of the Swedish solid wood-product industry looks bright, irrespective of which of the four possible futures occurs, provided it accommodates the expected growth in demand for factory-made, energy-efficient construction components. The prospects for the pulp and paper industry in Sweden appear more ambiguous. Globalization is increasingly shifting production and consumption to the Southern hemisphere, adversely affecting employment and forest owners in Sweden. Further, technical progress in information and communication technology (ICT is expected to lead to drastic reductions in demand for newsprint and printing paper. Chemical pulp producers may profit from a growing bio-energy industry, since they could manufacture new, high-value products in integrated bio-refineries. Mechanical pulp producers cannot do this, however, and might suffer from higher prices for raw materials and electricity.

  3. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Science.gov (United States)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  4. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  5. Mobilizing Political Action on Behalf of Future Generations

    Science.gov (United States)

    Aldy, Joseph E.

    2016-01-01

    Our failure to mobilize sufficient effort to fight climate change reflects a combination of political and economic forces, on both the national and the global level. To state the problem in its simplest terms, writes Joseph Aldy, future, unborn generations would enjoy the benefits of policies to reduce carbon emissions whereas the current…

  6. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines

    Science.gov (United States)

    Yan, Xiaoyuan; Akiyama, Hiroko; Yagi, Kazuyuki; Akimoto, Hajime

    2009-06-01

    The Intergovernmental Panel on Climate Change (IPCC) regularly publishes guidelines for national greenhouse gas inventories and methane emission (CH4) from rice paddies has been an important component of these guidelines. While there have been many estimates of global CH4 emissions from rice fields, none of them have been obtained using the IPCC guidelines. Therefore, we used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH4 emissions from rice fields. To accomplish this, we used country-specific statistical data regarding rice harvest areas and expert estimates of relevant agricultural activities. The estimated global emission for 2000 was 25.6 Tg a-1, which is at the lower end of earlier estimates and close to the total emission summarized by individual national communications. Monte Carlo simulation revealed a 95% uncertainty range of 14.8-41.7 Tg a-1; however, the estimation uncertainty was found to depend on the reliability of the information available regarding the amount of organic amendments and the area of rice fields that were under continuous flooding. We estimated that if all of the continuously flooded rice fields were drained at least once during the growing season, the CH4 emissions would be reduced by 4.1 Tg a-1. Furthermore, we estimated that applying rice straw off season wherever and whenever possible would result in a further reduction in emissions of 4.1 Tg a-1 globally. Finally, if both of these mitigation options were adopted, the global CH4 emission from rice paddies could be reduced by 7.6 Tg a-1. Although draining continuously flooded rice fields may lead to an increase in nitrous oxide (N2O) emission, the global warming potential resulting from this increase is negligible when compared to the reduction in global warming potential that would result from the CH4 reduction associated with draining the fields.

  7. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    Energy Technology Data Exchange (ETDEWEB)

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  8. Designing a Methodology for Future Air Travel Scenarios

    Science.gov (United States)

    Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.

    1992-01-01

    The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all

  9. U.S. Government Supports Low Emission Economic Growth (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.; Sandor, D.; Butheau, M.

    2013-11-01

    Countries around the world face the challenge of maintaining long-term sustainable economic growth and development under the threat of climate change. By identifying and pursuing a sustainable development pathway now, they are better positioned to reach their economic growth goals while addressing climate change impacts and lowering greenhouse gas (GHG) emissions. Low emission development strategies - development plans that promote sustainable social and economic development while reducing long-term GHG emissions - provide a pathway to preparing for a global low emission future. Partner country governments are working with the U.S. government through the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to further their national development objectives.

  10. Global Warming in the 21st Century: An Alternate Scenario

    Science.gov (United States)

    Hansen, James E.; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven by non-CO2 greenhouse gases (GHGs), such as CFCs, CH4 and N2O, not by the products of fossil fuel burning, CO2 and aerosols, whose positive and negative climate forcings are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change of climate forcing by non-CO2 GHGs In the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific longterm global monitoring of aerosol properties.

  11. Influence of updating global emission inventory of black carbon on evaluation of the climate and health impact

    Science.gov (United States)

    Wang, Rong; Tao, Shu; Balkanski, Yves; Ciais, Philippe

    2013-04-01

    Black carbon (BC) is an air component of particular concern in terms of air quality and climate change. Black carbon emissions are often estimated based on the fuel data and emission factors. However, large variations in emission factors reported in the literature have led to a high uncertainty in previous inventories. Here, we develop a new global 0.1°×0.1° BC emission inventory for 2007 with full uncertainty analysis based on updated source and emission factor databases. Two versions of LMDz-OR-INCA models, named as INCA and INCA-zA, are run to evaluate the new emission inventory. INCA is built up based on a regular grid system with a resolution of 1.27° in latitude and 2.50° in longitude, while INCA-zA is specially zoomed to 0.51°×0.66° (latitude×longitude) in Asia. By checking against field observations, we compare our inventory with ACCMIP, which is used by IPCC in the 5th assessment report, and also evaluate the influence of model resolutions. With the newly calculated BC air concentrations and the nested model, we estimate the direct radiative forcing of BC and the premature death and mortality rate induced by BC exposure with Asia emphasized. Global BC direct radiative forcing at TOA is estimated to be 0.41 W/m2 (0.2 - 0.8 as inter-quartile range), which is 17% higher than that derived from the inventory adopted by IPCC-AR5 (0.34 W/m2). The estimated premature deaths induced by inhalation exposure to anthropogenic BC (0.36 million in 2007) and the percentage of high risk population are higher than those previously estimated. Ninety percents of the global total anthropogenic PD occur in Asia with 0.18 and 0.08 million deaths in China and India, respectively.

  12. The decrease of CO2 emission intensity is decarbonization at national and global levels

    International Nuclear Information System (INIS)

    Sun, J.W.

    2005-01-01

    This viewpoint proposes the definition: 'Decarbonization refers to a decrease of CO 2 emission intensity in a trend'. This viewpoint then argues that an analysis of decarbonization at national and global levels based on that definition would lead to the correct calculation of decarbonization

  13. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    Directory of Open Access Journals (Sweden)

    M. Righi

    2013-10-01

    Full Text Available We use the EMAC (ECHAM/MESSy Atmospheric Chemistry global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications to quantify the impact of transport emissions (land transport, shipping and aviation on the global aerosol. We consider a present-day (2000 scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5 emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60–70% of the total surface-level BC concentration in these regions. Shipping contributes about 40–60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10–20% along the coastlines. Aviation mostly affects aerosol number, contributing about 30–40% of the particle number concentration in the northern midlatitudes' upper troposphere (7–12 km, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude obtained for the land transport sector. The simulated climate impacts, due to

  14. Towards a climate-dependent paradigm of ammonia emission and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; Mitchell, R.F.; Wanless, S.; Daunt, F.; Fowler, D. [NERC Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik EH26 0QB (United Kingdom); Blackall, T.D. [Department of Geography, Strand Campus, Kings College London, London WC2R 2LS (United Kingdom); Theobald, M.R. [Higher Technical School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Milford, C. [Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET), Santa Cruz de Tenerife 38071 (Spain); Flechard, C.R. [INRA, Agrocampus Ouest, UMR 1069 SAS, 65 rue de St. Brieuc, 35042 Rennes Cedex (France); Loubet, B.; Massad, R.; Cellier, P.; Personne, E. [UMR INRA-AgroParisTech Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Coheur, P.F.; Clarisse, L.; Van Damme, M.; Ngadi, Y. [Spectroscopie de l' atmosphere, Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), 50 avenue F. D. Roosevelt, 1050 Brussels (Belgium); Clerbaux, C. [Universite Paris 06, Universite Versailles-St. Quentin, UMR8190, CNRS/INSU, LATMOS-IPSL, Paris (France); Geels, C.; Hertel, O. [Department of Environmental Science, Aarhus University, P.O. Box 358, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ambelas Skjoeth, C. [National Pollen and Aerobiology Research Unit, University of Worcester, Henwick Grove, Worcester WR2 6AJ (United Kingdom); Wichink Kruit, R.J. [TNO, Climate, Air and Sustainability, P.O. Box 80015, 3508 TA Utrecht (Netherlands); Pinder, R.W.; Bash, J.O.; Walker, J.T. [US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, 109 T.W. Alexander Drive, Durham, NC 27711 (United States); Simpson, D. [Norwegian Meteorological Institute, EMEP MSC-W, P.O. Box 43-Blindern, 0313 Oslo (Norway); Horvath, L. [Plant Ecology Research Group of Hungarian Academy of Sciences, Institute of Botany and Ecophysiology, Szent Istvan University, Pater K. utca 1, 2100 Goedoello (Hungary); Misselbrook, T.H. [Rothamsted Research, Sustainable Soils and Grassland Systems, North Wyke, Okehampton EX20 2SB (United Kingdom); Bleeker, A. [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Dentener, F. [European Commission, DG Joint Research Centre, via Enrico Fermi 2749, 21027 Ispra (Italy); De Vries, W. [Alterra, Wageningen University and Research Centre, Droevendaalsesteeg 4, 6708 PB Wageningen (Netherlands)

    2013-07-15

    Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5{sup o}C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.

  15. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Nasibe Pourghasemian

    2017-12-01

    Full Text Available Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Therefore, it is necessary to reduce the application of chemical inputs in agricultural systems. Agriculture contributes significantly to atmospheric GHG emissions, with 14% of the global net CO2 emissions coming from this sector. Chemical inputs have a major role in this hazards. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the GHGs emission and Global warming Potential GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating potato, onion and watermelon in some regions of Kerman province at 2011-2012 growth season. Material and Methods The study was conducted in Kerman province of Iran. Data of planting area, application rates of the chemical inputs and other different parameter were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman(Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. Farm random sampling was done within whole population and the sample size was determined by proper equations. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Then the amount of

  16. The future of emissions trading in light of the acid rain experience

    International Nuclear Information System (INIS)

    McLean, B.J.; Rico, R.

    1995-01-01

    The idea of emissions trading was developed more than two decades ago by environmental economists eager to provide new ideas for how to improve the efficiency of environmental protection. However, early emissions trading efforts were built on the historical open-quotes command and controlclose quotes infrastructure which has dominated U.S. environmental protection until today. The open-quotes command and controlclose quotes model initially had advantages that were of a very pragmatic character: it assured large pollution reductions in a time when large, cheap reductions were available and necessary; and it did not require a sophisticated government infrastructure. Within the last five years, large-scale emission trading programs have been successfully designed and started that are fundamentally different from the earlier efforts, creating a new paradigm for environmental control just when our understanding of environmental problems is changing as well. The purpose of this paper is to focus on the largest national-scale program--the Acid Rain Program--and from that experience, forecast when emission trading programs may be headed based on our understanding of the factors currently influencing environmental management. The first section of this paper will briefly review the history of emissions trading programs, followed by a summary of the features of the Acid Rain Program, highlighting those features that distinguish it from previous efforts. The last section addresses the opportunities for emissions trading (and its probable future directions)

  17. Global zero-carbon energy pathways using viable mixes of nuclear and renewables

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2015-01-01

    Highlights: • A proper mix of nuclear power and renewables achieves sustainable energy future. • A high nuclear share provides cost and land effectiveness compared to nuclear-free. • Only-renewable mix will increase negative economic and environmental impacts. • A deployment of advanced reactor technologies is essential to overcome limitations. - Abstract: What are the most viable global pathways for a major expansion of zero-carbon emissions electricity sources given the diversity of regional technical, socio-political and economic constraints? We modelled a range of zero-emissions energy scenarios across nations that were designed to meet projected final energy demand in 2060, and optimised to derive the best globally aggregated results in terms of minimising costs and land use (a surrogate for environmental impacts). We found that a delayed energy transition to a zero-emissions pathway will decrease investment costs (−$3,431 billion), but increase cumulative CO 2 emissions (additional 696 Gt). A renewable-only scenario would convert >7.4% of the global land area to energy production, whereas a maximum nuclear scenario would affect <0.4% of land area, including mining, spent-fuel storage, and buffer zones. Moreover, a nuclear-free pathway would involve up to a 50% greater cumulative capital investment compared to a high nuclear penetration scenario ($73.7 trillion). However, for some nations with a high current share of renewables and a low projected future energy demand (e.g., Norway), pursuit of a higher nuclear share is suboptimal. In terms of the time frame for replacement of fossil fuels, achieving a global nuclear share of about 50% by 2060 would be a technically and economically plausible target if progressing at a pace of the average historical growth of nuclear power penetration in France from 1970 to 1986 (0.28 MWh person −1 year -1 ). For effective climate-change mitigation, a high penetration of nuclear in association with a nationally

  18. Important aspects of sinks for linking emission trading systems

    Energy Technology Data Exchange (ETDEWEB)

    Hirsbrunner, Simon; Taenzler, Dennis; Reuster, Lena [Adelphi Research gGmbH, Berlin (Germany)

    2011-06-15

    The discussion on how to design policy instruments to reduce emissions and enhance removals from land use, land use change, and forestry is likely to be a key feature of a future global climate protection framework and will also influence the design of an emerging global carbon market. By analyzing different ETSs it turns out that very specific provisions are in place to deal with carbon sinks. Different instruments, eligible activities and standards reflect the prevailing emissions profile and cultural preferences of a geographic area. The inclusion of forestry in a cap, for instance, makes provisions on additionality and non-permanence obsolete, but increases the relevance of other issues such as accounting and enforcement. (orig.)

  19. Towards a new world: The contributions of nuclear energy to a sustainable future

    International Nuclear Information System (INIS)

    Duffey, R. B.; Miller, A. I.; Fehrenbach, P. J.; Kuran, S.; Tregunno, D.; Suppiah, S.

    2007-01-01

    Over the last few years, the world has seen growing concern about the sustainability of the Planet when supplying increasing energy use. The major issues are: increased energy prices in the world markets; growing energy demand in emerging economies; security and stability of oil and gas supply; potentially adverse climate change due to carbon-based emissions; and the need to deploy economic, sustainable and reliable alternates. Large undefined 'wedges' of alternate energy technologies are needed. In light of these major difficulties, there is renewed interest and need for a greater role for nuclear energy as a safe, sustainable and economic energy contributor. The shift has been, from being viewed by some as politically discounted, to being accepted as absolutely globally essential. We have carefully considered, and systematically, extensively and technically analyzed the contributions that nuclear energy can and should make to a globally sustainable energy future. These include restraining emissions, providing safe and secure power, operating synergistically with other sources, and being both socially and fiscally attractive. Therefore, we quantify in this paper the major contributions: a) The reduction in climate change potential and the global impact of future nuclear energy deployment through emissions reduction, using established analysis tools which varying the plausible future penetration and scale of nuclear energy. b) The minimization of economic costs and the maximization of global benefits, including investment requirements, carbon price implications, competitive market penetration, and effect of variable daily pricing. c) The introduction of fuel switching, including base-load nuclear energy synergistically enabling both hydrogen production and the introduction of significant wind power. d) The management and reduction of waste streams, utilizing intelligent designs and fuel cycles that optimize fuel resource use and minimize emissions, waste disposal

  20. Cumulative carbon emissions budgets consistent with 1.5 °C global warming

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.

    2018-04-01

    The Paris Agreement1 commits ratifying parties to pursue efforts to limit the global temperature increase to 1.5 °C relative to pre-industrial levels. Carbon budgets2-5 consistent with remaining below 1.5 °C warming, reported in the IPCC Fifth Assessment Report (AR5)2,6,8, are directly based on Earth system model (Coupled Model Intercomparison Project Phase 5)7 responses, which, on average, warm more than observations in response to historical CO2 emissions and other forcings8,9. These models indicate a median remaining budget of 55 PgC (ref. 10, base period: year 1870) left to emit from January 2016, the equivalent to approximately five years of emissions at the 2015 rate11,12. Here we calculate warming and carbon budgets relative to the decade 2006-2015, which eliminates model-observation differences in the climate-carbon response over the historical period9, and increases the median remaining carbon budget to 208 PgC (33-66% range of 130-255 PgC) from January 2016 (with mean warming of 0.89 °C for 2006-2015 relative to 1861-188013-18). There is little sensitivity to the observational data set used to infer warming that has occurred, and no significant dependence on the choice of emissions scenario. Thus, although limiting median projected global warming to below 1.5 °C is undoubtedly challenging19-21, our results indicate it is not impossible, as might be inferred from the IPCC AR5 carbon budgets2,8.