WorldWideScience

Sample records for fusion program annual

  1. Fusion Safety Program annual report, fiscal year 1985

    International Nuclear Information System (INIS)

    Holland, D.F.; Merrill, B.J.; Herring, J.S.; Piet, S.J.; Longhurst, G.R.

    1987-02-01

    The Fusion Safety Program (FSP) has supported magnetic fusion technology for seven years, and this is the seventh annual report issued by the FSP. Program focus is identification of the magnitude and distribution of radioactive inventories in fusion reactors, and research and analysis of postulated accident scenarios that could cause the release of a portion of these inventories. Research results are used to develop improved designs that can reduce the probability and magnitude of such releases and thus improve the overall safety of fusion reactors. During FY-1985, research activities continued and participation continued on the Ignition Systems Project (ISP). This report presents the significant results of EGandG Idaho, Inc., activities and those from outside contracts, and includes a list of publications produced during the year, and activities planned for FY-1986

  2. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2002-01-01

    OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  3. NRL inertial confinement fusion theory program. 1979 annual report, October 1978 - December 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This is the 1979 annual report of the NRL Inertial Confinement Fusion Theory Program. It covers research performed from October 1978 through December 1979. Research in each of the four current program areas is reported: laser light absorption;fluid dynamics of ablative acceleration; development of computational techniques, and Rayleigh-Taylor stabilization techniques

  4. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  5. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  6. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  7. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  8. Canadian fusion program

    International Nuclear Information System (INIS)

    Brown, T.S.

    1982-06-01

    The National Research Council of Canada is establishing a coordinated national program of fusion research and development that is planned to grow to a total annual operating level of about $20 million in 1985. The long-term objective of the program is to put Canadian industry in a position to manufacture sub-systems and components of fusion power reactors. In the near term the program is designed to establish a minimum base of scientific and technical expertise sufficient to make recognized contributions and thereby gain access to the international effort. The Canadian program must be narrowly focussed on a few specializations where Canada has special indigenous skills or technologies. The programs being funded are the Tokamak de Varennes, the Fusion Fuels Technology Project centered on tritium management, and high-power gas laser technology and associated diagnostic instrumentation

  9. Inertial Confinement Fusion Annual Report 1997

    International Nuclear Information System (INIS)

    Correll, D

    1998-01-01

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also

  10. Fusion Safety Program Annual Report, Fiscal Year 1996

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1996-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1996. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. The objective is to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, chemical reactions and activation product release, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Work done for ITER this year has focused on developing the needed information for the Non- Site- Specific Safety Report (NSSR-1). A final area of activity described is development of the new DOE Technical Standards for Safety of Magnetic Fusion Facilities

  11. Fusion safety program annual report fiscal year 1997

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  12. Fusion safety program annual report fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  13. Fusion Safety Program annual report, fiscal year 1992

    International Nuclear Information System (INIS)

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG ampersand G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study

  14. Fusion Safety Program annual report, Fiscal Year 1993

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1993-12-01

    This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG ampersand G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies

  15. Fusion Reactor Safety Research Program annual report, FY-79

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1980-08-01

    The objective of the program is the development, coordination, and execution of activities related to magnetic fusion devices and reactors that will: (a) identify and evaluate potential hazards, (b) assess and disclose potential environmental impacts, and (c) develop design standards and criteria that eliminate, mitigate, or reduce those hazards and impacts. The program will provide a sound basis for licensing fusion reactors. Included in this report are portions of four reports from two outside contractors, discussions of the several areas in which EG and G Idaho is conducting research activities, a discussion of proposed program plan development, mention of special tasks, a review of fusion technology program coordination by EG and G with other laboratories, and a brief view of proposed FY-80 activities

  16. Laser Program annual report 1984

    International Nuclear Information System (INIS)

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs

  17. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  19. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  20. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  1. Laser Program annual report 1984

    Energy Technology Data Exchange (ETDEWEB)

    Rufer, M.L.; Murphy, P.W. (eds.)

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs.

  2. 1982 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.; Grow, G.R. (eds.)

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  3. 1982 laser program annual report

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications

  4. Fusion program overview

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1983-01-01

    There has been and continues to be a perceived need for the fusion energy option in our energy future. The National Energy Plan states that ''the Federal Government recognizes a direct responsibility to demonstrate the scientific and engineering feasibility of fusion''. The goal of the program, in exercising this responsibility, is to develop the knowledge base upon which decisions on the commercial feasibility of fusion will be made after the conclusion of the present scientific feasibility phase of the program. The strategy is to preceed sequentially through a product definition phase, to the product development phase. Product definition is the identification of an attractive fusion reactor concept supported by a sound base of scientific and technological information. Product development is the further refinement of scientific, technological and engineering information base of the selected concept to provide a firm basis for commercial application. Each of these phases will be discussed with special emphasis on the relationship between the annual appropriation process and the influence of external forces on the pace of the program. This discussion will include the use of international cooperation to maintain and extend program scope. Further discussion will cover the important scientific and technological advances of the last few years and the way in which they have influenced the development of our management strategy to maximize our resources

  5. Fusion Safety Program annual report: Fiscal year 1987

    International Nuclear Information System (INIS)

    Holland, D.F.; Herring, J.S.; Longhurst, G.R.; Lyon, R.E.; Merrill, B.J.; Piet, S.J.

    1988-02-01

    This report summarizes the Fusion Safety Program major activities in fiscal year 1987. The Idaho National Engineering Laboratory (INEL) is the designated lead laboraotry and EG and G Idaho, Inc., is the prime contractor for this program, which was initiated in 1979. Activities are conducted at the INEL and in participating laboratories including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment methodology, computer codes development for reactor transients, and fusion waste management. Also included in the report is a summary of the safety and environmental analysis and conventional facilities design performed by INEL for the Compact Ignition Tokamak design project, the safety analysis and documentation performed for the Tokamak Ignition/Burn Experimental Reactor design, and the technical support provided to the Environmental Safety and Economics Committee (ESECOM). 42 refs., 17 figs., 4 tabs

  6. THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2004-01-01

    The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)

  7. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  8. Fusion Power Associates annual meeting

    International Nuclear Information System (INIS)

    Nickerson, S.B.

    1985-03-01

    The Fusion Power Associates symposium, 'The Search for Attractive Fusion Concepts', was held January 31 - February 1 1985 in La Jolla, California. The purpose of this meeting was to bring together industry, university and government managers of the US fusion program to discuss the state of fusion development and the direction in which the program should be heading, given the cutbacks in the US fusion budget. There was a strong, minority opinion that until the best concept could be identified, the program should be broadly based. But there was also widespread criticism, aimed mainly at the largest segment of the magnetic fusion program, the tokamak. It was felt by many that the tokamak would not develop into a reactor that would be attractive to a utility and therefore should be phased out of the program. If the tokamak will indeed not lead to a commercial product then this meeting shows the US fusion program to be in a healthy state, despite the declining budgets

  9. Fusion Safety Program annual report, fiscal year 1984

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.

    1985-06-01

    This report summarizes the Fusion Safety Program major activities in fiscal year 1984. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG and G Idaho, Inc., is the prime contractor for this program, which was initiated in 1979. A report section titled ''Activities at the INEL'' includes progress reports on the tritium implantation experiment, tritium blanket permeation, volatilization of reactor alloys, plasma disruptions, a comparative blanket safety assessment, transient code development, and a discussion of the INEL's participation in the Tokamak Fusion Core Experiment (TFCX) design study. The report section titled ''Outside Contracts'' includes progress reports on tritium conversion by the Oak Ridge National Laboratory (ORNL), lithium-lead reactions by the Hanford Engineering Development Laboratory (HEDL) and the University of Wisconsin, magnet safety by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) and Argonne National Laboratory (ANL), risk assessment by MIT, tritium retention by the University of Virginia, and activation product release by GA Technologies. A list of publications produced during the year and brief descriptions of activities planned for FY-1985 are also included

  10. Laser program annual report 1983

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W. (eds.)

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. The format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.

  11. Laser program annual report 1983

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. The format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications

  12. Fusion Safety Program annual report: Fiscal year 1986

    International Nuclear Information System (INIS)

    Holland, D.F.; Merrill, B.J.; Herring, J.S.; Piet, S.J.; Longhurst, G.R.

    1987-06-01

    This report summarizes the Fusion Safety Program's (FSP) major activities in fiscal year 1986. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and EG and G Idaho, Inc., is the prime contractor for FSP, which was initiated in 1979. Activities are conducted at the INEL and in participating facilities, including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in this report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruption, risk assessment methodology, and computer code development for reactor transients. Contributions to the Technical Planning Activity (TPA) and the ''white paper'' study by the Environmental, Safety,and Economics Committee (ESECOM) are summarized. The report also includes a summary of the safety and environmental analysis and documentation performed by the INEL for the Compact Ignition Tokamak (CIT) design project

  13. Canadian Fusion Fuels Technology Project annual report 93/94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today`s advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report.

  14. Canadian Fusion Fuels Technology Project annual report 93/94

    International Nuclear Information System (INIS)

    1994-01-01

    The Canadian Fusion Fuels Technology Project exists to develop fusion technologies and apply them worldwide in today's advanced fusion projects and to apply these technologies in fusion and tritium research facilities. CFFTP concentrates on developing capability in fusion fuel cycle systems, in tritium handling technologies and in remote handling. This is an annual report for CFFTP and as such also includes a financial report

  15. Fusion Safety Program. Annual report, FY 1982

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1983-07-01

    The Fusion Safety Program major activities for Fiscal Year 1982 are summarized in this report. The program was started in FY-79, with the Idaho National Engineering Laboratory (INEL) designated as lead laboratory and EG and G Idaho, Inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., Activities at INEL includes major portions of papers dealing with ongoing work in tritium implantation experiments, tritium risk assessment, transient code development, heat transfer and fluid flow analysis, and high temperature oxidation and mobilization of structural material experiments. The section Outside Contracts includes studies of superconducting magnet safety conducted by Argonne National Laboratory, experiments concerning superconductor safety issues performed by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety and environmental studies by MIT, a summary of lithium safety experiments at Hanford Engineering Development Laboratory, and the results of tritium gas conversion to oxide experiments at Oak Ridge National Laboratory. A List of Publications and Proposed FY-83 Activities are also presented

  16. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  17. Annual report of National Institute for Fusion Science. April 2003-March 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2003 and March 2004. 300 collaborating studies have been implemented during this period. The major programs at NIFS are (i) toroidal plasma confinement experiments using the Large Helical Device (LHD) which is a heliotron type net-plasma-current free device and (ii) theoretical research and computer simulations for study of the complex state and the nonlinear dynamics such as these seen in high temperature plasmas. These major projects are accompanied by supporting but unique researches. A fusion reactor design study and its related engineering are also strongly promoted. In addition to the existing collaboration frameworks, a new framework of bilateral collaboration has started to enhance the exploitation of fusion facilities in universities. (J.P.N.)

  18. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  19. Fusion Reactor Safety Research program. Annual report, FY-80

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1981-06-01

    The report is in three sections. Outside contracts includes a report of newly-started study at the General Atomic Company to consider safety implications of low-activation materials, portions of two papers from ongoing work at PNL and ANL, reports of the lithium spill work at HEDL, the LITFIRE code development at MIT, and risk assessment at MIT, all of which are an expansion of FY-79 outside contracts. EG and G Activities includes adaptations of four papers of ongoing work in transient code development, tritium system risk assessment, heat transfer and fluid flow analysis, and fusion safety data base. Program Plan Development includes the Executive Summary of the Plan, which was completed in FY-80, and is accompanied by a list of publications and a brief outline of proposed FY-81 activities to be based on the Program Plan

  20. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  1. Fusion Safety Program annual report, fiscal year 1983

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.

    1984-07-01

    The Fusion Safety Program major activities for Fiscal Year 1983 are summarized in this report. The program was initiated in FY 1979, with the Idaho National Engineering Laboratory (INEL) designated lead laboratory, and EG and G Idaho, inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., activities at the INEL includes progress reports and portions of papers on the tritium implantation experiment, tritium control systems, tritium release from solid breeding blankets, plasma disruptions, risk assessment, transient code development, data base development, and a discussion of participation in the blanket comparison and selection study. The section outside contracts includes progress reports and portions of papers on lithium-lead reactions by Hanford Engineering Development Laboratory (HEDL) and the University of Wisconsin, magnet safety by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) and Argonne National Laboratory (ANL), risk assessment by the University of California at Los Angeles (UCLA) and MIT, tritium retention by the University of Virginia, and effects of plasma disruptions by MIT. A list of publications and planned fiscal year 1984 activities are also included

  2. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  3. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  4. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  5. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1987-05-01

    This semi-annual report gives 36 short descriptions of the work done in the framework of the Nuclear Fusion Project and outlines studies for NET/INTOR and for ECRH power sources at 150 GHz. Tables of fusion technology contracts, of NET contracts, of KfK departments contributing to the Fusion Project, and of the Fusion Project management staff complete this report. (GG)

  6. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  7. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  8. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  9. Fusion tritium program in Japan

    International Nuclear Information System (INIS)

    Okamoto, M.; Yoshida, H.; Naruse, Y.

    1988-01-01

    Nuclear Fusion Council, Atomic Energy Commission of Japan, has started to review the nuclear fusion R and D plan for the next stage, post JT-60. The council launched a subcommittee on fundamental issues in the nuclear fusion development in 1985, for review of the basic strategy of a development plan. The subcommittee presented an interim report in Feb. 1986 after 6 months discussion and the report was approved by the Nuclear Fusion Council. Two major R and D programs described in the interim report are the development of a Tokamak type large facility and the comprehensive development of the fusion reactor technology. The latter means to promote the reactor technologies which will be essential in the future to construct not only a D/T burning but also a DEMO reactor. The Nuclear Fusion Development Program in Japan is shown. The interim report recommended to organize two subcommittees to establish an integrated national R and D plan; one was for the design of the next step large facility and the other was for the R and program of the fusion technology. The subcommittee for the latter consisted of 7 working groups; one of them was organized for the tritium technology

  10. LLE 1998 annual report, October 1997 -September 1998. Inertial fusion program and National Laser Users' Facility program

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users' Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets

  11. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  12. From patronage to partnership: Toward a new industrial policy for the fusion program

    International Nuclear Information System (INIS)

    Miller, B.

    1992-01-01

    The genesis of the overall assessment can be found in a February 1992 letter to the Department's Director of Research from the Fusion Energy Advisory Committee (FEAC) which suggested that the current level of industrial involvement in the fusion program is less than that needed to keep it actively involved for the long term. Specifically, FEAC recommended that open-quotes[in order] to provide U.S. industry with knowledge of fusion requirements and to secure the maximum benefit from industrial involvement, DOE should develop a plan that deliberately includes a broader and more integral industrial participation in the fusion program.close quotes This is another way of expressing the generally felt concern that after 30 years of waiting for some signal of a national commitment to the program, industry interest in it is flagging. Consider the following evidence. There is not significant investor-owner or public utility interest in the program at this time. The Electric Power Research Institute (EPRI), which once was committed to the idea of fusion as the long-term solution to our energy needs, now sees it playing no part in meeting the nation's long-term electrical energy demand. In its most recent annual report, it makes no mention of fusion as a future utility option, effectively consigning it to the role of perennial bridesmaid. Things are little better on the vendor side of industry that has provided the bulk of all industrial involvement in the program. In the final analysis they are profit making entities and must pay attention to the bottom-line of even their speculative research and development efforts or eventually abandon them. In short, there is no operative government policy on industrial involvement in the fusion program, only an unwritten guideline that industry growth will follow growth in the laboratory or core programs in good times and industry contraction will precede core contraction in bad times

  13. 1981 inertial fusion research annual technical report

    International Nuclear Information System (INIS)

    Solomon, D.E.; Wei, J.L.; Greacen, N.T.

    1981-01-01

    This annual report consists of the following two topics: (1) target fabrication technology, and (2) fusion experiments. The first section is reported by the following seven areas: (1) characterization, (2) fuel shell technology, (3) polymer technology, (4) lithium foil development, (5) precision etch technology, (6) analytical instrumentation, and (7) target fabrication. The second area is reported by the following topics: (1) experiments, (2) plasma theory, (3) code development and simulation, and (4) lasers and optics

  14. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    Dove, W.F.

    1978-01-01

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  15. Pacing the US magnetic fusion program

    International Nuclear Information System (INIS)

    1989-01-01

    This study addresses the priority and pace of the nation's magnetic fusion research and development program in the context of long-term national energy policy. In particular, the committee interpreted its task as follows: To review the implications of long-term national energy policy for current research and development in magnetic fusion; to identify factors that should enter the further development of such policy to reduce risks associated with the future electricity supply system; to propose criteria applicable to research and develop in electric generation in reaching long-term energy policy goals; to apply these criteria to magnetic fusion and alternative electric generation technologies in order to develop recommendations on the priority pace of the magnetic fusion program; and to present its results in a final report. The most important goals of the US Department of Energy's current Magnetic Fusion Energy Program Plan are to demonstrate the scientific and engineering feasibility of fusion, Demonstrating engineering feasibility will require the design, construction, and operation of an engineering test reactor, which the plan envisions financing through a combination of domestic and international funding. The committee believes that current domestic program funding levels are inadequate to meet even the near-term objectives of the plan

  16. A fusion engineering program for Canada

    International Nuclear Information System (INIS)

    Billington, I.J.

    In 1980 the National Research Council asked DSMA ATCON Ltd., in collaboration with Ontario Hydro, the University of Toronto, and McMaster University, to evaluate concepts for a national fusion engineering program, to define a facility that could be constructed in Canada to meet the program goals, and to suggest a strategy for encouraging industrial participation. The central element of the proposed fusion engineering and development program is tritium technology, with additional emphasis on the broader field of all hydrogen isotopes and their interactions with materials. The Canadian program in the initial phase would concentrate on fusion fuel systems, materials development, equipment development, and safety and the environment. A preliminary concept for the facility required has been developed, and key organizational activities identified. The total program costs should be $1 million in the first year, rising to a steady state of $5 million from the fourth year onward. The capital cost of the research facility is estimated to be $20 million spread over three years, and its operating budget around $7 million. The program as envisioned would make use of Canada's existing tritium resources and handling experience to contribute to worldwide fusion research

  17. Fusion Energy Division annual progress report period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  18. Fusion Energy Division annual progress report period ending December 31, 1983

    International Nuclear Information System (INIS)

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth

  19. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  20. Annual report of Naka Fusion Research Establishment from April 1, 2002 to March 31, 2003

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Hamamatsu, Kiyotaka; Matsumoto, Hiroshi; Yoshida, Hidetoshi

    2003-11-01

    This annual report provides an overview of research and development (R and D) activities at Naka Fusion Research Establishment, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities, during the period from 1 April, 2002 to 31 March, 2003. The activities in the Naka Fusion Research Establishment are highlighted by high performance plasma researches in JT-60 and JFT-2M, research and development of fusion reactor technologies towards ITER and fusion power demonstration plants, and activities in support of ITER design and construction. JT-60 program has continued to produce fruitful knowledge and understanding necessary to achieve reactor relevant performances of tokamak fusion devices. JFT-2M has made contributions in more basic areas of tokamak plasma research and development in pursuit of high performance plasma. The objectives of JT-60 research have been more shifted to physics R and Ds in support of the International Thermonuclear Experimental Reactor (ITER) and establishment of physics basis for a steady state tokamak fusion reactor like SSTR as a fusion power demonstration plant. In JFT-2M, the advanced material tokamak experiment program has been carried out to test the low activation ferritic steel for development of the structural material for a fusion reactor. In the area of theories and analyses, significant progress has been made in understanding of the ITB, energy confinement scaling in ITB plasmas, MHD equilibrium in the current hole region, asymmetric feature of divertor plasmas and the divertor detachment. In addition, through the project of numerical experiment on tokamak, the mechanism of the ion temperature gradient mode was clarified by particle simulations. The physics of divertor plasma was also studied by particle simulations. R and Ds of fusion reactor technologies have been carried out both to further improve technologies necessary for ITER construction, and to accumulate

  1. The fusion blanket program at Chalk River

    International Nuclear Information System (INIS)

    Hastings, I.J.

    1986-03-01

    Work on the Fusion Blanket Program commenced at Chalk River in 1984 June. Co-funded by Canadian Fusion Fuels Technology Project and Atomic Energy of Canada Limited, the Program utilizes Chalk River expertise in instrumented irradiation testing, ceramics, tritium technology, materials testing and compound chemistry. This paper gives highlights of studies to date on lithium-based ceramics, leading contenders for the fusion blanket

  2. Historical Perspective on the United States Fusion Program

    International Nuclear Information System (INIS)

    Dean, Stephen O.

    2005-01-01

    Progress and Policy is traced over the approximately 55 year history of the U. S. Fusion Program. The classified beginnings of the effort in the 1950s ended with declassification in 1958. The effort struggled during the 1960s, but ended on a positive note with the emergence of the tokamak and the promise of laser fusion. The decade of the 1970s was the 'Golden Age' of fusion, with large budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy Engineering Act of 1980, overwhelming approved by Congress and signed by President Carter. The Act called for a '$20 billion, 20 year' effort aimed at construction of a fusion Demonstration Power Plant around the end of the century. The U. S. Magnetic Fusion Energy program has been on a downhill slide since 1980, both in terms of budgets and the construction of new facilities. The Inertial Confinement Fusion program, funded by Department of Energy Defense Programs, has faired considerably better, with the construction of many new facilities, including the National Ignition Facility (NIF)

  3. Fusion energy division annual progress report, period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  4. Fusion energy division annual progress report, period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities

  5. The US fusion materials program: Status and directions

    International Nuclear Information System (INIS)

    Doran, D.G.

    1987-05-01

    The general long term objective of the Fusion Materials Program of the Office of Fusion Energy is the development of new or improved materials that will enhance the economic and environmental attractiveness of fusion as an energy source. The US Magnetic Fusion Program Plan, as augmented by the Technical Planning Activity (TPA), calls for information to be developed on critical issues such that a decision can be made by about 2005 on whether to pursue fusion as a viable energy source. Viability will be evaluated in at least four areas: technical, economic, environmental, and safety. The Fusion Materials Program addresses directly only the magnetic confinement option, although some of the information gained is applicable to the alternative approach of inertial confinement. The scope of this paper is limited to programs in which a primary concern is bulk neutron radiation effects, as opposed to those in which the primary concern is interaction of the materials with the plasma. 14 refs

  6. Overview of US Fusion Energy Programs: January 1993

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1994-01-01

    The US Fusion Program is in open-quotes Transition.close quotes This happens so infrequently that no one knows exactly what to expect; it makes everyone a little skittish. Program leadership does make a difference; Secretary Watkins was a positive force for fusion. Energy Research Director Happer remains in his position and is a positive force for scientific quality. Secretary O'Leary has stated that open-quotes Fusion energy holds great promise as an element of the nation's long-term energy supply.close quotes While new leaders may seek new directions with important implications for fusion, it seems reasonable to expect that, for fusion, such changes are likely to emerge slowly. Thus the assumption now is that the fusion priorities remain unchanged. In the spirit of optimism surrounding the new administration, the Fusion Energy Program's intention is to make as much progress as possible on the course presently established

  7. Laser fusion project second annual report

    International Nuclear Information System (INIS)

    Dumbaugh, W.H.; Morgan, D.W.; Flannery, J.E.

    1978-01-01

    This research program is devoted to the preparation and characterization of fluoride glasses for laser fusion. The overall objective is to explore and characterize fluoride glass systems to find a glass with the lowest possible nonlinear refractive index, satisfactory chemical durability, and physical properties which enable coating large optical quality pieces

  8. Methods of economic analysis applied to fusion research. Fifth annual report

    International Nuclear Information System (INIS)

    1981-01-01

    In this and previous efforts, ECON has provided economic assessment of a fusion research program. This phase of study has focused on the future markets for fusion energy and the economics of fusion in those markets. These tasks were performed: (1) fusion market growth, (2) inflation vs. capital investment decisions, and (3) economics of cogeneration

  9. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  10. The restructured fusion program and the role of alternative fusion concepts

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    This testimony to the subcommittee on Energy and the Environment of the U.S. House of Representatives's Committee on Science pushes for about 25% of the fusion budget to go to alternative fusion concepts. These concepts are: low density magnetic confinement, inertial confinement fusion, high density magnetic confinement, and non- thermonuclear and miscellaneous programs. Various aspects of each of these concepts are outlined

  11. The U.S. program for fusion nuclear technology development

    International Nuclear Information System (INIS)

    Clarke, J.F.; Haas, G.M.

    1989-01-01

    The Fusion Nuclear Technology (FNT) research and development program in the United States is shaped by a hierarchy of documents and by the environment for nuclear energy existing in the United States. The fission nuclear industry in the United States has suffered problems with public perception of safety, waste disposal issues, and economics as influenced by safety and environmental issues. For fusion to be a viable energy alternative, it must offer significant improvements in these areas. The hierarchy of documents defining objectives, plans, and strategy of the U.S. FNT program consists of the Magnetic Fusion Program Plan (MFPP) (February 1985), the Technical Planning Activity Final Report (January 1987), the Finesse Program Report (January 1987), and the Blanket Comparison and Selection Study Final Report (September 1984). In addition, two other documents are also significant in shaping FNT policy. These are the IEA report on Material for Fusion (December 1986) and the Summary of the Report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (September 1987). The U.S. Magnetic Fusion Program Plan defines four key technical issues (magnetic confinement systems, properties of burning plasmas, fusion nuclear technology, and fusion materials). (orig./KP)

  12. Fusion Energy Division annual progress report, period ending December 31, 1988

    International Nuclear Information System (INIS)

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety

  13. Fusion Energy Division annual progress report, period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  14. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  15. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Magnetic Fusion Advisory Committee report on recommended fusion program priorities and strategy

    International Nuclear Information System (INIS)

    1983-09-01

    The Magnetic Fusion Advisory Committee recommends a new program strategy with the following principal features: (1) Initiation in FY86 of the Tokamak Fusion Core Experiment (TFCX), a moderate-cost tokamak reactor device (less than $1 B PACE) designed to achieve ignition and long-pulse equilibrium burn. Careful trade-off studies are needed before making key design choices in interrelated technology areas. Cost reductions relative to earlier plans can be realized by exploiting new plasma technology, by locating the TFCX at the TFTR site, and by assigning responsibility for complementary reactor engineering tasks to other sectors of the fusion program. (2) Potential utilization of the MFTF Upgrade to provide a cost-effective means for quasi-steady-state testing of blanket and power-system components, complementary to TFCX. This will depend on future assessments of the data base for tandem mirrors. (3) Vigorous pursuit of the broad US base program in magnetic confinement, including new machine starts, where appropriate, at approximately the present total level of support. (4) Utilization of Development and Technology programs in plasma and magnet technology in support of specific hardware requirements of the TFCX and of other major fusion facilities, so as to minimize overall program cost

  17. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  18. Laser program annual report, 1977. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.F.; Jarman, B.D. (eds.)

    1978-07-01

    An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)

  19. Laser program annual report, 1977. Volume 1

    International Nuclear Information System (INIS)

    Bender, C.F.; Jarman, B.D.

    1978-07-01

    An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva

  20. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  1. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  2. Annual report of Naka Fusion Research Establishment from April 1, 2003 to March 31, 2004

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Umeda, Naotaka; Tsuji, Hiroshi; Yoshida, Hidetoshi; Nagami, Masayuki

    2004-11-01

    This annual report provides an overview of research and development (R and D) activities at Naka Fusion Research Establishment, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities, during the period from 1 April, 2003 to 31 March, 2004. The activities in the Naka Fusion Research Establishment are highlighted by researches in JT-60 and JFT-2M, theoretical and analytical plasma researches, research and development of fusion reactor technologies towards ITER and fusion power demonstration plants, and activities in support of ITER design and construction. (J.P.N.)

  3. Annual report of National Institute for Fusion Science. April 2011 - March 2012

    International Nuclear Information System (INIS)

    2012-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2011 and March 2012. NIFS is pursuing the integration of science and technology to realize a fusion power plant. The systematization of plasma physics, and research and development of reactor relevant engineering are key elements in our strategy. NIFS has been exploiting its role as an inter-university research organization and executing a variety of excellent collaborating studies together with universities and research institutes abroad as well as in Japan. The major projects of NIFS are the Large Helical Device (LHD) Project, the Numerical Simulation Research Project, the Fusion Engineering Research Project and the Coordination Research Project. These major projects are accompanied by unique supporting research. Advanced engineering and fusion reactor design studies are strongly promoted. (J.P.N.)

  4. Annual report of National Institute for Fusion Science. April 2009 - March 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2009 and March 2010. NIFS is pursuing the integration of science and technology to realize a fusion power plant. The systematization of plasma physics, and research and development of reactor relevant engineering are key elements in our strategy. NIFS has been exploiting its role as an inter-university research organization and executing a variety of excellent collaborating studies together with universities and research institutes abroad as well as in Japan. The major projects of NIFS are the Large Helical Device (LHD) Project, the Numerical Simulation Research Project, the Fusion Engineering Research Project and the Coordination Research Project. These major projects are accompanied by unique supporting research. Advanced engineering and fusion reactor design studies are strongly promoted. (J.P.N.)

  5. Annual report of National Institute for Fusion Science. April 2012 - March 2013

    International Nuclear Information System (INIS)

    2013-01-01

    This annual report summarizes the research activities at NIFS (the National Institute for Fusion Science) between April 2012 and March 2013. NIFS is pursuing the integration of science and technology to realize a fusion power plant. The systematization of plasma physics, and research and development of reactor relevant engineering are key elements in our strategy. NIFS has been exploiting its role as an inter-university research organization and executing a variety of excellent collaborating studies together with universities and research institutes abroad as well as in Japan. The major projects of NIFS are the Large Helical Device (LHD) Project, the Numerical Simulation Research Project, the Fusion Engineering Research Project and the Coordination Research Project. These major projects are accompanied by unique supporting research. Advanced engineering and fusion reactor design studies are strongly promoted. (J.P.N.)

  6. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  7. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-01-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  8. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  9. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  10. Fusion technology annual report of the association EURATOM/CEA 1998

    International Nuclear Information System (INIS)

    Magaud, P.; Le vagueres, F.

    1998-01-01

    In this book are found technical and scientific papers on the main works carried out in the frame of the european program of fusion technology, during 1998. The presented activities are: plasma facing components, vacuum vessel and shield, magnets, remote handling, safety (short and long term), european blanket project (long term) with water cooled lithium lead and helium cooled pebble bed blanket, materials for fusion power plant, socio-economic research on fusion, plasma facing components, fuel cycle, inertial confinement. (A.L.B.)

  11. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  12. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  13. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  14. Fusion technology development annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    1997-03-01

    In FY96, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Design Studies (Section 2), Plasma Interactive Materials (Section 3), SiC/SiC Composite Material Development (Section 4), Magnetic Diagnostic Probes (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, the authors carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry

  15. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  16. New heavy-ion-fusion accelerator research program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research

  17. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1996

    Energy Technology Data Exchange (ETDEWEB)

    Moons, F.; Bogaerts, W.; Decreton, M.; Biver, E.; Coenen, S.; Benoit, Ph.; Coheur, L.; Deboodt, P.; Andreev, D.

    1996-09-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State for Fusion. The period October 1995 to September 1996 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg company, is described.

  18. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1996

    International Nuclear Information System (INIS)

    Moons, F.; Bogaerts, W.; Decreton, M.; Biver, E.; Coenen, S.; Benoit, Ph.; Coheur, L.; Deboodt, P.; Andreev, D.

    1996-09-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State for Fusion. The period October 1995 to September 1996 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg company, is described

  19. 1983 Annual technical report on inertial fusion research

    International Nuclear Information System (INIS)

    Solomon, D.E.; Monsler, M.J.; Terry, N.C.

    1984-03-01

    An overview of the laser fusion program at KMS Fusion is presented. A two-beam laser (1053 nm and 527 nm) system is used for the implosion physics. Stimulated Raman scattering is used to examine the implosion region for high-energy electrons. Holographic and fringe analysis techniques are also used in the diagnostics of the plasma. Computational techniques based on two-plasmon decay are shock-fitting techniques in Lagrangian hydrocodes are also described. Glass shell technology for laser targets is given. The design of the Chemically Pumped Iodine Laser (CPIL) is also presented. 86 refs., 46 figs., 2 tabs

  20. Industry perspectives on future directions in the fusion program

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Bell, J.M.

    1985-01-01

    Industry is the ultimate recipient of the product of the fusion development program. However, budget trends are causing the program to lose it's focus on the energy goal, thus diminishing opportunities for a meaningful industrial role at a time when technical progress has been remarkable and scientific feasibility is being demonstrated. The findings of the Magnetic Fusion Advisory Committee Panel charged to report on industrial participation in fusion energy development are summarized. A recommendation of this panel was to increase intellectual involvement of industry in the development of fusion. Opportunities to achieve this include forming partnerships with national laboratories and universities, assigning industry responsibility for a complete scope of work, and assigning industry a major role in system studies and reactor design. These opportunities can be implemented without requiring large budget increases. Increasing the involvement of industry in the fusion program will provide both long and short-term benefits

  1. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  2. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    International Nuclear Information System (INIS)

    Abe, K.; Namba, C.; Wiffen, F.W.; Jones, R.H.

    1998-01-01

    A Japan-USA program of irradiation experiments for fusion research, ''JUPITER'', has been established as a 6 year program from 1995 to 2000. The goal is to study ''the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment''. This is phase-three of the collaborative program, which follows RTNS-II program (phase-1: 1982-1986) and FFTF/MOTA program (phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA program. JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects. (orig.)

  3. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  4. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    2001-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  5. Suggestions for an updated fusion power program

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1976-02-01

    This document contains suggestions for a revised CTR Program strategy which should allow us to achieve equivalent goals while operating within the above constraints. The revised program is designed around three major facilities. The first is an upgrading of the present TFTR facility which will provide a demonstration of the generation of tens of megawatts electric equivalent originally envisioned for the 1985 EPR. The second device is the TTAP which will allow the integration and optimization of the plasma physics results obtained from the next generation of plasma physics experiments. The improvement in tokamak reactor operation resulting from this optimization of fusion plasma performance will enable an EPR to be designed which will produce several hundred megawatts of electric power by 1990. This will move the fusion program much closer to its goal of commercial fusion power by the turn of the century. In addition to this function the TTAP will serve as a prototype of the 1990 EPR system, thus making more certain the successful operation of this device. The third element of this revised program is an intense radiation damage facility which will provide the radiation damage information necessary for the EPR and subsequent fusion reactor facilities. The sum total of experience gained from reacting plasma experiments on TFTR, reactor grade plasma optimization and technological prototyping on TTAP, and end of life radiation damage results from the intense neutron facility will solve all of the presently foreseen problems associated with a tokamak fusion power reactor except those associated with the external nuclear systems. These external system problems such as tritium breeding and optimal power recovery can be developed in parallel on the 1990 EPR

  6. EU socio-economic research on fusion: Findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2003-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrating, through technical economic programming models and global multi-regional energy environmental scenarios, that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. Making the public aware of such benefits through field experiences will be part of the program. (author)

  7. Fusion Breeder Program interim report

    International Nuclear Information System (INIS)

    Moir, R.; Lee, J.D.; Neef, W.

    1982-01-01

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83

  8. FFUSION yearbook 1997. Annual report of the Finnish fusion research unit. Association EURATOM-TEKES

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S; Paettikangas, T [eds.; VTT Energy, Espoo (Finland)

    1998-02-01

    Finnish fusion programme (FFUSION) is one of the eleven national energy research programmes funded by the Technological Development Centre of Finland (TEKES). The FFUSION programme was fully integrated into European Fusion Programme just after Finland joined the European Union. The contract of Association Euratom and Tekes was signed in 1995 and extends to the end of 1999. Finland became a member of JET Joint Undertaking in 1996, other contracts with Euratom include NET agreement and the Staff Mobility Agreement. FFUSION programme with participating research institutes and universities forms the Fusion Research Unit of the Association Euratom-Tekes. This annual report summarises the research activities of the Finnish Research Unit in 1997. The programme consists of two parts: Physics and Technology. The research areas of the physics are: Fusion plasma engineering, and Radio-frequency heating and Plasma diagnostics. The technology is focused into three areas: Fusion reactor materials (first wall components and joining techniques), Remote handling and viewing systems, and Superconductors

  9. Laser program annual report, 1977. Volume 2

    International Nuclear Information System (INIS)

    Bender, C.F.; Jarman, B.D.

    1978-07-01

    This volume contains detailed information on each of the following sections: (1) fusion target design, (2) target fabrication, (3) laser fusion experiments and analysis, (4) advanced lasers, (5) systems and applications studies, and (6) laser isotope separation program

  10. Fundamental radiation effects studies in the fusion materials program

    International Nuclear Information System (INIS)

    Doran, D.G.

    1982-01-01

    Fundamental radiation effects studies in the US Fusion Materials Program generally fall under the aegis of the Damage Analysis and Fundamental Studies (DAFS) Program. In a narrow sense, the problem addressed by the DAFS program is the prediction of radiation effects in fusion devices using data obtained in non-representative environments. From the onset, the program has had near-term and long-term components. The premise for the latter is that there will be large economic penalties for uncertainties in predictive capability. Fusion devices are expected to be large and complex and unanticipated maintenance will be costly. It is important that predictions are based on a maximum of understanding and a minimum of empiricism. Gaining this understanding is the thrust of the long-term component. (orig.)

  11. Laser program annual report, 1977. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.F.; Jarman, B.D. (eds.)

    1978-07-01

    This volume contains detailed information on each of the following sections: (1) fusion target design, (2) target fabrication, (3) laser fusion experiments and analysis, (4) advanced lasers, (5) systems and applications studies, and (6) laser isotope separation program. (MOW)

  12. Laser program. Annual report, 1978

    International Nuclear Information System (INIS)

    Monsler, M.J.; Jarman, B.D.

    1979-03-01

    An overview of the entire program is given. The overview previews the report, highlights progress in 1978, and summarizes the facilities and resources of the laser program. The Argus, Shiva, and Nova facilities are described. The theory of fusion target design is discussed along with specialized techniques of target fabrication

  13. Methods of economic analysis applied to fusion research. Third annual report

    International Nuclear Information System (INIS)

    Hazelrigg, G.A. Jr.

    1979-01-01

    The current study reported here has involved three separate tasks. The first re-evaluates previous benefit estimates derived, using more realistic rates of discount and other parameter changes. The second task investigates other possible commercial uses of technologies which must be developed in providing commercial fusion power. Several such applications have been identified and potential market sizes estimated. The third task develops a methodology for evaluating the impact of additional projects in support technology RD and D on the value of the overall fusion program. This effort has shown that it is possible to economically prioritize RD and D on those functions which will be required in commercial fusion and to provide economic rationales for program changes. The results of this task indicate substantial benefit from increased pursuit of RD and D in several support technology areas

  14. Advanced concepts in the United States fusion program

    International Nuclear Information System (INIS)

    Dove, W.F.

    1985-01-01

    The goal of the magnetic fusion program is to establish the scientific and technological base for fusion energy. Development of a variety of magnetic confinement systems is essential to achieving that goal. The role of the advanced concepts program is to conduct experimental investigations of confinement concepts other than the tokamaks and tandem mirror concepts. The present advanced concepts program consists of the reversed-field-pinch (RFP), the spheromak and the field-reversed configuration (FRC). Significant new experiments in the RFP and FRC concepts have been approved and are described

  15. Japanese program of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Hasiguti, R.R.

    1982-01-01

    The Japanese program of materials research for fusion reactors is described based on the report to the Nuclear Fusion Council, the project research program of the Ministry of Education, Science and Culture, and other official documents. The alloy development for the first wall and its radiation damage are the main topics discussed in this paper. Materials viewpoints for the Japanese Tokamak facilities and the problems of irradiation facilities are also discussed. (orig.)

  16. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  17. EU socio-economic research on fusion: findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2002-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. The program is developed by independent experts making use of well established international methodologies. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrate that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. (author)

  18. Materials program for magnetic fusion energy

    International Nuclear Information System (INIS)

    Zwilsky, K.M.; Cohen, M.M.; Finfgeld, C.R.; Reuther, T.C.

    1978-01-01

    The Magnetic Fusion Reactor Materials Program is currently operating at a level of $7.8M. The program is divided into four technical areas which cover both short and long term problems. These are: Alloy Development for Irradiation Performance, Damage Analysis and Fundamental Studies, Plasma-Materials Interaction, and Special Purpose Materials. A description of the program planning process, the continuing management structure, and the resulting documents is presented

  19. The heavy ion fusion program in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.; Meier, W.R.; Logan, B.G.

    2001-01-01

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade. (author)

  20. Wave heating and the U.S. magnetic fusion energy program

    International Nuclear Information System (INIS)

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  1. Overview of the US Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Dowling, R.J.; Marton, W.A.; Eckstrand, S.A.

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan

  2. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  3. Presentation Stations of the General Atomics Fusion Educational Program

    Science.gov (United States)

    Lee, R. L.; Fusion Group Education Outreach Team

    1996-11-01

    The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.

  4. Chemical and biological nonproliferation program. FY99 annual report; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community

  5. The role of radiation damage analysis in the fusion program

    International Nuclear Information System (INIS)

    Doran, D.G.

    1983-01-01

    The objective of radiation damage analysis is the prediction of the performance of facility components exposed to a radiation environment. The US Magnetic Fusion Energy materials program includes an explicit damage analysis activity within the Damage Analysis and Fundamental Studies (DAFS) Program. Many of the papers in these Proceedings report work done directly or indirectly in support of the DAFS program. The emphasis of this program is on developing procedures, based on an understanding of damage mechanisms, for applying data obtained in diverse radiation environments to the prediction of component behavior in fusion devices. It is assumed that the Fusion Materials Irradiation Test Facility will be available in the late 1980s to test (and calibrate where necessary) correlation procedures to the high fluences expected in commercial reactors. (orig.)

  6. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1999

    International Nuclear Information System (INIS)

    Decreton, M.

    1999-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1998 to September 1999 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described

  7. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1999

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    1999-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1998 to September 1999 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described.

  8. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1998

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    1998-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1997 to September 1998 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described.

  9. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1998

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1997 to September 1998 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described

  10. Status of the US inertial fusion program and the National Ignition Facility

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1997-01-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) copyright 1997 American Institute of Physics

  11. Fusion technology annual report of the association EURATOM/CEA 1998; Technologie de la fusion Rapport annuel 1998 Association EURATOM/CEA 1998

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P; Le vagueres, F

    1998-07-01

    In this book are found technical and scientific papers on the main works carried out in the frame of the european program of fusion technology, during 1998. The presented activities are: plasma facing components, vacuum vessel and shield, magnets, remote handling, safety (short and long term), european blanket project (long term) with water cooled lithium lead and helium cooled pebble bed blanket, materials for fusion power plant, socio-economic research on fusion, plasma facing components, fuel cycle, inertial confinement. (A.L.B.)

  12. Fusion Simulation Program Definition. Final report

    International Nuclear Information System (INIS)

    Cary, John R.

    2012-01-01

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents

  13. Fusion reactor design and technology program in China

    International Nuclear Information System (INIS)

    Huang, J.H.

    1994-01-01

    A fusion-fission hybrid reactor program was launched in 1987. The purpose of development of the hybrid reactor is twofold: to solve the problem of nuclear fuel supply for an expected large-scale development of fission reactor plants, and to maintain the momentum of fusion research. The program is described and the activities and progress of the program are presented. Two conceptual designs of an engineering test reactor with tokamak configuration were developed at the Southwestern Institute of Physics and the Institute of Plasma Physics. The results are a tokamak engineering test breeder (TETB) series design and a fusion-fission hybrid reactor design (SSEHR), characterized by a liquid-Li self-cooled blanket and an He-cooled solid tritium breeder blanket respectively. In parallel with the design studies, relevant technological experiments on a small or medium scale have been supported by this program. These include LHCD, ICRH and pellet injection in the area of plasma engineering; neutronics integral experiments with U, Pu, Fe and Be; various irradiation tests of austenitic and ferritic steels, magnetohydrodynamic (MHD) pressure drop experiments using a liquid metal loop; research into permeation barriers for tritium and hydrogen isotopes; solid tritium breeder tests using an in-situ loop in a fission reactor. All these experiments have proceeded successfully. The second step of this program is now starting. It seems reasonable that most of the research carried out in the first step will continue. ((orig.))

  14. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  15. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  16. Massachusetts Institute of Technology, Plasma Fusion Center, technical research programs

    International Nuclear Information System (INIS)

    1982-02-01

    Research programs have produced significant results on four fronts: (1) the basic physics of high-temperature fusion plasmas (plasma theory, RF heating, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator A and C tokamaks, including pioneering investigations of the equilibrium, stability, transport and radiation properties of fusion plasmas at high densities, temperatures and magnetic fields; (3) development of a new and innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experimental facility scheduled for 1983; and (4) a broadly based program of fusion technology and engineering development that addresses problems in several critical subsystem areas

  17. The status of the federal magnetic fusion program, or fusion in transition: from science to technology

    International Nuclear Information System (INIS)

    Kane, J.S.

    1983-01-01

    The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives

  18. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  19. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    1982-01-01

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  20. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  1. Annual report of National Institute for Fusion Science. April 2013 - March 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report summarizes achievements from research activities at the National Institute for Fusion Science (NIFS) between April 2013 and March 2014. NIFS is an inter-university research organization and conducts open collaboration research under three frameworks which are the General Collaboration Research, the Large Helical Device Collaboration Research and the Bilateral Collaboration Research. More than 500 collaborating studies were implemented during the covered period. About 2,400 collaborators studies were implemented during the covered period. About 2,400 collaborators participated in joint research from 220 external institutions. Many intensively advanced results in plasma physics, fusion science and related fields have been obtained from these studies. Not only NIFS, but also 6 university centers serve as joint research laboratories/centers under bilateral collaboration research. NIFS also organizes diversified frameworks for international collaboration through 6 bilateral agreements, 3 multi-lateral agreements and academic exchange agreements with 18 institutes abroad for the global development of the function of inter-university research organization. (J.P.N.)

  2. Review of the Inertial Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  3. Review of the Inertial Fusion Energy Program

    International Nuclear Information System (INIS)

    2004-01-01

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of @@@drivers@@@ for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  4. LLL magnetic fusion energy program: an overview

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last 12 months, significant progress has been made in the LLL magnetic fusion energy program. In the 2XIIB experiment, a tenfold improvement was achieved in the plasma confinement factor (the product of plasma density and confinement time), pushed plasma temperature and pressure to values never before reached in a magnetic fusion experiment, and demonstrated--for the first time--plasma startup by neutral beam injection. A new laser-pellet startup technique for Baseball IIT has been successfully tested and is now being incorporated in the experiment. Technological improvements have been realized, such as a breakthrough in fabricating niobium-tin conductors for superconducting magnets. These successes, together with complementary progress in theory and reactor design, have led to a proposal to build the MX facility, which could be on the threshold of a mirror fusion reactor

  5. LLL mirror fusion program: summary

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    During 1976, new Mirror Program plans have been laid out to take into account the significant advances during the last 18 months. The program is now focused on two new mirror concepts, field reversal and the tandem mirror, that can obtain high Q, defined as the ratio of fusion power output to the neutral-beam power injected to sustain the reaction. Theoretically, both concepts can attain Q = 5 or more, as compared to Q = 1 in previous mirror designs. Experimental planning for the next 5 years is complete in broad outline, and we are turning attention to what additional steps are necessary to reach our long-range goal of an experimental mirror reactor operating by 1990. Highlights of the events that have led to the above circumstance are listed, and experimental program plans are outlined

  6. 1986 Annual Report

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report describes the reasearch activity carried out during 1986 by the Fusion Department of the Italian Commision for Nuclear and Alternative Energy Sources (ENEA). The report outlines the main results obtained by the three major projects of the Fusion Department (Fusion Physics, Frascati Tokamak Upgrade, and Fusion Reactor Engineering), plus the divisional project Inertial Confinement mentioned separately because of its particular scientific content. Most of the research work was performed by the Fusion Department at its location at the ENEA Frascati Energy Research Center, but some work was also done elsewhere, or with recourse to other ENEA departments. The research activity described in this annual report was carried out with the frame of the Association Euratom-ENEA on Fusion, with the exception of some minor activities

  7. The Heavy Ion Fusion Program in the U.S.A

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.D.; Logan, B.G.; Meier, W.R.

    2000-01-01

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade

  8. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  9. Inertial fusion research: Annual technical report, 1985

    International Nuclear Information System (INIS)

    Larsen, J.T.; Terry, N.C.

    1986-03-01

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  10. 1982 annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this programme is to study the technological problems related to ''Post Jet'' experimental machines and, in a longer range, to assess the engineering aspects of Fusion Power Reactor Plants. According to the decision taken by the Council of Ministers on the JRC multiannual programme (1980-1983), the work performed on 1982 concerns four projects, namely: The Project 1: ''Fusion Reactor Studies''concerns mainly the NET (Next European Torus) studies which have been continued in the framework of the European participation to INTOR (INternational TOkamak Reactor). This represents a collaborative effort to design a major fusion experiment beyond the-upcoming generation of large tokamaks. The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. The Project 4: ''Cyclotron Operation and Experiments''has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  11. 7 CFR 785.3 - Annual certification of State mediation programs.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Annual certification of State mediation programs. 785... AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS CERTIFIED STATE MEDIATION PROGRAM § 785.3 Annual certification of State mediation programs. To obtain FSA certification of the State's mediation program, the...

  12. Planning for U.S. Fusion Community Participation in the ITER Program

    International Nuclear Information System (INIS)

    Baker, Charles; Berk, Herbert; Greenwald, Martin; Mauel, Michael E.; Najmabadi, Farrokh; Nevins, William M.; Stambaugh, Ronald; Synakowski, Edmund; Batchelor, Donald B.; Fonck, Raymond; Hawryluk, Richard J.; Meade, Dale M.; Neilson, George H.; Parker, Ronald; Strait, Ted

    2006-01-01

    A central step in the mission of the U.S. Fusion Energy Sciences program is the creation and study of a fusion-powered 'star on earth', where the same energy source that drives the sun and other stars is reproduced and controlled for sustained periods in the laboratory. This ''star'' is formed by an ionized gas, or plasma, heated to fusion temperatures in a magnetic confinement device known as a tokamak, which is the most advanced magnetic fusion concept. The ITER tokamak is designed to be the premier scientific tool for exploring and testing expectations for plasma behavior in the fusion burning plasma regime, wherein the fusion process itself provides the dominant heat source to sustain the plasma temperature. It will provide the scientific basis and control tools needed to move toward the fusion energy goal. The ITER project confronts the grand challenge of creating and understanding a burning plasma for the first time. The distinguishing characteristic of a burning plasma is the tight coupling between the fusion heating, the resulting energetic particles, and the confinement and stability properties of the plasma. Achieving this strongly coupled burning state requires resolving complex physics issues and integrating challenging technologies. A clear and comprehensive scientific understanding of the burning plasma state is needed to confidently extrapolate plasma behavior and related technology beyond ITER to a fusion power plant. Developing this predictive understanding is the overarching goal of the U.S. Fusion Energy Sciences program. The burning plasma research program in the U.S. is being organized to maximize the scientific benefits of U.S. participation in the international ITER experiment. It is expected that much of the research pursued on ITER will be based on the scientific merit of proposed activities, and it will be necessary to maintain strong fusion research capabilities in the U.S. to successfully contribute to the

  13. Planning for U.S. Fusion Community Participation in the ITER Program

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Charles [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Berk, Herbert [Univ. of Texas, Austin, TX (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mauel, Michael E. [Columbia Univ., New York, NY (United States); Najmabadi, Farrokh [Univ. of California, San Diego, CA (United States); Nevins, William M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stambaugh, Ronald [General Atomics, La Jolla, CA (United States); Synakowski, Edmund [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Batchelor, Donald B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fonck, Raymond [Univ. of Wisconsin, Madison, WI (United States); Hawryluk, Richard J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Meade, Dale M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Neilson, George H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Parker, Ronald [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Strait, Ted [General Atomics, La Jolla, CA (United States)

    2006-06-07

    A central step in the mission of the U.S. Fusion Energy Sciences program is the creation and study of a fusion-powered "star on earth", where the same energy source that drives the sun and other stars is reproduced and controlled for sustained periods in the laboratory. This “star” is formed by an ionized gas, or plasma, heated to fusion temperatures in a magnetic confinement device known as a tokamak, which is the most advanced magnetic fusion concept. The ITER tokamak is designed to be the premier scientific tool for exploring and testing expectations for plasma behavior in the fusion burning plasma regime, wherein the fusion process itself provides the dominant heat source to sustain the plasma temperature. It will provide the scientific basis and control tools needed to move toward the fusion energy goal. The ITER project confronts the grand challenge of creating and understanding a burning plasma for the first time. The distinguishing characteristic of a burning plasma is the tight coupling between the fusion heating, the resulting energetic particles, and the confinement and stability properties of the plasma. Achieving this strongly coupled burning state requires resolving complex physics issues and integrating challenging technologies. A clear and comprehensive scientific understanding of the burning plasma state is needed to confidently extrapolate plasma behavior and related technology beyond ITER to a fusion power plant. Developing this predictive understanding is the overarching goal of the U.S. Fusion Energy Sciences program. The burning plasma research program in the U.S. is being organized to maximize the scientific benefits of U.S. participation in the international ITER experiment. It is expected that much of the research pursued on ITER will be based on the scientific merit of proposed activities, and it will be necessary to maintain strong fusion research capabilities in the U.S. to successfully contribute to the success of ITER and optimize

  14. Fusion yearbook. Association Euratom-Tekes Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Airila, M.; Karttunen, S. (eds.)

    2012-07-01

    This Annual Report summarises the fusion research activities of the Finnish and Estonian Research Units of the Association Euratom-Tekes in 2011. The emphasis of EFDA is in exploiting JET and co-ordinating physics research in the Associations. In addition, emerging technology and goal oriented training (GOT) activities are under EFDA. R and D Grants for the Joint Undertaking 'Fusion for Energy' on remote handling for ITER divertor maintenance and MEMS magnetometer development constituted a significant fraction of the total research volume. The activities of the Research Unit are divided in the fusion physics under the Contract of Association and EFDA. The physics work is carried out at VTT, Aalto University (AU), University of Helsinki and University of Tartu. The research areas of the EFDA Workprogramme within Association Euratom-Tekes are (i) Heat and particle transport and fast particle studies, (ii) Plasma-wall interactions and material transport in SOL region, and (iii) Code development and diagnostics. Association Euratom-Tekes participated in the EFDA JET Workprogramme 2011, including C28 experiments with the ITER-like wall, diagnostics development and code integration. Two persons were seconded to the JET operating team, one physicist (codes and modelling) and one engineer (remote handling) in preparation of the ITER-like wall. The Association participated also in the 2011 experimental programmes of ASDEX Upgrade at IPP, DIII-D at GA and C-Mod at MIT. The technology work is carried out at VTT, Aalto University, Tampere University of Technology (TUT) and Lappeenranta University of Technology (LUT) in close collaboration with Finnish industry. Industrial participation is co-ordinated by Tekes. The technology research and development includes the DTP2 facility at VTT Tampere, materials and joining techniques, vessel/in-vessel components, magnetic diagnostics by micromechanical magnetometers for ITER, upgrading of the JET NPA diagnostics, Power Plant

  15. Fusion yearbook. Association Euratom-Tekes Annual report 2011

    International Nuclear Information System (INIS)

    Airila, M.; Karttunen, S.

    2012-01-01

    This Annual Report summarises the fusion research activities of the Finnish and Estonian Research Units of the Association Euratom-Tekes in 2011. The emphasis of EFDA is in exploiting JET and co-ordinating physics research in the Associations. In addition, emerging technology and goal oriented training (GOT) activities are under EFDA. R and D Grants for the Joint Undertaking 'Fusion for Energy' on remote handling for ITER divertor maintenance and MEMS magnetometer development constituted a significant fraction of the total research volume. The activities of the Research Unit are divided in the fusion physics under the Contract of Association and EFDA. The physics work is carried out at VTT, Aalto University (AU), University of Helsinki and University of Tartu. The research areas of the EFDA Workprogramme within Association Euratom-Tekes are (i) Heat and particle transport and fast particle studies, (ii) Plasma-wall interactions and material transport in SOL region, and (iii) Code development and diagnostics. Association Euratom-Tekes participated in the EFDA JET Workprogramme 2011, including C28 experiments with the ITER-like wall, diagnostics development and code integration. Two persons were seconded to the JET operating team, one physicist (codes and modelling) and one engineer (remote handling) in preparation of the ITER-like wall. The Association participated also in the 2011 experimental programmes of ASDEX Upgrade at IPP, DIII-D at GA and C-Mod at MIT. The technology work is carried out at VTT, Aalto University, Tampere University of Technology (TUT) and Lappeenranta University of Technology (LUT) in close collaboration with Finnish industry. Industrial participation is co-ordinated by Tekes. The technology research and development includes the DTP2 facility at VTT Tampere, materials and joining techniques, vessel/in-vessel components, magnetic diagnostics by micromechanical magnetometers for ITER, upgrading of the JET NPA diagnostics, Power Plant Physics

  16. Annual review in automatic programming

    CERN Document Server

    Goodman, Richard

    2014-01-01

    Annual Review in Automatic Programming focuses on the techniques of automatic programming used with digital computers. Topics covered range from the design of machine-independent programming languages to the use of recursive procedures in ALGOL 60. A multi-pass translation scheme for ALGOL 60 is described, along with some commercial source languages. The structure and use of the syntax-directed compiler is also considered.Comprised of 12 chapters, this volume begins with a discussion on the basic ideas involved in the description of a computing process as a program for a computer, expressed in

  17. Annual review in automatic programming

    CERN Document Server

    Goodman, Richard

    2014-01-01

    Annual Review in Automatic Programming, Volume 4 is a collection of papers that deals with the GIER ALGOL compiler, a parameterized compiler based on mechanical linguistics, and the JOVIAL language. A couple of papers describes a commercial use of stacks, an IBM system, and what an ideal computer program support system should be. One paper reviews the system of compilation, the development of a more advanced language, programming techniques, machine independence, and program transfer to other machines. Another paper describes the ALGOL 60 system for the GIER machine including running ALGOL pro

  18. Fusion program. The interest for the industry

    International Nuclear Information System (INIS)

    Dominguez Bautista, M. T.

    2007-01-01

    On November 21, 2006, the ministers representing all the parties taking part in ITER (EU, china, India, Japan, Rusia, USA and south Korea signed the so-called ITER agreement, thereby affirming the decision to build this fusion energy demonstration experiment. As of that moment, each partner has been preparing its Domestic Agency that will manage its contribution. Europe will play a relevant role in this facility, the site of which is located in Cadarache, and will provide 50% of its investment. This leading role of Europe is the continuation of years of decisive support for the fusion program. In successive Framework Programs of EURATOM, resources have been allotted to fusion and projects have been executed with specific organizations to coordinate them (EFDA). One of the most significant decision to accomplish this coordination was to involve the industry; in 1994, the ITER EDA Framework Contract was signed to develop the ITER engineering. Since then the EFET group, formed by seven European engineering firms including Empresarios Agrupados and Sener, has developed design work for ITER. together with these engineering activities, engineering firms and manufacturers were qualified to develop prototypes as apart of the so-called 17-technology program. these decisions have made it possible to provide ITER with the industry experience in the execution of large projects and have provided industry with a knowledge of this facility features. Now the time has come to execute the project, and the challenge will be to know how to take advantage of the experience gained by Europe. This article discusses in greater detail the areas to which the European industry has contributed and the expected conditions for this participation. (Author)

  19. Fusion Simulation Program Execution Plan

    International Nuclear Information System (INIS)

    Brooks, Jeffrey

    2011-01-01

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall

  20. Laser program annual report, 1980

    International Nuclear Information System (INIS)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 3 is comprised of three sections, beginning with Section 8 on Advanced Lasers. Both theoretical and experimental research and development activities on advanced laser systems are presented here. Section 9 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial confinement fusion systems. Finally, Section 10 presents results from selected activities in the Advanced Isotope Separation Program

  1. Laser program annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R. (eds.)

    1981-06-01

    Volume 3 is comprised of three sections, beginning with Section 8 on Advanced Lasers. Both theoretical and experimental research and development activities on advanced laser systems are presented here. Section 9 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial confinement fusion systems. Finally, Section 10 presents results from selected activities in the Advanced Isotope Separation Program.

  2. US-DOE Fusion-Breeder Program: blanket design and system performance

    International Nuclear Information System (INIS)

    Lee, J.D.

    1983-01-01

    Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of 233 U per year. The 233 U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U 3 O 8 at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program

  3. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Luckhardt, R.; Terry, N.; Drake, D.; Gaines, J. (eds.)

    1990-04-27

    This KMS Fusion Semi-Annual Technical Report covers the period October 1989 through March 1990. It contains a review of work performed by KMS Fusion, Inc. (KMSF), in support of the national program to achieve inertially confined fusion (ICF). A major section of the report is devoted to target technology, a field which is expected to play an increasingly important role in the overall KMSF fusion effort. Among the highlights of our efforts in this area covered in this report are: improvements and new developments in target fabrication techniques, including a discussion of techniques for introducing gaussian bumps and bands on target surfaces. Development of a single automated system for the interferometric characterization of transparent shells. Residual gas analysis of the blowing gases contained in glass shells made from xerogels. These usually include CO{sub 2}, O{sub 2} and N{sub 2}, and are objectionable because they dilute the fuel. Efforts to observe the ice layers formed in the {beta}-layering process in cryogenic targets, and to simulate the formation of these layers. In addition to our work on target technology, we conducted experiments with the Chroma laser and supported the ICF effort at other labs with theoretical and computational support as well as diagnostic development. Included in the work covered in this report are: experiments on Chroma to study interpenetration of and ionization balance in laser generated plasmas. Diagnostic development, including an optical probe for the Aurora laser at Los Alamos National Laboratory, and a high energy x-ray continuum spectrograph for Aurora. Investigation of the radiation cooling instability as a possible mechanism for the generation of relatively cold, dense jets observed in ICF experiments.

  4. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    Energy Technology Data Exchange (ETDEWEB)

    David A. Petti; Brad J. Merrill; Phillip Sharpe; L. C. Cadwallader; L. El-Guebaly; S. Reyes

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In this paper, recent accomplishments are reviewed and future directions outlined.

  5. Lawrence Livermore National Laboratory laser-fusion program

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  6. Space Program Annual Report, For Approval

    International Nuclear Information System (INIS)

    TM Schaefer

    2004-01-01

    Knolls Atomic Power Laboratory (KAPL) (lead) has been requested by the Reference to create an unclassified report on the Prometheus Program's Jupiter Icy Moons Orbiter (JIMO) mission. This report is expected to be issued annually and be similar in level of content and scope to the NR Program's annual report ''The United States Naval Nuclear Propulsion Program'' (referred to as the Grey Book). The attachment to this letter provides a draft of the Prometheus Program report for NR review and approval. As stated in the Reference, a March 2005 issuance is planned following a coordinated NR Headquarter's review. The information contained in the attached report was obtained from open literature sources, NASA documents and Naval Reactors Program literature. The photographs contained in the report are drafts and their quality will be improved in the final version of the report. This report has been reviewed by the KAPL and Bettis Space Power Plant Staff and has been concurred with by the Manager of Space Power Plant (MJ Wollman) and the Manager of Bettis Reactor Engineering (C Eshelman)

  7. Magnetic fusion program in the United States: an overview and perspective

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    Continuing technical progress in magnetic fusion energy research and a coherent national program involving national laboratories, industry and universities has won strong support from the new Department of Energy. This review presents recent technical progress and examines fusion in relation to other long term energy supply options. Fusion is seen as a technology which, because of its apparently minimal environmental impacts and promise of reasonable cost, has a good chance of competing successfully with the other inexhaustible energy sources

  8. 1981 Annual Status Report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1982-01-01

    The work perfomed on 1981 concerns four projects, namely: - The project 1: ''Reactor Studies''. During 1981 this activity was made in support to the European participation to the INTOR (INternational TOkamak Reactor) studies. This represents a collaborative effort among Europe, Japan; USA and USSR, under the auspices of IAEA, to design a major fusion experiment beyond the upcoming generation of large tokamaks. - The Project 2: ''Blanket Technology'' has the aim to investigate the behaviour of blanket materials in fusion conditions. - The Project 3: ''Materials Sorting and Development'' has the aim to assess the mechanical properties and radiation damage of standard and advanced materials suited for structures, in particular for application as first wall of the fusion reactors. - The Project 4: ''Cyclotron Operation and Experiments'' has the task to exploit a cyclotron to simulate radiation damages to materials in a fusion ambient

  9. Fusion Programme SCK-CEN - Annual report 2009

    International Nuclear Information System (INIS)

    Massaut, V.

    2009-01-01

    This report summarizes the Research and Development work carried out at SCK-CEN on fusion technology in the year 2009. This covers mostly the work done under the EFDA agreement as well as the new developments carried out within the so-called Broader Approach of fusion such as - studies on structural and first wall materials for ITER and DEMO - studies and testing on the radiation resistance of instruments and componenets for the diagnostic and remote handling - development of irradiation devices and systems for the testing of fusion materials under representative environment.

  10. Fusion Programme SCK-CEN - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V

    2009-10-15

    This report summarizes the Research and Development work carried out at SCK-CEN on fusion technology in the year 2009. This covers mostly the work done under the EFDA agreement as well as the new developments carried out within the so-called Broader Approach of fusion such as - studies on structural and first wall materials for ITER and DEMO - studies and testing on the radiation resistance of instruments and componenets for the diagnostic and remote handling - development of irradiation devices and systems for the testing of fusion materials under representative environment.

  11. Fusion technology development. Annual report to the US Department of Energy, October 1, 1996--September 30, 1997

    International Nuclear Information System (INIS)

    1998-03-01

    In FY97, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work was supported by the Office of Fusion Energy Sciences, International and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), Plasma Interactive Materials (Section 3), Magnetic Diagnostic Probes (Section 4) and RF Technology (Section 5). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry

  12. Preliminary proposal for a beryllium technology program for fusion applications

    International Nuclear Information System (INIS)

    1985-02-01

    The program was designed to provide the answers to the critical issues of beryllium technology needed in fusion blanket designs. The four tasks are as follows: (1) Beryllium property measurements needed for fusion data base. (2) Beryllium stress relaxation and creep measurements for lifetime modelling calculations. (3) Simplified recycle technique development for irradiated beryllium. (4) Beryllium neutron multiplier measurements using manganese bath absolute calibration techniques

  13. Technology spinoffs from the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1984-02-01

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage

  14. X-ray imaging in the laser-fusion program

    International Nuclear Information System (INIS)

    McCall, G.H.

    1977-01-01

    Imaging devices which are used or planned for x-ray imaging in the laser-fusion program are discussed. Resolution criteria are explained, and a suggestion is made for using the modulation transfer function as a uniform definition of resolution for these devices

  15. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  16. Fusion Programme SCK-CEN - Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.

    2010-10-15

    In 2010 SCK-CEN centred his activities in fusion Research and Development around four main poles: 1) the studies of the first wall of future DEMO facility and plasma wall interactions, using the recently refurbished plasmatron VISIONI; 2) the study of the radiation resistance of optical and specific diagnostic components and the development and prototyping of a Fiber Optics Current Sensor (FOCS) for measuring Tokamak plasma current for long plasma pulses and without embarked electronics: 3) the further study, by irradiation and mechanical testing but also by modelling, of the future structural material for a fusion plant, the RAFM Eurofer and the development and characterization of ODS-Eurofer; 4) specific fusion socio-economic studies on fusion, based on the specific developments carried out for fusion and radioactive waste management. SCK-CEN is also strongly involved in the Broader Approach agreement as Designated Institution for the Belgian State, having a coordinating and managing role for all Belgian activities in this agreement. The present report is structured following the work programme 2010 of the Association. Some former activities form the old-EFDA have been grouped with new ones in coherent and collaborative packages. Most activities of SCK-CEN are, and have always been, carried out under EFDA task agreements.

  17. Fusion Programme SCK-CEN - Annual Report 2010

    International Nuclear Information System (INIS)

    Massaut, V.

    2010-01-01

    In 2010 SCK-CEN centred his activities in fusion Research and Development around four main poles: 1) the studies of the first wall of future DEMO facility and plasma wall interactions, using the recently refurbished plasmatron VISIONI; 2) the study of the radiation resistance of optical and specific diagnostic components and the development and prototyping of a Fiber Optics Current Sensor (FOCS) for measuring Tokamak plasma current for long plasma pulses and without embarked electronics: 3) the further study, by irradiation and mechanical testing but also by modelling, of the future structural material for a fusion plant, the RAFM Eurofer and the development and characterization of ODS-Eurofer; 4) specific fusion socio-economic studies on fusion, based on the specific developments carried out for fusion and radioactive waste management. SCK-CEN is also strongly involved in the Broader Approach agreement as Designated Institution for the Belgian State, having a coordinating and managing role for all Belgian activities in this agreement. The present report is structured following the work programme 2010 of the Association. Some former activities form the old-EFDA have been grouped with new ones in coherent and collaborative packages. Most activities of SCK-CEN are, and have always been, carried out under EFDA task agreements.

  18. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  19. FUSION Yearbook. Association Euratom-Tekes. Annual Report 2004

    International Nuclear Information System (INIS)

    Karttunen, S.; Rantamaeki, K.

    2005-05-01

    This report summarises the results of the Tekes FUSION technology programme and the fusion research activities by the Association Euratom-Tekes in 2004. The research areas are fusion physics, plasma engineering, fusion technology and a smaller effort to socioeconomic studies. Fusion technology research is carried out in close collaboration with Finnish industry. The emphasis in fusion physics and plasma engineering is in theoretical and computational studies on turbulent transport and modelling of radio-frequency heating experiments and the real time control of transport barriers in JET plasmas, predictive integrated modelling of tokamak plasmas, and studies on material transport in the edge plasmas supported by surface analysis of the JET divertor and limiter tiles. The work in fusion technology for the EFDA Technology Programme and ITER is strongly focused into vessel/in-vessel materials covering research and characterisation of first wall materials, mechanical testing of reactor materials under neutron irradiation, characterisation of irradiated Ti-alloys, simulations of carbon and tungsten sputtering, joining and welding methods and surface physics studies on plasma facing materials. A second domain of fusion technology consists of remote handling systems including water hydraulic manipulators for the ITER divertor maintenance as well as prototyping of intersector welding and cutting robot. Virtual modelling is an essential element in the remote handling engineering. Preparations to host the ITER divertor test platform (DTP2) were completed in 2004 and the DTP2 facility will be hosted by VTT. Some effort was also devoted to neutronics, socio-economic and power plant studies. Several EFDA technology tasks were successfully completed in 2004. (orig.)

  20. Overview of international fusion technology programs

    International Nuclear Information System (INIS)

    Coffman, F.E.; Baublitz, J.E.; Beard, D.S.; Cohen, M.M.; Dalder, E.N.C.; Finfgeld, C.R.; Haas, G.M.; Head, C.R.; Murphy, M.R.; Nardella, G.R.

    1979-01-01

    World fusion technology programs, as well as current progress and future plans for the U.S., are discussed. Regarding conceptual design, the international INTOR tokamak study, the Garching Ignition Test Reactor Study, the U.S. Engineering Test Facility conceptual design, the Argonne National Laboratory Commercial Tokamak Study, mirror conceptual designs, and alternate concepts and applications studies are summarized. With regard to magnetics, progress to date in the large coil program and pulsed coil program is summarized. In the area of plasma heating and fueling and exhaust, work on a new positive ion source research and development program at Lawrence Berkeley Laboratory and Oak Ridge National Laboratory is described, as is negative ion work. Tradeoff considerations for radio-frequency heating alternatives are made, and a new 60-100 GHz electron cyclotron heating research and development program is discussed. Progress and plans for solid hydrogen pellet injector development are analyzed, as are plans for a divertor technology initiative. A brief review of the U.S. alternate applications and environment and safety program is included

  1. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE U.S. DEPARTMENT OF ENERGY OCTOBER 1, 2001 THROUGH SEPTEMBER 30, 2002

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2003-01-01

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments and, ultimately, for an economical and environmentally attractive fusion energy source. To achieve this objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. Our technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The following sections summarize GA's FY02 work in the areas of Fusion Power Plant Studies (ARIES, Section 2), Inertial Fusion Energy (IFE) Chamber Analysis (Section 3), IFE Target Supply System Development (Section 4), Next Step Fusion Design (Section 5), Advanced Liquid Plasma Facing Surfaces (ALPS, Section 6), Advanced Power Extraction Study (APEX, Section 7), Plasma Interactive Materials (DiMES, Section 8) and RF Technology (Section 9). Our work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  2. Fusion power research and development program. Volume IV. 5-year program, budget and milestone summaries

    International Nuclear Information System (INIS)

    1976-07-01

    Budget data are given for each of the tokamak systems, mirror systems, and high density plasma systems for the years 1976 through 1982. All major facilities currently under ERDA contract are included. In addition, budget data are given for the development and technology program consisting of the following; (1) magnetic systems, (2) plasma engineering, (3) fusion reactor materials, (4) fusion systems engineering, (5) environment and safety, and (6) applied plasma physics

  3. The assurance management program for the Nova laser fusion project

    International Nuclear Information System (INIS)

    Levy, A.J.

    1983-01-01

    In a well managed project, Quality Assurance is an integral part of the management activities performed on a daily basis. Management assures successful performance within budget and on schedule by using all the good business, scientific, engineering, quality assurance, and safety practices available. Quality assurance and safety practices employed on Nova are put in perspective by integrating them into the overall function of good project management. The Inertial Confinement Fusion (ICF) approach is explained in general terms. The laser ICF and magnetic fusion facilities are significantly different in that the laser system is used solely as a highly reliable energy source for performing plasma physics experiments related to fusion target development; by contrast, magnetic fusion facilities are themselves the experiments. The Nova project consists of a 10-beam, 74 cm aperture neodymium-glass laser experimental facility which is being constructed by the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy. Nova has a total estimated cost of $176M and will become operational in the Fall of 1984. The Nova laser will be used as the high energy driver for studying the regime of ignition for ICF. The Nova assurance management program was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management program. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  4. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology

  5. Review projects for the US Fusion Program: Progress report, December 1, 1984-February 28, 1987

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1988-01-01

    This paper reviews projects at the University of Washington on the following topics: Magnetic Fusion Energy Program Plan (Feb. 1985); High Density Power Systems; Fusion Systems Studies; Burning Plasmas and Compact Ignition Tokamak; US Magnetic Mirror Program; and Technical Planning Activity (Jan. 1987)

  6. Investigation of electromagnetic launcher behavior for impact fusion. Annual report, July 1, 1983-May 1, 1984

    International Nuclear Information System (INIS)

    Thio, Y.C.

    1984-06-01

    A program to develop an ultrahigh velocity accelerator (SUVAC), based on the electromagnetic railgun accelerator concept and sponsored by the US Department of Energy, has been initiated at Westinghouse R and D Center. The program involves the construction over a 4-year period (July 1983 to June 1987) of a multi-stage railgun accelerator which has the potential of accelerating a 1-g projectile to about 30 km/s (Mach 100). The scientific objective of the program is to use the accelerator so built as the experimental apparatus to investigate the potential technical problems of accelerating macroparticles to velocity presently thought to be required to produce impact fusion. The program is part of a joint program with the University of Washington to develop the scientific and technological basis to achieve controlled thermonuclear fusion by hypervelocity impact. This report summarizes the progress made in the first year of the program. It covers work done for the period July 1, 1983 to May 1, 1984

  7. CIEE 1993 annual conference: Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The California Institute for Energy efficiency`s third annual conference highlights the results of CIEE-sponsored multiyear research in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research are also featured.

  8. Environmental Planning and Ecology Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2008-01-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  9. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  10. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  11. Tritium processing and containment technology for fusion reactors. Annual report, July 1975--June 1976

    International Nuclear Information System (INIS)

    Maroni, V.A.; Calaway, W.F.; Misra, B.; Van Deventer, E.H.; Weston, J.R.; Yonco, R.M.; Cafasso, F.A.; Burris, L.

    1976-01-01

    The hydrogen permeabilities of selected metals, alloys, and multiplex preparations that are of interest to fusion reactor technology are being characterized. A high-vacuum hydrogen-permeation apparatus has been constructed for this purpose. A program of studies has been initiated to develop design details for the tritium-handling systems of near-term fusion reactors. This program has resulted in a better definition of reactor-fuel-cycle and enrichment requirements and has helped to identify major research and development problems in the tritium-handling area. The design and construction of a 50-gallon lithium-processing test loop (LPTL) is well under way. Studies in support of this project are providing important guidance in the selection of hardware for the LPTL and in the design of a molten-salt processing test section

  12. Purdue Contribution of Fusion Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Brooks

    2011-09-30

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall

  13. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  14. The need for a fusion technology information program

    International Nuclear Information System (INIS)

    Correll, D.L. Jr.

    1987-01-01

    In providing an adequate energy technology for the future, which new programs should be considered by the Department of Energy national laboratories to ensure that the US remains in the forefront of international science and technology is an important question. This paper suggests that the urgency for energy independence demands an active communication program that would increase awareness of energy as a critical national issue and would present fusion, with its benefits and risks, as one of the long-term alternative energy sources

  15. The need for a fusion technology information program

    Energy Technology Data Exchange (ETDEWEB)

    Correll, D.L. Jr.

    1987-06-16

    In providing an adequate energy technology for the future, which new programs should be considered by the Department of Energy national laboratories to ensure that the US remains in the forefront of international science and technology is an important question. This paper suggests that the urgency for energy independence demands an active communication program that would increase awareness of energy as a critical national issue and would present fusion, with its benefits and risks, as one of the long-term alternative energy sources.

  16. Industry's role in inertial fusion

    International Nuclear Information System (INIS)

    Glass, A.J.

    1983-01-01

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  17. Fusion Yearbook. 2008 Annual report Association Euratom-Tekes

    International Nuclear Information System (INIS)

    Nora, M.; Karttunen, S.

    2009-05-01

    This Annual Report summarises the fusion research activities of the Finnish and Estonian Research Units of the Association Euratom-Tekes in 2008. The activities of the Research Unit are divided in the fusion physics under the Contract of Association and new EFDA. A few EFDA Technology Tasks and Contracts were still running in 2008 and are now completed. New R and D Grant work on remote handling for ITER launched by the Joint Undertaking 'Fusion for Energy' started in 2008. The Physics Programme is carried out at VTT - Technical Research Centre of Finland, Helsinki University of Technology (TKK) and University of Helsinki (UH). The research areas of the Physics Programme are: (i) Heat and particle transport, MHD physics and plasma edge phenomena, (ii) Plasma-wall interactions and material transport in SOL region, and (iii) Code development and diagnostics. Association Euratom-Tekes participated actively in the EFDA JET Workprogramme 2008 and exploitation of JET facilities in experimental campaigns C20-C25. Three persons were seconded to the UKAEA operating team, two physicists in codes and modelling and one engineer in remote handling. One person was a Task Force Leader in TF T (transport). One engineer from VTT was seconded to the ITER IO at Cadarache in 2008 (Assembly). Practically all physics activities of the Research Unit are carried out in co-operation with other Associations with the focus on EFDA JET work. In addition to EFDA JET activities, the Tekes Association participated in the 2008 experimental programme of ASDEX Upgrade (AUG). Several staff mobility visits of total 530 days took place in 2008. The Technology work is carried out at VTT, Helsinki University of Technology (TKK), Tampere University of Technology (TUT) and Lappeenranta University of Technology (LUT) in close collaboration with Finnish industry. The technology research and development is focused on the remote handling, vessel/in-vessel materials and components plus some activities in

  18. 1981 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems.

  19. 1981 laser program annual report

    International Nuclear Information System (INIS)

    1982-08-01

    This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems

  20. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  1. Elements to be considered in planning heavy ion fusion program: a summary

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.

    1978-01-01

    A summary of Battelle's Engineering Development Program Plan for inertial confinement fusion is presented. Included are development objectives, facilities to achieve these objectives, program strategies, and a discussion of heavy-ion driver development

  2. Annual review in automatic programming

    CERN Document Server

    Goodman, Richard

    2014-01-01

    Annual Review in Automatic Programming, Volume 2 is a collection of papers that discusses the controversy about the suitability of COBOL as a common business oriented language, and the development of different common languages for scientific computation. A couple of papers describes the use of the Genie system in numerical calculation and analyzes Mercury autocode in terms of a phrase structure language, such as in the source language, target language, the order structure of ATLAS, and the meta-syntactical language of the assembly program. Other papers explain interference or an ""intermediate

  3. Inertial Fusion Program. Progress report, July 1-December 31, 1979

    International Nuclear Information System (INIS)

    Skoberne, F.

    1981-10-01

    Progress in the development of high-energy short-pulse CO 2 laser systems for fusion research is reported. Improvements in the Los Alamos National Laboratory eight-beam Helios system are described. These improvements increased the reliability of the laser and permitted the firing of 290 shots, most of which delivered energies of approximately 8 kJ to the target. Modifications to Gemini are outlined, including the installation of a new target-insertion mechanism. The redirection of the Antares program is discussed in detail, which will achieve a total energy of approximatey 40 kJ with two beams. This redirection will bring Antares on-line almost two years earlier than was possible with the full six-beam system, although at a lower energy. Experiments with isentropically imploded Sirius-B targets are discussed, and x-ray radiation-loss data from gold microballoons are presented, which show that these results are essentially identical with those obtained at glass-laser wavelengths. Significant progress in characterizing laser fusion targets is reported. New processes for fabricating glass miroballoon x-ray diagnostic targets, the application of high-quality metallic coatings, and the deposition of thick plastic coatings are described. Results in the development of x-ray diagnostics are reported, and research in the Los Alamos heavy-ion fusion program is summarized. Results of investigations of phase-conjugation research of gaseous saturable absorbers and of the use of alkali-halide crystals in a new class of saturable absorbers are summarized. New containment-vessel concepts for Inertial Confinement Fusion reactors are discussed, and results of a scoping study of four fusion-fission hybrid concepts are presented

  4. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  5. Fusion safety data base

    International Nuclear Information System (INIS)

    Laats, E.T.; Hardy, H.A.

    1983-01-01

    The purpose of this Fusion Safety Data Base Program is to provide a repository of data for the design and development of safe commercial fusion reactors. The program is sponsored by the United States Department of Energy (DOE), Office of Fusion Energy. The function of the program is to collect, examine, permanently store, and make available the safety data to the entire US magnetic-fusion energy community. The sources of data will include domestic and foreign fusion reactor safety-related research programs. Any participant in the DOE Program may use the Data Base Program from his terminal through user friendly dialog and can view the contents in the form of text, tables, graphs, or system diagrams

  6. The heavy ion fusion research program in West Germany

    International Nuclear Information System (INIS)

    Bock, R.

    1984-01-01

    The study on the feasibility of heavy ion beam for inertial confinement fusion was started four years ago, setting the main goal to identify and investigate the key issues of heavy ion fusion concept. The fund for this program has been provided by the Federal Ministry of Research and Technology. In this paper, the outline of the present research is shown, and some recent achievement is summarized. Moreover, the idea about the goal and the new direction of the future program are discussed. In the present program, two activities are distinguished, that is, the expermental and theoretical studies on accelerators, target physics and atomic physics, and the conceptual design study for a heavy ion-driven power plant. A RF linac with storage rings was chosen as the driver concept. In the accelerator research, ion source studies, RFQ development and beam transport measurement have been considered. Two beam transport experiments were carried out. In the conceptual design study, the HIBALL driver concept, the reactor chamber having the first wall protection using Pb-Li eutectic and so on have been studied. An accelerator facility of modest size has been suggested for basic accelerator physics studies. (Kako, I.)

  7. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  8. Chemical and biological nonproliferation program. FY99 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  9. Remedial action programs annual meeting: Meeting notes

    International Nuclear Information System (INIS)

    1987-01-01

    The US Department of Energy Grand Junction Projects Office was pleased to host the 1987 Remedial Action programs Annual Meeting and herein presents notes from that meeting as prepared (on relatively short notice) by participants. These notes are a summary of the information derived from the workshops, case studies, and ad hoc committee reports rather than formal proceedings. The order of the materials in this report follows the actual sequence of presentations during the annual meeting

  10. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  11. The Economic and Workforce Development Program (ED>Net) Annual Report, 2001-02 [and] Addendum to FY 01-02 Annual Report.

    Science.gov (United States)

    California Community Colleges, Sacramento. Economic Development Coordination Network (EDNet).

    This document contains an annual report and its addendum from the Economic and Workforce Development Program of California Community Colleges. The annual report provides an overview of the Program's evaluation processes, regional centers, short-term projects, legislation, strategic plan, etc. It also provides vital facts about the program such as…

  12. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  13. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  14. 2009 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  15. Development of tritium technology for the United States magnetic fusion energy program

    International Nuclear Information System (INIS)

    Anderson, J.L.; Wilkes, W.R.

    1980-01-01

    Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos

  16. Measles Virus Fusion Protein: Structure, Function and Inhibition

    Directory of Open Access Journals (Sweden)

    Philippe Plattet

    2016-04-01

    Full Text Available Measles virus (MeV, a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  17. Fusion Canada issue 28

    International Nuclear Information System (INIS)

    1995-06-01

    A short bulletin from the National Fusion Program highlighting in this issue the Canada - US fusion meeting in Montreal, fusion breeder work in Chile, new management at CFFTP, fast electrons in tokamaks: new data from TdeV, a program review of CCFM and Velikhov to address Montreal fusion meeting. 1 fig

  18. Sandia National Laboratories, California Air Quality Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Gardizi, Leslee P.; Smith, Richard (ERM, Walnut Creek, CA)

    2009-06-01

    The annual program report provides detailed information about all aspects of the SNL/CA Air Quality Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Air Quality Program, one of six programs that supports environmental management at SNL/CA.

  19. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  20. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  1. 2012 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  2. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  3. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1991-01-01

    This paper presents a retrospective summary and bibliography of the National Aeronautics and Space Administration research program on fusion energy for space power and propulsion systems conducted at the Lewis Research Center. This effort extended over a 20-yr period ending in 1978, involved several hundred person-years of effort, and included theory, experiment, technology development, and mission analysis. This program was initiated in 1958 and was carried out within the Electromagnetic Propulsion Division. Within this division, mission analysis and basic research on high-temperature plasma physics were carried out in the Advanced Concepts Branch. Three pioneering high-field superconducting magnetic confinement facilities were developed with the support of the Magnetics and Cryophysics Branch. The results of this program serve as a basis for subsequent discussions of the space applications of fusion energy, contribute to the understanding of high-temperature plasmas and how to produce them, and advance the state of the art of superconducting magnet technology used in fusion research

  4. Optimization of the annual construction program solutions

    Directory of Open Access Journals (Sweden)

    Oleinik Pavel

    2017-01-01

    Full Text Available The article considers potentially possible optimization solutions in scheduling while forming the annual production programs of the construction complex organizations. The optimization instrument is represented as a two-component system. As a fundamentally new approach in the first block of the annual program solutions, the authors propose to use a scientifically grounded methodology for determining the scope of work permissible for the transfer to a subcontractor without risk of General Contractor’s management control losing over the construction site. For this purpose, a special indicator is introduced that characterizes the activity of the general construction organization - the coefficient of construction production management. In the second block, the principal methods for the formation of calendar plans for the fulfillment of the critical work effort by the leading stream are proposed, depending on the intensity characteristic.

  5. University Research Consortium annual review meeting program

    International Nuclear Information System (INIS)

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators

  6. University Research Consortium annual review meeting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  7. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  8. Sandia National Laboratories, California Pollution Prevention Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Janet S.; Farren, Laurie J.

    2010-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA.

  9. Academy of Program/Project & Engineering Leadership Annual Publications

    Data.gov (United States)

    National Aeronautics and Space Administration — Academy of Program/Project & Engineering Leadership's Annual Report highlights the Academy's efforts to serve the NASA workforce's needs in adapting to the...

  10. Annual report of the Association EURATOM/Cea

    International Nuclear Information System (INIS)

    Magaud, Ph.; Le Vagueres, F.

    2002-01-01

    This annual report presents research activities, which have been performed in 2002 by the French EURATOM-Cea association in the frame of the European technology program. The first section describes EFDA (European fusion development agreement) activities and related developments carried out by the association. The second one is dedicated to the underlying technology program and finally the third one presents the inertial confinement fusion activities. In each section the tasks are sorted out according to the EFDA main fields: physics (heating and current drive, remote participation, diagnostics), vessel/in-vessel (vessel/blanket, plasma facing components, remote handling), magnet, tritium breeding and materials (water cooled lithium lead blanket, helium cooled pebble bed blanket, helium cooled lithium lead blanket, reduced activation ferritic martensitic steels, advanced materials, neutron source, fuel cycle), safety and environment, system studies (power plant conceptual studies, socio-economic studies) and JET technology activities. The EURATOM-Cea association is involved in all these studies

  11. Annual report of the Association EURATOM/Cea

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, Ph; Le Vagueres, F

    2002-07-01

    This annual report presents research activities, which have been performed in 2002 by the French EURATOM-Cea association in the frame of the European technology program. The first section describes EFDA (European fusion development agreement) activities and related developments carried out by the association. The second one is dedicated to the underlying technology program and finally the third one presents the inertial confinement fusion activities. In each section the tasks are sorted out according to the EFDA main fields: physics (heating and current drive, remote participation, diagnostics), vessel/in-vessel (vessel/blanket, plasma facing components, remote handling), magnet, tritium breeding and materials (water cooled lithium lead blanket, helium cooled pebble bed blanket, helium cooled lithium lead blanket, reduced activation ferritic martensitic steels, advanced materials, neutron source, fuel cycle), safety and environment, system studies (power plant conceptual studies, socio-economic studies) and JET technology activities. The EURATOM-Cea association is involved in all these studies.

  12. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  13. 40 CFR 256.05 - Annual work program.

    Science.gov (United States)

    2010-07-01

    ... FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... included by reference in the annual work program: (1) Substate solid waste management plans, (2) Plans for the development of facilities and services, including hazardous waste management facilities and...

  14. Annual report of the Division of Thermonuclear Fusion Research, JAERI

    International Nuclear Information System (INIS)

    1977-02-01

    The JFT-2 operating regime was extended to higher toroidal field of 18 kG. Plasma confinements were studied on impurities, instabilities, plasma-wall interaction. Properties of a plasma with a separatrix magnetic surface and plasma behaviour in the scrape-off layer were studied in JFT-2a. In the diagnostics, a grazing-incidence vacuum ultra-violet spectrometer for studies on impurities was completed and put into operation. Several minor improvement and remodelling on the JFT-2 and JFT-2a tokamaks were carried out for the convenience of operation. In the plasma heating, constructions of the JFT-2 neutral injection system and the injector test stand ITS-2 for development of the higher energy ion source were started. The design of 200 kW RF power source for the plasma heating in JFT-2 was also made. Research in surface effects in fusion devices started at April 1, 1975. Experimental apparatus was designed and constructed in this fiscal year. A group for superconducting magnet development for fusion device was set up in January, 1976. Theoretical works continued in the analyses on transport processes, plasma heating, and mhd stabilities with an increasing effort on computational studies. A preliminary design of the 100 MW sub(t) tokamak experimental fusion reactor has been started in April, 1975. At the same time a conceptual design of the 2000 MW sub(t) power reactor was further improved. In the development of large tokamak device of next generation, programs on JT-60 and JT-4 are being carried out. Research and development works and detailed design studies on JT-60 are started based on the preliminary design studies made in the previous year. Preliminary design studies on JT-4 are completed. (auth.)

  15. A carbon-carbon composite materials development program for fusion energy applications

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Engle, G.B.; Hollenberg, G.W.

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible

  16. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stencel, J.R.; Finley, V.L.

    1991-12-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research since 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.

  17. Fusion-breeder program

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The various approaches to a combined fusion-fission reactor for the purpose of breeding 239 Pu and 233 U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed

  18. Proceedings of the 1981 subseabed disposal program. Annual workshop

    International Nuclear Information System (INIS)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal

  19. Proceedings of the 1981 subseabed disposal program. Annual workshop

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  20. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  1. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  2. Fusion Canada issue 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs.

  3. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  4. Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    The Director's Discretionary Research and Development Program, Annual Report Fiscal Year 2006 is an annual management report that summarizes research projects funded by the DDRD program. The NREL DDRD program comprises projects that strengthen NREL's four technical competencies: Integrated Systems, Renewable Electricity, Renewable Fuels, and Strategic Analysis.

  5. Balanced program plan. Volume 10. Fusion: analysis for biomedical and environmental research

    International Nuclear Information System (INIS)

    Hungate, F.P.

    1976-06-01

    Development of the Balanced Program Plan for analysis for biomedical and environmental research was initiated in the spring of 1975. The goal was a redefinition of research efforts and priorities to meet ERDA's requirements for a program of health and environmental research to support the development and commercialization of energy technologies. As part of the Balanced Program planning effort the major ERDA-supported multidisciplinary laboratories were assigned responsibility for analyzing the research needs of each of nine energy technologies and describing a research program to meet these needs. The staff of the Division of Biomedical and Environmental Research was assigned the task of defining a research program addressed to each of five biomedical and environmental research categories (characterization, measurement and monitoring; physical and chemical processes and effects; health effects; ecological effects; and integrated assessment and socioeconomic processes and effects) applicable to all energy technologies. The first drafts of these documents were available for a work-shop in June 1975 at which the DBER staff and scientists from the laboratories developed a comprehensive set of program recommendations. Pacific Northwest Laboratory was assigned responsibility for defining research needs and a recommended research program for fusion and fission technologies. This report, Volume 10, presents the input for fusion

  6. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. Subseabed Disposal Program. Annual report, January-December 1978

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-02-01

    This is the fifth annual report describing the progress and evaluating the status of the Subseabed Disposal Program (SDP), which was begun in June 1973. The program was initiated by Sandia Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans

  8. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  9. Why and how of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly

  10. Nonproliferation Graduate Fellowship Program, Annual Report, Class of 2012

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, Andrea H.

    2013-09-23

    This 32-pp annual report/brochure describes the accomplishments of the Class of 2012 of the Nonproliferation Graduate Fellowship Program (the last class of this program), which PNNL administers for the National Nuclear Security Administration. The time period covers Sept 2011 through June 2013.

  11. Annual report of Naka Fusion Research Establishment from April 1, 2004 to March 31, 2005

    International Nuclear Information System (INIS)

    Yamamoto, Takumi; Sato, Masayasu; Kudo, Yusuke; Shu, Wataru; Yoshida, Hidetoshi

    2005-09-01

    This annual report provides an overview of research and development (R and D) activities at Naka Fusion Research Establishment during the period from 1 April, 2004 to 31 March, 2005, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities. In the JT-60 research program, the pulse length of the tokamak discharge was extended successfully up to 65 s in FY 2003. In FY 2004, following the successful results, optimization of long pulse discharges was continued. The pulse length of the negative-ion based neutral beam injection system has reached up to 25 s with an injection power of 1 MW. In the electron cyclotron wave system, the pulse length has also extended up to 45 s with an RF power of 0.35 MW by using four gyrotrons in a series operation. Sustainment of higher normalized β of β N >2.3 for 22.3 s, or β N >2.5 for 15.5 s has been achieved by exploiting available plasma heating systems. This discharge exhibits not only the high β N , but also high confinement improvement with the H factor of H 89P =1.9-2.3 and high normalized fusion performance of G≡H 89P β N /q 95 2 =0.4-0.5 during the sustainment, where q 95 is a safety factor at the edge. G-0.4 corresponds to the fusion energy gain of Q=10 for the ITER standard scenario. The H-mode plasma with H 89P -1.4 has been maintained for about 30 s, although degradation of the performance was observed at the later half of the discharge. In the reversed shear plasmas, the operation regime was successfully extended. Demonstration of neoclassical tearing mode stabilization and improvement of plasma performance in the high beta region (β N - 3) has been performed using local current drive by the second harmonic electron cyclotron waves. In addition, a real-time control system of safety factor profile has been developed. The design of National Centralized Tokamak (NCT), which is the superconducting modification of JT-60, progressed both in physics and

  12. Inertial Fusion Program. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO 2 -laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized

  13. Inertial Fusion Program. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  14. CEA 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    After an indication of several key figures about the activity of the CEA (Centre d'Etudes Atomiques) and its relationship with the academic as well as the industrial field, in France and worldwide, this 2009 annual report presents its various research programs in the field of defence and of global security: basic research (nuclear weapons and propulsion, struggle against proliferation and terrorism) and applied research (nuclear deterrence, national and international security). Then, it presents the programs in the field of de-carbonated energy: basic research (in material science and in life sciences) and applied research (fission energy, fusion energy, new energy technologies). A last group of research programs deals with information and health technologies and concerns life and material sciences, micro- and nano-technologies, software technologies. Interaction with other research institutions and bodies is also evoked. A brief scientific assessment is proposed. Finally, the different structures building the CEA are presented

  15. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  16. 1970-1971 Annual Report: Extension Service Program, Silliman University.

    Science.gov (United States)

    Maturan, Eulalio G.

    The 1970-1971 annual report of the Extension Service Program of Silliman University, Dumaguete City, Philippines, treats the following projects: Mabinay Agricultural Extension, Mabinay Negrito Action-Research, Reforestation, and Livestock Dispersal. Also discussed are the Rural Publications Center and other extension services--a radio program,…

  17. The role of industry in fusion

    International Nuclear Information System (INIS)

    Forsen, H.K.; Fowler, T.K.; Mariscalco, J.A.; Reichle, F.C.

    1985-01-01

    Bechtel National, Inc. comments on the principle objective of the national fusion program as being the development of fusion as a potential new energy source option. It is also discussed that industry needs a clearer statement of fusion program goals and approximate timing from the DOE, in order to properly assess corporate priorities and commitment to the principle objective. The Lawrence Livermore National Laboratory discusses the idea of ''partnership'', which addresses the issue of industry's role in the fusion program. TRW specifies a need for budget realities and the administrations's science and energy policies as outlined by the DOE's Office of Fusion Energy. Ebasco Services, Inc. expands on the idea of fully involving industry in the fusion energy program. At the Plasma Physics Laboratory, further comments are made on the need for industry's participation in the fusion energy program

  18. Laser Science and Technology Program Annual Report - 2000

    International Nuclear Information System (INIS)

    Chen, H-L

    2001-01-01

    The Laser Science and Technology (LSandT) Program Annual Report 2001 provides documentation of the achievements of the LLNL LSandT Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (ALandC), Laser Optics and Materials (LOandM), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LSandT Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LSandT beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LSandT is committed to this activity

  19. Magnetic fusion program summary document

    International Nuclear Information System (INIS)

    1979-04-01

    This document outlines the current and planned research, development, and commercialization (RD and C) activities of the Offic of Fusion Energy under the Assistant Secretary for Energy Technology, US Department of Energy (DOE). The purpose of this document is to explain the Office of Fusion Energy's activities to Congress and its committees and to interested members of the public

  20. Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State

    Science.gov (United States)

    Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric

    2009-01-01

    Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693

  1. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  2. Fusion Canada issue 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs.

  3. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  4. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  5. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  6. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  8. Fusion Canada issue 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs.

  9. Fusion Canada issue 18

    International Nuclear Information System (INIS)

    1992-08-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs

  10. Fusion reactor materials program plan. Section 2. Damage analysis and fundamental studies

    International Nuclear Information System (INIS)

    1978-07-01

    The scope of this program includes: (1) Development of procedures for characterizing neutron environments of test facilities and fusion reactors, (2) Theoretical and experimental investigations of the influence of irradiation environment on damage production, damage microstructure evolution, and mechanical and physical property changes, (3) Identification and, where appropriate, development of essential nuclear and materials data, and (4) Development of a methodology, based on damage mechanisms, for correlating the mechanical behavior of materials exposed to diverse test environments and projecting this behavior to magnetic fusion reactor (MFR) environments. Some major problem areas are addressed

  11. Fusion-Reactor-Safety Research Program. Annual report, Fiscal Year 1981

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1982-07-01

    The report contains four sections: Outside Contracts includes the continuation of the General Atomic Co. low-activation materials safety study, water-cooled transport activation products study by Pacific Northwest Laboratory (PNL), studies of superconducting magnet safety conducted by Argonne National Laboratory (ANL) coupled with a new experimental superconducting magnet study program by Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety methodology work by MIT, portions of papers on lithium safety studies conducted at Hanford Engineering Development Laboratory (HEDL), and a new program to study tritium gas conversion to tritiated water at Oak Ridge National Laboratory (ORNL). The section EG and G idaho, Inc., Activities at INEL includes adaptations of papers of ongoing work in transient code development, tritium systems risk assessment, heat transfer activities, and a summary of a workshop on safety in design. A List of Publications and Proposed FY-82 Activities are also presented

  12. Fusion energy. What Canada can do

    International Nuclear Information System (INIS)

    Weller, J.A.

    1988-01-01

    As Canada's fusion programs have grown, Canadian capabilities in fusion science and technology have grown and matured with them. The fusion capabilities described in this booklet have come from a coordinated national effort. The Government of Canada is committed to continuing its fusion energy program, and to supporting global fusion efforts. These first pages provide an overview of Canada's fusion work and its underlying basis of science and technology

  13. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  14. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  15. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  16. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  17. Accelerators for heavy ion inertial fusion: Progress and plans

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

    1994-08-01

    The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy

  18. Fermi National Accelerator Laboratory Annual Program Review 1999

    Energy Technology Data Exchange (ETDEWEB)

    1999-05-01

    This book is submitted as one written part of the 1999 Annual DOE High Energy Physics Program Review of Fermilab, scheduled May 5-7,1999. This book should be read in conjunction with the 1999 Fermilab Workbook and the review presentations.

  19. International Code Assessment and Applications Program: Annual report

    International Nuclear Information System (INIS)

    Ting, P.; Hanson, R.; Jenks, R.

    1987-03-01

    This is the first annual report of the International Code Assessment and Applications Program (ICAP). The ICAP was organized by the Office of Nuclear Regulatory Research, United States Nuclear Regulatory Commission (USNRC) in 1985. The ICAP is an international cooperative reactor safety research program planned to continue over a period of approximately five years. To date, eleven European and Asian countries/organizations have joined the program through bilateral agreements with the USNRC. Seven proposed agreements are currently under negotiation. The primary mission of the ICAP is to provide independent assessment of the three major advanced computer codes (RELAP5, TRAC-PWR, and TRAC-BWR) developed by the USNRC. However, program activities can be expected to enhance the assessment process throughout member countries. The codes were developed to calculate the reactor plant response to transients and loss-of-coolant accidents. Accurate prediction of normal and abnormal plant response using the codes enhances procedures and regulations used for the safe operation of the plant and also provides technical basis for assessing the safety margin of future reactor plant designs. The ICAP is providing required assessment data that will contribute to quantification of the code uncertainty for each code. The first annual report is devoted to coverage of program activities and accomplishments during the period between April 1985 and March 1987

  20. The European fusion program and the role of the research reactors

    International Nuclear Information System (INIS)

    Laesser, R.; Andreani, R.; Diegele, E.

    2005-01-01

    The main objectives of the European long-term Fusion Technology Program are i) investigation of DEMO breeding blankets options, ii) development of low activation materials resistant to high neutron fluence, iii) construction of IFMIF for validation of DEMO materials, and iv) promotion of modelling efforts for the understanding of radiation damage. A large effort is required for the development and performance verification of the materials subjected to the intense neutron irradiation encountered in fusion reactors. In the absence of a strong 14.1 MeV neutron source fission materials research reactors are used. Elaborate in-pile and post-irradiation examinations are performed. In addition, the modelling effort is increased to predict the damage by a 'true' fusion spectrum in the future. Even assuming that a positive decision for IFMIF construction can be reached, the operation of a limited number of materials test reactors is needed to perform irradiation studies on large samples and for screening. (author)

  1. Fusion Canada issue 32. Final edition

    International Nuclear Information System (INIS)

    1997-07-01

    Fusion Canada is a bulletin of the National Fusion Program, this is the last edition. Included in this July edition are articles on Funding for Canada's fusion program, Research and Development on TdeV-96 , Divertor Maintenance Robotics and reference listing for Canada's Fusion research and development sites

  2. Determination of Atomic Data Pertinent to the Fusion Energy Program

    International Nuclear Information System (INIS)

    Reader, J.

    2013-01-01

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra

  3. Drinking Water Program 1992 annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG ampersand G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG ampersand G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a open-quotes community water systemclose quotes (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG ampersand G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG ampersand G Idaho production wells

  4. Annual report 1989/90

    International Nuclear Information System (INIS)

    1990-01-01

    In 1990 the Canadian Fusion Fuels Technology Project (CFFTP) evolved its operations into four programs: fusion systems and engineering, ITER/NET design and engineering, safety and environment, and technology applications. The fusion systems and engineering program concentrates on blanket and first wall systems and fusion fuels systems. The ITER/NET design and engineering program coordinates CFFTP's growing technical input into these projects. The safety and environment program focuses Canada's nuclear plant safety expertise on fusion reactor designs. The technology applications program coordinates the provision of goods and services to fusion projects abroad and forms a focus for liaison between CFFTP and Canadian industry. Through CFFTP Canadians are team members at the Joint European Torus (JET), the Next European Torus (NET), Tokamak Fusion Test Reactor (TFTR), and International Thermonuclear Experimental Reactor (ITER). CFFTP and Ontario Hydro are working on the isotope separation system for ITER together with Los Alamos National Laboratory. Total funding for CFFTP reached $13.4 million (Canadian dollars), $6 million from the partners (Atomic Energy of Canada Ltd., Ontario Hydro, and the Province of Ontario), $6.1 million from clients, and $1.3 million from subcontractor in-kind contributions

  5. ARIES Oxide Production Program Annual Report - FY14

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Evelyn A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dinehart, Steven Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-01

    A summary of the major accomplishments (September), milestones, financial summary, project performance and issues facing the ARIES Oxide Production Program at the close of FY14 is presented in this Executive Summary. Annual accomplishments are summarized in the body of the report.

  6. SNL/CA Environmental Planning and Ecology Program Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  7. Fusion Canada issue 6

    International Nuclear Information System (INIS)

    1989-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a funding report for CFFTP, a technical update for Tokamak de Varennes and a network for university research by the National Fusion Program. 4 figs

  8. Overview of the Los Alamos National Laboratory Inertial Confinement Fusion Program

    International Nuclear Information System (INIS)

    Harris, D.B.

    1991-01-01

    The Los Alamos Inertial Confinement Fusion (ICF) Program is focused on preparing for a National Ignition Facility. Target physics research is addressing specific issues identified for the Ignition Facility target, and materials experts are developing target fabrication techniques necessary for the advanced targets. We are also working with Lawrence Livermore National Laboratory on the design of the National Ignition Facility target chamber. Los Alamos is also continuing to develop the KrF laser-fusion driver for ICF. We are modifying the Aurora laser to higher intensity and shorter pulses and are working with the Naval Research Laboratory on the development of the Nike KrF laser. 9 refs., 1 fig., 2 tabs

  9. Annual Report: Photovoltaic Subcontract Program FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [Solar Energy Research Inst., Golden, CO (United States)

    1991-03-01

    This report summarizes the progress of the Photovoltaic (PV) Subcontract Program of the Solar Energy Research Institute (SERI) from October 1, 1989 through September 30, 1990. The PV Subcontract Program is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year 1990, this included more than 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of the subcontracts were with universities at a total funding of nearly $3.3 million. The six technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports on its progress.

  10. Sandia National Laboratories, California Chemical Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  11. Annual report for 1980

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report contains extended abstracts of the work done in the named Laboratory together with a list of publications and reports. The abstracts concern deep-inelastic and transfer reactions, compound-nucleus reactions including fusion and fission, reactions with light and with polarized particles, gamma-ray spectroscopy, and coulomb excitation, atomic physics, the irradiation of biological systems, nuclear structure, nuclear reaction theory, dissipative reactions, accelerator developments, the superconducting sector-cyclotron SuSe, the synchrotron-radiation source Little Erna, detectors, technology, the on-line computer system, the online-offline programming system GOOPSY, the megachannel analyzer for the acquisition of multidimensional events MADAME, and the central monitoring and control system ZUeSS. (HSI) [de

  12. Strategy and progress in the US magnetic fusion program

    International Nuclear Information System (INIS)

    Kintner, E.E.

    1982-01-01

    The US implements the world's most extensive fusion research program. Most of this activity is concentrated on the Tokamak system (one third of the total budget, not including heating and technology). A large machine, TFTR, is to be started up in 1982. This is to be followed by tritium operation. A machine of the JET follow-on generation, FED, is in the definition phase. In the sector of magnetic confinement, the tandem mirror machine is the most important alternative. Twenty percent of the whole budget is spent on this item. Major programs are under way in the fields of heating and technology, which total some 12% of the whole budget. (orig.) [de

  13. Inertial fusion research at Lawrence Livermore National Laboratory: program status and future applications

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1986-01-01

    The objectives of the Lawrence Livermore National Laboratory (LLNL) Laser Fusion Program are to understand and develop the science and technology required to utilize inertial confinement fusion (ICF) for both military and commercial applications. The results of recent experiments are described. We point out the progress in our laser studies, where we continue to develop and test the concepts, components, and materials for present and future laser systems. While there are many potential commercial applications of ICF, we limit our discussions to electric power production

  14. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  15. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  16. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  17. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  18. Annual report of the Fusion Research and Development Center for the period of April 1, 1981 to March 31, 1982

    International Nuclear Information System (INIS)

    1982-11-01

    Research and development activities of the Fusion Research and Development Center (Division of Thermonuclear Fusion Research and Division of Large Tokamak Development) from April 1981 to March 1982 are described. Emphasis in the JFT-2 and Doublet III Tokamak programs was placed on high-power heating experiments. JFT-2M, which is to replace JFT-2, is in fabrication and will be operational in early 1983. Construction of JT-60 progressed as planned with its completion targeted in March 1985. In fusion technology programs development of the prototype NBI unit and klystrons for JT-60 made satisfactory progress; particularly rewarding was the demonstration of full capability of the NBI prototype unit in March 1982. The Japanese coil for the IEA Large Coil Task was completed and passed the cooldown test in the domestic test facility. Activities in the design of the near-term FER and INTOR and the power reactor were continued. (author)

  19. Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2011-03-01

    The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

  20. Nonproliferation Graduate Fellowship Program Annual Report: Class of 2011

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, Andrea H.

    2012-08-20

    Annual report for the Nonproliferation Graduate Fellowship Program (NGFP), which PNNL administers for the National Nuclear Security Administration (NNSA). Features the Class of 2011. The NGFP is a NNSA program with a mission to cultivate future technical and policy leaders in nonproliferation and international security. Through the NGFP, outstanding graduate students with career interests in nonproliferation are appointed to program offices within the Office of Defense Nuclear Nonproliferation (DNN). During their one-year assignment, Fellows participate in programs designed to detect, prevent, and reverse the proliferation of nuclear weapons.

  1. Recent developments concerning the fusion; Developpements recents sur la fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint Paul lez Durance (France); Andre, M. [CEA/DAM Ile de France, 91 - Bruyeres Le Chatel (France); Aymar, R. [ITER Joint Central Team Garching, Muenchen (Germany)] [and others

    2000-09-04

    Organized the 9 march 2000 by the SFEN, this meeting on the european program concerning the fusion, showed the utility of the exploitation and the enhancement of the actual technology (JET, Tore Supra, ASDEX) and the importance of the Europe engagement in the ITER program. The physical stakes for the magnetic fusion have been developed with a presentation of the progresses in the knowledge of the stability limits. A paper on the inertial fusion was based on the LMJ (Laser MegaJoule) project. The two blanket concepts chosen in the scope of the european program on the tritium blankets, have been discussed. These concepts will be validated by irradiation tests in the ITER-FEAT and adapted for a future reactor. (A.L.B.)

  2. Fusion Canada issue 10

    International Nuclear Information System (INIS)

    1990-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Fusion Materials Research, ITER physics research, fusion performance record at JET, and design options for reactor building. 4 figs

  3. Annual report of Fusion Research and Development Directorate of JAEA

    International Nuclear Information System (INIS)

    Kubo, Hirotaka; Hoshino, Katsumichi; Isei, Nobuaki; Nakamura, Hiroo; Sato, Satoshi; Shimada, Katsuhiro; Sugie, Tatsuo

    2009-01-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) from April 1, 2007 to March 31, 2008, including those performed in collaboration with other directorates of JAEA, research institutes, and universities. The JT-60U operation regime was extended toward the long sustainment of high normalized beta (β N ) with good confinement (β N =2.6 x 28 s). Effectiveness of real-time control of current profile was demonstrated in high β plasmas. Toroidal momentum diffusivity and the convection velocity were systematically clarified for the first time, and intrinsic rotation due to pressure gradient was discovered. Effects of toroidal rotation and magnetic field ripple on type 1 ELM size and pedestal performance were clarified, and type I ELM control was demonstrated by toroidal rotation control. Variety of inter-machine experiments, such as JT-60U and JET, and domestic collaborations were performed. In theoretical and analytical researches, for the NEXT (Numerical Experiment of Tokamak) project, numerical simulations of a tokamak plasma turbulence progressed and a zonal field generation was investigated. Also, nonlinear MHD simulations found the Alfven resonance effects on the evolution of magnetic islands driven by externally applied perturbations. Integrations of several kinds of element codes progressed in the integrated transport/MHD model, the integrated edge/pedestal model and the integrated SOL/divertor model. In fusion reactor technologies, R and Ds for ITER and fusion DEMO plants have been carried out. For ITER, a steady state operation of the 170GHz gyrotron up to 800 s with 1 MW was demonstrated. Also extracted beam current of the neutral beam injector has been extended to 320 mA at 796 keV. In the ITER Test Blanket Module (TBM), designs and R and Ds on Water and Helium Cooled Solid Breeder TBMs were progressed. For

  4. Benefit-analysis of accomplishments from the magnetic fusion energy (MFE) research program

    International Nuclear Information System (INIS)

    Lago, A.M.; Weinblatt, H.; Hamilton, E.E.

    1987-01-01

    This report presents the results of a study commissioned by the US Department of Energy's (DOE) Office of Program Analysis to examine benefits from selected accomplishments of DOE's Magnetic Fusion Energy (MFE) Research Program. The study objectives are presented. The MFE-induced innovation and accomplishments which were studied are listed. Finally, the benefit estimation methodology used is described in detail. The next seven chapters document the results of benefit estimation for the MFE accomplishments studied

  5. Program for development of toroidal superconducting magnets for fusion research, May 1975

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1975-11-01

    The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document

  6. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  7. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  8. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  9. XVIIIth annual meeting of the Spanish Nuclear Society, Puerto de Santa Maria 28,29,30 October 1992 Program and abstracts

    International Nuclear Information System (INIS)

    1992-01-01

    The presentation and the abstracts of each session in XVIIIth. Annual meeting of the Spanish Nuclear Society are contained. The principal sessions are: - Environmental aspects of Nuclear Energy - R+D in Nuclear Fusion - Materials - Radiation protection - Severe Accidents

  10. Annual report of Naka Fusion Research Establishment. From April 1, 1996 to March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Masatsugu; Ide, Shunsuke; Matsukawa, Makoto; Kurihara, Ryoichi; Koizumi, Koichi; Takahashi, Ichiro [eds.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-10-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, during the period from April 1, 1996 to March 31, 1997. The activities in Naka Fusion Research Establishment are highlighted by high temperature plasma research in JT-60 and JFT-2M, and progress in ITER-EDA, including technology development. The objectives of the JT-60 project are to contribute to the ITER physics R and D and to establish the physics basis for a steady state tokamak fusion reactor like SSTR. Objectives of the JFT-2M program are (1) advanced and basic researches for the development of high-performance plasmas for nuclear fusion and (2) contribution to the physics R and D for ITER, with a merit of flexibility of a medium-size device. The Detailed Design Report (DDR) of ITER was issued by the Director in November 1996, as the basis of the Final Design Report (FDR). After the formal review by the Technical Advisory Committee (TAC), the DDR was officially accepted by the ITER Council at its 11th Meeting held in December 1996. The DDR is composed of various technical documents on the detailed design of plasma parameters, tokamak components, plant system and tokamak building. The major results of safety analyses described in the Non-site Specific Safety Report (NSSR)-1 was also included in the DDR. The FDR will be prepared by the end of 1997 for presentation at the ITER Council. (J.P.N.)

  11. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  12. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  13. Fermi National Acceleator Laboratory Annual Program Review 1992

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; Jovanovic, Drasko; Pordes, Stephen [Fermilab

    1992-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for March 31 - April 2, 1992. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  14. Fermi National Accelerator Laboratory Annual Program Review 1991

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A. [Fermilab; Jovanovic, Drasko [Fermilab; Pordes, Stephen [Fermilab

    1991-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for April 10-12, 1991. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  15. The US ICF Ignition Program and the Inertial Fusion Program

    International Nuclear Information System (INIS)

    Lindl, J D; Hammel, B A; Logan, B G; Meyerhofer, D D; Payne, S A; Stehian, J D

    2003-01-01

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets

  16. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    International Nuclear Information System (INIS)

    Johnson, R.K.; Bouret, C.

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy

  17. The international magnetic fusion energy program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1988-01-01

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs

  18. Bringing fusion electric power closer

    International Nuclear Information System (INIS)

    Kintner, E.

    1977-01-01

    A review of the controlled fusion research program is given. The tokamak research program is described. Beam injection heating, control systems, and the safety of fusion reactors are topics that are also discussed

  19. Accelerator and Fusion Research Division. Annual report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Research is reported for the combined groups consisting of the Accelerator Division and the Magnetic Fusion Energy Group. Major topics reported include accelerator operations, magnetic fusion energy, and advanced accelerator development. (GHT)

  20. 1980 Annual status report: thermonuclear fusion technology

    International Nuclear Information System (INIS)

    1981-01-01

    According to the decisions taken by the Council of Ministers on the JRC multiannual programme (1980-83), the 1980 activity has been oriented toward four projects which cover a broad range of fields, namely: - the Project 1: 'Reactor Studies'. The main effort was oriented toward the NET/INTOR studies. JRC Ispra is acting as reference nucleus for NET preliminary design. For the moment being this work was made in support to the European participation to INTOR. In 1980 the conceptual design of a demonstration power reactor (FINTOR-D) was also achieved. - The Project 2: 'Blanket Technology' has the aim to investigate structural materials behaviour in fusion conditions. Items like tritium outgassing and permeation from structurals an materials compatibility were investigated. - The Projet 3: 'Material sorting and development'. Its aim is to assess mechanical properties and radiation damage of standard and advanced materials suited for reactor structures. - The Projet 4: 'Cyclotron construction and operation' has the task to install and exploit a cyclotron to simulate demages to materials in a fusion ambient

  1. Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report

    International Nuclear Information System (INIS)

    1996-01-01

    This first annual report on DOE's Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters' Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE's Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program

  2. Economic and Workforce Development Program Annual Report, 2016

    Science.gov (United States)

    California Community Colleges, Chancellor's Office, 2016

    2016-01-01

    The California Community Colleges, through the Economic and Workforce Development Program (EWD), continue to propel the California economy forward by providing students with skills to earn well-paying jobs. At the same time, EWD helps provide California companies with the talent they need to compete on a global scale. This annual report for…

  3. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  4. Overview of the USA inertial fusion program

    International Nuclear Information System (INIS)

    Kahalas, S.L.

    1989-01-01

    The next step in the USA inertial fusion program is to begin planning for a Laboratory Microfusion Facility or LMF. The LMF would have an output energy of between 200 and 1000 MJ, the latter energy being equivalent to a quarter ton of high explosive, with an input driver energy of 5-10 MJ. This implies a high target gain, 100-200 or more, with either a laser or particle beam driver. The LMF would cost a half billion to a billion dollars and would require a serious commitment by the country and the Department of Energy. The Department is in the stage of preliminary planning for an LMF and beginning a process by which a driver selection can be made in the fiscal year 1991-1992 timeframe. Construction initiation will require that a departmental decision be made as well as appropriation of funds within the Congressional funding cycle. In this paper, we review recent progress leading to the new USA program planning for the next facility and describe the status of this preliminary planning as well as characteristics of the LMF. (orig.)

  5. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  6. The international magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1988-10-06

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs.

  7. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  8. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  9. Magnetic fusion energy annual report, July 1975--September 1976

    International Nuclear Information System (INIS)

    Harrison, M.A.; McGregor, C.K.; Gottlieb, L.

    1976-01-01

    Supporting research activities continued to provide the technical basis for future mirror-confinement experiments. The industrial development of a high-current, high-field, high-current-density Nb 3 Sn conductor was the main goal of the superconducting magnet program. Beam direct conversion was being developed as a means of raising the efficiency of neutral-beam production, and plasma direct conversion was shown to work as predicted. Conceptual designs were completed for various types of power reactors. The neutral-beam program progressed in three areas: experimental work, facility construction, and conceptual design. Experiments on the 14-MeV Rotating Target Neutron Source (RTNS-II) included participation by experimenters from many different institutions. Methods for processing tritium-contaminated wastes were pursued, as were studies of tritiated methane in stainless-steel vessels, the control of tritium in mirror fusion reactors, and the development of titanium tritide targets for the RTNS. The report period witnessed a rapid maturation in ability to describe theoretically the behavior of ion-cyclotron noise in the 2XIIB and the influence of that noise on the confined plasma. The high beta values achieved in 2XIIB prompted much theoretical analysis of the properties of high-beta equilibria and stability, including those of a field-reversed state. Excellent progress was made on the development of computer codes applicable to magnetic-mirror problems, with emphasis on three-dimensional, finite-beta, guiding-center equilibria, field-reversal, and Fokker-Planck codes

  10. CEA - Annual report 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The CEA, a prominent player in research development and innovation, is active in 3 main areas: energy, health care and information technology and defense and security. This annual report presents the CEA activity for the year 2006 in these three main areas: Science and technology working for nuclear deterrence and global security (the simulation programs, the nuclear warheads, the nuclear propulsion, the decommissioning, the fighting against nuclear proliferation and monitoring international treaties, the global security); health and information technology (micro and nano technologies and systems); energy from nuclear fission and fusion and other technologies that do not emit greenhouse gases (progress for the nuclear industry, sustainable management of radioactive materials and waste, nuclear systems of the future, new energy technologies). (A.L.B.)

  11. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  12. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  13. Draft program plan for TNS: The Next Step after the Tokamak Fusion Test Reactor. Part II. R and D needs assessment

    International Nuclear Information System (INIS)

    Roberts, M.

    1977-12-01

    The information contained in this document represents the brief but intensive efforts of the Oak Ridge TNS Program Team to answer the following questions: (1) Is there an adequate basis of R and D support for the TNS program as a central, ambitious goal for the fusion program. (2) What are the principal gaps in the current and projected R and D program. (3) What must be done to permit operation of TNS in the mid 1980s. The findings of our preliminary study provide these answers to the questions: (1) The physics and technology base does exist from which to start the TNS design as a central fusion program goal. (2) We have specific recommendations for new emphasis in certain physics and technology areas to minimize R and D program gaps. (3) TNS conceptual design must be started now, and a close look at organizing the fusion program around a TNS project is an essential need to support operation in the mid 1980s

  14. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  15. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  16. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  17. Canadian fusion fuels technology project

    International Nuclear Information System (INIS)

    1986-01-01

    The Canadian Fusion Fuels Technology Project was launched in 1982 to coordinate Canada's provision of fusion fuels technology to international fusion power development programs. The project has a mandate to extend and adapt existing Canadian tritium technologies for use in international fusion power development programs. 1985-86 represents the fourth year of the first five-year term of the Canadian Fusion Fuels Technology Project (CFFTP). This reporting period coincides with an increasing trend in global fusion R and D to direct more effort towards the management of tritium. This has resulted in an increased linking of CFFTP activities and objectives with those of facilities abroad. In this way there has been a continuing achievement resulting from CFFTP efforts to have cooperative R and D and service activities with organizations abroad. All of this is aided by the cooperative international atmosphere within the fusion community. This report summarizes our past year and provides some highlights of the upcoming year 1986/87, which is the final year of the first five-year phase of the program. AECL (representing the Federal Government), the Ministry of Energy (representing Ontario) and Ontario Hydro, have given formal indication of their intent to continue with a second five-year program. Plans for the second phase will continue to emphasize tritium technology and remote handling

  18. Annual report on major results and progress of Fusion Research and Development Directorate of JAEA from April 1, 2006 to March 31, 2007

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Ishii, Yasutomo; Sukegawa, Atsuhiko; Iwai, Yasunori; Nakamura, Hiroo; Sugie, Tatsuo

    2008-08-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) from April 1, 2006 to March 31, 2007, including those performed in collaboration with other research establishments of JAEA, research institutes, and universities. In JT-60, as a result of ferritic steel tiles (FSTs) installation to reduce the toroidal field ripple and the application of the real time current profile control, high boot strap current fraction (∼0.7) has successfully been sustained about 8 s. In addition, the conceptual design of JT-60SA, which was placed as a combined project of JA-EU Satellite Tokamak Programme under the Broader Approach Programme and JAEA's programme for national use, was progressed. In theoretical and analytical researches, studies on ITB events and their triggers, plasma shape effect on edge stability and driven magnetic island evolution in rotating plasmas were progressed. In the NEXT project, computer simulations of the plasma turbulence were progressed. In fusion reactor technologies, R and Ds for ITER and fusion DEMO plants have been carried out. For ITER, a steady state operation of the 170GHz gyrotron up to 10min with 0.82MW was demonstrated. Also current density of the neutral beam injector has been extended to 146A/m 2 at 0.84MeV. In the ITER Test Blanket Module (TBM), designs and R and Ds of Water and Helium Cooled Solid Breeder TBMs including tritium breeder/multiplier materials were progressed. Tritium processing technology for breeding blankets and neutronics integral experiments with a blanket mockup were also progressed. For ITER and DEMO blankets, studies on neutron irradiation effects and ion irradiation effects on F82H steel characteristics were continued using HFIR, TIARA and so on. In the IFMIF program, transitional activities to EVEDA were continued. In the ITER Program, under the framework of the ITER

  19. The quest for fusion energy

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1997-10-01

    A brief history of the magnetic fusion program from the point of view of a stellarator enthusiast who worked at a major tokamak laboratory. The reason that success in the magnetic fusion energy program is essential is presented. (author)

  20. Annual report on major results and progress of Naka Fusion Research Establishment of JAERI from April 1 to September 30, 2005 and Fusion Research and Development Directorate of JAEA from October 1, 2005 to March 31, 2006

    International Nuclear Information System (INIS)

    Yoshida, Hidetoshi; Oasa, Kazumi; Hayashi, Takao; Nakamura, Hiroo; Ogawa, Hiroaki

    2006-09-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Naka Fusion Research Establishment of Japan Atomic Energy Research Institute (JAERI) during the period from April 1 to September 30, 2005 and at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) from October 1, 2005 to March 31, 2006, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities. In JT-60, ferritic steel tiles (FSTs) were installed inside the vacuum vessel of JT-60U to reduce the toroidal field ripple. After the installation of FSTs, a high normalized beta plasma at β N ∼2.3 was sustained for 28.6s with ELMy H-mode confinement as required for an ITER hybrid operation scenario. National Centralized Tokamak was placed as the ITER satellite tokamak in collaboration with the EU fusion community, and the facility design was modified strongly in support of ITER. In theoretical and analytical researches, studies on H-mode confinement, ITB in reversed shear plasmas, aspect ratio effects on external MHD modes and magnetic island evolution in a rotating plasma were progressed. Progress was also made in the NEXT project in which the behaviors of collisionless MHD modes and the dynamics of zonal flows were simulated. In fusion reactor technologies, R and Ds for ITER and fusion DEMO plants have been carried out. For ITER, a steady state operation of the 170GHz gyrotron up to 1000 s with 0.2 MW was demonstrated. Also current density of the neutral beam injector has been extended to 134A/m 2 at 0.75MeV. In the ITER Test Blanket Module (TBM), designs of Water and Helium Cooled Solid Breeder TBMs and R and Ds of tritium breeder/multiplier materials were progressed. Tritium processing technology for breeding blankets was also progressed. For the DEMO reactors, high temperature superconductor such as Bi2212 has been examined. In plasma facing

  1. Fusion Canada issue 4

    International Nuclear Information System (INIS)

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig

  2. Fusion Canada issue 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig.

  3. Starpower: the US and the international quest for fusion energy

    International Nuclear Information System (INIS)

    1987-10-01

    This report, requested by the House Committee on Science, Space, and Technology and endorsed by the Senate Committee on Energy and Natural Resources, reviews the status of magnetic-confinement fusion research and compares its progress with the requirements for development of a useful energy technology. The report does not analyze inertial-confinement fusion research, which is overseen by the House and Senate Armed Services Committees. Contents include: Executive Summary; Introduction and overview; History of fusion research; Fusion science and technology; Fusion as an energy program; Fusion as a research program; Fusion as an international program; Future paths for the magnetic-fusion program; Appendixes--(Non-electric applications for fusion, Other approaches to fusion, Data for figures, List of acronyms and glossary)

  4. Fusion Canada issue 25

    International Nuclear Information System (INIS)

    1994-08-01

    A short bulletin from the National Fusion Program highlighting in this issue an economic impact study of the Canadian site for ITER, Harvey Skarsgard: fusion pioneer retires, NFP: Phillips and Holtslander exchange roles, Europe's fusion funding proposals and an update of CCFM/TdeV. 1 fig

  5. Photovoltaic Program Branch annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K A [ed.

    1990-03-01

    This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

  6. Building technologies program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  7. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear fusion is one of the main activities of the Karlsruhe Nuclear Research Center (KfK). It is organized as a project under the Directorate of Reactor Development and Safety. The work of KfK concentrates on technology aspects of nuclear fusion with magnetic confinement. It is part of the European Fusion Programme where KfK participates as an association to EURATOM. Close links have been established to the Max Planck Institute for Plasma Physics (IPP). In the Entwicklungsgemeinschaft Kernfusion KfK and IPP cooperate for the development of future fusion experiments joining the experience gained in plasma physics (IPP) and materials, safety, and nuclear technology (KfK), respectively. As in the present strategy of the European Fusion Programme the Next European Tokamak (NET) is foreseen as the major next step, most of the activities of KfK address this subject. In addition to the contributions to NET, studies are carried out to innovate INTOR, the worldwide cooperation for an experimental reactor under the auspices of IAEA. Furthermore, the Entwicklungsgemeinschaft Kernfusion has evaluated the feasibility of a fusion reactor with a stellarator confinement. (orig./GG)

  8. Research program. Controlled thermonuclear fusion. Synthesis report 2013

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.

    2014-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. The progress realized in the framework of EURATOM has led to the design of the experimental reactor ITER which is being built at Cadarache (France). The future prototype reactor DEMO is foreseen in 2040-2050. In 2013, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. A new improved confinement regime, called IN-mode, was discovered on TCV. The theory and numerical simulation group interprets the experimental results and foresees those of futures machines. It requires very high performance computers. The Gyrotron group develops radiofrequency sources in the mm range for heating the TCV plasma as well as for ITER and the Wendelstein-7 stellarator. Concerning superconductivity, tests are conducted at PSI on toroidal cables of ITER. The development of conductors and coils for the DEMO reactor has been pursued. In the context of international

  9. Particle-beam-fusion progress report, July 1979 through December 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project

  10. Nuclear Fusion Project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1987-12-01

    Short communications give a survey of 38 technology tasks, the development of ECRH power sources at 150 GHz, and 8 NET study contracts. The fusion technology contracts and the NET contracts are listed in the appendices I and II, respectively, while the KfK departments contributing to the Fusion Project and the Fusion Project Management Staff are listed in appendices III and IV, respectively. (GG)

  11. Some implications for mirror research of the coupling between fusion economics and fusion physics

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described

  12. DOE Hydrogen Program: 2010 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2010 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held June 7-11, 2010 in Washington, D.C.

  13. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  14. How To Prepare Program Proposals for the American Psychological Association Annual Convention.

    Science.gov (United States)

    Tentoni, Stuart C.

    The purpose of this paper is to dispel myths about preparing program proposals for the American Psychological Association's annual convention. The report's goal is to increase the number of student presenters at future annual conventions. It has been determined that, for a variety of reasons, psychology graduate students participate more in poster…

  15. Fusion Canada issue 19

    International Nuclear Information System (INIS)

    1992-12-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the IAEA Plasma Biasing Meeting, the new IEA program -Nuclear Technology of Fusion reactors, TFTR tritium purification system, an update by CCFM on machine additions and modifications, and news of a new compact Toroid injector at the University of Saskatchewan. 1 fig

  16. Stockpile tritium production from fusion

    International Nuclear Information System (INIS)

    Lokke, W.A.; Fowler, T.K.

    1986-01-01

    A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century

  17. Annual report 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The CEA, a public technological research organization is active in three main areas: energy, health care and information technology and defense and security. Excellence in fundamental research underpins its activities. This annual report presents its activities in three main axis. The defense and security axis where science and technology are working for nuclear deterrence and global security, presents the simulation program, the resources available to the scientific community, the nuclear warheads, the nuclear propulsion, the decommissioning of the Rhone Valley facilities, the fighting against nuclear proliferation and monitoring international treaties and the global security. The second axis deals with energy from nuclear fission and fusion and other technologies that do not emit greenhouse gases: progress for the nuclear industry, coherent set of tools for nuclear research and development, sustainable management of radioactive wastes and materials, nuclear systems of the future and new energy technologies. The third axis is devoted to major breakthroughs in information, communication and health science and technology. The report provides also the 2006 financial report, the CEA organizational structure and the support programs. (A.L.B.)

  18. Fermi National Accelerator Laboratory Annual Program Review 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This book is submitted as a written adjunct to the 1993 Annual DOE High Energy Physics Program Review of Fermilab, scheduled for March 31-April 3. In it are described the functions and activities of the various Laboratory Divisions and Sections plus statements of plans and goals for the coming year. The Review Committee, as this goes to press, consists of·

  19. Sandia National Laboratories, California Pollution Prevention Program annual report

    International Nuclear Information System (INIS)

    Harris, Janet S.

    2011-01-01

    The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA. Pollution Prevention supports the goals and objectives to increase the procurement and use of environmentally friendly products and materials and minimize the generation of waste (nonhazardous, hazardous, radiological, wastewater). Through participation on the Interdisciplinary Team P2 provides guidance for integration of environmentally friendly purchasing and waste minimization requirements into projects during the planning phase. Table 7 presents SNL's corporate objectives and targets that support the elements of the Pollution Prevention program.

  20. Fusion Policy Advisory Committee (FPAC)

    International Nuclear Information System (INIS)

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan

  1. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--nuclear fusion

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  2. Status of inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  3. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  4. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  5. Fusion Canada issue 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs.

  6. Fusion Canada issue 9

    International Nuclear Information System (INIS)

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs

  7. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  8. FAA National Aviation Safety Inspection Program. Annual Report FY90

    Science.gov (United States)

    1991-06-01

    This report was undertaken to document, analyze, and place : into national perspective the findings from the 1990 National : Aviation Safety Inspection Program (NASIP). This report is the : fifth in a series of annual reports covering the results of ...

  9. Fusion material development program in the broader approach activities

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T. [Directorates of Fusion Energy Research: Naka, Ibaraki, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Tanigawa, H.; Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hayashi, K.; Takatsu, H. [Fusion Research and Development Directorate, Japan Momie Energy Agency, Ibaraki-ken (Japan); Yamanishi, T. [Tritium Process Laboratory, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken (Japan); Tsuchiya, K. [Directorates of Fusion Energy Research, JAEA, Higashi-ibaraki-gun, Ibaraki-ken (Japan); MoIslang, A. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Baluc, N. [EPFL-Ecole Polytechnique Federale de Lausanne, Association Euratom-Confederation Suisse, UHD - CRPP, PPB, Lausanne (Switzerland); Pizzuto, A. [ENEA CR Frascat, Frascati (Italy); Hodgson, E.R. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain); Lasser, R.; Gasparotto, M. [EFDA CSU Garching (Germany)

    2007-07-01

    Full text of publication follows: The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are initiated by EU and Japan, mainly at Rokkasho BA site in Japan. The BA activities include the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA), the International Fusion Energy Research Center (IFERC), and the Satellite Tokamak. IFERC consists of three sub project; a DEMO Design and R and D coordination Center, a Computational Simulation Center, and an ITER Remote Experimentation Center. Technical R and Ds mainly on fusion materials will be implemented as a part of the DEMO Design and R and D coordination Center. Based on the common interest of each party toward DEMO, R and Ds on a) reduced activation ferritic martensitic (RAFM) steels as a DEMO blanket structural material, SiCf/SiC composites, advanced tritium breeders and neutron multiplier for DEMO blankets, and Tritium Technology were selected and assessed by European and Japanese experts. In the R and D on the RAFM steels, the fabrication technology, techniques to incorporate the fracture/rupture properties of the irradiated materials, and methods to predict the deformation and fracture behaviors of structures under irradiation will be investigated. For SiCf/SiC composites, standard methods to evaluate high-temperature and life-time properties will be developed. Not only for SiCf/SiC but also related ceramics, physical and chemical properties such as He and H permeability and absorption will be investigated under irradiation. As the advanced tritium breeder R and D, Japan and EU plan to establish the production technique for advanced breeder pebbles of Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4}, respectively. Also physical, chemical, and mechanical properties will be investigated for produced breeder pebbles. For the

  10. Future on the ITER program. On a branch of research on nuclear fusion

    International Nuclear Information System (INIS)

    Masaike, Akira

    2000-01-01

    As a huge cost for research and development of nuclear fusion is required, some international cooperative research such as ITER program have been intended to promote, to which Japanese response is required. As the program can be understood on its meaning at a viewpoint of promotion of basic science, concept on a key of energy problem is not insufficient yet And, its effect on technical problems and environment cannot be neglected Here was shown some proposals necessity for discussion on how the program had to be promoted under consideration of these problems. When a large scale program consuming national budget will be carried out, it is natural that agreement of national peoples must be obtained. Regretfully, in Japan discussion on science program above all nuclear policy has scarcely been experienced at citizens' levels, and some bitter experiences, where the concerned have promoted it in one side under a concept without any change once decided, have been pressured without any response to scientific advancements and social changes. Therefore, future plan on the nuclear fusion must be carried out a number of thorough discussion at a wide range from various viewpoints such as its realizing feasibility, safety, economics, and so forth, to promote careful adaptabilities. And, the concerned under promotion of the program and the relatives in the academic community seem to have a responsibility to easily explain present condition and scope of the plan to not only scientists but also citizens to awake them to promote its discussion with them. (G.K.)

  11. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010

    International Nuclear Information System (INIS)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2011-01-01

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA's mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It's all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies.

  12. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2011-04-01

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It’s all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies

  13. Department of Thermonuclear Research annual report 1993

    International Nuclear Information System (INIS)

    Sadowski, M.; Pawlowicz, W.

    1994-01-01

    Department of Thermonuclear Research Annual Report 1993 presents a short review of theoretical, experimental and technological studies performed within the framework of the research program - Plasma Physics. Theoretical studies of a tokamak edge plasma, inner shell ionization by positrons, heat transfer in thin foils, and numerical simulation of HV pulse generators, are summarized. Experimental studies of X-rays and charged particles (including fusion protons) emitted from Plasma-Focus facilities, as well as measurements of plasma-ion streams generated by IONOTRON devices, are described shortly. Also presented are technological studies on data acquisition systems and material engineering, in particular the modification of solid surfaces with the plasma-ion streams. (author)

  14. Department of Thermonuclear Research annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M; Pawlowicz, W [eds.; Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Department of Thermonuclear Research Annual Report 1993 presents a short review of theoretical, experimental and technological studies performed within the framework of the research program - Plasma Physics. Theoretical studies of a tokamak edge plasma, inner shell ionization by positrons, heat transfer in thin foils, and numerical simulation of HV pulse generators, are summarized. Experimental studies of X-rays and charged particles (including fusion protons) emitted from Plasma-Focus facilities, as well as measurements of plasma-ion streams generated by IONOTRON devices, are described shortly. Also presented are technological studies on data acquisition systems and material engineering, in particular the modification of solid surfaces with the plasma-ion streams. (author).

  15. Fusion reactor nucleonics: status and needs

    International Nuclear Information System (INIS)

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface

  16. RTNS-II 1984 annual report

    International Nuclear Information System (INIS)

    1984-01-01

    RTNS-II was built to provide a deuterium-tritium neutron source for the study of fusion neutron effects. In the quest to apply fusion to commercial power production, the specific mission of RTNS-II is threefold: to acquire direct engineering data for near-term confinement experiments and for materials that will see moderate neutron dose in future reactor systems; to measure production rates of transmutants and to develop appropriate radiation-resistant instrumentation for fusion systems; and to study the radiation-induced property changes caused by fusion neutrons. RTNS-II comprises two independent sources of 14-MeV neutrons. This is the third annual report summarizing irradiation experiments at RTNS-II. It covers calendar year 1983, and includes reports of all irradiation results, both fusion and non-fusion related. These comprise both secondary (or ''add-on'') and primary irradiations. Each summary article has been submitted by the investigator and has been altered only to meet the style and format requirements of this report

  17. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    Toi, Kazuo; Wang Kongjia

    2011-07-01

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  18. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  19. Sandia National Laboratories, California Pollution Prevention Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Janet S.

    2011-04-01

    The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA. Pollution Prevention supports the goals and objectives to increase the procurement and use of environmentally friendly products and materials and minimize the generation of waste (nonhazardous, hazardous, radiological, wastewater). Through participation on the Interdisciplinary Team P2 provides guidance for integration of environmentally friendly purchasing and waste minimization requirements into projects during the planning phase. Table 7 presents SNL's corporate objectives and targets that support the elements of the Pollution Prevention program.

  20. 24 Annual meeting of the Spanish Nuclear Society: Valladolid 14-16 October 1998: program and synopsis of lectures

    International Nuclear Information System (INIS)

    1998-01-01

    The technical sessions of XXIV annual meeting of the Spanish Nuclear Society were: 1) Fusion 2) Engineering: calculation and simulation. 3) Economical, legal and social aspect 4) Plant life extension 5) Operating experiences, refueling and operation support 6) Probabilistic safety 7) Radiological protection 8) Waste Management 9) Maintenance 10) Nuclear Safety R and D 11) Environmental aspects 12) Fuel 13) Quality

  1. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  2. 2009 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-10-01

    This report summarizes comments from the Peer Review Panel at the 2009 DOE Hydrogen Program Annual Merit Review, held on May 18-22, 2009, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; education; safety, codes, and standards; technology validation; systems analysis; and manufacturing R&D.

  3. Fusion Power Program biannual progress report, April-September 1979

    International Nuclear Information System (INIS)

    1980-02-01

    This biannual report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the April-September 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Separate abstracts were prepared for three sections

  4. Heavy ion fusion: Prospects and status

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1995-10-01

    The main purpose of this talk is to review the status of HIF as it was presented at Princeton, and also to try to deduce something about the prospects for HIF in particular, and fusion in general, from the world and US political scene. The status of the field is largely, though not entirely, expressed through presentations from the two leading HIF efforts: (1) the US program, centered at LBNL and LLNL, is primarily concerned with applying induction linac technology for HIF drivers; (2) the European program, centered at GSI, Darmstadt, but including several other laboratories, is primarily directed towards the rf linac approach using storage rings for energy compression. Several developments in the field of HIF should be noted: (1) progress towards construction of the National Ignition Facility (NIF) gives strength to the whole rational for developing a driver for Inertial Fusion Energy; (2) the field of accelerator science has matured far beyond the status that it had in 1976; (3) Heavy Ion Fusion has passed some more reviews, including one by the Fusion Energy Advisory Committee (FEAC), and has received the usual good marks; (5) as the budgets for Magnetic Fusion have fallen, the pressures on the Office of Fusion energy (OFE) have intensified, and a move is underway to shift the HIF program out of the IFE program and back into the ICF program in the Defense Programs (DP) side of the DOE

  5. Program for development of high-field superconducting magnets for fusion research

    International Nuclear Information System (INIS)

    1975-01-01

    Three superconducting magnet programs at LLL are outlined. The first program, the one considered in greatest detail, is a developmental program in which LLL will work closely with superconductor manufacturers to develop multifilamentary Nb 3 Sn superconductor suitable for use in large CTR magnets. The result of this program will be the fabrication of a rather large magnet (but one that is much smaller than future CTR magnets) and the determination of its performance limitations. In the second program, the developed multifilamentary Nb 3 Sn superconductor will be used to construct the magnets for the Fusion Engineering Research Facility (FERF) machine. In this program, the bulk of the effort will be in magnet design and winding. The third program chronologically overlaps the first two programs. This program includes the fabrication and testing of the superconducting magnets for the MX machine although, as explained in the Technical Plan, only the cost of the development work is included in this document. At the present time, Nb--Ti superconductor is being considered. Apart from some initial conductor design work, the major effort will be in magnet design and winding

  6. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    1995-03-01

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  7. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists

  8. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G. (eds.)

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  9. Laser Program annual report, 1985

    International Nuclear Information System (INIS)

    Rufer, M.L.; Murphy, P.W.

    1986-11-01

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately

  10. Laser Program annual report, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Rufer, M.L.; Murphy, P.W. (eds.)

    1986-11-01

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately.

  11. Theoretical atomic physics for fusion. 1994 Annual Report

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1994-01-01

    The understanding of electron-ion collision processes in plasmas remains a key factor in the ultimate development of nuclear fusion as a viable energy source for the nation. The author's 1993-1994 research proposal delineated several areas of research in electron-ion scattering theory. In the paragraphs below the author summarizes 1994 efforts

  12. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    1993-03-01

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  13. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  14. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  15. Annual Water Management Program Report Prime Hook National Wildlife Refuge 1997

    Data.gov (United States)

    Department of the Interior — This report summarizes the results of Prime Hook National Wildlife Refuge’s 1996 annual water management program and describes plans for 1997. The main objective of...

  16. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  17. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  18. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL's next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S ampersand R) and TPX was prepared for submittal to the regulatory agencies

  19. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  20. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  1. Structured Annual Faculty Review Program Accelerates Professional Development and Promotion

    Directory of Open Access Journals (Sweden)

    Stanley J. Robboy MD

    2017-03-01

    Full Text Available This retrospective observational study on faculty development analyzes the Duke University Pathology Department’s 18-year experience with a structured mentoring program involving 51 junior faculty members. The majority had MD degrees only (55%. The percentage of young women faculty hires before 1998 was 25%, increasing to 72% after 2005. Diversity also broadened from 9% with varied heritages before 1998 to 37% since then. The mentoring process pivoted on an annual review process. The reviews generally helped candidates focus much earlier, identified impediments they individually felt, and provided new avenues to gain a national reputation for academic excellence. National committee membership effectively helped gain national exposure. Thirty-eight percent of the mentees served on College of American Pathologists (CAP committees, exponential multiples of any other national society. Some used CAP resources to develop major programs, some becoming nationally and internationally recognized for their academic activities. Several faculty gained national recognition as thought leaders for publishing about work initiated to serve administrative needs in the Department. The review process identified the need for more protected time for research, issues with time constraints, and avoiding exploitation when collaborating with other departments. This review identified a rigorous faculty mentoring and review process that included annual career counseling, goal-oriented academic careers, monitored advancement to promotion, higher salaries, and national recognition. All contributed to high faculty satisfaction and low faculty turnover. We conclude that a rigorous annual faculty review program and its natural sequence, promotion, can greatly foster faculty satisfaction.

  2. Annual coded wire tag program (Washington) missing production groups : annual report 2000; ANNUAL

    International Nuclear Information System (INIS)

    Dammers, Wolf; Mills, Robin D.

    2002-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded-wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-00 was met with few modifications to the original FY-00 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-00 were decoded. Under Objective 3, this report summarizes available recovery information through 2000 and includes detailed information for brood years 1989 to 1994 for chinook and 1995 to 1997 for coho

  3. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  4. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  5. Office of Basic Energy Sciences program to meet high priority nuclear data needs of the Office of Fusion Energy: 1986 review

    International Nuclear Information System (INIS)

    Lane, R.O.

    1986-09-01

    A coordination meeting of the program was held at Argonne National Laboratory on September 17-19, 1986. Representatives from the participating laboratories and from the fusion technology community met to discuss nuclear data needs for fusion. Most of the standing nuclear data requests for fusion were discussed in considerable detail, and the status of the relevant data was reviewed. Task force groups were organized along disciplinary lines to address many of the issues which confront the program. Plans were laid for several collaborative endeavors, including technical projects to address specific data problems and an intercomparison of methods and codes in the area of nuclear modeling

  6. Southwestern Institute of Physics annual report (2000)

    International Nuclear Information System (INIS)

    2001-01-01

    The research results and engineering progress of SWIP (Southwestern Institute of Physics) during the year of 2000 was summarized in this annual report. The contents divided into five parts: 1. tokamak experimental diagnoses and tokamak engineering; 2. fusion reactor and fusion reactor materials; 3. plasma theory and calculation; 4. technique development and application; 5. appendix 31 theses and presented in this report

  7. XXII annual meeting of the Spanish Nuclear Society, Santander 22-26 October 1996: program and synopsis of lectures

    International Nuclear Information System (INIS)

    1996-01-01

    The technical sessions of XXII annual meeting of the Spanish Nuclear Society were: 1) Fusion 2) Engineering: calculation and simulation. 3) Economical, legal and social aspect 4) Plant life extension 5) Operating experiences, refueling and operation support 9)Probabilistic safety 7) radiological protection 8) Waste management 9) Maintenance 10) Advanced plants 11) Steam generators 12) Nuclear Safety. R and D 13) Environmental aspects 14) Fuel 15) Quality

  8. Fusion environment sensitive flow and fracture processes

    International Nuclear Information System (INIS)

    1980-01-01

    As a planning activity, the objectives of the workshop were to list, prioritize and milestone the activities necessary to understand, interpret and control the mechanical behavior of candidate fusion reactor alloys. Emphasis was placed on flow and fracture processes which are unique to the fusion environment since the national fusion materials program must evaluate these effects without assistance from other reactor programs

  9. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    The International Fusion Research Council has prepared this report on the current status of fusion, an update of its 1978 report, at the request of the Director General of the International Atomic Energy Agency. The report consists of an introductory note by the Director General, an Executive Summary and General Overview published in this document, and a series of technical reports. The background of fusion as an energy source is documented and compared with fission. The two approaches to thermonuclear fusion, magnetic confinement and inertial confinement, are discussed. The viability with respect to economic, environmental, and safety aspects is discussed. Fusion programs in the European Community, Japan, the USSR, the USA, as well as smaller programs in other countries are described. The status of fusion physics and technology is elucidated, and future directions and plans are indicated. 5 refs, 6 figs

  10. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  11. LLE 2009 annual report, October 2008-September 2009

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2010-01-01

    The fiscal year ending September 2009 (FY2009) concluded the second year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year. It also reports on LLE’s progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the National Laser Users’ Facility (NLUF), and other external users; and programs focusingon the education of high school, undergraduate, and graduate students during the year.

  12. 76 FR 8804 - 30-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Science.gov (United States)

    2011-02-15

    ... DS-3097, Exchange Visitor Program Annual Report, OMB Control Number 1405-0151 ACTION: Notice of... Department of State has submitted the following information collection request to the Office of Management... Information Collection: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request...

  13. 77 FR 20687 - 30-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Science.gov (United States)

    2012-04-05

    ...-3097, Exchange Visitor Program Annual Report, OMB Control Number 1405-0151 ACTION: Notice of request... Department of State has submitted the following information collection request to the Office of Management... Information Collection: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request...

  14. Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2006-02-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  15. SNL/CA Environmental Planning and Ecology Annual Program Report for Calendar Year 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2005-05-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  16. Environmental Hazards Assessment Program annual report, [June 1992--June 1993

    International Nuclear Information System (INIS)

    1993-10-01

    This report, the Environment Hazards Assessment Program (EHAP) Annual Report, is the second of three reports that document activities under the EHAP grant and details progress made during the first year of the grant. The first year was devoted to the development of a working program implementation plan. During the developmental process some key objectives were achieved such as developing a Doctor of Philosophy degree program in Environmental Studies at MUSC (Medical University of South Carolina) and conducting the first Crossroads of Humanity series Round Table Forum. The PIP (Program Implementation Program) details the objectives, management and budgetary basis for the overall management and control of the grant over the next four years, the yearly program plans provide the monthly and day-to-day programmatic and budgetary control by which the PIP was developed

  17. Environmental Hazards Assessment Program annual report, [June 1992--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report, the Environment Hazards Assessment Program (EHAP) Annual Report, is the second of three reports that document activities under the EHAP grant and details progress made during the first year of the grant. The first year was devoted to the development of a working program implementation plan. During the developmental process some key objectives were achieved such as developing a Doctor of Philosophy degree program in Environmental Studies at MUSC (Medical University of South Carolina) and conducting the first Crossroads of Humanity series Round Table Forum. The PIP (Program Implementation Program) details the objectives, management and budgetary basis for the overall management and control of the grant over the next four years, the yearly program plans provide the monthly and day-to-day programmatic and budgetary control by which the PIP was developed.

  18. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  19. Environmental research program: FY 1987, annual report

    International Nuclear Information System (INIS)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups

  20. Environmental research program: FY 1987, annual report

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  1. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  2. Fusion Canada issue 12

    International Nuclear Information System (INIS)

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington's Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs

  3. Economic potential of inertial fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents

  4. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Hoppe, M.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ''Onsite Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D 2 or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester's Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks

  5. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, M. [ed.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ``Onsite Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D{sub 2} or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester`s Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  6. Methods of economic analysis applied to fusion research. Fourth annual report

    International Nuclear Information System (INIS)

    Hazelrigg, G.A. Jr.

    1980-01-01

    The current study reported here has involved three separate tasks. The first task deals with the development of expected utility analysis techniques for economic evaluation of fusion research. A decision analytic model is developed for the incorporation of market uncertainties, as well as technological uncertainties in an economic evaluation of long-range energy research. The model is applied to the case of fusion research. The second task deals with the potential effects of long-range energy RD and D on fossil fuel prices. ECON's previous fossil fuel price model is extended to incorporate a dynamic demand function. The dynamic demand function supports price fluctuations such as those observed in the marketplace. The third task examines alternative uses of fusion technologies, specifically superconducting technologies and first wall materials to determine the potential for alternative, nonfusion use of these technologies. In both cases, numerous alternative uses are found

  7. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  8. Fusion plasma theory project summaries

    Science.gov (United States)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  9. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  10. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  11. Fermi National Accelerator Laboratory Annual Program Review 2000

    Energy Technology Data Exchange (ETDEWEB)

    2000-03-01

    This book is submitted as one written part of the 2000 Annual DOE High Energy Physics Program Review of Fermilab, scheduled March 22-24, 2000. In it are Director's Overview, some experimental highlights, discussions of several projects, and descriptions of the functions and activities of the four laboratory divisions. This book should be read in conjunction with the 2000 Fermilab Workbook and the review presentations (both in formal sessions and at the poster session).

  12. Energy Systems Studies Program annual report, fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1976-06-01

    This is the fourth annual progress report of the Energy Systems Studies Program supported at Brookhaven National Laboratory by the Energy Research and Development Administration (ERDA), Office of the Assistant Administrator for Planning and Analysis. The program is coordinated under the designation of a National Center for Analysis of Energy Systems (NCAES). Five working groups with specific program responsibilities are: policy analysis, economic analysis, biomedical and environmental assessment, technology assessment, and energy data and models. Future scenarios of the implementation of groups of technologies and new resources are developed. The socio-economic and environmental consequences are analyzed in detail and impact analyses are performed. Progress during FY 1976 is summarized in the following areas: energy system model development; energy-economic model development; technology assessments and support; economic analyses; and energy model data base activities. The program plan for FY 1977 is presented. (MCW)

  13. Building the US National Fusion Grid: results from the National Fusion Collaboratory Project

    International Nuclear Information System (INIS)

    Schissel, D.P.; Burruss, J.R.; Finkelstein, A.; Flanagan, S.M.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Papka, M.; Peng, Q.; Randerson, L.; Sanderson, A.; Stillerman, J.; Stevens, R.; Thompson, M.R.; Wallace, G.

    2004-01-01

    The US National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion research. The project is creating a robust, user-friendly collaborative software environment and making it available to more than 1000 fusion scientists in 40 institutions who perform magnetic fusion research in the United States. In particular, the project is developing and deploying a national Fusion Energy Sciences Grid (FusionGrid) that is a system for secure sharing of computation, visualization, and data resources over the Internet. The FusionGrid goal is to allow scientists at remote sites to fully participate in experimental and computational activities as if they were working at a common site thereby creating a virtual organization of the US fusion community. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  14. 75 FR 64775 - 60-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Science.gov (United States)

    2010-10-20

    ... DS-3097, Exchange Visitor Program Annual Report, and OMB Control Number 1405- 0151 ACTION: Notice of request for public comments. SUMMARY: The Department of State is seeking Office of Management and Budget...: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request: Extension of a...

  15. 76 FR 77581 - 60-Day Notice of Proposed Information Collection: Form DS-3097, Exchange Visitor Program Annual...

    Science.gov (United States)

    2011-12-13

    ... DS-3097, Exchange Visitor Program Annual Report, and OMB Control Number 1405- 0151 ACTION: Notice of request for public comments. SUMMARY: The Department of State is seeking Office of Management and Budget...: Exchange Visitor Program Annual Report. OMB Control Number: 1405-0151. Type of Request: Extension of a...

  16. Fusion Canada issue 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington`s Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs.

  17. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Finley, V.L.; Wieczorek, M.A.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL's environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten at sign on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL's next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S ampersand R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects

  18. Fusion technology. Annual report of the Association CEA/EURATOM 1997

    International Nuclear Information System (INIS)

    Magaud, P.; Le Vagueres, F.

    1998-01-01

    The research and development work performed by the French EURATOM-CEA Association for fusion technology is part of the Fusion Programme of the European Community. This report compiles the work carried out during the year 1997 as follows: The ITER CEA activities and related developments are described in the first section (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); The second part is dedicated to the Long Term activities as Blankets and material developments, long term safety, socio-economic problem; The Underlying Technology activities are compiled in the third part of this report (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); And the fourth part describes the inertial confinement studies. (K.A.)

  19. Fusion technology. Annual report of the Association CEA/EURATOM 1997

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P.; Le Vagueres, F

    1998-12-31

    The research and development work performed by the French EURATOM-CEA Association for fusion technology is part of the Fusion Programme of the European Community. This report compiles the work carried out during the year 1997 as follows: The ITER CEA activities and related developments are described in the first section (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); The second part is dedicated to the Long Term activities as Blankets and material developments, long term safety, socio-economic problem; The Underlying Technology activities are compiled in the third part of this report (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); And the fourth part describes the inertial confinement studies. (K.A.)

  20. Fusion technology. Annual report of the Association CEA/EURATOM 1997

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P; Le Vagueres, F

    1999-12-31

    The research and development work performed by the French EURATOM-CEA Association for fusion technology is part of the Fusion Programme of the European Community. This report compiles the work carried out during the year 1997 as follows: The ITER CEA activities and related developments are described in the first section (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); The second part is dedicated to the Long Term activities as Blankets and material developments, long term safety, socio-economic problem; The Underlying Technology activities are compiled in the third part of this report (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); And the fourth part describes the inertial confinement studies. (K.A.)

  1. CEA 2009 annual report; CEA rapport annuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    After an indication of several key figures about the activity of the CEA (Centre d'Etudes Atomiques) and its relationship with the academic as well as the industrial field, in France and worldwide, this 2009 annual report presents its various research programs in the field of defence and of global security: basic research (nuclear weapons and propulsion, struggle against proliferation and terrorism) and applied research (nuclear deterrence, national and international security). Then, it presents the programs in the field of de-carbonated energy: basic research (in material science and in life sciences) and applied research (fission energy, fusion energy, new energy technologies). A last group of research programs deals with information and health technologies and concerns life and material sciences, micro- and nano-technologies, software technologies. Interaction with other research institutions and bodies is also evoked. A brief scientific assessment is proposed. Finally, the different structures building the CEA are presented

  2. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1988-07-01

    Short communications give a survey of 38 technology tasks, the development of ECRH power sources at 150 GHz, and 9 NET study are listed in the appendices I and II, respectively, while the KfK departments contributing to the Fusion Project and the Fusion Project Management Staff are listed in appendices III and IV, respectively. (GG)

  3. CFARMHD -- A MathCAD PC program to evaluate performance and economics of CFARII fusion reactors

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    This report describes a PC computer program ''CFARMHD'', developed to evaluate the performance (MHD cycle efficiency) and economics (Cost-of-Electricity CoE) for pulsed fusion reactors using the Compact Fusion Advanced Rankine II (CFARII) MHD Balance of Plant (BoP). The CFARII concept to which this code applies is generic to any fusion driver which can be characterized by an assumed yield Y (GJ), target gain G, and unit cost ($/joule driver). The CFARMHD code models the sizes, masses, energies, mass flows and powers corresponding to the physical systems and optimizes them to minimize CoE for given Y, G, $/joule, and choice of material for the working fluid (cast as solid spherical shells around the target). A description of the models used in the CFARMHD code is given in Section 11, and the CoE minimization procedure used in the code is described in Section III

  4. International information exchange in fusion research

    International Nuclear Information System (INIS)

    Strickler, C.S.

    1979-01-01

    Formal and informal agreements exist between the US and several other countries, assuring the unrestricted exchange of magnetic fusion information. The Fusion Energy Library at Oak Ridge National Laboratory uses the US Department of Energy standard distribution system and exchange agreements to ensure the receipt of current reports. Selective dissemination of information, computer networks, and exchange programs are additional means for information gathering. The importance of these means as they relate to the fusion program in the US and specifically at ORNL is discussed

  5. Fusion Canada issue 8

    International Nuclear Information System (INIS)

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs

  6. Fusion Canada issue 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs.

  7. 24 CFR 4001.203 - Calculation of upfront and annual mortgage insurance premiums for Program mortgages.

    Science.gov (United States)

    2010-04-01

    ... mortgage insurance premiums for Program mortgages. 4001.203 Section 4001.203 Housing and Urban Development... HOMEOWNERS PROGRAM HOPE FOR HOMEOWNERS PROGRAM Rights and Obligations Under the Contract of Insurance § 4001.203 Calculation of upfront and annual mortgage insurance premiums for Program mortgages. (a...

  8. Congress turns cold on fusion

    International Nuclear Information System (INIS)

    Marshall, E.

    1984-01-01

    A 5% cut in fusion research budgets will force some programs to be dropped in order to keep the large machinery running unless US and European scientists collaborate instead of competing. Legislators became uneasy about the escalating costs of the new devices. The 1984 budget of $470 million for magnetic fusion research is only half the projected cost of the Tokomak Fusion Core Experiment (TFCX) planned to ignite, for the first time, a self-sustaining burn. Planning for the TCFX continued despite the message from Congress. Work at the large institutions at Princeton, MIT, etc. may survive at the expense of other programs, some of which will lose academic programs as well. Scientists point to the loss of new ideas and approaches when projects are cancelled. Enthusiasm is growing for international collaboration

  9. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  10. IPP annual report 1989/90

    International Nuclear Information System (INIS)

    1991-01-01

    The subject-related chapters of the annual report present an introduction to the fundamentals of thermonuclear power generation and the design of fusion devices. Experiments carried out with the Tokamak and Stellarator devices are reported in detail, particularly the ASDEX experiment and the WENDELSTEIN experiments. Other scientific activities reported include basic research work on fusion reactions and studies on the interactions between the plasma and the wall, as well as activities within the framework of international cooperation. The report finally presents the organisational structure of the institute and the activities of the administration. (DG) [de

  11. Research program. Controlled thermonuclear fusion. Synthesis report 2014

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Fiocco, D.

    2015-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world; its energy yield Q reached 0.65. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject electricity into the grid for long term. In 2014, CRPP participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity. At the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which are necessary to optimise the core geometry of future reactors. Moreover, the plasma heating by mm radio waves allows guiding the injected power according to specific

  12. OSU Reactor Sharing Program FY 1995 annual report

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1996-10-01

    This is the annual report of the activities supported under the Oregon State University Reactor Sharing Program, award number DE-FG06-NE38137. The beginning date for the award was September, 30, 1995 and the end date was September 29, 1996. Work conducted under this award is internally administered at the Radiation Center through a project tasking system. This allows for excellent quality control for the work which is performed from the point of initial contact, through the reactor application, project report generation and financial accounting. For the current fiscal year, FY95, the total cost of the reactor sharing program, including Radiation Center contributions, was $66,323.20 of which $40,000.00 was supplied by the DOE Reactor Sharing Program. The details of individual project costs is given in Table 1. The work performed for the individual projects are described in the brief work descriptions given in Table 2

  13. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993

  14. Annual coded wire tag program, Washington: Missing production groups. Annual report for 1998

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.

    1999-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program--Missing Production Groups for Columbia River Hatcheries'' project. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries

  15. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  16. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  17. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management

  18. Fusion instrumentation and control: a development strategy

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Greninger, R.C.; Longhurst, G.R.; Madden, P.

    1981-01-01

    We have examined requirements for a fusion instrumentation and control development program to determine where emphasis is needed. The complex, fast, and closely coupled system dynamics of fusion reactors reveal a need for a rigorous approach to the development of instrumentation and control systems. A framework for such a development program should concentrate on three principal need areas: the operator-machine interface, the data and control system architecture, and fusion compatible instruments and sensors. System dynamics characterization of the whole fusion reactor system is also needed to facilitate the implementation process in each of these areas. Finally, the future need to make the instrumentation and control system compatible with the requirements of a commercial plant is met by applying transition technology. These needs form the basis for the program tasks suggested

  19. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--nuclear fusion and plasma physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 22 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear fusion and plasma physics sub-volume

  20. Fusion Canada issue 15

    International Nuclear Information System (INIS)

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it's role. 1 fig

  1. Fusion Canada issue 22

    International Nuclear Information System (INIS)

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs

  2. Fusion Canada issue 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it`s role. 1 fig.

  3. Fusion Canada issue 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs.

  4. Hawaii's Annual Journey Through the Universe Program

    Science.gov (United States)

    Harvey, J.; Daou, D.; Day, B.; Slater, T. F.; Slater, S. J.

    2012-08-01

    Hawaii's annual Journey through the Universe program is a flagship Gemini public education and outreach event that engages the public, teachers, astronomers, engineers, thousands of local students and staff from all of the Mauna Kea Observatories. The program inspires, educates, and engages teachers, students, and their families as well as the community. From February 10-18, 2011, fifty-one astronomy educators from observatories on Mauna Kea and across the world visited over 6,500 students in 310 classrooms at 18 schools. Two family science events were held for over 2,500 people at the 'Imiloa Astronomy Education Center and the University of Hawaii at Hilo. The local Chamber of Commerce(s) held an appreciation celebration for the astronomers attended by over 170 members from the local government and business community. Now going into its eighth year in Hawaii, the 2012 Journey Through the Universe program will continue working with the observatories on Mauna Kea and with the NASA Lunar Science Institute (NLSI). As a new partner in our Journey program, NLSI will join the Journey team (Janice Harvey, Gemini Observatory, Journey Team Leader) and give an overview of the successes and future developments of this remarkable program and its growth. The future of America rests on our ability to train the next generation of scientists and engineers. Science education is key and Journey through the Universe opens the doors of scientific discovery for our students. www.gemini.edu/journey

  5. Magnetic fusion energy technology fellowship: Report on survey of institutional coordinators

    International Nuclear Information System (INIS)

    1993-02-01

    In 1980, the Magnetic Fusion Energy Technology (MFET) Fellowship program was established by the US Department of Energy, Office of Fusion Energy, to encourage outstanding students interested in fusion energy technology to continue their education at a qualified graduate school. The basic objective of the MFET Fellowship program is to ensure an adequate supply of scientists in this field by supporting graduate study, training, and research in magnetic fusion energy technology. The program also supports the broader objective of advancing fusion toward the realization of commercially viable energy systems through the research by MFET fellows. The MFET Fellowship program is administered by the Science/Engineering Education Division of Oak Ridge Institute for Science and Education. Guidance for program administration is provided by an academic advisory committee

  6. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  7. 78 FR 64496 - Acid Rain Program: Notice of Annual Adjustment Factors for Excess Emissions Penalty

    Science.gov (United States)

    2013-10-29

    ... Factors for Excess Emissions Penalty AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of annual adjustment factors for excess emissions penalty. SUMMARY: The Acid Rain Program under title IV of... excess tons emitted times $2,000 as adjusted by an annual adjustment factor, which must be published in...

  8. Calorimetry exchange program annual data report for 1992

    International Nuclear Information System (INIS)

    Barnett, T.M.

    1992-01-01

    The goals of the Calorimetry Sample Exchange Program are: discuss measurement differences; review and improve analytical measurements and methods; discuss new measurement capabilities; provide data to DOE on measurement capabilities to evaluate shipper-receiver differences; provide characterized or standard materials as necessary for exchange participants; and provide a measurement control program for plutonium analysis. A sample of PuO 2 powder is available at each participating site for NDA measurement, including either or both calorimetry and high-resolution gamma-ray spectroscopy, the elements which are typically combined to provide a calorimetric assay of plutonium. The facilities measure the sample as frequently and to the level of precision which they desire, and then submit the data to the Exchange for analysis. The data report includes summary tables for each measurement and charts showing the performance of each laboratory. Comparisons are made to the accepted values for the exchange sample and to data previously reported by that laboratory. This information is presented, in the form of quarterly and annual reports, intended for use by Exchange participants in measurement control programs, or to indicate when bias corrections may be appropriate. No attempt, however, has been made to standardize methods or frequency of data collection, calibration, or operating procedures. Direct comparisons between laboratories may, therefore, be misleading since data have not been collected to the same precision or for the same time periods. A meeting of the participants of the Calorimetry Exchange is held annually at EG ampersand G Mound Applied Technologies. The purposes of this meeting are to discuss measurement differences, problems, and new measurement capabilities, and to determine the additional activities needed to fulfill the goals of the Exchange. This document provides data for 1992

  9. Annual report of Fusion Research and Development Directorate of JAEA for FY2008 and FY2009

    International Nuclear Information System (INIS)

    Isei, Nobuaki

    2011-03-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) for FY2008 (from April 1, 2008 to March 31, 2009) and FY2009 (from April 1, 2009 to March 31, 2010), including those performed in collaboration with other research establishments of JAEA, research institutes, and universities. Concerning the ITER project, JAEA was nominated as the domestic agency by the Japanese government after the ITER Agreement took effect, and has fulfilled the obligations. In the development of superconducting conductors, JAEA constructed a technical platform for the fabrication of superconducting conductors for toroidal field (TF) coils ahead of other countries. JAEA immediately started and completed the construction of a plant to fabricate superconducting conductors, and started their fabrication ahead of other countries. In the development of gyrotron high-frequency heating equipment, since only the JAEA satisfies the ITER's procurement specifications among supplier countries, the ITER Organization requested JAEA to conduct confidence tests, and achieved results such as data acquisition that could contribute to the development of the ITER's operational scenario. For the development of neutral beam injectors, advantages of the multi-stage acceleration system developed by JAEA was recognized as a result of comparative experiments with single-stage acceleration systems developed in Europe for the particle acceleration system, and was adopted in the ITER's technical specifications. For the Broader Approach (BA) activities, JAEA was designated as the implementing agency by the Japanese government after the BA Agreement took effect, and has fulfilled the obligations and promoted three projects in the BA activities steadily through domestic cooperation and coordination with Europe. Concerning activities related to the International Fusion Energy

  10. Research program. Controlled thermonuclear fusion. Synthesis report 2015

    International Nuclear Information System (INIS)

    Villard, L.; Marot, L.; Soom, P.

    2016-01-01

    In 1961, 3 years after the 2 nd International Conference on Peaceful Use of Nuclear Energy, the Research Centre on Plasma Physics (CRPP) was created as a department of the Federal Institute of Technology (EPFL) in Lausanne (Switzerland). From 1979, CRPP collaborates to the European Program on fusion research in the framework of EURATOM. In 2015 its name was changed to Swiss Plasma Centre (SPC). The advantages of fusion are remarkable: the fuel is available in great quantity all over the world; the reactor is intrinsically safe; the reactor material, activated during operation, loses practically all its activity within about 100 years. But the working up of the controlled fusion necessitates extreme technological conditions. In 1979, the Joint European Torus (JET) began its operation; today it is still the most powerful tokamak in the world, in which an energy yield Q of 0.65 could be obtained. In 2015, the stellarator Wendelstein 7-X (W7X), the largest in the world, was set into operation. The progress realized in the framework of EURATOM has led to the planning of the experimental reactor ITER which is being built at Cadarache (France). ITER is designed to reach a Q-value largely above 1. The future prototype reactor DEMO is foreseen in 2040-2050. It should demonstrate the ability of a fusion reactor to inject permanently electricity into the grid. In 2015, SPC participated in the works on ITER in the framework of the Fusion for Energy (F4E) agency. At EPFL the research concerns the physics of the magnetic confinement with experiments on the tokamak TCV (variable configuration tokamak), the numerical simulations, the plasma heating and the generation of current by hyper frequency radio waves. At the Paul Scherrer Institute (PSI), research is devoted to the superconductivity; at the Basel University the studies get on interactions between the plasma and the tokamak walls. The large flexibility of TCV allows creating and controlling plasmas of different shapes which

  11. Overview of fusion nuclear technology in the US

    International Nuclear Information System (INIS)

    Morley, N.B.; Abdou, M.A.; Anderson, M.; Calderoni, P.; Kurtz, R.J.; Nygren, R.; Raffray, R.; Sawan, M.; Sharpe, P.; Smolentsev, S.; Willms, S.; Ying, A.Y.

    2006-01-01

    Fusion nuclear technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of magnet fusion energy (MFE) fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities

  12. Annual coded wire tag program (Washington) missing production groups: annual report for 1997; ANNUAL

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.; Ashbrook, C.

    1998-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Councils (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-97 was met with few modifications to the original FY-97 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-97 were decoded. Under Objective 3, survival, contribution and stray rate estimates for the 1991-96 broods of chinook and 1993-96 broods of coho have not been made because recovery data for 1996-97 fisheries and escapement are preliminary. This report summarizes recovery information through 1995

  13. Fusion neutronics plan in the development of fusion reactor. With the aim of realizing electric power

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Morimoto, Yuichi; Ochiai, Kentarou; Sugimoto, Masayoshi; Nishitani, Takeo; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    On June 1992, Atomic Energy Commission in Japan has settled Third Phase Program of Fusion Research and Development to achieve self-ignition condition, to realize long pulse burning plasma and to establish basis of fusion engineering for demonstration reactor. This report describes research plan of Fusion Neutron Laboratory in JAERI toward a development of fusion reactor with an aim of realizing electric power. The fusion neutron laboratory has a fusion neutronics facility (FNS), intense fusion neutron source. The plan includes research items in the FNS; characteristics of shielding and breeding materials, nuclear characteristics of materials, fundamental irradiation process of insulator, diagnostics materials and structural materials, and development of in-vessel diagnostic technology. Upgrade of the FNS is also described. Also, the International Fusion Material Irradiation Facility (IFMIF) for intense neutron source to develop fusion materials is described. (author)

  14. Nuclear Waste Treatment Program: Annual report for FY 1986

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs

  15. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  16. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  17. Theoretical atomic physics for fusion. 1995 annual report

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1995-01-01

    The understanding of electron-ion collision processes in plasmas remains a key factor in the ultimate development of nuclear fusion as a viable energy source for the nation. The 1993--1995 research proposal delineated several areas of research in electron-ion scattering theory. In this report the author summarizes his efforts in 1995. The main areas of research are: (1) electron-impact excitation of atomic ions; (2) electron-impact ionization of atomic ions; and (3) electron-impact recombination of atomic ions

  18. Fusion Canada issue 14

    International Nuclear Information System (INIS)

    1991-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on a fusion cooperation agreement between Japan and Canada, an update at Tokamak de Varennes on plasma biasing experiments and boronization tests and a collaboration between Canada and the U.S. on a compact toroid fuelling gun. 4 figs

  19. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  20. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  1. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  2. Fusion and its future in Illinois

    International Nuclear Information System (INIS)

    Baker, C.C.

    1984-08-01

    This report was prepared by the Illinois Fusion Power Task Force under the sponsorship of the Governor's Commission on Sciences and Technology. The report presents the findings and recommendations of the Task Force, an explanation of the basic concepts of fusion, a summary of national and international programs and a description of ongoing fusion activities in Illinois

  3. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  4. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, Frederick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Noe, Susan P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  5. Summary of research for the Inertial Confinement Fusion Program at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1985-03-01

    The information presented in this report is a summary of the status of the Inertial Confinement Fusion (ICF) program at the Los Alamos National Laboratory as of February 1985. This report contains material on the existing high-power CO 2 laser driver (Antares), the program to determine the potential of KrF as an ICF driver, heavy-ion accelerators as drivers for ICF, target fabrication for ICF, and a summary of our understanding of laser-plasma interactions. A classified companion report contains material on our current understanding of capsule physics and lists the contributions to the Laboratory's weapons programs made by the ICF program. The information collected in these two volumes is meant to serve as a report on the status of some of the technological components of the Los Alamos ICF program rather than a detailed review of specific technical issues

  6. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  7. INDRA: a program system for calculating the neutronics and photonics characteristics of a fusion reactor blanket

    International Nuclear Information System (INIS)

    Perry, R.T.; Gorenflo, H.; Daenner, W.

    1976-01-01

    INDRA is a program system for calculating the neutronics and photonics characteristics of fusion reactor blankets. It incorporates a total of 19 different codes and 5 large data libraries. 10 of the codes are available from the code distribution organizations. Some of them, however, have been slightly modified in order to permit a convenient transfer of information from one program module to the next. The remaining 9 programs have been prepared by the authors to complete the system with respect to flexibility and to facilitate the handling of the results. (orig./WBU) [de

  8. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  9. Annual progress report 1993. Work in controlled thermonuclear fusion research performed in the fusion research unit under the contract of association between Euratom and Risoe National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    The programme of the Research Unit of the Fusion Association Euratom-Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of pellet injectors for fusion experiments, and (c) development of diagnostics for fusion plasmas. The activities in technology cover radiation damage of fusion reactor materials. A summary of the activities in 1993 is presented. (au) (4 tabs., 21 ills., 64 refs.)

  10. Survey of tritium wastes and effluents in near-term fusion-research facilities

    International Nuclear Information System (INIS)

    Bickford, W.E.; Dingee, D.A.; Willingham, C.E.

    1981-08-01

    The use of tritium control technology in near-term research facilities has been studied for both the magnetic and inertial confinement fusion programs. This study focused on routine generation of tritium wastes and effluents, with little referene to accidents or facility decommissioning. This report serves as an independent review of the effectiveness of planned control technology and radiological hazards associated with operation. The facilities examined for the magnetic fusion program included Fusion Materials Irradiation Testing Facility (FMIT), Tritium Systems Test Assembly (TSTA), and Tokamak Fusion Test Reactor (TFTR) in the magnetic fusion program, while NOVA and Antares facilities were examined for the inertial confinement program

  11. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1995-01-01

    This document deals with heavy-ion induction accelerators developed as fusion drivers for Inertial Confinement Fusion power. It presents the results of research aimed at developing drivers having reduced cost and size as well as the Elise accelerator being built at Lawrence Berkeley Laboratory. An experimental program at Lawrence Livermore National Laboratory concerning recirculating induction accelerators is also presented. Eventually, the document provides some information on other elements of the U.S. Heavy-Ion Fusion (HIF) research program: the experimental study of beam merging, a magnetic quadrupole development program and a study of plasma lenses. (TEC). 28 refs., 6 figs

  12. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  13. Annual radioactive waste tank inspection program -- 1993

    International Nuclear Information System (INIS)

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8

  14. Future of fusion implementation

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.R.

    1978-01-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a cost/benefit oriented assessment methodology, because of both the time-frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the US energy system are posited and analyzed under various assumptions about costs. The Reference Energy System approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumptions levels and technology mix in each scenario. Not unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  15. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  16. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  17. First annual report of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Boulton, J.; Gibson, A.R.

    1979-12-01

    The research and development program for the safe, permanent disposal of Canada's nuclear fuel wastes has been established. This report, the first of a series of annual reports, reviews in general terms the progress which has been achieved. After briefly reviewing the rationale and organization of the program, the report summarizes activities in the area of public information, used fuel storage and transportation, immobilization of used fuel and fuel reprocessing wastes, research and development associated with deep underground disposal, and environmental and safety assessment. (auth) [fr

  18. Annual Program Progress Report under DOE/PHRI Cooperative Agreement: (July 1, 2001-June 30, 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Palafox, Neal A., MD, MPH

    2002-07-31

    OAK B188 DOE/PHRI Special Medical Care Program in the Republic of the Marshall Islands (RMI)Annual Program Progress Report. The DOE Marshall Islands Medical Program continued, in this it's 48th year, to provide medical surveillance for the exposed population from Rongelap and Utrik and the additional DOE patients. The program was inaugurated in 1954 by the Atomic Energy Commission following the exposure of Marshallese to fallout from a nuclear test (Castle Bravo) at Bikini Atoll. This year marks the fourth year in which the program has been carried out by PHRI under a cooperative agreement with DOE. The DOERHRI Special Medical Care Program, awarded the cooperative agreement on August 28, 1998, commenced its health care program on January 15, 1999, on Kwajalein and January 22, 1999, on Majuro. This report details the program for the July 1, 2001, through the June 30, 2002, period. The program provides year-round, on-site medical care to the DOE patient population residing in the Republic of the Marshall Islands (RMI) and annual examinations to those patients living in Hawaii and on the Continental U.S.

  19. Fusion Concept Exploration Experiments at PPPL

    International Nuclear Information System (INIS)

    Stewart Zweben; Samuel Cohen; Hantao Ji; Robert Kaita; Richard Majeski; Masaaki Yamada

    1999-01-01

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively

  20. High-energy fusion: A quest for a simple, small and environmentally acceptable colliding-beam fusion power source

    International Nuclear Information System (INIS)

    Maglich, B.

    1978-01-01

    Fusion goals should be lowered for a speedier research and development of a less ambitious but a workable 'low-gain fusion power amplifier', based on proven technologies and concepts. The aim of the Migma Program of Controlled Fusion is a small (10-15 liters) fusion power source based on colliding beams instead of plasma or laser heating. Its scientific and technological 'philosophy' is radically different from that of the governmental fusion programs of the USA and USSR. Migmacell uses radiation-free fuels, ('advanced fuels'), rather than tritium. Economic projections show that such a smaller power cell can be econonomically competitive in spite of its low power gain, because it can be mass produced. Power stations could be made either large or small and the power transmission and distribution pattern in the nation would change. An interspersion of energy resources would result. Minifusion opens the possibility to smaller countries (and medium size institutions of large countries), for participation in fusion research; this resource of research talent is presently excluded from fusion by the high cost of the mainline governmental research (over $ 200 million for one experimental fusion device, as compared to $ 1 million for migmacell). The time-scale for obtaining experimental results is reduced from decades to years. Experimental accomplishments to date and the further research needed, are presented. (orig.) [de