WorldWideScience

Sample records for future fusion devices

  1. Fusion devices

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  2. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Linke, J. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  3. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Linke, J.

    2006-01-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation

  4. Ceramics for fusion devices

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  5. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-01-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the

  6. Cold nuclear fusion device

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  7. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-01-01

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He 2+ and Fe 24+ transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He 2+ studies. By examining the electron and He 2+ responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed

  8. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective

    Coenen, J W; Philipps, V; Sergienko, G; Terra, A; Unterberg, B; Wegener, T; De Temmerman, G; Van den Bekerom, D C M; Federici, G; Strohmayer, G

    2014-01-01

    Applying liquid metals as plasma facing components for fusion power-exhaust can potentially ameliorate lifetime issues as well as limitations to the maximum allowed surface heat loads by allowing for a more direct contact with the coolant. The material choice has so far been focused on lithium (Li), as it showed beneficial impact on plasma operation. Here materials such as tin (Sn), gallium (Ga) and aluminum (Al) are discussed as alternatives potentially allowing higher operating temperatures without strong evaporation. Power loads of up to 25 MW m −2 for a Sn/W component can be envisioned based on calculations and modeling. Reaching a higher operating temperature due to material re-deposition will be discussed. Liquids typically face stability issues due to j × B forces, potential pressure and magnetohydrodynamic driven instabilities. The capillary porous system is used for stabilization by a mesh (W and Mo) substrate and replenishment by means of capillary action. (paper)

  9. Fusion engineering device design description

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  10. Fusion Engineering Device design description

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  11. Fusion engineering device design description

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  12. Future of fusion implementation

    Beardsworth, E.; Powell, J.R.

    1978-01-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a cost/benefit oriented assessment methodology, because of both the time-frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the US energy system are posited and analyzed under various assumptions about costs. The Reference Energy System approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumptions levels and technology mix in each scenario. Not unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  13. Radio frequency siliconization: An approach to the coating for the future large superconducting fusion devices

    Li, J.; Zhao, Y.P.; Wan, B.N.; Gong, X.Z.; Zhen, M.; Gu, X.M.; Zhang, X.D.; Luo, J.R.; Wan, Y.X.; Xie, J.K.; Li, C.F.; Chen, J.L.; Toi, K.; Noda, N.; Watari, T.

    2001-01-01

    Radio frequency (rf) siliconization has been carried out on the HT-7 superconducting tokamak in the presence of a high magnetic field, which is a try on superconducting tokamaks. Three different procedures of rf siliconization have been tested and a very promising method to produce high quality silicon films was found after comparing the film properties and plasma performance produced by these three different procedures. The Si/C films are amorphous, semitransparent, and homogeneous throughout the layer and adhere firmly to all the substrates. The advantages of silicon atoms as a powerful radiator and a good oxygen getter have been proved. An outstanding merit of rf siliconization to superconducting devices is its fast recovery after a serious degradation of the condition due to the leakage of air to good wall conditions. A wider stable operation region has been obtained and plasma performance is improved immediately after each siliconization due to significant reduction of impurities. Energy confinement time increases more than 50% and particle confinement time increases by a factor of 2. The lifetime of the silicon film is more than 400 standard ohmic heated plasma discharges. Simulation shows that the confinement improvement is due to the reduction of the electron thermal diffusivity in the outer region of the plasma

  14. Tungsten: An option for divertor and main chamber plasma facing components in future fusion devices

    Neu, R.; Dux, R.; Kallenbach, A.; Maggi, C.F.; Puetterich, T.; Balden, M.; Eich, T.; Fuchs, J.C.; Gruber, O.; Herrmann, A.; Maier, H.; Mueller, H.W.; Pugno, R.; Radivojevic, I.; Rohde, V.; Sips, A.C.C.; Suttrop, W.; Ye, M.Y.; O'Mullane, M.; Whiteford, A.

    2005-01-01

    The tungsten programme in ASDEX Upgrade is pursued towards a full high-Z device. The spectroscopic diagnostic and the cooling factor of W have been extended and refined. The W-coated surfaces represent now a fraction of 65% (24.8 m2). The only two major components which are not yet coated are the strikepoint region of the lower divertor as well as the limiters at the low field side. While extending the W surfaces, the W concentration and the discharge behaviour have changed gradually pointing to critical issues when operating with a W wall: anomalous transport in the plasma centre should not be too low, otherwise neoclassical accumulation can occur. A very successful remedy is the addition of central RF heating at the 20-30% level. Regimes with low ELM activity show increased impurity concentration over the whole plasma radius. These discharges can be cured by increasing the ELM frequency through pellet ELM pacemaking or by higher heating power. Moderate gas puffing also mitigates the impurity influx and penetration, however at the expense of lower confinement. The erosion yield at the low field side guard limiter can be as high as 10 -3 and fast particle losses from NBI were identified to contribute a significant part to the W sputtering. Discharges run in the upper, W coated divertor do not show higher W concentrations than comparable discharges in the lower C-based divertor. (author)

  15. Fusion: Energy for the future

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  16. Beam dancer fusion device

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  17. Future with fusion power

    Hirschfeld, F.

    1977-01-01

    This article reviews several current approaches to the development of nuclear fusion power sources by the year 2000. First mentioned is the only project to develop a nonpolluting, radiation-free source by using only natural and nonradioactive isotopes (nuclei of deuterium, helium 3 and boron) as ''advanced'' fuels. This system will also be capable of direct conversion of the released energy into electricity. Next described is the PACER concept, in which thermonuclear burning of deuterium occurs in fusion explosion taking place underground (e.g., in a salt dome). The released energy is absorbed in high-pressure steam which is then piped to a surface heat exchanger to provide steam for a turbogenerator. After filtration, the steam is returned. The PACER system also produces fissionable fuel. The balance of the article reviews three ''magnetic fusion'' approaches. Tokamak, mirror and theta pinch systems utilize magnetic fields to confine a plasma for either pulsed or steady-state operation. The tokamak and theta pinch are toroidal in shape, while the mirror can be thought of as a magnetic field configuration of roughly tubular shape that confines the plasma by means of higher fields at the ends than at its center. The tokamak approach accounts for about 65 percent of the magnetic fusion research and development, while theta pinches and mirrors represent about 15 percent each. Refs

  18. Thermonuclear fusion: Current status and future prospects

    Bruhns, H.; Maisonnier, Ch.

    1992-01-01

    Thermonuclear Fusion holds great promises for becoming an important energy source for the future. Fusion research and development is undertaken in al major countries of the world. The European Community pursues fusion in a large programme which embraces all R and D in the field of magnetic confinement fusion in the Member States, and to which Sweden and Switzerland are fully associated. The long-term objective of the programme is the joint creation of safe, environmentally sound prototype reactors. The main R and D line of the Community Fusion Programme is fusion by toroidal magnetic confinement on the basis of the Tokamak concept. Some related concepts are also studied which possibly could offer advantages for a reactor, and keep-in-touch activities exist for other approaches. Several small and medium sized specialised devices in Associated Laboratories have been built by the Community Fusion Programme as well as the Joint European Torus (JET Joint Undertaking) which is the largest and the most successful fusion device in the world. Recently, fusion power in the megawatt range has been achieved in JET. The long timescale and the large effort needed for the development of fusion as an energy source have been important elements to foster international collaboration. Engineering Design Activities for an International Thermonuclear Experimental Reactor (ITER) are undertaken, under the auspices of the IAEA, by the European Community, Japan, the Russian Federation and the United States of America. The objective of ITER is to achieve self-sustained thermonuclear burn and its control under long-pulse operation and to provide basic data for the engineering of a demonstration fusion reactor. (author)

  19. Toroidal nuclear fusion device

    Ito, Yutaka; Kasahara, Tatsuo; Takizawa, Teruhiro.

    1975-01-01

    Object: To design a device so as to be formed into a large-size and to arrange ports, through which neutral particles enter, in inclined fashion. Structure: Toroidal coils are wound about vacuum vessels which are divided into plural number. In the outer periphery of the vacuum vessels, ports are disposed inclined in the peripheral direction of the vacuum vessels and communicated with the vacuum vessels, and wall surfaces opposed to the ports of the toroidal coils adjacent at least the inclined sides of the ports are inclined substantially simularly to the port wall surfaces. (Kamimura, M.)

  20. The future of fusion

    Sheffield, John

    2001-01-01

    The population of the world is increasing, mainly in the developing world, and is projected to saturate within about 100 years at up to twice the present population of 6 billion people (Bos et al., World Population Projections: 1994-95 Edition, Published for the World Bank). Studies (Goldemberg and Johansson (Eds.), Energy as an Instrument for Socio-Economic Development United Nations Development Programme, New York, 1995, p. 9; United Nations Statistical Yearbooks, 10th issue; 1965; 20th issue; 1975, 22nd issue, 1977; 32nd issue, 1987; and 39th issue 1994, United Nations Publications; Sheffield, J. Technol. Forecasting Social Change 59 (1998) 55.) show that, historically, the population growth rate has varied inversely as the annual per capita energy use in most parts of the developing world, where per capita energy use is typically less than 1 t of oil equivalent energy per year. However, in areas with more than 2-3 t of oil equivalent of energy use per year per person, the growth rate is around zero. If this trend continues, a stable world population will require, allowing for energy efficiency improvements, some 2-3 times the present annual energy use. There is an abundance of energy in the world both exploited and potential to meet this need - fossil, fission, and renewables - but it is not evenly distributed, some are costly, and there are issues of environmental pollution in present use, that may limit use. Fusion energy is a potential longer-term source with attractive environmental features. It is the least-developed energy option and still faces a challenging development path, but there are many areas of the world that would benefit hugely from its deployment from the later part of the 21st century onward, and it is important to consider how it might be deployed. Most fusion power plant options considered today show an economy of scale, owing to the fixed distance needed for shielding fusion neutrons, tritium breeding and handling the heat loads. One

  1. Tokamak devices: towards controlled fusion

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  2. Nuclear fusion power supply device

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  3. Data acquisition systems for fusion devices

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  4. Electromagnetic computations for fusion devices

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  5. Future directions in fusion research

    Clarke, J.F.

    1987-01-01

    The author discusses his analysis to quantify the priority of fusion R and D in the United States. The conclusion is that this priority has been essentially constant for 35 years with only two exceptions. He identifies four basic problems that must be solved. These problems are: to improve the scientific understanding of confinement concepts if we are going to have an energy source that can be utilized some day; to understand the physics of burning plasmas; to develop the materials for fusion use to realize the environmental potential of fusion; and to develop fusion nuclear technology. A response to these problems is given, based on the author's argument for international collaboration in fusion research

  6. Maximum neutron yeidls in experimental fusion devices

    Jassby, D.L.

    1979-02-01

    The optimal performances of 12 types of fusion devices are compared with regard to neutron production rate, neutrons per pulse, and fusion energy multiplication, Q/sub p/ (converted to the equivalent value in D-T operation). The record values in all categories are held by the beam-injected tokamak plasma, followed by other beam-target systems. The achieved values of Q/sub p/ for nearly all laboratory plasma fusion devices (magnetically or inertially confined) are found to roughly satisfy a common empirical scaling, Q/sub p/ approx. 10 -6 E/sub in//sup 3/2/, where E/sub in/ is the energy (in kilojoules) injected into the plasma during one or two energy confinement times, or the total energy delivered to the target for inertially confined systems. Fusion energy break-even (Q/sub p/ = 1) in any system apparently requires E/sub in/ approx. 10,000 kJ

  7. U. S. Fusion Energy Future

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  8. Fusion Engineering Device. Volume II. Design description

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  9. Open-ended fusion devices and reactors

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  10. Magnetic systems for fusion devices

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  11. Plasma surface interactions in controlled fusion devices

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  12. Data-Acquisition Systems for Fusion Devices

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  13. Plasma surface interactions in controlled fusion devices

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  14. Philosophy and physics of predemonstration fusion devices

    Clarke, J.F.

    1976-01-01

    A PDFD will operate in the 1980's and must provide the plasma and plasma support technology information necessary to warrant design, construction, and operation of succeeding experimental power reactors and then the demonstration plant. The PDFD must be prototypical of economic fusion devices to justify its cost. Therefore, development of the fusion core will be the focus of the PDFD. The physics performance, power production objectives, and characteristics of the PDFD, and their relationship to the research and development needs to achieve them are outlined. The design criteria for a PDFD which satisfied these constraints will be established

  15. Development of superconducting equipment for fusion device

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  16. Arcing phenomena in fusion devices workshop

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  17. The role of fusion as a future power source

    Kintner, E.E.; Hirsch, R.L.

    1977-01-01

    Nations of western Europe, Japan, the Soviet Union, and the United States are working together to demonstrate the practicality of fusion power early in the 21st century. Many difficult engineering problems make fusion development one of the most formidable scientific and technological challenges ever attempted. However, the outlook is promising for achieving an inexhaustible energy source that is safe, economic, and with acceptable environmental effects. The United States magnetic fusion power development program aims at producing fusion energy experimentally in the early 1980's and demonstrating power production on a commercial scale before 2000. This prognosis reflects the confidence gained in scientific successes of the late 1960's through the present. However, many physics problems remain to be solved and many complex engineering problems without obvious solutions await attention. In response to experimental successes and the perceived importance of the fusion energy alternative, the United States effort has grown rapidly. Scientific investigations of plasma physics continue while planned engineering studies lead toward the practical goal of a commercial technology that will take a prominent place among available energy sources of the next century. Development of laser and electron beam fusion proceeds. Alternative fusion devices are investigated for their potential feasibility while the tokamak configuration is used for principal experimental devices. A national program plan and budget coordinates the efforts of federal laboratories, universities and industry. The utilities industry conducts an independent program which is increasingly coordinated with government-sponsored activity. Fusion energy programs of several nations benefit one another and should cooperate more closely in specific problem areas. Achievement of practical fusion power could be advanced through more effective mutually supporting fusion development programs. The economic and technical

  18. ICRF Traveling Wave launcher for fusion devices

    Ragona, R

    2017-01-01

    Ion Cyclotron Resonance Heating and Current Drive is a method that has the ability to heat directly the ions in the Deuterium-Tritrium fuel to the high temperature needed for the fusion reaction to works. The capability of efficiently couple the Radio Frequency power to the plasma plays a big role in the overall performance of a fusion device. A Traveling Wave Antenna in a resonant ring configuration is a good candidate for an Ion Cyclotron Resonance Heating and Current Drive system. It has the capability to increase the coupled power with respect to present designs and to have a highly selective power spectrum that can be peaked around the maximally absorbed wave. It is also insensitive to the loading variations due to fluctuation of the plasma edge increasing the reliability and the efficiency of the system. It works as a low power density launcher due to the possible large number of current carrying elements. (paper)

  19. Neutral particle kinetics in fusion devices

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub α/ emission rates, plenum pressures, and charge-exchange emission spectra

  20. Neutral particle kinetics in fusion devices

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub ..cap alpha../ emission rates, plenum pressures, and charge-exchange emission spectra.

  1. Fusion looks to the future - again

    Waldrop, M.M.

    1984-01-01

    The $46 million budget cut in the US magnetic fusion program introduced a new approach that abandons the race to build a working power reactor in favor of a long-term emphasis on science, technology, and international cooperation. Administration policies which favor private funding for demonstration projects and general concern over the deficit have changed the overall fusion policy, although there is some concern among research groups that the program will become unfocused without its detailed timetable. If this happens, they see the program becoming even more vulnerable to future budget cuts. 2 references

  2. Pressure measurements in magnetic-fusion devices

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  3. Plasma Surface interaction in Controlled fusion devices

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  4. Protector in a nuclear fusion device

    Furukawa, Masayuki; Yamane, Katsumi; Niwa, Sadahiko; Ogata, Fumio; Masuda, Jun-ichi.

    1975-01-01

    Object: To block an abnormal voltage, which shifts from plasma to coil or power supply by means of action of mutual induction, by a circuit utilizing non-linear impedance elements. Structure: The nuclear fusion device includes a current transformer coil, a vertical field coil and a plasma circuit, with a non-linear impedance element disposed in parallel with at least the current transformer coil, said impedance element being disposed in parallel with a short-circuiting switch, relative to the abnormal voltage moving from the plasma by means of action of mutual induction. (Kamimura, M.)

  5. Pressure measurements in magnetic-fusion devices

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  6. Eddy current analysis in fusion devices

    Turner, L.R.

    1988-06-01

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs

  7. Dispersion interferometer for controlled fusion devices

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  8. Vacuum vessel for a nuclear fusion device

    Watanabe, Takashi; Sato, Hiroshi; Owada, Koro.

    1976-01-01

    Object: To provide a reinforcing member on a bellows portion to reduce a stress at the bellows portion thereby increasing the strength of a vessel. Structure: A vacuum vessel for a nuclear fusion device has a bellows portion and a wall thick portion. A support extended toward the bellows portion is secured inside of a toroidal section in order to reduce the stress at the bellows portion. An insulator is interposed between the support and the bellows portion and is retained on the support by a bolt. Since the stress may be reduced by the support, the wall thick of the bellows portion may be decreased to sufficiently secure the low electric resistance value. (Yoshihara, H.)

  9. Safety considerations in the design of the fusion engineering device

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  10. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  11. Coil supporting device in a nuclear fusion device

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  12. G8 decision on fusion would herald nuclear future

    Starck, Peter

    2005-01-01

    Nuclear fusion as a future abundant energy source would receive a boost if G8 leaders agree next month on the site for the world's first fusion test reactor, two nuclear scientists said on Wednesday (1 page)

  13. Heavy-ion fusion: Future promise and future directions

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous several papers in this heavy-ion fusion special session have described work that has taken place as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) project. Key technical issues in the design and costing of targets, accelerator systems, beam transport, reactor and balance-of-plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. The result of this study has been to, within the limits of our 1986 imagination and creativity, define the ''most attractive'' future heavy-ion fusion (HIF) power plant at some time in the future (beyond the year 2020 in this case). The project has specifically avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for a relative comparison among design options. The authors describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point

  14. Neutronic analysis of fusion tokamak devices by PHITS

    Sukegawa, Atsuhiko M.; Takiyoshi, Kouji; Amano, Toshio; Kawasaki, Hiromitsu; Okuno, Koichi

    2011-01-01

    A complete 3D neutronic analysis by PHITS (Particle and Heavy Ion Transport code System) has been performed for fusion tokamak devices such as JT-60U device and JT-60 Superconducting tokamak device (JT-60 Super Advanced). The mono-energetic neutrons (E n =2.45 MeV) of the DD fusion devices are used for the neutron source in the analysis. The visual neutron flux distribution for the estimation of the port streaming and the dose rate around the fusion tokamak devices has been calculated by the PHITS. The PHITS analysis makes it clear that the effect of the port streaming of superconducting fusion tokamak device with the cryostat is crucial and the calculated neutron spectrum results by PHITS agree with the MCNP-4C2 results. (author)

  15. Fusion reactors as a future energy source

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  16. Magnetic field coil in nuclear fusion device

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  17. Superconducting (radiation hardened) magnets for mirror fusion devices

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  18. Development and application of charcoal sorbents for cryopumping fusion devices

    Sedgley, D.W. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-06-01

    Progress has been made in defining the capabilities of charcoal as the most promising absorbent to be used in cryopumps for fusion power application. The capabilities of alternative methods of cryopumping helium have been examined in a literature survey and by test, and the results are described here. Considerations include pumping speed, capacity to accumulate pumped gas, ease of reconditioning, use of alternative materials and tolerance to the fusion environment. Vacuum pumps for future fusion devices must handle large quantities of helium/hydrogen isotopes and other impurities. Cryopumps or turbomolecular pumps have demonstrated the capability on a small scale, and each has an important advantage: TMPs do not accumulate gases; cryopumps can separate helium from other effluents. This paper includes a review of a method for selecting charcoals for helium cryopumping, testing of a continuously operating cryopump system, and definition of a design that is based on the requirements of the Next European Torus. Tritium limits are satisfied. The pump design incorporates the charcoal sorbent system that has been recently developed and is based on a reasonable extrapolation of current state-of-the-art. Evaluation of alternative methods of separating helium and other gases led to selection of a movable barrier as the preferred solution. (orig.).

  19. Use of high current density superconducting coils in fusion devices

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  20. Fusion energy - an abundant energy source for the future

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  1. Fusion Engineering Device. Volume 1. Mission and program summary

    1981-10-01

    This volume presents, in summary form, a recommended approach to implementing the Magnetic Fusion Energy Engineering Act of 1980. These recommendations constitute the findings of the FED Technical Management Board (TMB). The TMB and the affiliated technical managers gave particular scrutiny to elucidating the role of FED in fusion development and to defining the device mission

  2. Fusion and its future in Illinois

    Baker, C.C.

    1984-08-01

    This report was prepared by the Illinois Fusion Power Task Force under the sponsorship of the Governor's Commission on Sciences and Technology. The report presents the findings and recommendations of the Task Force, an explanation of the basic concepts of fusion, a summary of national and international programs and a description of ongoing fusion activities in Illinois

  3. Health physics appraisal guidelines for fusion/confinement devices

    Neeson, P.M.

    1987-01-01

    Several types of fusion/confinement devices have been developed for a variety of research applications. The health physics considerations for these devices can vary, depending on a number of parameters. This paper presents guidelines for health physics appraisal of such devices, which can be tailored to apply to specific systems. The guidelines can also be useful for establishing ongoing health physics programs for safe operation of the devices

  4. Future directions in inertial confinement fusion

    Bodner, S.E.

    1992-01-01

    The author discusses future directions for the ICF program. At this time there is still uncertainty on a number of key issues necessary to decide on what type of a National Ignition Facility should be constructed. Mechanisms are in place to answer these questions. The author offers his opinions of where the program is likely to proceed. Technology wise indications are that direct drive heating has the best chance of reaching ignition and high gain. This has the advantage of making all three major user programs happy, namely weapons physics, weapons effects, and electrical energy. The demand for and price of energy in the country will have a major impact on the way the program is developed. From the laser fusion side the most promising drivers at present seem to be KrF lasers, and a major concern for these systems is whether the peak to valley nonuniformities can be reduced to the 1 to 2% level when delivered to the target in order to avoid driving instabilities

  5. Process and device for energy production from thermonuclear fusion reactions

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  6. Particle and impurity control in toroidal fusion devices

    Wootton, A.J.

    1986-01-01

    A review of working particle and impurity control techniques used in and proposed for magnetic fusion devices is presented. The requirements of both present-day machines and envisaged fusion reactors are considered. The various techniques which have been proposed are characterized by whether they affect sources, sinks, or fluxes; in many cases a particular method or device can appear in more than one category. Examples are drawn from published results. The solutions proposed for the large devices which will be operating during the next 5 years are discussed

  7. Tritium inventory and recovery in next-step fusion devices

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  8. Material Challenges For Plasma Facing Components in Future Fusion Reactors

    Linke, J; Pintsuk, G.; Rödig, M.

    2013-01-01

    Increasing attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO2-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible materials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PFMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm-2; the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm-2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat sink materials as well as reliable fabrication processes for actively cooled plasma facing components. The technical solutions which are considered today are mainly based on the PFMs beryllium, carbon or tungsten joined to copper alloys or stainless steel heat sinks. In addition to the above mentioned quasi-stationary heat loads, short transient thermal pulses with deposited energy densities up to several tens of MJm-2 are a serious concern for next step tokamak devices. The most frequent events are so-called Edge Localized Modes (type I ELMs) and plasma disruptions

  9. Nuclear fusion an energetic option to the future

    Medialdea Utande, A.; Sanchez Sanz, J.

    2007-01-01

    Nuclear fusion is the energy source of the Sun and the rest of starts. The great availability of deuterium on Earth, the inherent safety of the reactions involved and the intrinsic environmental respect make fusion an attractive energy source for the future of making of man king. International promising contributions are making Fusion Science and Technology progress by leaps and bounds to achieve its long term goal of cost-effective energy-producing plasmas. (Author)

  10. Past, present and future of the fusion reactors

    Rosenbaum P, M.

    1992-01-01

    Among the alternate technologies that have acquired a special interest in the present decade, we find the nuclear fusion. Within this, the fusion reactors by magnetic confinement of the Tokamak type have shown an increasing technological progress during this period. For this reason, a new strategy, coordinated at international level, has been implemented for the specific development of the nuclear fusion reactors, aimed to face those scientific and technological aspects which still remain, and which will determine their future economic feasibility. (Author)

  11. Three equipment concepts for the Fusion Engineering Device

    Spampinato, P.T.; Masson, L.S.; Watts, K.D.; Grant, N.R.; Kuban, D.P.

    1982-01-01

    Maintenance equipment which is needed to remotely handle fusion device components is being conceptually developed for the Fusion Engineering Design Center. This will test the assumption that these equipment needs can be satisfied by present technology. In addition, the development of equipment conceptual designs will allow for cost estimates which have a much higher degree of certainty. Accurate equipment costs will be useful for assessments which trade off gains in availability as a function of increased investments in maintenance equipment

  12. Database for fusion devices and associated fuel systems

    Woolgar, P.W.

    1983-03-01

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  13. Laser Fusion: status, future, and tritium control

    Coyle, P.E.

    1978-11-01

    At Livermore the 10 kJ, 20 to 30 TW Shiva facility is now operational and producing regular new fusion results. Design work has begun on a 200 to 300 TW laser designed to carry the program through the first breakeven demonstration experiments in the mid-1980's. Confidence in reaching this goal is based on the significant progress we have made in state-of-the-art, high-power Nd:glass laser technology, in experimental laser fusion and laser plasma interaction physics, and in theoretical and analytical computer codes which reliably model and predict experimental results. For all of these experiments, a variety of fusion targets are being fabricated in the laboratory, and the control and handling of tritium is now a regular and routine part of ongoing inertial fusion experiments. Target design with gains of about 1000 have been studied and the means to mass produce such pellets at low cost are also being developed

  14. Helical-type device and laser fusion. Rivals for tokamak-type device at n-fusion development in Japan

    Anon.

    1994-01-01

    Under the current policy on the research and development of nuclear fusion in Japan, as enunciated by the Atomic Energy Commission of Japan, the type of a prototype fusion reactor will be chosen after 2020 from tokamak, helical or some other type including the inertial confinement fusion using lasers. A prototype fusion reactor is the next step following the tokamak type International Thermonuclear Experimental Reactor (ITER). With the prototype reactor, the feasibility as a power plant will be examined. At present the main research and development of nuclear fusion in Japan are on tokamak type, which have been promoted by Japan Atomic Energy Research Institute (JAERI). As for the other types of nuclear fusion, researches have been carried out on the helical type in Kyoto University and National Institute for Fusion Science (NIFS), the mirror type in Tsukuba University, the tokamak type using superconductive coils in Kyushu University, and the laser fusion in Osaka University. The features and the present state of research and development of the Large Helical Device and the laser fusion which is one step away from the break-even condition are reported. (K.I.)

  15. Institute for Fusion Research and Large Helical Device program

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  16. Coil for a nuclear fusion device

    Kadotani, Kenzo.

    1975-01-01

    Object: To provide a thin nuclear fusion coil having good thermal insulation and insulating properties in which mica and glass materials are wound round conductors subjected to varnish treatment and hardened, which is then sealed into a metallic case along with negative gases of more than two atmospheric pressures. Structure: A plurality of conductors impregnated with varnish are hardened by a rare insulating layer, after which it is coated with a layer of mica not impregnated with varnish and a layer of glass substance and is then received into a metallic case and filled under pressure with negative gases at a pressure more than two atmospheric pressures. (Kamimura, M.)

  17. Economic and environmental performance of future fusion plants in comparison

    Hamacher, T.; Saez, R.M.; Lako, P.

    2001-01-01

    If the good performance of fusion as technology with no CO 2 emission during normal operation and rather low external costs, reflecting the advantageous environmental and safety characteristics, are considered in future energy regulations, fusion can win considerable market shares in future electricity markets. The economic performance was elaborated for Western Europe for the time period till 2100. The software tool MARKAL widely used in energy research was used to simulate and optimise the development of the Western European energy system. Two different scenarios were considered, the main difference was the interest rate for investments. Stringent CO 2 -emission strategies lead to considerable market shares for fusion. As a comprehensive indicator of the environmental and safety performance of fusion plants the external costs following the ExternE method was used. External costs of fusion are rather low, much below the cost of electricity, and are in the same range as photovoltaics and wind energy. (author)

  18. Initial trade and design studies for the fusion engineering device

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  19. Safety analysis and evaluation of the next fusion device

    Kobayashi, Shigetada; Honda, Tsutomu; Ohmura, Hiroshi; Kawai, Masayoshi; Shimizu, Takeshi; Yamaoka, Mitsuaki; Nakahara, Katsuhiko; Seki, Yasushi.

    1988-12-01

    As a part of safety evaluation, a probabilistic risk assessment (PRA) has been attempted for the Next Fusion Device system. Among the various events related to safety, a number of representative events have been selected for assessment, from the events in normal operation state, repair and maintenance state and accidental state. In the first chapter, in order to conduct the probabilistic risk assessment of the whole Fusion Experimental Reactor (FER), the data base required for the analysis was investigated in 1.1, the results on the failure mode and effects analysis (FMEA), accident sequence, radioactive inventory leakage flow path, event tree analysis (ETA) and fault tree analysis (FTA) were summarized in 1.2 to 1.5, respectively. Based on these results, accident initiating events were evaluated in 1.6, and overall risk was assessed in 1.7 and the tasks for the future were summarized in 1.8. It is important to analyze and evaluate various events during normal operations, repair and maintenance and accidents. However, due to the large uncertainties in the modeling of phenomena or the data base, there are many events for which realistic analyses are difficult. Three such events were selected and studied in chapter two. In 2.1, the temperature rise in the reactor structure after the Loss-of-Coolant-Accident caused by the decay heat under various heat removal conditions were investigated. In 2.2, the radiation dose of personnel during repair and maintenance period caused by the release of activated dust were estimated. Lastly, in 2.3 tritium behavior in the stainless steel first wall and graphite armour were studied. (author)

  20. Local wall power loading variations in thermonuclear fusion devices

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  1. Future perspectives for spintronic devices

    Hirohata, Atsufumi; Takanashi, Koki

    2014-01-01

    Spintronics is one of the emerging research fields in nanotechnology and has been growing very rapidly. Studies of spintronics were started after the discovery of giant magnetoresistance in 1988, which utilized spin-polarized electron transport across a non-magnetic metallic layer. Within 10 years, this discovery had been implemented into hard disk drives, the most common storage media, followed by recognition through the award of the Nobel Prize for Physics 19 years later. We have never experienced such fast development in any scientific field. Spintronics research is now moving into second-generation spin dynamics and beyond. In this review, we first examine the historical advances in spintronics together with the background physics, and then describe major device applications. (topical review)

  2. JET:Preparing the future in fusion

    Mlynář, Jan; Ongena, J.; Ďuran, Ivan; Hron, Martin; Pánek, Radomír; Petržílka, Václav; Žáček, František

    2004-01-01

    Roč. 54, suppl.C (2004), C28-C38 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z2043910 Keywords : fusion, tokamak, JET EFDA, ITER Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  3. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  4. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  5. Heavy-ion fusion: future promise and future directions

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous papers in this heavy-ion fusion special session have described work performed as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) Project. Key technical issues in the design and costing of targets, induction linacs, beam transport, reactor, balance of plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. Within the limits of our 1986 knowledge and imagination, this study defines the most attractive heavy-ion fusion (HIF) power plant concepts. The project has deliberately avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for relative comparisons among design options. We will describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point. This degree of optimism concerning such breakthroughs is probably at least as conservative as that used in other fusion assessments

  6. Interfacing between concrete and steel construction and fusion research devices

    Willoughby, E.

    1981-01-01

    In 1976 Giffels Associates, Inc. an architect/engineer organization, was retained by the United States Department of Energy to provide Title I and Title II design services and Title III construction inspection services for the Tokamak Fusion Test Reactor now being installed at the Princeton Plasma Physics Laboratory in Princeton, New Jersey. Construction of the complex required to house and serve the reactor itself, designed by others, now commencing. During building construction several problems occurred with respect to the interface between the building design, construction and the fusion device (reactor). A brief description of some of these problems and related factors is presented, which may be of benefit to those persons active in continuing fusion research and experimental work

  7. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  8. The near future of nuclear fusion

    Grenier, E.

    2000-01-01

    In this short article the author tries to find an explanation about the withdraw of the Usa from the ITER project. According to the author the American economy is not so flourishing as it seems, it is only the IT (information technologies) sector that is attracting huge foreign investments. Moreover state agencies such as Nasa have difficulties to recruit talented people because they are lured by easy money earned in the new economy. The whole of the ITER project has been reduced: the volume of plasma will be 840 m 3 (instead of 2000 m 3 ) for a fusion power of 500 MW (instead of 1500 MW). Canada is standing for hosting the building site. (A.C.)

  9. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  10. Use of high temperature superconductors for future fusion magnet systems

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  11. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  12. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  13. Fusion power in a future low carbon global electricity system

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  14. Development of new low activation aluminum alloys for fusion devices

    Kamada, Kohji; Kakihana, Hidetake.

    1985-01-01

    As the materials for the R facility (a tokamak nuclear fusion device in the R project intended for D-T burning) in the Institute of Plasma Physics, Nagoya University, Al-4 % Mg-0.2 % Bi (5083 improved type) and Al-4 % Mg-1 % Li, aimed at low radioactivability, high electric resistance and high strength, have been developed. The results of the nuclear properties evaluation with 14 MeV neutrons and of the measurements of electric resistance and mechanical properties were satisfactory. The possibility of producing large Al-4 % Mg-1 % Li plate (1 m x 2 m x 25 mm) in the existing factory was confirmed, with the properties retained. The electric resistances were higher than those in the conventional aluminum alloys, and still with feasibility for the further improvement. General properties of the fusion aluminum alloys and the 26 Al formation in (n, 2n) reaction were studied. (Mori, K.)

  15. Overview of the Fusion Engineering Device (FED) design

    Steiner, D.; Flanagan, C.A.

    1981-01-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  16. Overview of the fusion engineering device (FED) design

    Steiner, D.; Flanagan, C.A.

    1981-10-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions, the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  17. Railgun pellet injection system for fusion experimental devices

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  18. Railgun pellet injection system for fusion experimental devices

    Onozuka, M.; Hasegawa, K.

    1995-01-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s -1 using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s -1 using a 3 m long railgun. (orig.)

  19. Development of electrical insulation and conduction coating for fusion experimental devices

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  20. Development of electrical insulation and conduction coating for fusion experimental devices

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  1. Personnel Safety for Future Magnetic Fusion Power Plants

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  2. Personnel Safety for Future Magnetic Fusion Power Plants

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  3. Introducing the book 'Cold fusion and the future'

    Rothwell, Jed

    2006-01-01

    Cold fusion will be the ideal source of energy, provided its introduction can be handled properly. A few cells have shown power density and temperatures suitable for real-world applications. Once these cells can be replicated on demand, commercial development will be straightforward. Manufacturing should not be too demanding, so thousands of companies will compete, and costs will fall quickly. The transition from fossil fuel to cold fusion will be rapid. Many extraordinary new applications will become possible, and seemingly intractable problems such as global warming may be fixed. Some examples will be presented. Public support is essential to funding research, and commercialization. 'Cold Fusion and the Future' is the title of a new book by this author. This paper discusses a few of the topics in the book

  4. Tungsten as First Wall Material in Fusion Devices

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  5. Electrical insulation and conduction coating for fusion experimental devices

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  6. Electrical insulation and conduction coating for fusion experimental devices

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  7. Reducing the tritium inventory in waste produced by fusion devices

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  8. IEC fusion: The future power and propulsion system for space

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  9. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Interrupter and hybrid-switch testing for fusion devices

    Parsons, W.M.; Warren, R.W.; Honig, E.M.; Lindsay, J.D.G.; Bellamo, P.; Cassel, R.L.

    1979-01-01

    This paper discusses recent and ongoing switch testing for fusion devices. The first part describes testing for the TFTR ohmic-heating circuit. In this set of tests, which simulated the stresses produced during a plasma initiation pulse, circuit breakers were required to interrupt a current of 24 kA with an associated recovery voltage of 25 kV. Two interrupter systems were tested for over 1000 operations each, and both appear to satisfy TFTR requirements. The second part discusses hybrid-switch development for superconducting coil protection. These switching systems must be capable of carrying large currents on a continuous basis as well as performing interruption duties. The third part presents preliminary results on an early-counterpulse technique applied to vacuum interrupters. Implementation of this technique has resulted in large increases in interruptible current as well as a marked reduction in contact erosion

  11. Speckle interferometry application for erosion measurements in fusion devices

    Gauthier, E.; Roupillard, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    In order to measure erosion/redeposition in fusion devices, a new diagnostic based on speckle interferometry is investigated. First experiments performed on carbon fibre composite (CFC) materials have shown that this technique is able to measure a modification of the surface in the range of 1 {mu}m. Further experiments have been performed on different materials using a second wavelength in order to carry out 3-dimensional measurements of the surface and to increase the dynamic range of the depth measurement. A diagnostic, based on two-wavelength TV-holography to measure in situ erosion/redeposition during long duration discharges on the CIEL limiter in Tore Supra, is under development at CEA Cadarache. (authors)

  12. Fusion Engineering Device (FED) first wall/shield design

    Sager, P.H.; Fuller, G.; Cramer, B.; Davisson, J.; Haines, J.; Kirchner, J.

    1981-01-01

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  13. Erosion and redeposition at the vessel walls in fusion devices

    Naujoks, D.; Behrisch, R.

    1995-01-01

    The plasma induced erosion and redeposition at the vessel walls in today's fusion devices have been investigated both with the computer simulation code ERO, and in experiments. Well prepared carbon probes with implanted and evaporated markers in the surface layers have been exposed in the scrape-off layer (SOL) of several tokamaks such as JET, TEXTOR and ASDEX-Upgrade. The main plasma parameters (electron density and temperature, impurity concentration in the SOL) are simultaneously determined. After exposure to single plasma discharges, erosion and redeposition of the marker material were measured by surface layer analysis with MeV ion beam techniques. The experimental results were compared with the results from the ERO code. The measured erosion/redeposition could be described with ERO, which takes into account the impurity concentration in the SOL, the dynamical change of the surface composition (causing a modification of the sputtering yield during the exposure) and ExB drift effects. ((orig.))

  14. Numerical modelling of electromagnetic loads on fusion device structures

    Bettini, Paolo; Palumbo, Maurizio Furno; Specogna, Ruben

    2014-01-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine

  15. Alternative divertor target concepts for next step fusion devices

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  16. Numerical modelling of electromagnetic loads on fusion device structures

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  17. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb3Sn conductors

    Tachikawa, Kyoji; Yamamoto, Junya

    1996-03-01

    Nb 3 Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb 3 Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb 3 Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb 3 Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb 3 Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb 3 Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb 3 Sn conductors. Comprehensive grasp on the present status of Nb 3 Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs

  18. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  19. Fusion-fission dynamics and perspectives of future experiments

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  20. Dust in fusion devices-a multi-faceted problem connecting high- and low-temperature plasma physics

    Winter, J

    2004-01-01

    Small particles with sizes between a few nanometers and a few 10 μm (dust) are formed in fusion devices by plasma-surface interaction processes. Though it is not a major problem today, dust is considered a problem that could arise in future long pulse fusion devices. This is primarily due to its radioactivity and due to its very high chemical reactivity. Dust formation is particularly pronounced when carbonaceous wall materials are used. Dust particles can be transported in the tokamak over significant distances. Radioactivity leads to electrical charging of dust and to its interaction with plasmas and electric fields. This may cause interference with the discharge but may also result in options for particle removal. This paper discusses some of the multi-faceted problems using information both from fusion research and from low-temperature dusty plasma work

  1. Suppression of hydrogenated carbon film deposition by scavenger techniques and their application to the tritium inventory control of fusion devices

    Tabares, F.L.; Tafalla, D.; Tanarro, I.; Herrero, V.J.; Islyaikin, A.; Maffiotte, C.

    2002-01-01

    The well-known radical and ion scavenger techniques of application in amorphous hydrogenated carbon film deposition studies are investigated in relation to the mechanism of tritium and deuterium co-deposition in carbon-dominated fusion devices. A particularly successful scheme results from the injection of nitrogen into methane/hydrogen plasmas for conditions close to those prevailing in the divertor region of present fusion devices. A complete suppression of the a-C : H film deposition has been achieved for N 2 /CH 4 ratios close to one in methane (5%)/hydrogen DC plasma. The implications of these findings in the tritium retention control in future fusion reactors are addressed. (author). Letter-to-the-editor

  2. The recent progress of laser fusion research and future scope

    Yamanaka, C.

    1986-01-01

    The plasma compression of spherical fuel pellets is performed by irradiation laser beams on the surface of targets. The short wavelength laser or Xray is effective to get high coupling of laser and plasmas without preheating. The implosion uniformity is essentially important to attain the high compression. As for the direct implosion, the multibeam irradiation is necessary to keep a good uniformity of illumination. Extremely high aspect ratio targets are successfully imploded withy neutron yield 10/sup 12/ or more. The shock wave multiplexing is introduced by tailored laser pulses synchronizing with the compression stagnation. Implosion instability seems to be prevented by this scheme. Energy recovering by nuclear fusion is about 10/sup -3/ of the incident laser beam. The indirect implosion using the Cannonball target is very effective to keep the high absorption and the implosion uniformity. However the suprathermal electrons are increased especially at the region of the beam inlet holes. The larger cavity irradiated by the shorter wavelength laser indicates the better results. The Xray conversion by laser is intensively studied using metal targets. Magnetically Insulated Inetially Confined Fusion (MICF) is tested by using CO/sub 2/ lasers. The basic structure of the MICF target is a double shell structure. The irradiation of laser beams through holes of the outer shell produces a toroidal magnetic field due to the current loop produced by the ejected hot electrons. Self organized magnetic field is expected to confine the plasma energy. Plasmas are preserved by the inertial confinement scheme. The experimental results are very interesting to design a hybrid fusion device

  3. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  4. Nuclear fusion, an energy source of the future

    Koeppendoerfer, W.

    1994-01-01

    The paper discusses the possibility to obtain energy by nuclear fusion. It deals successively with: The physical bases of nuclear fusion, research and development with a view to harnessing nuclear fusion, properties of a fusion reactor, and programme and timetable to economic exploitation. (orig./UA) [de

  5. Challenges and the future of the fusion energy

    Gross, R.A.

    1982-01-01

    The need to develop new large energy resources is discussed. One of three inexhaustible energy resource possibilities is fusion energy, whose history and scientific goals are described. The current world-wide research and development program for fusion is outlined. As an example of today's perception of what fusion energy will be like, a commercial tokamak fusion electric powerplant is described. Special attention is devoted to some of the challenging material problems that face fusion power development. (Author) [pt

  6. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  7. Protective coatings for in-vessel fusion devices

    Brossa, F.

    1984-01-01

    Coatings of Al/Si, SAP (Sintered Aluminium Powder), Al 2 O 3 , TiC (low-Z material) and Ta have been developed for in-vessel component protection. Anodic oxidation, vapor depositions, reactive sputtering, chemical vapor deposition (CVD) and plasma spray have been the coating formation methods studied. AISI 316, 310, 304, Inconel 600 and Mo were adopted as base materials. the coatings were characterized in terms of composition, structure and connection with the supporting material. The behavior of coatings under H + , D + and He + irradiation in the energy range 100 eV-8 keV was tested and compared to the solid massive samples. TiC and Ta coatings were tested with thermal shock under power density pulses of 1 kW/cm 2 generated by an electron beam gun. Temperature-dependence of the erosion of TiC by vacuum arcs in a magnetic field was also studied. TiC coatings have low sputtering values, good resistance to arcing and a high chemical stability. TiC and Ta, CVD and plasma spray coatings are thermal-shock resistant. High thermal loads produce cracks but no spalling. Destruction occurred only after melting of the base material. The plasma spray coating method seems to be most appropriate for developing remote handling applications in fusion devices. (orig.)

  8. Turbomolecular pumping systems for nuclear fusion devices in JAERI

    Ohga, Tokumichi; Arai, Takashi

    1978-01-01

    The turbomolecular pumping systems for the nuclear fusion devices JFT-2, JFT-2a and the injector test stands ITS-1, 2 and 3 in the Japan Atomic Energy Research Institute are mainly reported. For these vacuum systems, many requirements exist, such as oil free, large exhausting speed up to high pressure region (10 -3 Torr), compactness and easy operation and maintenance, etc., for the special usage. The outline of the systems and components, and the functions and the operational characteristics of the turbomolecular pumps are introduced. Concerning to the vacuum systems for JFT-2 and JFT-2a, the main system flow charts, the key specifications, the exhausting characteristic curves in case of starting from the atmospheric pressure for both JFT-2 and JFT-2a, and the conductance for hydrogen gas in the high vacuum side of JFT-2a are explained. As for the vacuum system for ITS-2, the main specification, the system flow chart, the main components, the functions, the conductance for hydrogen gas, the pumping characteristic curve, the starting characteristic of the turbomolecular pump, the exhausting speed for hydrogen gas and an example of mass spectrum are shown. The vacuum pressure obtained is almost 10 -5 -- 10 -6 torr for the three pumping systems. (Nakai, Y.)

  9. Divertor development for a future fusion power plant

    Norajitra, Prachai

    2011-01-01

    Nuclear fusion is considered as a future source of sustainable energy supply. In the first chapter, the physical principle of magnetic plasma confinement, and the function of a tokamak are described. Since the discovery of the H-mode in ASDEX experiment ''Divertor I'' in 1982, the divertor has been an integral part of all modern tokamaks and stellarators, not least the ITER machine. The goal of this work is to develop a feasible divertor design for a fusion power plant to be built after ITER. This task is particularly challenging because a fusion power plant formulates much greater demands on the structural material and the design than ITER in terms of neutron wall load and radiation. First several divertor concepts proposed in the literature e.g. the Power Plant Conceptual Study (PPCS) using different coolants are reviewed and analyzed with respect to their performance. As a result helium cooled divertor concept exhibited the best potential to come up to the highest safety requirements and therefore has been chosen for the design process. From the third chapter the necessary steps towards this goal are described. First, the boundary conditions for the arrangement of a divertor with respect to the fusion plasma are discussed, as this determines the main thermal and neutronic load parameters. Based on the loads material selection criteria are inherently formulated. In the next step, the reference design is defined in accordance with the established functional design specifications. The developed concept is of modular nature and consists of cooling fingers of tungsten using an impingement cooling in order to achieve a heat dissipation of 10 MW/m 2 . In the next step, the design was subjected to the thermal-hydraulic and thermo-mechanical calculations in order to analyze and improve the performance and the manufacturing technologies. Based on these results, a prototype was produced and experimentally tested on their cooling capacity, their thermo-cyclic loading

  10. Impact of fusion-fission hybrids on world nuclear future

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  11. Impact of fusion-fission hybrids on world nuclear future

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  12. Impact of fusion-fission hybrids on world nuclear future

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  13. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.

    Rapp, Steven M; Miller, Larry E; Block, Jon E

    2011-01-01

    Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.

  14. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  15. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    Neu, R.

    2006-01-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures

  16. Managing fusion high-level waste-A strategy for burning the long-lived products in fusion devices

    El-Guebaly, L.A.

    2006-01-01

    Fusion devices appear to be a viable option for burning their own high-level waste (HLW). We propose a novel strategy to eliminate (or minimize) the HLW generated by fusion systems. The main source of the fusion HLW includes the structural and recycled materials, refractory metals, and liquid breeders. The basic idea involves recycling and reprocessing the waste, separating the long-lived radionuclides from the bulk low-level waste, and irradiating the limited amount of HLW in a specially designed module to transmute the long-lived products into short-lived radioisotopes or preferably, stable elements. The potential performance of the new concept seems promising. Our analysis indicated moderate to excellent transmutation rates could be achieved in advanced fusion designs. Successive irradiation should burn the majority of the HLW. The figures of merit for the concept relate to the HLW burn-up fraction, neutron economy, and impact on tritium breeding. Hopefully, the added design requirements could be accommodated easily in fusion power plants and the cost of the proposed system would be much less than disposal in a deep geological HLW repository. Overall, this innovative approach offers benefits to fusion systems and helps earn public acceptance for fusion as a HLW-free source of clean nuclear energy

  17. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices

    van Eden, G.G.; Kvon, V.; Van De Sanden, M.C.M.; Morgan, T.W.

    2017-01-01

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically

  18. Diagnostics Development towards Steady State Operation in Fusion Devices

    Burhenn, R.; Baldzuhn, J.; Dreier, H.; Endler, M.; Hartfuss, H.J.; Hildebrandt, D.; Hirsch, M.; Koenig, R.; Kornejev, P.; Krychowiak, M.; Laqua, H.P.; Laux, M.; Oosterbeek, J.W.; Pasch, E.; Schneider, W.; Thomsen, H.; Weller, A.; Werner, A.; Wolf, R.; Zhang, D. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Biel, W. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-07-01

    The stellarator Wendelstein 7-X (W7-X) is being presently under construction and is already equipped with superconducting coil systems and principally is capable of quasi-continuous operation. However, W7-X is faced with new enhanced technical requirements which have to be met by plasma facing components as well as the diagnostic systems in general. Depending on the available heating power, the continuous heat flux to plasma facing components during long pulse operation might lead to unacceptable local thermal overload and necessitates sufficient but often complicate active cooling precautions. Fusion devices with electron cyclotron frequency heating (ECRH) are concerned with significant stray radiation, depending on the chosen heating scheme and the plasma parameters. The required shielding is often not compatible with optimal UHV-consistent design and high intensity throughput. For machine safety, diagnostics are required which are able to identify enhanced plasma wall interaction on a fast time scale in order to prevent damage in time. For W7-X, video camera systems covering most of the inner wall, fast IR-camera systems with coating-resistant pinhole-optics for the observation of the divertor surface temperature and spectrometers with large spectral survey covering relevant spectral lines of all intrinsic impurities with sufficient spectral resolution and sensitivity are necessary. In combination with energy integrating but spatially resolving diagnostics like bolometers and soft-X cameras slow impurity accumulation phenomena on a time scale much larger than flat-top times typically achieved in short-pulse operation can be identified and a radiative plasma collapse possibly be avoided by counteractive measures. Longer port dimensions due to thermal insulation of the cryogenic coil system and high density operation with strong density gradients necessitate the choice of shorter wavelengths for interferometer laser beams. This complicates the avoidance of fringe

  19. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  20. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  1. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  2. New design of cable-in-conduit conductor for application in future fusion reactors

    Qin, Jinggang; Wu, Yu; Li, Jiangang; Liu, Fang; Dai, Chao; Shi, Yi; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Yagotintsev, Konstantin A.; Lubkemann, Ruben; Anvar, V. A.; Devred, Arnaud

    2017-11-01

    The China Fusion Engineering Test Reactor (CFETR) is a new tokamak device whose magnet system includes toroidal field, central solenoid (CS) and poloidal field coils. The main goal is to build a fusion engineering tokamak reactor with about 1 GW fusion power and self-sufficiency by blanket. In order to reach this high performance, the magnet field target is 15 T. However, the huge electromagnetic load caused by high field and current is a threat for conductor degradation under cycling. The conductor with a short-twist-pitch (STP) design has large stiffness, which enables a significant performance improvement in view of load and thermal cycling. But the conductor with STP design has a remarkable disadvantage: it can easily cause severe strand indentation during cabling. The indentation can reduce the strand performance, especially under high load cycling. In order to overcome this disadvantage, a new design is proposed. The main characteristic of this new design is an updated layout in the triplet. The triplet is made of two Nb3Sn strands and one soft copper strand. The twist pitch of the two Nb3Sn strands is large and cabled first. The copper strand is then wound around the two superconducting strands (CWS) with a shorter twist pitch. The following cable stages layout and twist pitches are similar to the ITER CS conductor with STP design. One short conductor sample with a similar scale to the ITER CS was manufactured and tested with the Twente Cable Press to investigate the mechanical properties, AC loss and internal inspection by destructive examination. The results are compared to the STP conductor (ITER CS and CFETR CSMC) tests. The results show that the new conductor design has similar stiffness, but much lower strand indentation than the STP design. The new design shows potential for application in future fusion reactors.

  3. Advanced smart tungsten alloys for a future fusion power plant

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  4. Implications of fusion results for a reactor: a proposed next step device-JIT

    Rebut, P.H.

    1989-01-01

    Simulations with a critical-temperature model have been made of proposed future devices (NET, ITER, JIT, etc.). These show that only machines with a current capability of ∼ 30MA have a sufficient ignition domain to cope with more realistic operating conditions (i.e. taking into account sawteeth effects, impurity dilution and semi-continuous operation). The importance of dilution and Bremsstrahlung radiation are clearly demonstrated; a mean temperature > 7keV is required for ignition. This prevents higher field, lower current devices from reaching ignition. Transient operations with monster sawteeth or H-mode allow such devices (>30MA) to reach ignition at lower density without additional heating. To investigate the problems of a controlled burning plasma for days in semi-continuous operation, the plasma of the next-step tokamak should be similar in size and performance to an energy producing reactor. The scientific and technical aims of such a machine should be to study burning plasma, test wall technology, provide a test-bed for breeding blankets and most importantly to demonstrate the potential and viability of fusion as an energy source. The main design characteristics of a Thermonuclear Furnace-JIT-dedicated to these objectives are presented. Watercooled copper magnets are used to benefit from proven technology. A single-null divertor configuration ensures helium exhaust and possibly benefits from an H-mode to reach the ignition domain. The X-point position relative to the dump plates would be swept to limit wall loading

  5. The first operation of the superconducting optimized stellarator fusion device Wendelstein 7-X

    Klinger, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt Universitaet, Greifswald (Germany)

    2016-07-01

    The confinement of a high-temperature plasma by a suitable magnetic field is the most promising path to master nuclear fusion of Deuterium and Tritium on the scale of a reasonable power station. The two leading confinement concepts are the tokamak and the stellarator. Different from a tokamak, the stellarator does not require a strong current in the plasma but generates the magnetic field by external coils only. This has significant advantages, e.g. better stability properties and inherent steady-state capability. But stellarators need optimization, since ad hoc chosen magnetic field geometries lead to insufficient confinement properties, unfavourable plasma equilibria, and loss of fast particles. Wendelstein 7-X is a large (plasma volume 30 m{sup 3}) stellarator device with shaped superconducting coils that were determined via pure physics optimization criteria. After 19 years of construction, Wendelstein 7-X has now started operation. This talk introduces into the stellarator concept as a candidate for a future fusion power plant, summarizes the optimization principles, and presents the first experimental results with Helium and Hydrogen high temperature plasmas. An outlook on the physics program and the main goals of the project is given, too.

  6. Industry perspectives on future directions in the fusion program

    Maniscalco, J.A.; Bell, J.M.

    1985-01-01

    Industry is the ultimate recipient of the product of the fusion development program. However, budget trends are causing the program to lose it's focus on the energy goal, thus diminishing opportunities for a meaningful industrial role at a time when technical progress has been remarkable and scientific feasibility is being demonstrated. The findings of the Magnetic Fusion Advisory Committee Panel charged to report on industrial participation in fusion energy development are summarized. A recommendation of this panel was to increase intellectual involvement of industry in the development of fusion. Opportunities to achieve this include forming partnerships with national laboratories and universities, assigning industry responsibility for a complete scope of work, and assigning industry a major role in system studies and reactor design. These opportunities can be implemented without requiring large budget increases. Increasing the involvement of industry in the fusion program will provide both long and short-term benefits

  7. Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?

    D'haeseleer, William D.

    2005-01-01

    From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going

  8. Inertial confinement fusion: present status and future potential

    Hogan, W.J.

    1984-01-01

    Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed

  9. Safety considerations in the design of the Fusion Engineering Device

    Barrett, R.J.

    1983-01-01

    The US Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris

  10. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion

    Rapp SM

    2011-08-01

    Full Text Available Steven M Rapp1, Larry E Miller2,3, Jon E Block31Michigan Spine Institute, Waterford, MI, USA; 2Miller Scientific Consulting Inc, Biltmore Lake, NC, USA; 3Jon E. Block, Ph.D., Inc., San Francisco, CA, USAAbstract: Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF system is a minimally invasive fusion device that accesses the lumbar (L4–S1 intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.Keywords: AxiaLIF, fusion, lumbar, minimally invasive, presacral

  11. Experimental laser fusion devices and related vacuum problems

    O'Neal, W.C.; Campbell, D.E.; Glaros, S.S.; Hurley, C.A.; Kobierecki, M.W.; McFann, C.B. Jr.; Monjes, J.A.; Patton, H.G.; Rienecker, F. Jr.

    1977-01-01

    Laser fusion experiments require hard vacuum in the laser-beam spatial filters, target chambers and for target diagnostics instruments. Laser focusing lenses and windows, and target alignment windows must hold vacuum without optical distortion, and must be protected from target debris. The vacuum must be sufficient to prevent residual gas breakdown in focused laser light, avoid arcing at high voltage terminals, minimize contamination and melting of cryogenic targets, and prevent adsorption of the target's microfusion radiation before it reaches the diagnostics instruments

  12. Applicability of the PHITS code to a tokamak fusion device

    Sukegawa, Atsuhiko; Okuno, Koichi; Kawasaki, Hiromitsu

    2011-01-01

    The three-dimensional Monte-Carlo code PHITS (particle and Heavy Ion Transport code System) has been developed to perform the radiation transport analysis, design of the radiation shields and neutronics calculations for tokamak-type D-D fusion reactors. A subroutine was included in PHITS to represent the toroidal neutron source of 2.45 MeV neutrons from the D-D reaction. Here, an example of preliminary tests using PHITS is given. (author)

  13. Spatial heterogeneity of tungsten transmutation in a fusion device

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  14. Stat-of-the art of nuclear fusion and its future outlook in

    Abdelaziz, M.E.; Elnadi, A.M.; Masoud, M.; Elshaer, M.A.; Khalil, S.M.

    1993-01-01

    The study in this project is carried out with the objective of being able to present a clear view for the state-of-the art of nuclear fusion as one of the most promising coming energy source and its future outlook in Egypt. The study introduce a summary of the world energy problem and the advantages of thermonuclear fusion energy compared to other energy sources. A description of the two main techniques of confining plasma in the fusion experiments, namely the magnetic and the inertial confinement. These techniques are discussed and investigated through linear pinches and tokamaks. Tokamaks showed to be a promising machines for achieving the controlled thermonuclear fusion power reactor. Recent development of the research on laser fusion together with fast progress in pellet and laser technology suggest that it may be possible to achieve laser fusion power reactor. The story of the strange phenomena of cold fusion, muon-catalyzed fusion, and cold fusion in condensed matter are also studied and showed to be non promising. The project study in details the future fusion reactor, its nuclear engineering and its safety and environmental aspects. The study is based on the magnetic fusion using the tokamak configuration. The positive safety and environmental aspects of fusion reactors, if exist, is also investigated. Status of plasma physics and nuclear fusion activities and strategies in the developing countries (including egypt and the arab countries) are reviewed, besides, some national programmes are proposed. In addition, the status of international activities in plasma technology and its application are represented. Future outlook for egyptian programmes on different plasma technologies are studied. Finally, conclusions and recommendations are presented which summarized the principle achiements and future research opportunities in nuclear fusion activities. In fact, it must be emphasized that fusion is an exciting and challenging field of research -the most

  15. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  16. Multidimensional materials and device architectures for future hybrid energy storage

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  17. Present status and future prospects for direct drive laser fusion

    Bodner, S.E.

    1986-01-01

    If one assumes that the best short wavelength laser will have an efficiency of 5--7%, and if one assumes that reasonable cost electricity requires that the product of laser efficiency and pellet gain be greater than 10--15, then pellet grains for laser fusion must be at least 150--300. The only laser fusion concept with any potential for energy applications then seems to be directly driven targets with moderately thin shells and 1/4 micron KrF laser light. This direct drive concept has potential pellet energy gains of 200--300

  18. Ion surface collisions on surfaces relevant for fusion devices

    Rasul, B.; Endstrasser, N.; Zappa, F.; Grill, V.; Scheier, P.; Mark, T.

    2006-01-01

    Full text: One of the great challenges of fusion research is the compatibility of reactor grade plasmas with plasma facing materials coating the inner walls of a fusion reactor. The question of which surface coating should be used is of particular interest for the design of ITER. The impact of energetic plasma particles leads to sputtering of wall material into the plasma. A possible solution for the coating of plasma facing walls would be the use of special carbon surfaces. Investigations of these various surfaces have been started at BESTOF ion-surface collision apparatus. Experiment beam of singly charged molecular ions of hydrocarbon molecules, i.e. C 2 H + 4 , is generated in a Nier-type electron impact ionization source at an electron energy of about 70 eV. In the first double focusing mass spectrometer the ions are mass and energy analyzed and afterwards refocused onto a surface. The secondary reaction products are monitored using a Time Of Flight mass spectrometer. The secondary ion mass spectra are recorded as a function of the collision energy for different projectile ions and different surfaces. A comparison of these spectra show for example distinct changes in the survival probability of the same projectile ion C 2 H + 4 for different surfaces. (author)

  19. Summary report from 1. research coordination meeting on nuclear data libraries for advance systems - fusion devices (FENDL - 3)

    Trkov, A.; Forrest, R.; Mengoni, A.

    2009-03-01

    The first Research Co-ordination Meeting of the Nuclear Data Libraries for Advance Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 2 to 5 December 2008. A summary of the meeting is given in this report along with discussions which took place. An important outcome of the meeting was the agreement to create a new FENDL-3.0 Starter Library. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  20. Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL-3). Summary report from the Second Research Coordination Meeting

    Sawan, Mohamed E.

    2010-06-01

    The second Research Co-ordination Meeting of the Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 23 to 26 March 2010. A summary of the meeting is given in this report along with the discussions which took place. An important outcome of the meeting was the decision to provide ENDF data libraries (FENDL-3/T) by April 2011. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  1. Possible futures for the development of a fusion demonstration plant

    Nichols, S.P.

    1976-01-01

    As indicated by the Fusion Planning Bulletins, the Division of Controlled Thermonuclear Research is becoming involved in planning with alternative scenarios. The Center for Energy Studies at the University of Texas at Austin has been involved with such planning for several years and has examined various scenarios for fusion power development using the Partitive Analytical Forecasting (PAF) technique. The most recent studies compare the long-term plan presented in WASH-1290, Fusion Power by Magnetic Confinement, with other plans that have been proposed, such as the plan proposed by Kulcinski and Conn of the University of Wisconsin. The study indicates that some of the alternative plans do have possibilities to shorten the required time for the completion of a demonstration fusion plant without increased costs or a decrease in the likelihood of success. The current efforts of the project are in the planning exercises recently completed by committees set up by the DCTR. Further comparisons of alternative scenarios will be performed as part of this effort

  2. Critical plasma-wall interaction issues for plasma-facing materials and components in near-term fusion devices

    Federici, G.; Coad, J.P.; Haasz, A.A.; Janeschitz, G.; Noda, N.; Philipps, V.; Roth, J.; Skinner, C.H.; Tivey, R.; Wu, C.H.

    2000-01-01

    The increase in pulse duration and cumulative run-time, together with the increase of the plasma energy content, will represent the largest changes in operation conditions in future fusion devices such as the International Thermonuclear Experimental Reactor (ITER) compared to today's experimental facilities. These will give rise to important plasma-physics effects and plasma-material interactions (PMIs) which are only partially observed and accessible in present-day experiments and will open new design, operation and safety issues. For the first time in fusion research, erosion and its consequences over many pulses (e.g., co-deposition and dust) may determine the operational schedule of a fusion device. This paper identifies the most critical issues arising from PMIs which represent key elements in the selection of materials, the design, and the optimisation of plasma-facing components (PFCs) for the first-wall and divertor. Significant advances in the knowledge base have been made recently, as part of the R and D supporting the engineering design activities (EDA) of ITER, and some of the most relevant data are reviewed here together with areas where further R and D work is urgently needed

  3. First fusion neutrons from a thermonuclear weapon device

    Anon.

    1976-01-01

    An account of the first observation of thermonuclear neutrons from a hydrogen weapon, the George shot, is presented. A personal narrative by the researchers J. Allred and L. Rosen includes such topics as the formation of the experimental team, description of the experimental technique, testing the experimental apparatus, testing the effects of a blast, a description of the test area, and the observation of neutrons from fusion. Excerpts are presented from several chapters of the Scientific Director's report on the atomic weapons tests of 1951. Also included is a brief description of the basic design of the hydrogen bomb, a recounting of subsequent developments, and short scientific biographies of the researchers. 21 figures, 2 tables

  4. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    Delene, Jerry G.; Sheffield, John; Williams, Kent A.; Reid, R. Lowell; Hadley, Stan

    2001-01-01

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should be in a 30 to 53 mills/kW.h (1999 dollars) range if carbon sequestration is not needed, 30 to 61 mills/kW.h if sequestration is required, or as high as 83 mills/kW.h for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 65 to 102 mills/kW.h for 1- to 1.3-GW(electric) scale power plants, based on the tokamak concept. Tokamak fusion costs will have to be reduced and/or cost-effective alternative nontokamak concepts devised before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal. Recent results from fusion experiments and developments in technology and engineering solutions indicate that lower cost fusion power plants are possible at the 1-GW(electric) level. Another general route for fusion to reduce costs is to go to large plant sizes [multigigawatts (electric)

  5. IAEA technical committee meeting on research using small fusion devices (abstracts)

    1999-12-01

    The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others

  6. Non-superconducting magnet structures for near-term, large fusion experimental devices

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  7. Laser fusion and future energy sources - some recent results

    Hora, H.

    1979-01-01

    While the laser fusion is at present producing more genuine fusion neutrons than the tokamak with magnetic confinement, if use of short laser pulses is preferred, the then appearing nonlinear effect causes considerable complications. Nonlinear processes for the preferred geometry of perpendicular incidence can avoid the problems of resonance absorption, while parametric instabilities have no quantitative influence on the energy balance. The early stages of interaction show the generation of thick 'cold' compressing plasma blocks which can be used for a nonlinear force fast pusher compression of high efficiency (low entropy production). A short time interaction results in a fast thermalization of the plasma corona by soliton decay and this provides the necessary condition for Nuckolls' gasdynamic ablation compression. For longer duration of high intensity irradiation, a pulsation of reflectivity and thermalization will complicate the interaction

  8. Materials technology for fusion - Current status and future requirements

    Gold, R.E.; Bloom, E.E.; Clinard, F.W. Jr.; Smith, D.L.; Stevenson, R.D.; Wolfer, W.G.

    1981-01-01

    The general status of the materials research and development activities currently under way in support of controlled thermonuclear fusion reactors in the United States is reviewed. In the area of magnetic confinement configurations, attention is given to development programs for first wall materials, which are at various stages for possible austenitic stainless steels, high-strength Fe-Ni-Cr alloys, reactive and refractory metal alloys, specially designed long-range ordered and rapidly solidified alloys, and ferritic/martensitic steels, and for tritium breeding materials, electrical insulators, ceramics, and coolants. The development of materials for inertial confinement reactors is also surveyed in relation to the protection scheme employed for the first wall and the effects of pulsed neutron irradiation. Finally, the materials requirements and selection procedures for the ETF/INTOR and Starfire tokamak reactor designs are examined. Needs for the expansion of research on nonfirst-wall materials and inertial confinement fusion reactor material requirements are pointed out

  9. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    David A. Petti; Brad J. Merrill; Phillip Sharpe; L. C. Cadwallader; L. El-Guebaly; S. Reyes

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In this paper, recent accomplishments are reviewed and future directions outlined.

  10. Mobile Device Security: Perspectives of Future Healthcare Workers.

    Hewitt, Barbara; Dolezel, Diane; McLeod, Alexander

    2017-01-01

    Healthcare data breaches on mobile devices continue to increase, yet the healthcare industry has not adopted mobile device security standards. This increase is disturbing because individuals are often accessing patients' protected health information on personal mobile devices, which could lead to a data breach. This deficiency led the researchers to explore the perceptions of future healthcare workers regarding mobile device security. To determine healthcare students' perspectives on mobile device security, the investigators designed and distributed a survey based on the Technology Threat Avoidance Theory. Three hundred thirty-five students participated in the survey. The data were analyzed to determine participants' perceptions about security threats, effectiveness and costs of safeguards, self-efficacy, susceptibility, severity, and their motivation and actions to secure their mobile devices. Awareness of interventions to protect mobile devices was also examined. Results indicate that while future healthcare professionals perceive the severity of threats to their mobile data, they do not feel personally susceptible. Additionally, participants were knowledgeable about security safeguards, but their knowledge of costs and problems related to the adoption of these measures was mixed. These findings indicate that increasing security awareness of healthcare professionals should be a priority.

  11. Coils in a fusion device and its fabrication method

    Maeda, Hideto; Moritani, Einoshin.

    1975-01-01

    Object: To provide a coil for nuclear fusion equipment, which coil has superior rigidity and strength and is separable into two sections and used for removing impurity ions from high temperature plasma such as heavy hydrogen and tritium. Structure: The coil according to the invention is manufactured by (1) a step of insulating horseshoe-shaped conductors one from another and bundling them into coil halves. (2) a step of assembling a flange on a coil case accommodating each coil half and hermetically welding a lid to each end of the coil half, (3) a step of evacuating the interior of each coil case, (4) a step of pouring a thermosetting resin into each evacuated coil case and hardening the resin, (5) a step of connecting the two coil halves with their ends not covered with resin held in abutting relation to each other, (6) a step of coupling coil case joint pieces to the joined portions and covering the joint pieces with a seal box and hermetically welding the box to the joint pieces, and (7) a step of pouring a thermosetting resin into each evacuated joint portion and hardening the resin. (Kamimura, M.)

  12. A review of fusion device fuel cleanup systems

    Dombra, A.H.; Carney, M.

    1985-01-01

    Design options for a small fusion fuel purification system are assessed by comparing six conceptual system designs based on one of the following: a Zr/Al getter pump for in vacuo applications, a cryogenic molecular sieve adsorber at 77K, a palladium-alloy membrane diffuser, a U-bed reactor at 1170K, a two-compartment cryogenic freezer at 27-50K and 50-300K, a U-bed and non-regenerative Zr/Al gas purifier. The latter system introduces a new concept of fuel purification based on well-established techniques: recovery of purified D 2 -DT-T 2 from a helium carrier gas with the U-bed, followed by the removal of impurities from the carrier gas with the non-regenerative Zr/Al gas purifier. The main advantages of this system are simplicity, safety and relatively small quantity of tritiated waste produced by the process. The tritium in the waste is immobilized as a stable tritide of Zr/Al

  13. Fusion Physics

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  14. Fusion technology 1992

    Ferro, C.; Gasparatto, M.; Knoepfel, H.

    1993-01-01

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  15. Metal/graphite-composite materials for fusion device

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  16. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  17. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C.

    2010-01-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO 2 -emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm -2 , meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm -2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat

  18. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2010-07-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO{sub 2}-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm{sup -2}, meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm{sup -2} for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs

  19. Tertiary proton diagnostics in future inertial confinement fusion experiments

    Cremer, S.; Verdon, C.P.; Petrasso, R.D.

    1998-01-01

    Recently, it was proposed to use energetic (up to 31 MeV) tertiary protons produced during the final stage of inertial confinement fusion implosions to measure the fuel areal density of compressed deuterium endash tritium (DT). The method is based on seeding the fuel with 3 He. The reaction of 3 He ions with the energetic knock-on deuterons, produced via the elastic scattering of 14.1 MeV neutrons, is a source of very energetic protons capable of escaping from very large areal density targets. This work presents results of detailed time-dependent Monte Carlo simulations of the nuclear processes involved in producing and transporting these protons through imploding targets proposed for direct-drive experiments on OMEGA [D. K. Bradley et al., Phys. Plasmas 5, 1870 (1998)] and the National Ignition Facility [S. W. Haan et al., Phys. Plasmas 2, 2480 (1995)]. copyright 1998 American Institute of Physics

  20. Seven Capital Devices for the Future of Stroke Rehabilitation

    M. Iosa

    2012-01-01

    Full Text Available Stroke is the leading cause of long-term disability for adults in industrialized societies. Rehabilitation’s efforts are tended to avoid long-term impairments, but, actually, the rehabilitative outcomes are still poor. Novel tools based on new technologies have been developed to improve the motor recovery. In this paper, we have taken into account seven promising technologies that can improve rehabilitation of patients with stroke in the early future: (1 robotic devices for lower and upper limb recovery, (2 brain computer interfaces, (3 noninvasive brain stimulators, (4 neuroprostheses, (5 wearable devices for quantitative human movement analysis, (6 virtual reality, and (7 tablet-pc used for neurorehabilitation.

  1. Discussion on Safety Analysis and Regulatory Framework for the Future Fusion Reactors

    Kang, Myoung-suk; Oh, Kyemin; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    This study aims to secure the core original technologies and expand the base of domestic specialist at a fusion area by pursuing and developing nonprocurement technologies for ITER. From this project, the latest technical data and experiences have been recorded for the development of the safety regulation and safety-related design criteria of the future fusion reactors in Korea. In this context, this paper discusses on the progress of surveying the ITER licensing process and regulatory issues revealed. The regulation and licensing process for a fusion power plant has been expected to be quite different due to unique and unforeseen properties differently from the conventional nuclear facilities. To overcome this, not only various safety issues should be analyzed, but safety objectives, regulatory requirements, and design variables should also be established in detailed design phase. We expect our survey will contribute on the discussion to establish general and technical safety principles for national fusion power plant technology plans.

  2. Fusion

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. THIDA: code system for calculation of the exposure dose rate around a fusion device

    Iida, Hiromasa; Igarashi, Masahito.

    1978-12-01

    A code system THIDA has been developed for calculation of the exposure dose rates around a fusion device. It consists of the following: one- and two-dimensional discrete ordinate transport codes; induced activity calculation code; activation chain, activation cross section, radionuclide gamma-ray energy/intensity and gamma-ray group constant files; and gamma ray flux to exposure dose rate conversion coefficients. (author)

  4. Plasma sprayed TiC coatings for first wall protection in fusion devices

    Groot, P.; Laan, J.G. van der; Laas, L.; Mack, M.; Dvorak, M.

    1989-01-01

    For protection of plasma facing components in nuclear fusion devices thick titanium carbide coatings are being developed. Coatings have been produced by plasma spraying at atmospheric pressure (APS) and low pressure (LPPS) and analyzed with respect to microstructure and chemical composition. Thermo-mechanical evaluation has been performed by applying short pulse laser heat flux tests. The influence of coating thickness and porosity on the resistance to spalling by thermal shocks appears to be more important than aspects of chemical composition. (author)

  5. Irradiation devices for fusion reactor materials results obtained from irradiated lithium aluminate at the OSIRIS reactor

    Lefevre, F.; Thevenot, G.; Rasneur, B.; Botter, F.

    1986-06-01

    Studies about controlled fusion reactor of the Tokamak type require the examination of the radiation effects on the behaviour of various potential materials. Thus, in the first part of this paper, are presented the devices adapted to these materials studies and used in the OSIRIS reactor. In a second part, is described an experiment of irradiation ceramics used as candidates for breeding material and are given the first results

  6. Sausage instability of Z-discharged plasma channel in LIB-fusion device

    Murakami, H.; Kawata, S.; Niu, K.

    1982-07-01

    Current-carring plasma channels have been proposed for transporting intense ion beams from diodes to a target in a LIB-fusion device. In this paper, the growth rate of the most dangerous surface mode, that is, axisymmetric sausage instability is examined for the plasma channel. The growth rate is shown to be smaller than that of the plasma channel with no fluid motion in a sharp boundary. It is concluded that the stable plasma channel can be formed. (author)

  7. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  8. The measurement of potential distribution of plasma in MM-4 fusion device

    Tian Zhongyu; Ming Linzhou; Feng Xiaozhen; Feng Chuntang; Yi Youjun; Wang Jihai; Liu Yihua

    1988-11-01

    Some experimental results of the potential distribution in MM-4 fusion device are presented by measuring the floating potential of probe. The results showed that the distribution of axial potential is asymmetrical, but the radial potential is symmetrical. There are double ion potential wells in the plasma. The depth of the deepest potential well become deeper is the strength of the magnetic field and injection current are increasing. The location of the deepest well is moved towards the device center along with the increasing of injection energy. This is different from others results. The mechanism of causing this distribution in also discussed

  9. Properties of plasma sheath with ion temperature in magnetic fusion devices

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  10. DD fusion neutron production at UW-Madison using IEC devices

    Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard

    2017-10-01

    An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.

  11. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  12. Low Power Design for Future Wearable and Implantable Devices

    Katrine Lundager

    2016-10-01

    -less computing is drawn by looking at device circuit co-design for future system-on-chips (SoCs.

  13. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    Delene, J.G.; Hadley, S.; Reid, R.L.; Sheffield, J.; Williams, K.A.

    1999-01-01

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should remain in the 30-50 mils/kWh (1999 dollars) range of today in carbon sequestration is not needed, 30-60 mils/kWh if sequestration is required, or as high as 75 mils/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 70-100 nmils/kWh for 1- to 1.3-GW(e) scale power plants. Fusion costs will have to be reduced and/or alternative concepts derived before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal

  14. Characterization of size, composition and origins of dust in fusion devices. Summary report of the 1. research coordination meeting

    Clark, R.E.H.

    2009-03-01

    Nine experts on dust formation and their physical and behavioural characteristics attended the first Research Coordination Meeting (RCM) on Characterization of Size, Composition and Origins of Dust in Fusion Devices held at IAEA Headquarters on 10-12 December 2008. Participants summarized recent relevant developments related to dust in fusion devices. The specific objectives of the CRP and a detailed work plan were formulated. Discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  15. The Roles and Developments needed for Diagnostics in the ITER Fusion Device

    Walsh, Michael [ITER Organization, Route de Vinon-sur-Verdon - CS 90046, 13067 St Paul-lez-Durance Cedex (France)

    2015-07-01

    Harnessing the power from Fusion on earth is an important and challenging task. Excellent work has been carried out in this area over the years with several demonstrations of the ability to produce power. Now, a new large device is being constructed in the south of France. This is called ITER. ITER is a large-scale scientific experiment that aims to demonstrate a possibility to produce commercial energy from fusion. This project is now well underway with the many teams working on the construction and completing various aspects of the design. This device will carry up to 15 MA of plasma current and produce about 500 MW of power, 400 MW approximately in high energy neutrons. The typical temperatures of the electrons inside this device are in the region of a few hundred million Kelvin. It is maintained using a magnetic field. This device is pushing several boundaries from those currently existing. As a result of this, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device. A diagnostic set will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include amongst others, measurements of the plasma shape, temperature, density, impurity concentration, and particle and energy confinement times. The system will comprise about 45 individual measuring systems drawn from the full range of modern plasma diagnostic techniques, including magnetics, lasers, X-rays, neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pressure and gas analysis, and optical fibres. These devices will have to be made to work in the new and challenging environment inside the vacuum vessel. These systems will have to cope with a range of phenomena that extend the current knowledge in the Fusion field. One

  16. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects

    Zuo, Wenhua; Li, Ruizhi; Zhou, Cheng; Xia, Jianlong

    2017-01-01

    Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery‐supercapacitor hybrid device (BSH) is typically constructed with a high‐capacity battery‐type electrode and a high‐rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li‐/Na‐ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed. PMID:28725528

  17. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  18. Inertial fusion research at Lawrence Livermore National Laboratory: program status and future applications

    Meier, W.R.; Hogan, W.J.

    1986-01-01

    The objectives of the Lawrence Livermore National Laboratory (LLNL) Laser Fusion Program are to understand and develop the science and technology required to utilize inertial confinement fusion (ICF) for both military and commercial applications. The results of recent experiments are described. We point out the progress in our laser studies, where we continue to develop and test the concepts, components, and materials for present and future laser systems. While there are many potential commercial applications of ICF, we limit our discussions to electric power production

  19. Role of inert gases in first wall phenomena in fusion devices

    Das, S.K.

    1979-01-01

    The first wall surfaces of fusion devices will be exposed to bombardment by inert gaseous projectiles such as helium. The flux, energy and angular distribution of the helium radiation will depend not only on the type of device but also on its design parameters. For near term tokamak devices, the first wall surface phenomena caused by helium bombardment that appear to be quite important are physical sputtering and radiation blistering. Examples of these processes for a number of first wall candidate materials are discussed. While the physical sputtering phenomen is well understood, the mechanism of blister formation is still not fully understood. The various models proposed for radiation blistering of metal during helium bombardment is critically reviewed in the light of most recent experimental results

  20. Summary of the 16th IAEA Technical Meeting on 'Research using Small Fusion Devices'

    Gribkov, V.; Oost, G. van; Malaquias, A.; Herrera, J.

    2006-01-01

    Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions-to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J. (conference report)

  1. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    Badger, B.; Corradini, M.L.; El-Guebaly, L.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Perkins, L.J.; Peterson, R.R.; Plute, K.E.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Sze, D.K.; Vogelsang, W.F.; Wittenberg, L.J.; Leppelmeier, G.W.; Grover, J.M.; Opperman, E.K.; Vogel, M.A.; Borie, E.; Taczanowski, S.; Arendt, F.; Dittrich, H.G.; Fett, T.; Haferkamp, B.; Heinz, W.; Hoelzchen, E.; Kleefeldt, K.; Klingelhoefer, R.; Komarek, P.; Kuntze, M.; Leiste, H.G.; Link, W.; Malang, S.; Manes, B.M.; Maurer, W.; Michael, I.; Mueller, R.A.; Neffe, G.; Schramm, K.; Suppan, A.; Weinberg, D.

    1984-04-01

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.) [de

  2. Nuclear fusion and its large potential for the future world energy supply

    Ongena Jef

    2016-12-01

    Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

  3. Introducing the book 'Cold fusion and the future'

    Rothwell, Jed

    2006-07-01

    Cold fusion will be the ideal source of energy, provided its introduction can be handled properly. A few cells have shown power density and temperatures suitable for real-world applications. Once these cells can be replicated on demand, commercial development will be straightforward. Manufacturing should not be too demanding, so thousands of companies will compete, and costs will fall quickly. The transition from fossil fuel to cold fusion will be rapid. Many extraordinary new applications will become possible, and seemingly intractable problems such as global warming may be fixed. Some examples will be presented. Public support is essential to funding research, and commercialization. 'Cold Fusion and the Future' is the title of a new book by this author. This paper discusses a few of the topics in the book.

  4. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Reyes, Susana; Anklam, Tom; Meier, Wayne; Campbell, Patrick; Babineau, Dave; Becnel, James; Taylor, Craig; Coons, Jim

    2016-01-01

    licensing activities, and summarize our most recent thoughts on safety and tritium considerations for future nuclear fusion facilities.

  5. Recent developments in IFE safety and tritium research and considerations for future nuclear fusion facilities

    Reyes, Susana, E-mail: reyes20@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Anklam, Tom; Meier, Wayne; Campbell, Patrick [Lawrence Livermore National Laboratory, Livermore, CA (United States); Babineau, Dave; Becnel, James [Savannah River National Laboratory, Aiken, SC (United States); Taylor, Craig; Coons, Jim [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-11-01

    licensing activities, and summarize our most recent thoughts on safety and tritium considerations for future nuclear fusion facilities.

  6. The challenge to keep nuclear fusion alive as a future energy source

    D'haeseleer, W.D.

    1999-01-01

    Few people are preoccupied with the energy issue. Indeed, inflation-corrected energy prices (in euros) are currently lower than before the first oil crisis of 1973; the annual growth rate of primary-energy use in the industrialized world has diminished considerably compared to before 1970, and oil and gas production is characterized by increased exploration activity and a wider geographical spread. Nevertheless, there is a real energy issue. If the greenhouse effect turns out to be real, then mankind should at least slow down the consumption of fossil fuels. Given the fact that world energy consumption (especially by the developing countries) will rise in the future, and that nuclear fission power has become unpopular in the western world, the idea reigning in some circles to cope with this situation by total reliance on energy savings and renewable energy sources comes close to wishful thinking. A realistic analysis makes it clear that there will be a need for large workhorses for electricity generation to keep the overall electricity grid sufficiently robust. From a global and long-term perspective, the logical conclusion is the following: because mankind cannot count on the continued use of fossil fuels (due to the finiteness of the resources combined with the possible climate change effects), our generation has the responsibility to develop alternative energy sources for the distant future. Many parallel lines of research and development therefore need be pursued; because of the uncertainties with other alternative sources, it would be irresponsible to kill some of these development lines. This holds for renewable sources, the nuclear fission breeder, and for nuclear fusion. A major hurdle for the survival of long term energy research and development is the liberalization of the electricity market. Because of the revolutionary changes taking place, utilities concentrate on cost cutting and short-term survival. In addition, they are no longer supposed to take

  7. Optimization design study of an innovative divertor concept for future experimental tokamak-type fusion reactors

    Willem Janssens, Ir.; Crutzen, Y.; Farfaletti-Casali, F.; Matera, R.

    1991-01-01

    The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction

  8. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-01-01

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 angstrom to 304 angstrom) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner

  9. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  10. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    Turitzin, N.M.

    1975-01-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  11. Fusion Engineering Device. Volume VI. Complementary development plan for engineering development

    1981-10-01

    The basic approach followed in this volume is to define key technical issues for several fusion reactor technologies and to device program strategies to resolve each of these issues. Particular attention has been paid to elucidating the role of FED vis-a-vis complementary (non-FED) facilities in this process. The remainder of this chapter consists of summaries of the major conclusions of the technology plans in each of the areas studied, i.e., plasma heating, magnetics, nuclear, and systems considerations

  12. IAEA technical meeting on nuclear data library for advanced systems - Fusion devices

    Forrest, R.; Mengoni, A.

    2008-04-01

    A Technical Meeting on 'Nuclear Data Library for Advanced Systems - Fusion Devices' was held at the IAEA Headquarters in Vienna from 31 October to 2 November 2007. The main objective of the initiative has been to define a proposal and detailed plan of activities for a Co-ordinated Research Project on this subject. Details of the discussions which took place at the meeting, including a review of the current activities in the field, a list of recommendations and a proposed timeline schedule for the CRP are summarized in this report. (author)

  13. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Dutta, R.; Ghosh, P.; Chowdhury, K. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2012-07-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  14. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Dutta, R.; Ghosh, P.; Chowdhury, K.

    2012-01-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  15. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  16. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  17. On fractal properties of equipotentials over a real rough surface faced to plasma in fusion devices

    Budaev, V.P.; Yakovlev, M.

    2008-01-01

    We consider a sheath region bounded by a corrugated surface of material conductor and a flat boundary held to a constant voltage bias. The real profile of the film deposited from plasma on a limiter in a fusion device was used in numerical solving of the Poisson's equation to find a profile of electrostatic potential. The rough surface influences the equipotential lines over the surface. We characterized a shape of equipotential lines by a fractal dimension. The long-range correlation in the potential field is imposed by the non-trivial fractal structure of the surface. Dust particles bounced in such irregular potential field can accelerate due to the Fermi acceleration. (author)

  18. Device for supporting a toroidal coil in a toroidal type nuclear fusion device

    Kitazawa, Hakaru; Sato, Hiroshi.

    1975-01-01

    Object: To easily manufacture a center block having a strength sufficient to withstand an electromagnetic force exerted on the center of toroidal of a toroidal coil and to increase its reliability. Structure: In a device for supporting toroidal coils wherein the electromagnetic force exerted on the center of toroidal of a plurality of toroidal coils arranged in toroidal fashion, the contact surface between the toroidal coil and the center block is arranged parallel to the center axis of toroidal so as to receive the electromagnetic force exerted on the center of toroidal of the toroidal coil as the component of force in a radial direction. (Taniai, N.)

  19. Effects of Lumbar Fusion Surgery with ISOBAR Devices Versus Posterior Lumbar Interbody Fusion Surgery on Pain and Disability in Patients with Lumbar Degenerative Diseases: A Meta-Analysis.

    Su, Shu-Fen; Wu, Meng-Shan; Yeh, Wen-Ting; Liao, Ying-Chin

    2018-06-01

    Purpose/Aim: Lumbar degenerative diseases (LDDs) cause pain and disability and are treated with lumbar fusion surgery. The aim of this study was to evaluate the efficacy of lumbar fusion surgery with ISOBAR devices versus posterior lumbar interbody fusion (PLIF) surgery for alleviating LDD-associated pain and disability. We performed a literature review and meta-analysis conducted in accordance with Cochrane methodology. The analysis included Group Reading Assessment and Diagnostic Evaluation assessments, Jadad Quality Score evaluations, and Risk of Bias in Non-randomized Studies of Interventions assessments. We searched PubMed, MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, the Cochrane Library, ProQuest, the Airiti Library, and the China Academic Journals Full-text Database for relevant randomized controlled trials and cohort studies published in English or Chinese between 1997 and 2017. Outcome measures of interest included general pain, lower back pain, and disability. Of the 18 studies that met the inclusion criteria, 16 examined general pain (802 patients), 5 examined lower back pain (274 patients), and 15 examined disability (734 patients). General pain, lower back pain, and disability scores were significantly lower after lumbar fusion surgery with ISOBAR devices compared to presurgery. Moreover, lumbar fusion surgery with ISOBAR devices was more effective than PLIF for decreasing postoperative disability, although it did not provide any benefit in terms of general pain or lower back pain. Lumbar fusion surgery with ISOBAR devices alleviates general pain, lower back pain, and disability in LDD patients and is superior to PLIF for reducing postoperative disability. Given possible publication bias, we recommend further large-scale studies.

  20. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  1. Management of water leaks on Tore Supra actively cooled fusion device

    Hatchressian, J.C.; Gargiulo, L.; Samaille, F.; Soler, B.

    2005-01-01

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  2. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  3. Mechanical performance of cervical intervertebral body fusion devices: A systematic analysis of data submitted to the Food and Drug Administration.

    Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E

    2017-03-21

    Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.

  4. A study of hydrogen isotopes fuel control by wall effect in magnetic fusion devices

    Motevalli, S.M., E-mail: motavali@umz.ac.ir; Safari, M.

    2016-11-15

    Highlights: • A particle balance model for the main plasma and wall inventory in magnetic fusion device has been represented. • The dependence of incident particles energy on the wall has been considered in 10–300 eV for the sputtering yield and recycling coefficient. • The effect of fueling methods on plasma density behavior has been studied. - Abstract: Determination of plasma density behavior in magnetic confinement system needs to study the plasma materials interaction in the facing components such as first wall, limiter and divertor. Recycling of hydrogen isotope is an effective parameter in plasma density rate and plasma fueling. Recycling coefficient over the long pulse operation, gets to the unity, so it has a significant effect on steady state in magnetic fusion devices. Typically, sputtered carbon atoms from the plasma facing components form hydrocarbons and they redeposit on the wall. In this case little rate of hydrogen loss occurs. In present work a zero dimensional particle equilibrium model has been represented to determine particles density rate in main plasma and wall inventory under recycling effect and codeposition of hydrogen in case of continues and discontinues fueling methods and effective parameters on the main plasma decay has been studied.

  5. Low-Z coating as a first wall of nuclear fusion devices

    Shikama, Tatsuo; Okada, Masatoshi

    1984-01-01

    The tokamak nuclear fusion devices of the largest scale in the world, TFTR in USA and JET in Europe, started the operation from the end of 1982 to 1983. Also in Japan, the tokamak JT-60 is scheduled to begin the operation in 1985. One of the technological obstacles is the problem of first walls facing directly to plasma and subjected to high particle loading and thermal loading. Moreover, first walls achieve the active role of controlling impurities in plasma and recycling hydrogen isotopes. It is impossible to find a single material which satisfies all these requirements. The compounding of materials can create a material having new function, but also has the meaning of expanding the range of material selection. One of the material compounding methods is surface coating. In this paper, as the materials for first walls, the characteristics of low Z materials are discussed from the design examples of actual takamak nuclear fusion devices. The outline of first walls is explained. High priority is given to the impurity control in plasma, and in view of plasma energy emissivity and the rate of self sputtering, low Z material coating seems to be the solution. The merits and the problems of such low Z material coating are discussed. (Kako, I.)

  6. Modelling of surface evolution of rough surface on divertor target in fusion devices

    Dai, Shuyu; Liu, Shengguang; Sun, Jizhong; Kirschner, A.; Kawamura, G.; Tskhakaya, D.; Ding, Rui; Luo, Guangnan; Wang, Dezhen

    2015-01-01

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  7. Fusion energy

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  8. Development trends for insertion devices of future synchrotron light sources

    C. S. Hwang

    2011-04-01

    Full Text Available The in-vacuum undulator with a permanent magnet at room temperature is a mature technology and is widely used; with a short period length in a medium-energy facility, it can enhance photon brilliance in the hard x-ray region. A cryogenic permanent magnet has been investigated as an in-vacuum undulator; this undulator will become the best prospective device to satisfy the requirements of a photon source with great brilliance in the hard x-ray region. For the further hard x-ray region, a superconducting wiggler can provide great flux with a continuous spectrum, whereas a superconducting undulator will provide great brilliance with a discrete spectrum. High-temperature superconducting wires are highly promising for use in the development of superconducting undulators; unique algorithms for their development with an extremely short period in a small-magnet gap have been devised. Some out-of-vacuum planar undulators with special functions must also be fabricated to enable diverse applications in various light-source facilities. This article describes current and future developments for insertion devices in storage-ring and free-electron-laser facilities and discusses their feasibility for use therein.

  9. EMP Fusion

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  10. Telescope-based cavity for negative ion beam neutralization in future fusion reactors.

    Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid

    2018-03-01

    In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5  m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.

  11. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices.

    Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L

    2018-05-01

    Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation

  12. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  13. Improved zero dimensional model of a reversed field pinch fusion device

    Haynes, K.E.

    1987-01-01

    A zero-dimensional model has been developed which accurately predicts conditions observed during several runs of the ZT-40M reversed field pinch fusion device at Los Alamos National Laboratory. The model is based on a physical model developed by E.H. Klevans at Penn State University. Improvements made to this model included the use of coronal non-equilibrium equations for predicting impurity effects, the inclusion of an exponentially decaying ion heating term, and the relaxation of the assumption that ion and electron densities are equal in the device. The model has been used to simulate ZT-40M in both flat-top and slowly ramped current modes. Using experimentally measured density and current evolutions, the model accurately predicts observed tau/sub E/, β/sub Θ/, T/sub e/, T/sub i/, Z/sub eff/, and radiated power. The continuing goal of this work is to predict conditions in the ZT-H device, which is under construction. 28 refs., 18 figs

  14. Proceedings of US/Japan Workshop (97FT5-06) on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Nygren, Richard; Kureczko, Diana

    1998-10-01

    The 1997 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices was held at the Warwick Regis Hotel in San Francisco, California, on December 8-11, 1997. There were 53 presentations as well as discussions on technical issues and on planning for future collaborations, and 35 researchers from japan and the US participated in the workshop. Over the last few years, with the strong emphasis in the US on technology for ITER, there has been less work done in the US fusion program on basic plasma materials interaction and this change in emphasis workshops. The program this year emphasized activities that were not carried out under the ITER program and a new element this year in the US program was planning and some analysis on liquid surface concepts for advanced plasma facing components. The program included a ceremony to honor Professor Yamashina, who was retiring this year and a special presentation on his career

  15. Computerized cost estimation spreadsheet and cost data base for fusion devices

    Hamilton, W.R.; Rothe, K.E.

    1985-01-01

    An automated approach to performing and cataloging cost estimates has been developed at the Fusion Engineering Design Center (FEDC), wherein the cost estimate record is stored in the LOTUS 1-2-3 spreadsheet on an IBM personal computer. The cost estimation spreadsheet is based on the cost coefficient/cost algorithm approach and incorporates a detailed generic code of cost accounts for both tokamak and tandem mirror devices. Component design parameters (weight, surface area, etc.) and cost factors are input, and direct and indirect costs are calculated. The cost data base file derived from actual cost experience within the fusion community and refined to be compatible with the spreadsheet costing approach is a catalog of cost coefficients, algorithms, and component costs arranged into data modules corresponding to specific components and/or subsystems. Each data module contains engineering, equipment, and installation labor cost data for different configurations and types of the specific component or subsystem. This paper describes the assumptions, definitions, methodology, and architecture incorporated in the development of the cost estimation spreadsheet and cost data base, along with the type of input required and the output format

  16. Proceedings of the Japan-U.S. workshop P-118 on vacuum technologies for fusion devices

    Miyahara, A.

    1989-01-01

    Fusion community does not appreciate vacuum technologies to the same extent as accelerator community does. This is because, in the case of accelerators, in particular storage ring systems, the requirement of attaining ultrahigh vacuum in order to avoid collisional loss is well defined, on the other hand, it is not possible to define the requirement so precisely in the case of fusion devices. One of the reasons is that core plasma interacts with vessel wall so strongly and unpredictably that it becomes difficult to identify the role played by individual components. However, in the next step and the next generation machines like CIT, LHS, ITER, FER and NET, vacuum technologies would play more significant roles, because the CIT will introduce tritium in a vacuum vessel, and the aim of the ITER project is to demonstrate particle balance, namely, to achieve steady state operation with D-T fuel. The Japan-U.S. workshop P-118 was held at the Institute of Plasma Physics, Nagoya University, from August 1 to 5, 1988. 33 participants including 4 from the U.S. took part in the workshop. In the plenary session, 12 lectures were given, and also the topics-oriented session on pumping, gauging, remote maintenance, first wall, pump limiter, divertor and others was held. (K.I.)

  17. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  18. General description of preliminary design of an experimental fusion reactor and the future problems

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  19. Calculational models for the treatment of pulsed/intermittent activation within fusion energy devices

    Spangler, S.E.; Sisolak, J.E.; Henderson, D.L.

    1993-01-01

    Two calculationally efficient methods have been developed to compute the induced radioactivity due to pulsed/intermittent irradiation histories as encountered in both magnetic and inertial fusion energy devices. The numerical algorithms are based on the linear chain method (Bateman Equations) and employ series reduction and matrix algebra. The first method models the case in which the irradiated materials are present throughout a series of irradiation pulses. The second method treats the case where a fixed amount of radioactive and transmuted material is created during each pulse. Analytical solutions are given for each method for a three nuclide linear chain. Numerical results and comparisons are presented for a select number of linear chains. (orig.)

  20. Status of fusion technology development in JAERI stressing steady-state operation for future reactors

    Matsuda, Shinzaburo

    2000-01-01

    This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future

  1. Characterization of Size, Composition and Origins of Dust in Fusion Devices. Summary Report of the Second Research Coordination Meeting

    Braams, B.J.; Skinner, C.H.

    2010-11-01

    Eleven experts on processes of dust in fusion experiments met for the 2nd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Characterization of size, composition and origins of dust in fusion devices' held at IAEA Headquarters 21-23 June 2010. Participants summarized their studies on dust in fusion experiments and reviewed progress made since the first RCM. Gaps in knowledge were identified and a plan of work for the remainder of the CRP was developed. Presentations, discussions and recommendations of the RCM are summarized in this report. Eleven experts on processes of dust in fusion experiments met for the 2nd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Characterization of size, composition and origins of dust in fusion devices' held at IAEA Headquarters 21-23 June 2010. Participants summarized their studies on dust in fusion experiments and reviewed progress made since the first RCM. Gaps in knowledge were identified and a plan of work for the remainder of the CRP was developed. Presentations, discussions and recommendations of the RCM are summarized in this report. (author)

  2. Microprocessor protection devices: The present and the future

    Gurevich Vladimir

    2008-01-01

    Full Text Available Paper presents the analysis of the basic constructive disadvantages of the present day microprocessor-based protective devices (MBR and offers the basic principles for creating a new MBR that can be used in newly constructed devices.

  3. Collection of summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1995

    1996-07-01

    This report meeting was held on May 22, 1995 at University of Tokyo by about 40 participants. As the topics on the fusion reactor engineering research in Japan, lectures were given on the present state and future of nuclear fusion networks and on the strong magnetic field tokamak using electromagnetic force-balanced coils being planned. Thereafter, the reports of the results of the researches which were carried out by using this experimental facility were made, centering around the subject related to the future conception 'The interface properties of fusion reactor materials and particle transport control'. The publication was made on the future conception of the basic experiment setup for fusion reactor blanket design, the application of high temperature superconductors to the advancement of nuclear fusion reactors, the modeling of the dynamic irradiation behavior of fusion reactor materials, the interface particle behavior in plasma-wall interaction, the behavior of tritium on the surface of breeding materials, and breeding materials and the behavior of tritium in plasma-wall interaction. (K.I.)

  4. Surface modification study of zirconium on exposure to fusion grade plasma in an 11.5 kJ plasma focus device

    Srivastava, Rohit; Niranjan, Ram; Rout, R.K.; Kaushik, T.C.; Chakravarthy, Y.; Mishra, P.

    2017-01-01

    In continuation of our investigation on effect of fusion grade plasma produced in an existing MEPF-12 (11.5 kJ, 40 μF, 24 kV) plasma focus (PF) facility on different materials, likely to be used in future fusion reactors, we have reported here the study on Zirconium (Zr) metal. In the present work, the Zr sample in disc (2 mm thick, 10 mm diameter) form was exposed to twenty shots of plasma focus operated at 4 mbar deuterium gas filling pressure and 11.5 kJ bank energy. The samples were placed at a distance of 6 cm from the tip of the anode in the MEPF-12 PF device. The emissions from the device comprise of deuterium ions in wide energy range (a few keV to several hundreds of keV), high temperature plasma (in general a few keV) and neutrons of 2.45 MeV energy produced due to D(D, 3 He)n fusion reactions

  5. Target technologies for laser inertial confinement fusion: state-of-the-art and future perspective

    Zhang Lin; Du Kai

    2013-01-01

    Targets are physical base of the laser inertial confinement fusion (ICF) researches. The quality of the targets has extremely important influences on the reliabilities and degree of precision of the ICF experimental results. The characteristics of the ICF targets, such as complexity and microscale, high precision, determine that the target fabrication process must be a system engineering. This paper presents progresses on the fabrication technologies of ICF targets. The existing problem and the future needs of ICF target fabrication technologies are also discussed. (authors)

  6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  7. Limitation of fusion power plant installation on future power grids under the effect of renewable and nuclear power sources

    Takeda, Shutaro, E-mail: takeda.shutarou.55r@st.kyoto-u.ac.jp [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Sakurai, Shigeki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Kasada, Ryuta; Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan)

    2016-11-01

    Graphical abstract: - Highlights: • Future power grids would be unstable due to renewable and nuclear power sources. • Output interruptions of fusion plant would cause disturbances to future grids. • Simulation results suggested they would create limitations in fusion installation. • A novel diagram was presented to illustrate this suggested limitation. - Abstract: Future power grids would be unstable because of the larger share of renewable and nuclear power sources. This instability might bring some additional difficulties to fusion plant installation. Therefore, the authors carried out a quantitative feasibility study from the aspect of grid stability through simulation. Results showed that the more renewable and nuclear sources are linked to a grid, the greater disturbance the grid experiences upon a sudden output interruption of a fusion power plant, e.g. plasma disruption. The frequency deviations surpassed 0.2 Hz on some grids, suggesting potential limitations of fusion plant installation on future grids. To clearly show the suggested limitations of fusion plant installations, a novel diagram was presented.

  8. Development of MW gyrotrons for fusion devices by University of Tsukuba

    Minami, R.; Kariya, T.; Imai, T.; Numakura, T.; Endo, Y.; Nakabayashi, H.; Eguchi, T.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.; Ito, S.; Idei, H.; Zushi, H.; Yamaguchi, Y.; Sakamoto, Keishi; Mitsunaka, Y.

    2012-11-01

    Over-1 MW power gyrotrons for electron cyclotron heating (ECH) have been developed in the joint program of NIFS and University of Tsukuba. The obtained maximum outputs are 1.9 MW for 0.1 s on the 77 GHz Large Helical Device (LHD) tube and 1.0 MW for 1 ms on the 28 GHz GAMMA 10 one, which are new records in these frequency ranges. In long pulse operation, 300 kW for 40 min at 77 GHz and 540 kW for 2 s at 28 GHz were achieved. A new program of 154 GHz 1 MW development has started for high density plasma heating in LHD and the first tube has been fabricated. These lower frequency tubes like 77 GHz or 28 GHz one are also important for advanced magnetic fusion devices, which use Electron Bernstein Wave (EBW) heating / current drive. As a next activity of 28 GHz gyrotron, we have already started the development of over-1.5 MW gyrotron and a new design study of 28 GHz / 35 GHz dual frequency gyrotron, which indicates the practicability of the multi-purpose gyrotron. (author)

  9. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H 2 O, CO, and CH 4 , and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H 2 O, CO, and CO 2 ; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  10. A novel integrated approach for the hazardous radioactive dust source terms estimation in future nuclear fusion power plants.

    Poggi, L A; Malizia, A; Ciparisse, J F; Gaudio, P

    2016-10-01

    An open issue still under investigation by several international entities working on the safety and security field for the foreseen nuclear fusion reactors is the estimation of source terms that are a hazard for the operators and public, and for the machine itself in terms of efficiency and integrity in case of severe accident scenarios. Source term estimation is a crucial key safety issue to be addressed in the future reactors safety assessments, and the estimates available at the time are not sufficiently satisfactory. The lack of neutronic data along with the insufficiently accurate methodologies used until now, calls for an integrated methodology for source term estimation that can provide predictions with an adequate accuracy. This work proposes a complete methodology to estimate dust source terms starting from a broad information gathering. The wide number of parameters that can influence dust source term production is reduced with statistical tools using a combination of screening, sensitivity analysis, and uncertainty analysis. Finally, a preliminary and simplified methodology for dust source term production prediction for future devices is presented.

  11. Identification of future engineering-development needs of alternative concepts for magnetic-fusion energy

    Krakowski, R.A.

    1982-01-01

    A qualitative identification of future engineering needs of alternative fusion concepts (AFCs) is presented. These needs are assessed relative to the similar needs of the tokamak in order to emphasize differences in required technology with respect to the well documented mainline approach. Although nearly thirty AFCs can be identified as being associated with some level of reactor projection, redirection, refocusing, and general similarities can be used to generate a reduced AFC list that includes only the bumpy tori, stellarators, reversed-field pinches, and compact toroids. Furthermore, each AFC has the potential of operating as a conventional (low power density, superconducting magnets) or a compact, high-power-density (HPD) system. Hence, in order to make tractable an otherwise difficult task, the future engineering needs for the AFCs are addressed here for conventional versus compact approaches, with the latter being treated as a generic class and the former being composed of bumpy tori, stellarators, reversed-field pinches, and compact toroids

  12. Design study of an indirect cooling superconducting magnet for a fusion device

    Mito, Toshiyuki; Hemmi, Tsutomu

    2009-01-01

    The design study of superconducting magnets adapting a new coil winding scheme of an indirect cooling method is reported. The superconducting magnet system for the spherical tokamak (ST), which is proposed to study the steady state plasma experiment with Q - equiv-1, requires high performances with a high current density compared to the ordinal magnet design because of its tight spatial restriction. The superconducting magnet system for the fusion device has been used in the condition of high magnetic field, high electromagnetic force, and high heat load. The pool boiling liquid helium cooling outside of the conductor or the forced flow of supercritical helium cooling inside of the conductor, such as cable-in-conduit conductors, were used so far for the cooling method of the superconducting magnet for a fusion application. The pool cooling magnet has the disadvantages of low mechanical rigidities and low withstand voltages of the coil windings. The forced flow cooling magnet with cable-in-conduit conductors has the disadvantages of the restriction of the coil design because of the path of the electric current must be the same as that of the cooling channel for refrigerant. The path of the electric current and that of the cooling channel for refrigerant can be independently designed by adopting the indirect cooling method that inserts the independent cooling panel in the coil windings and cools the conductor from the outside. Therefore the optimization of the coil windings structure can be attempted. It was shown that the superconducting magnet design of the high current density became possible by the indirect cooling method compared with those of the conventional cooling scheme. (author)

  13. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  14. Low Power Design for Future Wearable and Implantable Devices

    Lundager, Katrine; Zeinali, Behzad; Tohidi, Mohammad

    2016-01-01

    limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs), especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main...

  15. Characterization of Size, Composition and Origins of Dust in Fusion Devices. Summary Report of the Third Research Coordination Meeting

    Braams, B.J.

    2013-02-01

    Twelve experts on processes of dust in fusion experiments met at IAEA Headquarters 30 November - 02 December 2011 for the 3rd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on ''Characterization of size, composition and origins of dust in fusion devices.'' Participants reviewed their work done in the course of the CRP and the current state of knowledge, and they made plans for a dust database and a final CRP report. Presentations, discussions and recommendations of the RCM are summarized here. (author)

  16. A study to compare the efficacy of polyether ether ketone rod device with titanium devices in posterior spinal fusion in a canine model.

    Wang, Nanxiang; Xie, Huanxin; Xi, Chunyang; Zhang, Han; Yan, Jinglong

    2017-03-09

    The benefits of posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps are well established. However, the problem of non-union due to mechanical support is not completely resolved. The aim of the study was to compare the efficacy of polyether ether ketone (PEEK) rod device with conventional titanium devices in the posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps. This was a randomized controlled study with an experimental animal model. Thirty-two mongrel dogs were randomly divided into two groups-control group (n = 16), which received the titanium device and the treatment group (n = 16), which received PEEK rods. The animals were sacrificed 8 or 16 weeks after surgery. Lumbar spines of dogs in both groups were removed, harvested, and assessed for radiographic, biomechanical, and histological changes. Results in the current study indicated that there was no significant difference in the lumbar spine of the control and treatment groups in terms of radiographic, manual palpation, and gross examination. However, certain parameters of biomechanical testing showed significant differences (p < 0.05) in stiffness and displacement, revealing a better fusion (treatment group showed decreased stiffness with decreased displacement) of the bone graft. Similarly, the histological analysis also revealed a significant fusion mass in both treatment and control groups (p < 0.05). These findings revealed that fixation using PEEK connecting rod could improve the union of the bone graft in the posterior lumbar spine fusion surgery compared with that of the titanium rod fixation.

  17. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  18. Future on the ITER program. On a branch of research on nuclear fusion

    Masaike, Akira

    2000-01-01

    As a huge cost for research and development of nuclear fusion is required, some international cooperative research such as ITER program have been intended to promote, to which Japanese response is required. As the program can be understood on its meaning at a viewpoint of promotion of basic science, concept on a key of energy problem is not insufficient yet And, its effect on technical problems and environment cannot be neglected Here was shown some proposals necessity for discussion on how the program had to be promoted under consideration of these problems. When a large scale program consuming national budget will be carried out, it is natural that agreement of national peoples must be obtained. Regretfully, in Japan discussion on science program above all nuclear policy has scarcely been experienced at citizens' levels, and some bitter experiences, where the concerned have promoted it in one side under a concept without any change once decided, have been pressured without any response to scientific advancements and social changes. Therefore, future plan on the nuclear fusion must be carried out a number of thorough discussion at a wide range from various viewpoints such as its realizing feasibility, safety, economics, and so forth, to promote careful adaptabilities. And, the concerned under promotion of the program and the relatives in the academic community seem to have a responsibility to easily explain present condition and scope of the plan to not only scientists but also citizens to awake them to promote its discussion with them. (G.K.)

  19. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions

    Xiaolin Zhu

    2018-03-01

    Full Text Available Satellite time series with high spatial resolution is critical for monitoring land surface dynamics in heterogeneous landscapes. Although remote sensing technologies have experienced rapid development in recent years, data acquired from a single satellite sensor are often unable to satisfy our demand. As a result, integrated use of data from different sensors has become increasingly popular in the past decade. Many spatiotemporal data fusion methods have been developed to produce synthesized images with both high spatial and temporal resolutions from two types of satellite images, frequent coarse-resolution images, and sparse fine-resolution images. These methods were designed based on different principles and strategies, and therefore show different strengths and limitations. This diversity brings difficulties for users to choose an appropriate method for their specific applications and data sets. To this end, this review paper investigates literature on current spatiotemporal data fusion methods, categorizes existing methods, discusses the principal laws underlying these methods, summarizes their potential applications, and proposes possible directions for future studies in this field.

  20. A carbon-metal brazing for divertor plates in fusion devices

    Matsuda, T.; Matsumoto, T.; Miki, S.; Sogabe, T.; Okada, M.; Kubota, Y.; Sagara, A.; Noda, N.; Motojima, O.; Hino, T.; Yamashina, T.

    1993-01-01

    A divertor unit, which consists of carbon armors brazed to a copper cooling channel, is under development for fusion devices. Isotropic graphite (IG-430U) and CFC (CX-2002U) are used for the armor, and a copper for the cooling tube. A technique named as dissolution and deposit of base metal was employed for brazing. The reliability of the brazed components was evaluated both by 4-point bending test and thermal shock test. According to the results of a 4-point bending test under the temperature ranged from RT to 800 C in a vacuum, it was found that the strength of the brazed surface at RT was maintained up to the higher temperature, 600 C. High heat load test has been also performed on the brazed sample in order to find whether the samples meet the requirement of the divertor plates of LHD (Large Helical Device). Active Cooling Teststand (ACT:NIFS) with electron beam power of 100kW was used. In LHD, it is presumed that the maximum heat flux is 10MW/m 2 . In addition, the surface temperature of divertor has to be kept below 1,200 C to avoid RES, by active cooling. The heat load test showed that the brazing components of CX-2002U (flat plate type CFC-Cu brazed) was stable at 1,300 C under a heat flux of 10MW/m 2 , when the flow velocity of cooling water was 6m/s. No damage nor deterioration was found at the brazed zone after the heat load test

  1. Radio-frequency-assisted current startup in the Fusion Engineering Device

    Borowski, S.K.; Kammash, T.; Martin Peng, Y.K.

    1984-01-01

    Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R 0 = 4.8 m, a = 1.3 m, sigma = 1.6, B(R 0 ) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T /sub e/ approx. = 100 eV, n /sub e/ approx. = 10 19 m -3 ) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a 0 approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)

  2. Experimental evaluation of torsional fatigue strength of welded bellows and application to design of fusion device

    Takatsu, Hideyuki; Yamamoto, Masahiro; Shimizu, Masatsugu; Suzuki, Kazuo; Sonobe, Tadashi; Hayashi, Yuzo; Mizuno, Gen-ichiro.

    1984-01-01

    Torsional fatigue strength of the welded bellows was evaluated experimentally, aiming the application to a port of a fusion device. The welded bellows revealed elastic torsional buckling and spiral distorsion even under a small angle of torsion. Twisting load never leads the welded bellows to fracture easily so far as the angle of torsion is not excessively large, and the welded bellows has the torsional fatigue strength much larger than that expected so far. Two formulae were proposed to evaluate the stress of the welded bellows under the forced angle of torsion; shearing stress evaluation formula in the case that torsional buckling does not occur and the axial bending stress evaluation formula in the case that torsional buckling occurs. And the results of the torsional fatigue experiments showed that the former is reasonably conservative and simulates the actual behavior of the welded bellows better than the latter in the high cycle fatigue region and vice versa in the low cycle fatigue region from the viewpoint of the mechanical design. The present evaluation method of the torsional fatigue strength was applied to the welded bellows for the port of the JT-60 vacuum vessel and its structural integrity was confirmed under the design load condition. (author)

  3. Encoding technique for high data compaction in data bases of fusion devices

    Vega, J.; Cremy, C.; Sanchez, E.; Portas, A.; Dormido, S.

    1996-01-01

    At present, data requirements of hundreds of Mbytes/discharge are typical in devices such as JET, TFTR, DIII-D, etc., and these requirements continue to increase. With these rates, the amount of storage required to maintain discharge information is enormous. Compaction techniques are now essential to reduce storage. However, general compression techniques may distort signals, but this is undesirable for fusion diagnostics. We have developed a general technique for data compression which is described here. The technique, which is based on delta compression, does not require an examination of the data as in delayed methods. Delta values are compacted according to general encoding forms which satisfy a prefix code property and which are defined prior to data capture. Several prefix codes, which are bit oriented and which have variable code lengths, have been developed. These encoding methods are independent of the signal analog characteristics and enable one to store undistorted signals. The technique has been applied to databases of the TJ-I tokamak and the TJ-IU torsatron. Compaction rates of over 80% with negligible computational effort were achieved. Computer programs were written in ANSI C, thus ensuring portability and easy maintenance. We also present an interpretation, based on information theory, of the high compression rates achieved without signal distortion. copyright 1996 American Institute of Physics

  4. Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices

    Firpo, Marie-Christine; Constantinescu, Dana

    2012-10-01

    The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  5. Ohmic heating coil power supply using thyristor circuit breaker in a thermonuclear fusion device

    Tani, Keiji; Shimada, Ryuichi; Tamura, Sanae; Yabuno, Kohei; Koseki, Shoichiro.

    1982-01-01

    In a large scale Tokamak thermonuclear fusion device such as the critical plasma testing facility (JT60) presently under construction, mechanical breakers such as vacuum and air breakers are mostly used for interrupting DC heavy current which is supplied to the ohmic heating coils of inductive energy accumulation method. The practical use of the DC breakers employing thyristors has just been started because the history of thyristor development is short and thristors are still expensive, in spite of the advantages. In this paper, the circuit is investigated in which the excellent high speed controllability of thyristors is fully utilized, while the economy is taken into accout, and the experiment carried out with a unit model is described. It was found that a thyristor switch, which was constructed by connecting the high speed thyristors of peak off-state voltage rating 2,000 V and mean current rating 500 A in direct parallel, was able to interrupt 12.7 kA current in the power supply circuit of ohmic heating coils developed this time. In addition, the switch configuration was able to be greatly simplified. When the multistage raising of plasma current is required, the raise can be performed with a single thyristor breaker because it can make high speed control. Therefore, the capacity of the breaker can be doubly and drastically reduced. Also, if current unbalance might occur between thyristor switch units, it gives no problem since the time of reverse voltage after current interruption dispersed smaller as current increased. (Wakatsuki, Y.)

  6. Surface temperature measurements by means of pulsed photothermal effects in fusion devices

    Loarer, Th.; Brygo, F.; Gauthier, E.; Grisolia, C.; Le Guern, F.; Moreau, F.; Murari, A.; Roche, H.; Semerok, A.

    2007-01-01

    In fusion devices, the surface temperature of plasma facing components is measured using infrared cameras. This method requires a knowledge of the emissivity of the material, the reflected and parasitic fluxes (Bremsstrahlung). For carbon, the emissivity is known and constant over the detection wavelength (∼3-5 μm). For beryllium and tungsten, the reflected flux could contribute significantly to the collected flux. The pulsed photothermal method described in this paper allows temperature measurements independently of both reflected and parasitic fluxes. A local increase of the surface temperature (ΔT ∼ 10-15 K) introduced by a laser pulse (few ns) results in an additional component of the photon flux collected by the detector. Few μs after the pulse, a filtering of the signal allows to extract a temporal flux proportional only to the variation of the emitted flux, the emissivity and ΔT. The ratio of simultaneous measurements at two wavelengths leads to the elimination of ΔT and emissivity. The range of application increases for measurements at short wavelengths (1-1.7 μm) with no limitation due to the Bremsstrahlung emission

  7. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  8. 'Maintain FENDL library for fusion applications'. FENDL-2 library for fusion applications - Status and future developments. Summary report

    Forrest, R.; Trkov, A.

    2003-11-01

    The discussions and conclusions of the meeting to 'Maintain FENDL library for Fusion Applications' are summarized in this report. A presentation was made by each of the participants, followed by a review of FENDL-2: evaluations and recommendations, and discussions on the special purpose libraries and processed files, with relevant further action thereon being determined. (author)

  9. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  10. Fusion power in the E.E.C. - some considerations concerning the future programme

    Carruthers, R.

    1976-01-01

    The problems of fusion reactor technology, the assessment of potential reactor systems and an estimate of the overall investment of manpower likely to be needed to reach a practical fusion power reactor are presented. (U.K.)

  11. Engineering challenges encountered in the design of the ELMO BUMPY TORUS proof-of-principle fusion device

    Dillow, C.F.; Imster, H.F.

    1982-01-01

    This paper first provides a summary of the history and current status of the Elmo Bumpy Torus (EBT) fusion concept. A brief description of the EBT-P is then provided in which the many unique features of this fusion device are highlighted. This description will provide the technical background for the following discussions of some of the more challenging mechanical engineering problems encountered to date in the evolution of the EBT-P design. The problems discussed are: optimization of the device primary structure design, optimization of the superconducting magnet x-ray shield design, design of the liquid helium supply and distribution system, and selection of high vacuum seals and pumps and their protection from the high power microwave environment. The common challenge in each of these design issues was to assure adequate performance at minimum cost

  12. Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL 3.0). Summary report of the Third Research Coordination Meeting

    Sawan, Mohamed E.

    2012-03-01

    The third Research Co-ordination Meeting of the Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL-3) was held at IAEA Headquarters in Vienna from 6 to 9 December 2011. A summary of the presentations given during meeting is given in this report along with the discussions that took place. A list of actions necessary to complete the library production, processing and testing are given. Details of the documents arising from the CRP were agreed. (author)

  13. Fusion power

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  14. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    Barana, Oliviero; Nouailletas, Rémy; Brémond, Sylvain; Moreau, Philippe; Allegretti, Ludovic; Balme, Stéphane; Ravenel, Nathalie; Mannori, Simone; Guillerminet, Bernard; Leroux, Fabrice; Douai, David; Nardon, Eric; Hertout, Patrick; Saint-Laurent, François

    2013-01-01

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra

  15. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    Barana, Oliviero, E-mail: oliviero.barana@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Nouailletas, Rémy; Brémond, Sylvain; Moreau, Philippe; Allegretti, Ludovic; Balme, Stéphane; Ravenel, Nathalie [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Mannori, Simone [ENEA C.R. Brasimone, 40032 Camugnano (Italy); Guillerminet, Bernard; Leroux, Fabrice; Douai, David; Nardon, Eric; Hertout, Patrick; Saint-Laurent, François [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)

    2013-10-15

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra.

  16. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  17. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study.

    Techy, Fernando; Mageswaran, Prasath; Colbrunn, Robb W; Bonner, Tara F; McLain, Robert F

    2013-05-01

    Segmental fixation improves fusion rates and promotes patient mobility by controlling instability after lumbar surgery. Efforts to obtain stability using less invasive techniques have lead to the advent of new implants and constructs. A new interspinous fixation device (ISD) has been introduced as a minimally invasive method of stabilizing two adjacent interspinous processes by augmenting an interbody cage in transforaminal interbody fusion. The ISD is intended to replace the standard pedicle screw instrumentation used for posterior fixation. The purpose of this study is to compare the rigidity of these implant systems when supplementing an interbody cage as used in transforaminal lumbar interbody fusion. An in vitro human cadaveric biomechanical study. Seven human cadaver spines (T12 to the sacrum) were mounted in a custom-designed testing apparatus, for biomechanical testing using a multiaxial robotic system. A comparison of segmental stiffness was carried out among five conditions: intact spine control; interbody spacer (IBS), alone; interbody cage with ISD; IBS, ISD, and unilateral pedicle screws (unilat); and IBS, with bilateral pedicle screws (bilat). An industrial robot (KUKA, GmbH, Augsburg, Germany) applied a pure moment (±5 Nm) in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) through an anchor to the T12 vertebral body. The relative vertebral motion was captured using an optoelectronic camera system (Optotrak; Northern Digital, Inc., Waterloo, Ontario, Canada). The load sensor and the camera were synchronized. Maximum rotation was measured at each level and compared with the intact control. Implant constructs were compared with the control and with each other. A statistical analysis was performed using analysis of variance. A comparison between the intact spine and the IBS group showed no significant difference in the range of motion (ROM) in FE, LB, or AR for the operated level, L3-L4. After implantation of the ISD to augment

  18. Study of lower hybrid current drive system in tokamak fusion devices

    Maebara, Sunao

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 μP is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 μsec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10 -6 Pam 3 /sm 2 at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm -2 (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10 -5 Pam 3 /sm 2 which is low enough for an antenna material. (author)

  19. On the role of turbulence on momentum redistribution in fusion devices

    Hidalgo, C.

    2005-01-01

    flows. These findings provide the first experimental evidence of the important role of parallel turbulence forces on edge momentum dynamic in fusion devices. (author)

  20. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Pires, Ivan Miguel; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-01-01

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664

  1. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Ivan Miguel Pires

    2016-02-01

    Full Text Available This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs.

  2. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  3. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    NYGREN, RICHARD E.; STAVROS, DIANA T.

    2000-01-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed

  4. The future of the pharmaceutical, biological and medical device industry

    Burgess LJ

    2011-09-01

    Full Text Available Lesley J Burgess, Marli TerblancheTREAD Research/Cardiology Unit, Department of Internal Medicine, Tygerberg Hospital and University of Stellenbosch, Parow, South AfricaAbstract: Numerous factors contribute to the declining pharmaceutical industry on the one hand and the rapidly growing generic industry together with the growing importance of medical devices and biologicals on the other. It is clear that the pharmaceutical industry is going to undergo a change in the next decade in order to meet the current challenges facing it and ultimately sustain its profitability and growth. This paper aims to identify a number of fairly obvious trends that are likely to have a significant impact on the product development pipeline in the next decade. It is more than clear that the current production pipeline for pharmaceutical, biotechnology and medical device industries is no longer sustainable and that urgent interventions are required in order to maintain its current level of profitability.Keywords: pharmaceutical industry, personalized medicine, trends, generics, biotechnology

  5. Crab cavities: Past, present, and future of a challenging device

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).

  6. Crab cavities: Past, present, and future of a challenging device

    Wu, Q.

    2015-01-01

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN@@@s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).

  7. Crab Cavities: Past, Present, and Future of a Challenging Device

    Wu, Q

    2015-01-01

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab- crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience in earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electronion collider under design at BNL (eRHIC).

  8. The future of nanofabrication and molecular scale devices in nanomedicine.

    Freitas, R A

    2002-01-01

    Nanotechnology is engineering and manufacturing at the molecular scale, and the application of nanotechnology to medicine is called nanomedicine. Nanomedicine subsumes three mutually overlapping and progressively more powerful molecular technologies. First, nanoscale-structured materials and devices that can be fabricated today hold great promise for advanced diagnostics and biosensors, targeted drug delivery and smart drugs, and immunoisolation therapies. Second, biotechnology offers the benefits of molecular medicine via genomics, proteomics, and artificial engineered microbes. Third, in the longer term, molecular machine systems and medical nanorobots will allow instant pathogen diagnosis and extermination, chromosome replacement and individual cell surgery in vivo, and the efficient augmentation and improvement of natural physiological function. Current research is exploring the fabrication of designed nanostructures, nanoactuators and nanomotors, microscopic energy sources, and nanocomputers at the molecular scale, along with the means to assemble them into larger systems, economically and in great numbers.

  9. Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks

    Cosimo Lacava

    2017-01-01

    Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.

  10. OER in the Mobile Era: Content Repositories’ Features for Mobile Devices and Future Trends

    Tabuenca, Bernardo; Drachsler, Hendrik; Ternier, Stefaan; Specht, Marcus

    2012-01-01

    Tabuenca, B., Drachsler, H., Ternier, S., & Specht, M. (2012, December). OER in the Mobile Era: Content Repositories’ Features for Mobile Devices and Future Trends. Europe eleaning papers, [Special issue] Mobile learning 2012.

  11. Alternative fusion concepts

    Rostagni, G.

    1981-01-01

    The paper reports the discussions and statements made by the participants on the actual state and future of five different approaches on the fusion concept; they are the following: bumpy torus, reversed-field pinch, open-ended configurations, compact toroids and stellarators. Tables show for each concept parameters that represent the achieved results; data expected for future devices and extrapolations on reactor requirements are included

  12. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  13. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  14. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A problem to be solved for tungsten diagnostics through EUV spectroscopy in fusion devices

    Morita, S.; Murakami, I.; Sakaue, H.A.; Dong, C.F.; Goto, M.; Kato, D.; Oishi, T.; Huang, X.L.; Wang, E.H.

    2013-01-01

    Tungsten spectra have been observed from Large Helical Device (LHD) in extreme ultraviolet (EUV) wavelength ranges of 10-650Å. When the electron temperature is less than 2keV, the EUV spectra from plasma core are dominated by unresolved transition array (UTA) composing of a lot of spectral lines, e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W"+"2"4"-"+"3"3 in 15-35Å. In order to understand the UTA spectrum, the EUV spectra measured from LHD plasmas are compared to those measured from Compact electron Beam Ion Trap (CoBIT), in which the electron beam is operated with monoenergetic energy of E_e ≤ 2keV. The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The collisional-radiative (C-R) model has been developed to explain the UTA spectra from LHD in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database to examine the ionization balance determined by ionization and recombination rate coefficients. If the electron temperature is higher than 2keV, Zn-like WXLV (W"4"4"+) and Cu-like WXLVI (W"4"5"+) spectra can be observed in LHD. Such ions of W"4"4"+ and W"4"5"+ can exhibit much simpler atomic configuration compared to other ionization stages of tungsten. Quantitative analysis of the tungsten density is attempted for the first time on the radial profile of Zn-like WXLV (W"4"4"+) 4p-4s transition measured at 60.9Å, based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5x10"1"0 cm"-"3 at the plasma center of LHD is reasonably obtained. Finally, the present problem for tungsten diagnostics in fusion plasmas is summarized. (author)

  16. Study of lower hybrid current drive system in tokamak fusion devices

    Maebara, Sunao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 {mu}P is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 {mu}sec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10{sup -6} Pam{sup 3}/sm{sup 2} at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm{sup -2} (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10{sup -5} Pam{sup 3}/sm{sup 2} which is low enough for an antenna material. (author)

  17. Future device applications of low-dimensional carbon superlattice structures

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  18. Energy storage devices for future hybrid electric vehicles

    Karden, Eckhard; Ploumen, Serve; Fricke, Birger [Ford Research and Advanced Engineering Europe, Suesterfeldstr. 200, D-52072 Aachen (Germany); Miller, Ted; Snyder, Kent [Ford Sustainable Mobility Technologies, 15050 Commerce Drive North, Dearborn, MI 48120 (United States)

    2007-05-25

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential ''battery pack'' system suppliers are discussed. (author)

  19. Energy storage devices for future hybrid electric vehicles

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  20. Automated pose estimation of objects using multiple ID devices for handling and maintenance task in nuclear fusion reactor

    Umetani, Tomohiro; Morioka, Jun-ichi; Tamura, Yuichi; Inoue, Kenji; Arai, Tatsuo; Mae, Yasusi

    2011-01-01

    This paper describes a method for the automated estimation of three-dimensional pose (position and orientation) of objects by autonomous robots, using multiple identification (ID) devices. Our goal is to estimate the object pose for assembly or maintenance tasks in a real nuclear fusion reactor system, with autonomous robots cooperating in a virtual assembly system. The method estimates the three-dimensional pose for autonomous robots. This paper discusses a method of motion generation for ID acquisition using the sensory data acquired by the measurement system attached to the robots and from the environment. Experimental results show the feasibility of the proposed method. (author)

  1. Implications of the second law for future directions in controlled fusion research

    Roth, J.R.; Miley, G.H.

    1980-01-01

    Many existing energy related technologies have developed under the influence of social, economic, or state of the art constraints, and they cannot be viewed as optimum systems according to the second law of thermodynamics. Controlled fusion research presents an opportunity to optimize a nascent technology with respect to second law considerations in order to develop a practical energy source. In its present state of development, fusion research offers several independent approaches that may result in a net power producing fusion reactor. This paper discusses how second law considerations might be used to narrow the range of choices that must be made among various fusion fuel cycles. From a second law point of view, the most desirable fusion reactors are those for which the energy of charged particles can be converted directly into d.c. electrical power, while still allowing the energy that could be recovered by an efficient high-temperature 'blanket' to be transported largely by radiation. Fusion research in all major industrialized countries is developing the deuterium-tritium (D-T) fuel cycle for first-generation fusion power plants. It will be shown that other fuel cycles have significant advantages over the D-T fuel cycle according to second law principles. (author)

  2. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  3. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  4. Results from levels 2/3 fusion implementations: issues, challenges, retrospectives, and perspectives for the future an annotated perspective

    Kadar, Ivan; Bosse, Eloi; Salerno, John; Lambert, Dale A.; Das, Subrata; Ruspini, Enrique H.; Rhodes, Bradley J.; Biermann, Joachim

    2008-04-01

    Even though the definition of the Joint Director of Laboratories (JDL) "fusion levels" were established in 1987, published 1991, revised in 1999 and 2004, the meaning, effects, control and optimization of interactions among the fusion levels have not as yet been fully explored and understood. Specifically, this is apparent from the abstract JDL definitions of "Levels 2/3 Fusion" - situation and threat assessment (SA/TA), which involve deriving relations among entities, e.g., the aggregation of object states (i.e., classification and location) in SA, while TA uses SA products to estimate/predict the impact of actions/interactions effects on situations taken by the participant entities involved. Given all the existing knowledge in the information fusion and human factors literature, (both prior to and after the introduction of "fusion levels" in 1987) there are still open questions remaining in regard to implementation of knowledge representation and reasoning methods under uncertainty to afford SA/TA. Therefore, to promote exchange of ideas and to illuminate the historical, current and future issues associated with Levels 2/3 implementations, leading experts were invited to present their respective views on various facets of this complex problem. This paper is a retrospective annotated view of the invited panel discussion organized by Ivan Kadar (first author), supported by John Salerno, in order to provide both a historical perspective of the evolution of the state-of-the-art (SOA) in higher-level "Levels 2/3" information fusion implementations by looking back over the past ten or more years (before JDL), and based upon the lessons learned to forecast where focus should be placed to further enhance and advance the SOA by addressing key issues and challenges. In order to convey the panel discussion to audiences not present at the panel, annotated position papers summarizing the panel presentation are included.

  5. High-speed repetitive pellet injector prototype for magnetic confinement fusion devices

    Frattolillo, A.; Gasparotto, M.; Migliori, S.; Angelone, G.; Baldarelli, M.; Scaramuzzi, F.; Ronci, G.; Reggiori, A.; Riva, G.; Carlevaro, R.; Daminelli, G.B.

    1992-01-01

    The design of a test facility aimed at demonstrating the feasibility of high-speed repetitive acceleration of solid D 2 pellets for fusion applications, developed in a collaboration between Oak Ridge National Laboratory and ENEA Frascati, is presented. The results of tests performed at the CNPM/CNR on the piston wear in a repetitively operating two-stage gun are also reported

  6. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    Wilson, Paul P.H. [Univ. of Wisconsin, Madison, WI (United States); Sawan, Mohamed E. [Univ. of Wisconsin, Madison, WI (United States); Davis, Andrew [Univ. of Wisconsin, Madison, WI (United States); Bohm, Tim D. [Univ. of Wisconsin, Madison, WI (United States)

    2017-09-05

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclear science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.

  7. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288 ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  8. Panel discussion: Future directions in magnetic fusion--comments of John Sheffield, Oak Ridge National Laboratory

    Sheffield, J.

    1992-01-01

    I will discuss two important issues for the US magnetic fusion program: the role of alternate magnetic configurations to the tokamak, and factors which need to be considered in planning the evolution of the US program

  9. Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation

    El-Atwani, O.; Gonderman, Sean; Allain, J.P.; Efe, Mert; Klenosky, Daniel; Qiu, Tian; De Temmerman, Gregory; Morgan, Thomas; Bystrov, Kirill

    2014-01-01

    This work discusses the response of ultrafine-grained tungsten materials to high-flux, high-fluence, low energy pure He irradiation. Ultrafine-grained tungsten samples were exposed in the Pilot-PSI (Westerhout et al 2007 Phys. Scr. T128 18) linear plasma device at the Dutch Institute for Fundamental Energy Research (DIFFER) in Nieuwegein, the Netherlands. The He flux on the tungsten samples ranged from 1.0 × 10 23 –2.0 × 10 24  ions m −2  s −1 , the sample bias ranged from a negative (20–65) V, and the sample temperatures ranged from 600–1500 °C. SEM analysis of the exposed samples clearly shows that ultrafine-grained tungsten materials have a greater fluence threshold to the formation of fuzz by an order or magnitude or more, supporting the conjecture that grain boundaries play a major role in the mechanisms of radiation damage. Pre-fuzz damage analysis is addressed, as in the role of grain orientation on structure formation. Grains of (1 1 0) and (1 1 1) orientation showed only pore formation, while (0 0 1) oriented grains showed ripples (higher structures) decorated with pores. Blistering at the grain boundaries is also observed in this case. In situ TEM analysis during irradiation revealed facetted bubble formation at the grain boundaries likely responsible for blistering at this location. The results could have significant implications for future plasma-burning fusion devices given the He-induced damage could lead to macroscopic dust emission into the fusion plasma. (paper)

  10. Characterization of a novel caudal vertebral interbody fusion in a rat tail model: An implication for future material and mechanical testing

    Yu-Cheng Yeh

    2017-02-01

    Conclusion: The rat caudal disc interbody fusion model proved to be an efficient, repeatable and easily accessible model. Future research into adjuvant treatments like growth factor injection and alternative fusion materials under conditions of osteoporosis using this model would be worthwhile.

  11. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  12. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    Combs, S.K.; Baylor, L.R.; Foust, C.R.

    1993-01-01

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described

  13. Evaluation of efficacy of a new hybrid fusion device: a randomized, two-centre controlled trial.

    Siewe, Jan; Bredow, Jan; Oppermann, Johannes; Koy, Timmo; Delank, Stefan; Knoell, Peter; Eysel, Peer; Sobottke, Rolf; Zarghooni, Kourosh; Röllinghoff, Marc

    2014-09-05

    The 360° fusion of lumbar segments is a common and well-researched therapy to treat various diseases of the spine. But it changes the biomechanics of the spine and may cause adjacent segment disease (ASD). Among the many techniques developed to avoid this complication, one appears promising. It combines a rigid fusion with a flexible pedicle screw system (hybrid instrumentation, "topping off"). However, its clinical significance is still uncertain due to the lack of conclusive data. The study is a randomized, therapy-controlled, two-centre trial conducted in a clinical setting at two university hospitals. If they meet the criteria, outpatients presenting with degenerative disc disease, facet joint arthrosis or spondylolisthesis will be included in the study and randomized into two groups: a control group undergoing conventional fusion surgery (PLIF - posterior lumbar intervertebral fusion), and an intervention group undergoing fusion surgery using a new flexible pedicle screw system (PLIF + "topping off"), which was brought on the market in 2013. Follow-up examination will take place immediately after surgery, after 6 weeks and after 6, 12, 24 and 36 months. An ongoing assessment will be performed every year.Outcome measurements will include quality of life and pain assessments using validated questionnaires (ODI - Ostwestry Disability Index, SF-36™ - Short Form Health Survey 36, COMI - Core Outcome Measure Index). In addition, clinical and radiologic ASD, sagittal balance parameters and duration of work disability will be assessed. Inpatient and 6-month mortality, surgery-related data (e.g., intraoperative complications, blood loss, length of incision, surgical duration), postoperative complications (e.g. implant failure), adverse events, and serious adverse events will be monitored and documented throughout the study. New hybrid "topping off" systems might improve the outcome of lumbar spine fusion. But to date, there is a serious lack of and a great need

  14. Economic analysis of fusion breeders

    Delene, J.G.

    1985-01-01

    This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included

  15. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion

    Block, Jon; Rapp,; Miller,Larry E.

    2011-01-01

    Steven M Rapp1, Larry E Miller2,3, Jon E Block31Michigan Spine Institute, Waterford, MI, USA; 2Miller Scientific Consulting Inc, Biltmore Lake, NC, USA; 3Jon E. Block, Ph.D., Inc., San Francisco, CA, USAAbstract: Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, post...

  16. Development of a swelling equation for 20%-CW 316 in a fusion device

    1980-01-01

    The difficulties involved in the development of swelling correlations for AISI 316 in fusion environments are discussed. A set of void and bubble-swelling correlations has been developed which incorporates the limited available data from EBR-II and HFIR irradiations. It appears that at high fluences helium may play a minor role in the determination of total swelling over a considerable temperature range

  17. Computer simulation of charged fusion-product trajectories and detection efficiency expected for future experiments within the COMPASS tokamak

    Kwiatkowski, Roch; Malinowski, Karol; Sadowski, Marek J

    2014-01-01

    This paper presents results of computer simulations of charged particle motions and detection efficiencies for an ion-pinhole camera of a new diagnostic system to be used in future COMPASS tokamak experiments. A probe equipped with a nuclear track detector can deliver information about charged products of fusion reactions. The calculations were performed with a so-called Gourdon code, based on a single-particle model and toroidal symmetry. There were computed trajectories of fast ions (> 500 keV) in medium-dense plasma (n e  < 10 14  cm −3 ) and an expected detection efficiency (a ratio of the number of detected particles to that of particles emitted from plasma). The simulations showed that charged fusion products can reach the new diagnostic probe, and the expected detection efficiency can reach 2 × 10 −8 . Based on such calculations, one can determine the optimal position and orientation of the probe. The obtained results are of importance for the interpretation of fusion-product images to be recorded in future COMPASS experiments. (paper)

  18. Bipolar sealer device reduces blood loss and transfusion requirements in posterior spinal fusion for adolescent idiopathic scoliosis.

    Gordon, Zachary L; Son-Hing, Jochen P; Poe-Kochert, Connie; Thompson, George H

    2013-01-01

    Reducing perioperative blood loss and transfusion requirements is important in the operative treatment of idiopathic scoliosis. This can be achieved with special frames, cell saver systems, pharmacologic aspects, and other techniques. Recently there has been interest in bipolar sealer devices as an adjunct to traditional monopolar electrocautery. However, there is limited information on this device in pediatric spinal deformity surgery. We reviewed our experience with this device in a setting of a standard institutional operative carepath. Perioperative blood loss and transfusion requirements of 50 consecutive patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion and segmental spinal instrumentation and who had a bipolar sealer device used during their surgery was compared with a control group of the 50 preceding consecutive patients who did not. Anesthesia, surgical technique, use of intraoperative epsilon aminocaproic acid (Amicar), postoperative protocol, and indications for transfusions (hemoglobin≤7.0 g/dL) were identical in both groups. The preoperative demographics for the patients in both groups were statistically the same. The bipolar sealer group demonstrated a significant reduction in intraoperative estimated blood loss, total perioperative blood loss, volume of blood products transfused, and overall transfusion rate when compared with the control group. When subgroups consisting of only hybrid or all-pedicle screw constructs were considered individually, these findings remained consistent. There were no complications associated with the use of this device. Using the bipolar sealer device is a significant adjunct in decreasing perioperative blood loss and transfusion requirements in patients undergoing surgery for adolescent idiopathic scoliosis. Level III-retrospective comparative study.

  19. Fusion neutronics

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  20. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  1. Data security on the national fusion grid

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  2. Security on the US Fusion Grid

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  3. Security on the US Fusion Grid

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  4. Data security on the national fusion grid

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  5. Security on the US fusion grid

    Burruss, J.R.; Fredian, T.W.; Thompson, M.R.

    2006-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This has led to the development of the U.S. fusion grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large U.S. fusion research facilities and with users both in the U.S. and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  6. Experimental study of potential structure in a spherical IEC fusion device

    Gu, Y.; Miley, G.H.

    2000-01-01

    The spherical inertial-electrostatic confinement (SIEC) concept is designed to focus and accelerate ions and electrons radially inward towards the center of a negatively biased, highly transparent spherical grid. The converging ions create a high-density plasma core where a high fusion rate occurs. In addition, under proper conditions, the ion and electron flows create a space-charge induced double potential well (a negative potential well nested inside a positive potential well). This structure traps high-energy ions within the virtual anode created by the double potential, providing a high fusion density in the trap volume. The present experiment was designed to verify double potential well formation and trapping by a measurement of the radial birth profile of energetic (3-MeV) protons produced by D-D fusion reactions in a deuterium discharge. This experiment was designed to operate at high perveance (0.4 to 1.4 mA/kV 3/2 ), where formation of a double well is predicted theoretically. Additional steps to aid well formation included: use of the unique Star mode of operation to obtain ion beam focusing down to approximately 1.6 H the ballistic limit and the incorporation of a second electrically floating grid (in addition to the focusing/accelerating cathode grid) to reduce the ion radial energy spread to 0.34 mA/kV 3/2 . As the perveance increased, the depth of the double well also increased. At the maximum perveance studied, 1.38 mA/kV 3/2 (corresponding to 80 mA and 15 kV), the negative potential well depth, corresponding to the measured proton-rate density, was estimated to be 22%--27% of the applied cathode voltage. This represents the first conclusive demonstration of double well formation in an SIEC, since prior measurements by other researchers typically yielded marginal or negative results

  7. Development of functional ceramics for nuclear fusion devices and their property measurements in radiation environment

    Ohno, Hideo; Kondo, Tatsuo

    1989-01-01

    The research and development of high performance ceramics related to nuclear energy increase their importance. Especially innovation and application of ceramics are needed in fusion reactors. Necessity of the selection of composite elements for low activation ceramics and transmutation effects with high energy neutron are summarized in general requirements. The development of new materials such as Si 3 N 4 with good dielectric properties and the application of zirconia for high temperature electrolysis of tritiated water in tritium recycling system are summarized as topical issues. (author)

  8. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  9. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the open-quotes QEDclose quotes engine) offered a thrust-to-weight ratio of 10 milli-g close-quote s, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built. copyright 1998 American Institute of Physics

  10. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the ''QED'' engine) offered a thrust-to-weight ratio of 10 milli-g's, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built

  11. 8th international workshop on plasma edge theory in fusion devices. Abstracts of invited and contributed papers

    Sipilae, S.K.; Heikkinen, J.A.

    2001-01-01

    The 8th International Workshop on Plasma Edge Theory in Fusion Devices, held at Dipoli Congress Centre, Espoo, Finland, is organised on behalf of the International Scientific Committee by Helsinki University of Technology and VTT (Technical Research Centre of Finland). Similar to the seven preceding Workshops, it addresses the theory for the boundary layer of magnetically confined fusion plasmas. It reflects the present status of the theory for the edge region of fusion plasmas. Emphasis is placed on the development of theory and of appropriate numerical methods as well as on self-consistent modelling of experimental data (including also empirical elements). The following topics are covered: basic edge plasma theory, models of special phenomena and edge control, and integrated edge plasma modelling. The International Scientific Committee has selected the papers and compiled the scientific programme. All other arrangements have been made by the Local Organising Committee. The Workshop is supported by the European Commission, High-Level Scientific Conferences. This Book of Abstracts contains the scientific programme and the abstracts of the invited and contributed papers. The Workshop has seven invited lectures of 60 minutes duration (including 10 minutes for discussion). In addition, 10 contributed papers were selected for oral presentation of 30 minutes duration (including five minutes for discussion). All oral presentations are given in plenary sessions. The remaining 34 contributed papers are presented as posters in three sessions. The invited lectures and contributed oral papers are presented also as posters. All invited and contributed papers will be refereed and published also as a regular issue of the journal Contributions to Plasma Physics. (orig.)

  12. Security threads: effective security devices in the past, present, and future

    Wolpert, Gary R.

    2002-04-01

    Security threads were first used to secure banknotes in the mid 1800's. The key to their anti-counterfeiting success was the fact that by being embedded in the paper, they became an integral part of the banknote substrate. Today, all major currencies still utilize this effective security feature. Technological developments have allowed security threads to evolve from a feature authenticated by only visual means to devices that incorporate both visual and machine detectable components. When viewed from the perspective of a thread being a carrier of various security technologies and the fact that they can be incorporated into the core substrate of banknotes, documents, labels, packaging and some high valued articles, it is clear that security threads will remain as effective security devices well into the future. This paper discusses a brief historical background of security threads, current visual and machine authentication technologies incorporated into threads today and a look to the future of threads as effective security devices.

  13. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  14. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  15. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Hassanein, Ahmed

    2015-01-01

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  16. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future.

    Levin, Yotam; Kochba, Efrat; Hung, Ivan; Kenney, Richard

    2015-01-01

    Intradermal immunization has become a forefront of vaccine improvement, both scientifically and commercially. Newer technologies are being developed to address the need to reduce the dose required for vaccination and to improve the reliability and ease of injection, which have been major hurdles in expanding the number of approved vaccines using this route of administration. In this review, 7 y of clinical experience with a novel intradermal delivery device, the MicronJet600, which is a registered hollow microneedle that simplifies the delivery of liquid vaccines, are summarized. This device has demonstrated both significant dose-sparing and superior immunogenicity in various vaccine categories, as well as in diverse subject populations and age groups. These studies have shown that intradermal delivery using this device is safe, effective, and preferred by the subjects. Comparison with other intradermal devices and potential new applications for intradermal delivery that could be pursued in the future are also discussed.

  17. Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices.

    Bleszynski, Peter A; Luc, Jessica G Y; Schade, Peter; PhilLips, Steven J; Tchantchaleishvili, Vakhtang

    There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.

  18. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  19. Status and development plan of nuclear fusion research in the US

    Kang Weihong

    2012-01-01

    This paper presents the background of nuclear fusion research and current status of major devices with accomplishments in the US, as well as the national fusion plans and budgets for fusion energy development by the US government. As a fusion power in the world, the US has made significant contributions to the development of international fusion research. The strategy of fusion research developments and the accomplishments may exert a subtle influence on international fusion development situation. Withdrawing from the ITER partnership for 2 times, the US rejoined it subsequently. This paper gives a brief introduction of changes in the US fusion research policy, summarizes the implementation of ITER procurement packages undertaken by the US, and the overview of the US inertial confinement fusion re- search. The US future energy development plan is the development of magnetic confinement fusion approach in parallel with inertial confinement fusion approach. (author)

  20. Media analysis of the representations of fusion and other future energy technologies

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal); Oltra, Christian; Prades, Ana [CISOT-CIEMAT. Gran Via de les Corts Catalanes 604, 4, 2, 08007 Barcelona (Spain)

    2015-07-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  1. The possible role of fusion in the Indian energy system of the future

    Hamacher, T.; Shukla, R.P.; Seebregts, A.J.

    2003-01-01

    Already in the year 2050 India will be the most populated country in the world. Population growth and sustained economic growth will make India to one of the biggest economies in the world, consuming huge amounts of energy. The study shows that India would consume in 2100 a third of the global electricity demand of 2000. If no intervention are considered, coal will keep its position as dominant source in the electricity sector throughout the whole 21st century. This would result in tremendous CO 2 emissions. The picture changes completely, if stringent restrictions on CO 2 emissions are applied. In the case of strict emission reductions new technologies like fusion could make an inroad to the Indian energy system. Especially if it is assumed that the safety and environmental advantages of fusion compared to fission are accounted for

  2. Media analysis of the representations of fusion and other future energy technologies

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio; Oltra, Christian; Prades, Ana

    2015-01-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  3. The Catchment Feature Model: A Device for Multimodal Fusion and a Bridge between Signal and Sense

    Quek, Francis

    2004-12-01

    The catchment feature model addresses two questions in the field of multimodal interaction: how we bridge video and audio processing with the realities of human multimodal communication, and how information from the different modes may be fused. We argue from a detailed literature review that gestural research has clustered around manipulative and semaphoric use of the hands, motivate the catchment feature model psycholinguistic research, and present the model. In contrast to "whole gesture" recognition, the catchment feature model applies a feature decomposition approach that facilitates cross-modal fusion at the level of discourse planning and conceptualization. We present our experimental framework for catchment feature-based research, cite three concrete examples of catchment features, and propose new directions of multimodal research based on the model.

  4. The Catchment Feature Model: A Device for Multimodal Fusion and a Bridge between Signal and Sense

    Francis Quek

    2004-09-01

    Full Text Available The catchment feature model addresses two questions in the field of multimodal interaction: how we bridge video and audio processing with the realities of human multimodal communication, and how information from the different modes may be fused. We argue from a detailed literature review that gestural research has clustered around manipulative and semaphoric use of the hands, motivate the catchment feature model psycholinguistic research, and present the model. In contrast to “whole gesture” recognition, the catchment feature model applies a feature decomposition approach that facilitates cross-modal fusion at the level of discourse planning and conceptualization. We present our experimental framework for catchment feature-based research, cite three concrete examples of catchment features, and propose new directions of multimodal research based on the model.

  5. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Friesen, F.Q.L.; John, B.; Skinner, C.H.; Roquemore, A.L.; Calle, C.I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  6. Computerized cost estimation spreadsheet and cost data base for fusion devices

    Hamilton, W.R.; Rothe, K.E.

    1985-01-01

    Component design parameters (weight, surface area, etc.) and cost factors are input and direct and indirect costs are calculated. The cost data base file derived from actual cost experience within the fusion community and refined to be compatible with the spreadsheet costing approach is a catalog of cost coefficients, algorithms, and component costs arranged into data modules corresponding to specific components and/or subsystems. Each data module contains engineering, equipment, and installation labor cost data for different configurations and types of the specific component or subsystem. This paper describes the assumptions, definitions, methodology, and architecture incorporated in the development of the cost estimation spreadsheet and cost data base, along with the type of input required and the output format

  7. Assessment of martensitic steels as structural materials in magnetic fusion devices

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  8. The manufacture of carbon armoured plasma-facing components for fusion devices

    Schedler, B.; Huber, T.; Zabernig, A.; Rainer, F.; Scheiber, K.H.; Schedle, D.

    2001-01-01

    Within the last decade Plansee has been active in the development and manufacture of different plasma-facing-components for nuclear fusion experiments consisting in a tungsten or CFC-armor joined onto metallic substrates like TZM, stainless steel or copper-alloys. The manufacture of these components requires unique joining technologies in order to obtain reliable thermo mechanical stable joints able to withstand highest heat fluxes without any deterioration of the joint. In an overview the different techniques will be presented by some examples of components already manufactured and successfully tested under high heat flux conditions. Furthermore an overview will be given on the manufacture of different high heat flux components for TORE SUPRA, Wendelstein 7-X and ITER. (author)

  9. Initial experiments with the FOM-Fusion-FEM

    Verhoeven, A.G.A.; Bongers, W.A.; Caplan, M.; Dijk, G. van; Elzendoorn, B.S.Q.

    1995-01-01

    A Free Electron Maser is being built for ECRH applications on future fusion research devices such as ITER. A unique feature of the Dutch FOM-Fusion-FEM is the possibility to tune the frequency over the entire range from 130 to 260 GHz while the output power exceeds 1 MW

  10. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    Moeller, Soeren

    2014-01-01

    literature and new experimental data obtained in this work. Using the new knowledge, the methods can be adapted to future devices, e.g. ITER. TCR offers a fast removal with only logarithmic scaling with co-deposit inventory, while plasma removal results in good wall conditions for fusion operation. The proposed integral scenario combines both specific advantages to a fusion plasma compatible removal scenario. The determined removal rates and the technical specifications of ITER are used to calculate the removal time at 470 K wall temperature for a tritium inventory of 700 g to 10.7 h in an application scenario.

  11. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    Moeller, Soeren

    2014-11-01

    amounts by D{sub 2}-ICWC. The models are in agreement with literature and new experimental data obtained in this work. Using the new knowledge, the methods can be adapted to future devices, e.g. ITER. TCR offers a fast removal with only logarithmic scaling with co-deposit inventory, while plasma removal results in good wall conditions for fusion operation. The proposed integral scenario combines both specific advantages to a fusion plasma compatible removal scenario. The determined removal rates and the technical specifications of ITER are used to calculate the removal time at 470 K wall temperature for a tritium inventory of 700 g to 10.7 h in an application scenario.

  12. Peaceful Uses of Fusion

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  13. Future developments of power supply from nuclear fission and fusion until the middle of the 21st century

    1987-03-01

    The purpose of this study made by General Technology Systems (Netherlands) is to provide information about nuclear fission and fusion as methods for power generation, with which, in the framework of a study into the possibilities of durable energy sources, choices may be made from the various possibilities for future energy supply. The physical processes upon which the power generation relies are treated briefly. The technologies employed are discussed together with their changes and improvements, now and in the future, and the economic factors by which they are accompanied. How much of this energy will be used in the Netherlands, is discussed. In order to know the opinion of others about these subjects the dealers of the current nuclear power stations were asked to give their opinions which are collected in a supplement. 166 refs.; 18 figs.; 19 tabs

  14. Neutronic design of pulse operation simulating device for in-pile functional test of fusion blanket by MCNP

    Nagao, Yoshiharu; Nakamichi, Masaru; Kawamura, Hiroshi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan)

    2000-03-01

    The pulse operation of a fusion reactor can be simulated in a fission reactor by controlling the neutron flux entering a test section by using a rotating 'hollow cylinder with window' made of hafnium. The rotating cylinder is installed between the test section and the fixed outer neutron absorber cylinder and is also made of hafnium with an opening in the direction to the core center. For gathering engineering data for the tritium breeding blanket such as characteristics of temperature change, tritium release and recovery, etc., it is desirable that the ratio of minimum to maximum thermal neutron fluxes is greater than 1:10. Design calculations were performed for the test assembly which considered local neutronic effects and the mechanical constraints of the device. From the results of these calculations, the ratio of minimum to maximum thermal neutron flux under irradiation would be about 1:10 using a pulse operation simulating device which has a thickness of 6.5 mm and a 150deg window angle for the rotating hollow cylinder and 5.0 mm in thickness of fixed neutron absorber. (author)

  15. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    John J. Guiry

    2014-03-01

    Full Text Available In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices’ ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  16. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    Tanimura, Y.; Iida, T.

    1998-01-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector. (orig.)

  17. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    Tanimura, Yoshihiko; Iida, Toshiyuki

    1998-10-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector.

  18. Inertial fusion results from Nova and implication for the future of ICF

    Kilkenny, J.D.; Cable, M.D.; Campbell, E.M.

    1988-10-01

    A key objective of the US Inertial Confinement Fusion Program is to obtain high yield (100-1000 MJ) implosions in a laboratory environment. This requires high grain from an inertial fusion target from a driver capable of delivering about 10 MJ. Recent results have been sufficiently encouraging that the US Department of Energy is planning for such a capability called the Laboratory Microfusion Facility (LMF). In the past two years, we have conducted implosion-related experiments with approximately 20 kJ of 0.35-μm laser light in 1-ns temporally flat-topped pulses. These experiments were done with the Nova laser, the primary US facility devoted to radiatively driven inertial confinement fusion. Our results show that we can accurately model a significant fraction of the phenomena required to obtain the fuel conditions needed for high gain. Both the x-ray conversion efficiency and the growth of Rayleigh-Taylor hydrodynamic instabilities are shown to be at acceptable levels. Targets designed so that the shape of the stagnated fuel can be imaged show that the x-ray drive in our hohlraums can be made isotropic to better than 3%. With this optimized drive and temporally unshaped laser pulses many critical implosion parameters are measured on targets designed for higher density. Good agreement is obtained with one-dimensional simulations. Maximum compressions of between 20--30 in radius are measured with a variety of diagnostics. Improvements in the driver technology are demonstrated; we anticipate operation of Nova at the 50-kJ level at 3ω. 18 refs., 6 figs., 1 tab

  19. Safety issues to be taken into account in designing future nuclear fusion facilities

    Perrault, Didier, E-mail: didier.perrault@irsn.fr

    2016-11-01

    Highlights: • Assess if decay heat removal is a safety function. • Re-study accidents considered for ITER and identify those specific to DEMO. • Limit tritium inventory and optimize main gaseous tritium release routes. • Take into account constraints related to requirements of waste disposal routes. - Abstract: For several years now, the French “Institut de Radioprotection et de Sûreté Nucléaire” has been carrying out expertise of ITER fusion facility safety files at the request of the French “Autorité de Sûreté Nucléaire”. As part of the lengthy process which should lead to mastering nuclear fusion, different fusion facility projects are currently under study throughout the world to be ready to continue building on the work which will take place in the ITER facility. On the basis of the experience acquired during the ITER safety expertise, the IRSN has carried out a preliminary study of the safety issues which seem necessary to take into account right from the earliest design phase of these DEMO facilities. The issues studied have included the decay heat removal, exposure to ionizing radiation, potential accidents, and effluent releases and waste. The study shows that it will be important to give priority to the following actions, given that their results would have a major influence on the design: assess if decay heat removal is a safety function, re-study the accidents considered in the context of the ITER project and identify those specific to DEMO, and optimize each of the main routes for gaseous tritium releases.

  20. Computation of stationary 3D halo currents in fusion devices with accuracy control

    Bettini, Paolo; Specogna, Ruben

    2014-09-01

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  1. Two-dimensional cross-section and SED uncertainty analysis for the Fusion Engineering Device (FED)

    Embrechts, M.J.; Urban, W.T.; Dudziak, D.J.

    1982-01-01

    The theory of two-dimensional cross-section and secondary-energy-distribution (SED) sensitivity was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. Analyses of the Fusion Engineering Design (FED) conceptual inboard shield indicate that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. The more complex the geometry, the more compulsory a 2-D analysis becomes. Specific results show that the uncertainty for the integral heating of the toroidal field (TF) coil for the FED is 114.6%. The main contributors to the cross-section uncertainty are chromium and iron. Contributions to the total uncertainty were smaller for nickel, copper, hydrogen and carbon. All analyses were performed with the Los Alamos 42-group cross-section library generated from ENDF/B-V data, and the COVFILS covariance matrix library. The large uncertainties due to chromium result mainly from large convariances for the chromium total and elastic scattering cross sections

  2. The long way to steady state fusion plasmas - the superconducting stellarator device Wendelstein 7-X

    CERN. Geneva

    2016-01-01

    The stable generation of high temperature Hydrogen plasmas (ion and electron temperature in the range 10-20 keV) is the basis for the use of nuclear fusion to generate heat and thereby electric power. The most promising path is to use strong, toroidal, twisted magnetic fields to confine the electrically charged plasma particles in order to avoid heat losses to the cold, solid wall elements. Two magnetic confinement concepts have been proven to be most suitable: (a) the tokamak and (b) the stellarator. The stellarator creates the magnetic field by external coils only, the tokamak by combining the externally created field with the magnetic field generated by a strong current in the plasma. “Wendelstein 7-X” is the name of a large superconducting stellarator that went successfully into operation after 15 years of construction. With 30 m3 plasma volume, 3 T magnetic field on axis, and 10 MW micro wave heating power, Hydrogen plasmas are generated that allow one to establish a scientific basis for the extrapol...

  3. Multi parametric sensitivity study applied to temperature measurement of metallic plasma facing components in fusion devices

    Aumeunier, M-H.; Corre, Y.; Firdaouss, M.; Gauthier, E.; Loarer, T.; Travere, J-M.; Gardarein, J-L.; EFDA JET Contributor

    2013-06-01

    In nuclear fusion experiments, the protection system of the Plasma Facing Components (PFCs) is commonly ensured by infrared (IR) thermography. Nevertheless, the surface monitoring of new metallic plasma facing component, as in JET and ITER is being challenging. Indeed, the analysis of infrared signals is made more complicated in such a metallic environment since the signals will be perturbed by the reflected photons coming from high temperature regions. To address and anticipate this new measurement environment, predictive photonic models, based on Monte-Carlo ray tracing (SPEOS R CAA V5 Based), have been performed to assess the contribution of the reflective part in the total flux collected by the camera and the resulting temperature error. This paper deals with the effects of metals features, as the emissivity and reflectivity models, on the accuracy of the surface temperature estimation. The reliability of the features models is discussed by comparing the simulation with experimental data obtained with the wide angle IR thermography system of JET ITER like wall. The impact of the temperature distribution is studied by considering two different typical plasma scenarios, in limiter (ITER start-up scenario) and in X-point configurations (standard divertor scenario). The achievable measurement performances of IR system and risks analysis on its functionalities are discussed. (authors)

  4. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  5. Scattering measurements in Tokamak type devices

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  6. Fusion performances and alpha heating in future JET D-T plasmas

    Balet, B; Cordey, J G; Gibson, A; Lomas, P; Stubberfield, P M; Thomas, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  7. Progress in laboratory high gain ICF [inertial confinement fusion]: Prospects for the future

    Storm, E.; Lindl, J.D.; Campbell, E.M.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10 14 W/cm 2 , an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm 3 and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs

  8. Fusion Power measurement at ITER

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  9. Laser fusion

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  10. Detective studies of soft X-ray tomography on controlled thermonuclear fusion device

    Li Linzhong; Su Fei

    2004-01-01

    In is necessary to design tomographic detective system with very high accuracy and high quality. It is such a detective system that its five resolutions are all very high quality. The five resolutions are: the radial resolution, the angular resolution, the spatial resolution of detector, the resolution of detector array, and the time resolution. The radial resolution is decided by the number of detectors in detector array. The angular resolutions depend on the number of detector arrays. According to the concrete condition of controlled device, through making special rectangular detector the optimum spatial resolution of detector and the optimum spatial resolution of detector array can be obtained. The high time resolution can be got by making wide-band ampli-filter circuit system. The tomographic system with high quality can use the multi-angle multi-array mode or perfect single array mode. The soft X-ray tomographic system with high sensitivity can measure the stable signal and perform the tomography under the conditions of Te ∼150 eV, ne ∼1013 cm-3 on the small Tokamak devices. (authors)

  11. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ηprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ηprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons

  12. Laser fusion

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  13. A spallation-based irradiation test facility for fusion and future fission materials

    Samec, K.; Fusco, Y.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU's FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the proposed DEMO fusion reactor, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550 deg. C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum over a volume occupying one litre. The entire 'TMIF' facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility. (authors)

  14. A spallation-based irradiation test facility for fusion and future fission materials

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  15. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    Nakaya, H., E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Shimakawa, S.; Goto, M.; Nakagawa, S. [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur 54100 (Malaysia)

    2014-05-01

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO{sub 2} as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO{sub 2} is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year.

  16. Practical sublimation source for large-scale chromium gettering in fusion devices

    Simpkins, J E; Gabbard, W A; Emerson, L C; Mioduszewski, P K [Oak Ridge National Lab., TN (USA)

    1984-05-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  17. A practical sublimation source for large-scale chromium gettering in fusion devices

    Simpkins, J.E.; Gabbard, W.A.; Emerson, L.C.; Mioduszewski, P.K.

    1984-01-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown. (orig.)

  18. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Hidalgo, A.

    2003-07-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  19. Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

    Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M; Town, R J; Patel, P K

    2008-01-01

    The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with ∼ 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010

  20. Remote maintenance of future fusion reactors - a challenge for rad-hard components and smart control strategies

    Decreton, M.; Geeter, J. De

    1996-01-01

    The future fusion reactor will need frequent maintenance turns, involving inspection, repair and parts replacement inside the vacuum vessel. These operations will require high payload manipulations in constrained space under very high gamma-radiation dose-rates and temperature. Present research is being undertaken to qualify the components of the handling machine under representative conditions, in the framework of the ITER international consortium. Simultaneously, challenging control strategies will be needed to achieve reliable tasking under very poor viewing conditions and elementary sensing help. The paper reviews the present state of the art on both issues and present results of the ongoing research themes among the partners of the ITER programme. In particular, SCK''centre-dot''CEN coordinates the ITER T252 task on Radiation Tolerance Assessment of Remote Handling Components. (UK)

  1. Research on nuclear fusion reactor - Development of mm-wve (Electron cyclotron) heating device

    Ahn, Sae Young; Myung, Jung Su; Lee, Keun Ho; Lee, Myung Jae; Kim, Hyung Suk; Hur, Jin Woo; Song, Ho Young [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1996-08-01

    To establish cooperating system with foreign relevant research institutes, consultation has been given to IAE by Dr. T. V. George regarding ECRH and gyrotron development plan. Discussions with Prof. Temkin and Dr. Kreisher at MIT, who are working for ITER gyrotron development, were made and those helped IAE to collect necessary information for fundamental parameters of ECCD. Also, Prof. Vic Granatstein, U. of Maryland, and Dr. Baruch Levush, NRL, were consulted for computer codes of the gyrotron R and D. It will also be prepared for cooperation in ECCD and mm-wave heating with device research teams of General Atomics and Russia. By visiting various University labs and research institutes and investigating the up-to-date research results, the basic operating parameters of gyrotron for KSTAR project has been determined. By cooperation with MIT, a conceptual design has been made for the KSTAR gyrotron that should generate 1 MW and 110 GHz CW waves. The simulation result of EGUN using self-consistent theory shows that 1.2 MW power with the efficiency of 42.8% can be obtained for TE22,6,1 mode where the average ohmic loss is 0.54 kW/cm{sup 2} assuming 77 kV cathode voltage, 34 A beam current, velocity ratio of 1.62 and perpendicular velocity spread of 6.5%. 9 refs., 5 figs., 3 tabs. (author)

  2. An electrically conducting first wall for the fusion engineering device-A (FED-A) tokamak

    Cramer, B.A.; Fuller, G.M.

    1983-01-01

    The first wall of the tokamak FED-A device was designed to satisfy two conflicting requirements. They are a low electrical resistance to give a long eddy-current decay time and a high neutron transparency to give a favorable tritium breeding ratio. The tradeoff between these conflicting requirements resulted in a copper alloy first wall that satisfied the specific goals for FED-A, i.e., a minimum eddy-current decay time of 0.5 sec and a tritium breeding ratio of at least 1.2. Aluminum alloys come close to meeting the requirements and would also probably work. Stainless steel will not work in this application because shells thin enough to satisfy temperature and stress limits are not thick enough to give a long eddy-current decay time and to avoid disruption induced melting. The baseline first wall design is a rib-stiffened, double-wall construction. The total wall thickness is 1.5 cm, including a water coolant thickness of 0.5 cm. The first wall is divided into twelve 30-degree sectors. Flange rings at the ends of each sector are bolted together to form the torus. Structural support is provided at the top center of each sector

  3. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Patel, Pratik; Shukla, Vinit; Shah, Nitin; Sarkar, Biswanath

    2015-01-01

    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  4. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    Rubel, Marek, E-mail: Marek.Rubel@ee.kth.se [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Fusion Plasma Physics, Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden); Petersson, Per [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Fusion Plasma Physics, Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden); Alves, Eduardo [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Brezinsek, Sebastijan [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Institut für Klima- und Energieforschung, Forschungszentrum Jülich, D-52425 Jülich (Germany); Coad, Joseph Paul [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Heinola, Kalle [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); University of Helsinki, 00014 Helsinki (Finland); Mayer, Matej [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Max-Planck-Institut für Plasmaphysik, 85478 Garching (Germany); Widdowson, Anna [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-03-15

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma–wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1–10), high sensitivity and combination of several methods in a single run. The role of {sup 3}He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. {sup 15}N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  5. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  6. Irradiation creep at temperatures of 400 degrees C and below for application to near-term fusion devices

    Grossbeck, M.L.; Gibson, L.T.; Mansur, L.K.

    1996-01-01

    To study irradiation creep at 400 degrees C and below, a series of six austenitic stainless steels and two ferritic alloys was irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor; and, after an atomic displacement level of 7.4 dpa, the specimens were moved to the High Flux Isotope Reactor for the remainder of the 19 dpa accumulated. Irradiation temperatures of 60, 200, 330, and 400 degrees C were studied with internally pressurized tubes of type 316 stainless steel, PCA, HT 9, and a series of four laboratory heats of: Fe-13.5Cr-15Ni, Fe-13.5Cr-35Ni, Fe-1 3.5Cr-1 W-0.18Ti, and Fe-16Cr. At 330 degrees C, irradiation creep was shown to be linear in fluence and stress. There was little or no effect of cold-work on creep under these conditions at all temperatures investigated. The HT9 demonstrated a large deviation from linearity at high stress levels, and a minimum in irradiation creep with increasing stress was observed in the Fe-Cr-Ni ternary alloys

  7. The life test of a DC circuit breaker of tokamak device JT-60 for a nuclear fusion research

    Shimada, Ryuichi; Tani, Keiji; Kishimoto, Hiroshi; Tamura, Sanae; Yanabu, Satoru.

    1979-01-01

    In the Tokamak devices for nuclear fusion research, the construction of the current transformer circuits having plasma as the secondary circuit and the change of the primary circuit current are necessary for generating current in the plasma. This is considered to be fairly difficult in practice if conventional methods using capacitor discharge and iron core coils are employed. Considering such circumstances, it was decided for JT-60 to use an air-core current transformer coil and to employ the method of storing energy in the form of current in the coil inductance instead of a capacitor. For this reason, a DC circuit breaker is required to interrupt coil current. The authors improved an AV vacuum breaker, which had been developed as the vacuum breaker of longitudinal magnetic field type applying a magnetic field in parallel with an arc, to get the one for DC circuit for the purpose of applying it to JT-60. In this paper, the operational characteristic of the DC breaker is described, the construction and function of the life test circuit is explained, and the test results are reported. Finally, interruptions of 10,000 times at 20 kA were carried out. It is successful that the restrike of arc occurring during tens of milli-seconds after interruptions was improved to 0.05% or less for 10,000 times operations. Further, it was found that the generation of arc restrike can be reduced practically to zero with two breakers in series. (Wakatsuki, Y.)

  8. Fusion technology 1998

    Beaumont, B.; Libeyre, P.; Gentile, B. de; Tonon, G.

    1998-01-01

    The Symposium On Fusion Technology (SOFT) is held every two years with the objective to set the stage for the exchange of information on the design, construction and operation of fusion experiments and on the technology which is being developed for the next step devices and fusion reactors. By decision of the International Organizing Committee, the 20. SOFT includes invited talks, and oral and poster contributions in the following topics: plasma facing components, plasma heating and current drive, plasma engineering and control, experimental systems and diagnostics, magnets and power supplies, fuel technologies, remote operation, blanket and shield technologies, safety and environment, and system engineering and future devices. This symposium differs from the previous ones of this series by the way the present proceedings are produced. In order to have the written material available to the participants and the community at the nearest to the conference event, the papers have been collected 2 months in advance and printed in the present books. The goal was to deliver them to each participant upon arrival to the conference centre. These books contain all the papers corresponding to poster presentation, and the abstracts of the oral contributions and invited papers. The papers corresponding to these presentations, both oral and invited, will be published in 1999, after a standard review process, in a supplement of Fusion Engineering and Design. (author)

  9. Thought-action fusion: review of the literature and future directions.

    Berle, David; Starcevic, Vladan

    2005-05-01

    Thought-action fusion (TAF) is the tendency for individuals to assume that certain thoughts either imply the immorality of their character or increase the likelihood of catastrophic events. The burgeoning literature on TAF is reviewed. It is not clear whether TAF refers to a specific appraisal style, a more enduring belief, or a combination of both. Inconsistent definitions of magical thinking have hindered better understanding of the relationship between TAF and magical thinking. Much work remains to be done to improve assessment and measurement of TAF. TAF is associated with tendencies towards obsessive-compulsive disorder (OCD) and may contribute to its symptoms. However, the literature investigating TAF and other variables implicated in OCD remains inconclusive. It is suggested that TAF is not specific to OCD, but also prevalent in other anxiety disorders. TAF appears to be moderately related to depressive symptoms and a similar bias may contribute to preoccupations in eating disorders. TAF is also associated with the presence of psychological disorders in children and adolescents. Educational and cognitive therapy approaches to reduce TAF and consequent symptoms are discussed, and suggestions for further research made.

  10. Future World Energy Demand and Supply: China and India and the Potential Role of Fusion Energy

    Sheffield, John

    2005-01-01

    Massive increases in energy demand are projected for countries such as China and India over this century e.g., many 100s of megawatts of electricity (MWe) of additional electrical capacity by 2050, with more additions later, are being considered for each of them. All energy sources will be required to meet such a demand. Fortunately, while world energy demand will be increasing, the world is well endowed with a variety of energy resources. However, their distribution does not match the areas of demand and there are many environmental issues.Such geopolitical issues affect China and India and make it important for them to be able to deploy improved technologies. In this regard, South Korea is an interesting example of a country that has developed the capability to do advanced technologies - such as nuclear power plants. International collaborations in developing these technologies, such as the International Thermonuclear Reactor (ITER), may be important in all energy areas. Fusion energy is viewed as an interesting potential option in these three countries

  11. Collection of Summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1994

    1995-07-01

    The development of nuclear fusion reactors reached such stage that the generation of fusion power output comparable with the input power into core plasma is possible. At present, the engineering design of the international thermonuclear fusion experimental reactor, ITER, is advanced by the cooperation of Japan, USA, Europe and Russia, aiming at the start of operation at the beginning of 21st century. This meeting for reporting the results has been held every year, and this time, it was held on May 19, 1995 at University of Tokyo with the theme ''The interface properties of fusion reactor materials and the control of particle transport''. About 50 participants from academic, governmental and industrial circles discussed actively on the theme. Three lectures on the topics of fusion reactor engineering and materials and seven lectures on the basic experiment of fusion reactor blanket design related to the next period project were given at the meeting. (K.I.)

  12. Status report on controlled thermonuclear fusion

    1990-06-01

    The International Fusion Research Council (IFRC), an advisory body to the International Atomic Energy Agency, reports on the current status of fusion; this report updates its 1978 status report. This report contains a General Overview and Executive Summary, and reports on all current approaches to fusion throughout the world; a series of technical reports is to be published elsewhere. This report is timely in that it not only shows progress which has occurred over the past, but interfaces with possible future devices, in particular the International Thermonuclear Experimental Reactor (ITER), whose conceptual design phase is nearing completion. 5 refs, 6 figs

  13. Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices: a prospective, randomized study to assess fusion and clinical outcome

    Jiya, T.U.; Smit, T.H.; Deddens, J.; Mullender, M.G.

    2009-01-01

    STUDY DESIGN: A prospective randomized clinical study. OBJECTIVE.: To assess fusion, clinical outcome, and complications. SUMMARY OF BACKGROUND DATA: Resorbable poly-L- lactide-co-D,L-lactide (PLDLLA) cages intended to aid spinal interbody fusion have been introduced into clinical practice within

  14. Nuclear fusion - Inexhaustible source of energy for tomorrow

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  15. Chamber and Wall Response to Target Implosion in Inertial and Z-Pinch Fusion and Lithography Devices

    Hassanein, A.; Konkashbaev, I.; Morozov, V.; Sizyuk, V.

    2006-01-01

    The chamber walls, both solid and liquid, in inertial fusion energy (IFE) and Z-pinch reactors and Lithography devices are exposed to harsh conditions following each target implosion or pinching of plasma. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure desirable conditions prior to target implosion. Detailed models have been developed for reflected laser light, emitted photons, neutrons, and target debris deposition and interaction with chamber components and have been implemented in the comprehensive HEIGHTS software package. The hydrodynamic response of chamber walls in bare or in gas-filled cavities and the photon transport of the deposited energy has been calculated by means of new and advanced numerical techniques for accurate shock treatment and propagation. These models include detail media hydrodynamics, non-LTE multi-group for both continuum and line radiation transport, and dynamics of eroded debris resulting from the intense energy deposition. The focus of this study is to critically assess the reliability and the dynamic response of chamber walls in various proposed protection methods for IFE systems. Key requirements are that: (i) the chamber wall accommodates the cyclic energy deposition while providing the required lifetime due to various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls, and (ii) after each shot the chamber is cleared and returned to a quiescent state in preparation for the target injection and the firing of the driver for the subsequent shot. This paper investigates in details these two important issues and found that the required operating frequency of the IFE reactors for power production may be severely limited due to these two requirements. (author)

  16. Performance test of dual modulator polarimeters in two different configurations for magneto-optic measurement of fusion devices

    Kenji Higuchi; Tsuyoshi Akiyama; Yoshifumi Azuma; Shunji Tsuji-Iio; Hiroaki Tsutsui; Ryuichi Shimada

    2006-01-01

    Accurate measurement of the magnetic field around plasma is indispensable for real-time control and data analysis on magnetic fusion devices such as tokamaks. Instead of commonly used pick-up loops, which have the problems of zero-point drifts, we proposed and tested a magneto-optic polarimeter based on the polarization modulation method using two photoelastic modulators (PEMs). Polarization detection using a pair of PEMs has been applied to the motional Stark effect (MSE) measurements in some tokamaks. The CO 2 laser polarimeter for electron density measurement on JT-60U adopted this method and demonstrated long time stability for several hours. However, this method requires the same number of pairs of PEMs, which are delicate and expensive, as that of channels so that this method is not easy to apply to multi-point measurements of magnetic fields around tokamaks. To cope with this problem, the two PEMs, which are conventionally placed behind each magnetic sensor, are used to modulate the incident beam before split for each magneto-optic sensor. This configuration can reduce the number of PEMs drastically and the optical system becomes simple. In this new optical configuration, the polarization angle resolution comparable to the conventional optical configuration of 0.002 o with response time of 10 ms was achieved at an incident polarization angle of about 0 o while that at 21 o was 0.07 o . The resolution of 0.07 o corresponds to 7 gauss when a 40-mm-long ZnSe sensing rod is used. Performance test between the two optical configurations were also made on the long-time stability and the accuracy with increasing numbers of beam splitters and/or mirrors for multi-point measurements. (author)

  17. Neutral beam systems for the magnetic fusion program

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  18. Image fusion analysis of 99mTc-HYNIC-Tyr3-octreotide SPECT and diagnostic CT using an immobilisation device with external markers in patients with endocrine tumours

    Gabriel, Michael; Hausler, Florian; Moncayo, Roy; Decristoforo, Clemens; Virgolini, Irene; Bale, Reto; Kovacs, Peter

    2005-01-01

    The aim of this study was to assess the value of multimodality imaging using a novel repositioning device with external markers for fusion of single-photon emission computed tomography (SPECT) and computed tomography (CT) images. The additional benefit derived from this methodological approach was analysed in comparison with SPECT and diagnostic CT alone in terms of detection rate, reliability and anatomical assignment of abnormal findings with SPECT. Fifty-three patients (30 males, 23 females) with known or suspected endocrine tumours were studied. Clinical indications for somatostatin receptor (SSTR) scintigraphy (SPECT/CT image fusion) included staging of newly diagnosed tumours (n=14) and detection of unknown primary tumour in the presence of clinical and/or biochemical suspicion of neuroendocrine malignancy (n=20). Follow-up studies after therapy were performed in 19 patients. A mean activity of 400 MBq of 99m Tc-EDDA/HYNIC-Tyr 3 -octreotide was given intravenously. SPECT using a dual-detector scintillation camera and diagnostic multi-detector CT were sequentially performed. To ensure reproducible positioning, patients were fixed in an individualised vacuum mattress with modality-specific external markers for co-registration. SPECT and CT data were initially interpreted separately and the fused images were interpreted jointly in consensus by nuclear medicine and diagnostic radiology physicians. SPECT was true-positive (TP) in 18 patients, true-negative (TN) in 16, false-negative (FN) in ten and false-positive (FP) in nine; CT was TP in 18 patients, TN in 21, FP in ten and FN in four. With image fusion (SPECT and CT), the scan result was TP in 27 patients (50.9%), TN in 25 patients (47.2%) and FN in one patient, this FN result being caused by multiple small liver metastases; sensitivity was 95% and specificity, 100%. The difference between SPECT and SPECT/CT was statistically as significant as the difference between CT and SPECT/CT image fusion (P<0

  19. Fusion reactors - types - problems

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  20. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  1. The Future E-Living for Elderly: The Use of Remote Controlled Devices

    Sanches Lam

    2010-02-01

    Full Text Available Elderly populations are growing globally, the need for assistive technologies to facilitate ageing-in-place becomes more prominent for researchers and legislators. Understanding the use of remote controlled devices is crucial to optimize design and application strategies that may reduce caregiver burden, extend healthy ageing in place, and minimize demands on the health care system. This paper will establish strategies for assistance to the elderly in ageing-in-place for the future e-living environment. This research study is to explore attitudes, opinions, and preferences of older adults concerning the use of online technology to support and extend their ability to “ageing in place.” Four major themes emerged as important for older adults to age in place: safety and independence, social interaction, use of technology in the past, and the desire for support.

  2. Rational decision making in a wide scenario of different minimally invasive lumbar interbody fusion approaches and devices.

    Pimenta, Luiz; Tohmeh, Antoine; Jones, David; Amaral, Rodrigo; Marchi, Luis; Oliveira, Leonardo; Pittman, Bruce C; Bae, Hyun

    2018-03-01

    With the proliferation of a variety of modern MIS spine surgery procedures, it is mandatory that the surgeon dominate all aspects involved in surgical indication. The information related to the decision making in patient selection for specific procedures is mandatory for surgical success. The objective of this study is to present decision-making criteria in minimally invasive surgery (MIS) selection for a variety of patients and pathologies. In this article, practicing surgeons who specialize in various MIS approaches for spinal fusion were engaged to provide expert opinion and literature review on decision making criteria for several MIS procedures. Pros, cons, relative limitations, and case examples are provided for patient selection in treatment with MIS posterolateral fusion (MIS-PLF), mini anterior lumbar interbody fusion (mini-ALIF), lateral interbody fusion (LLIF), MIS posterior lumbar interbody fusion (MIS-PLIF) and MIS transforaminal lumbar interbody fusion (MIS-TLIF). There is a variety of aspects to consider when deciding which modern MIS surgical approach is most appropriate to use based on patient and pathologic characteristics. The surgeon must adapt them to the characteristic of each type of patients, helping them to choose the most effective and efficient therapeutic option for each case.

  3. Peaceful fusion

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  4. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device

    Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.

    2018-06-01

    Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides

  5. Fusion facility siting considerations

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  6. Graphite for fusion energy applications

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  7. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    Paula Jimena Ramos Giraldo

    2017-04-01

    Full Text Available Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and (ii Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  8. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees.

    Giraldo, Paula Jimena Ramos; Aguirre, Álvaro Guerrero; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-04-06

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: ( i ) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and ( ii ) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  9. User's perspective on fusion

    Ashworth, C.P.

    1976-01-01

    The need in fusion, from the electric utilities viewpoint, is for fusion to be a real option, not huge, complicated nuclear plants costing $10 billion each and requiring restructuring the energy industry to provide and use them. A course for future fusion reactor work in order to be a real option is discussed. The advantages of alternate concepts to the tokamak are presented

  10. Collaborations in fusion research

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow's standards. An overview of the tools and technologies in today's collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper

  11. Engineering design of a toroidal divertor for the EBT-S fusion device. Final report, Phase II. EBT-S divertor project

    Mai, L.P.; Malick, F.S.

    1981-01-01

    The mechanical, structural, thermal, electrical, and vacuum design of a magnetic toroidal divertor system for the Elmo Bumpy Torus (EBT-S) is presented. The EBT-S is a toroidal magnetic fusion device located at the ORNL that operates under steady state conditions. The engineering of the divertor was performed during the second of three phases of a program aimed at the selection, design, fabrication, and installation of a magnetic divertor for EBT-S. The magnetic analysis of the toroidal divertor was performed during Phase I of the program and has been reported in a separate document. In addition to the details of the divertor design, the modest modifications that are required to the EBT-S device and facility to accommodate the divertor system are presented

  12. Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research

    Bentz, A

    2008-07-31

    While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

  13. Latest experiences and future plans on NSLS-II insertion devices

    Tanabe, T.; Hidaka, Y.; Kitegi, C.; Hidas, D.; Musardo, M.; Harder, D. A.; Rank, J.; Cappadoro, P.; Fernandes, H.; Corwin, T. [Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, U.S.A (United States)

    2016-07-27

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH funded beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.

  14. [Future Regulatory Science through a Global Product Development Strategy to Overcome the Device Lag].

    Tsuchii, Isao

    2016-01-01

    Environment that created "medical device lag (MDL)" has changed dramatically, and currently that term is not heard often. This was mainly achieved through the leadership of three groups: government, which determined to overcome MDL and took steps to do so; medical societies, which exhibited accountability in trial participation; and MD companies, which underwent a change in mindset that allowed comprehensive tripartite cooperation to reach the current stage. In particular, the global product development strategy (GPDS) of companies in a changing social environment has taken a new-turn with international harmonization trends, like Global Harmonization Task Force and International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. As a result, this evolution has created opportunities for treatment with cutting-edge MDs in Japanese society. Simultaneously, it has had a major impact on the planning process of GPDS of companies. At the same time, the interest of global companies has shifted to emerging economies for future potential profit since Japan no longer faces MDL issue. This economic trend makes MDLs a greater problem for manufacturers. From the regulatory science viewpoint, this new environment has not made it easy to plan a global strategy that will be adaptable to local societies. Without taking hasty action, flexible thinking from the global point of view is necessary to enable the adjustment of local strategies to fit the situation on the ground so that the innovative Japanese medical technology can be exported to a broad range of societies.

  15. Remote monitoring of implantable cardiac devices: current state and future directions.

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V

    2018-01-01

    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  16. Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research

    Bentz, A.

    2008-01-01

    While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation

  17. Global numerical modeling of magnetized plasma in a linear device

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  18. Canada's Fusion Program

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  19. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  20. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  1. Research on the wetted first wall concept for future laser fusion reactors. Final report No. 1, October 1, 1974--January 31, 1976

    Hoffman, M.A.; Munir, Z.A.

    1976-01-01

    Research is in progress to determine the feasibility of the wetted first wall concept for a future laser fusion reactor. The basic idea involves the use of a thin coating of lithium on the inner wall of the laser fusion containment vessel to protect it from the micro-explosion blast debris. This report contains a review of the available information on contact angles and wettability of alkali metals on various metal substrates as well as a review of literature on thin falling liquid films. A proposed experiment to measure the contact angles of lithium on stainless steel and niobium is described. The requirements for a second experiment to measure certain key characteristics of thin falling films are also included

  2. Inertial thermonuclear fusion by laser

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  3. Inertial fusion commercial power plants

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  4. Post market surveillance in the german medical device sector - current state and future perspectives.

    Zippel, Claus; Bohnet-Joschko, Sabine

    2017-08-01

    Medical devices play a central role in the diagnosis and treatment of diseases but also bring the potential for adverse events, hazards or malfunction with serious consequences for patients and users. Medical device manufacturers are therefore required by law to monitor the performance of medical devices that have been approved by the competent authorities (post market surveillance). Conducting a nationwide online-survey in the German medical device sector in Q2/2014 in order to explore the current status of the use of post market instruments we obtained a total of 118 complete data sets, for a return rate of 36%. The survey included manufacturers of different sizes, producing medical devices of all risk classes. The post market instruments most frequently reported covered the fields of production monitoring and quality management as well as literature observation, regulatory vigilance systems, customer knowledge management and market observation while Post Market Clinical Follow-up and health services research were being used less for product monitoring. We found significant differences between the different risk classes of medical devices produced and the intensity of use of post market instruments. Differences between company size and the intensity of instruments used were hardly detected. Results may well contribute to the development of device monitoring which is a crucial element of the policy and regulatory system to identify device-related safety issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Three-terminal devices of high-Tc superconductors: A status report and future challenges

    Kung, Pang-Jen; Carnegie-Mellon Univ., Pittsburgh, PA

    1992-01-01

    A study has been conducted on the recent progress of the three-terminal devices with transistor-like characteristics fabricated from the high-T c superconducting materials. This study explored the operating principles and characteristics of these devices in relation to the relevant materials and techniques. A comparison of a variety of techniques for superconducting thin film deposition will be given. This study indirates that the feasibility of fabricating hybrid devices composed of semiconductors and superconductors appear to be the key issue to push forward the applications of high-T c superconductors in microelectronics. The junction field-effect transistors with a semiconductor base controlled by the proximity effect are likely to be more manufacturable. The factors that influence the operating reliability of devices and the problems arising from integrating and packaging the devices will also be discussed

  6. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z., E-mail: O.Z.Sotnikov@inp.nsk.su; Shikhovtsev, I. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-01-15

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  7. Application of structural mechanics methods to the design of large tandem mirror fusion devices (MFTF-B)

    Karpenko, V.N.; Ng, D.S.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a resonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnetic and vessel finite-element models. The anlytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. (orig.)

  8. Charged particle accelerators for inertial fusion energy

    Humphries, S. Jr.

    1991-01-01

    The long history of successful commercial applications of charged-particle accelerators is largely a result of initiative by private industry. The Department of Energy views accelerators mainly as support equipment for particle physicists rather than components of an energy generation program. In FY 91, the DOE spent over 850 M$ on building and supporting accelerators for physics research versus 5 M$ on induction accelerators for fusion energy. The author believes this emphasis is skewed. One must address problems of long-term energy sources to preserve the possibility of basic research by future generations. In this paper, the author reviews the rationale for accelerators as inertial fusion drivers, emphasizing that these devices provide a viable path of fusion energy from viewpoints of both physics and engineering. In this paper, he covered the full range of accelerator fusion applications. Because of space limitations, this paper concentrates on induction linacs for ICF, an approach singled out in recent reports by the National Academy of Sciences and the Fusion Policy Advisory Committee as a promising path to long-term fusion power production. Review papers by Cook, Leung, Franzke, Hofmann and Reiser in these proceedings give details on light ion fusion and RF accelerator studies

  9. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  10. Energy and the future: Sustainable methods of energy use from passive architecture to fusion. Lectures; Energie und Zukunft: Zukunftsweisende Methoden der Energienutzung vom Passivhaus bis zur Fusion. Vortraege

    Nahm, W.; Schultze, K. [eds.

    1998-12-31

    In the run-up to the Kyoto conference, there is far-reaching agreement that the world energy industry needs to be reconstructed by the middle of the next century if a climate catastrophe is to be avoided. But how this goal can be reached is controversial. The risks involved are described in contributions concerned with German energy policy, the insurance sector, and scenarios for mitigating carbon dioxides on the basis of the Ikarus model. But the focus of this annual report of DPG`s task force Energy is on reports on longer-term technologies and methods. Two papers describe the state of the art of fusion research. In the conventional energy sector, high-efficiency absorption-type refrigerators and thermal engines, and fuel conservation through low-cost passive architecture are dealt with inter alia. Other lectures report on the state of solar energy utilization and process chains in the hydrogen-based economy. Five papers are individually listed in the Energy database. (orig.) [Deutsch] Im Vorfeld der Konferenz von Kyoto besteht weitgehende Einigkeit, dass die Weltenergiewirtschaft bis zur Mitte des naechsten Jahrhunderts umgestaltet werden muss, um eine Klimakatastrophe zu verhindern. Der Weg dahin ist umstritten. Seine Risiken kommen in Beitraegen zur deutschen Energiepolitik, zur Versicherungswirtschaft und zu Szenarien der Minderung der CO{sub 2}-Emissionen auf der Basis des Ikarus-Modells zum Ausdruck. Im Mittelpunkt des Jahresbandes des Arbeitskreises Energie der DPG stehen diesmal jedoch Berichte ueber laengerfristig angelegte Technologien und Methoden. Zwei Beitraege berichten ueber den Stand der Fusionsforschung. Im konventionellen Bereich geht es u.a. um hocheffiziente Absorptionsmaschinen zur Versorgung mit Kaelte und Waerme und um die Brennstoffeinsparung durch kostenguenstige Passivhaeuser. Andere Vortraege berichten ueber den Stand der Nutzung der Sonnenenergie und Prozessketten in der Wasserstoffwirtschaft. Fuer die Datenbank Energy wurden fuenf

  11. A Novel Remote Rehabilitation System with the Fusion of Noninvasive Wearable Device and Motion Sensing for Pulmonary Patients.

    Tey, Chuang-Kit; An, Jinyoung; Chung, Wan-Young

    2017-01-01

    Chronic obstructive pulmonary disease is a type of lung disease caused by chronically poor airflow that makes breathing difficult. As a chronic illness, it typically worsens over time. Therefore, pulmonary rehabilitation exercises and patient management for extensive periods of time are required. This paper presents a remote rehabilitation system for a multimodal sensors-based application for patients who have chronic breathing difficulties. The process involves the fusion of sensory data-captured motion data by stereo-camera and photoplethysmogram signal by a wearable PPG sensor-that are the input variables of a detection and evaluation framework. In addition, we incorporated a set of rehabilitation exercises specific for pulmonary patients into the system by fusing sensory data. Simultaneously, the system also features medical functions that accommodate the needs of medical professionals and those which ease the use of the application for patients, including exercises for tracking progress, patient performance, exercise assignments, and exercise guidance. Finally, the results indicate the accurate determination of pulmonary exercises from the fusion of sensory data. This remote rehabilitation system provides a comfortable and cost-effective option in the healthcare rehabilitation system.

  12. PFMC-16. 16th international conference on plasma-facing materials and components for fusion applications. Abstracts

    NONE

    2017-07-01

    The performances of fusion devices and of future fusion power plants strongly depend on the plasma-facing materials and components. Resistance to heat and particle loads, compatibility in plasma operations, thermo-mechanical properties, as well as the response to neutron irradiation are critical parameters which need to be understood and tailored from atomistic to component levels. The 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications addresses these issues.

  13. Recent progress in organic electronics and photonics: A perspective on the future of organic devices

    Bredas, Jean-Luc

    2016-01-01

    The fields of organic electronics and photonics have witnessed remarkable advances over the past few years. This progress bodes well for the increased utilization of organic materials as the active layers in devices for applications as diverse

  14. Superconductivity and fusion energy—the inseparable companions

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  15. Finite element and node point generation computer programs used for the design of toroidal field coils in tokamak fusion devices

    Smith, R.A.

    1975-06-01

    The structural analysis of toroidal field coils in Tokamak fusion machines can be performed with the finite element method. This technique has been employed for design evaluations of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The application of the finite element method can be simplified with computer programs that are used to generate the input data for the finite element code. There are three areas of data input where significant automation can be provided by supplementary computer codes. These concern the definition of geometry by a node point mesh, the definition of the finite elements from the geometric node points, and the definition of the node point force/displacement boundary conditions. The node point forces in a model of a toroidal field coil are computed from the vector cross product of the coil current and the magnetic field. The computer programs named PDXNODE and ELEMENT are described. The program PDXNODE generates the geometric node points of a finite element model for a toroidal field coil. The program ELEMENT defines the finite elements of the model from the node points and from material property considerations. The program descriptions include input requirements, the output, the program logic, the methods of generating complex geometries with multiple runs, computational time and computer compatibility. The output format of PDXNODE and ELEMENT make them compatible with PDXFORC and two general purpose finite element computer codes: (ANSYS) the Engineering Analysis System written by the Swanson Analysis Systems, Inc., and (WECAN) the Westinghouse Electric Computer Analysis general purpose finite element program. The Fortran listings of PDXNODE and ELEMENT are provided

  16. Mobile Device Trends in Orthopedic Surgery: Rapid Change and Future Implications.

    Andrawis, John P; Muzykewicz, David A; Franko, Orrin I

    2016-01-01

    Mobile devices are increasingly becoming integral communication and clinical tools. Monitoring the prevalence and utilization characteristics of surgeons and trainees is critical to understanding how these new technologies can be best used in practice. The authors conducted a prospective Internet-based survey over 7 time points from August 2010 to August 2014 at all nationwide American Council for Graduate Medical Education-accredited orthopedic programs. The survey questionnaire was designed to evaluate the use of devices and mobile applications (apps) among trainees and physicians in the clinical setting. Results were analyzed and summarized for orthopedic surgeons and trainees. During the 48-month period, there were 7 time points with 467, 622, 329, 223, 237, 111, and 134 responses. Mobile device use in the clinical setting increased across all fields and levels of training during the study period. Orthopedic trainees increased their use of Smartphone apps in the clinical setting from 60% to 84%, whereas attending use increased from 41% to 61%. During this time frame, use of Apple/Android platforms increased from 45%/13% to 85%/15%, respectively. At all time points, 70% of orthopedic surgeons believed their institution/hospital should support mobile device use. As measured over a 48-month period, mobile devices have become an ubiquitous tool in the clinical setting among orthopedic surgeons and trainees. The authors expect these trends to continue and encourage providers and trainees to be aware of the limitations and risks inherent with new technology. Copyright 2016, SLACK Incorporated.

  17. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may be u...

  18. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    Written contributions from participants of the Joint 15th Latin American Workshop on Plasma Physics (LAWPP 2014) - 21st IAEA Technical Meeting on Research Using Small Fusion Devices (21st IAEA TM RUSFD). The International Advisory Committees of the 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and the 21st IAEA TM on Research Using Small Fusion Devices (RUSFD), agreed to carry out together this Joint LAWPP 2014 - 21st RUSFD in San José, Costa Rica, on 27-31 January 2014. The Joint LAWPP 2014 - 21st RUSFD meeting, organized by the Instituto Tecnológico de Costa Rica, Universidad Nacional de Costa Rica, and Ad Astra Rocket Company in collaboration with the International Atomic Energy Agency (IAEA). The Latin American Workshop on Plasma Physics (LAWPP) is a series of events which has been held periodically since 1982, with the purpose of providing a forum in which the research of the Latin American plasma physics community can be displayed, as well as fostering collaborations among plasma scientists within the region and with researchers from the rest of the world. Recognized plasma scientists from developed countries are specially invited to the meeting to present the state of the art on several "hot" topics related to plasma physics. It is an open meeting, with an International Advisory Committee, in which the working language is English. It was firstly held in 1982 in Cambuquira, Brazil, followed by workshops in Medellín, Colombia (1985), Santiago de Chile, Chile (1988), Buenos Aires, Argentina (1990), Mexico City, Mexico (1992), Foz do Iguaçu, Brazil (1994, combined with the International Congress on Plasma Physics (ICPP)), Caracas, Venezuela (1997), Tandil, Argentina (1998), La Serena, Chile (2000), Sao Pedro, Brazil (2003), Mexico City, Mexico (2005), Caracas, Venezuela (2007), Santiago de Chile, Chile (2010, combined with the ICPP) and Mar de Plata, Argentina (2011). The 21st IAEA TM on Research Using Small Fusion Devices is an ideal forum for

  19. Fusion in the energy system

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  20. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    Engelmann, F.

    2000-01-01

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  1. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  2. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions

    Wafa Elmannai

    2017-03-01

    Full Text Available The World Health Organization (WHO reported that there are 285 million visuallyimpaired people worldwide. Among these individuals, there are 39 million who are totally blind. There have been several systems designed to support visually-impaired people and to improve the quality of their lives. Unfortunately, most of these systems are limited in their capabilities. In this paper, we present a comparative survey of the wearable and portable assistive devices for visuallyimpaired people in order to show the progress in assistive technology for this group of people. Thus, the contribution of this literature survey is to discuss in detail the most significant devices that are presented in the literature to assist this population and highlight the improvements, advantages, disadvantages, and accuracy. Our aim is to address and present most of the issues of these systems to pave the way for other researchers to design devices that ensure safety and independent mobility to visually-impaired people.

  3. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions

    Elmannai, Wafa; Elleithy, Khaled

    2017-01-01

    The World Health Organization (WHO) reported that there are 285 million visually-impaired people worldwide. Among these individuals, there are 39 million who are totally blind. There have been several systems designed to support visually-impaired people and to improve the quality of their lives. Unfortunately, most of these systems are limited in their capabilities. In this paper, we present a comparative survey of the wearable and portable assistive devices for visually-impaired people in order to show the progress in assistive technology for this group of people. Thus, the contribution of this literature survey is to discuss in detail the most significant devices that are presented in the literature to assist this population and highlight the improvements, advantages, disadvantages, and accuracy. Our aim is to address and present most of the issues of these systems to pave the way for other researchers to design devices that ensure safety and independent mobility to visually-impaired people. PMID:28287451

  4. David Adler Lectureship Award Talk: III-V Semiconductor Nanowires on Silicon for Future Devices

    Riel, Heike

    Bottom-up grown nanowires are very attractive materials for direct integration of III-V semiconductors on silicon thus opening up new possibilities for the design and fabrication of nanoscale devices for electronic, optoelectronic as well as quantum information applications. Template-Assisted Selective Epitaxy (TASE) allows the well-defined and monolithic integration of complex III-V nanostructures and devices on silicon. Achieving atomically abrupt heterointerfaces, high crystal quality and control of dimension down to 1D nanowires enabled the demonstration of FETs and tunnel devices based on In(Ga)As and GaSb. Furthermore, the strong influence of strain on nanowires as well as results on quantum transport studies of InAs nanowires with well-defined geometry will be presented.

  5. Manufacturing W fibre-reinforced Cu composite pipes for application as heat sink in divertor targets of future nuclear fusion reactors

    Mueller, Alexander v.; You, Jeong-Ha [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Ewert, Dagmar [Institut fuer Textil- und Verfahrenstechnik Denkendorf, 73770 Denkendorf (Germany); Siefken, Udo [Louis Renner GmbH, 85221 Dachau (Germany)

    2016-07-01

    An important plasma-facing component (PFC) in future nuclear fusion reactors is the so-called divertor which allows power exhaust and removal of impurities from the main plasma. The most highly loaded parts of a divertor are the target plates which have to withstand intense particle bombardment. This intense particle bombardment leads to high heat fluxes onto the target plates which in turn lead to severe thermomechanical loads. With regard to future nuclear fusion reactors, an improvement of the performance of divertor targets is desirable in order to ensure reliable long term operation of such PFCs. The performance of a divertor target is most closely linked to the properties of the materials that are used for its design. W fibre-reinforced Cu (Wf/Cu) composites are regarded as promising heat sink materials in this respect. These materials do not only feature adequate thermophysical and mechanical properties, they do also offer metallurgical flexibility as their microstructure and hence their macroscopic properties can be tailored. The contribution will point out how Wf/Cu composites can be used to realise an advanced design of a divertor target and how these materials can be fabricated by means of liquid Cu infiltration.

  6. End-User Attitudes towards Location-Based Services and Future Mobile Wireless Devices: The Students’ Perspective

    Bogdan Cramariuc

    2011-07-01

    Full Text Available Nowadays, location-enabled mobile phones are becoming more and more widespread. Various players in the mobile business forecast that, in the future, a significant part of total wireless revenue will come from Location-Based Services (LBS. An LBS system extracts information about the user’s geographical location and provides services based on the positioning information. A successful LBS service should create value for the end-user, by satisfying some of the users’ needs or wants, and at the same time preserving the key factors of the mobile wireless device, such as low costs, low battery consumption, and small size. From many users’ perspectives, location services and mobile location capabilities are still rather poorly known and poorly understood. The aim of this research is to investigate users’ views on the LBS, their requirements in terms of mobile device characteristics, their concerns in terms of privacy and usability, and their opinion on LBS applications that might increase the social wellbeing in the future wireless world. Our research is based on two surveys performed among 105 students (average student age: 24 years from two European technical universities. The survey questions were intended to solicit the youngsters’ views on present and future technological trends and on their perceived needs and wishes regarding Location-Based Services, with the aim of obtaining a better understanding of designer constraints when building a location receiver and generating new ideas related to potential future killer LBS applications.

  7. Nuclear fusion

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  8. Quantum dots for future nanophotonic devices : lateral ordering, position, and number control

    Nötzel, R.

    2010-01-01

    After the general aspects of InAs/InP (100) quantum dots (QDs) regarding the formation of QDs versus quantum dashes, wavelength tuning from telecom to mid-infrared region, and device applications, we discuss our recent progress on the lateral ordering, position, and number control of QDs.

  9. Electrochemistry, polymers and opto-electronic devices: a combination with a future

    De Paoli Marco-A.

    2002-01-01

    Full Text Available Electrochemistry came into life with the invention of the pile, by Volta in 1800. He combined different metal discs with a piece of tissue, swollen with an aqueous salt solution. The so-called Pila di Volta used a polymer for the first time in an electrochemical device and can be seen as a powerful idea to create new devices. Recently, polymers became an alternative to make thin and flexible devices. Thus, we find transparent plastic electrodes based on poly(ethylene terephtalate coated with a transition metal oxide. There are also polymer electrolytes based on complexes of inorganic salts and poly(ethylene oxide derivatives, with reasonable ionic conductivity in the absence of solvents. Finally, the electroactive polymers are efficient substitutes for the inorganic semiconductors because they can be synthetically tailored to produce the desired electronic answer. Combining these materials it is possible to assemble different types of electro-optical devices, like electrochromic, photoelectrochemical and light-emitting electrochemical cells.

  10. Fusion energy division computer systems network

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  11. Demonstration tests of tritium removal device under the conditions of nuclear fusion reactor. Cooperation test between Japan and USA

    Hayashi, Takumi; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    Performance of oxidation catalysis in emergency tritium removal device was tested in Los Alamos National Laboratory by cooperation between Japan and USA on November 8, 2000. To reduce the effects of tritium on the environment, a plan of the closed space for trapping tritium was made. A tritium removal device using oxidation catalysis and water vapor adsorption removes the tritium in the closed space. The treatment flow rate of the device is about 2,500 m 3 /h, the same as ITER(3,000 to 4,500 m 3 /h). Catalysis is Pt/ alumina. The closed space is 3,000m 2 . The initial concentration of tritium was about 7 Bq/cm 2 , ten times as large as the concentration limit in atmosphere. The concentration of tritium in the test laboratory decreased linearly with time and attained to the limit value after about 200 min. Residue of tritium on the wall had been removed and the significant quantity was not detected after three days. The results proved to satisfy safety of ITER. (S.Y.)

  12. Busbar arcs at large fusion magnets: Conductor to feeder tube arcing model experiments with the LONGARC device

    Klimenko, Dmitry, E-mail: dmitry.klimenko@kit.edu; Pasler, Volker

    2014-10-15

    Highlights: •The LONGARC device was successfully implemented for busbar to feeder tubes arcing model experiments. •Arcing at an ITER busbar inside its feeder tube was simulated in scaled model experiments. •The narrower half tubes imply a slight increase of the arc propagation speed in compare to full tube experiments. •All simulated half tubes experiments show severe damage indicating that the ITER inner feeder tube will not withstand a busbar arc. -- Abstract: Electric arcs moving along the power cables (the so-called busbars) of the toroidal field (TF) coils of ITER may reach and penetrate the cryostat wall. Model experiments with the new LONGARC device continue the VACARC (VACuum ARC) experiments that were initiated to investigate the propagation and destruction mechanisms of busbar arcs in small scale [1]. The experiments are intended to support the development and validation of a numerical model. LONGARC overcomes the space limitations inside VACARC and allows also for advanced 1:3 (vs. ITER full scale) model setups. The LONGARC device and first results are presented below.

  13. Magnetic fusion and project ITER

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ''International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind

  14. Compact fusion reactors

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  15. An approach to 3D model fusion in GIS systems and its application in a future ECDIS

    Liu, Tao; Zhao, Depeng; Pan, Mingyang

    2016-04-01

    Three-dimensional (3D) computer graphics technology is widely used in various areas and causes profound changes. As an information carrier, 3D models are becoming increasingly important. The use of 3D models greatly helps to improve the cartographic expression and design. 3D models are more visually efficient, quicker and easier to understand and they can express more detailed geographical information. However, it is hard to efficiently and precisely fuse 3D models in local systems. The purpose of this study is to propose an automatic and precise approach to fuse 3D models in geographic information systems (GIS). It is the basic premise for subsequent uses of 3D models in local systems, such as attribute searching, spatial analysis, and so on. The basic steps of our research are: (1) pose adjustment by principal component analysis (PCA); (2) silhouette extraction by simple mesh silhouette extraction and silhouette merger; (3) size adjustment; (4) position matching. Finally, we implement the above methods in our system Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information Systems (ECDIS). The fusion approach we propose is a common method and each calculation step is carefully designed. This approach solves the problem of cross-platform model fusion. 3D models can be from any source. They may be stored in the local cache or retrieved from Internet, or may be manually created by different tools or automatically generated by different programs. The system can be any kind of 3D GIS system.

  16. Radiation effects on superconducting fusion magnet components

    Weber, H.W.

    2011-01-01

    Nuclear fusion devices based on the magnetic confinement principle heavily rely on the existence and performance of superconducting magnets and have always significantly contributed to advancing superconductor and magnet technology to their limits. In view of the presently ongoing construction of the tokamak device ITER and the stellerator device Wendelstein 7X and their record breaking parameters concerning size, complexity of design, stored energy, amperage, mechanical and magnetic forces, critical current densities and stability requirements, it is deemed timely to review another critical parameter that is practically unique to these devices, namely the radiation response of all magnet components to the lifetime fluence of fast neutrons and gamma rays produced by the fusion reactions of deuterium and tritium. I will review these radiation effects in turn for the currently employed standard "technical" low temperature superconductors NbTi and Nb 3 Sn, the stabilizing material (Cu) as well as the magnet insulation materials and conclude by discussing the potential of high temperature superconducting materials for future generations of fusion devices, such as DEMO. (author)

  17. A New Pricing Scheme for Controlling Energy Storage Devices in Future Smart Grid

    Jingwei Zhu

    2014-01-01

    Full Text Available Improvement of the overall efficiency of energy infrastructure is one of the main anticipated benefits of the deployment of smart grid technology. Advancement in energy storage technology and two-way communication in the electric network are indispensable components to achieve such a vision, while efficient pricing schemes and appropriate storage management are also essential. In this paper, we propose a universal pricing scheme which permits one to indirectly control the energy storage devices in the grid to achieve a more desirable aggregate demand profile that meets a particular target of the grid operator such as energy generation cost minimization and carbon emission reduction. Such a pricing scheme can potentially be applied to control the behavior of energy storage devices installed for integration of intermittent renewable energy sources that have permission to grid connection and will have broader applications as an increasing number of novel and low-cost energy storage technologies emerge.

  18. Recent progress in organic electronics and photonics: A perspective on the future of organic devices

    Bredas, Jean-Luc

    2016-02-25

    The fields of organic electronics and photonics have witnessed remarkable advances over the past few years. This progress bodes well for the increased utilization of organic materials as the active layers in devices for applications as diverse as light-emitting diodes, field-effect transistors, solar cells, or all-optical switches. In the present document, we choose to focus the discussion on organic all-optical switching applications. © 2015 The Japan Society of Applied Physics.

  19. A New Pricing Scheme for Controlling Energy Storage Devices in Future Smart Grid

    Zhu, Jingwei; Chen, Michael Z. Q.; Du, Baozhu

    2014-01-01

    Improvement of the overall efficiency of energy infrastructure is one of the main anticipated benefits of the deployment of smart grid technology. Advancement in energy storage technology and two-way communication in the electric network are indispensable components to achieve such a vision, while efficient pricing schemes and appropriate storage management are also essential. In this paper, we propose a universal pricing scheme which permits one to indirectly control the energy storage devic...

  20. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may......, whereas in 1 case loose pedicle screws were detected at a wrong vertebral level. CONCLUSION: SPECT/CT may be useful to detect a lack of fixation of the metallic implants, and hence instability of the spondylodesis by evaluating the focal bone mineralization activity in relation to the pedicle screws....

  1. Conceptual design studies of special-purpose equipment for Fusion Engineering Device torus-sector remote maintenance

    Masson, L.S.; Watts, K.D.; Aldrich, W.E.; McPherson, R.S.

    1982-01-01

    One of the major maintenance operations anticipated for fusion reactors of the Tokamak configuration is remote removal and replacement of torus sectors. This operation will be difficult due to the massive nature of the sector (375 tonnes), and also due to the precision with which it must be positioned within the fixed structure. The same problem, only to a lesser degree, applies to sub-components of the sector such as the limiter blades, shielding, test assemblies, etc. General and specific design requirements have been generated and trade studies conducted on reactor interfacing details as well as handling machine concepts. On the basis of the design requirements and trade studies, a perferred concept for the sector handling machine was developed. In addition, a similar machine was developed for handling the intermediate sized sector sub-components. While most operations will be performed by special purpose machines such as described above, there is a need for a versatile, relatively high capacity mobile system. A concept suitable for this mobile application was also developed as part of these studies. The general conclusion, to the extent these studies have been completed, was that special single-purpose machines will be required to perform the operations requiring high load capacity and handling precision. The machine concepts developed were felt to be within the state-of-the-art, and will make extensive use of commercially available components. The most serious problem was felt to be development of simple methods to obtain the required precision in positioning massive objects such as the torus sector

  2. GEM gas detectors for soft X-ray imaging in fusion devices with neutron–gamma background

    Pacella, Danilo, E-mail: danilo.pacella@enea.it [Associazione EURATOM-ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Romano, Afra; Gabellieri, Lori [Associazione EURATOM-ENEA, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Murtas, Fabrizio [Istituto Nazionale di Fisica Nucleare, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Mazon, Didier [Association EURATOM-CEA, CEA Cadarache, DSM/IRFM, 13108 St. Paul Lez Durance Cedex (France)

    2013-08-21

    A triple gas electron multiplier (GEM) detector has been built and characterized in a collaboration between ENEA, INFN and CEA to develop a soft X-ray imaging diagnostic for magnetic fusion plasmas. It has an active area of 5×5 cm{sup 2}, 128 pixels and electronics in counting mode. Since burning plasma experiments will have a very large background of radiation, this prototype has been tested with contemporary X-ray, neutron and gamma irradiation, to study the detection efficiencies, and the discrimination capabilities. The detector has been preliminarily characterized under DD neutron irradiation (2.45 MeV) up to 2.2×10{sup 6} n/s on the detector active area, showing a detection efficiency of about 10{sup −4}, while the detection efficiency of X-rays is more than three orders of magnitude higher. The detector has been also tested under DT neutron flux (14 MeV) up to 2.8×10{sup 8} n/s on the whole detector, with a detection efficiency of about 10{sup −5}. The calibration of the γ-rays detection has been done by means of a source of {sup 60}Co (gamma rays of energy 1.17 MeV and 1.33 MeV) and the detection efficiency was found of the order of 10{sup −4}. Thanks to the adjustable gain of the detector and the discrimination threshold of the electronics, it is possible to minimize the sensitivity to neutrons and gamma, and discriminate the X-ray signals even with very high radiative background.

  3. Reliability of IGBT-based power devices in the viewpoint of applications in future power supply systems

    Lutz, J.

    2011-01-01

    IGBT-based high-voltage power devices will be key components for future renewable energy base of the society. Windmills in the range up to 10 MW use converters with IGBTs. HVDC systems with IGBT-based voltage source converters have the advantage of a lower level of harmonics, less efforts for filters and more possibilities for control. The power devices need a lifetime expectation of several ten years. The lifetime is determined by the reliability of the packaging technology. IGBTs are offered packaged in presspacks and modules. The presentation will have the focus on IGBT high power modules. Accelerated power cycling tests for to determine the end-of-life at given conditions and their results are shown. models to calculate the lifetime, and actual work in research for systems with increased reliability.

  4. The ORNL fusion power demonstration study

    Shannon, T.E.; Steiner, D.

    1978-01-01

    In this paper, we review the design approach developed in the ORNL Fusion Power Demonstration Study [1]. The major emphasis of this study is in the application of current and near-term technology as the most logical path to near-term demonstration of tokamak fusion power. In addition we are pursuing a number of concepts to simplify the tokamak reactor to be more acceptable to the utility industry as a future source of energy. The discussion will focus on the areas having the greatest overall impact on reactor feasibility: 1) overall size and power output, 2) remote maintenance considerations, 3) electrical power supplies, 4) blanket design; and 5) economics. The tokamak device, by nature of its configuration and pulsed operation, is an exceptionally complex engineering design problem. We have concluded that innovative design concepts are essential to cope with this basic complexity. We feel that the feasibility of tokamak fusion power has been significantly improved by these design approaches. (author)

  5. The 22nd symposium on fusion technology

    Taehtinen, S.; Rintamaa, R.; Asikainen, M.; Tuomisto, H.

    2002-01-01

    The Symposium on Fusion Technology (SOFT) was held at the Marina Congress Center, Helsinki, Finland, from 9th to 13th September 2002. It was organized by the Association Euratom-Tekes and hosted by the VTT Technical Research Centre of Finland, Fortum Nuclear Services Ltd. and PrizzTech Oy. The sympoisum included invited and contributed papers as well as poster presentations and an industrial and R and D exhibition. The main topics included all aspects of fusion technology: current and future devices, plasma facing components, plasma heating and current drive, plasma engineering and control, diagnostics, data acquisition and remote participation, magnets and power supplies, fuel cycle, remote handling, vessel, blanket and shield, safety and environment, power plant and socio-economic studies, inertial fusion energy, and transfer of technology. The number of invited speakers was 15, selected presentations 22 and poster presentations 404. The abstracts of the presentations and posters are included in this book. (orig.)

  6. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  7. Response of beryllium to severe thermal shocks -simulation of disruption and vertical displacement events in future thermonuclear devices

    Linke, J.; Duwe, R.; Roedig, M.; Schuster, A. [Association Euratom-Forschungszentrum Juelich GmbH (Germany); Merola, M.; Qian, R.H.

    1998-01-01

    Beryllium will play an important role for plasma facing components in next step thermonuclear fusion devices such as ITER. In particular for the first wall beryllium will be used with an armor thickness of several millimeters. However, during plasma instabilities they will experience severe thermal shocks. Here plasma disruptions with deposited energy densities of several ten MJm{sup -2} are the most essential damaging mechanism. However, a signifant fraction of the incident energy will be absorbed by a dense cloud of ablation vapor, hence reducing the effective energy density at the beryllium surface to values in the order of 10 MJm{sup -2}. To investigate the material response to all these plasma instabilities thermal shock tests on small scale test coupons (disruption effects) and on actively cooled divertor modules (VDEs) have been performed in the electron beam test facility JUDITH at ITER relevant surface heat loads. These tests have been performed on different bulk beryllium grades and on plasma sprayed coatings; the influence of pulse duration, power density, and temperature effects has been investigated experimentally. Detailed in-situ diagnostics (for beam characterization, optical pyrometry etc.) and post mortem analyses (profilometry, metallography, optical and electron microscopy) have been applied to quantify the resulting material damage. 1D- and 2D models have developed to verify the experimental results obtained in the electron beam simulation experiments. (J.P.N.)

  8. International fusion research council

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  9. Magnetic Fusion Program Plan

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  10. Coatings for laser fusion

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  11. Controlled thermonuclear fusion

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  12. Household energy consumption: the future is in our hands. ITER, an experimental fusion reactor. Do CO2-free energies exist? Liquefied natural gas, king of the gas market

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Household energy consumption - the future is in our hands: With energy resources growing scarcer and more expensive, everyone has a duty to conserve energy. Because combating global warming also means adopting simple habits and using the right equipment - with help from our governments to lead us to change. A practical look at what we can do. 2 - ITER, an experimental fusion reactor: The entire international community is trying to reproduce here on Earth the fusion of hydrogen atoms occurring naturally in the Sun, lured by the promise of a virtually inexhaustible source of energy. More on ITER from the project's Director General. 3 - Do CO 2 -free energies exist?: As nations struggle to reduce greenhouse gas emissions, the question is moot. Environmental engineer Jean-Marc Jancovici gives us his point of view. 4 - Liquefied natural gas, king of the gas market: LNG's many advantages are enticing industry to develop supply routes and infrastructure to meet strong demand. But the race for LNG is not without its limits

  13. ITER: the first experimental fusion reactor

    Rebut, P.H.

    1995-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a multiphased project, at present proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement between the European Atomic Energy Community, the Government of Japan, the Government of the USA and the Government of Russia (''the parties''). The project is based on the tokamak, a Russian invention which has been brought to a high level of development and progress in all major fusion programs throughout the world.The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for commercial energy production and to test technologies for a demonstration fusion power plant. During the extended performance phase of ITER, it will demonstrate the characteristics of a fusion power plant, producing more than 1500MW of fusion power.The objective of the engineering design activity (EDA) phase is to produce a detailed, complete and fully integrated engineering design of ITER and all technical data necessary for the future decision on the construction of ITER.The ITER device will be a major step from present fusion experiments and will encompass all the major elements required for a fusion reactor. It will also require the development and the implementation of major new components and technologies.The inside surface of the plasma containment chamber will be designed to withstand temperature of up to 500 C, although normal operating temperatures will be substantially lower. Materials will have to be carefully chosen to withstand these temperatures, and a high neutron flux. In addition, other components of the device will be composed of state-of-the-art metal alloys, ceramics and composites, many of which are now in the early stage of development of testing. (orig.)

  14. Health physics around a controlled fusion research device: the Tokamak at Fontenay-aux-Roses (T.F.R.)

    1977-01-01

    The X and neutron dosimetry measurement near the magnetic confinement device for hot plasma, called T.F.R. (Tokamak, Fontenay-aux-Roses) are presented. The biological shielding consists of an ordinary concrete wall 30 cm thick; the dose rate is thus limited at 10 -1 mrem per discharge (corresponding to 10 mrem per day) in the whole area frequented by people during T.F.R. operation. A numerical calculation, taking into account the true geometry and X ray reflexion by the walls and roof, and normalized to the measurements, gives some indications on the electron beam which produces X rays. The photoneutron source (up to 10 10 neutrons per dischage) and the activation of the vacuum vessel result from high energy electrons (>= 10 MeV) supporting a 10 to 1,000 A current [fr

  15. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  16. Marine current energy devices: Current status and possible future applications in Ireland

    Rourke, Fergal O.; Boyle, Fergal; Reynolds, Anthony

    2010-01-01

    There is a growing demand for the use of renewable energy technologies to generate electricity due to concerns over climate change. The oceans provide a huge potential resource of energy. Energy extraction using marine current energy devices (MCEDs) offers a sustainable alternative to conventional sources and a predictable alternative to other renewable energy technologies. A MCED utilises the kinetic energy of the tides as opposed to the potential energy which is utilised by a tidal barrage. Over the past decade MCEDs have become an increasingly popular method of energy extraction. However, marine current energy technology is still not economically viable on a large scale due to its current stage of development. Ireland has an excellent marine current energy resource as it is an island nation and experiences excellent marine current flows. This paper reviews marine current energy devices, including a detailed up-to-date description of the current status of development. Issues such as network integration, economics, and environmental implications are addressed as well as the application and costs of MCEDs in Ireland. (author)

  17. BiFeO3 epitaxial thin films and devices: past, present and future

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  18. Laser fusion program overview

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  19. 21 CFR 886.1880 - Fusion and stereoscopic target.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fusion and stereoscopic target. 886.1880 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1880 Fusion and stereoscopic target. (a) Identification. A fusion and stereoscopic target is a device intended for use as a viewing object...

  20. Characterization by ion beams of surfaces and interfaces of alternative materials for future microelectronic devices

    Krug, C.; Stedile, F.C.; Radtke, C.; Rosa, E.B.O. da; Morais, J.; Freire, F.L.; Baumvol, I.J.R.

    2003-01-01

    We present the potential use of ion beam techniques such as nuclear reactions, channelling Rutherford backscattering spectrometry, and low energy ion scattering in the characterization of the surface and interface of materials thought to be possible substitutes to Si (like SiC, for example) and to SiO 2 films (like Al 2 O 3 films, for example) in microelectronic devices. With narrow nuclear reaction resonance profiling the depth distribution of light elements such as Al and O in the films can be obtained non-destructively and with subnanometric depth resolution, allowing one to follow the mobility of each species under thermal treatments, for instance. Thinning of an amorphous layer at the surface of single-crystalline samples can be determined using channelling of He + ions and detection of the scattered light particles. Finally, the use of He + ions in the 1 keV range allows elemental analysis of the first monolayer at the sample surface

  1. The future of the artificial kidney: moving towards wearable and miniaturized devices.

    Ronco, C; Davenport, A; Gura, V

    2011-01-01

    New directions in dialysis research include cheaper treatments, home based therapies and simpler methods of blood purification. These objectives may be probably obtained with innovations in the field of artificial kidney through the utilization of new disciplines such as miniaturization, microfluidics, nanotechnology. This research may lead to a new era of dialysis in which the new challenges are transportability, wearability and why not the possibility to develop implantable devices. Although we are not there yet, a new series of papers have recently been published disclosing interesting and promising results on the application of wearable ultrafiltration systems (WUF) and wearable artificial kidneys (WAK). Some of them use extracorporeal blood cleansing as a method of blood purification while others use peritoneal dialysis as a treatment modality (ViWAK and AWAK.) A special mention deserves the wearable/portable ultrafiltration system for the therapy of overhydration and congestive heart failure (WAKMAN). This system will allow dehospitalization and treatment of patients with less comorbidity and improved tolerance. On the way to the wearable artificial kidney, new discoveries have been made such as a complete system for hemofiltration in newborns (CARPEDIEM). The neonate in fact is the typical patient who may benefit from miniaturization of the dialysis circuit. This review analyzes the rationale for such endeavour and the challenges to overcome in order to make possible a true ambulatory dialysis treatment. Some initial results with these new devices are presented. We would like to stimulate a collaborative effort to make a quantum leap in technology making the wearable artificial kidney a reality rather than a dream. 

  2. The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies

    Tsujimura, Manabu

    2016-06-01

    For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP’s use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be “zero” and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed.

  3. Recycling fusion materials

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  4. Fusion Machines

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  5. Economics of fusion research

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  6. Economics of fusion research

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  7. Spin-off produced by the fusion research and development

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  8. Contribution of the different erosion processes to material release from the vessel walls of fusion devices during plasma operation

    Behrisch, R.

    2002-01-01

    In high temperature plasma experiments several processes contribute to erosion and loss of material from the vessel walls. This material may enter the plasma edge and the central plasma where it acts as impurities. It will finally be re-deposited at other wall areas. These erosion processes are: evaporation due to heating of wall areas. At very high power deposition evaporation may become very large, which has been named ''blooming''. Large evaporation and melting at some areas of the vessel wall surface may occur during heat pulses, as observed in plasma devices during plasma disruptions. At tips on the vessel walls and/or hot spots on the plasma exposed solid surfaces electrical arcs between the plasma and the vessel wall may ignite. They cause the release of ions, atoms and small metal droplets, or of carbon dust particles. Finally, atoms from the vessel walls are removed by physical and chemical sputtering caused by the bombardment of the vessel walls with ions as well as energetic neutral hydrogen atoms from the boundary plasma. All these processes have been, and are, observed in today's plasma experiments. Evaporation can in principle be controlled by very effective cooling of the wall tiles, arcing is reduced by very stable plasma operation, and sputtering by ions can be reduced by operating with a cold plasma in front of the vessel walls. However, sputtering by energetic neutrals, which impinge on all areas of the vessel walls, is likely to be the most critical process because ions lost from the plasma recycle as neutrals or have to be refuelled by neutrals leading to the charge exchange processes in the plasma. In order to quantify the wall erosion, ''materials factors'' (MF) have been introduced in the following for the different erosion processes. (orig.)

  9. Fusion safety regulations in the United States: Progress and trends

    DeLooper, J.

    1994-01-01

    This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion's safety and environmental potential

  10. Aligned Carbon Nanotube Arrays Bonded to Solid Graphite Substrates: Thermal Analysis for Future Device Cooling Applications

    Betty T. Quinton

    2018-05-01

    Full Text Available Carbon nanotubes (CNTs are known for high thermal conductivity and have potential use as nano-radiators or heat exchangers. This paper focuses on the thermal performance of carpet-like arrays of vertically aligned CNTs on solid graphite substrates with the idea of investigating their behavior as a function of carpet dimensions and predicting their performance as thermal interface material (TIM for electronic device cooling. Vertically aligned CNTs were grown on highly oriented pyrolytic graphite (HOPG substrate, which creates a robust and durable all-carbon hierarchical structure. The multi-layer thermal analysis approach using Netzsch laser flash analysis system was used to evaluate their performance as a function of carpet height, from which their thermal properties can be determined. It was seen that the thermal resistance of the CNT array varies linearly with CNT carpet height, providing a unique way of decoupling the properties of the CNT carpet from its interface. This data was used to estimate the thermal conductivity of individual multi-walled nanotube strands in this carpet, which was about 35 W/m-K. The influence of CNT carpet parameters (aerial density, diameter, and length on thermal resistance of the CNT carpet and its potential advantages and limitations as an integrated TIM are discussed.

  11. MEMS and EFF technology based micro connector for future miniature devices

    Bhuiyan, M M I; Alamgir, T; Bhuiyan, M; Kajihara, M

    2013-01-01

    The development of a miniature; size, light and high performance electronic devices; has been accelerated for further development. In commercial stamping method, connector pitch size (radius) is more than 300μm due to its size limitation. Therefore, the stamped contact hertz stress becomes lower and less suitable for fine pitch connector. To overcome this pitch size problem a narrow pitch Board-to-Board (BtoB) interface connectors are in demand for the current commercial design. Therefore, this paper describes a fork type micro connector design with high Hertz-Stress using MEMS and Electro Fine Forming (EFF) fabrication techniques. The connector is designed high aspect ratio and high-density packaging using UV thick resist and electroforming. In this study a newly fabricated micro connector's maximum aspect ratio is 50μm and pitch is 80μm is designed successfully which is most compact fork-type connector in the world. When these connectors are connected, a contact resistance of less than 50mΩ has been attained by using four-point probe technique

  12. Instrument cables and ceramic-to-metal seals for fusion-environment service

    Cannon, C.P.

    1982-10-01

    The intent of this paper is to form a technical basis to address questions pertinent to the use of instrument cables, ceramic-to-metal seals, and connector components in a fusion environment. The service environment of future fusion devices poses a unique challenge to instrumentation. The radiation environment of 14 MeV neutrons is markedly different from other instrumented radiation environments. There exist other environmental concerns as well (some instruments may operate at elevated temperatures, etc)

  13. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  14. Neutronic investigations on the application of lithium aluminates in the tritium breeding blanket of future fusion reactors

    Mohsin, A.

    1981-02-01

    A survey is given about the state of development work at the blanket. It shows that present designs aim at a fusion reactor with low tritium inventory. This aim can be achieved with a solid blanket. In this paper this concept is described and the selection of appropriate materials for the solid blanket is discussed. The lithium aluminates turned out to be the most suitable materials. Comparing the different lithium aluminates the compounds Li 5 AlO 4 and LiAlO 2 proved to be the most favourable. The improvement of the breeding ratio when using lead as neutron multiplier was investigated. Employing, for example, a lead zone of 15 cm thickness in front of a 60 cm thick breeding zone, the tritium breeding ratio is raised to 1.65 for Li 5 Al 4 and to 1.48 for LiAlO 2 - The originally higher breeding ratio of the Li 5 AlO 4 in contrary to the LiAlO 2 is compensated hereby. By this LiAlO 2 becomes a very interesting material for a solid blanket since it furthermore exhibits a higher melting point and higher phase transition temperature. For experimental check of the nuclear data of this material and the computational techniques used, a test model was designed and built. This blanket model was used for measuring the space-dependent tritium production rate, which could be compared to corresponding computations. The assembly was made of a lead zone as neutron multiplier, LiAlO 2 as breeding material, and polyethylene as neutron reflector. (orig.) [de

  15. Radiation tolerance qualification for maintenance tasks in the future fusion reactors: from fibre-optic components to robust data links

    Uffelen, M. van; Fernandez, A. Fernandez; Brichard, B.; Berghmans, F.; Decreton, M.

    2003-01-01

    The future International Thermonuclear Experimental Reactor (ITER) requires remote handling tools for its maintenance that will operate in a harsh environment. The numerous instrumentation cables for this maintenance equipment call for (de)multiplexing solutions, in order to reduce the umbilical size. Fibre-optic data links, using commercial-off-the-shelf (COTS) components, are seriously considered as a radiation tolerant solution, offering wavelength encoded multiplexing possibilities. However, an adapted modus operandi for a reliable assessment of this evolving technology is needed, to enable their long-term implementation in a radiation environment. In this paper, we present a methodology towards qualification methods for these instrumentation data links, and illustrate it with results obtained for different individual components. These results should enable the future design of robust architectures for communication links

  16. Accelerators for heavy ion fusion

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985

  17. Fusion reactor materials

    Anon.

    1977-01-01

    The following topics are briefly discussed: (1) surface blistering studies on fusion reactor materials, (2) TFTR design support activities, (3) analysis of samples bombarded in-situ in PLT, (4) chemical sputtering effects, (5) modeling of surface behavior, (6) ion migration in glow discharge tube cathodes, (7) alloy development for irradiation performance, (8) dosimetry and damage analysis, and (9) development of tritium migration in fusion devices and reactors

  18. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    , MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  19. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    , MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  20. The ALICE TPC, a high resolution device for ultra-high particle multiplicities. Past, present and future

    Ivanov, Marian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The Time Projection Chamber (TPC) of the ALICE apparatus is a large 3-dimensional tracking and particle identification device for ultra-high multiplicity collision events. It has been operated successfully at the Large Hadron Collider (LHC) at CERN, recording data from pp, p-Pb, and Pb-Pb collisions. Presently, LHC is in its first long shutdown (LS1), the next round of data taking will start in summer 2015 at or close to the LHC design energy and luminosity. During the second long shutdown (LS2), LHC will undergo a further increase in the Pb-Pb luminosity together with a major upgrade of ALICE. After the upgrade, the ALICE TPC will operate with Pb-Pb collisions at an interaction rate of 50 kHz. We present the performance in operation, calibration and reconstruction with the ALICE TPC together with ongoing work and plans for the near future and the coming 10 years.