WorldWideScience

Sample records for fusion oncogene activates

  1. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.

    Science.gov (United States)

    Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz

    2012-03-01

    Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

  2. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.

    Science.gov (United States)

    Crescenzo, Ramona; Abate, Francesco; Lasorsa, Elena; Tabbo', Fabrizio; Gaudiano, Marcello; Chiesa, Nicoletta; Di Giacomo, Filomena; Spaccarotella, Elisa; Barbarossa, Luigi; Ercole, Elisabetta; Todaro, Maria; Boi, Michela; Acquaviva, Andrea; Ficarra, Elisa; Novero, Domenico; Rinaldi, Andrea; Tousseyn, Thomas; Rosenwald, Andreas; Kenner, Lukas; Cerroni, Lorenzo; Tzankov, Alexander; Ponzoni, Maurilio; Paulli, Marco; Weisenburger, Dennis; Chan, Wing C; Iqbal, Javeed; Piris, Miguel A; Zamo', Alberto; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Shultz, Leonard D; Mevellec, Laurence; Vialard, Jorge E; Piva, Roberto; Bertoni, Francesco; Rabadan, Raul; Inghirami, Giorgio

    2015-04-13

    A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.

  3. Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway.

    Science.gov (United States)

    Mak, H H L; Peschard, P; Lin, T; Naujokas, M A; Zuo, D; Park, M

    2007-11-01

    Multiple mechanisms of dysregulation of receptor tyrosine kinases (RTKs) are observed in human cancers. In addition to gain-of-function, loss of negative regulation also contributes to oncogenic activation of RTKs. Negative regulation of many RTKs involves their internalization and degradation in the lysosome, a process regulated through ubiquitination. RTK oncoproteins activated following chromosomal translocation, are no longer transmembrane proteins, and are predicted to escape lysosomal degradation. To test this, we used the Tpr-Met oncogene, generated following chromosomal translocation of the hepatocyte growth factor receptor (Met). Unlike Met, Tpr-Met is localized in the cytoplasm and also lacks the binding site for Cbl ubiquitin ligases. We determined whether subcellular localization of Tpr-Met, and/or loss of its Cbl-binding site, is important for oncogenic activity. Presence of a Cbl-binding site and ubiquitination of cytosolic Tpr-Met oncoproteins does not alter their transforming activity. In contrast, plasma membrane targeting allows Tpr-Met to enter the endocytic pathway, and Tpr-Met transforming activity as well as protein stability are decreased in a Cbl-dependent manner. We show that transformation by Tpr-Met is in part dependent on its ability to escape normal downregulatory mechanisms. This provides a paradigm for many RTK oncoproteins activated following chromosomal translocation.

  4. Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition.

    Science.gov (United States)

    Kim, H S; Jung, M; Kang, H N; Kim, H; Park, C-W; Kim, S-M; Shin, S J; Kim, S H; Kim, S G; Kim, E K; Yun, M R; Zheng, Z; Chung, K Y; Greenbowe, J; Ali, S M; Kim, T-M; Cho, B C

    2017-01-16

    Despite remarkable progress in cutaneous melanoma genomic profiling, the mutational landscape of primary mucosal melanomas (PMM) remains unclear. Forty-six PMMs underwent targeted exome sequencing of 111 cancer-associated genes. Seventy-six somatic nonsynonymous mutations in 42 genes were observed, and recurrent mutations were noted on eight genes, including TP53 (13%), NRAS (13%), SNX31 (9%), NF1 (9%), KIT (7%) and APC (7%). Mitogen-activated protein kinase (MAPK; 37%), cell cycle (20%) and phosphatidylinositol 3-kinase (PI3K)-mTOR (15%) pathways were frequently mutated. We biologically characterized a novel ZNF767-BRAF fusion found in a vemurafenib-refractory respiratory tract PMM, from which cell line harboring ZNF767-BRAF fusion were established for further molecular analyses. In an independent data set, NFIC-BRAF fusion was identified in an oral PMM case and TMEM178B-BRAF fusion and DGKI-BRAF fusion were identified in two malignant melanomas with a low mutational burden (number of mutation per megabase, 0.8 and 4, respectively). Subsequent analyses revealed that the ZNF767-BRAF fusion protein promotes RAF dimerization and activation of the MAPK pathway. We next tested the in vitro and in vivo efficacy of vemurafenib, trametinib, BKM120 or LEE011 alone and in combination. Trametinib effectively inhibited tumor cell growth in vitro, but the combination of trametinib and BKM120 or LEE011 yielded more than additive anti-tumor effects both in vitro and in vivo in a melanoma cells harboring the BRAF fusion. In conclusion, BRAF fusions define a new molecular subset of PMM that can be targeted therapeutically by the combination of a MEK inhibitor with PI3K or cyclin-dependent kinase 4/6 inhibitors.Oncogene advance online publication,16 January 2017; doi:10.1038/onc.2016.486.

  5. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    Science.gov (United States)

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.

  6. Analyses of domains and domain fusions in human proto-oncogenes

    Directory of Open Access Journals (Sweden)

    Wan Ping

    2009-03-01

    Full Text Available Abstract Background Understanding the constituent domains of oncogenes, their origins and their fusions may shed new light about the initiation and the development of cancers. Results We have developed a computational pipeline for identification of functional domains of human genes, prediction of the origins of these domains and their major fusion events during evolution through integration of existing and new tools of our own. An application of the pipeline to 124 well-characterized human oncogenes has led to the identification of a collection of domains and domain pairs that occur substantially more frequently in oncogenes than in human genes on average. Most of these enriched domains and domain pairs are related to tyrosine kinase activities. In addition, our analyses indicate that a substantial portion of the domain-fusion events of oncogenes took place in metazoans during evolution. Conclusion We expect that the computational pipeline for domain identification, domain origin and domain fusion prediction will prove to be useful for studying other groups of genes.

  7. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins.

    Directory of Open Access Journals (Sweden)

    Hedi Hegyi

    2009-10-01

    Full Text Available Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins, they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL; (ii a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK; (iii the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF. Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations.

  8. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Yoshitaka Seki

    2015-09-01

    Full Text Available Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase, ROS1 (c-ros oncogene 1, or RET (rearranged during transfection occur in 1%–5% of lung adenocarcinomas (LADCs and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them.

  9. Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions.

    Science.gov (United States)

    Shugay, Mikhail; Ortiz de Mendíbil, Iñigo; Vizmanos, José L; Novo, Francisco J

    2013-10-15

    Gene fusions resulting from chromosomal aberrations are an important cause of cancer. The complexity of genomic changes in certain cancer types has hampered the identification of gene fusions by molecular cytogenetic methods, especially in carcinomas. This is changing with the advent of next-generation sequencing, which is detecting a substantial number of new fusion transcripts in individual cancer genomes. However, this poses the challenge of identifying those fusions with greater oncogenic potential amid a background of 'passenger' fusion sequences. In the present work, we have used some recently identified genomic hallmarks of oncogenic fusion genes to develop a pipeline for the classification of fusion sequences, namely, Oncofuse. The pipeline predicts the oncogenic potential of novel fusion genes, calculating the probability that a fusion sequence behaves as 'driver' of the oncogenic process based on features present in known oncogenic fusions. Cross-validation and extensive validation tests on independent datasets suggest a robust behavior with good precision and recall rates. We believe that Oncofuse could become a useful tool to guide experimental validation studies of novel fusion sequences found during next-generation sequencing analysis of cancer transcriptomes. Oncofuse is a naive Bayes Network Classifier trained and tested using Weka machine learning package. The pipeline is executed by running a Java/Groovy script, available for download at www.unav.es/genetica/oncofuse.html.

  10. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  11. Oncogenic activation of NF-kappaB.

    Science.gov (United States)

    Staudt, Louis M

    2010-06-01

    Recent genetic evidence has established a pathogenetic role for NF-kappaB signaling in cancer. NF-kappaB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-kappaB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IkappaB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-kappaB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-kappaB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-kappaB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IkappaB kinases to activate NF-kappaB. Inhibition of constitutive NF-kappaB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-kappaB pathway inhibitors for the treatment of cancer.

  12. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    Science.gov (United States)

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  13. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis

    Directory of Open Access Journals (Sweden)

    Ribeiro Franclim R

    2009-01-01

    Full Text Available Abstract Background The ability to detect neoplasia-specific fusion genes is important not only in cancer research, but also increasingly in clinical settings to ensure that correct diagnosis is made and the optimal treatment is chosen. However, the available methodologies to detect such fusions all have their distinct short-comings. Results We describe a novel oligonucleotide microarray strategy whereby one can screen for all known oncogenic fusion transcripts in a single experiment. To accomplish this, we combine measurements of chimeric transcript junctions with exon-wise measurements of individual fusion partners. To demonstrate the usefulness of the approach, we designed a DNA microarray containing 68,861 oligonucleotide probes that includes oligos covering all combinations of chimeric exon-exon junctions from 275 pairs of fusion genes, as well as sets of oligos internal to all the exons of the fusion partners. Using this array, proof of principle was demonstrated by detection of known fusion genes (such as TCF3:PBX1, ETV6:RUNX1, and TMPRSS2:ERG from all six positive controls consisting of leukemia cell lines and prostate cancer biopsies. Conclusion This new method bears promise of an important complement to currently used diagnostic and research tools for the detection of fusion genes in neoplastic diseases.

  14. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Olsen, Jesper V; Brandts, Christian

    2009-01-01

    Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrant...

  15. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    Science.gov (United States)

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  16. Oncogenic fusion proteins expressed in immature hematopoietic cells fail to recapitulate the transcriptional changes observed in human AML

    DEFF Research Database (Denmark)

    Rapin, N; Porse, B T

    2014-01-01

    in acute promyelocytic leukemia. Hematopoietic stem/progenitor (HSPCs) cells transduced with oncogenic fusion genes are regarded as promising in vitromodels of their corresponding AML subtypes. Here, we critically assessed the potential of such in vitro models using an integrative bioinformatics approach...

  17. Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms.

    Directory of Open Access Journals (Sweden)

    Joanna Y Lee

    Full Text Available Chromosomal translocations observed in myeloproliferative neoplasms (MPNs frequently fuse genes that encode centrosome proteins and tyrosine kinases. This causes constitutive activation of the kinase resulting in aberrant, proliferative signaling. The function of centrosome proteins in these fusions is not well understood. Among others, kinase centrosome localization and constitutive kinase dimerization are possible consequences of centrosome protein-kinase fusions. To test the relative contributions of localization and dimerization on kinase signaling, we targeted inducibly dimerizable FGFR1 to the centrosome and other subcellular locations and generated a mutant of the FOP-FGFR1 MPN fusion defective in centrosome localization. Expression in mammalian cells followed by western blot analysis revealed a significant decrease in kinase signaling upon loss of FOP-FGFR1 centrosome localization. Kinase dimerization alone resulted in phosphorylation of the FGFR1 signaling target PLCγ, however levels comparable to FOP-FGFR1 required subcellular targeting in addition to kinase dimerization. Expression of MPN fusion proteins also resulted in centrosome disruption in epithelial cells and transformed patient cells. Primary human MPN cells showed masses of modified tubulin that colocalized with centrin, Smoothened (Smo, IFT88, and Arl13b. This is distinct from acute myeloid leukemia (AML cells, which are not associated with centrosome-kinase fusions and had normal centrosomes. Our results suggest that effective proliferative MPN signaling requires both subcellular localization and dimerization of MPN kinases, both of which may be provided by centrosome protein fusion partners. Furthermore, centrosome disruption may contribute to the MPN transformation phenotype.

  18. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K; Bartkova, J; Kotsinas, A

    2013-01-01

    to various oncogenes showed that the delayed upregulation of ARF reflected a requirement for a higher, transcriptionally based threshold of oncogenic stress, elicited by at least two oncogenic ‘hits’, compared with lower activation threshold for DDR. We propose that relative to DDR activation, ARF provides...

  19. Activation of oncogenes by radon progeny and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  20. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: lyang@u.washington.edu [Department of Orthopedics, University of Washington, Seattle, WA 98195 (United States); Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108 (United States); Hu, Hsien-Ming; Zielinska-Kwiatkowska, Anna; Chansky, Howard A. [Department of Orthopedics, University of Washington, Seattle, WA 98195 (United States); Medical Research Service, VA Puget Sound Health Care System, Seattle, WA 98108 (United States)

    2010-11-05

    Research highlights: {yields} Inducible and reversible siRNA knockdown of an oncogenic fusion protein such as EWS-Fli1 is feasible and more advantageous than other siRNA methods. {yields} The tumor suppressor gene FOXO1 is a new EWS-Fli1 target. {yields} While trans-activators are known for the FOXO1 gene, there has been no report on negative regulators of FOXO1 transcription. {yields} This study provides first evidence that the EWS-Fli1 oncogenic fusion protein can function as a transcriptional repressor of the FOXO1 gene. -- Abstract: Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.

  1. Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide

    Directory of Open Access Journals (Sweden)

    Giorgia Urbinati

    2016-01-01

    Full Text Available Our purpose was to develop a new pharmacological approach for the treatment of prostate cancer (PCa, the most common neoplasia in men. Recently, we developed siRNA against the fusion oncogene TMPRSS2-ERG found in 50% of patients and showed an antitumoral activity in animal model. Herein, we want to compare or combine the developed siRNA to flutamide (FLU, one of the gold-standard treatment of PCa. Therefore, concomitant or subsequent association of FLU to siRNA TMPRSS2-ERG was performed in VCaP cells and in SCID mice bearing xenografted VCaP tumors. ERG, androgen receptor, cleaved-caspase-3 as well as phase 1 and 2 drug-metabolizing enzymes were investigated within tumors. We observed similar results in terms of TMPRSS2-ERG knock-down and cell viability impairment for all distinct schedules of administration. The association of siRNA TMPRSS2-ERG-squalene nanoparticles with flutamide displayed similar tumor growth inhibition as mice treated with siRNA TMPRSS2-ERG-squalene nanoparticles alone and was paralleled with modification of expression of ERG, androgen receptor, and cleaved-caspase-3. Phase 1 and 2 enzymes were essentially affected by FLU and reverted when combined with squalenoylated siRNA. In conclusion, these results confirm the therapeutic effectiveness of squalenoyl siRNA nanomedicine for PCa based on siRNA TMPRSS2-ERG.

  2. NPM-ALK: The Prototypic Member of a Family of Oncogenic Fusion Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Joel D. Pearson

    2012-01-01

    Full Text Available Anaplastic lymphoma kinase (ALK was first identified in 1994 with the discovery that the gene encoding for this kinase was involved in the t(2;5(p23;q35 chromosomal translocation observed in a subset of anaplastic large cell lymphoma (ALCL. The NPM-ALK fusion protein generated by this translocation is a constitutively active tyrosine kinase, and much research has focused on characterizing the signalling pathways and cellular activities this oncoprotein regulates in ALCL. We now know about the existence of nearly 20 distinct ALK translocation partners, and the fusion proteins resulting from these translocations play a critical role in the pathogenesis of a variety of cancers including subsets of large B-cell lymphomas, nonsmall cell lung carcinomas, and inflammatory myofibroblastic tumours. Moreover, the inhibition of ALK has been shown to be an effective treatment strategy in some of these malignancies. In this paper we will highlight malignancies where ALK translocations have been identified and discuss why ALK fusion proteins are constitutively active tyrosine kinases. Finally, using ALCL as an example, we will examine three key signalling pathways activated by NPM-ALK that contribute to proliferation and survival in ALCL.

  3. A new NFIA:RAF1 fusion activating the MAPK pathway in pilocytic astrocytoma

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Sehested, Astrid; Mateu-Regué, Àngels

    2016-01-01

    Pilocytic astrocytoma (PA) is one of the most common brain cancers among children and activation of the Mitogen-Activated Protein Kinase (MAPK) pathway is considered the hallmark. In the majority of cases, oncogenic BRAF fusions or BRAF V600E mutations are observed, while RAF1 or NF1 alterations...... are more rarely found. However, in some cases, no apparent cancer driver events can be identified. Here, we describe a novel fusion between the transcription factor nuclear factor 1A (NFIA) and Raf-1 proto-oncogene (RAF1) in a 5-year old boy with PA. The novel fusion was identified as part...... of a comprehensive genomic tumor profiling. We show that the NFIA:RAF1 fusion results in constitutive Raf1 kinase activity, leading to activation of downstream MEK1/2 cascade and increased proliferation of cancer cells. The NFIA:RAF1 fusion displayed distinct subcellular localization towards the plasma membrane...

  4. A new NFIA:RAF1 fusion activating the MAPK pathway in pilocytic astrocytoma

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Sehested, Astrid; Regué, Àngels Mateu

    2016-01-01

    are more rarely found. However, in some cases, no apparent cancer driver events can be identified. Here, we describe a novel fusion between the transcription factor nuclear factor 1A (NFIA) and Raf-1 proto-oncogene (RAF1) in a 5-year old boy with PA. The novel fusion was identified as part......Pilocytic astrocytoma (PA) is one of the most common brain cancers among children and activation of the Mitogen-Activated Protein Kinase (MAPK) pathway is considered the hallmark. In the majority of cases, oncogenic BRAF fusions or BRAF V600E mutations are observed, while RAF1 or NF1 alterations...... of a comprehensive genomic tumor profiling. We show that the NFIA:RAF1 fusion results in constitutive Raf1 kinase activity, leading to activation of downstream MEK1/2 cascade and increased proliferation of cancer cells. The NFIA:RAF1 fusion displayed distinct subcellular localization towards the plasma membrane...

  5. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  6. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  7. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    Science.gov (United States)

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  8. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples

    Science.gov (United States)

    Kojima, Takahiro; Nishimura, Kouichi; Kandori, Shuya; Kawahara, Takashi; Yoshino, Takayuki; Ueno, Satoshi; Iizumi, Yuichi; Mitsuzuka, Koji; Arai, Yoichi; Tsuruta, Hiroshi; Habuchi, Tomonori; Kobayashi, Takashi; Matsui, Yoshiyuki; Ogawa, Osamu; Sugimoto, Mikio; Kakehi, Yoshiyuki; Nagumo, Yoshiyuki; Tsutsumi, Masakazu; Oikawa, Takehiro; Kikuchi, Koji; Nishiyama, Hiroyuki

    2016-01-01

    Introduction and Objectives Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC). Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization) is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE) human BC samples. Materials and Methods The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections. Results FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3%) of non-muscle-invasive BC (NMIBC) and 2/44 (5%) muscle-invasive BC (MIBC) patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45%) NMIBC and 8/44 (18%) MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive. Conclusions We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors. PMID:27930669

  9. New hPSC-based human models to study pediatric Acute Megakaryoblastic Leukemia harboring the fusion oncogene RBM15-MKL1

    Directory of Open Access Journals (Sweden)

    Verónica Ayllón

    2017-03-01

    Full Text Available Pediatric Acute Megakaryoblastic Leukemia not associated to Down Syndrome (non-DS AMKL is a rare disease with a dismal prognosis. Around 15% of patients carry the chromosomal translocation t(1;22 that originates the fusion oncogene RBM15-MKL1, which is linked to an earlier disease onset (median of 6 months of age and arises in utero. Here we report the generation of two hPSC cell lines constitutively expressing the oncogene RBM15-MKL1, resulting in an increased expression of known RBM15-MKL1 gene targets. These cell lines represent new disease models of pediatric AMKL to study the impact of the RBM15-MKL1 oncogene on human embryonic hematopoietic development.

  10. Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells

    Science.gov (United States)

    Hollenhorst, Peter C.; Ferris, Mary W.; Hull, Megan A.; Chae, Heejoon; Kim, Sun; Graves, Barbara J.

    2011-01-01

    The aberrant expression of an oncogenic ETS transcription factor is implicated in the progression of the majority of prostate cancers, 40% of melanomas, and most cases of gastrointestinal stromal tumor and Ewing's sarcoma. Chromosomal rearrangements in prostate cancer result in overexpression of any one of four ETS transcription factors. How these four oncogenic ETS genes differ from the numerous other ETS genes expressed in normal prostate and contribute to tumor progression is not understood. We report that these oncogenic ETS proteins, but not other ETS factors, enhance prostate cell migration. Genome-wide binding analysis matched this specific biological function to occupancy of a unique set of genomic sites highlighted by the presence of ETS- and AP-1-binding sequences. ETS/AP-1-binding sequences are prototypical RAS-responsive elements, but oncogenic ETS proteins activated a RAS/MAPK transcriptional program in the absence of MAPK activation. Thus, overexpression of oncogenic ETS proteins can replace RAS/MAPK pathway activation in prostate cells. The genomic description of this ETS/AP-1-regulated, RAS-responsive, gene expression program provides a resource for understanding the role of these ETS factors in both an oncogenic setting and the developmental processes where these genes normally function. PMID:22012618

  11. Oncogenic and tumor-promoting Spermatophytes and Pteridophytes and their active principles.

    Science.gov (United States)

    Farnsworth, N R; Bingel, A S; Fong, H H; Saleh, A A; Christenson, G M; Saufferer, S M

    1976-08-01

    A survey and discussion are presented of plants classified as Spermatophyta and Pteridophyta, extracts of which have been shown to be oncogenic or tumor-promoting in animals. The active oncogenic and tumor-promoting principles, where known, have been identified. They represent tannins; pyrrolizidine, indole, tropolone, quinoline, purine, and benzophenanthridine alkaloids; nitroso compounds; triterpene glycosides; lignans; isoflavans; allyl benzenoids; simple (nu-pyrenes; and carbocyclic hydroxy acids. A total of 28 compounds of known structure have been identified as oncogens and several phorbol esters as tumor-promoters. Plants known to contain any of the 28 oncogens (excluding shikimic acid and caffeine) have been tabulated; they represent at least 454 species, 110 genera, and 34 families of Spermatophyta and Pteridophyta.

  12. Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

    Science.gov (United States)

    Kannan, Kalpana; Coarfa, Cristian; Chao, Pei-Wen; Luo, Liming; Wang, Yan; Brinegar, Amy E.; Hawkins, Shannon M.; Milosavljevic, Aleksandar; Matzuk, Martin M.; Yen, Laising

    2015-01-01

    High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. PMID:25733895

  13. Activating mutation in MET oncogene in familial colorectal cancer

    Directory of Open Access Journals (Sweden)

    Schildkraut Joellen M

    2011-10-01

    Full Text Available Abstract Background In developed countries, the lifetime risk of developing colorectal cancer (CRC is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility. Methods MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies. Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors. Results Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in Conclusions Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will

  14. Calpain Activity Is Generally Elevated during Transformation but Has Oncogene-Specific Biological Functions

    Directory of Open Access Journals (Sweden)

    N.O. Carragher

    2004-01-01

    Full Text Available Several oncogene and tumor-suppressor gene products are known substrates for the calpain family of cysteine proteases, and calpain is required for transformation by v-src and tumor invasion. Thus, we have now addressed whether calpain is generally associated with transformation and how calpain contributes to oncogene function. Our results demonstrate that calpain activity is enhanced upon transformation induced by the v-Src, v-Jun, v-Myc, k-Ras, and v-Fos oncoproteins. Furthermore, elevated calpain activity commonly promotes focal adhesion remodelling, disruption of actin cytoskeleton, morphological transformation, and cell migration, although proteolysis of target substrates (such as focal adhesion kinase, talin, and spectrin is differently specified by individual oncoproteins. Interestingly, v-Fos differs from other common oncoproteins in not requiring calpain activity for actin/adhesion remodelling or migration of v-Fos transformed cells. However, anchorage-independent growth of all transformed cells is sensitive to calpain inhibition. In addition, elevated calpain activity contributes to oncogene-induced apoptosis associated with transformation by v-Myc. Taken together, these studies demonstrate that calpain activity is necessary for full cellular transformation induced by common oncoproteins, but has distinct roles in oncogenic events induced by individual transforming proteins. Thus, targeting calpain activity may represent a useful general strategy for interfering with activated protooncogenes in cancer cells.

  15. Repeat-element driven activation of proto-oncogenes in human malignancies.

    Science.gov (United States)

    Lamprecht, Björn; Bonifer, Constanze; Mathas, Stephan

    2010-11-01

    Recent data demonstrated that the aberrant activity of endogenous repetitive elements of the DNA in humans can drive the expression of proto-oncogenes. This article summarizes these results and gives an outlook on the impact of these findings on the pathogenesis and therapy of human cancer.

  16. Analysis of multiple sarcoma expression datasets: implications for classification, oncogenic pathway activation and chemotherapy resistance.

    Directory of Open Access Journals (Sweden)

    Panagiotis A Konstantinopoulos

    Full Text Available BACKGROUND: Diagnosis of soft tissue sarcomas (STS is challenging. Many remain unclassified (not-otherwise-specified, NOS or grouped in controversial categories such as malignant fibrous histiocytoma (MFH, with unclear therapeutic value. We analyzed several independent microarray datasets, to identify a predictor, use it to classify unclassifiable sarcomas, and assess oncogenic pathway activation and chemotherapy response. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 5 independent datasets (325 tumor arrays. We developed and validated a predictor, which was used to reclassify MFH and NOS sarcomas. The molecular "match" between MFH and their predicted subtypes was assessed using genome-wide hierarchical clustering and Subclass-Mapping. Findings were validated in 15 paraffin samples profiled on the DASL platform. Bayesian models of oncogenic pathway activation and chemotherapy response were applied to individual STS samples. A 170-gene predictor was developed and independently validated (80-85% accuracy in all datasets. Most MFH and NOS tumors were reclassified as leiomyosarcomas, liposarcomas and fibrosarcomas. "Molecular match" between MFH and their predicted STS subtypes was confirmed both within and across datasets. This classification revealed previously unrecognized tissue differentiation lines (adipocyte, fibroblastic, smooth-muscle and was reproduced in paraffin specimens. Different sarcoma subtypes demonstrated distinct oncogenic pathway activation patterns, and reclassified MFH tumors shared oncogenic pathway activation patterns with their predicted subtypes. These patterns were associated with predicted resistance to chemotherapeutic agents commonly used in sarcomas. CONCLUSIONS/SIGNIFICANCE: STS profiling can aid in diagnosis through a predictor tracking distinct tissue differentiation in unclassified tumors, and in therapeutic management via oncogenic pathway activation and chemotherapy response assessment.

  17. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability.

    Science.gov (United States)

    Qi, Qi; Li, Dean Y; Luo, Hongbo R; Guan, Kun-Liang; Ye, Keqiang

    2015-06-09

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.

  18. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF gene.

    Directory of Open Access Journals (Sweden)

    Jenny Leitz

    2014-03-01

    Full Text Available The expression of the human papillomavirus (HPV E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  19. Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene

    Science.gov (United States)

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-01-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. PMID:24604027

  20. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene.

    Science.gov (United States)

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-03-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  1. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis

    Science.gov (United States)

    Zeitels, Lauren R.; Acharya, Asha; Shi, Guanglu; Chivukula, Divya; Chivukula, Raghu R.; Anandam, Joselin L.; Abdelnaby, Abier A.; Balch, Glen C.; Mansour, John C.; Yopp, Adam C.; Richardson, James A.

    2014-01-01

    Down-regulation of miR-26 family members has been implicated in the pathogenesis of multiple malignancies. In some settings, including glioma, however, miR-26-mediated repression of PTEN promotes tumorigenesis. To investigate the contexts in which the tumor suppressor versus oncogenic activity of miR-26 predominates in vivo, we generated miR-26a transgenic mice. Despite measureable repression of Pten, elevated miR-26a levels were not associated with malignancy in transgenic animals. We documented reduced miR-26 expression in human colorectal cancer and, accordingly, showed that miR-26a expression potently suppressed intestinal adenoma formation in Apcmin/+ mice, a model known to be sensitive to Pten dosage. These studies reveal a tumor suppressor role for miR-26 in intestinal cancer that overrides putative oncogenic activity, highlighting the therapeutic potential of miR-26 delivery to this tumor type. PMID:25395662

  2. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    OpenAIRE

    Le Rolle, Anne-France; Chiu, Thang K; ZENG, ZHAOSHI; Shia, Jinru; Weiser, Martin R; Paty, Philip B.; Chiu, Vi K

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut ) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer i...

  3. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.

    Science.gov (United States)

    Groner, Anna C; Cato, Laura; de Tribolet-Hardy, Jonas; Bernasocchi, Tiziano; Janouskova, Hana; Melchers, Diana; Houtman, René; Cato, Andrew C B; Tschopp, Patrick; Gu, Lei; Corsinotti, Andrea; Zhong, Qing; Fankhauser, Christian; Fritz, Christine; Poyet, Cédric; Wagner, Ulrich; Guo, Tiannan; Aebersold, Ruedi; Garraway, Levi A; Wild, Peter J; Theurillat, Jean-Philippe; Brown, Myles

    2016-06-13

    Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly upregulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP mutant and CRPC patients.

  4. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. (Univ. of Wuerzburg (West Germany)); Barrett, J.C.; Wiseman, R.W. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA)); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  5. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  6. v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA

    DEFF Research Database (Denmark)

    Zenke, M; Muñoz, A; Sap, J;

    1990-01-01

    and erythrocyte-specific gene expression in a T3-dependent fashion, when introduced into erythroid cells via a retrovirus. In contrast, the endogenous thyroid hormone receptor does not detectably affect erythroid differentiation. The analysis of a series of chimeric v-/c-erbA proteins suggests that the v......The v-erbA oncogene, one of the two oncogenes of the avian erythroblastosis virus, efficiently blocks erythroid differentiation and suppresses erythrocyte-specific gene transcription. Here we show that the overexpressed thyroid hormone receptor c-erbA effectively modulates erythroid differentiation......-erbA oncoprotein has lost one type of thyroid hormone receptor function (regulating erythrocyte gene transcription in response to T3), but constitutively displays another function: it represses transcription in the absence of T3. The region responsible for the loss of hormone-dependent regulator activity of v...

  7. Oncogene v-jun modulates DNA replication.

    Science.gov (United States)

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  8. The Development of Low Activation Ferritic Steels for Fusion Application

    OpenAIRE

    Kohyama, A; Hishinuma, A.; Kohno, Y; Shiba, K; Sagara, A.

    1997-01-01

    The development of low-activation ferritic/martensitic steels is a key to the achievement of nuclear fusion as a safe, environmentally attractive and economically competitive energy source. The Japanese and the European Fusion Materials programs have put low-activation ferritic and martensitic steels R & D at the highest priority for a demonstration reactor (DEMO) and the beyond. An international collaborative test program on low-activation ferritic/martensitic steels for fusion is in progres...

  9. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  10. Midline carcinoma with t(15;19 and BRD4-NUT fusion oncogene in a 30-year-old female with response to docetaxel and radiotherapy

    Directory of Open Access Journals (Sweden)

    Dahlén Anna

    2006-03-01

    Full Text Available Abstract Background Poorly differentiated midline carcinoma with a translocation between chromosomes 15 and 19, i.e. t(15;19, has been recognized as a distinct clinical entity for over a decade. This tumor affects young individuals, shows a rapidly fatal clinical course despite intensive therapy. The t(15;19 results in the fusion oncogene BRD4-NUT. Information concerning treatment of this rare disorder is scarce. Case presentation A 30-year-old woman was admitted with a rapidly progressing tumor in the mediastinum, cervical lymph nodes, vertebral column and the epidural space. Pathological, cytogenetic, FISH and PCR analysis revealed a glycogenated carcinoma rarely expressing cytokeratins and showing t(15;19 and BRD4-NUT gene rearrangement. The patient was initially treated with a Ewing sarcoma chemotherapy regimen, but had rapid progression after two cycles. She then received docetaxel and radiotherapy, which resulted in almost complete disappearance of the tumor. Conclusion Docetaxel may be considered for initial chemotherapy in young patients presenting with a midline carcinoma with bone marrow involvement and cytogenetic and molecular genetic finding of a t(15;19/BRD4-NUT-rearrangement. We herein describe, in detail, the laboratory methods by which the BRD4-NUT -rearrangement can be detected.

  11. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry.

    Science.gov (United States)

    Wu, Fang; Wang, Peng; Young, Leah C; Lai, Raymond; Li, Liang

    2009-02-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion gene protein that is characteristically found in a subset of anaplastic large cell lymphomas, promotes tumorigenesis through its functional and physical interactions with various biologically important proteins. The identification of these interacting proteins has proven to be useful to further our understanding of NPM-ALK-mediated tumorigenesis. For the first time, we performed a proteome-wide identification of NPM-ALK-binding proteins using tandem affinity purification and a highly sensitive mass spectrometric technique. Tandem affinity purification is a recently developed method that carries a lower background and higher sensitivity compared with the conventional immunoprecipitation-based protein purification protocols. The NPM-ALK gene was cloned into an HB-tagged vector and expressed in GP293 cells. Three independent experiments were performed and the reproducibility of the data was 68%. The vast majority of the previously reported NPM-ALK-binding proteins were detected. We also identified proteins that are involved in various cellular processes that were not previously described in association with NPM-ALK, such as MCM6 and MSH2 (DNA repair), Nup98 and importin 8 (subcellular protein transport), Stim1 (calcium signaling), 82Fip (RNA regulation), and BAG2 (proteosome degradation). We believe that these data highlight the functional diversity of NPM-ALK and provide new research directions for the study of the biology of this oncoprotein.

  12. Activated RET/PTC oncogene elicits immediate early and delayed response genes in PC12 cells.

    Science.gov (United States)

    Califano, D; Monaco, C; de Vita, G; D'Alessio, A; Dathan, N A; Possenti, R; Vecchio, G; Fusco, A; Santoro, M; de Franciscis, V

    1995-07-06

    The expression of the receptor-like tyrosine kinase RET is associated with tumors, tissues or cell lines of neural crest origin. In addition RET products (Ret) are involved in determining cell fate during the differentiation of the enteric nervous system and during renal organogenesis. However, as yet, no direct evidence exists to indicate that the Ret kinase activity might interfere in a specific way with cellular differentiation, or proliferation, of a neural crest derived cell line. By using two constitutively activated forms of RET (RET/PTC1 and RET/PTC3) in transient transfection experiments, we have obtained evidence that active RET could reprogramme the gene expression pattern in the rat pheochromocytoma PC12 cell line. Transcription driven by gene promoters, such as NGFI-A and vgf, which belong, respectively, to primary and delayed response genes to nerve growth factor (NGF), and by the neuron-specific enolase (NSE) promoter, is rapidly induced by the expression of activated RET oncogenes. This induction is not elicited in other non neural derived cell types tested. We also demonstrate that endogenous ras activity is required for RET induction of these neural markers. Finally, in the RET/PTC transfected PC12 cells, NGF is unable to induce further their transcription. This suggests that RET/PTC could share an intracellular signalling pathway with the NGF-receptor.

  13. Accelerator and Fusion Research Division: Summary of activities, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  14. The ret/ptc1 oncogene is activated in familial adenomatous polyposis-associated thyroid papillary carcinomas.

    Science.gov (United States)

    Cetta, F; Chiappetta, G; Melillo, R M; Petracci, M; Montalto, G; Santoro, M; Fusco, A

    1998-03-01

    Familial adenomatous polyposis (FAP) is caused by germ-line mutations of the apc gene, and it is associated with an increased risk of developing papillary thyroid carcinomas. We have previously reported that a significant fraction of sporadic human papillary thyroid carcinomas is characterized by gene rearrangements affecting the ret protooncogene. These rearrangements generate chimeric transforming oncogenes designated ret/ptc. By a combined immunohistochemical and RT-PCR approach, we analyzed, for ret/ptc oncogene activation, papillary thyroid carcinomas occurred in two FAP kindreds, both showing typical apc gene mutations. Kindred 1 had seven members affected by FAP, and among these, three patients showed papillary thyroid carcinomas. Kindred 2 had two patients, mother and daughter, affected by colonic polyposis; the 20-yr-old daughter showed also a papillary carcinoma. Here we report that ret/ptc1 oncogene was activated in two of the three papillary carcinomas of FAP kindred 1 and in the papillary carcinoma of FAP kindred 2. These findings document that loss of function of apc coexists with gain of function of ret in some papillary thyroid carcinomas, suggesting that ret/ptc1 oncogene activation could be a progression step in the development of FAP-associated thyroid tumors.

  15. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  16. COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation.

    Science.gov (United States)

    Majumder, Mousumi; Landman, Erin; Liu, Ling; Hess, David; Lala, Peeyush K

    2015-06-01

    MicroRNAs (miRs) are small regulatory molecules emerging as potential biomarkers in cancer. Previously, it was shown that COX-2 expression promotes breast cancer progression via multiple mechanisms, including induction of stem-like cells (SLC), owing to activation of the prostaglandin E2 receptor EP4 (PTGER4). COX-2 overexpression also upregulated microRNA-526b (miR-526b), in association with aggressive phenotype. Here, the functional roles of miR-526b in breast cancer and the mechanistic role of EP4 signaling in miR-526b upregulation were examined. A positive correlation was noted between miR-526b and COX-2 mRNA expression in COX-2 disparate breast cancer cell lines. Stable overexpression of miR-526b in poorly metastatic MCF7 and SKBR3 cell lines resulted in increased cellular migration, invasion, EMT phenotype and enhanced tumorsphere formation in vitro, and lung colony formation in vivo in immunodeficient mice. Conversely, knockdown of miR-526b in aggressive MCF7-COX-2 and SKBR3-COX-2 cells reduced oncogenic functions and reversed the EMT phenotype, in vitro. Furthermore, it was determined that miR-526b expression is dependent on EP4 receptor activity and downstream PI3K-AKT and cyclic AMP (cAMP) signaling pathways. PI3K-AKT inhibitors blocked EP4 agonist-mediated miR-526b upregulation and tumorsphere formation in MCF7 and SKBR3 cells. NF-κB inhibitor abrogates EP agonist-stimulated miRNA expression in MCF7 and T47D cells, indicating that the NF-κB pathway is also involved in miR-526b regulation. In addition, inhibition of COX-2, EP4, PI3K, and PKA in COX-2-overexpressing cells downregulated miR-526b and its functions in vitro. Finally, miR-526b expression was significantly higher in cancerous than in noncancerous breast tissues and associated with reduced patient survival. In conclusion, miR-526b promotes breast cancer progression, SLC-phenotype through EP4-mediated signaling, and correlates with breast cancer patient survival. This study presents novel

  17. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer.

    Science.gov (United States)

    Li, Hengyu; Zhu, Li; Xu, Lu; Qin, Keyu; Liu, Chaoqian; Yu, Yue; Su, Dongwei; Wu, Kainan; Sheng, Yuan

    2017-01-01

    Protein-coding genes account for only 2% of the human genome, whereas the vast majority of transcripts are noncoding RNAs including long noncoding RNAs. LncRNAs are involved in the regulation of a diverse array of biological processes, including cancer progression. An evolutionarily conserved lncRNA TUNA, was found to be required for pluripotency of mouse embryonic stem cells. In this study, we found the human ortholog of TUNA, linc00617, was upregulated in breast cancer samples. Linc00617 promoted motility and invasion of breast cancer cells and induced epithelial-mesenchymal-transition (EMT), which was accompanied by generation of stem cell properties. Moreover, knockdown of linc00617 repressed lung metastasis in vivo. We demonstrated that linc00617 upregulated the expression of stemness factor Sox2 in breast cancer cells, which was shown to promote the oncogenic activity of breast cancer cells by stimulating epithelial-to-mesenchymal transition and enhancing the tumor-initiating capacity. Thus, our data indicate that linc00617 functions as an important regulator of EMT and promotes breast cancer progression and metastasis via activating the transcription of Sox2. Together, it suggests that linc00617 may be a potential therapeutic target for aggressive breast cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    Science.gov (United States)

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.

  19. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells.

    Science.gov (United States)

    Liu, Yi Lun; Lai, Fritz; Wilmott, James S; Yan, Xu Guang; Liu, Xiao Ying; Luan, Qi; Guo, Su Tang; Jiang, Chen Chen; Tseng, Hsin-Yi; Scolyer, Richard A; Jin, Lei; Zhang, Xu Dong

    2014-11-30

    Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions.

  20. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  1. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity.

    Science.gov (United States)

    Riemer, P; Sreekumar, A; Reinke, S; Rad, R; Schäfer, R; Sers, C; Bläker, H; Herrmann, B G; Morkel, M

    2015-06-11

    Colon cancer cells frequently carry mutations that activate the β-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/β-catenin signals encourage ISC identity, we asked whether β-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3β. Similarly, transgenic expression of stabilized β-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAF(V637E) knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/β-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/β-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of

  2. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin.

    Science.gov (United States)

    Saud, Shakir M; Young, Matthew R; Jones-Hall, Yava L; Ileva, Lilia; Evbuomwan, Moses O; Wise, Jennifer; Colburn, Nancy H; Kim, Young S; Bobe, Gerd

    2013-09-01

    Analysis of the Polyp Prevention Trial showed an association between an isorhamnetin-rich diet and a reduced risk of advanced adenoma recurrence; however, the mechanism behind the chemoprotective effects of isorhamnetin remains unclear. Here, we show that isorhamnetin prevents colorectal tumorigenesis of FVB/N mice treated with the chemical carcinogen azoxymethane and subsequently exposed to colonic irritant dextran sodium sulfate (DSS). Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. MRI, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than the control diet. Isorhamnetin inhibited AOM/DSS-induced oncogenic c-Src activation and β-catenin nuclear translocation, while promoting the expression of C-terminal Src kinase (CSK), a negative regulator of Src family of tyrosine kinases. Similarly, in HT-29 colon cancer cells, isorhamnetin inhibited oncogenic Src activity and β-catenin nuclear translocation by inducing expression of csk, as verified by RNA interference knockdown of csk. Our observations suggest the chemoprotective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression.

  3. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene.

    Science.gov (United States)

    Fernández, B G; Jezowska, B; Janody, F

    2014-04-17

    The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.

  4. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells.

    Science.gov (United States)

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

  5. Oncogene activation in human benign tumors of the skin (keratoacanthomas): Is HRAS involved in differentiation as well as proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Corominas, M.; Kamino, Hideko; Leon, J.; Pellicer, A. (New York Univ. Medical Center, New York, NY (USA))

    1989-08-01

    In vitro DNA amplification followed by oligonucleotide mismatch hybridization was used to study the frequency of HRAS mutations in the benign self-regressing skin tumors keratoacanthomas and in squamous cell carcinomas. The authors used freshly obtained keratoacanthomas as well as Formalin-fixed paraffin-embedded tissues from both types of tumors. DNA from 50 samples of each tumor type was analyzed for activating mutations involving codons 12 and 61. A relatively high percentage (30%) of HRAS mutations was found in the keratoacanthomas compared with 13% in the squamous cell carcinomas. The most frequent mutation identified is the A{center dot}T-to-T{center dot}A transversion in the second position of codon 61. The present findings demonstrate the involvement of the HRAS oncogene in human benign tumors. Moreover, they indicate that an activated HRAS oncogene is not sufficient to maintain a neoplastic phenotype and argue against a role of HRAS in the progression of skin tumorigenesis.

  6. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  7. Simultaneous translocations of FGFR3/MMSET and CCND1 into two different IGH alleles in multiple myeloma: lack of concurrent activation of both proto-oncogenes.

    Science.gov (United States)

    Sáez, Borja; Martín-Subero, José I; Lahortiga, Idoya; Largo, Cristina; Larrayoz, María J; Odero, María D; Prosper, Felipe; Cigudosa, Juan C; Siebert, Reiner; Calasanz, María J

    2007-05-01

    The simultaneous occurrence of two different translocations affecting both alleles of the IGH gene has rarely been reported in multiple myeloma. In such a case, two different oncogenes might become transcriptionally deregulated. To investigate this hypothesis, we have characterized the plasma cell leukemia cell line SK-MM2 and a primary myeloma both carrying simultaneous IGH-FGFR3/MMSET and IGH-CCND1 fusions as shown by multicolor fluorescence in situ hybridization. Remarkably, quantitative real-time polymerase chain reaction demonstrated that only one of the oncogene loci was transcriptionally upregulated in both instances. Moreover, the upregulated oncogenes differed between both samples. Thus, biallelic IGH translocations might exert different pathogenetic effects in plasma cell disorders.

  8. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  9. Vav1 Oncogenic Mutation Inhibits T Cell Receptor-induced Calcium Mobilization through Inhibition of Phospholipase Cγ1 Activation*

    Science.gov (United States)

    Knyazhitsky, Mira; Moas, Etay; Shaginov, Ekaterina; Luria, Anna; Braiman, Alex

    2012-01-01

    Robust elevation of the cytosolic calcium concentration is a crucial early step for T cell activation triggered by the T cell antigen receptor. Vav1 is a proto-oncogene expressed in hematopoietic cells that is indispensable for transducing the calcium-mobilizing signal. Following T cell receptor stimulation, Vav1 facilitates formation of signaling microclusters through multiple interactions with other proteins participating in the signaling cascade. Truncation of the N terminus of Vav1 produces its oncogenic version, which is unable to support normal calcium flux following T cell activation. We show here that truncation of the N-terminal region of Vav1 alters the fine structure of protein complexes in the signaling clusters, affecting the interaction of Vav1 with phospholipase Cγ1 (PLCγ1). This alteration is accompanied by a decrease in PLCγ1 phosphorylation and inhibition of inositol 1,4,5-trisphosphate production. We suggest that the structural integrity of the N-terminal region of Vav1 is important for the proper formation of the Vav1-associated signaling complexes. The oncogenic truncation of this region elicits conformational changes that interfere with the Vav1-mediated activation of PLCγ1 and that inhibit calcium mobilization. PMID:22474331

  10. Dysfunctional telomeres promote genomic instability and metastasis in the absence of telomerase activity in oncogene induced mammary cancer.

    Science.gov (United States)

    Bojovic, Bojana; Crowe, David L

    2013-02-01

    Telomerase is a ribonucleoprotein that maintains the ends of chromosomes (telomeres). In normal cells lacking telomerase activity, telomeres shorten with each cell division because of the inability to completely synthesize the lagging strand. Critically shortened telomeres elicit DNA damage responses and limit cellular division and lifespan, providing an important tumor suppressor function. Most human cancer cells express telomerase which contributes significantly to the tumor phenotype. In human breast cancer, telomerase expression is predictive of clinical outcomes such as lymph node metastasis and survival. In mouse models of mammary cancer, telomerase expression is also upregulated. Telomerase overexpression resulted in spontaneous mammary tumor development in aged female mice. Increased mammary cancer also was observed when telomerase deficient mice were crossed with p53 null mutant animals. However, the effects of telomerase and telomere length on oncogene driven mammary cancer have not been completely characterized. To address these issues we characterized neu proto-oncogene driven mammary tumor formation in G1 Terc-/- (telomerase deficient with long telomeres), G3 Terc-/- (telomerase deficient with short telomeres), and Terc+/+ mice. Telomerase deficiency reduced the number of mammary tumors and increased tumor latency regardless of telomere length. Decreased tumor formation correlated with increased apoptosis in Terc deficient tumors. Short telomeres dramatically increased lung metastasis which correlated with increased genomic instability, and specific alterations in DNA copy number and gene expression. We concluded that short telomeres promote metastasis in the absence of telomerase activity in neu oncogene driven mammary tumors.

  11. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism.

    Science.gov (United States)

    Ye, Fang; Lemieux, Hélène; Hoppel, Charles L; Hanson, Richard W; Hakimi, Parvin; Croniger, Colleen M; Puchowicz, Michelle; Anderson, Vernon E; Fujioka, Hisashi; Stavnezer, Ed

    2011-11-18

    Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.

  12. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Rahman, Sunniyat; Magnussen, Michael; León, Theresa E; Farah, Nadine; Li, Zhaodong; Abraham, Brian J; Alapi, Krisztina Z; Mitchell, Rachel J; Naughton, Tom; Fielding, Adele K; Pizzey, Arnold; Bustraan, Sophia; Allen, Christopher; Popa, Teodora; Pike-Overzet, Karin; Garcia-Perez, Laura; Gale, Rosemary E; Linch, David C; Staal, Frank J T; Young, Richard A; Look, A Thomas; Mansour, Marc R

    2017-03-07

    Somatic mutations within non-coding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines, in addition to 3.7% (6/160) of pediatric and 5.5% (9/163) of adult T-ALL patient samples. The majority of indels harbour putative de novo MYB, ETS1 or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provide important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy induced T-ALL, suggesting that such events occur at preferential sites in the non-coding genome.

  13. Accelerator and Fusion Research Division: summary of activities, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  14. The API2-MALT1 fusion exploits TNFR pathway-associated RIP1 ubiquitination to promote oncogenic NF-κB signaling.

    Science.gov (United States)

    Rosebeck, S; Rehman, A O; Apel, I J; Kohrt, D; Appert, A; O'Donnell, M A; Ting, A T; Du, M-Q; Baens, M; Lucas, P C; McAllister-Lucas, L M

    2014-05-08

    The API2-MALT1 fusion oncoprotein is created by the recurrent t(11;18)(q21;q21) chromosomal translocation in mucosa-associated lymphoid tissue (MALT) lymphoma. We identified receptor interacting protein-1 (RIP1) as a novel API2-MALT1-associated protein, and demonstrate that RIP1 is required for API2-MALT1 to stimulate canonical nuclear factor kappa B (NF-κB). API2-MALT1 promotes ubiquitination of RIP1 at lysine (K) 377, which is necessary for full NF-κB activation. Furthermore, we found that TNF receptor-associated factor 2 (TRAF2) recruitment is required for API2-MALT1 to induce RIP1 ubiquitination, NF-κB activation and cellular transformation. Although both TRAF2 and RIP1 interact with the API2 moiety of API2-MALT1, this moiety alone is insufficient to induce RIP1 ubiquitination or activate NF-κB, indicating that API2-MALT1-dependent RIP1 ubiquitination represents a gain of function requiring the concerted actions of both the API2 and MALT1 moieties of the fusion. Intriguingly, constitutive RIP1 ubiquitination was recently demonstrated in several solid tumors, and now our study implicates RIP1 ubiquitination as a critical component of API2-MALT1-dependent lymphomagenesis.

  15. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    Science.gov (United States)

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  16. The development of low activation ferritic steels for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kohyama, A. [Kyoto Univ., Uji (Japan). Inst. of Advanced Energy; Hishinuma, A.; Kohno, Y.; Shiba, K.; Sagara, A.

    1997-03-01

    The development of low-activation ferritic/martensitic steels is a key to the achievement of nuclear fusion as a safe, environmentally attractive and economically competitive energy source. The Japanese and the European Fusion Materials programs have put low-activation ferritic and martensitic steels R and D at the highest priority for a demonstration reactor (DEMO) and the beyond. An international collaborative test program on low-activation ferritic/martensitic steels for fusion is in progress as an activity of the International Energy Agency (IEA) fusion materials working group to verify the feasibility of using ferritic/martensitic steels for fusion by an extensive test program covering the most relevant technical issues for the qualification of a material for a nuclear application. The development of a comprehensive data base on the representative industrially processed reduced-activation steels of type 8-9Cr-2WVTa is underway for providing designers a preliminary set of material data for the mechanical design of components, e.g. for DEMO relevant blanket modules. The current design status of FFHR and SSTR utilizing low-activation ferritic steels is reviewed and future prospects are defined. (author)

  17. α-Lipoic Acid Inhibits Helicobacter pylori-Induced Oncogene Expression and Hyperproliferation by Suppressing the Activation of NADPH Oxidase in Gastric Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Eunyoung Byun

    2014-01-01

    Full Text Available Hyperproliferation and oncogene expression are observed in the mucosa of Helicobacter pylori- (H. pylori- infected patients with gastritis or adenocarcinoma. Expression of oncogenes such as β-catenin and c-myc is related to oxidative stress. α-Lipoic acid (α-LA, a naturally occurring thiol compound, acts as an antioxidant and has an anticancer effect. The aim of this study is to investigate the effect of α-LA on H. pylori-induced hyperproliferation and oncogene expression in gastric epithelial AGS cells by determining cell proliferation (viable cell numbers, thymidine incorporation, levels of reactive oxygen species (ROS, NADPH oxidase activation (enzyme activity, subcellular levels of NADPH oxidase subunits, activation of redox-sensitive transcription factors (NF-κB, AP-1, expression of oncogenes (β-catenin, c-myc, and nuclear localization of β-catenin. Furthermore, we examined whether NADPH oxidase mediates oncogene expression and hyperproliferation in H. pylori-infected AGS cells using treatment of diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase. As a result, α-LA inhibited the activation of NADPH oxidase and, thus, reduced ROS production, resulting in inhibition on activation of NF-κB and AP-1, induction of oncogenes, nuclear translocation of β-catenin, and hyperproliferation in H. pylori-infected AGS cells. DPI inhibited H. pylori-induced activation of NF-κB and AP-1, oncogene expression and hyperproliferation by reducing ROS levels in AGS cells. In conclusion, we propose that inhibiting NADPH oxidase by α-LA could prevent oncogene expression and hyperproliferation occurring in H. pylori-infected gastric epithelial cells.

  18. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  19. Chemically robust fluoroalkyl phthalocyanine-oligonucleotide bioconjugates and their GRP78 oncogene photocleavage activity.

    Science.gov (United States)

    Patel, Pradeepkumar; Patel, Hemantbhai H; Borland, Emily; Gorun, Sergiu M; Sabatino, David

    2014-06-18

    The first representative of functionalized fluoroalkyl phthalocyanines, F48H7(COOH)PcZn, is reported. The complex generates (1)O2 affording long-lasting photooxidation of an external substrate without self-decomposition. The carboxylic group couples with an antisense oligonucleotide targeting GRP78 oncogenes, resulting in the F48H7PcZn-cancer targeting oligonucleotide (CTO). The bioconjugated fluorophthalocyanine effectively hybridizes complementary GRP78 DNA and mRNA sequences. Piperidine cleavage assays reveal desired photochemical oligonucleotide oxidative degradation for both F48H7PcZn-CTO:DNA and F48H7PcZn-CTO:mRNA hybrids. This new materials strategy could be extended to other functional fluorinated phthalocyanines-antisense oligonucleotide combinations for long-lasting oncogene-targeting photodynamic therapy.

  20. Protoplast fusion enhances lignocellulolytic enzyme activities in Trichoderma reesei.

    Science.gov (United States)

    Cui, Yu-xiao; Liu, Jia-jing; Liu, Yan; Cheng, Qi-yue; Yu, Qun; Chen, Xin; Ren, Xiao-dong

    2014-12-01

    Protoplast fusion was used to obtain a higher production of lignocellulolytic enzymes with protoplast fusion in Trichoderma reesei. The fusant strain T. reesei JL6 was obtained from protoplast fusion from T. reesei strains QM9414, MCG77, and Rut C-30. Filter paper activity of T. reesei JL6 increased by 18% compared with that of Rut C-30. β-Glucosidase, hemicellulase and pectinase activities of T. reesei JL6 were also higher. The former activity was 0.39 Uml(-1), while those of QM9414, MCG77, and Rut C-30 were 0.13, 0.11, and 0.16 Uml(-1), respectively. Pectinase and hemicellulase activities of JL6 were 5.4 and 15.6 Uml(-1), respectively, which were slightly higher than those of the parents. The effects of corn stover and wheat bran carbon sources on the cellulase production and growth curve of T. reesei JL6 were also investigated.

  1. Pesticides and oncogenic modulation.

    Science.gov (United States)

    Vakonaki, Elena; Androutsopoulos, Vasilis P; Liesivuori, Jyrki; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2013-05-10

    Pesticides constitute a diverse class of chemicals used for the protection of agricultural products. Several lines of evidence demonstrate that organochlorine and organophosphate pesticides can cause malignant transformation of cells in in vitro and in vivo models. In the current minireview a comprehensive summary of recent in vitro findings is presented along with data reported from human population studies, regarding the impact of pesticide exposure on activation or dysregulation of oncogenes and tumor suppressor genes. Substantial mechanistic work suggests that pesticides are capable of inducing mutations in oncogenes and increase their transcriptional expression in vitro, whereas human population studies indicate associations between pesticide exposure levels and mutation occurrence in cancer-related genes. Further work is required to fully explore the exact mechanisms by which pesticide exposure affects the integrity and normal function of oncogenes and tumor suppressor genes in human populations.

  2. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  3. The polyomavirus middle T-antigen oncogene activates the Hippo pathway tumor suppressor Lats in a Src-dependent manner.

    Science.gov (United States)

    Shanzer, M; Ricardo-Lax, I; Keshet, R; Reuven, N; Shaul, Y

    2015-08-06

    The polyomavirus middle T antigen (PyMT) is an oncogene that activates the non-receptor tyrosine kinase, c-Src, and physically interacts with Taz (WWTR1). Taz is a pro-oncogenic transcription coactivator of the Tead transcription factors. The Hippo tumor suppressor pathway activates the kinase Lats, which phosphorylates Taz, leading to its nuclear exclusion and blunting Tead coactivation. We found that Taz was required for transformation by PyMT, but counter-intuitively, Taz was exclusively cytoplasmic in the presence of PyMT. We demonstrate that in the presence of PyMT, wild-type Taz was phosphorylated by Lats, in a Src-dependent manner. Consistently, a Lats refractory Taz mutant did not undergo cytoplasmic retention by PyMT. We show that Yap, the Taz paralog, and Shp2 phosphatase were nuclear excluded as well. Our findings describe a noncanonical activation of Lats, and an unprecedented Tead-independent role for Taz and Yap in viral-mediated oncogenesis.

  4. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; Dijk, van J.; Soemers, H.M.J.R.

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping rat

  5. Multiview fusion for activity recognition using deep neural networks

    Science.gov (United States)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  6. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  7. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  8. A novel dual kinase function of the RET proto-oncogene negatively regulates activating transcription factor 4-mediated apoptosis.

    Science.gov (United States)

    Bagheri-Yarmand, Rozita; Sinha, Krishna M; Gururaj, Anupama E; Ahmed, Zamal; Rizvi, Yasmeen Q; Huang, Su-Chen; Ladbury, John E; Bogler, Oliver; Williams, Michelle D; Cote, Gilbert J; Gagel, Robert F

    2015-05-01

    The RET proto-oncogene, a tyrosine kinase receptor, is widely known for its essential role in cell survival. Germ line missense mutations, which give rise to constitutively active oncogenic RET, were found to cause multiple endocrine neoplasia type 2, a dominant inherited cancer syndrome that affects neuroendocrine organs. However, the mechanisms by which RET promotes cell survival and prevents cell death remain elusive. We demonstrate that in addition to cytoplasmic localization, RET is localized in the nucleus and functions as a tyrosine-threonine dual specificity kinase. Knockdown of RET by shRNA in medullary thyroid cancer-derived cells stimulated expression of activating transcription factor 4 (ATF4), a master transcription factor for stress-induced apoptosis, through activation of its target proapoptotic genes NOXA and PUMA. RET knockdown also increased sensitivity to cisplatin-induced apoptosis. We observed that RET physically interacted with and phosphorylated ATF4 at tyrosine and threonine residues. Indeed, RET kinase activity was required to inhibit the ATF4-dependent activation of the NOXA gene because the site-specific substitution mutations that block threonine phosphorylation increased ATF4 stability and activated its targets NOXA and PUMA. Moreover, chromatin immunoprecipitation assays revealed that ATF4 occupancy increased at the NOXA promoter in TT cells treated with tyrosine kinase inhibitors or the ATF4 inducer eeyarestatin as well as in RET-depleted TT cells. Together these findings reveal RET as a novel dual kinase with nuclear localization and provide mechanisms by which RET represses the proapoptotic genes through direct interaction with and phosphorylation-dependent inactivation of ATF4 during the pathogenesis of medullary thyroid cancer.

  9. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    Science.gov (United States)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  10. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.

    Science.gov (United States)

    Liu-Chittenden, Yi; Huang, Bo; Shim, Joong Sup; Chen, Qian; Lee, Se-Jin; Anders, Robert A; Liu, Jun O; Pan, Duojia

    2012-06-15

    The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.

  11. Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP

    Science.gov (United States)

    Liu-Chittenden, Yi; Huang, Bo; Shim, Joong Sup; Chen, Qian; Lee, Se-Jin; Anders, Robert A.; Liu, Jun O.; Pan, Duojia

    2012-01-01

    The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD–YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD–YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein. PMID:22677547

  12. Activated leukemic oncogenes AML1-ETO and c-kit: role in development of acute myeloid leukemia and current approaches for their inhibition.

    Science.gov (United States)

    Rulina, A V; Spirin, P V; Prassolov, V S

    2010-12-01

    Acute myeloid leukemia (AML) is a malignant blood disease caused by different mutations that enhance the proliferative activity and survival of blood cells and affect their differentiation and apoptosis. The most frequent disorders in AML are translocations between chromosomes 21 and 8 leading to production of a chimeric oncogene, AML1-ETO, and hyperexpression of the receptor tyrosine kinase KIT. Mutations in these genes often occur jointly. The presence in cells of two activated oncogenes is likely to trigger their malignization. The current approaches for treatment of oncologic diseases (bone marrow transplantation, radiotherapy, and chemotherapy) have significant shortcomings, and thus many laboratories are intensively developing new approaches against leukemias. Inhibiting expression of activated leukemic oncogenes based on the principle of RNA interference seems to be a promising approach in this field.

  13. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  14. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Bräuner-Osborne, Hans

    1999-01-01

    A number of CXC chemokines competed with similar, nanomolar affinity against 125I-interleukin-8 (IL-8) binding to ORF-74, a constitutively active seven-transmembrane receptor encoded by human herpesvirus 8. However, in competition against 125I-labeled growth-related oncogene (GRO)-alpha, the ORF-74...... receptor was highly selective for GRO peptides, with IL-8 being 10,000-fold less potent. The constitutive stimulating activity of ORF-74 on phosphatidylinositol turnover was not influenced by, for example, IL-8 binding. In contrast, GRO peptides acted as potent agonists in stimulating ORF-74 signaling......, whereas IP-10 and stromal cell-derived factor-1alpha surprisingly acted as inverse agonists. These peptides had similar pharmacological properties with regard to enhancing or inhibiting, respectively, the stimulatory effect of ORF-74 on NIH-3T3 cell proliferation. Construction of a high affinity zinc...

  15. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export.

    Science.gov (United States)

    Port, Sarah A; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H

    2016-10-28

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)(+) RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)(+) RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors.

  16. Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer.

    Directory of Open Access Journals (Sweden)

    Ian M Smith

    Full Text Available BACKGROUND: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. CONCLUSIONS/SIGNIFICANCE: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.

  17. HER2 Oncogenic Function Escapes EGFR Tyrosine Kinase Inhibitors via Activation of Alternative HER Receptors in Breast Cancer Cells

    Science.gov (United States)

    Kong, Anthony; Calleja, Véronique; Leboucher, Pierre; Harris, Adrian; Parker, Peter J.; Larijani, Banafshé

    2008-01-01

    Background The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses. Methodology and Principal Findings Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa. Conclusions and Significance These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients. PMID:18682844

  18. Combating oncogene activation associated with retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    B.E. Strauss

    2007-05-01

    Full Text Available A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.

  19. Joint research center activity in thermonuclear fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rocco, P. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1984-04-01

    A review of the activities in progress in the field of thermonuclear fusion technology at the Joint Research Centre of the European Communities is presented. The research areas are: (I) reactor studies, including conceptual design studies of experimental Tokamak reactors (INTOR/NET) and safety analyses; (II) experimental investigation on first wall and blanket materials and components. Emphasis has been given to those topics which are not reported in detail in the following articles of the issue.

  20. Premature Activation of the Paramyxovirus Fusion Protein before Target Cell Attachment with Corruption of the Viral Fusion Machinery*

    Science.gov (United States)

    Farzan, Shohreh F.; Palermo, Laura M.; Yokoyama, Christine C.; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E.; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-01-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents. PMID:21799008

  1. Sensor fusion methods for high performance active vibration isolation systems

    Science.gov (United States)

    Collette, C.; Matichard, F.

    2015-04-01

    Sensor noise often limits the performance of active vibration isolation systems. Inertial sensors used in such systems can be selected through a wide variety of instrument noise and size characteristics. However, the most sensitive instruments are often the biggest and the heaviest. Consequently, high-performance active isolators sometimes embed many tens of kilograms in instrumentation. The weight and size of instrumentation can add unwanted constraint on the design. It tends to lower the structures natural frequencies and reduces the collocation between sensors and actuators. Both effects tend to reduce feedback control performance and stability. This paper discusses sensor fusion techniques that can be used in order to increase the control bandwidth (and/or the stability). For this, the low noise inertial instrument signal dominates the fusion at low frequency to provide vibration isolation. Other types of sensors (relative motion, smaller but noisier inertial, or force sensors) are used at higher frequencies to increase stability. Several sensor fusion configurations are studied. The paper shows the improvement that can be expected for several case studies including a rigid equipment, a flexible equipment, and a flexible equipment mounted on a flexible support structure.

  2. Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway.

    Science.gov (United States)

    Conti, Annalisa; Majorini, Maria Teresa; Elliott, Richard; Ashworth, Alan; Lord, Christopher J; Cancelliere, Carlotta; Bardelli, Alberto; Seneci, Pierfausto; Walczak, Henning; Delia, Domenico; Lecis, Daniele

    2015-05-10

    KRAS is mutated in about 20-25% of all human cancers and especially in pancreatic, lung and colorectal tumors. Oncogenic KRAS stimulates several pro-survival pathways, but it also triggers the trans-activation of pro-apoptotic genes. In our work, we show that G13D mutations of KRAS activate the MAPK pathway, and ERK2, but not ERK1, up-regulates Noxa basal levels. Accordingly, premalignant epithelial cells are sensitized to various cytotoxic compounds in a Noxa-dependent manner. In contrast to these findings, colorectal cancer cell sensitivity to treatment is independent of KRAS status and Noxa levels are not up-regulated in the presence of mutated KRAS despite the fact that ERK2 still promotes Noxa expression. We therefore speculated that other survival pathways are counteracting the pro-apoptotic effect of mutated KRAS and found that the inhibition of AKT restores sensitivity to treatment, especially in presence of oncogenic KRAS. In conclusion, our work suggests that the pharmacological inhibition of the pathways triggered by mutated KRAS could also switch off its oncogene-activated pro-apoptotic stimulation. On the contrary, the combination of chemotherapy to inhibitors of specific pro-survival pathways, such as the one controlled by AKT, could enhance treatment efficacy by exploiting the pro-death stimulation derived by oncogene activation.

  3. Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion

    Directory of Open Access Journals (Sweden)

    Susan Daniel

    2012-07-01

    Full Text Available Hemagglutinin (HA is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future.

  4. Mutations in the DI-DII Linker of Human Parainfluenza Virus Type 3 Fusion Protein Result in Diminished Fusion Activity.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available Human parainfluenza virus type 3 (HPIV3 can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369-374 of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.

  5. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer.

    Science.gov (United States)

    Wolff, Erika M; Byun, Hyang-Min; Han, Han F; Sharma, Shikhar; Nichols, Peter W; Siegmund, Kimberly D; Yang, Allen S; Jones, Peter A; Liang, Gangning

    2010-04-22

    It was recently shown that a large portion of the human transcriptome can originate from within repetitive elements, leading to ectopic expression of protein-coding genes. However the mechanism of transcriptional activation of repetitive elements has not been definitively elucidated. For the first time, we directly demonstrate that hypomethylation of retrotransposons can cause altered gene expression in humans. We also reveal that active LINE-1s switch from a tetranucleosome to dinucleosome structure, acquiring H2A.Z- and nucleosome-free regions upstream of TSSs, previously shown only at active single-copy genes. Hypomethylation of a specific LINE-1 promoter was also found to induce an alternate transcript of the MET oncogene in bladder tumors and across the entire urothelium of tumor-bearing bladders. These data show that, in addition to contributing to chromosomal instability, hypomethylation of LINE-1s can alter the functional transcriptome and plays a role not only in human disease but also in disease predisposition.

  6. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer.

    Directory of Open Access Journals (Sweden)

    Erika M Wolff

    2010-04-01

    Full Text Available It was recently shown that a large portion of the human transcriptome can originate from within repetitive elements, leading to ectopic expression of protein-coding genes. However the mechanism of transcriptional activation of repetitive elements has not been definitively elucidated. For the first time, we directly demonstrate that hypomethylation of retrotransposons can cause altered gene expression in humans. We also reveal that active LINE-1s switch from a tetranucleosome to dinucleosome structure, acquiring H2A.Z- and nucleosome-free regions upstream of TSSs, previously shown only at active single-copy genes. Hypomethylation of a specific LINE-1 promoter was also found to induce an alternate transcript of the MET oncogene in bladder tumors and across the entire urothelium of tumor-bearing bladders. These data show that, in addition to contributing to chromosomal instability, hypomethylation of LINE-1s can alter the functional transcriptome and plays a role not only in human disease but also in disease predisposition.

  7. Specific oncogenic activity of the Src-family tyrosine kinase c-Yes in colon carcinoma cells.

    Science.gov (United States)

    Sancier, Florence; Dumont, Aurélie; Sirvent, Audrey; Paquay de Plater, Ludmilla; Edmonds, Thomas; David, Géraldine; Jan, Michel; de Montrion, Catherine; Cogé, Francis; Léonce, Stéphane; Burbridge, Michael; Bruno, Alain; Boutin, Jean A; Lockhart, Brian; Roche, Serge; Cruzalegui, Francisco

    2011-02-24

    c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.

  8. Serine phosphorylation of NPM-ALK, which is dependent on the auto-activation of the kinase activation loop, contributes to its oncogenic potential.

    Science.gov (United States)

    Wang, Peng; Wu, Fang; Zhang, Jingdong; McMullen, Todd; Young, Leah C; Ingham, Robert J; Li, Liang; Lai, Raymond

    2011-02-01

    It is well established that the tumorigenic potential of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), an oncogenic tyrosine kinase, is dependent on its tyrosine phosphorylation. Using tandem affinity purification-mass spectrometry, we found evidence of phosphorylation of three serine residues of NPM-ALK (Serine¹³⁵, Serine¹⁶⁴ and Serine⁴⁹⁷) ectopically expressed in GP293 cells. Using a specific anti-phosphoserine antibody and immunoprecipitation, we confirmed the presence of serine phosphorylation of NPM-ALK in all three NPM-ALK-expressing cell lines examined. Similar to the tyrosine phosphorylation, phosphorylation of these serine residues was dependent on the activation status of the kinase activation loop of ALK. All of these three serine residues are biologically important as mutation of any one of these residues resulted in a significant reduction in the tumorigenicity of NPM-ALK (assessed by cell viability and clonogenic assay), which correlated with a substantial reduction in the phosphorylation of extracellular signal-regulated kinase 1/2, c-jun N-terminal kinase and signal transducer and activator of transcription 6. Serine phosphorylation of NPM-ALK appears to be regulated by multiple serine kinases since it was markedly reduced by pharmacologic inhibitors for glycogen synthase kinase-3, casein kinase I or mitogen-activated protein kinases. In summary, our study is the first to identify serine phosphorylation of NPM-ALK and to provide evidence that it enhances the tumorigenic potential of this oncogenic protein.

  9. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    Science.gov (United States)

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  10. Cigarette Smoke Activates the Proto-Oncogene c-Src to Promote Airway Inflammation and Lung Tissue Destruction

    Science.gov (United States)

    Geraghty, Patrick; Hardigan, Andrew

    2014-01-01

    The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke–exposed mice. Moreover, inhibiting Src deterred the cigarette smoke–mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605

  11. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf.

    Science.gov (United States)

    Marzec, M; Kasprzycka, M; Liu, X; Raghunath, P N; Wlodarski, P; Wasik, M A

    2007-02-01

    The mechanisms of cell transformation mediated by the highly oncogenic, chimeric NPM/ALK tyrosine kinase remain only partially understood. Here we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma (ALK+ TCL) display phosphorylation of the extracellular signal-regulated protein kinase (ERK) 1/2 complex. Transfection of BaF3 cells with NPM/ALK induces phosphorylation of EKR1/2 and of its direct activator mitogen-induced extracellular kinase (MEK) 1/2. Depletion of NPM/ALK by small interfering RNA (siRNA) or its inhibition by WHI-154 abrogates the MEK1/2 and ERK1/2 phosphorylation. The NPM/ALK-induced MEK/ERK activation is independent of c-Raf as evidenced by the lack of MEK1/2 and ERK1/2 phosphorylation upon c-Raf inactivation by two different inhibitors, RI and ZM336372, and by its siRNA-mediated depletion. In contrast, ERK1/2 activation is strictly MEK1/2 dependent as shown by suppression of the ERK1/2 phosphorylation by the MEK1/2 inhibitor U0126. The U0126-mediated inhibition of ERK1/2 activation impaired proliferation and viability of the ALK+ TCL cells and expression of antiapoptotic factor Bcl-xL and cell cycle-promoting CDK4 and phospho-RB. Finally, siRNA-mediated depletion of both ERK1 and ERK2 inhibited cell proliferation, whereas depletion of ERK 1 (but not ERK2) markedly increased cell apoptosis. These findings identify MEK/ERK as a new signaling pathway activated by NPM/ALK and indicate that the pathway represents a novel therapeutic target in the ALK-induced malignancies.

  12. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  13. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  14. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  15. Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Damian J Junk

    Full Text Available Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1 occurs in a majority of breast cancers and over-expression of CCND1 leads to accumulation of activated CCND1/CDK2 complexes in breast cancer cells. We describe here the role of constitutively active CCND1/CDK2 complexes in human mammary epithelial cell (HMEC transformation. A genetically-defined, stepwise HMEC transformation model was generated by inhibiting p16 and p53 with shRNA, and expressing exogenous MYC and mutant RAS. By replacing components of this model, we demonstrate that constitutive CCND1/CDK2 activity effectively confers anchorage independent growth by inhibiting p53 or replacing MYC or oncogenic RAS expression. These findings are consistent with several clinical observations of luminal breast cancer sub-types that show elevated CCND1 typically occurs in specimens that retain wild-type p53, do not amplify MYC, and contain no RAS mutations. Taken together, these data suggest that targeted inhibition of constitutive CCND1/CDK2 activity may enhance the effectiveness of current treatments for luminal breast cancer.

  16. A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study

    Directory of Open Access Journals (Sweden)

    Fountzilas Elena

    2012-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies. Results Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis. Conclusions Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity

  17. Modulation of oncogenic DBL activity by phosphoinositol phosphate binding to pleckstrin homology domain.

    Science.gov (United States)

    Russo, C; Gao, Y; Mancini, P; Vanni, C; Porotto, M; Falasca, M; Torrisi, M R; Zheng, Y; Eva, A

    2001-06-01

    The Dbl family guanine nucleotide exchange factors (GEFs) contain a region of sequence similarity consisting of a catalytic Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. PH domains are involved in the regulated targeting of signaling molecules to plasma membranes by protein-protein and/or protein-lipid interactions. Here we show that Dbl PH domain binding to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate results in the inhibition of Dbl GEF activity on Rho family GTPase Cdc42. Phosphatidylinositol 4,5-bisphosphate binding to the PH domain significantly inhibits the Cdc42 interactive activity of the DH domain suggesting that the DH domain is subjected to the PH domain modulation under the influence of phosphoinositides (PIPs). We generated Dbl mutants unable to interact with PIPs. These mutants retained GEF activity on Cdc42 in the presence of PIPs and showed a markedly enhanced activating potential for both Cdc42 and RhoA in vivo while displaying decreased cellular transforming activity. Immunofluorescence analysis of NIH3T3 transfectants revealed that whereas the PH domain localizes to actin stress fibers and plasma membrane, the PH mutants are no longer detectable on the plasma membrane. These results suggest that modulation of PIPs in both the GEF catalytic activity and the targeting to plasma membrane determines the outcome of the biologic activity of Dbl.

  18. RABEX-5 is upregulated and plays an oncogenic role in gastric cancer development by activating the VEGF signaling pathway.

    Science.gov (United States)

    Wang, Shuang; Lu, Aixia; Chen, Xiangming; Wei, Lin; Ding, Jiqiang

    2014-01-01

    RABEX-5, a guanine-nucleotide exchange factor (GEF) for RAB-5, is implicated in tumorigenesis and in the development of certain human cancers. Here, we report that RABEX-5 promotes tumor growth and the metastatic ability of gastric cancer cells both in vitro and in vivo. Expression of RABEX-5 is significantly higher in gastric cancer tissues and is associated with tumor size and lymph node metastasis. In addition, targeted silencing of RABEX-5 reduced gastric cancer cell proliferation and colony formation in vitro via the induction of a G0/G1 phase arrest, and stimulated gastric cancer cell apoptosis. Knockdown of RABEX-5 also inhibited wound healing, migration and the invasive abilities of gastric cancer cells. The results of in vivo animal experiments were also consistent with these in vitro findings. Silencing of RABEX-5 led to decreased expression of VEGF. These results indicate that RABEX-5 is upregulated and plays an oncogenic role in gastric cancer development by activating the VEGF signaling pathway.

  19. The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities.

    Science.gov (United States)

    Shai, Anny; Brake, Tiffany; Somoza, Chamorro; Lambert, Paul F

    2007-02-15

    Cervical cancer is a leading cause of death due to cancer among women worldwide. Using transgenic mice to dissect the contributions of the human papillomavirus (HPV) 16 E6 and E7 oncogenes in cervical cancer, E7 was identified previously to be the dominant oncogene. Specifically, when treated with exogenous estrogen for 6 months, E7 transgenic mice developed cancer throughout the reproductive tract, but E6 transgenic mice did not. E6 contributed to carcinogenesis of the reproductive tract, as E6/E7 double transgenic mice treated for 6 months with estrogen developed larger cancers than E7 transgenic mice. In the current study, we investigated whether the E6 oncogene alone could cooperate with estrogen to induce cervical cancer after an extended estrogen treatment period of 9 months. We found that the E6 oncogene synergizes with estrogen to induce cervical cancer after 9 months, indicating that E6 has a weaker but detectable oncogenic potential in the reproductive tract compared with the E7 oncogene. Using transgenic mice that express mutant forms of HPV16 E6, we determined that the interactions of E6 with cellular alpha-helix and PDZ partners correlate with its ability to induce cervical carcinogenesis. In analyzing the tumors arising in E6 transgenic mice, we learned that E6 induces expression of the E2F-responsive genes, Mcm7 and cyclin E, in the absence of the E7 oncogene. E6 also prevented the expression of p16 in tumors of the reproductive tract through a mechanism mediated by the interaction of E6 with alpha-helix partners.

  20. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  1. Oncogenic Activation of MAP Kinase by BRAF Pseudogene in Thyroid Tumors

    Directory of Open Access Journals (Sweden)

    Minjing Zou

    2009-01-01

    Full Text Available Activating BRAF mutations have been reported in 40% of papillary thyroid carcinomas (PTCs. The involvement of BRAF pseudogene in thyroid tumorigenesis has not previously been studied. We investigated BRAF pseudogene expression in 68 thyroid tumors: 16 multinodular goiters, 43 classic PTCs, 6 follicular variants of PTC, and 3 anaplastic thyroid carcinomas. BRAF pseudogene function was studied by Western blots, soft agar assay, and tumorigenesis in nude mice. BRAF pseudogene expression was detected in 7 multinodular goiters, 18 classic PTC, and 1 follicular variants of PTC. There is an inverse correlation between BRAF pseudogene expression and BRAF mutation. The pseudogene transcripts were more frequently detected in tumors without BRAF mutation than those with BRAF mutation. Furthermore, BRAF pseudogene expression could activate the MAP kinase signaling pathway, transform NIH3T3 cells in vitro, and induce tumors in nude mice. These data suggest that BRAF pseudogene activation may play a role in thyroid tumor development.

  2. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sonja Koopal

    2007-09-01

    Full Text Available Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV-infected tumor cells that express endothelial cell (EC markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers.

  3. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Ren-Jun Hsu

    Full Text Available Renal cell carcinoma (RCC is a malignancy with poor prognosis. WNT/β-catenin signaling dysregulation, especially β-catenin overactivation and WNT antagonist silencing, is associated with RCC carcinogenesis and progression. However, the role of WNT ligands in RCC has not yet been determined. We screened 19 WNT ligands from normal kidney and RCC cell lines and tissues and found that WNT10A was significantly increased in RCC cell lines and tissues as compared to that in normal controls. The clinical significance of increase in WNT10A was evaluated by performing an immunohistochemical association study in a 19-year follow-up cohort comprising 284 RCC and 267 benign renal disease (BRD patients. The results of this study showed that WNT10A was dramatically upregulated in RCC tissues as compared to that in BRD tissues. This result suggests that WNT10A, nuclear β-catenin, and nuclear cyclin D1 act as independent risk factors for RCC carcinogenesis and progression, with accumulative risk effects. Molecular validation of cell line models with gain- or loss-of-function designs showed that forced WNT10A expression induced RCC cell proliferation and aggressiveness, including higher chemoresistance, cell migration, invasiveness, and cell transformation, due to the activation of β-catenin-dependent signaling. Conversely, WNT10A siRNA knockdown decreased cell proliferation and aggressiveness of RCC cells. In conclusion, we showed that WNT10A acts as an autocrine oncogene both in RCC carcinogenesis and progression by activating WNT/β-catenin signaling.

  4. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity.

    Science.gov (United States)

    Eisner, Verónica; Cupo, Ryan R; Gao, Erhe; Csordás, György; Slovinsky, William S; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S R Wayne; Chuprun, J Kurt; Hoek, Jan B; Koch, Walter J; Hajnóczky, György

    2017-01-31

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24-48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2-mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy.

  5. Multilevel depth and image fusion for human activity detection.

    Science.gov (United States)

    Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng

    2013-10-01

    Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.

  6. miR-203 downregulates Yes-1 and suppresses oncogenic activity in human oral cancer cells.

    Science.gov (United States)

    Lee, Seul-Ah; Kim, Jae-Sung; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Chun, Hong Sung; Kim, Jeongsun; Park, Jong-Tae; Go, Daesan; Kim, Do Kyung

    2015-10-01

    The purpose of this study was to elucidate the molecular mechanisms of microRNA-203 (miR-203) as a tumor suppressor in KB human oral cancer cells. MicroRNA microarray results showed that the expression of miR-203 was significantly down-regulated in KB cells compared with normal human oral keratinocytes. The viability of KB cells was decreased by miR-203 in the time- and dose-dependent manners. In addition, over-expressed miR-203 not only increased the nuclear condensation but also significantly increased the apoptotic population of KB cells. These results indicated that the over-expression of miR-203 induced apoptosis of KB cells. Furthermore, the target gene array analyses revealed that the expression of Yes-1, a member of the Src family kinases (SFKs), was significantly down-regulated by miR-203 in KB cells. Moreover, both the mRNA and protein levels of Yes-1 were strongly reduced in KB cells transfected with miR-203. Therefore, these results indicated that Yes-1 is predicted to be a potential target gene of miR-203. Through a luciferase activity assay, miR-203 was confirmed to directly targets the Yes-1 3' untranslated region (UTR) to suppress gene expression. Therefore, our findings indicate that miR-203 induces the apoptosis of KB cells by directly targeting Yes-1, suggesting its application in anti-cancer therapeutics.

  7. Accelerator and Fusion Research Division: 1984 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  8. The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells

    Science.gov (United States)

    Martinez, Natalia; Drescher, Bettina; Riehle, Heidemarie; Cullmann, Claire; Vornlocher, Hans-Peter; Ganser, Arnold; Heil, Gerhard; Nordheim, Alfred; Krauter, Jürgen; Heidenreich, Olaf

    2004-01-01

    Background The fusion protein RUNX1-CBFA2T1 associated with t(8;21)-positive acute myeloid leukaemia is a potent inhibitor of haematopoetic differentiation. The role of RUNX1-CBFA2T1 in leukaemic cell proliferation is less clear. We examined the consequences of siRNA-mediated RUNX1-CBFA2T1 depletion regarding proliferation and clonogenicity of t(8;21)-positive cell lines. Methods The t(8;21)-positive cell line Kasumi-1 was electroporated with RUNX1-CBFA2T1 or control siRNAs followed by analysis of proliferation, colony formation, cell cycle distribution, apoptosis and senescence. Results Electroporation of Kasumi-1 cells with RUNX1-CBFA2T1 siRNAs, but not with control siRNAs, resulted in RUNX1-CBFA2T1 suppression which lasted for at least 5 days. A single electroporation with RUNX1-CBFA2T1 siRNA severely diminished the clonogenicity of Kasumi-1 cells. Prolonged RUNX1-CBFA2T1 depletion inhibited proliferation in suspension culture and G1-S transition during the cell cycle, diminished the number of apoptotic cells, but induced cellular senescence. The addition of haematopoetic growth factors could not rescue RUNX1-CBFA2T1-depleted cells from senescence, and could only partially restore their clonogenicity. Conclusions RUNX1-CBFA2T1 supports the proliferation and expansion of t(8;21)-positive leukaemic cells by preventing cellular senescence. These findings suggest a central role of RUNX1-CBFA2T1 in the maintenance of the leukaemia. Therefore, RUNX1-CBFA2T1 is a promising and leukaemia-specific target for molecularly defined therapeutic approaches. PMID:15298716

  9. The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21-positive leukaemic cells

    Directory of Open Access Journals (Sweden)

    Nordheim Alfred

    2004-08-01

    Full Text Available Abstract Background The fusion protein RUNX1-CBFA2T1 associated with t(8;21-positive acute myeloid leukaemia is a potent inhibitor of haematopoetic differentiation. The role of RUNX1-CBFA2T1 in leukaemic cell proliferation is less clear. We examined the consequences of siRNA-mediated RUNX1-CBFA2T1 depletion regarding proliferation and clonogenicity of t(8;21-positive cell lines. Methods The t(8;21-positive cell line Kasumi-1 was electroporated with RUNX1-CBFA2T1 or control siRNAs followed by analysis of proliferation, colony formation, cell cycle distribution, apoptosis and senescence. Results Electroporation of Kasumi-1 cells with RUNX1-CBFA2T1 siRNAs, but not with control siRNAs, resulted in RUNX1-CBFA2T1 suppression which lasted for at least 5 days. A single electroporation with RUNX1-CBFA2T1 siRNA severely diminished the clonogenicity of Kasumi-1 cells. Prolonged RUNX1-CBFA2T1 depletion inhibited proliferation in suspension culture and G1-S transition during the cell cycle, diminished the number of apoptotic cells, but induced cellular senescence. The addition of haematopoetic growth factors could not rescue RUNX1-CBFA2T1-depleted cells from senescence, and could only partially restore their clonogenicity. Conclusions RUNX1-CBFA2T1 supports the proliferation and expansion of t(8;21-positive leukaemic cells by preventing cellular senescence. These findings suggest a central role of RUNX1-CBFA2T1 in the maintenance of the leukaemia. Therefore, RUNX1-CBFA2T1 is a promising and leukaemia-specific target for molecularly defined therapeutic approaches.

  10. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  11. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  12. Immunohistochemical expression of the oncogenic molecules active Stat3 and survivin in benign and malignant salivary gland tumors

    Science.gov (United States)

    Nikitakis, Nikolaos G.; Scheper, Mark A.; Papanicolaou, Vasileios S.; Sklavounou, Alexandra; Sauk, John J.

    2009-01-01

    Objective Signal transducer and activator of transcription 3 (Stat3) and survivin have been shown to exert oncogenic effects in various human neoplasms. The purpose of this study was to evaluate the expression of the tyrosine phosphorylated (active) Stat3 and survivin in various benign and malignant salivary gland tumors (SGTs). Study design Eighty-six SGTs (65 malignant and 21 benign tumors of various histopathologic subtypes) were immunohistochemically stained with anti-survivin or anti-phosphorylated tyrosine-705 (p-tyr) Stat3 antibodies. Immunohistochemical reactivity was graded in a semi-quantitative manner; a combined score of immunohistochemical positivity (0–6) was calculated for each tumor by adding the individual scores for percentage of tumor cells (0–3) and intensity of staining (0–3). Results Survivin was immunohistochemically detected in all studied benign and malignant SGTs; p-tyr Stat3 was also detected in the majority (91%) of SGTs. The average combined scores for survivin and p-tyr Stat3 immunohistochemical expression in the studied malignant SGTs was 4.40 and 3.35, respectively; the corresponding combined scores for survivin and p-tyr Stat3 in the studied benign SGTs were 4.37 and 3.22, respectively. No statistically significant differences (p>0.05) in p-tyr Stat3 or survivin expression were detected between the benign and malignant groups, or among the various examined histopathological subtypes of SGTs. In contrast, normal salivary gland elements in the vicinity of the studied tumors revealed only weak and focal survivin or p-tyr Stat3 immunoreactivity, mainly localized to ductal and mucous cells. Conclusions Our data indicate an almost universal expression of activated Stat3 and survivin in benign and malignant SGTs. Considering the well-established proliferative and anti-apoptotic properties of these molecules and their functional interrelationship, selective targeting techniques against Stat3 and/or survivin may represent promising

  13. Overview of Indian activities on fusion reactor materials

    Science.gov (United States)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  14. Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein.

    Science.gov (United States)

    Zhao, Bin; Kim, Joungmok; Ye, Xin; Lai, Zhi-Chun; Guan, Kun-Liang

    2009-02-01

    The Yes-associated protein (YAP) transcription coactivator is a candidate human oncogene and a key regulator of organ size. It is phosphorylated and inhibited by the Hippo tumor suppressor pathway. TEAD family transcription factors were recently shown to play a key role in mediating the biological functions of YAP. Here, we show that the WW domain of YAP has a critical role in inducing a subset of YAP target genes independent of or in cooperation with TEAD. Mutation of the WW domains diminishes the ability of YAP to stimulate cell proliferation and oncogenic transformation. Inhibition of YAP oncogenic-transforming activity depends on intact serine residues 127 and 381, two sites that could be phosphorylated by the Hippo pathway. Furthermore, genetic experiments in Drosophila support that WW domains of YAP and Yki, the fly YAP homologue, have an important role in stimulating tissue growth. Our data suggest a model in which YAP induces gene expression and exerts its biological functions by interacting with transcription factors through both the TEAD-binding and WW domains.

  15. Overview of the RFX-mod fusion science activity

    Science.gov (United States)

    Zuin, M.; Dal Bello, S.; Marrelli, L.; Puiatti, M. E.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F.; Barbisan, M.; Barbui, T.; Baruzzo, M.; Belli, F.; Bettini, P.; Bigi, M.; Bilel, R.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Brombin, M.; Buffa, A.; Bustreo, C.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cester, D.; Chacon, L.; Chitarin, G.; Cooper, W. A.; Cordaro, L.; Dalla Palma, M.; Deambrosis, S.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J. Q.; Escande, D. F.; Fassina, A.; Felici, F.; Ferro, A.; Finotti, C.; Franz, P.; Frassinetti, L.; Gaio, E.; Ghezzi, F.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Gonzalez, W. A.; Grando, L.; Guo, S. C.; Hanson, J. D.; Hirshman, S. P.; Innocente, P.; Jackson, J. L.; Kiyama, S.; Komm, M.; Kudlacek, O.; Laguardia, L.; Li, C.; Liu, B.; Liu, S. F.; Liu, Y. Q.; López-Bruna, D.; Lorenzini, R.; Luce, T. C.; Luchetta, A.; Maistrello, A.; Manduchi, G.; Mansfield, D. K.; Marchiori, G.; Marconato, N.; Marcuzzi, D.; Martin, P.; Martines, E.; Martini, S.; Mazzitelli, G.; McCormack, O.; Miorin, E.; Momo, B.; Moresco, M.; Narushima, Y.; Okabayashi, M.; Paccagnella, R.; Patel, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pigatto, L.; Piovan, R.; Piovesan, P.; Piron, C.; Piron, L.; Predebon, I.; Pucella, G.; Rea, C.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Ruset, C.; Sajò-Bohus, L.; Sakakita, H.; Sanchez, R.; Sarff, J. S.; Sattin, F.; Scarin, P.; Schmitz, O.; Schneider, W.; Siragusa, M.; Sonato, P.; Spada, E.; Spagnolo, S.; Spolaore, M.; Spong, D. A.; Spizzo, G.; Stevanato, L.; Suzuki, Y.; Taliercio, C.; Terranova, D.; Tudisco, O.; Urso, G.; Valente, M.; Valisa, M.; Vallar, M.; Veranda, M.; Vianello, N.; Villone, F.; Vincenzi, P.; Visonà, N.; White, R. B.; Xanthopoulos, P.; Xu, X. Y.; Yanovskiy, V.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zhang, Y.; Zilli, E.

    2017-10-01

    This paper reports the main recent results of the RFX-mod fusion science activity. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra-low q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed us to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effects in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to an improved confinement scenario in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modeling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.

  16. Loss of Keratinocytic RXRα Combined with Activated CDK4 or oncogenic NRAS Generates UVB-induced Melanomas via Loss of p53 and PTEN in the Tumor Microenvironment

    OpenAIRE

    Coleman, Daniel J.; Chagani, Sharmeen; Hyter, Stephen; Sherman, Anna M.; Löhr, Christiane V.; Liang, Xiaobo; Ganguli-Indra, Gitali; Indra, Arup K.

    2014-01-01

    Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRASQ61K (constitutively active RAS) or mutant activated CDK4R24C/R24C (prevents binding of CDK4 by kinase inhibitor p16INK4A) with an epidermis-specific knockout...

  17. Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors.

    Science.gov (United States)

    Ceribelli, Michele; Kelly, Priscilla N; Shaffer, Arthur L; Wright, George W; Xiao, Wenming; Yang, Yibin; Mathews Griner, Lesley A; Guha, Rajarshi; Shinn, Paul; Keller, Jonathan M; Liu, Dongbo; Patel, Paresma R; Ferrer, Marc; Joshi, Shivangi; Nerle, Sujata; Sandy, Peter; Normant, Emmanuel; Thomas, Craig J; Staudt, Louis M

    2014-08-01

    In the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB-driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug-drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.

  18. Material Science Activities for Fusion Reactors in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, I.; Kenzhin, E.; Kulsartov, T. [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Shestakov, V. [Kazakhstan State University, Almaty (Kazakhstan); Chikhray, Y. [Kazakh National University, Kourmangazy 15, app.lO, 480100 Almaty (Kazakhstan); Azizov, E. [TRINITI, Troitsk (Russian Federation); Filatov, O. [Effremov Institute, Saint Petersburg (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, P.O. Box 369, 123060 Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Paper contains results of fusion material testing national program and results of activities on creation of material testing spherical tokamak. Hydrogen isotope behavior (diffusion, permeation, and accumulation) in the components of the first wall and divertor was studied taking into account temperature, pressure, and reactor irradiation. There were carried out out-of-pile and in-pile (reactors IVG-IM, WWRK, RA) studies of beryllium of various grades (TV-56, TShG-56, DV-56, TGP-56, TIP-56), graphites (RG-T, MPG-8, FP 479, R 4340), molybdenum, tungsten, steels (Cr18Ni10Ti, Cr16Ni15, MANET, F82H), alloys V-(4-6)Cr-( 4-5)Ti, Cu+1%Cr+0.1%Zr, and double Be/Cu and triple Be/Cu/steel structures. Tritium permeability from eutectic Pb+17%Li through steels Cr18Ni10Ti, Cr16Ni15, MANET, and F82H were studied taking into account protective coating effects. The tritium production rate was experimentally assessed during in-pile and post-reactor experiments. There were carried out radiation tests of ceramic Li{sub 2}TiO{sub 3} (96% enrichment by Li-6) with in-situ registration of released tritium and following post-irradiation material tests of irradiated samples. Verification of computer codes for simulation of accidents related to LOCA in ITER reactor was carried out. Codes' verification was carried out for a mockup of first wall in a form of three-layer cylinder of beryllium, bronze (Cu-Cr-Zr) and stainless steel. At present Kazakhstan Tokamak for Material testing (tokamak KTM) is created in National Nuclear Center of Republic of Kazakhstan in cooperation with Russian Federation organizations (start-up is scheduled on 2008). Tokamak KTM allows for expansion and specification of the studies and tests of materials, protection options of first wall, receiving divertor tiles and divertor components, methods for load reduction at divertor, and various options of heat/power removal, fast evacuation of divertor volume and development of the

  19. cDNA Microarrays Detect Activation of a Myogenic Transcription Program by the PAX3-FKHR Fusion Oncogene

    National Research Council Canada - National Science Library

    Javed Khan; Michael L. Bittner; Lao H. Saal; Ulrike Teichmann; David O. Azorsa; Gerald C. Gooden; William J. Pavan; Jeffrey M. Trent; Paul S. Meltzer

    1999-01-01

    .... To investigate the actions of these transcription factors, both Pax3 and PAX3-FKHR were introduced into NIH 3T3 cells, and the resultant gene expression changes were analyzed with a murine cDNA micro...

  20. Active inhibition of herpes simplex virus type 1-induced cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.; Read, G.S.

    1982-01-01

    Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examined in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.

  1. Comparison of fusion methods based on DST and DBN in human activity recognition

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Ambient assistive living environments require sophisticated information fusion and reasoning techniques to accurately identify activities of a person under care. In this paper, we explain, compare and discuss the application of two powerful fusion methods, namely dynamic Bayesian networks (DBN) and Dempster-Shafer theory (DST), for human activity recognition. Both methods are described, the implementation of activity recognition based on these methods is explained, and model acquisition and composition are ...

  2. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Choi, AHyun; Illendula, Anuradha; Pulikkan, John A; Roderick, Justine E; Tesell, Jessica; Yu, Jun; Hermance, Nicole; Zhu, Lihua Julie; Castilla, Lucio H; Bushweller, John H; Kelliher, Michelle A

    2017-08-08

    The gene encoding the RUNX1 transcription factor is mutated in a subset of T cell acute lymphoblastic leukemia (T-ALL) patients and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA binding Runt domain, are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T cell transformation. RUNX1 has been proposed to have tumor suppressor roles in TLX1/3 transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreER(T2)Runx1(f/f) mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL. Copyright © 2017 American Society of Hematology.

  3. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  4. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  5. Luteolin induces intrinsic apoptosis via inhibition of E6/E7 oncogenes and activation of extrinsic and intrinsic signaling pathways in HPV-18-associated cells.

    Science.gov (United States)

    Ham, Sunyoung; Kim, Ki Hong; Kwon, Tae Ho; Bak, Yesol; Lee, Dong Hun; Song, Yong Seok; Park, Su-Ho; Park, Yun Sun; Kim, Man Sub; Kang, Jeong Woo; Hong, Jin Tae; Yoon, Do-Young

    2014-06-01

    Luteolin, a flavonoid extracted from a number of plants with recognized anticancer, anti-inflammatory and anti-oxidative activities, inhibits angiogenic processes and modulates multidrug resistance. However, the efficacy and mechanisms of action of this flavonoid agent are still undergoing study. In order to elucidate whether luteolin exhibits an anticancer effect in cervical cancer cells, HeLa cells were incubated with luteolin and apoptosis was assessed by observing nuclear morphological changes, and performing Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Cell cycle analysis, western blotting, RT-PCR and mitochondrial membrane potential measurements were also carried out. Luteolin showed a significant dose-dependent cytotoxic effect only in human papillomavirus (HPV)-positive cervical cancer cells, when compared to its effect on HPV-negative cervical cancer C33A cells. Expression levels of human papilloma virus E6 and E7 oncogenes were suppressed, those of related factors pRb and p53 were recovered and E2F5 was increased by luteolin treatment. Furthermore, luteolin enhanced the expression of death receptors and death receptor downstream factors such as Fas/FasL, DR5/TRAIL and FADD in HeLa cells, and activated caspase cascades. In particular, luteolin enhanced the activity of caspase-3 and -8 in a dose-dependent manner. Activation of caspase-3 induced caspase-8 activity and vice versa. Luteolin also induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited Bcl-2 and Bcl-xL expression. In conclusion, luteolin exerts anticarcinogenic activity through inhibition of E6 and E7 expression and cross-activation of caspase-3 and -8. Taken together, these results suggest that luteolin induces inactivation of HPV-18 oncogene expression and apoptosis by activating the intrinsic and extrinsic pathways.

  6. Fusogenic activity of reconstituted newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process.

    Science.gov (United States)

    Cobaleda, C; Muñoz-Barroso, I; Sagrera, A; Villar, E

    2002-04-01

    Enveloped viruses, such as newcastle disease virus (NDV), make their entry into the host cell by membrane fusion. In the case of NDV, the fusion step requires both transmembrane hemagglutinin-neuraminidase (HN) and fusion (F) viral envelope glycoproteins. The HN protein should show fusion promotion activity. To date, the nature of HN-F interactions is a controversial issue. In this work, we aim to clarify the role of the HN glycoprotein in the membrane fusion step. Four types of reconstituted detergent-free NDV envelopes were used, on differing in their envelope protein contents. Fusion of the different virosomes and erythrocyte ghosts was monitored using the octadecyl rhodamine B chloride assay. Only the reconstituted envelopes having the F protein, even in the absence of HN protein, displayed residual fusion activity. Treatment of such virosomes with denaturing agents affecting the F protein abolished fusion, indicating that the fusion detected was viral protein-dependent. Interestingly, the rate of fusion in the reconstituted systems was similar to that of intact viruses in the presence of the inhibitor of HN sialidase activity 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. The results show that the residual fusion activity detected in the reconstituted systems was exclusively due to F protein activity, with no contribution from the fusion promotion activity of HN protein.

  7. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  8. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA)

    Science.gov (United States)

    Burke, John E.; Perisic, Olga; Masson, Glenn R.; Vadas, Oscar; Williams, Roger L.

    2012-01-01

    The p110α catalytic subunit (PIK3CA) is one of the most frequently mutated genes in cancer. We have examined the activation of the wild-type p110α/p85α and a spectrum of oncogenic mutants using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We find that for the wild-type enzyme, the natural transition from an inactive cytosolic conformation to an activated form on membranes entails four distinct events. Analysis of oncogenic mutations shows that all up-regulate the enzyme by enhancing one or more of these dynamic events. We provide the first insight into the activation mechanism by mutations in the linker between the adapter-binding domain (ABD) and the Ras-binding domain (RBD) (G106V and G118D). These mutations, which are common in endometrial cancers, enhance two of the natural activation events: movement of the ABD and ABD–RBD linker relative to the rest of the catalytic subunit and breaking the C2–iSH2 interface on binding membranes. C2 domain mutants (N345K and C420R) also mimic these events, even in the absence of membranes. A third event is breaking the nSH2–helical domain contact caused by phosphotyrosine-containing peptides binding to the enzyme, which is mimicked by a helical domain mutation (E545K). Interaction of the C lobe of the kinase domain with membranes is the fourth activation event, and is potentiated by kinase domain mutations (e.g., H1047R). All mutations increased lipid binding and basal activity, even mutants distant from the membrane surface. Our results elucidate a unifying mechanism in which diverse PIK3CA mutations stimulate lipid kinase activity by facilitating allosteric motions required for catalysis on membranes. PMID:22949682

  9. Oncogenic viruses and cancer

    Institute of Scientific and Technical Information of China (English)

    Guangxiang; George; Luo; Jing-hsiung; James; Ou

    2015-01-01

    <正>This special issue of the journal is dedicated to the important topic of oncogenic viruses and cancer.It contains seven review articles covering all known oncogenic viruses except for human T-lymphotropic virus type1(HTLV-1).These review articles are contributed by experts on specific viruses and their associated human cancers.Viruses account for about 20%of total human cancer cases.Although many viruses can cause various tumors in animals,only seven of them

  10. Imaging oncogene expression

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Archana [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: Archana.Mukherjee@jefferson.edu; Wickstrom, Eric [Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S, 10th street, Philadelphia, PA 19107 (United States)], E-mail: eric@tesla.jci.tju.edu; Thakur, Mathew L. [Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)], E-mail: Mathew.Thakur@jefferson.edu

    2009-05-15

    This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated.

  11. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. (Hopital Cochin, Paris (France))

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  12. Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Bradley P Coe

    Full Text Available Small cell lung cancer (SCLC is a highly aggressive lung neoplasm with extremely poor clinical outcomes and no approved targeted treatments. To elucidate the mechanisms responsible for driving the SCLC phenotype in hopes of revealing novel therapeutic targets, we studied copy number and methylation profiles of SCLC. We found disruption of the E2F/Rb pathway was a prominent feature deregulated in 96% of the SCLC samples investigated and was strongly associated with increased expression of EZH2, an oncogene and core member of the polycomb repressive complex 2 (PRC2. Through its catalytic role in the PRC2 complex, EZH2 normally functions to epigenetically silence genes during development, however, it aberrantly silences genes in human cancers. We provide evidence to support that EZH2 is functionally active in SCLC tumours, exerts pro-tumourigenic functions in vitro, and is associated with aberrant methylation profiles of PRC2 target genes indicative of a "stem-cell like" hypermethylator profile in SCLC tumours. Furthermore, lentiviral-mediated knockdown of EZH2 demonstrated a significant reduction in the growth of SCLC cell lines, suggesting EZH2 has a key role in driving SCLC biology. In conclusion, our data confirm the role of EZH2 as a critical oncogene in SCLC, and lend support to the prioritization of EZH2 as a potential therapeutic target in clinical disease.

  13. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT-3 by thyroid oncogenic kinase RET/PTC

    Directory of Open Access Journals (Sweden)

    Kim Dong Wook

    2008-05-01

    /PTC. Conclusion These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.

  14. Photorhabdus luminescens PirAB-fusion protein exhibits both cytotoxicity and insecticidal activity.

    Science.gov (United States)

    Li, Yusheng; Hu, Xiaofeng; Zhang, Xu; Liu, Zhengqiang; Ding, Xuezhi; Xia, Liqiu; Hu, Shengbiao

    2014-07-01

    The binary toxin 'Photorhabdus insect-related' proteins (PirAB) produced by Photorhabdus luminescens have been reported to possess both injectable and oral activities against a range of insects. Here, PirAB-fusion protein was constructed by linking pirA and pirB genes with the flexible linker (Gly4 Ser)3 DNA encoding sequence and then efficiently expressed in Escherichia coli. To better understand the role of PirAB toxin played in the process of invasion, its cytotoxicity against insect midgut CF-203 cells was investigated. Application of purified PirAB-fusion protein as well as PirA/PirB mixture caused loss of viability of CF-203 cells after 24 h incubation. CF-203 cells treated by PirAB-fusion protein displayed morphological changes typical of apoptosis, such as cell shrinkage, cell membrane blebbing, nuclear condensation and DNA fragmentation. Moreover, PirAB-fusion protein also exhibited injectable insecticidal activity against Spodoptera exigua larvae. The bodies of S. exigua fourth-instar larvae injected with PirAB-fusion protein turned completely black. Thus, we concluded that PirAB-fusion protein possessed similar biological activity (cytotoxicity and insecticidal activity) to PirA/PirB mixture, which would enable it to be used as an efficient agent for pest control.

  15. Accelerator and Fusion Research Division: 1987 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  16. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma.

    Science.gov (United States)

    Wong, Kwong-Fai; Liu, Angela M; Hong, Wanjin; Xu, Zhi; Luk, John M

    2016-11-22

    The Hippo pathway regulates the down-stream target Yes-associated protein (YAP) to maintain organ homeostasis, which is commonly inactivated in many types of cancers. However, how cell adhesion dysregulates the Hippo pathway activating YAP oncogene in hepatocellular carcinoma (HCC) remains unclear. Our findings demonstrate that α2β1 integrin (but not other β1 integrins) expressed in HCC cells, after binding to collagen extracellular matrix, could inhibit MST1 kinase phosphorylation and activate YAP pro-oncogenic activities. Knockdown of integrin α2 gene (ITGA2) suppressed YAP targeted gene expression in vitro. α2β1 and collagen binding resulted in suppressing Hippo signaling of mammalian sterile 20-like kinase 1 (MST1) and Large tumor suppressor homolog 1 (LATS1) with concomitant activation of YAP-mediated connective tissue growth factor (CTGF) gene expression. In vitro kinase assay showed that MST1 is an immediate downstream target of integrin α2 with S1180 residue as the critical phosphorylation site. Clinical correlational analysis using a gene expression dataset of 228 HCC tumors revealed that ITGA2 expression was significantly associated with tumor progression, and co-expression with YAP targeted genes (AXL receptor tyrosine kinase, CTGF, cyclin D1, glypican 3, insulin like growth factor 1 receptor, and SRY-box 4) correlated with survivals of HCC patients. In conclusion, α2β1 integrin activation through cellular adhesion impacts the Hippo pathway in solid tumors and modulates MST1-YAP signaling cascade. Targeting integrin α2 holds promises for treating YAP-positive HCC.

  17. Involvement of V-Ets erythroblastosis virus E26 oncogene homolog 2 in regulation of transcription activity of MDR1 gene

    Institute of Scientific and Technical Information of China (English)

    Jian Wang; Xiaoqing Zeng; Tiancheng Luo; Wei Jin; Shiyao Chen

    2012-01-01

    Over-expression of MDR1 confers multidrug resistance (MDR) in cancers and remains a major cause for the failure of chemotherapy.In the present study,we found that V-Ets erythroblastosis virus E26 oncogene homolog 2(ETS2) could activate MDR1 transcription and P-glyco-protein (P-gp) expression in SGC7901 cells.Knockdown of ETS2 attenuated MDR1 transcription and P-gp expression,and increased the sensitivity of MDR cancer cells to cytotoxic drugs that were transported by P-gp in SGC7901/VCR cells.ETS2 could bind to the ETS2 sites on the MDR1 promoter and activate its transcription.The regulation of MDR1 expression by ETS2 may provide potential ways to overcome MDR in cancer treatment.

  18. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes.

    Science.gov (United States)

    Nishida, Haruka; Matsumoto, Yoko; Kawana, Kei; Christie, R James; Naito, Mitsuru; Kim, Beob Soo; Toh, Kazuko; Min, Hyun Su; Yi, Yu; Matsumoto, Yu; Kim, Hyun Jin; Miyata, Kanjiro; Taguchi, Ayumi; Tomio, Kensuke; Yamashita, Aki; Inoue, Tomoko; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Yoshida, Mitsuyo; Adachi, Katsuyuki; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Nishiyama, Nobuhiro; Kataoka, Kazunori; Osuga, Yutaka; Fujii, Tomoyuki

    2016-06-10

    Human papillomavirus (HPV) E6 and E7 oncogenes are essential for the immortalization and maintenance of HPV-associated cancer and are ubiquitously expressed in cervical cancer lesions. Small interfering RNA (siRNA) coding for E6 and E7 oncogenes is a promising approach for precise treatment of cervical cancer, yet a delivery system is required for systemic delivery to solid tumors. Here, an actively targeted polyion complex (PIC) micelle was applied to deliver siRNAs coding for HPV E6/E7 to HPV cervical cancer cell tumors in immune-incompetent tumor-bearing mice. A cell viability assay revealed that both HPV type 16 and 18 E6/E7 siRNAs (si16E6/E7 and si18E6/E7, respectively) interfered with proliferation of cervical cancer cell lines in an HPV type-specific manner. A fluorescence imaging biodistribution analysis further revealed that fluorescence dye-labeled siRNA-loaded PIC micelles efficiently accumulated within the tumor mass after systemic administration. Ultimately, intravenous injection of si16E6/E7 and si18E6/E7-loaded PIC micelles was found to significantly suppress the growth of subcutaneous SiHa and HeLa tumors, respectively. The specific activity of siRNA treatment was confirmed by the observation that p53 protein expression was restored in the tumors excised from the mice treated with si16E6/E7- and si18E6/E7-loaded PIC micelles for SiHa and HeLa tumors, respectively. Therefore, the actively targeted PIC micelle incorporating HPV E6/E7-coding siRNAs demonstrated its therapeutic potential against HPV-associated cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity.

    Science.gov (United States)

    Hsu, Chun-Hua; Wu, Shih-Hsiung; Chang, Ding-Kwo; Chen, Chinpan

    2002-06-21

    Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L, and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher alpha-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu(2)-Glu(11) and Trp(14)-Ile(18), form amphipathic helical conformations, with Gly(12)-Gly(13) forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp(14)-Ile(18) reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.

  20. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria.

    Science.gov (United States)

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR.

  1. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    Energy Technology Data Exchange (ETDEWEB)

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. (Baylor College of Medicine, Houston, TX (USA))

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  2. Kernel-Based Sensor Fusion With Application to Audio-Visual Voice Activity Detection

    Science.gov (United States)

    Dov, David; Talmon, Ronen; Cohen, Israel

    2016-12-01

    In this paper, we address the problem of multiple view data fusion in the presence of noise and interferences. Recent studies have approached this problem using kernel methods, by relying particularly on a product of kernels constructed separately for each view. From a graph theory point of view, we analyze this fusion approach in a discrete setting. More specifically, based on a statistical model for the connectivity between data points, we propose an algorithm for the selection of the kernel bandwidth, a parameter, which, as we show, has important implications on the robustness of this fusion approach to interferences. Then, we consider the fusion of audio-visual speech signals measured by a single microphone and by a video camera pointed to the face of the speaker. Specifically, we address the task of voice activity detection, i.e., the detection of speech and non-speech segments, in the presence of structured interferences such as keyboard taps and office noise. We propose an algorithm for voice activity detection based on the audio-visual signal. Simulation results show that the proposed algorithm outperforms competing fusion and voice activity detection approaches. In addition, we demonstrate that a proper selection of the kernel bandwidth indeed leads to improved performance.

  3. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Via E. Fermi, 45, 00044 Frascati, Rome (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sjöstrand, Henrik; Conroy, Sean [Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-07-11

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  4. Analysis of tumor progression by transcriptional profiling of mouse MK16 cell lines transformed with human papillomavirus type 16 E6 and E7 oncogenes and activated H-ras.

    Science.gov (United States)

    Smahel, Michal; Smahelová, Jana; Tejklová, Pavla; Tachezy, Ruth; Jelínek, Frantisek

    2005-12-01

    A better understanding of the molecular basis of tumor progression and invasion is needed to improve therapy for malignant tumors. Recently, we established a mouse metastatic MK16 model by transduction of secondary kidney cells with human papillomavirus type 16 (HPV16) E6 and E7 oncogenes and human H-ras activated by G12V mutation. In this study, we extended the model to MK16 cell lines derived from lung metastases and compared the oncogenicity of seven cell lines successively isolated from primary tumors or metastases. By observing the formation and growth of subcutaneous tumors and generation of lung metastasis, we showed a gradual increase in oncogenicity of MK16 cell lines. Interestingly, we demonstrated metastatic potential of MK16/A cells with low oncogenic potential in primary tumor development. To detect changes in gene expression associated with increasing oncogenicity of MK16 cell lines, we performed transcriptional profiling with the Atlas Plastic Mouse 5K microarray. We found that a substantial proportion of up-regulated genes encoded ribosomal proteins. Among the down-regulated genes, the highest number (n=10) belonged to a group coding for transcription factors. Expression of two of these, Pou3f2 and Gtl3, was reduced both in cells derived from primary tumors and those isolated from metastases. Furthermore, microarray hybridization suggested that the down-regulation of cyclin-dependent kinase inhibitors p16(Ink4a) and p57(Kip2) and up-regulation of A6 and A10 members of the S100 protein family might play a role in the increase of MK16 oncogenicity.

  5. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  6. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  7. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianlong [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Blissard, Gary W. [Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United State (United States); Liu, Tong-Xian [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Zhaofei, E-mail: zhaofeili73@outlook.com [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  8. Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimaeric viral-host transcript.

    Science.gov (United States)

    Westaway, D; Papkoff, J; Moscovici, C; Varmus, H E

    1986-01-01

    Retrovirus without oncogenes often exert their neoplastic potential as insertional mutagens of cellular proto-oncogenes. This may be associated with the production of chimaeric viral-host transcripts; in these cases; activated cellular genes can be identified by obtaining cDNA clones of bipartite RNAs. This approach was used in the analysis of chicken nephroblastomas induced by myeloblastosis-associated virus (MAV). One tumor contained a novel mRNA species initiated within a MAV LTR. cDNA cloning revealed that this mRNA encodes a protein of 189 amino acids, identical to that of normal human Ha-ras-1 at 185 positions, including positions implicated in oncogenic activation of ras proto-oncogenes; there are no differences between the coding sequences of presumably normal Ha-ras cDNA clones from chicken lymphoma RNA and the tumor-derived cDNAs. The chimaeric mRNA in the nephroblastoma is at least 25-fold more abundant than c-Ha-ras mRNA in normal kidney tissue, and a 21-kd ras-related protein is present in relatively large amounts in the tumor. We conclude that a quantitative change in c-Ha-ras gene expression results from an upstream insertion mutation and presumably contributes to tumorigenesis in this single case. Little or no increase in c-Ha-ras RNA or protein was observed in other nephroblastomas. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 10. PMID:3011401

  9. Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein

    NARCIS (Netherlands)

    Bremer, Edwin; van Dam, Gooitzen M.; de Bruyn, Marco; van Riezen, Manon; Dijkstra, Marike; Kamps, Gera; Helfrich, Wijnand; Haisma, Hidde

    2008-01-01

    Previously, we demonstrated potent tumor cell-selective pro-apoptotic activity of scFv425:sTRAIL, a recombinant fusion protein comprised of EGFR-directed antibody fragment (scFv425) genetically fused to human soluble TNF-related apoptosis-inducing ligand (sTRAIL). Here, we report on the promising th

  10. The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physic and Reactor Technology, 76344 Eggenstein-Leopoldshafen (Germany); Avrigeanu, M.; Avrigeanu, V. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), RO-077125 Magurele (Romania); Cabellos, O. [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Kodeli, I. [Jozef Stefan Institute (JSI), Jamova 39, 1000 Ljubljana (Slovenia); Koning, A. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 LE Petten (Netherlands); Konobeyev, A.Yu. [Karlsruhe Institute of Technology, Institute for Neutron Physic and Reactor Technology, 76344 Eggenstein-Leopoldshafen (Germany); Leeb, H. [Technische Universitaet Wien, Atominstitut, Wiedner Hauptstrasse 8–10, 1040 Wien (Austria); Rochman, D. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 LE Petten (Netherlands); Pereslavtsev, P. [Karlsruhe Institute of Technology, Institute for Neutron Physic and Reactor Technology, 76344 Eggenstein-Leopoldshafen (Germany); Sauvan, P. [Universidad Nacional de Educacion a Distancia, C. Juan del Rosal, 12, 28040 Madrid (Spain); Sublet, J.-C. [Euratom/CCFE Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Trkov, A. [Jozef Stefan Institute (JSI), Jamova 39, 1000 Ljubljana (Slovenia); Dupont, E. [OECD Nuclear Energy Agency, Paris (France); Leichtle, D.; Izquierdo, J. [Fusion for Energy, Barcelona (Spain)

    2014-06-15

    This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations.

  11. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  12. Fusion expression of Helicobacter pylori neutrophil-activating protein in E.coli

    Institute of Scientific and Technical Information of China (English)

    Qiao-Zhen Kang; Guang-Cai Duan; Qing-Tang Fan; Yuan-Lin Xi

    2005-01-01

    AIM: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori(H pylori)neutrophil-activating protein (NAP) and E. coli maltosebinding protein (MBP) and to evaluate its immunoreactivity and immunogenicity.METHODS: Neutrophil-activating protein gene of H pylori (HP-napA) was subcloned from the recombinant plasmid pNEB-napA, and fused to MalE gene of expressing vector pMAL-c2x. The recombinant plasmid pMAL-c2x-napA was confirmed by restriction enzyme digestion, and then transformed into E. coli TB1. Fusion protein rMBP-NAP was induced by IPTG and identified by SDS-PAGE analysis.Soluble rMBP-NAP was purified by amylose affinity chromatography. Immunoreactivity and immunogenicity of the fusion protein were evaluated by animal experiment,Western blotting with human H pylori anti-sera.RESULTS: E.coli TB1 carrying recombinant plasmid pMAL-c2x-napA was constructed and led to a high efficiency cytosol expression of fusion protein rBMP -NAP when induced by IPTG.The molecular weight of rBMP-NAP was about 57 kD,accounting for 37.55% of the total protein in the sonicated supematant of E. coli TB1 (pMAL-c2x-napA). The purity of the fusion protein after one-step affinity chromatography was 94% and the yield was 100 mg per liter of bacterial culture.The purified fusion protein could be specifically recognized by both human anti-sera from clinical patients with H pylori infection and rabbit sera immunized by rMBP-NAP itself.CONCLUSION: Recombinant protein rMBP-NAP might be a novel antigen for vaccine development against H pylori.

  13. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity.

    Science.gov (United States)

    Rojas, Fausto; Hernandez, Maria E; Silva, Milagros; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J; Liu, Ping

    2015-01-01

    MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production.

  14. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP Activity.

    Directory of Open Access Journals (Sweden)

    Fausto Rojas

    Full Text Available MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production.

  15. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-κB.

    Science.gov (United States)

    Zuo, Lielian; Yu, Haibo; Liu, Lingzhi; Tang, Yunlian; Wu, Hongzhuan; Yang, Jing; Zhu, Meijuan; Du, Shujuan; Zhao, Lian; Cao, Li; Li, Guiyuan; Lu, Jianhong

    2015-12-01

    A tumor model that Epstein-Barr virus (EBV) latent infection facilitated the tumorigenicity was previously established using the Maxi-EBV system. In the present approach, EBV-lost cell clones demonstrated significantly decreased tumorigenesis. On the other hand, the LMP1 gene in Maxi-EBV genome was replaced by that of nasopharyngeal carcinoma origin. The resultant cell line, 293-1/NL showed much lower malignancy than the original 293-EBV. The result was opposite to our expectation. The change of 293 sublineage cells for EBV harboring also got similar result. To seek the underlying reason, the copy number of EBV genome in all the cell lines was detected. The result indicated that 293-EBV contained about 4.5-fold higher EBV copies than 293-1/NL did. Parallel EBV genomes led to relatively stable copies in different 293 sublineages, suggesting the viral genome structure is a factor for the sustainability of EBV's copy number. Moreover, the LMP1 transcription in high copy-containing cells showed abnormally high level. Furthermore, the main LMP1-driven pathway, transcription factor NF-κB, was highly activated in high-copy cells. Here we first manifest by experimental model that the copy number of EBV latent genome correlates with the viral pathogenesis, which depends on the activation level of LMP1 and NF-κB. Overall, both the presence and amount of EBV genome are crucial for the viral oncogenicity.

  16. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship.

    Science.gov (United States)

    Melnick, Michael; Sedghizadeh, Parish P; Allen, Carl M; Jaskoll, Tina

    2012-02-01

    Human cytomegalovirus (hCMV) infection is common. Although still controversial, there is growing evidence that active hCMV infection is associated with a variety of malignancies, including brain, breast, lung, colon, and prostate. Given that hCMV is frequently resident in salivary gland (SG) ductal epithelium, we hypothesized that hCMV would be important to the pathogenesis of SG mucoepidermoid carcinoma (MEC). This was initially supported by our finding that purified CMV induces malignant transformation in SG cells in an in vitro mouse model, and utilizes a pathogenic pathway previously reported for human MEC. Here we present the histologic and molecular characterizations of 39 human SG MECs selected randomly from a repository of cases spanning 2004-2011. Serial sections were obtained from formalin-fixed, paraffin embedded, tissue blocks from previous incisional or excisional biopsies. Immunohistochemical assays were performed for active hCMV proteins (IE1 and pp65) and the activated COX/AREG/EGFR/ERK signaling pathway. All four prospective causal criteria for viruses and cancer are fully satisfied: (1) protein markers for active hCMV are present in 97% of MECs; (2) markers of active hCMV are absent in non-neoplastic SG tissues; (3) hCMV-specific proteins (IE1, pp65) are in specific cell types and expression is positively correlated with severity; (4) hCMV correlates and colocalizes with an upregulation and activation of an established oncogenic signaling pathway (COX/AREG/EGFR/ERK). Thus, the evidential support reported here and previously in a mouse model is strongly confirmatory of a causal relationship between hCMV and SG mucoepidermoid carcinoma. To our knowledge, this is the first demonstration of hCMV's role in human oncogenesis that fully responds to all of Koch's Postulates as revised for viruses and cancer. In the absence of any contrary evidence, hCMV can reasonably be designated an "oncovirus."

  17. Oncogenic mutations in adenomatous polyposis coli (Apc activate mechanistic target of rapamycin complex 1 (mTORC1 in mice and zebrafish

    Directory of Open Access Journals (Sweden)

    Alexander J. Valvezan

    2014-01-01

    Full Text Available Truncating mutations in adenomatous polyposis coli (APC are strongly linked to colorectal cancers. APC is a negative regulator of the Wnt pathway and constitutive Wnt activation mediated by enhanced Wnt–β-catenin target gene activation is believed to be the predominant mechanism responsible for APC mutant phenotypes. However, recent evidence suggests that additional downstream effectors contribute to APC mutant phenotypes. We previously identified a mechanism in cultured human cells by which APC, acting through glycogen synthase kinase-3 (GSK-3, suppresses mTORC1, a nutrient sensor that regulates cell growth and proliferation. We hypothesized that truncating Apc mutations should activate mTORC1 in vivo and that mTORC1 plays an important role in Apc mutant phenotypes. We find that mTORC1 is strongly activated in apc mutant zebrafish and in intestinal polyps in Apc mutant mice. Furthermore, mTORC1 activation is essential downstream of APC as mTORC1 inhibition partially rescues Apc mutant phenotypes including early lethality, reduced circulation and liver hyperplasia. Importantly, combining mTORC1 and Wnt inhibition rescues defects in morphogenesis of the anterior-posterior axis that are not rescued by inhibition of either pathway alone. These data establish mTORC1 as a crucial, β-catenin independent effector of oncogenic Apc mutations and highlight the importance of mTORC1 regulation by APC during embryonic development. Our findings also suggest a new model of colorectal cancer pathogenesis in which mTORC1 is activated in parallel with Wnt/β-catenin signaling.

  18. An experimental system for determining the influence of microgravity on B lymphocyte activation and cell fusion

    Science.gov (United States)

    Sammons, D. W.; Zimmermann, U.; Klinman, N. R.; Gessner, P.; Humphreys, R. C.; Emmons, S. P.; Neil, G. A.

    The influence of microgravity on lymphocyte activation is central to the understanding of immunological function in space. Moreover, the adaptation of groundbased technologies to microgravity conditions presents opportunities for biotechnological applications including high efficiency production of antibody forming hybridomas. Because the emerging technology of microgravity hybridoma generation is dependent upon activation and cultivation of B lymphocytes during flight, we have adapted mitogen-driven B lymphocyte stimulation and culture that allows for the in vitro generation of large numbers of antibody forming cells suitable for cell fusion over a period of 1-2 weeks. We believe that this activation and cultivation system can be flown on near-term space flights to test fundamental hypotheses about mammalian cell activation, cell fusion, metabolism, secretion, growth, and bio-separation.

  19. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the

  20. Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells.

    Science.gov (United States)

    Shieh, Jiunn-Min; Chen, Yung-Chan; Lin, Ying-Chao; Lin, Jia-Ni; Chen, Wei-Chih; Chen, Yang-Yuan; Ho, Chi-Tang; Way, Tzong-Der

    2013-07-03

    Demethoxycurcumin (DMC), curcumin (Cur), and bisdemethoxycurcumin (BDMC) are major forms of curcuminoids found in the rhizomes of turmeric. This study examined the effects of three curcuminoid analogues on breast cancer cells. The results revealed that DMC demonstrated the most potent cytotoxic effects on breast cancer MDA-MB-231 cells. Compared with estrogen receptor (ER)-positive or HER2-overexpressing breast cancer cells, DMC demonstrated the most efficient cytotoxic effects on triple-negative breast cancer (TNBC) cells. However, nonmalignant MCF-10A cells were unaffected by DMC treatment. The study showed that DMC activated AMPK in TNBC cells. Once activated, AMPK inhibited eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) signaling and mRNA translation via mammalian target of rapamycin (mTOR) and decreased the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). DMC also targeted multiple AMPK downstream pathways. Among these, the dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mTOR inhibition. Moreover, DMC suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation. In addition, DMC also sustained epidermal growth factor receptor (EGFR) activation by suppressing the phosphatases, PP2a and SHP-2. These results suggest that DMC is a potent AMPK activator that acts through a broad spectrum of anti-TNBC activities.

  1. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    Science.gov (United States)

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  2. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell–cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Haruhiko [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Nakashima, Tomoki [Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Japan Science and Technology Agency, PRESTO, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Hayashi, Mikihito [Department of Cell Signaling, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan); Japan Science and Technology Agency, ERATO, Takayanagi Osteonetwork Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Izawa, Naohiro; Yasui, Tetsuro [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aburatani, Hiroyuki [Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Tanaka, Sakae [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Takayanagi, Hiroshi, E-mail: takayana@m.u-tokyo.ac.jp [Japan Science and Technology Agency, ERATO, Takayanagi Osteonetwork Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-12-12

    Highlights: • Identification of epigenetically regulated genes during osteoclastogenesis. • Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. • Pcdh7 expression is increased by RANKL during osteoclastogenesis. • Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. • Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(–) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell–cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell–cell fusion.

  3. Identification of polymorphisms and transcriptional activity of the proto-oncogene KIT located on both autosomal and B chromosomes of the Chinese raccoon dog.

    Science.gov (United States)

    Li, Y M; Zhang, Y; Zhu, W J; Yan, S Q; Sun, J H

    2016-02-05

    B chromosomes are dispensable and co-exist with autosomal and sex chromosomes. The karyotype of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides) comprises 0-4 B chromosomes. The proto-oncogene KIT is found on all B chromosomes of the Chinese raccoon dog. In the present study, partial DNA and mRNA sequences of KIT were amplified and sequenced from four individuals containing B chromosomes. Sequence analyses revealed that polymorphisms including single nucleotide polymorphisms (SNPs) and inserts/deletions were rich in the KIT gene of Chinese raccoon dog at the genomic level. However, no polymorphism was detected at the mRNA level. A comparison of mRNA sequences from Chinese raccoon dogs with the corresponding sequences derived from arctic fox and dog, which do not contain B chromosomes, revealed the mRNA sequences of the 10 SNPs to be identical between these three species. Therefore, these findings suggest that KIT located on the B chromosomes in Chinese raccoon dog lacks transcriptional activity.

  4. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    Science.gov (United States)

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  5. Pleiotropic Anti-Angiogenic and Anti-Oncogenic Activities of the Novel Mithralog Demycarosyl-3D-ß-D-Digitoxosyl-Mithramycin SK (EC-8042.

    Directory of Open Access Journals (Sweden)

    Azahara Fernández-Guizán

    Full Text Available Demycarosyl-3D-ß-D-digitoxosyl-mithramycin SK (DIG-MSK is a recently isolated analogue of mithramycin A (MTA that showed differences with MTA in the DNA binding strength and selectivity. These differences correlated with a better therapeutic index and less toxicity in animal studies. Herein, we show that DIG-MSK displays a potent anti-tumor activity against different types of cancer cell lines, ovarian tumor cells being particularly sensitive to this drug. Of relevance, DIG-MSK exerts low toxicity on fibroblasts and peripheral blood mononuclear cells, this toxicity being significantly lower than that of MTA. In correlation with its antitumor activity, DIG-MSK strongly inhibited Sp1-mediated transcription and endogenous Sp1 mRNA expression, which correlated with the inhibition of the expression of key Sp1-regulated genes involved in tumorigenesis, including VEGFA, BCL2L1 (Bcl-XL, hTERT, BRCA2, MYC and SRC in several ovarian cells. Significantly, DIG-MSK was a stronger inhibitor of VEGFA expression than MTA. Accordingly, DIG-MSK also exhibited potent anti-angiogenic activity on microvascular endothelial cells. Likewise, it significantly inhibited the gene expression of VEGFR1, VEGFR2, FGFR, PDGFB and PDGFRA and, additionally, it induced the expression of the anti-angiogenic factors angiostatin and tunstatin. These effects correlated with a pro-apoptotic effect on proliferating microvascular endothelial cells and the inhibition of the formation of endothelial capillary structures. Overall, the pleiotropic activity of DIG-MSK in inhibiting key oncogenic and angiogenic pathways, together with its low toxicity profile, highlight the therapeutic potential of this new drug.

  6. A "liaison dangereuse" between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK.

    Science.gov (United States)

    Fawal, Mohamad; Armstrong, Florence; Ollier, Severine; Dupont, Henri; Touriol, Christian; Monsarrat, Bernard; Delsol, Georges; Payrastre, Bernard; Morello, Dominique

    2006-10-15

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a chimeric protein expressed in a subset of cases of anaplastic large cell lymphoma (ALCL) for which constitutive expression represents a key oncogenic event. The ALK signaling pathway is complex and probably involves functional redundancy between various signaling substrates of ALK. Despite numerous studies on signaling mediators, the molecular mechanisms contributing to the distinct oncogenic features of NPM-ALK remain incompletely understood. The search for additional interacting partners of NPM-ALK led to the discovery of AUF1/hnRNPD, a protein implicated in AU-rich element (ARE)-directed mRNA decay. AUF1 was immunoprecipitated with ALK both in ALCL-derived cells and in NIH3T3 cells stably expressing NPM-ALK or other X-ALK fusion proteins. AUF1 and NPM-ALK were found concentrated in the same cytoplasmic foci, whose formation required NPM-ALK tyrosine kinase activity. AUF1 was phosphorylated by ALK in vitro and was hyperphosphorylated in NPM-ALK-expressing cells. Its hyperphosphorylation was correlated with increased stability of several AUF1 target mRNAs encoding key regulators of cell proliferation and with increased cell survival after transcriptional arrest. Thus, AUF1 could function in a novel pathway mediating the oncogenic effects of NPM-ALK. Our data establish an important link between oncogenic kinases and mRNA turnover, which could constitute a critical aspect of tumorigenesis.

  7. Fusion of Smartphone Motion Sensors for Physical Activity Recognition

    NARCIS (Netherlands)

    Shoaib, Muhammad; Bosch, Stephan; Durmaz Incel, Ozlem; Scholten, Hans; Havinga, Paul J.M.

    2014-01-01

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting r

  8. Fusion of smartphone motion sensors for physical activity recognition.

    Science.gov (United States)

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M

    2014-06-10

    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

  9. Fusion of Smartphone Motion Sensors for Physical Activity Recognition

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib

    2014-06-01

    Full Text Available For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role and an accelerometer (in a lead role has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized. We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.

  10. Identification of a Small Molecular Anti - HIV - 1 Compound that Interferes with Formation of the Fusion - active gp41 Core

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The human immunodeficiency virus type 1 (HIV - 1 ) envelope glycoprotein gp41 plays a critical role in the fusion of viral and target cell membranes. The gp41 extracellular domain, which contains fusion peptide (FP), N - and C - terminal hydrophobic heptad repeats (NHR and CHR, respectively). Peptides derived from NHR and CHR regions,designated N- and C- peptides, respectively, can interact with each other to form a six - stranded coiled - coil domain, representing the fusion-active gp41 core. Our previous studies demonstrated that the C- peptides have potent inhibitory activity against HIV- 1 infection.These peptides inhibit HIV- 1 -mediated membrane fusion by binding to NHR regions for preventing the formation of fusion- active gp41 core. One of the C - peptides, T - 20, which is in the phase Ⅲ clinical trails, is expected to become the first peptide HIV fusion inhibitory drug in the near future. However, this peptide HIV fusion inhibitor lacks oral availability and is sensitive to the proteolytic digestion.Therefore, it is essential to develop small molecular non -peptide HIV fusion inhibitors having similar mechanism of action as the C- peptides. We have established an ELISA- based screening assay using a unique monoclonal antibody, NC- 1, which can specifically bind to a conformational epitope on the gp41 core domain. Using this screening assay, we have identified a small molecular anti- HIV- 1 compound,named ADS-Jl, which inhibits HIV- 1- mediated membrane fusion by blocking the interaction between the NHR and CHR regions to form the fusion - active gp41 core. This compound will be used as a lead to design and develop novel HIV fusion inhibitors as new drugs for the treatment of HIV infection and/or AIDS.

  11. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part.

    Science.gov (United States)

    Chang, Yuan-I; Damnernsawad, Alisa; Kong, Guangyao; You, Xiaona; Wang, Demin; Zhang, Jing

    2016-07-22

    Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.

  12. Low-chromium reduced-activation ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  13. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma

    NARCIS (Netherlands)

    Lamprecht, Bjoern; Walter, Korden; Kreher, Stephan; Kumar, Raman; Hummel, Michael; Lenze, Dido; Koechert, Karl; Bouhlel, Mohamed Amine; Richter, Julia; Soler, Eric; Stadhouders, Ralph; Joehrens, Korinna; Wurster, Kathrin D.; Callen, David F.; Harte, Michael F.; Giefing, Maciej; Barlow, Rachael; Stein, Harald; Anagnostopoulos, Ioannis; Janz, Martin; Cockerill, Peter N.; Siebert, Reiner; Doerken, Bernd; Bonifer, Constanze; Mathas, Stephan

    2010-01-01

    Mammalian genomes contain many repetitive elements, including long terminal repeats (LTRs), which have long been suspected to have a role in tumorigenesis. Here we present evidence that aberrant LTR activation contributes to lineage-inappropriate gene expression in transformed human cells and that s

  14. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.

    Science.gov (United States)

    Marzec, M; Kasprzycka, M; Liu, X; El-Salem, M; Halasa, K; Raghunath, P N; Bucki, R; Wlodarski, P; Wasik, M A

    2007-08-16

    The mechanisms of cell transformation mediated by the nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) tyrosine kinase are only partially understood. Here, we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma display persistent activation of mammalian target of rapamycin (mTOR) as determined by phosphorylation of mTOR targets S6rp and 4E-binding protein 1 (4E-BP1). The mTOR activation is serum growth factor-independent but nutrient-dependent. It is also dependent on the expression and enzymatic activity of NPM/ALK as demonstrated by cell transfection with wild-type and functionally deficient NPM/ALK, small interfering RNA (siRNA)-mediated NPM/ALK depletion and kinase activity suppression using the inhibitor WHI-P154. The NPM/ALK-induced mTOR activation is transduced through the mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway and, to a much lesser degree, through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Accordingly, whereas the low-dose PI3K inhibitor wortmannin and Akt inhibitor III profoundly inhibited Akt phosphorylation, they had a very modest effect on S6rp and 4E-BP1 phosphorylation. In turn, MEK inhibitors U0126 and PD98059 and siRNA-mediated depletion of either ERK1 or ERK2 inhibited S6rp phosphorylation much more effectively. Finally, the mTOR inhibitor rapamycin markedly decreased proliferation and increased the apoptotic rate of ALK+TCL cells. These findings identify mTOR as a novel key target of NPM/ALK and suggest that mTOR inhibitors may prove effective in therapy of ALK-induced malignancies.

  15. Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion.

    Science.gov (United States)

    de Voux, Alex; Chan, Mei-Chi; Folefoc, Asongna T; Madziva, Michael T; Flanagan, Colleen A

    2013-01-01

    The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV) into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp³·⁴⁹(¹²⁵) and Arg⁶·³²(²²⁵) residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr²·⁵⁶(⁸²), in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr²·⁵⁶(⁸²) mutants were fully stabilized in active conformations. The Thr²·⁵⁶(⁸²)Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr²·⁵⁶(⁸²)Lys mutation with an Arg⁶·³²(²²⁵)Gln mutation partially reversed the decrease in expression. Mutants with Thr²·⁵⁶(⁸²)Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr²·⁶⁵(⁸²)Pro substitution exhibited full co-receptor function. Our results suggest that the Thr²·⁶⁵(⁸²)Lys and Thr²·⁶⁵(⁸²)Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82) stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated conformations

  16. Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion.

    Directory of Open Access Journals (Sweden)

    Alex de Voux

    Full Text Available The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp³·⁴⁹(¹²⁵ and Arg⁶·³²(²²⁵ residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr²·⁵⁶(⁸², in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr²·⁵⁶(⁸² mutants were fully stabilized in active conformations. The Thr²·⁵⁶(⁸²Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr²·⁵⁶(⁸²Lys mutation with an Arg⁶·³²(²²⁵Gln mutation partially reversed the decrease in expression. Mutants with Thr²·⁵⁶(⁸²Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr²·⁶⁵(⁸²Pro substitution exhibited full co-receptor function. Our results suggest that the Thr²·⁶⁵(⁸²Lys and Thr²·⁶⁵(⁸²Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82 stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated

  17. [Bactericidal Activity of Constructed Recombinant Fusion Protein Pheromonicin-CT].

    Science.gov (United States)

    Yu, Huan; Zuo, Yue-wen; Qiu, Xiao-qing

    2015-11-01

    To construct engineering peptide pheromonicin-Clostrzaum tretant krn-ui), and to test its bactericidal activity. We amplified the gene of variable regions from hybridoma cells which secreted monoclonal antibody (mAb) against antigen in the membrane of Clostridium tetani and linked the small antibody mimetic to the channel-forming domain of colicin Ia to create Ph-CT. The Ph-CT was purified by CM sepharose ion-exchange column. Its in vitro antibacterial activity was evaluated by colony culture with different doses of Ph-CT (final concentration 2, 4, 8, and 16 microg/mL,respectively). Then we inoculated culture medium with CT strains and different doses of Ph-CT (final concentration of 4 and 16 microg/mL). The in vivo antibacterial activity of Ph-CT was evaluated by cumulative survival of mice. After 16 hours' anaerobic culture, the mice was treated with filtered CT medium or CT medium. We constructed Ph-CT successfully. CT colonies appeared in the CT medium treated with Ph-CT (2, 4 microg/mL), while no colony appeared in the CT medium treated with Ph-CT (8, 16 microg/mL). All mice survived when they were injected with filtered CT medium treated with Ph-CT (4, 16 microg/mL) and CT medium treated with Ph-CT (16 microg/mL). Three (50%) mice survived when they were injected with CT medium treated with Ph-CT (4 microg/mL). All mice in the control groups died after CT infections. Ph-CT may be of value as antibiotics against Clostridium tetani.

  18. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Tanigawa, H.; Gaganidze, E.; Hirose, T.; Ando, M.; Zinkle, S. J.; Lindau, R.; Diegele, E.

    2017-09-01

    Reduced-activation ferritic/martensitic (RAFM) steel is the benchmark structural material for in-vessel components of fusion reactor. The current status of RAFM developments and evaluations is reviewed based on two leading RAFM steels, F82H and EUROFER-97. The applicability of various joining technologies for fabrication of fusion first wall and blanket structures, such as weld or diffusion bonding, is overviewed as well. The technical challenges and potential risks of utilizing RAFM steels as the structural material of in-vessel components are discussed, and possible mitigation methodology is introduced. The discussion suggests that deuterium-tritium fusion neutron irradiation effects currently need to be treated as an ambiguity factor which could be incorporated within the safety factor. The safety factor will be defined by the engineering design criteria which are not yet developed with regard to irradiation effects and some high temperature process, and the operating time condition of the in-vessel component will be defined by the condition at which those ambiguities due to neutron irradiation become too large to be acceptable, or by the critical condition at which 14 MeV fusion neutron irradiation effects is expected to become different from fission neutron irradiation effects.

  19. Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.

    Science.gov (United States)

    Milani, Gloria; Lana, Tobia; Bresolin, Silvia; Aveic, Sanja; Pastò, Anna; Frasson, Chiara; Te Kronnie, Geertruy

    2017-06-01

    Circulating microvesicles have been described as important players in cell-to-cell communication carrying biological information under normal or pathologic condition. Microvesicles released by cancer cells may incorporate diverse biomolecules (e.g., active lipids, proteins, and RNA), which can be delivered and internalized by recipient cells, potentially altering the gene expression of recipient cells and eventually impacting disease progression. Leukemia in vitro model systems were used to investigate microvesicles as vehicles of protein-coding messages. Several leukemic cells (K562, LAMA-87, TOM-1, REH, and SHI-1), each carrying a specific chromosomal translocation, were analyzed. In the leukemic cells, these chromosomal translocations are transcribed into oncogenic fusion transcripts and the transfer of these transcripts was monitored from leukemic cells to microvesicles for each of the cell lines. Microarray gene expression profiling was performed to compare transcriptomes of K562-derived microvesicles and parental K562 cells. The data show that oncogenic BCR-ABL1 transcripts and mRNAs related to basic functions of leukemic cells were included in microvesicles. Further analysis of microvesicles cargo revealed a remarkable enrichment of transcripts related to cell membrane activity, cell surface receptors, and extracellular communication when compared with parental K562 cells. Finally, coculturing of healthy mesenchymal stem cells (MSC) with K562-derived microvesicles displayed the transfer of the oncogenic message, and confirmed the increase of target cell proliferation as a function of microvesicle dosage.Implications: This study provides novel insight into tumor-derived microvesicles as carriers of oncogenic protein-coding messages that can potentially jeopardize cell-directed therapy, and spread to other compartments of the body. Mol Cancer Res; 15(6); 683-95. ©2017 AACR. ©2017 American Association for Cancer Research.

  20. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Science.gov (United States)

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  1. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  2. Status of R&D Activities on Materials for Fusion Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baluc, N.; Abe, K.; Boutard, J. L.; Chernov, V. M.; Diegele, E.; Jitsukawa, S.; Kimura, Akihiko; Klueh, R. L.; Kohyama, Akira; Kurtz, Richard J.; Lasser, R.; Matsui, H.; Moslang, A.; Muroga, T.; Odette, George R.; Tran, M. Q.; van der Schaaf, B.; Wu, Y.; Yu, J.; Zinkle, Steven J.

    2007-09-19

    Current R&D activities on materials for fusion power reactors are mainly focused on plasma facing, structural and tritium breeding materials for plasma facing (first wall, divertor) and breeding blanket components. Most of these activities are being performed in Europe, Japan, P.R. China, Russia and the USA. They relate to development of new high temperature, radiation resistant materials, development of coatings that shall act as erosion, corrosion, permeation or electrical/MHD barriers, characterization of the whole candidate materials in terms of mechanical and physical properties, assessment of irradiation effects, compatibility experiments, development of reliable joints, and development and/or validation of design rules. Priorities defined worldwide in the field of materials for fusion power reactors are summarized, as well as the main achievements obtained during the last few years and the near-term perspectives in the different investigation areas.

  3. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  4. The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways.

    Science.gov (United States)

    Du, Xiao-Yu; Huang, Jian; Xu, Liang-Quan; Tang, Dan-Feng; Wu, Lei; Zhang, Li-Xia; Pan, Xiao-Ling; Chen, Wei-Yun; Zheng, Li-Ping; Zheng, Yue-Hui

    2012-08-20

    C-src is an evolutionarily conserved proto-oncogene that regulates cell proliferation, differentiation and apoptosis. In our previous studies, we have reported that another proto-oncogene, c-erbB2, plays an important role in primordial follicle activation and development. We also found that c-src was expressed in mammalian ovaries, but its functions in primordial follicle activation remain unclear. The objective of this study is to investigate the role and mechanism of c-src during the growth of primordial follicles. Ovaries from 2-day-old rats were cultured in vitro for 8 days. Three c-src-targeting and one negative control siRNA were designed and used in the present study. PCR, Western blotting and primordial follicle development were assessed for the silencing efficiency of the lentivirus c-src siRNA and its effect on primordial follicle onset. The expression of c-src mRNA and protein in primordial follicle growth were examined using the PCR method and immunohistochemical staining. Furthermore, the MAPK inhibitor PD98059, the PKC inhibitor Calphostin and the PI3K inhibitor LY294002 were used to explore the possible signaling pathways of c-src in primordial folliculogenesis. The results showed that Src protein was distributed in the ooplasmic membrane and the granulosa cell membrane in the primordial follicles, and c-src expression level increased with the growth of primordial follicle. The c-src -targeting lentivirus siRNAs had a silencing effect on c-src mRNA and protein expression. Eight days after transfection of rat ovaries with c-src siRNA, the GFP fluorescence in frozen ovarian sections was clearly discernible under a fluorescence microscope, and its relative expression level was 5-fold higher than that in the control group. Furthermore, the c-src-targeting lentivirus siRNAs lowered its relative expression level 1.96 times. We also found that the development of cultured primordial follicles was completely arrested after c-src siRNA knockdown of c

  5. Oncogenic CagA promotes gastric cancer risk via activating ERK signaling pathways: a nested case-control study.

    Directory of Open Access Journals (Sweden)

    Jae Jeong Yang

    Full Text Available BACKGROUND: CagA cellular interaction via activation of the ERK signaling pathway may be a starting point in the development of gastric cancer. This study aimed to evaluate whether genes involved in ERK downstream signaling pathways activated by CagA are susceptible genetic markers for gastric cancer. METHODS: In the discovery phase, a total of 580 SNPs within +/-5 kbp of 30 candidate genes were genotyped to examine an association with gastric cancer risk in the Korean Multi-center Cancer Cohort (100 incident gastric cancer case-control sets. The most significant SNPs (raw or permutated p value<0.02 identified in the discovery analysis were re-evaluated in the extension phase using unconditional logistic regression model (400 gastric cancer case-control sets. Combined analyses including pooled- and meta-analysis were conducted to summarize all the results. RESULTS: 24 SNPs in eight genes (ERK, Dock180, C3G, Rap1, Src, CrkL, Mek and Crk were significantly associated with gastric cancer risk in the individual SNP analyses in the discovery phase (p<0.05. In the extension analyses, ERK rs5999749, Dock180 rs4635002 and C3G rs7853122 showed marginally significant gene-dose effects for gastric cancer. Consistently, final combined analysis presented the SNPs as significantly associated with gastric cancer risk (OR = 1.56, [95% CI: 1.19-2.06], OR = 0.61, [95% CI: 0.43-0.87], OR = 0.59, [95% CI: 0.54-0.76], respectively. CONCLUSIONS: Our findings suggest that ERK rs5999749, Dock180 rs4635002 and C3G rs7853122 are genetic determinants in gastric carcinogenesis.

  6. Comparative analysis of oncogenic properties and nuclear factor-kappaB activity of latent membrane protein 1 natural variants from Hodgkin's lymphoma's Reed-Sternberg cells and normal B-lymphocytes.

    Science.gov (United States)

    Faumont, Nathalie; Chanut, Aurélie; Benard, Alan; Cogne, Nadine; Delsol, Georges; Feuillard, Jean; Meggetto, Fabienne

    2009-03-01

    In Epstein-Barr virus-associated Hodgkin's lymphomas, neoplastic Reed-Sternberg cells and surrounding non-tumor B-cells contain different variants of the LMP1-BNLF1 oncogene. In this study, we raised the question of functional properties of latent membrane protein 1 (LMP1) natural variants from both Reed-Sternberg and non-tumor B-cells. Twelve LMP1 natural variants from Reed-Sternberg cells, non-tumor B-cells of Hodgkin's lymphomas and from B-cells of benign reactive lymph nodes were cloned, sequenced and stably transfected in murine recombinant interleukin-3-dependent Ba/F3 cells to search for relationships between LMP1 cellular origin and oncogenic properties as well as nuclear factor-kappaB activation, and apoptosis protection. LMP1 variants of Reed-Sternberg cell origin were often associated with increased mutation rate and with recurrent genetic events, such as del15bp associated with S to N replacement at codon 309, and four substitutions I85L, F106Y, I122L, and M129I. Oncogenic potential (growth factor-independence plus clonogenicity) was consistently associated with LMP1 variants from Reed-Sternberg cells, but inconstantly for LMP1-variants from non-tumor B-cells. Analysis of LMP1 variants from both normal B-cells and Reed-Sternberg cells indicates that protection against apoptosis through activation of nuclear factor-kappaB - whatever the cellular origin of LMP1 - was maintained intact, regardless of the mutational pattern. Taken together, our results demonstrate that preserved nuclear factor-kappaB activity and protection against apoptosis would be the minimal prerequisites for all LMP1 natural variants from both normal and tumor cells in Hodgkin's lymphomas, and that oncogenic potential would constitute an additional feature for LMP1 natural variants in Reed-Sternberg cells.

  7. Anticancer activity of eugenol is not related to regulation of the oncogenic transcription factor Forkhead Box M1

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Marques Wiirzler

    2016-09-01

    Full Text Available Genome-wide gene expression profiling of cancers has consistently identified the FOXM1 as one of the most commonly upregulated genes in cancer cells that plays an essential role in the regulation of a wide spectrum of biological processes, including inhibition of apoptosis. Since the anticancer activity of EUG reported in the literature is related to induction of apoptosis in cancer cells, we hypothesized that there is a correlation between the EUG-induced apoptosis effect and downregulation of FOXM1. A series of experiments were conducted to evaluate the effect of EUG on cellular viability of cancer cells (MTT and its potential regulatory effect on FOXM1 protein levels (western blots. Our findings confirm the anticancer effect of EUG on different human cancer cell lines as previously reported in the literature (SKBR3 LC50: 318.6; HT29 LC50: 525.5; and HepG2 LC50: 2090.0 µM. However, we demonstrated that EUG does not regulate the FOXM1. The results evidenced the anticancer effect of EUG on three cancer cell lines and showed that the EUG- apoptosis induced effect is not related to regulation of FOXM1 at the protein level. Further studies must be done to provide information on the mechanism of action of this agent.

  8. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.M., E-mail: hunt52@llnl.gov; El-Dasher, B., E-mail: eldasher2@llnl.gov; Choi, B.W., E-mail: choi3@llnl.gov; Torres, S.G., E-mail: torres4@llnl.gov

    2014-10-15

    Highlights: • We characterized joining techniques for a candidate material for inertial confinement fusion: reduced activation ferritic martensitic 12% chromium steel. • E-beam, TIG, and laser welds were completed with good quality without significant cracking or porosity. • A heat treatment of 950 °C for 1 h normalized the weld fusion zone and heat-affected zone to the base metal microstructure. • Diffusion bonding at 950 °C or greater for 2 h produced an interface with over 600 MPa tensile strength. - Abstract: At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  9. Oncogenes in melanoma: an update.

    Science.gov (United States)

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.

  10. Silencing of hpv16 e6 and e7 oncogenic activities by small interference rna induces autophagy and apoptosis in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Jonathan Salazar-León

    2011-08-01

    Full Text Available Cervical cancer is the second most common form of death by cancer in women worldwide and has special attention for the development of new treatment strategies. Human Papilloma Virus (HPV persistent infection is the main etiological agent of this neoplasia, and the main cellular transformation mechanism is by disruption of p53 and pRb function by interaction with HPV E6 and E7 oncoproteins. This generates alterations in cellular differentiation and cellular death inhibition. Thus, HPV E6 and E7 oncogenes represent suitable targets for the development of gene therapy strategies against cervical cancer. An attractive technology platform is developing for post-transcriptional selective silencing of gene expression, using small interference RNA. Therefore, in the present study, we used SiHa cells (HPV16+ transiently transfected with specific siRNA expression plasmids for HPV16 E6 and E7 oncogenes. In this model we detected repression of E6 and E7 oncogene and oncoprotein expression, an increase in p53 and hypophosphorylated pRb isoform protein expression, and autophagy and apoptosis morphology features. These findings suggest that selective silencing of HPV16 E6 and E7 oncogenes by siRNAs, has significant biological effects on the survival of human cancer cells and is a potential gene therapy strategy against cervical cancer.

  11. MECP2 Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism That Mimics the Role of Activated RAS in Malignancy

    DEFF Research Database (Denmark)

    Neupane, Manish; Clark, Allison P.; Landini, Serena;

    2016-01-01

    An unbiased genome-scale screen for unmutated genes that drive cancer growth when overexpressed identified methyl cytosine-guanine dinucleotide (CpG) binding protein 2 (MECP2) as a novel oncogene. MECP2 resides in a region of the X-chromosome that is significantly amplified across 18% of cancers,...

  12. Biological effects of activation products and other chemicals released from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of /sup 26/Al, /sup 49/V, /sup 51/Cr, /sup 54/Mn, /sup 55/Fe, /sup 58/Co, /sup 60/Co, /sup 93/Nb, and /sup 94/Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs.

  13. Adjoint Monte Carlo Simulation of Fusion Product Activation Probe Experiment in ASDEX Upgrade tokamak

    CERN Document Server

    Äkäslompolo, Simppa; Tardini, Giovanni; Kurki-Suonio, Taina

    2015-01-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material makig it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte-Carlo calculations of the fusion products. The analysis facilitated, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within 40%, which can be considered remarkable considering the fact that all features of the plasma cannot be accounted in the simulations. Also an alternative probe orientation was studied. The results suggest that a better optimized...

  14. Adjoint Monte Carlo simulation of fusion product activation probe experiment in ASDEX Upgrade tokamak

    Science.gov (United States)

    Äkäslompolo, S.; Bonheure, G.; Tardini, G.; Kurki-Suonio, T.; The ASDEX Upgrade Team

    2015-10-01

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations.Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  15. Receptor-induced thiolate couples Env activation to retrovirus fusion and infection.

    Directory of Open Access Journals (Sweden)

    Jason G Smith

    2007-12-01

    Full Text Available According to current models of retrovirus infection, receptor binding to the surface subunit (SU of the envelope glycoprotein (Env triggers a conformational change in the transmembrane subunit (TM that mediates virus fusion to cell membranes. To understand how this occurs, we investigated the role of the receptor Tva in avian leukosis virus-A (ALV-A infection. We find that Tva binding induced the formation of a reactive thiolate on Cys38 (Cys38-S- in SU. Both chemical and genetic inactivation of Cys38-S- completely abrogated ALV fusion and infection. Remarkably, Cys38-S- does not mediate isomerization of the SU-TM disulfide bond and is not required for Tva-induced activation of TM, including pre-hairpin association with membranes and low pH assembly of helical bundles. These findings indicate that, contrary to current models, receptor activation of TM is not sufficient for ALV fusion and infection and that formation of a reactive thiolate is an additional receptor-dependent step.

  16. High yield expression of catalytically active USP18 (UBP43 using a Trigger Factor fusion system

    Directory of Open Access Journals (Sweden)

    Basters Anja

    2012-08-01

    Full Text Available Abstract Background Covalent linkage of the ubiquitin-like protein ISG15 interferes with viral infection and USP18 is the major protease which specifically removes ISG15 from target proteins. Thus, boosting ISG15 modification by protease inhibition of USP18 might represent a new strategy to interfere with viral replication. However, so far no heterologous expression system was available to yield sufficient amounts of catalytically active protein for high-throughput based inhibitor screens. Results High-level heterologous expression of USP18 was achieved by applying a chaperone-based fusion system in E. coli. Pure protein was obtained in a single-step on IMAC via a His6-tag. The USP18 fusion protein exhibited enzymatic activity towards cell derived ISG15 conjugated substrates and efficiently hydrolyzed ISG15-AMC. Specificity towards ISG15 was shown by covalent adduct formation with ISG15 vinyl sulfone but not with ubiquitin vinyl sulfone. Conclusion The results presented here show that a chaperone fusion system can provide high yields of proteins that are difficult to express. The USP18 protein obtained here is suited to setup high-throughput small molecule inhibitor screens and forms the basis for detailed biochemical and structural characterization.

  17. Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine.

    Science.gov (United States)

    Geeraedts, Felix; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke; de Haan, Aalzen

    2012-10-05

    Whole inactivated virus (WIV) influenza vaccines are more immunogenic in unprimed individuals than split-virus or subunit vaccines. In mice, this superior immunogenicity has been linked to the recognition of the viral ssRNA by endosomal TLR7 receptors in immune cells, leading to IFNα production and Th1-type antibody responses. Recent data suggest that viral membrane fusion in target cell endosomes is necessary for TLR7-mediated IFNα induction. If so, virus inactivation procedures that compromise the fusion activity of WIV vaccines, like formaldehyde (FA) treatment, could potentially harm vaccine efficacy. Therefore, we measured the effect of fusion inactivation of H5N1 WIV on TLR7 activation in vitro, and on antibody isotype responses in vivo. Fusion inactivation of WIV reduced, but did not block, TLR7-dependent IFNα induction in murine dendritic cells in vitro. In vivo, fusion-inactive WIV was as potent as fusion-active WIV in inducing total H5N1-specific serum IgG and IgG2c subtype antibodies in unprimed mice. Both vaccines induced only small amounts of IgG1. However, FA treatment of WIV did reduce the capacity of the vaccine to induce hemagglutination-inhibiting (HI) antibodies. This possibly relates to modification of epitopes that are targets for HI antibodies rather than to loss of fusion activity. Antibody affinity maturation was not negatively affected by fusion inactivation. In conclusion, fusion activity of H5N1 WIV does not play a major role in Th1-type antibody induction. Yet, to preserve the full immunogenicity of WIV, or possibly also other inactivated influenza vaccines, harsh treatment with formaldehyde should be avoided. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse.

    Science.gov (United States)

    Soares, Helena; Henriques, Ricardo; Sachse, Martin; Ventimiglia, Leandro; Alonso, Miguel A; Zimmer, Christophe; Thoulouze, Maria-Isabel; Alcover, Andrés

    2013-10-21

    How the vesicular traffic of signaling molecules contributes to T cell receptor (TCR) signal transduction at the immunological synapse remains poorly understood. In this study, we show that the protein tyrosine kinase Lck, the TCRζ subunit, and the adapter LAT traffic through distinct exocytic compartments, which are released at the immunological synapse in a differentially regulated manner. Lck vesicular release depends on MAL protein. Synaptic Lck, in turn, conditions the calcium- and synaptotagmin-7-dependent fusion of LAT and TCRζ containing vesicles. Fusion of vesicles containing TCRζ and LAT at the synaptic membrane determines not only the nanoscale organization of phosphorylated TCRζ, ZAP70, LAT, and SLP76 clusters but also the presence of phosphorylated LAT and SLP76 in interacting signaling nanoterritories. This mechanism is required for priming IL-2 and IFN-γ production and may contribute to fine-tuning T cell activation breadth in response to different stimulatory conditions.

  19. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins.

    Science.gov (United States)

    Maeder, Morgan L; Angstman, James F; Richardson, Marcy E; Linder, Samantha J; Cascio, Vincent M; Tsai, Shengdar Q; Ho, Quan H; Sander, Jeffry D; Reyon, Deepak; Bernstein, Bradley E; Costello, Joseph F; Wilkinson, Miles F; Joung, J Keith

    2013-12-01

    Genome-wide studies have defined cell type-specific patterns of DNA methylation that are important for regulating gene expression in both normal development and disease. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator-like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain. Using these TALE-TET1 fusions, we demonstrate that modification of critical methylated promoter CpG positions can lead to substantial increases in the expression of endogenous human genes. Our results delineate a strategy for understanding the functional significance of specific CpG methylation marks in the context of endogenous gene loci and validate programmable DNA demethylation reagents with potential utility for research and therapeutic applications.

  20. FGFR-TACC gene fusions in human glioma.

    Science.gov (United States)

    Lasorella, Anna; Sanson, Marc; Iavarone, Antonio

    2016-11-16

    Chromosomal translocations joining in-frame members of the fibroblast growth factor receptor-transforming acidic coiled-coil gene families (the FGFR-TACC gene fusions) were first discovered in human glioblastoma multiforme (GBM) and later in many other cancer types. Here, we review this rapidly expanding field of research and discuss the unique biological and clinical features conferred to isocitrate dehydrogenase wild-type glioma cells by FGFR-TACC fusions. FGFR-TACC fusions generate powerful oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear intracellular signaling mechanisms. FGFR-TACC fusions appear to be clonal tumor-initiating events that confer strong sensitivity to FGFR tyrosine kinase inhibitors. Screening assays have recently been reported for the accurate identification of FGFR-TACC fusion variants in human cancer, and early clinical data have shown promising effects in cancer patients harboring FGFR-TACC fusions and treated with FGFR inhibitors. Thus, FGFR-TACC gene fusions provide a "low-hanging fruit" model for the validation of precision medicine paradigms in human GBM.

  1. Molecular pathways: targeting ETS gene fusions in cancer.

    Science.gov (United States)

    Feng, Felix Y; Brenner, J Chad; Hussain, Maha; Chinnaiyan, Arul M

    2014-09-01

    Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNAPK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions. ©2014 American Association for Cancer Research.

  2. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    Science.gov (United States)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  3. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation

    DEFF Research Database (Denmark)

    Müller, Oliver; Bayer, Martin J; Peters, Christopher

    2002-01-01

    vacuole system has revealed two subsequent molecular events: trans-complex formation of V-ATPase proteolipid sectors (V(0)) and release of LMA1 from the membrane. We have now identified a hetero-oligomeric membrane integral complex of vacuolar transporter chaperone (Vtc) proteins integrating these events......, LMA1 release, but dispensible for all preceding steps, including V(0) trans-complex formation. This suggests that Vtc3p might act close to or at fusion pore opening. We propose that Vtc proteins may couple ATP-dependent NSF activity to a subset of V(0) sectors in order to activate them for V(0) trans...

  4. Activation calculation and radiation analysis for China Fusion Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi, E-mail: zchen@ustc.edu.cn; Qiao, Shiji; Jiang, Shuai; Xu, X. George

    2016-11-01

    Highlights: • Activation calculation was performed using FLUKA for the main components of CFETR. • Radionuclides and radioactive wastes were assessed for CFETR. • The Waste Disposal Ratings (WDR) were assessed for CFETR. - Abstract: The activation calculation and analysis for the China Fusion Engineering Test Reactor (CFETR) will play an important role in its system design, maintenance, inspection and assessment of nuclear waste. Using the multi-particle transport code FLUKA and its associated data library, we calculated the radioactivity, specific activity, waste disposal rating from activation products, nuclides in the tritium breeding blanket, shielding layer, vacuum vessel and toroidal field coil (TFC) of CFETR. This paper presents the calculation results including neutron flux, activation products and waste disposal rating after one-year full operation of the CFETR. The findings show that, under the assumption of one-year operation at the 200 MW fusion power, the total radioactivity inventory will be 1.05 × 10{sup 19} Bq at shutdown and 1.03 × 10{sup 17} Bq after ten years. The primary residual nuclide is found to be {sup 55}Fe in ten years after the shutdown. The waste disposal rating (WDR) values are very low (<<1), according to Class C limits, CFETR materials are qualified for shallow land burial. It is shown that CFETR has no serious activation safety issue.

  5. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    OpenAIRE

    Marialuisa Moccia; Qingsong Liu; Teresa Guida; Giorgia Federico; Annalisa Brescia; Zheng Zhao; Hwan Geun Choi; Xianming Deng; Li Tan; Jinhua Wang; Marc Billaud; Gray, Nathanael S.; Francesca Carlomagno; Massimo Santoro

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-media...

  6. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    Science.gov (United States)

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  7. Position control of active magnetic levitation using sphere-shaped HTS bulk for inertial nuclear fusion

    Science.gov (United States)

    Suga, K.; Riku, K.; Agatsuma, K.; Ueda, H.; Ishiyama, A.

    2008-02-01

    We have developed an active magnetic levitation system that comprises a field-cooled disk-shaped or sphere-shaped HTS bulk and multiple ring-shaped electromagnets. In this system, the levitation height of HTS bulk can be controlled by adjusting the operating current of each electromagnet individually. Further, the application of the vertical noncontact levitation system is expected due to its levitation stability without mechanical supports. We assume that this system is applied to inertial nuclear fusion. However, one of the important issues is to achieve position control with high accuracy of the fusion fuel in order to illuminate the target evenly over the entire surface. Therefore, this system is applied to the levitation and position control of a sphere-shaped superconducting capsule containing nuclear fusion fuel. In this study, we designed and constructed a position control system for the sphere-shaped HTS bulk with a diameter of 5 mm by using numerical simulation based on hybrid finite element and boundary element analysis. We then carried out the experiment of levitation height and position control characteristics of the HTS bulk in this system. With regard to position control, accuracies within 59 ?m are obtained.

  8. The oncogenic action of ionizing radiation on rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  9. Fusion splicing of double-clad specialty fiber using active alignment technology

    Institute of Scientific and Technical Information of China (English)

    Shupeng Yin; Ping Yan; Mali Gong; Jianwei He; Chen Fu

    2011-01-01

    @@ The fusion splicing of double-clad (DC) specialty fibers based on active alignment is crucial to the investigation of high-power monolithic fiber lasers. Given the wave-guiding characteristic of DC fiber, a light stripper is introduced in an active alignment experiment. We propose a novel method for stripping light that is convenient, highly efficient, and low cost. This method is also effective for low-numerical-aperture beams that escape from the fiber core. A splice loss as low as 0.05 dB is achieved.%The fusion splicing of double-clad (DC) specialty fibers based on active alignment is crucial to the investigation of high-power monolithic fiber lasers. Given the wave-guiding characteristic of DC fiber, a light stripper is introduced in an active alignment experiment. We propose a novel method for stripping light that is convenient, highly efficient, and low cost. This method is also effective for low-numerical-aperture beams that escape from the fiber core. A splice loss as low as 0.05 dB is achieved.

  10. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene.

    Science.gov (United States)

    Regué, Laura; Mou, Fan; Avruch, Joseph

    2013-05-01

    The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell-cell contact or determine epithelial cell polarity which, in a tissue-specific manner, use intracellular complexes containing FERM domain and actin-binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through Galpha12/13 such as the protease activated receptor PAR1, cause potent YAP dephosphorylation and activation. This response requires active RhoA GTPase and increased assembly of filamentous (F-)actin. Morever, cell architectures that promote F-actin assembly per se also activate YAP by kinase-dependent and independent mechanisms. These findings unveil the ability of GPCRs to activate the YAP oncogene through a newly recognized signaling function of the actin cytoskeleton, likely to be especially important for normal and cancerous stem cells.

  11. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease.

    Science.gov (United States)

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.

  12. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes.

    Science.gov (United States)

    Xing, Zhihao; Chu, Chen; Chen, Lei; Kong, Xiangyin

    2016-11-01

    Oncogenes are a type of genes that have the potential to cause cancer. Most normal cells undergo programmed cell death, namely apoptosis, but activated oncogenes can help cells avoid apoptosis and survive. Thus, studying oncogenes is helpful for obtaining a good understanding of the formation and development of various types of cancers. In this study, we proposed a computational method, called OPM, for investigating oncogenes from the view of Gene Ontology (GO) and biological pathways. All investigated genes, including validated oncogenes retrieved from some public databases and other genes that have not been reported to be oncogenes thus far, were encoded into numeric vectors according to the enrichment theory of GO terms and KEGG pathways. Some popular feature selection methods, minimum redundancy maximum relevance and incremental feature selection, and an advanced machine learning algorithm, random forest, were adopted to analyze the numeric vectors to extract key GO terms and KEGG pathways. Along with the oncogenes, GO terms and KEGG pathways were discussed in terms of their relevance in this study. Some important GO terms and KEGG pathways were extracted using feature selection methods and were confirmed to be highly related to oncogenes. Additionally, the importance of these terms and pathways in predicting oncogenes was further demonstrated by finding new putative oncogenes based on them. This study investigated oncogenes based on GO terms and KEGG pathways. Some important GO terms and KEGG pathways were confirmed to be highly related to oncogenes. We hope that these GO terms and KEGG pathways can provide new insight for the study of oncogenes, particularly for building more effective prediction models to identify novel oncogenes. The program is available upon request. We hope that the new findings listed in this study may provide a new insight for the investigation of oncogenes. This article is part of a Special Issue entitled "System Genetics" Guest Editor

  13. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  14. Transforming fusions of FGFR and TACC genes in human glioblastoma.

    Science.gov (United States)

    Singh, Devendra; Chan, Joseph Minhow; Zoppoli, Pietro; Niola, Francesco; Sullivan, Ryan; Castano, Angelica; Liu, Eric Minwei; Reichel, Jonathan; Porrati, Paola; Pellegatta, Serena; Qiu, Kunlong; Gao, Zhibo; Ceccarelli, Michele; Riccardi, Riccardo; Brat, Daniel J; Guha, Abhijit; Aldape, Ken; Golfinos, John G; Zagzag, David; Mikkelsen, Tom; Finocchiaro, Gaetano; Lasorella, Anna; Rabadan, Raul; Iavarone, Antonio

    2012-09-07

    The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.

  15. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Michael R.; Jones, Lynden [Department of Cell Biology, University of Alberta, Edmonton, Alta., Canada T6G 2H7 (Canada); Eitzen, Gary, E-mail: gary.eitzen@ualberta.ca [Department of Cell Biology, University of Alberta, Edmonton, Alta., Canada T6G 2H7 (Canada)

    2010-03-26

    Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P{sub 2} specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.

  16. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP.

    Science.gov (United States)

    Fan, Yuanjie; Yin, Yuehong

    2013-12-01

    Although exoskeletons have received enormous attention and have been widely used in gait training and walking assistance in recent years, few reports addressed their application during early poststroke rehabilitation. This paper presents a healthcare technology for active and progressive early rehabilitation using multisource information fusion from surface electromyography and force-position extended physiological proprioception. The active-compliance control based on interaction force between patient and exoskeleton is applied to accelerate the recovery of the neuromuscular function, whereby progressive treatment through timely evaluation contributes to an effective and appropriate physical rehabilitation. Moreover, a clinic-oriented rehabilitation system, wherein a lower extremity exoskeleton with active compliance is mounted on a standing bed, is designed to ensure comfortable and secure rehabilitation according to the structure and control requirements. Preliminary experiments and clinical trial demonstrate valuable information on the feasibility, safety, and effectiveness of the progressive exoskeleton-assisted training.

  17. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Science.gov (United States)

    Li, Xiaoying; Tao, Hua; Xie, Kewei; Ni, Zhaohui; Yan, Yucheng; Wei, Kai; Chuang, Peter Y; He, John Cijiang; Gu, Leyi

    2014-01-01

    Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  18. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Directory of Open Access Journals (Sweden)

    Xiaoying Li

    Full Text Available Our previous in vitro studies suggested that cyclic AMP (cAMP signaling prevents adriamycin (ADR and puromycin aminonucleoside (PAN-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA or exchange protein directly activated by cAMP (Epac pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator, PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  19. Fusion expression of pedA gone to obtain biologically active pediocin PA-1 in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Shan-na LIU; Ye HAN; Zhi-jiang ZHOU

    2011-01-01

    Two heterologous expression systems using thioredoxin (trxA) as a gene fusion part in Eschenchia coli weredeveloped to produce recombinant pediocin PA-1. Pediocin PA-1 structural gene pedA was isolated from Pediococcusacidi/actici PA003 by the method of polymerase chain reaction (PCR), then cloned into vector pET32a(+), and expressedas thioredoxin-PedA fusion protein in the host strain E. coil BL21 (DE3). The fusion protein was in the form of inclusionbody and was refolded before purification by nickel-iminodiacetic acid (Ni-IDA) agarose resin column. Biological activity ofrecombinant pediocin PA-1 was analyzed after cleavage of the fusion protein by enterokinase. Agar diffusion test re-vealed that 512-arbitrary unit (AU) recombinant pediocin PA-1 was obtained from 1 ml culture medium of E. coli(pPA003PED1) using Listeda monocytogenes as the indicator strain. Thioredoxin-PedA fusion gene was further clonedinto pET20b(+). Thioredoxin-PedA fusion protein was detected in both the periplasmic and cytoplasmic spaces. Therecombinant pediocin PA-1 from the soluble fraction attained 384 AU from 1 ml culture medium of E. coli (pPA003PED2).Therefore, biologically active pediocin PA-1 could be obtained by these two hybrid gene expression methods.

  20. In vitro Activity and Function of B7-H4-Ig Fusion Protein

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Kosicki, Michael; Svendsen, Signe Goul

    2013-01-01

    B7-H4 has been shown to inhibit T cell proliferation, cytokine production and cell cycle in vitro. B7-H4 deficient mice develop exacerbated disease in the mouse models of Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D) and Experimental Autoimmune Encephalomyelitis (EAE). On the other hand, B7-H4......-Ig fusion protein has been documented to assuage the symptoms in mouse models of RA, T1D, and multiple sclerosis in vivo. In the present study, B7-H4-Ig bound to the majority of human peripheral blood monocytes and NK cells, but not to either normal or activated T cells. B7-H4-Ig fusion protein...... was assayed for its effects in allogeneic mixed lymphocyte culture (MLC) systems. Soluble B7- H4-Ig had no significant effect in the MLC, but with a tendency to promote allogeneic response. Immobilized, but not soluble B7-H4-Ig inhibited plastic bound anti-CD3 mediated activation of T cells. This inhibition...

  1. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); El-Dasher, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Choi, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Torres, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  2. Relationship between the loss of neutralizing antibody binding and fusion activity of the F protein of human respiratory syncytial virus

    Directory of Open Access Journals (Sweden)

    Sarisky Robert T

    2007-07-01

    Full Text Available Abstract To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19, level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.

  3. Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma.

    Science.gov (United States)

    Nie, Zilin; Du, Ming-Qing; McAllister-Lucas, Linda M; Lucas, Peter C; Bailey, Nathanael G; Hogaboam, Cory M; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2015-01-08

    MALT1 is the only known paracaspase and is a critical mediator of B- and T-cell receptor signalling. The function of the MALT1 gene is subverted by oncogenic chimeric fusions arising from the recurrent t(11;18)(q21;q21) aberration, which is the most frequent translocation in mucosa-associated lymphoid tissue (MALT) lymphoma. API2-MALT1-positive MALT lymphomas manifest antibiotic resistance and aggressive clinical behaviour with poor clinical outcome. However, the mechanisms underlying API2-MALT1-induced MALT lymphomagenesis are not fully understood. Here we show that API2-MALT1 induces paracaspase-mediated cleavage of the tumour suppressor protein LIMA1. LIMA1 binding by API2-MALT1 is API2 dependent and proteolytic cleavage is dependent on MALT1 paracaspase activity. Intriguingly, API2-MALT1-mediated proteolysis generates a LIM domain-only (LMO)-containing fragment with oncogenic properties in vitro and in vivo. Importantly, primary MALT lymphomas harbouring the API2-MALT1 fusion uniquely demonstrate LIMA1 cleavage fragments. Our studies reveal a novel paracaspase-mediated oncogenic gain-of-function mechanism in the pathogenesis of MALT lymphoma.

  4. Radiosensitivity of tumor cells. Oncogenes and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Peltenburg, L. T. C. [Leiden Univ., Leiden (Netherlands). Dept. of Clinical Oncology

    2000-12-01

    The success of treatment of cancer patients by radiotherapy largely depends on tumor radiosensitivity. Several molecular factors that determine the sensitivity of tumor cells to ionizing radiation have been identified during the last couple of years. Some of these factors are known as oncogenes and tumor suppressor genes. This review focuses on the influence of some of these molecular factors on a major determinant of radiosensitivity: i. e. programmed cell death or apoptosis. The crucial molecular step in ionizing radiation-induced apoptosis is the release of mitochondrial cytochrome c into the cell's cytosol. The ways the tumor suppressor protein p53, as well as the oncogenes ras and raf, c-myc and Bcl-2 can influence this process at different stages are presented. As will be discussed, the result of activation of an oncoprotein on tumor radiosensitivity depends on its mechanism of action and on the presence of other (oncogenic) factors, since complex interactions among many molecular factors determine the delicate balance between cell proliferation and cell death. The ongoing identification and characterization of factors influencing apoptosis will eventually make it possible to predict tumor radiosensitivity and thereby improve cancer treatment.

  5. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    Science.gov (United States)

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  6. Review of Physical Activity Benefits and Potential Considerations for Individuals with Surgical Fusion of Spine for Scoliosis

    Science.gov (United States)

    KAKAR, RUMIT SINGH; SIMPSON, KATHY J.; DAS, BHIBHA M.; BROWN, CATHLEEN N.

    2017-01-01

    Evidence-based recommendations for physical activity following spinal fusion surgeries for idiopathic scoliosis are limited, specifically in the adolescent population. Individuals with scoliosis treated operatively or non-operatively have been reported to participate in less than 1–3 days/week of even mildly strenuous physical exercises. Over 40% of individuals with scoliosis returned to sports at a level lower than pre-operative participation levels or did not return at all post spinal fusion. It is particularly important for human movement specialists, such as physical therapists, occupational therapists, athletic trainers and kinesiologists to assist these individuals effectively transition to and maintain engagement in physical activity. This review provides a snapshot of common considerations and potential factors influencing individuals with spinal-fusion for scoliosis to participate in safe physical activity.

  7. Protein engineering,expression,and activity of a novel fusion protein possessing keratinocyte growth factor 2 and fibronectin

    Institute of Scientific and Technical Information of China (English)

    Wonmo Kang; Junhyeog Jang

    2009-01-01

    Growth factor-induced proliferation and differentiation often require adhesion of cells to the extracellular matrix proteins such as fibronectin(FN).In this study,we aimed to investigate the effect of protein engineering of the keratinocyte growth factor 2(KGF2)fused to the FN on the mitogenic activity of KGF2.The fusion protein(KGF2-FN10),which was expressed in Escherichia coli,showed significantly enhanced mitogenic activity of KGF2 on human keratinocytes.Moreover,KGF2-FN10 fusion protein showed significantly increased activity to differentiate keratinocytes from native KGF2.In conclusion,these results suggest that KGF2-FN10 fusion protein has certain advantages over native KGF2 and may offer a novel strategy to potentiate the therapeutic effect of KGF2.

  8. Evidence of parasexual activity in "asexual amoebae" Cochliopodium spp. (Amoebozoa): extensive cellular and nuclear fusion.

    Science.gov (United States)

    Tekle, Yonas I; Anderson, O Roger; Lecky, Ariel F

    2014-09-01

    The majority of microbial eukaryotes have long been considered asexual, though new evidence indicates sex, or sexual-like (parasexual) behaviors that deviate from the usual union of two gametes, among other variant aspects. Over a dozen amoebozoans are implicated to have sexual stages. However, the exact mechanism by which sex occurs in these lineages remains elusive. This is mainly due to the diverse quality and cryptic nature of their life cycle. In this study we present evidence of some previously unreported aspects of the life cycle of an amoeba, Cochliopodium, that undergoes unusual intraspecific interactions using light microscopy and immunocytochemistry. Similar to other amoebozoans, Cochliopodium, is considered asexual with no published reports of sex or parasexuality. We also investigated environmental conditions that govern the observed intraspecific interactions. Both light microscopic and immunocytochemistry evidence demonstrates Cochliopodium undergoes cellular fusion (plasmogamy) and nuclear fusion (karyogamy). Large plasmodia eventually undergo karyogamy and contain large fused, polyploid, nuclei. These are observed to fragment, subsequently, by karyotomy (nuclear fission) and cytoplasmic fission to yield uninucleated amoebae. This process could lead to a non-meiotic, parasexual exchange of chromosomes in Cochliopodium. These findings strongly suggest that Cochliopodium is involved in parasexual activity and should no longer be considered strictly asexual.

  9. Towards fusion energy as a sustainable energy source: Activities at DTU Physics

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Christensen, Alexander Simon; Dam, Magnus

    2014-01-01

    Nuclear fusion – the process from which the Sun derives its energy – holds the potential to become a clean,safe, highly efficient, and virtually inexhaustible energy source for the future. To mimic this process on earth, experimental fusion devices seek to heat gas to millions of degrees (creating...... a fusion plasma) and to confine it within magnetic fields. Learning how such plasmas behave and can be controlled is a crucial step towards realizing fusion as a sustainable energy source.At the Plasma Physics and Fusion Energy (PPFE) section at DTU Physics, we are exploring these issues,focusing on areas...... of high priority on the way towards a working fusion power plant. On the theoreticalfront, we are simulating plasma turbulence and transport of heat and particles in fusion plasmas (Fig. 1a). These issues play a key role in determining how the plasma behaves globally and how well it remains confined...

  10. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia.

    Science.gov (United States)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-04-10

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.

  11. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    Directory of Open Access Journals (Sweden)

    Klix Axel

    2016-01-01

    Full Text Available Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  12. Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment.

    Science.gov (United States)

    Rosebeck, Shaun; Lucas, Peter C; McAllister-Lucas, Linda M

    2011-05-01

    Gastric mucosa-associated lymphoid tissue (MALT) lymphoma is a prototypical cancer that occurs in the setting of chronic inflammation and an important model for understanding how deregulated NF-κB transcriptional activity contributes to malignancy. Most gastric MALT lymphomas require ongoing antigenic stimulation for continued tumor growth, and Stage I disease is usually cured by eradicating the causative microorganism, Helicobacter pylori, with antibiotics. However, in a subset of MALT lymphomas, chromosomal translocations are acquired that render the lymphoma antigen-independent. The recurrent translocation t(11;18)(q21;q21) is associated with failure to respond to antibiotic therapy and increased rate of dissemination. This translocation creates the API2-MALT1 fusion oncoprotein, which comprises the amino terminus of inhibitor of apoptosis 2 (API2 or cIAP2) fused to the carboxy terminus of MALT1. A common characteristic of chromosomal translocations in MALT lymphoma, including t(11;18), is that genes involved in the regulation of the NF-κB transcription factor are targeted by the translocations, and these genetic perturbations thereby result in deregulated, constitutive NF-κB stimulation. In the last decade, great insights into the roles of API2 and MALT1 in NF-κB signaling have been made. For example, recent pivotal studies have uncovered the long sought-after proteolytic activity of MALT1 and have demonstrated its critical involvement in the survival of certain lymphomas. Here, we review the current understanding of the role of MALT1 in normal lymphocyte function and lymphomagenesis. We then highlight our recent work that has revealed an intriguing link between the proteolytic activity of the API2-MALT1 fusion and its ability to influence lymphomagenesis by cleaving a key NF-κB regulatory protein, NF-κB-inducing kinase.

  13. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  14. Rapid and sensitive lentivirus vector-based conditional gene expression assay to monitor and quantify cell fusion activity.

    Directory of Open Access Journals (Sweden)

    Manuel A F V Gonçalves

    Full Text Available Cell-to-cell fusion is involved in multiple fundamental biological processes. Prominent examples include osteoclast and giant cell formation, fertilization and skeletal myogenesis which involve macrophage, sperm-egg and myoblast fusion, respectively. Indeed, the importance of cell fusion is underscored by the wide range of homeostatic as well as pathologic processes in which it plays a key role. Therefore, rapid and sensitive systems to trace and measure cell fusion events in various experimental systems are in demand. Here, we introduce a bipartite cell fusion monitoring system based on a genetic switch responsive to the site-specific recombinase FLP. To allow flexible deployment in both dividing as well as non-dividing cell populations, inducer and reporter modules were incorporated in lentivirus vector particles. Moreover, the recombinase-inducible transcription units were designed in such a way as to minimize basal activity and chromosomal position effects in the "off" and "on" states, respectively. The lentivirus vector-based conditional gene expression assay was validated in primary human mesenchymal stem cells and in a differentiation model based on muscle progenitor cells from a Duchenne muscular dystrophy patient using reporter genes compatible with live- and single-cell imaging and with whole population measurements. Using the skeletal muscle cell differentiation model, we showed that the new assay displays low background activity, a 2-log dynamic range, high sensitivity and is amenable to the investigation of cell fusion kinetics. The utility of the bipartite cell fusion monitoring system was underscored by a study on the impact of drug- and RNAi-mediated p38 MAPK inhibition on human myocyte differentiation. Finally, building on the capacity of lentivirus vectors to readily generate transgenic animals the present FLP-inducible system should be adaptable, alone or together with Cre/loxP-based assays, to cell lineage tracing and

  15. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.

    Directory of Open Access Journals (Sweden)

    Per Larsson

    Full Text Available Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.

  16. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  17. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    Science.gov (United States)

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  18. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  19. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence

    DEFF Research Database (Denmark)

    Agger, Karl; Cloos, Paul A C; Rudkjaer, Lise

    2009-01-01

    The tumor suppressor proteins p16INK4A and p14ARF, encoded by the INK4A-ARF locus, are key regulators of cellular senescence. The locus is epigenetically silenced by the repressive H3K27me3 mark in normally growing cells, but becomes activated in response to oncogenic stress. Here, we show...... that expression of the histone H3 Lys 27 (H3K27) demethylase JMJD3 is induced upon activation of the RAS-RAF signaling pathway. JMJD3 is recruited to the INK4A-ARF locus and contributes to the transcriptional activation of p16INK4A in human diploid fibroblasts. Additionally, inhibition of Jmjd3 expression...... in mouse embryonic fibroblasts results in suppression of p16Ink4a and p19Arf expression and in their immortalization....

  20. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K. [EURATOM/CCFE Fusion Association, Culham, Abingdon, Oxon, 0X14 3DB (United Kingdom); Vann, Roddy G. L. [York Plasma Institute, Dept. of Physics, University of York, York YO10 5DD (United Kingdom)

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  1. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    Science.gov (United States)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  2. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Directory of Open Access Journals (Sweden)

    Marialuisa Moccia

    Full Text Available Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI, ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  3. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Science.gov (United States)

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  4. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Altamura, Gennaro, E-mail: gennaro.altamura@unina.it [Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples (Italy); Corteggio, Annunziata, E-mail: ancorteg@unina.it [Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples (Italy); Pacini, Laura, E-mail: PaciniL@students.iarc.fr [Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon (France); Conte, Andrea, E-mail: andreaconte88@hotmail.it [Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples (Italy); Pierantoni, Giovanna Maria, E-mail: gmpieran@unina.it [Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples (Italy); Tommasino, Massimo, E-mail: tommasinom@iarc.fr [Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon (France); Accardi, Rosita, E-mail: accardir@iarc.fr [Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon (France); Borzacchiello, Giuseppe, E-mail: borzacch@unina.it [Department of Veterinary Medicine and Animal Productions, General Pathology and Pathological Anatomy Unit, University of Naples Federico II, Via Delpino 1, 80137 Naples (Italy)

    2016-09-15

    Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC. - Highlights: • FcaPV2 E6 binds to and deregulates feline p53 protein. • FcaPV2 E7 binds to and deregulates feline pRb protein. • FcaPV2 oncogenes inhibit UVB-induced apoptosis. • FcaPV2 E6E7 and E7 increase the lifespan of primary cells. • FcaPV2 E2, E6 and E7 are expressed at the mRNA level in feline SCC in vivo.

  5. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia

    NARCIS (Netherlands)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud

    2014-01-01

    Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional geno

  6. Status of Safety and Environmental Activities in the US Fusion Program

    Energy Technology Data Exchange (ETDEWEB)

    Petti, D A; Reyes, S; Cadwallader, L C; Latkowski, J F

    2004-09-02

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  7. Status of Safety and Environmental Activities in the US Fusion Program

    Energy Technology Data Exchange (ETDEWEB)

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  8. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  9. Constitutively active IRF7/IRF3 fusion protein completely protects swine against Foot-and-Mouth Disease

    Science.gov (United States)

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...

  10. Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against dengue virus replication.

    Directory of Open Access Journals (Sweden)

    Hussin A Rothan

    Full Text Available Dengue virus (DENV broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1 and plectasin (PLSN were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro with half-maximal inhibitory concentration (IC50 0.5±0.1 μM. The real-time proliferation assay (RTCA and the end-point proliferation assay (MTT assay showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.

  11. Differential contribution of cytoplasmic Ca2+ and Ca2+ influx to gamete fusion and egg activation in maize.

    Science.gov (United States)

    Antoine, A F; Faure, J E; Dumas, C; Feijó, J A

    2001-12-01

    In multicellular organisms, gamete fusion triggers a set of events, collectively known as egg activation, that leads to the development of a new individual. Every species that has been studied shows at least one rise in cytoplasmic Ca2+ concentration ([Ca2+]Cyt) after gamete fusion which is believed to be involved in activation. Yet the source and regulation of this Ca2+ signal and the way it is transduced inside the zygote are controversial. In higher plants, in vitro fertilization (IVF) has enabled the description of a rise in [Ca2+]Cyt (ref. 4) that is sufficient for activation, and of a Ca2+ influx that spreads as a wavefront from the fusion site The relationship between these two responses is unknown. Using a new combination of methods that simultaneously monitor the extracellular flux with a Ca2+-vibrating probe, and [Ca2+]Cyt by widefield imaging, we directly determined that the Ca2+ influx precedes the [Ca2+]Cyt elevation by 40-120 s. In addition, results from experiments using the Ca2+-channel inhibitor gadolinium (Gd3+) suggest that the Ca2+ influx may be necessary for sperm incorporation. We also present evidence for a putative sperm-dependent Gd3+-insensitive localized Ca2+ influx confined to the fusion point.

  12. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  13. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  14. Activation analysis and materials choice in the laser fusion reactor KOYO

    Science.gov (United States)

    Perlado, J. M.; Mima, K.; Nakai, S.; Alonso, E.; Mun˜oz, E.; Sanz, J.

    1996-10-01

    The laser fusion conceptual reactor KOYO, developed by the ILE Osaka, is presented and analyzed from the activation perspective. The reactor is driven by a laser diode pumped solid state laser which dramatically increases the efficiency of the system, and uses liquid LiPb film protection flowing through ceramic SiC porous tubes in the blanket. Neutron fluxes have been computed using 2/3D models and compared with spherical approaches. Two blanket areas with different packing fractions are considered, and we show the availability of a large fraction of the SiC with impurities to be considered as shallow land burial (SLB). We propose a more complete solution for SLB through the use of porous woven graphite (C) fabric tubes. A graphite reflector is included with important effect in the activation of the chamber wall. Ferritic HT-9 is considered as the structural material for the chamber wall, allowing its SLB and different recycling options. Releases of 1 kg of target-emissions-facing SiC tubes and HT-9 materials have also been simulated with optimum performances.

  15. Performance studies of Cryocooler based cryosorption pumps with indigenous activated carbons for fusion applications

    Science.gov (United States)

    Kasthurirengan, S.; Vivek, G. A.; Verma, Ravi; Behera, Upendra; Udgata, Swarup; Gangradey, Ranjana

    2017-02-01

    Cryosorption pumps are the only solution for pumping helium and hydrogen in fusion systems, due to their high pumping speeds and suitability in harsh environments. Their development requires the right Activated Carbons (ACs) and suitable adhesives to bind them to metallic panels with liquid helium (LHe) flow channels. However, their performance evaluation will require large quantities of LHe. Alternatively, these pumps can be built with small size panels adhered with ACs and cooled by a cryocooler. The paper describes the development of a cryopump using a commercial cryocooler (Sumitomo RDK415D), with 1.5W@4.2 K, integrated with small size AC panel mounted on 2nd stage, with the 1st stage acting as radiation shield. Under no load, the cryopump reaches the ultimate pressure of 2.1E-7 mbar. The pump is built using panels with different indigenously developed ACs such as granules, pellets, ACF-FK2 and activated carbon of knitted IPR cloth. We present the experimental results of pumping speeds for gases such as nitrogen, argon and helium using the procedures outlined by American Vacuum Society (AVS). These studies will enable to arrive at the right ACs and adhesives for the development of large scale cryosorption pumps with liquid helium flow.

  16. Oncogene Discovery in Schwannomas

    Science.gov (United States)

    2013-07-01

    cytogenetic anomalies in these tumors are located elsewhere, most frequently in chromosomes 19 (35%), 16 (30%) and 9q (10%). Interestingly, alterations in...gene on chromosome 22.5-8 Proposed mechanisms for the activity of the merlin/schwannomin tumor suppressor gene include its association with the p21...recurrent DNA aberration outside chromosome 22.12-14 Loss of 22q (containing NF2) occurs reproducibly in 24-29% of tumors, but nearly half of the

  17. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo.

    Science.gov (United States)

    Altamura, Gennaro; Corteggio, Annunziata; Pacini, Laura; Conte, Andrea; Pierantoni, Giovanna Maria; Tommasino, Massimo; Accardi, Rosita; Borzacchiello, Giuseppe

    2016-09-01

    Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. [Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes].

    Science.gov (United States)

    Watari, Akihiro

    2012-01-01

    The products of proto-oncogene play critical roles in the development or maintenance of multicellular societies in animals via strict regulatory systems. When these regulatory systems are disrupted, proto-oncogenes can become oncogenes, and thereby induce cell transformation and carcinogenesis. To understand the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata (M. ovata) by monitoring their transforming ability in mammalian cells; consequently, we isolated a Pak gene ortholog, which encodes a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian cells. In contrast, Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alterations in the auto-inhibitory domain (AID) are responsible for the enhanced kinase activity and the oncogenic activity of MoPak. Furthermore, we show that Rho family GTPases-mediated regulatory system of Pak kinase is conserved throughout the evolution from unicellular to multicellular animals, but the MoPak is more sensitive to the Rho family GTPases-mediated activation than multicellular Pak. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and support the potential link between the development of the regulatory system of proto-oncogenes and the evolution of multicellularity. Further analysis of oncogenic functions of proto-oncogene orthologs in the unicellular genes would provide some insights into the mechanisms of the destruction of multicellular society in cancer.

  19. Enhancing the antimicrobial activity of Sus scrofa lysozyme by N-terminal fusion of a sextuple unique homologous peptide.

    Science.gov (United States)

    Zhu, Dewei; Cai, Guolin; Li, Xiaomin; Lu, Jian; Zhang, Liang

    2017-02-10

    Sus scrofa lysozyme (SSL), an important component of the pig immune system, is a potential candidate to replace antibiotics in feed. However, there is little antimicrobial activity of natural SSL against gram-negative bacteria, which limits its application. In this study, a unique peptide (A-W-V-A-W-K) with antimicrobial activity against gram-negative bacteria was discovered and purified from trypsin hydrolysate of natural SSL. This unique peptide was fused to natural SSL and the recombinant fused SSL exhibited improved activity against gram-negative bacteria. The N-terminal fusion likely increased the membrane penetrability and induced programmed bacterial cell death. The recombinant fused SSL also showed higher activity against some gram-positive bacteria with O-acetylation. By N-terminal fusion of the sextuple peptide, the anti-microbial activity, either to gram-positive or negative bacteria, of the recombinant SSL was higher than the fusion of only one copy of the peptide. This study provides a general, feasible, and highly useful strategy to enhance the antimicrobial activity of lysozyme.

  20. Stable oncogenic transformation induced by microcell-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    吕有勇; Donald G.Blair

    1995-01-01

    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  1. Oncogenes and RNA splicing of human tumor viruses.

    Science.gov (United States)

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  2. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  3. Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT).

    Science.gov (United States)

    Rizk, Mazen; Elleuche, Skander; Antranikian, Garabed

    2015-01-01

    Bifunctional enzyme constructs were generated comprising two genes encoding heat-active endoglucanase (cel5A) and endoxylanase (xylT). The fused proteins Cel5A-XylT and XylT-Cel5A were active on both β-glucan and beechwood xylan. An improvement in endoglucanase and endoxylanase catalytic activities was observed. The specific activity of the fusion towards xylan was significantly raised when compared to XylT. The fusion constructs were active from 40 to 100 °C for endoglucanase and from 40 to 90 °C for endoxylanase, but the temperature optima were lowered from 90 to 80 °C for the endoglucanase and from 80 to 70 °C for the endoxylanase. XylT in the construct XylT-Cel5A was less stable at higher temperatures compared to Cel5A-XylT. Due to the enzymatic performance, these fusion enzymes are attractive candidates for applications in biorefineries based on plant waste.

  4. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Directory of Open Access Journals (Sweden)

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  5. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    Science.gov (United States)

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  6. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  7. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    Directory of Open Access Journals (Sweden)

    Filiz Bunyak

    2007-08-01

    Full Text Available This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shapebased model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  8. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  9. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J. [comp.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  10. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion.

    Science.gov (United States)

    Xia, Qin; Wang, Hongfeng; Hao, Zongbing; Fu, Cheng; Hu, Qingsong; Gao, Feng; Ren, Haigang; Chen, Dong; Han, Junhai; Ying, Zheng; Wang, Guanghui

    2016-01-18

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration. © 2015 The Authors.

  11. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  12. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    CERN Document Server

    Shevchenko, Vladimir F; Freethy, Simon J; Huang, Billy K

    2012-01-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post processing mode. SAMI can scan over 16 preprogrammed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a passive imaging of plasma emission and also an active imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structur...

  13. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    Science.gov (United States)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  14. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes.

    Directory of Open Access Journals (Sweden)

    Brian F Niemeyer

    Full Text Available Ewing Sarcoma is an aggressive malignancy of bone and soft tissue affecting children and young adults. Ewing Sarcoma is driven by EWS/Ets fusion oncoproteins, which cause widespread alterations in gene expression in the cell. Dysregulation of receptor tyrosine kinase signaling, particularly involving IGF-1R, also plays an important role in Ewing Sarcoma pathogenesis. However, the basis of this dysregulation, including the relative contribution of EWS/Ets-dependent and independent mechanisms, is not well understood. In the present study, we identify variable expression of two modifiers of PI3K signaling activity, PIK3R3 and PTEN, in Ewing Sarcoma, and examine the consequences of this on PI3K pathway regulation and oncogenic phenotypes. Our findings indicate that PIK3R3 plays a growth-promotional role in Ewing Sarcoma, but suggest that this role is not strictly dependent on regulation of PI3K pathway activity. We further show that expression of PTEN, a well-established, potent tumor suppressor, is lost in a subset of Ewing Sarcomas, and that this loss strongly correlates with high baseline PI3K pathway activity in cell lines. In support of functional importance of PTEN loss in Ewing Sarcoma, we show that re-introduction of PTEN into two different PTEN-negative Ewing Sarcoma cell lines results in downregulation of PI3K pathway activity, and sensitization to the IGF-1R small molecule inhibitor OSI-906. Our findings also suggest that PTEN levels may contribute to sensitivity of Ewing Sarcoma cells to the microtubule inhibitor vincristine, a relevant chemotherapeutic agent in this cancer. Our studies thus identify PIK3R3 and PTEN as modifiers of oncogenic phenotypes in Ewing Sarcoma, with potential clinical implications.

  15. Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop.

    Science.gov (United States)

    Breig, O; Théoleyre, O; Douablin, A; Baklouti, F

    2010-05-13

    Spi-1/PU.1 oncogene is downregulated as proerythroblasts undergo terminal differentiation. Insertion of the Friend virus upstream of the Spi-1/PU.1 locus leads to the constitutive upregulation of Spi-1/PU.1, and a subsequent block in the differentiation of the affected erythroblasts. We have shown that sustained overexpression of Spi-1/PU.1 also inhibits the erythroid splicing of protein 4.1R exon 16, irrespective of chemical induction of differentiation. Here, we show a positive feedback loop that couples constitutive phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling to high expression of Spi-1/PU.1 in Friend erythroleukemia cells. Inhibition of PI3K/AKT results in Spi-1/PU.1 downregulation in a stepwise manner and induces cell differentiation. Chromatin immunoprecipitation assays further supported the positive autoregulatory effect of Spi-1/PU.1. Mutational analysis indicated that Ser41, but not Ser148, is necessary for Spi-1/PU.1-mediated repression of hemoglobin expression, whereas both Ser residues are required for Spi-1/PU.1 inhibition of the erythroid splicing event. We further show that inhibition of the erythroid transcriptional and splicing events are strictly dependent on distinct Spi-1/PU.1 phosphorylation modifications rather than Spi-1/PU.1 expression level per se. Our data further support the fact that Spi-1/PU.1 inhibits 4.1R erythroid splicing through two different pathways, and bring new insights into the extracellular signal impact triggered by erythropoietin on late erythroid regulatory program, including pre-mRNA splicing.

  16. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis.

    Science.gov (United States)

    Haney, S L; Hlady, R A; Opavska, J; Klinkebiel, D; Pirruccello, S J; Dutta, S; Datta, K; Simpson, M A; Wu, L; Opavsky, R

    2015-10-01

    DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.

  17. Biological aspects and tumorigenic activity of the Ras proto-oncogenic family Aspectos biológicos e atividade tumorigênica da família proto-oncogênica Ras

    Directory of Open Access Journals (Sweden)

    Juliano André Boquett

    2010-12-01

    Full Text Available Proto-oncogenes play an important role in the regulation of the cellular cycle, being critical to the tumorigenesis. In this category we can find the RAS family. Due to the high transformation potential of these genes, this family is the best described and most studied one. It is formed by the H-, K- and the N-RAS genes, that codify highly related proteins expressed in several types of cells, denominated p21.These proteins act in the sign transduction from the membrane to the nucleus, as well as in the control of proliferation, differentiation and cellular death, and they are regulated by the interaction with GDP (inactive and GTP (active. These proteins show variation in only 10 - 15% of the primary structure, in the C-terminal portion denominated hyper-variant region. When in the oncogenic form, the p21 proteins remain active, providing continuous stimuli to the cellular proliferation. Among the RAS genes, K-RAS ones have been the most studied for presenting more frequent mutations and for being present in more aggressive tumors, implying the patients’ shorter survival time. Due to these facts and relative bibliography lack in the Portuguese language on this family, we presented in this work a systematized and updated review on the RAS genes. Os proto-oncogenes desempenham importante papel na regulação do ciclo celular, e são críticos à tumorigênese. Nessa categoria se encontra a família RAS, que, devido ao elevado potencial transformante dos genes que a compõem, é uma das mais bem descritas e estudadas. É formada pelos genes H-, K- e N-RAS, que codificam proteínas altamente relacionadas expressas em vários tipos de células, denominadas p21. Estas atuam na transdução de sinal da membrana ao núcleo, estão envolvidas no controle da proliferação, diferenciação e morte celular e são reguladas pela interação com GDP (inativa e GTP (ativa. As proteínas p21 diferem em apenas 10-15% da sua estrutura primária, na porção C

  18. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J., E-mail: jkolata@nd.edu [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Howard, A.M. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Mittig, W. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Ahn, T. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Becchetti, F.D. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Beceiro-Novo, S.; Chajecki, Z. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Febbrarro, M. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Fritsch, A.; Lynch, W.G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Roberts, A. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Shore, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Torres-Isea, R.O. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-11

    The total fusion excitation function for {sup 10}Be+{sup 40}Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) {sup 10}Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  19. On the use of sensor fusion to reduce the impact of rotational and additive noise in human activity recognition.

    Science.gov (United States)

    Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2012-01-01

    The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.

  20. On the Use of Sensor Fusion to Reduce the Impact of Rotational and Additive Noise in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Ignacio Rojas

    2012-06-01

    Full Text Available The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.

  1. Intracortical osteoblastic osteosarcoma with oncogenic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirohashi, Setsuo [Pathology Division, National Cancer Center Research Institute, Tokyo (Japan); Shimoda, Tadakazu [Clinical Laboratory Division, National Cancer Center Hospital, Tokyo (Japan); Yokoyama, Ryohei; Beppu, Yasuo [Orthopedic Division, National Cancer Center Hospital, Tokyo (Japan); Maeda, Shotaro [Department of Pathology, Nippon Medical School Hospital, Tokyo (Japan)

    1999-01-01

    Intracortical osteosarcoma is the rarest variant of osteosarcoma, occurring within, and usually confined to, the cortical bone. Oncogenic osteomalacia, or rickets, is an unusual clinicopathologic entity in which vitamin D-resistant osteomalacia, or rickets, occurs in association with some tumors of soft tissue or bone. We present a case of oncogenic rickets associated with intracortical osteosarcoma of the tibia in a 9-year-old boy, whose roentgenographic abnormalities of rickets disappeared and pertinent laboratory data except for serum alkaline phosphatase became normal after surgical resection of the tumor. Histologically, the tumor was an osteosarcoma with a prominent osteoblastic pattern. An unusual microscopic feature was the presence of matrix mineralization showing rounded calcified structures (calcified spherules). Benign osteoblastic tumors, such as osteoid osteoma and osteoblastoma, must be considered in the differential diagnosis because of the relatively low cellular atypia and mitotic activity of this tumor. The infiltrating pattern with destruction or engulfment of normal bone is a major clue to the correct diagnosis of intracortical osteosarcoma. The co-existing radiographic changes of rickets were due to the intracortical osteosarcoma. (orig.) With 8 figs., 25 refs.

  2. ANTIPROLIFERATIVE ACTIVITY OF HUMAN IFN-γ-EGF3 FUSION PROTEIN ARE RELATED TO ITS EGF RECEPTOR COMPETITION

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The relationship between antiproliferative effect of human IFN-γ-EGF3 fusion protein and the influence of EGF receptor binding activity has been studied on A431 cell line. Antiproliferative activity of human IFN-γ-EGF3 was higher than that of its parent IFN-γ. In the 125 I-EGF receptor competition experiment, the inhibition of EGF receptor binding capacity on the target cells was observed in the treatments of human IFN-γ or IFN-γ-EGF3, but the later was more significant. Our data suggests that the antiproliferative effects by IFN-γ and its fusion protein are closely related to their EGF receptor competitions.

  3. Construction of a novel fusion protein harboring mouse inter- feron γ and epidermal growth factor receptor binding domain and enhancement of its antitumor activity

    Institute of Scientific and Technical Information of China (English)

    丁炎平; 谭维彦; 胡荣; 陈望秋; 侯云德

    1997-01-01

    A novel fusion protein harboring mouse interferon γ and epidermal growth factor receptor binding domain was constructed with the method of genetic and protein engineering. The fusion protein kept complete antiviral activity with the titer of 108 IU per liter of culture. The EGF-RBD of the fusion protein exhibited competitive binding activity against 125I-mEGF for mEGF receptors on A431 cells. The fusion protein was shown to be more potent in in-hibiting the growth of cultured mouse breast carcinoma cells than interferon γ. Experimental data on mouse B16 malig-nant melanoma model indicated that the tumor weight of fusion protein-treated group was statistically significantly smaller than that of interferon γ-treated group. The work here provides a necessarily reliable clue for the upcoming clinical employment of a novel class of targeting interferons.

  4. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    Full Text Available Yufan Ma,1 Zhao Wang,1,2 Wen Zhao,1 Tingli Lu,1 Rutao Wang,1,2 Qibing Mei,1 Tao Chen1–3 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China; 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, People's Republic of China; 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, People's Republic of China Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods: The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS, 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA, nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results: It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the

  5. c-Abl antagonizes the YAP oncogenic function.

    Science.gov (United States)

    Keshet, R; Adler, J; Ricardo Lax, I; Shanzer, M; Porat, Z; Reuven, N; Shaul, Y

    2015-06-01

    YES-associated protein (YAP) is a central transcription coactivator that functions as an oncogene in a number of experimental systems. However, under DNA damage, YAP activates pro-apoptotic genes in conjunction with p73. This program switching is mediated by c-Abl (Abelson murine leukemia viral oncogene) via phosphorylation of YAP at the Y357 residue (pY357). YAP as an oncogene coactivates the TEAD (transcriptional enhancer activator domain) family transcription factors. Here we asked whether c-Abl regulates the YAP-TEAD functional module. We found that DNA damage, through c-Abl activation, specifically depressed YAP-TEAD-induced transcription. Remarkably, c-Abl counteracts YAP-induced transformation by interfering with the YAP-TEAD transcriptional program. c-Abl induced TEAD1 phosphorylation, but the YAP-TEAD complex remained unaffected. In contrast, TEAD coactivation was compromised by phosphomimetic YAP Y357E mutation but not Y357F, as demonstrated at the level of reporter genes and endogenous TEAD target genes. Furthermore, YAP Y357E also severely compromised the role of YAP in cell transformation, migration, anchorage-independent growth, and epithelial-to-mesenchymal transition (EMT) in human mammary MCF10A cells. These results suggest that YAP pY357 lost TEAD transcription activation function. Our results demonstrate that YAP pY357 inactivates YAP oncogenic function and establish a role for YAP Y357 phosphorylation in cell-fate decision.

  6. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.

    Science.gov (United States)

    Lodish, Maya B; Stratakis, Constantine A

    2008-04-01

    Hereditary medullary thyroid carcinoma (MTC) is caused by specific autosomal dominant gain-of-function mutations in the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. MTC represents a promising model for targeted cancer therapy, as the oncogenic event responsible for initiating malignancy has been well characterized. The RET proto-oncogene has become the target for molecularly designed drug therapy. Tyrosine kinase inhibitors targeting activated RET are currently in clinical trials for the treatment of patients with MTC. This review will provide a brief overview of MTC and the associated RET oncogenic mutations, and will summarize the therapies designed to strategically interfere with the pathologic activation of the RET oncogene.

  7. Activation of the Pleiotropic Drug Resistance Pathway Can Promote Mitochondrial DNA Retention by Fusion-Defective Mitochondria in Saccharomyces cerevisiae

    OpenAIRE

    Dunn, Cory, D.; Mutlu, Nebibe; Garipler, Gorkem; Akdogan, Emel

    2014-01-01

    1 Activation of the pleiotropic drug resistance pathway can promote mitochondrial DNA retention by fusion-defective mitochondria in Saccharomyces cerevisiae Nebibe Mutlu1, Görkem Garipler, Emel Akdoğan and Cory D. Dunn Department of Molecular Biology and Genetics Koç University Sarıyer, İstanbul, 34450 Turkey 1 Present address: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, U.S.A. NCBI Sequence...

  8. THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer.

    Science.gov (United States)

    Panebianco, Federica; Kelly, Lindsey M; Liu, Pengyuan; Zhong, Shan; Dacic, Sanja; Wang, Xiaosong; Singhi, Aatur D; Dhir, Rajiv; Chiosea, Simion I; Kuan, Shih-Fan; Bhargava, Rohit; Dabbs, David; Trivedi, Sumita; Gandhi, Manoj; Diaz, Rachel; Wald, Abigail I; Carty, Sally E; Ferris, Robert L; Lee, Adrian V; Nikiforova, Marina N; Nikiforov, Yuri E

    2017-02-28

    Thyroid cancer development is driven by known point mutations or gene fusions found in ∼90% of cases, whereas driver mutations in the remaining tumors are unknown. The insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) plays an important role in cancer, yet the mechanisms of its activation in cancer cells remain poorly understood. Using whole-transcriptome and whole-genome analyses, we identified a recurrent fusion between the thyroid adenoma-associated (THADA) gene on chromosome 2 and the LOC389473 gene on chromosome 7 located 12 kb upstream of the IGF2BP3 gene. We show that THADA fusion to LOC389473 and other regions in the vicinity does not result in the formation of a chimeric protein but instead leads to strong overexpression of the full-length IGF2BP3 mRNA and protein, increased IGF2 translation and IGF1 receptor (IGF1R) signaling via PI3K and MAPK cascades, and promotion of cell proliferation, invasion, and transformation. THADA fusions and IGF2BP3 overexpression are found in ∼5% of thyroid cancers that lack any other driver mutations. We also find that strong IGF2BP3 overexpression via gene fusion, amplification, or other mechanisms occurs in 5 to 15% of several other cancer types. Finally, we provide in vitro and in vivo evidence that growth of IGF2BP3-driven cells and tumors may be blocked by IGF1R inhibition, raising the possibility that IGF2BP3 overexpression in cancer cells may predict an anti-IGF1R benefit.

  9. Reversible conformational change in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by mildly acidic pH

    Directory of Open Access Journals (Sweden)

    Nicola Anthony V

    2010-12-01

    Full Text Available Abstract Background The pre-fusion form of the herpes simplex virus (HSV fusion protein gB undergoes pH-triggered conformational change in vitro and during viral entry (Dollery et al., J. Virol. 84:3759-3766, 2010. The antigenic structure of gB from the fusion-from-without (FFWO strain of HSV-1, ANG path, resembles wild type gB that has undergone pH-triggered changes. Together, changes in the antigenic and oligomeric conformation of gB correlate with fusion activity. We tested whether the pre-fusion form of FFWO gB undergoes altered conformational change in response to low pH. Results A pH of 5.5 - 6.0 altered the conformation of Domains I and V of FFWO gB, which together comprise the functional region containing the hydrophobic fusion loops. The ANG path gB oligomer was altered at a similar pH. All changes were reversible. In wild type HSV lacking the UL45 protein, which has been implicated in gB-mediated fusion, gB still underwent pH-triggered changes. ANG path entry was inactivated by pretreatment of virions with low pH. Conclusion The pre-fusion conformation of gB with enhanced fusion activity undergoes alteration in antigenic structure and oligomeric conformation in response to acidic pH. We propose that endosomal pH triggers conformational change in mutant gB with FFWO activity in a manner similar to wild type. Differences apart from this trigger may account for the increased fusion activity of FFWO gB.

  10. Oncogenic pathways implicated in ovarian epithelial cancer.

    Science.gov (United States)

    Nicosia, Santo V; Bai, Wenlong; Cheng, Jin Q; Coppola, Domenico; Kruk, Patricia A

    2003-08-01

    Characterization of intracellular signaling pathways should lead to a better understanding of ovarian epithelial carcinogenesis and provide an opportunity to interfere with signal transduction targets involved in ovarian tumor cell growth, survival, and progression. Challenges toward such an effort are significant because many of these signals are part of cascades within an intricate and likely redundant intracellular signaling network (Fig.1). For instance, a given signal may activate a dual intracellular pathway (ie, MEK1-MAPK and PI3K/Akt required for fibronectin-dependent activation of matrix metalloproteinase 9). A single pathway also may transduce more than one biologic or oncogenic signal (ie, PI3K signaling in epithelial and endothelial cell growth and sprouting of neovessels). Despite these challenges, evidence for therapeutic targeting of signal transduction pathways is accumulating in human cancer. For instance, the EGF-specific tyrosine kinase inhibitor ZD 1839 (Iressa) may have a beneficial therapeutic effect on ovarian epithelial cancer. Therapy of this cancer may include inhibitors of PI kinase (quercetin), ezrin and PIP kinase (genistein). The G protein-coupled family of receptors, including LPA, also is an attractive target to drugs, although their frequent pleiotropic functions may be at times toxic and lack specificity. Because of the lack of notable toxicity, PI3K/Akt pathway inhibitors such as FTIs are a promising targeted therapy of ovarian epithelial cancer. Increasing insight into the oncogenic pathways involved in ovarian epithelial cancer also is helping clinicians to understand better the phenomenon of chemoresistance in this malignancy. Oncogenic activation of gamma-synuclein promotes cell survival and provides resistance to paclitaxel, but such a resistance is partially overcome by an MEK inhibitor that suppresses ERK activity. Ovarian epithelial cancer is a complex group of neoplasms with an overall poor prognosis. Comprehension of

  11. Production of cloned dogs by decreasing the interval between fusion and activation during somatic cell nuclear transfer.

    Science.gov (United States)

    Kim, Sue; Park, Sun Woo; Hossein, Mohammad Shamim; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Eugine; Kim, Yeun Wook; Hyun, Sang Hwan; Shin, Taeyoung; Hwang, Woo Suk

    2009-05-01

    To improve the efficiency of somatic cell nuclear transfer (SCNT) in dogs, we evaluated whether or not the interval between fusion and activation affects the success rate of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells from a male or female Golden Retriever. In total, 151 and 225 reconstructed oocytes were transferred to 9 and 14 naturally synchronized surrogates for male and female donor cells, respectively. Chromosomal morphology was evaluated in 12 oocytes held for an interval of 2 hr between fusion and activation and 14 oocytes held for an interval of 4 hr. Three hundred seventy-six and 288 embryos were transferred to 23 and 16 surrogates for the 2 and 4 hr interval groups, respectively. Both the male (two pregnant surrogates gave birth to three puppies) and female (one pregnant surrogate gave birth to one puppy) donor cells gave birth to live puppies (P > 0.05). In the 2 hr group, significantly more reconstructed oocytes showed condensed, metaphase-like chromosomes compared to the 4 hr group (P dogs carried pregnancies to term and four puppies were born. These results demonstrate that decreasing the interval between fusion and activation increases the success rate of clone production and pregnancy. These results may increase the overall efficiency of SCNT in the canine family.

  12. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  13. Oncogenic Brain Metazoan Parasite Infection

    Directory of Open Access Journals (Sweden)

    Angela N. Spurgeon

    2013-01-01

    Full Text Available Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100. The colocalization and temporal relationship of these two entities suggest a causal relationship.

  14. Role for the disulfide-bonded region of human immunodeficiency virus type 1 gp41 in receptor-triggered activation of membrane fusion function

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy-McIntyre, Anna K. [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Department of Microbiology, Monash University, Vic. 3168 (Australia); Baer, Severine [Program Infection and Cancer, Abt. F010 and INSERM U701, Deutsches Krebsforschungszentrum, Heidelberg (Germany); Ludlow, Louise [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Drummer, Heidi E. [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Department of Microbiology, Monash University, Vic. 3168 (Australia); Department of Microbiology and Immunology, The University of Melbourne, Vic. 3010 (Australia); Poumbourios, Pantelis, E-mail: apoumbourios@burnet.edu.au [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Department of Microbiology, Monash University, Vic. 3168 (Australia)

    2010-04-16

    The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1{sub QH1549.13} blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.

  15. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  16. Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice

    Science.gov (United States)

    Rossi, Alessandra; Ferrari, Karin J.; Piunti, Andrea; Jammula, SriGanesh; Chiacchiera, Fulvio; Mazzarella, Luca; Scelfo, Andrea; Pelicci, Pier Giuseppe; Pasini, Diego

    2016-01-01

    Leukemia is a complex heterogeneous disease often driven by the expression of oncogenic fusion proteins with different molecular and biochemical properties. Whereas several fusion proteins induce leukemogenesis by activating Hox gene expression (Hox-activating fusions), others impinge on different pathways that do not involve the activation of Hox genes (non–Hox-activating fusions). It has been postulated that one of the main oncogenic properties of the HOXA9 transcription factor is its ability to control the expression of the p16/p19 tumor suppressor locus (Cdkn2a), thereby compensating Polycomb-mediated repression, which is dispensable for leukemias induced by Hox-activating fusions. We show, by genetically depleting the H2A ubiquitin ligase subunits of the Polycomb repressive complex 1 (PRC1), Ring1a and Ring1b, that Hoxa9 activation cannot repress Cdkn2a expression in the absence of PRC1 and its dependent deposition of H2AK119 monoubiquitination (H2AK119Ub). This demonstrates the essential role of PRC1 activity in supporting the oncogenic potential of Hox-activating fusion proteins. By combining genetic tools with genome-wide location and transcription analyses, we further show that PRC1 activity is required for the leukemogenic potential of both Hox-activating and non–Hox-activating fusions, thus preventing the differentiation of leukemic cells independently of the expression of the Cdkn2a locus. Overall, our results genetically demonstrate that PRC1 activity and the deposition of H2AK119Ub are critical factors that maintain the undifferentiated identity of cancer cells, positively sustaining the progression of different types of leukemia. PMID:27730210

  17. The EWSR1/NR4A3 fusion protein of extraskeletal myxoid chondrosarcoma activates the PPARG nuclear receptor gene.

    Science.gov (United States)

    Filion, C; Motoi, T; Olshen, A B; Laé, M; Emnett, R J; Gutmann, D H; Perry, A; Ladanyi, M; Labelle, Y

    2009-01-01

    The NR4A3 nuclear receptor is implicated in the development of extraskeletal myxoid chondrosarcoma (EMC), primitive sarcoma unrelated to conventional chondrosarcomas, through a specific fusion with EWSR1 resulting in an aberrant fusion protein that is thought to disrupt the transcriptional regulation of specific target genes. We performed an expression microarray analysis of EMC tumours expressing the EWSR1/NR4A3 fusion protein, comparing their expression profiles to those of other sarcoma types. We thereby identified a set of genes significantly overexpressed in EMC relative to other sarcomas, including PPARG and NDRG2. Western blot or immunohistochemical analyses confirm that PPARG and NDRG2 are expressed in tumours positive for EWSR1/NR4A3. Bioinformatic analysis identified a DNA response element for EWSR1/NR4A3 in the PPARG promoter, and band-shift experiments and transient transfections indicate that EWSR1/NR4A3 can activate transcription through this element. Western blots further show that an isoform of the native NR4A3 receptor lacking the C-terminal domain is very highly expressed in tumours positive for EWSR1/NR4A3, and co-transfections of this isoform along with EWSR1/NR4A3 indicate that it may negatively regulate the activity of the fusion protein on the PPARG promoter. These results suggest that the overall expression of PPARG in EMC may be regulated in part by the balance between EWSR1/NR4A3 and NR4A3, and that PPARG may play a crucial role in the development of these tumours. The specific up-regulation of PPARG by EWSR1/NR4A3 may also have potential therapeutic implications.

  18. Assessment of the Fusion Tags on Increasing Soluble Production of the Active TEV Protease Variant and Other Target Proteins in E. coli.

    Science.gov (United States)

    Yu, Xuelian; Sun, Jiaqi; Wang, Weiyu; Jiang, Li; Cheng, Beijiu; Fan, Jun

    2016-12-17

    In this study, five fusion tags affecting soluble production and cleavage activity of the tobacco etch virus (TEV) protease (TEVp) variant in Escherichia coli strains BL21 (DE3) and Rosetta™ (DE3) are investigated. Combination of the augmenting rare transfer RNAs (tRNAs) and the fused expressivity tag (N-terminal seven amino acid residues of E. coli translation initiation factor II) promotes the soluble TEVp partner expressed at relatively high level. Attachment of the maltose-binding protein (MBP) tag increases soluble expression of the protease released from the fusion protein in E. coli cells, but the incorporated TEVp recognition sequence slightly decreases expressivity of the fusion construct. Except for the green fluorescent protein, the attached expressivity tag shows less efficiency than the MBP tag in enhancing expression levels of the selected five target proteins in the Rosetta™ (DE3) cells under different induction conditions. Our results identified that high-level production of the functional target protein as the fusion partner in E. coli is combined with the intrinsic property of fusion tag, fusion protein stability, inherent folding of target protein, rare tRNA abundance, and the incorporated linker. Purified TEVp fusion constructs with the N-terminal expressivity tag, as well as the MBP partner, are the ideal alternatives for removing fusion tag.

  19. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    Science.gov (United States)

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-08

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm.

  20. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  1. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner

    DEFF Research Database (Denmark)

    Moesby, Lise; Corver, J; Erukulla, R K

    1995-01-01

    The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol...

  2. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices.

    Science.gov (United States)

    Pires, Ivan Miguel; Garcia, Nuno M; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-02-02

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user's daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs).

  3. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ivan Miguel Pires

    2016-02-01

    Full Text Available This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs.

  4. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Science.gov (United States)

    Pires, Ivan Miguel; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-01-01

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664

  5. Does Spinal Fusion and Scoliosis Correction Improve Activity and Participation for Children With GMFCS level 4 and 5 Cerebral Palsy?

    Science.gov (United States)

    Sewell, Mathew David; Wallace, Charlie; Malagelada, Francesc; Gibson, Alex; Noordeen, Hilali; Tucker, Stewart; Molloy, Sean; Lehovsky, Jan

    2015-12-01

    Spinal fusion is used to treat scoliosis in children with cerebral palsy (CP). Following intervention, the WHO considers activity and participation should be assessed to guide intervention and assess the effects. This study assesses whether spinal fusion for scoliosis improves activity and participation for children with severe CP.Retrospective cohort study of 70 children (39M:31F) with GMFCS level 4/5 CP and significant scoliosis. Thirty-six underwent observational and/or brace treatment as the sole treatment for their scoliosis, and 34 underwent surgery. Children in the operative group were older and had worse scoliosis than those in the observational group. Questionnaire and radiographic data were recorded over a 2-year period. The ASKp was used to measure activity and participation.In the observational group, Cobb angle and pelvic obliquity increased from 51 (40-90) and 10 (0-30) to 70 (43-111) and 14 (0-37). Mean ASKp decreased from 16.3 (1-38) to 14.2 (1-36). In the operative group, Cobb angle and pelvic obliquity decreased from 81 (50-131) and 14 (1-35) to 38 (10-76) and 9 (0-24). Mean ASKp increased from 10.5 (0-29) to 15.9 (3-38). Spinal-related pain correlated most with change in activity and participation in both groups. There was no difference in mobility, GMFCS level, feeding or communication in either group before and after treatment.In children with significant scoliosis and CP classified within GMFCS levels 4 and 5, spinal fusion was associated with an improvement in activity and participation, whereas nonoperative treatment was associated with a small reduction. Pain should be carefully assessed to guide intervention.

  6. Mouse models for ROS1-fusion-positive lung cancers and their application to the analysis of multikinase inhibitor efficiency.

    Science.gov (United States)

    Inoue, Maki; Toki, Hideaki; Matsui, Junko; Togashi, Yuki; Dobashi, Akito; Fukumura, Ryutaro; Gondo, Yoichi; Minowa, Osamu; Tanaka, Norio; Mori, Seiichi; Takeuchi, Kengo; Noda, Tetsuo

    2016-05-01

    ROS1-fusion genes, resulting from chromosomal rearrangement, have been reported in 1-2% of human non-small cell lung cancer cases. More than 10 distinct ROS1-fusion genes, including break-point variants, have been identified to date. In this study, to investigate the in vivo oncogenic activities of one of the most frequently detected fusions, CD74-ROS1, as well as another SDC4-ROS1 fusion that has also been reported in several studies, we generated transgenic (TG) mouse strains that express either of the two ROS1-fusion genes specifically in lung alveolar type II cells. Mice in all TG lines developed tumorigenic nodules in the lung, and a few strains of both TG mouse lines demonstrated early-onset nodule development (multiple tumor lesions present in the lung at 2-4 weeks after birth); therefore, these two strains were selected for further investigation. Tumors developed progressively in the untreated TG mice of both lines, whereas those receiving oral administration of an ALK/MET/ROS1 inhibitor, crizotinib, and an ALK/ROS1 inhibitor, ASP3026, showed marked reduction in the tumor burden. Collectively, these data suggest that each of these two ROS1-fusion genes acts as a driver for the pathogenesis of lung adenocarcinoma in vivo The TG mice developed in this study are expected to serve as valuable tools for exploring novel therapeutic agents against ROS1-fusion-positive lung cancer.

  7. 40 CFR 798.3300 - Oncogenicity.

    Science.gov (United States)

    2010-07-01

    ... Species of Experimental Animals for Inhalation Carcinogenicity Studies” Paper presented at Conference on...) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3300 Oncogenicity. (a) Purpose. The objective of a long-term oncogenicity study is to observe test animals for a major portion of their life span for...

  8. E6 and E7 fusion immunoglobulin from human papilloma virus 16 induces dendritic cell maturation and antigen specific activation of T helper 1 response.

    Science.gov (United States)

    Kim, Sang-Hoon; Hur, Yu Jin; Lee, Suk Jun; Kim, Sang Joon; Park, Chung-Gyu; Oh, Yu-Koung; Jung, Woon-Won; Seo, Jong Bok; Nam, Myung Hee; Choi, Inho; Chun, Taehoon

    2011-04-01

    Human papilloma virus (HPV) 16 causes cervical cancer. Induction of oncogenesis by HPV 16 is primarily dependent on the function of E6 and E7 proteins, which inactivate the function of p53 and pRB, respectively. Thus, blocking the activity of the E6 and E7 proteins from HPV 16 is critical to inhibiting oncogenesis during infection. We have expressed and purified soluble HPV 16 E6 and E7 fusion immunoglobulin (Ig), which were combined with the constant region of an Ig heavy chain, in a mammalian system. To assess whether soluble E6 and E7 fusion Igs induce effective cellular immune responses, immature dendritic cells (DCs) were treated with these fusion proteins. Soluble E6 and E7 fusion Igs effectively induced maturation of DCs. Furthermore, immunization with soluble E6 and E7 fusion Igs in mice resulted in antigen-specific activation of T helper 1 (Th1) cells. This is the first comprehensive study to show the molecular basis of how soluble HPV 16 E6 or E7 fusion Igs induces Th1 responses through the maturation of DCs. In addition, we show that DC therapy using soluble HPV E6 and E7 fusion Igs may be a valuable tool for controlling the progress of cervical cancer.

  9. Fusion of CCL21 non-migratory active breast epithelial and breast cancer cells give rise to CCL21 migratory active tumor hybrid cell lines.

    Directory of Open Access Journals (Sweden)

    Benjamin Berndt

    Full Text Available The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid cells.

  10. Fusion-activated Ca(2+ entry: an "active zone" of elevated Ca(2+ during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes.

    Directory of Open Access Journals (Sweden)

    Pika Miklavc

    Full Text Available Ca(2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca(2+ concentration ([Ca(2+](c in the prefusion phase, the occurrence and significance of Ca(2+ signals in the postfusion phase have not been described before.We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies in an exceptionally slow, Ca(2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca(2+](c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t(1/2 of decay = 3.2 s rise of localized [Ca(2+](c originating at the site of lamellar body fusion. [Ca(2+](c increase followed with a delay of approximately 0.2-0.5 s (method-dependent and in the majority of cases this signal propagated throughout the cell (at approximately 10 microm/s. Removal of Ca(2+ from, or addition of Ni(2+ to the extracellular solution, strongly inhibited these [Ca(2+](c transients, whereas Ca(2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca(2+](c. Both effects were reduced by the non-specific Ca(2+ channel blocker SKF96365.Fusion-activated Ca(2+entry (FACE is a new mechanism that leads to [Ca(2+](c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca(2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.

  11. Functional transition of Pak proto-oncogene during early evolution of metazoans.

    Science.gov (United States)

    Watari, A; Iwabe, N; Masuda, H; Okada, M

    2010-07-01

    Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

  12. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  13. Targeting MET Amplification as a New Oncogenic Driver

    Directory of Open Access Journals (Sweden)

    Hisato Kawakami

    2014-07-01

    Full Text Available Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  14. The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update.

    Science.gov (United States)

    Lai, Raymond; Ingham, Robert J

    2013-04-01

    Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.

  15. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?

    Science.gov (United States)

    Haffner, Michael C; De Marzo, Angelo M; Meeker, Alan K; Nelson, William G; Yegnasubramanian, Srinivasan

    2011-06-15

    An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated by the class II topoisomerase TOP2B, which is recruited with the androgen receptor and estrogen receptor to regulatory sites on target genes and is apparently required for efficient transcriptional activation of these genes. These DSBs are recognized by the DNA repair machinery triggering the recruitment of repair proteins such as poly(ADP-ribose) polymerase 1 (PARP1), ATM, and DNA-dependent protein kinase (DNA-PK). If illegitimately repaired, such DSBs can seed the formation of genomic rearrangements like the TMPRSS2-ERG fusion oncogene in prostate cancer. Here, we hypothesize that these transcription-induced, TOP2B-mediated DSBs can also be exploited therapeutically and propose that, in hormone-dependent tumors like breast and prostate cancers, a hormone-cycling therapy, in combination with topoisomerase II poisons or inhibitors of the DNA repair components PARP1 and DNA-PK, could overwhelm cancer cells with transcription-associated DSBs. Such strategies may find particular utility in cancers, like prostate cancer, which show low proliferation rates, in which other chemotherapeutic strategies that target rapidly proliferating cells have had limited success.

  16. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner.

    Science.gov (United States)

    Yu, Haijia; Rathore, Shailendra S; Davis, Eric M; Ouyang, Yan; Shen, Jingshi

    2013-04-01

    The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca(2+). The stimulatory activity of Doc2b requires intact Ca(2+)-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca(2+)- and membrane bending-dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca(2+) sensors may possess divergent mechanisms in regulating vesicle fusion.

  17. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation.

    Science.gov (United States)

    Sun, C; Dobi, A; Mohamed, A; Li, H; Thangapazham, R L; Furusato, B; Shaheduzzaman, S; Tan, S-H; Vaidyanathan, G; Whitman, E; Hawksworth, D J; Chen, Y; Nau, M; Patel, V; Vahey, M; Gutkind, J S; Sreenath, T; Petrovics, G; Sesterhenn, I A; McLeod, D G; Srivastava, S

    2008-09-11

    The high prevalence of TMPRSS2-ERG rearrangements ( approximately 60%) in prostate cancer (CaP) leads to androgenic induction of the ETS-related gene (ERG) expression. However, the biological functions of ERG overexpression in CaP remain to be understood. ERG knockdown in TMPRSS2-ERG expressing CaP cells induced striking morphological changes and inhibited cell growth both in cell culture and SCID mice. Evaluation of the transcriptome and specific gene promoters in ERG siRNA-treated cells and investigation of gene expression signatures of human prostate tumors revealed ERG-mediated activation of C-MYC oncogene and the repression of prostate epithelial differentiation genes (PSA and SLC45A3/Prostein). Taken together, these data combining cell culture and animal models and human prostate tumors reveal that ERG overexpression in prostate tumor cells may contribute to the neoplastic process by activating C-MYC and by abrogating prostate epithelial differentiation as indicated by prostate epithelial specific markers.

  18. The ETS family of oncogenic transcription factors in solid tumours.

    Science.gov (United States)

    Sizemore, Gina M; Pitarresi, Jason R; Balakrishnan, Subhasree; Ostrowski, Michael C

    2017-06-01

    Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.

  19. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  20. Recombinant Scorpine Produced Using SUMO Fusion Partner in Escherichia coli Has the Activities against Clinically Isolated Bacteria and Inhibits the Plasmodium falciparum Parasitemia In Vitro

    OpenAIRE

    Chao Zhang; Xinlong He; Yaping Gu; Huayun Zhou; Jun Cao; Qi Gao

    2014-01-01

    Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was ex...

  1. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma.

    Science.gov (United States)

    Leventaki, Vasiliki; Drakos, Elias; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S; Claret, Francois X; Rassidakis, George Z

    2007-09-01

    Anaplastic large-cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35), resulting in aberrant expression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). We show that in 293T and Jurkat cells, forced expression of active NPM-ALK, but not kinase-dead mutant NPM-ALK (210K>R), induced JNK and cJun phosphorylation, and this was linked to a dramatic increase in AP-1 transcriptional activity. Conversely, inhibition of ALK activity in NPM-ALK(+) ALCL cells resulted in a concentration-dependent dephosphorylation of JNK and cJun and decreased AP-1 DNA-binding. In addition, JNK physically binds NPM-ALK and is highly activated in cultured and primary NPM-ALK(+) ALCL cells. cJun phosphorylation in NPM-ALK(+) ALCL cells is mediated by JNKs, as shown by selective knocking down of JNK1 and JNK2 genes using siRNA. Inhibition of JNK activity using SP600125 decreased cJun phosphorylation and AP-1 transcriptional activity and this was associated with decreased cell proliferation and G2/M cell-cycle arrest in a dose-dependent manner. Silencing of the cJun gene by siRNA led to a decreased S-phase cell-cycle fraction associated with upregulation of p21 and downregulation of cyclin D3 and cyclin A. Taken together, these findings reveal a novel function of NPM-ALK, phosphorylation and activation of JNK and cJun, which may contribute to uncontrolled cell-cycle progression and oncogenesis.

  2. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical...... basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably...

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-1 in node-negative breast cancer

    DEFF Research Database (Denmark)

    Jensen, V; Ladekarl, M; Holm-Nielsen, P

    1995-01-01

    of invasion of skin or deep fascia (= T1N0M0 and T2N0M0). The median follow-up time was 104 months (range 5-143 months). Immunohistochemical analysis of OA-519 expression was performed on formalin-fixed, paraffin-embedded tissue. The proliferative activity was estimated using a Ki-67 equivalent monoclonal...

  5. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Chi-NeuTsai

    2005-01-01

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which isnotoriously metastatic. Although it Is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PeR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMPl-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery.

  6. Methylation status of c-fms oncogene in HCC and its relationship with clinical pathology

    Institute of Scientific and Technical Information of China (English)

    Jun Cui; Dong Hua Yang; Xiang Jun Bi; Zi Rong Fan

    2001-01-01

    @@ INTRODUCTIONThe mechanism that DNA hypomethylation leads toactivation of oncogene and occurrence of malignantneoplasm is being increasingly recognized byresearchers. Normal DNA methylation playsimportant role in stabilizing the phenotype of cell.DNA methylation status reduction and/or patternalteration are related to activation and abnormallyhigh expression of some oncogenes and cellularmalignancy[1-6]. c-fms oncogene encodes for colonystimulating factor 1 receptor (CSF-1R)[7], c-fms/CSF-1R was highly expressed in hepatocellularcarcinoma (HCC) tissue, but the mechanismremained obscure[8,9].

  7. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Anthony M. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Cheung, Pamela [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Swartz, Talia H.; Li, Hongru [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Tsibane, Tshidi [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Durham, Natasha D. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Basler, Christopher F. [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Felsenfeld, Dan P. [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chen, Benjamin K., E-mail: benjamin.chen@mssm.edu [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States)

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  8. A simple method for production and purification of soluble and biologically active recombinant human leukemia inhibitory factor (hLIF) fusion protein in Escherichia coli.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Noisa, Parinya; Parnpai, Rangsun; Ketudat-Cairns, Mariena

    2011-02-20

    Mouse embryonic stem cells (mESCs) rely on a cytokine named leukemia inhibitory factor (LIF) to maintain their undifferentiated state and pluripotency. However, the progress of mESC research is restricted and limited to highly funded laboratories due to the cost of commercial LIF. Here we presented the homemade hLIF which is biologically active. The hLIF cDNA was cloned into two different vectors in order to produce N-terminal His₆-tag and Trx-His₆-tag hLIF fusion proteins in Origami(DE3) Escherichia coli. The His₆-hLIF fusion protein was not as soluble as the Trx-His₆-hLIF fusion protein. One-step immobilized metal affinity chromatography (IMAC) was done to recover high purity (> 95% pure) His₆-hLIF and Trx-His₆-hLIF fusion proteins with the yields of 100 and 200 mg/l of cell culture, respectively. The hLIF fusion proteins were identified by Western blot and verified by mass spectrometry (LC/MS/MS). The hLIF fusion proteins specifically promote the proliferation of TF-1 cells in a dose-dependent manner. They also demonstrate the potency to retain the morphology of undifferentiated mESCs, in that they were positive for mESC markers (Oct-4, Sox-2, Nanog, SSEA-1 and alkaline phosphatase activity). These results demonstrated that the N-terminal fusion tags of the His₆-hLIF and Trx-His₆-hLIF fusion proteins do not interfere with their biological activity. This expression and purification approach to produce recombinant hLIF is a simple, reliable, cost effective and user-friendly method.

  9. Liposomal encapsulation of deguelin: evidence for enhanced antitumor activity in tobacco carcinogen-induced and oncogenic K-ras-induced lung tumorigenesis.

    Science.gov (United States)

    Woo, Jong K; Choi, Dong Soon; Tran, Hai T; Gilbert, Brian E; Hong, Waun Ki; Lee, Ho-Young

    2009-04-01

    Deguelin has shown promising chemopreventive and therapeutic activities in diverse types of cancers. However, the potential side effect of deguelin over a certain dose could be the substantial hurdle in the practical application of the drug. One of the successful strategies for the use of deguelin in clinical trials could be lung-specific delivery of the drug. The present study evaluates the efficacy of liposome-encapsulated deguelin with a dose of 0.4 mg/kg, which is 10 times less than the dose (4 mg/kg) for preventive and therapeutic activities validated in previous in vivo studies. Liposomal deguelin revealed cytotoxic activity in vitro in premalignant and malignant human bronchial epithelial cells and non-small cell lung cancer cells through the same mechanistic pathway previously reported for deguelin (i.e., suppression of the heat shock protein 90 chaperone function and induction of apoptosis). Delivery of liposomal deguelin at a dose of 0.4 mg/kg by intranasal instillation resulted in markedly increased drug partitioning to the lungs compared with that of 4 mg/kg deguelin or 0.4 mg/kg liposomal deguelin administered by oral gavage. Lung-specific delivery of deguelin (0.4 mg/kg) via nasal or intratracheal instillation in a liposomal formulation also showed significant chemopreventive and therapeutic activities in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone/benzo(a)pyrene-treated A/J mice and K-rasLAC57Bl6/129/sv F1 mice with no detectable toxicity. Our findings support the potential use of deguelin in a liposomal formulation via lung-specific delivery to improve efficacy and to reduce the potential side effects of the agent.

  10. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Kerkhoven, R.M.; Zhu, L.; Carlée, L.; Voorhoeve, P.M.; Bernards, R.A.

    1994-01-01

    The E2F family of transcription factors controls the expression of genes that are involved in cell cycle regulation. E2F DNA-binding activity is found in complex with the retinoblastoma protein, pRb, and with the pRb-related p107 and p130. To date, cDNAs for three members of the E2F gene family have

  11. Effect of human papillomavirus type 16 E6 and E7 oncogenes on the activity of the transforming growth factor-beta2 (TGF-beta2) promoter.

    Science.gov (United States)

    Murvai, M; Borbély, A A; Kónya, J; Gergely, L; Veress, G

    2004-12-01

    The effect of the human papillomavirus type 16 (HPV 16) E6 and E7 proteins was studied on the transcriptional activity of the human transforming growth factor beta2 (TGF-beta) promoter in different cell lines. Luciferase tests were performed after co-transfection of cells with TGF-beta2 reporter constructs and HPV 16 E6 or E7 expression vectors. HPV 16 E7, but not E6 significantly repressed TGF-beta2 promoter activity in NIH/3T3 cells, which have wild-type p53 and pRb proteins. The repressive effect of HPV 16 E7 on the transcriptional activity of the TGF-beta2 promoter could be localized to the promoter region -528 to -251 relative to the transcriptional start site. Ability of E7 to bind pRb was necessary to inhibit the TGF-beta2 promoter. Over-expression of the transcription factor E2F-1 had an effect on the TGF-beta2 promoter similar to that of E7, which may indicate that HPV 16 E7 represses the TGF-beta2 promoter by releasing E2F from pRb.

  12. [Matrix metalloproteinases (MMP)--MMP-1,-2,-9 and its endogenous activity regulators in transformed by E7 oncogene HPV16 and HPV18 cervical carcinoma cell lines].

    Science.gov (United States)

    Ryzhakova, O S; Solov'eva, N I

    2013-01-01

    Matrix metalloproteinases (MMP) play a key role in development of tumor invasion and metestasis. The purpose of the work is the elucidation of peculiarities of expression of MMP-1, MMP-2, MMP-9 and their activity regulators: plasminogen activator uPA and tissue inhibitors of MMPs - TIMP-1 and TIMP-2 in human cell lines of squoamous cell carcinoma (SCC). Comparative study of MMPs' expression was carried out on cell lines SCC which differed in HPV types (HPV-16 and HPV-18): SiHa, Caski - HPV16, Hela, C4-1 - HPV18). As a control, the C33A line was used where HPV copies were absent. The human papilloma viruses (HPV) of high risk--HPV-16, HPV-18, as etiological factors of initiation of cervical cancer, are most widespread and most aggressive among oncogenic HPVs. Study of MMP expression involved estimation of expression of mRNA using the RT-PCR method and determination of collagenolytic activity by hydrolysis of fluorogenic type 1 collagen and also by the zymography method. It was shown that: 1. In both types of cell lines, the MMP-1 expression was essentially increased (2 to 8 times), and in HPV18 lines it was most expressed. The exception was made by the SiHa line in which the decrease of expression of this enzyme was observed. MMP-2 expression was at the control level in both types of cell lines. 2. Expression of inhibitors generally was at the control level. The only exception was the C4-1 line where the expression of TIMP-1 and TIMP-2 was increased in 1,7 and 2,6 times accordingly. Expression of uPA was increased 2 to 4, 5 times in all cell lines except Siha where was lowered to 20%. 3. Collagenolytic activity in the Caski and Hela cell line was 2-3 times higher that it was in control, while the activity in the SiHa cell line was compatible with that in the control. Research of gelatinolytic activity also as well as the data on an expression MPHK has revealed only presence MMFP-2, but not MMP-9 in all cervical carcinoma cell lines. The data obtained provide

  13. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  14. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging

    Directory of Open Access Journals (Sweden)

    Pedroso de Lima Maria C.

    1999-01-01

    Full Text Available It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity. By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

  15. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging.

    Science.gov (United States)

    Ramalho-Santos, João; Pedroso De Lima, Maria C.

    1999-03-16

    It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH) or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity). By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

  16. Activation of Mas oncogene-related gene (Mrg) C receptors enhances morphine-induced analgesia through modulation of coupling of μ-opioid receptor to Gi-protein in rat spinal dorsal horn.

    Science.gov (United States)

    Wang, D; Chen, T; Zhou, X; Couture, R; Hong, Y

    2013-12-03

    Mas oncogene-related gene (Mrg) G protein-coupled receptors are exclusively expressed in small-sized neurons in trigeminal and dorsal root ganglia (DRG) in mammals. The present study investigated the effect of MrgC receptor activation on morphine analgesic potency and addressed its possible mechanisms. Intrathecal (i.t.) administration of the specific MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) increased morphine-induced analgesia and shifted the morphine dose-response curve to the left in rats. Acute morphine (5 μg) reduced the coupling of μ-opioid receptors (MORs) to Gi-, but not Gs-, protein in the spinal dorsal horn. The i.t. BAM8-22 (3 nmol) prevented this change of G-protein repertoire while the inactive MrgC receptor agonist BAM8-18 (3 nmol, i.t.) failed to do so. A double labeling study showed the co-localization of MrgC and MORs in DRG neurons. The i.t. BAM8-22 also increased the coupling of MORs to Gi-protein and recruited Gi-protein from cytoplasm to the cell membrane in the spinal dorsal horn. Application of BAM8-22 (10nM) in the cultured ganglion explants for 30 min increased Gi-protein mRNA, but not Gs-protein mRNA. The present study demonstrated that acute administration of morphine inhibited the repertoire of MOR/Gi-protein coupling in the spinal dorsal horn in vivo. The findings highlight a novel mechanism by which the activation of MrgC receptors can modulate the coupling of MORs with Gi-protein to enhance morphine-induced analgesia. Hence, adjunct treatment of MrgC agonist BAM8-22 may be of therapeutic value to relieve pain.

  17. Phorbol Esters from Jatropha Meal Triggered Apoptosis, Activated PKC-δ, Caspase-3 Proteins and Down-Regulated the Proto-Oncogenes in MCF-7 and HeLa Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-09-01

    Full Text Available Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs. The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7 and cervical (HeLa cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC50 of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC50 concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun. These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  18. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Ahmad, Syahida

    2012-09-10

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  19. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  20. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  1. Improving Vehicle Ride and Handling Using LQG CNF Fusion Control Strategy for an Active Antiroll Bar System

    Directory of Open Access Journals (Sweden)

    N. Zulkarnain

    2014-01-01

    Full Text Available This paper analyses a comparison of performance for an active antiroll bar (ARB system using two types of control strategy. First of all, the LQG control strategy is investigated and then a novel LQG CNF fusion control method is developed to improve the performances on vehicle ride and handling for an active antiroll bar system. However, the ARB system has to balance the trade-off between ride and handling performance, where the CNF consists of a linear feedback law and a nonlinear feedback law. Typically, the linear feedback is designed to yield a quick response at the initial stage, while the nonlinear feedback law is used to smooth out overshoots in the system output when it approaches the target reference. The half car model is combined with a linear single track model with roll dynamics which are used for the analysis and simulation of ride and handling. The performances of the control strategies are compared and the simulation results show the LQG CNF fusion improves the performances in vehicle ride and handling.

  2. Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts.

    Science.gov (United States)

    Lu, F; Jiang, J; Li, N; Zhang, S; Sun, H; Luo, C; Wei, Y; Shi, D

    2011-09-15

    The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P fusion (P fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.

  3. Annotating MYC oncogene status with 89Zr-transferrin imaging

    OpenAIRE

    Holland, Jason P.; Evans, Michael J.; Rice, Samuel L.; Wongvipat, John; Sawyers, Charles L.; Lewis, Jason S.

    2012-01-01

    A non-invasive technology that quantitatively measures the activity of oncogenic signaling pathways could broadly impact cancer diagnosis and treatment using targeted therapies. Here we describe the development of 89Zr-desferrioxamine transferrin (89Zr-Tf), a novel positron emission tomography (PET) radiotracer that binds the transferrin receptor 1 (TFRC, CD71) with high avidity. 89Zr-Tf produces high contrast PET images that quantitatively reflect treatment-induced changes in MYC-regulated T...

  4. Cytotoxic activity of Justicia spicigera is inhibited by bcl-2 proto-oncogene and induces apoptosis in a cell cycle dependent fashion.

    Science.gov (United States)

    Cáceres-Cortés, J R; Cantú-Garza, F A; Mendoza-Mata, M T; Chavez-González, M A; Ramos-Mandujano, G; Zambrano-Ramírez, I R

    2001-12-01

    Identification of organic compounds from plants is of clinical significance because of the effect that they might have in patients with haematopoietic disorders. We studied the effect of the plant extract Justicia spicigera (Acanthaceae) in different haematopoietic cells: human leukaemic cell lines, umbilical cord blood cells, and mouse bone marrow cells. By examining colony formation and performing the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay it was shown that the plant extract of Justicia spicigera contains cytotoxic factors for leukaemic cells and has no proliferative activity on normal haematopoietic progenitor cells. Our results show that this plant extract induces apoptosis in the human leukaemia cell line TF-1, but not in the bcl-2 transfectant cell line TB-1. Similar results were obtained using a haemopoietic cell line 32D and 32DBcl2. The cultures of umbilical cord blood cells and mouse bone marrow that contain granulocyte-macrophage colony-stimulating factor (GM-CSF) do not proliferate or become terminally differentiated in the presence of the infusion of Justicia spicigera. GM-CSF that acts by abrogating programmed cell death is not sufficient to inhibit the apoptotic stimulus in TF-1 and 32D cells. Moreover mouse fibroblasts (3T3) and two cervical carcinoma cell lines CALO and INBL, undergo apoptosis in the presence of different concentrations of an infusion from the plant. Our data show that there is a strong correlation between the cytotoxic effect and cell proliferation. Together, these results indicate that the plant infusion of Justicia spicigera does not contain any haematopoietic activity, induces apoptosis inhibited by bcl-2 and is linked to cell proliferation.

  5. Amplification of cellular oncogenes in solid tumors

    Directory of Open Access Journals (Sweden)

    Ozkan Bagci

    2015-01-01

    Full Text Available The term gene amplification refers to an increase in copy number of a gene. Upregulation of gene expression through amplification is a general mechanism to increase gene dosage. Oncogene amplifications have been shown in solid human cancers and they are often associated with progression of cancer. Defining oncogene amplification is useful since it is used as a prognostic marker in clinical oncology nowadays, especially v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2 targeted agents are used in breast cancer patients with high level of HER2 overexpression as a therapeutic approach. However, patients without HER2 overexpression do not appear to benefit from these agents. We concluded that determination of oncogene amplification in solid tumors is an important factor in treatment of human cancers with many unknowns. We have referred to PubMed and some databases to prepare this article.

  6. Aggressive transformation of juvenile myelomonocytic leukemia associated with duplication of oncogenic KRAS due to acquired uniparental disomy.

    Science.gov (United States)

    Kato, Motohiro; Yasui, Naoko; Seki, Masafumi; Kishimoto, Hiroshi; Sato-Otsubo, Aiko; Hasegawa, Daisuke; Kiyokawa, Nobutaka; Hanada, Ryoji; Ogawa, Seishi; Manabe, Atsushi; Takita, Junko; Koh, Katsuyoshi

    2013-06-01

    A small fraction of cases of juvenile myelomonocytic leukemia (JMML) develop massive disease activation. Through genomic analysis of JMML, which developed in an individual with mosaicism for oncogenic KRAS mutation with rapid progression, we identified acquired uniparental disomy at 12p. We demonstrated that duplication of oncogenic KRAS is associated with rapid JMML progression.

  7. [The progress of TMPRSS2-ETS gene fusions and their mechanism in prostate cancer].

    Science.gov (United States)

    Guo, Xiao-Qiang; Gui, Yao-Ting; Cai, Zhi-Ming

    2011-02-01

    The gene fusions between transmembrane protease serine 2 (TMPRSS2) and E26 (ETS) transcription factors are present in over 50% of patients with prostate cancer. TMPRSS2-ERG is the most common gene fusion type. The ERG overexpression induced by TMPRSS2-ERG gene fusion contributes to the development of prostate cancer. Both androgen receptor binding and genotoxic stress induce chromosomal proximity and TMPRSS2-ETS gene fusions. TMPRSS2-ERG gene fusion functions as a biomarker for prostate cancer, which can be easily detected in urine. This review focuses on the characteristics, oncogenic and rearranged mechanism, and clinical application of TMPRSS2-ETS gene fusions.

  8. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    Science.gov (United States)

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.

  9. Vaccinia virus recombinants expressing an 11-kilodalton beta-galactosidase fusion protein incorporate active beta-galactosidase in virus particles.

    Science.gov (United States)

    Huang, C; Samsonoff, W A; Grzelecki, A

    1988-10-01

    Recombinant plasmids in which vaccinia virus transcriptional regulatory sequences were fused to the Escherichia coli lacZ gene were constructed for insertion of the lacZ gene into the vaccinia virus genome. beta-Galactosidase (beta-gal) was found in some purified recombinant vaccinia virions. By enzyme activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and microscopic techniques, the evidence suggested that beta-gal accounted for 5% of the total protein in the virion. These recombinant viruses were constructed so that a portion of the coding sequences of a late vaccinia virus structural polypeptide was fused to the amino terminus of beta-gal to produce the fusion protein. Removal of the coding sequences resulted in the complete loss of beta-gal activity. This demonstrated that a vaccinia virus DNA segment from a late structural gene is responsible for the incorporation of beta-gal into the virion.

  10. Binding Activity Difference of Anti-CD20 scFv-Fc Fusion Protein Derived from Variable Domain Exchange

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Beifen Shen; Jiannan Feng; Yan Li; Yingxun Sun; Xin Gu; Ying Huang; Yugang Wang; Xianjiang Kang; Hong Chang

    2006-01-01

    Two novel engineered antibody fragments binding to antigen CD20 were generated by fusing a murine IgM-type anti-CD20 single-chain Fv fragment (scFv) to the human IgG1 CH2 (I.e., Cγ2) and CH3 (I.e., Cγ3) domains with the human IgG1 hinge (I.e. Hγ). Given the relationship between structure and function of protein, the 3-D structures of the two engineered antibody fragments were modeled using computer-aided homology modeling method.Furthermore, the relationship between 3-D conformation and their binding activity was evaluated theoretically.Due to the change of active pocket formed by CDRs, the HL23 (VH-Linker-VL-Hγ-Cγ2-Cγ3) remained its activity because of its preserved conformation, while the binding activity of the LH23 (VL-Linker-VH-Hγ-Cγ2-Cγ3) was impaired severely. Experimental studies by flow cytometry and fluorescence microscopy showed that HL23 possessed significantly superior binding activity to CD20-expressing target cells than LH23. That is to say, the order of variable regions could influence the binding activity of the fusion protein to CD20+ cell lines, which was in accordance with the theoretical results. The study highlights the potential relationship between the antibody binding activity and their 3-D conformation, which appears to be worthwhile in providing direction for future antibody design of recombinant antibody.

  11. Oncogenic osteomalacia presenting as bilateral stress fractures of the tibia

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kenjirou; Ohnishi, Takeshi; Ishikawa, Tohru [Department of Radiology, St. Marianna University Hospital, Kanagawa (Japan); Tani, Haruo [Department of Internal Medicine III, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Uesugi, Keisuke [Department of Otolaryngology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan); Takagi, Masayuki [Department of Pathology, St. Marianna University Hospital, Kawasaki City, Kanagawa (Japan)

    1999-01-01

    We report on a patient with bilateral stress fractures of the tibia who subsequently showed classic biochemical features of oncogenic osteomalacia. Conventional radiographs were normal. MR imaging revealed symmetric, bilateral, band-like low-signal lesions perpendicular to the medial cortex of the tibiae and corresponding to the only lesions subsequently seen on the bone scan. A maxillary sinus lesion was subsequently detected and surgically removed resulting in prompt alleviation of symptoms and normalization of hypophosphatemia and low 1,25-(OH){sub 2} vitamin D{sub 3}. The lesion was pathologically diagnosed as a hemangiopericytoma-like tumor. Patients with oncogenic osteomalacia may present with stress fractures limited to the tibia, as seen in athletes. The clue to the real diagnosis lies in paying close attention to the serum phosphate levels, especially in patients suffering generalized symptoms of weakness and not given to unusual physical activity. (orig.) With 4 figs., 6 refs.

  12. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer.

    Science.gov (United States)

    Chuang, Hsiao-Ching; Huang, Po-Hsien; Kulp, Samuel K; Chen, Ching-Shih

    2017-03-01

    The clear importance of mutated KRAS as a therapeutic target has driven the investigation of multiple approaches to inhibit oncogenic KRAS signaling at different molecular levels. However, no KRAS-targeted therapy has reached the clinic to date, which underlies the intrinsic difficulty in developing effective, direct inhibitors of KRAS. Thus, this article provides an overview of the history and recent progress in the development of pharmacological strategies to target oncogenic KRAS with small molecule agents. Mechanistically, these KRAS-targeted agents can be classified into the following four categories. (1) Small-molecule RAS-binding ligands that prevent RAS activation by binding within or outside the nucleotide-binding motif. (2) Inhibitors of KRAS membrane anchorage. (3) Inhibitors that bind to RAS-binding domains of RAS-effector proteins. (4) Inhibitors of KRAS expression. The advantage and limitation of each type of these anti-KRAS agents are discussed.

  13. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    Science.gov (United States)

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  14. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    Science.gov (United States)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  15. Fusion Studies in Japan

    Science.gov (United States)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  16. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Amit J Sabnis

    2009-03-01

    Full Text Available How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs and leukemias. We investigated the effects of expressing oncogenic Kras(G12D from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D expression in a highly restricted population enriched for hematopoietic stem cells (HSCs, but not in common myeloid progenitors. Kras(G12D HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  17. CRAF R391W is a melanoma driver oncogene

    Science.gov (United States)

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  18. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  19. Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for a fusion blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu, E-mail: tanigawa.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Shiba, Kiyoyuki; Sakasegawa, Hideo; Hirose, Takanori; Jitsukawa, Shiro [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

    2011-10-15

    Reduced activation ferritic/martensitic (RAFM) steels are recognized as the primary candidate structural materials for fusion blanket systems. Because of the possibility of creating sound engineering bases, such as a suitable fabrication technology and a materials database, RAFM steels can be used as structural materials for pressure equipment. Further, the development of an irradiation database in addition to design methodologies for fusion-centered applications is critical when evaluating the applicability of RAFM steels as structural materials for fusion-neutron-irradiated pressure equipment. In the International Fusion Energy Research Centre (IFERC) project in the Broader Approach (BA) activities between the EU and Japan, R and D is underway to optimize RAFM steel fabrication and processing technologies, develop a method for estimating fusion-neutron-irradiation effects, and study the deformation behaviors of irradiated structures. The results of these research activities are expected to form the basis for the DEMO power plant design criteria and licensing. The objective of this paper is to review the BA R and D status of RAFM steel development in Japan, especially F82H (Fe-8Cr-2W-V, Ta). The key technical issues relevant to the design and fabrication of the DEMO blanket and the recent achievements in Japan are introduced.

  20. Alterations in metastatic properties of hepatocellular carcinoma cell following H-ras oncogene transfection

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Zhi Ying Lin; Xiao Li Feng

    2001-01-01

    AIM To demonstrate the relationship betweenH-ras oncogene and hepatocellular carcinoma(HCC) metastasis.METHODS Activated H-ras oncogene wastransfected into SMMC 7721, a cell line derivedfrom human HCC, by calcium phosphatetransfection method. Some metastasis-relatedparameters were detected in vitro, includingadhesion assay, migration assay, expression ofcollagenase ⅣV (c ⅣV ase) and epidermal growthfactor receptor (EGFR).RESULTS The abilities of H-ras-transfected cellclones in adhesion to laminin (LN) or fibronectin(FN), migration, c Ⅳ ase secretion increasedmarkedly, and the expression of EGFR elevatedmoderately. More importantly, these alterationswere consistent positively with the expressionof p21, the protein product of H-ras oncogene.CONCLUSION H-ras oncogene could inducethe metastatic phenotype of HCC cell in vitro toraise its metastatic potential.

  1. Analysis of acquired resistance to cis-diamminedichloroplatinum(II) in oncogene transfected SHOK cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko; Masunaga, Shinichiro; Suzuki, Minoru; Ono, Koji; Akaboshi, Mitsuhiko [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Watanabe, Masami

    1998-02-01

    SHOK (Syrian hamster Osaka-Kanazawa) cells were transfected with activated oncogenes (v-mos, c-myc, N-ras, H-ras, K-ras). These oncogene transfected cells were treated with {sup 195m}Pt-cis-diamminedichloroplatinum(II) (CDDP). Clonogenic cell survival assay showed that oncogene-transfected cells exhibited a 1.3-4.8 fold increases resistance to cisplatin compared to the parental SHOK cells. The CDDP concentration binding to DNA, RNA and protein were measured by counting the {sup 195m}Pt-radioactivity. The CDDP uptake was decreased in these oncogene transfected cells. The CDDP uptake in DNA of H-ras transfected cells decreased faster than control SHOK cells. (author)

  2. Role of cysteines in the activation and inactivation of brewers' yeast pyruvate decarboxylase investigated with a PDC1-PDC6 fusion protein.

    Science.gov (United States)

    Zeng, X; Farrenkopf, B; Hohmann, S; Dyda, F; Furey, W; Jordan, F

    1993-03-16

    Possible roles of the Cys side chains in the activation and inactivation mechanisms of brewers' yeast pyruvate decarboxylase were investigated by comparing the behavior of the tetrameric enzyme pdc1 containing four cysteines/subunit (positions 69, 152, 221, and 222) with that of a fusion enzyme (pdc1-6, a result of spontaneous gene fusion between PDC1 and PDC6 genes) that is 84% identical in sequence with pdc1 and has only Cys221 (the other three Cys being replaced by aliphatic side chains). The two forms of the enzyme are rather similar so far as steady-state kinetic parameters and substrate activation are considered, as tested for activation by the substrate surrogate pyruvamide. Therefore, if a cysteine is responsible for substrate activation, it must be Cys221. The inactivation of the two enzymes was tested with several inhibitors. Methylmethanethiol sulfonate, a broad spectrum sulfhydryl reagent, could substantially inactivate both enzymes, but was slightly less effective toward the fusion enzyme. (p-Nitrobenzoyl)formic acid is an excellent alternate substrate, whose decarboxylation product p-nitrobenzaldehyde inhibited both enzymes possibly at a Cys221, the only one still present in the fusion enzyme. Exposure of the fusion enzyme, just as of pdc1, to (E)-2-oxo-4-phenyl-3-butenoic acid type inhibitors/alternate substrates enabled detection of the enzyme-bound enamine intermediate at 440 nm. However, unlike pdc1, the fusion enzyme was not irreversibly inactivated by these substrates. These substrates are now known to cause inactivation of pdc1 with concomitant modification of one Cys of the four [Zeng, X.; Chung, A.; Haran, M.; Jordan, F. (1991) J. Am. Chem. Soc. 113, 5842-49].(ABSTRACT TRUNCATED AT 250 WORDS)

  3. IFMIF (International Fusion Materials Irradiation Facility) conceptual design activity reduced cost report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    This report describes the results of a preliminary reevaluation of the design and cost of the International Fusion Materials Irradiation Facility (IFMIF) Project in response to the request from the 28th FPCC meeting in January 1999. Two major ideas have been considered: 1) reduction of the total construction cost through elimination of the previously planned facility upgrade and 2) a facility deployment in 3 stages with capabilities for limited experiments in the first stage. As a result, the size and complexity of the facility could be significantly reduced, leading to substantial cost savings. In addition to these two ideas, this study also included a critical review of the original CDA specification with the objective of elimination of nonessential items. For example, the number of lithium targets was reduced from two to one. As a result of these changes in addition to the elimination of the upgrade, the total cost estimate was very substantially reduced from 797.2 MICF to 487.8 MICF, where 1 MICF = 1 Million of the IFMIF Conversion Units (approximately $1M US January, 1996). (author)

  4. Human genome: proto-oncogenes and proretroviruses.

    Science.gov (United States)

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  5. Myxoma virus expressing a fusion protein of interleukin-15 (IL15 and IL15 receptor alpha has enhanced antitumor activity.

    Directory of Open Access Journals (Sweden)

    Vesna Tosic

    Full Text Available Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15 is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr, which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13 cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr. Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.

  6. Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction.

    Science.gov (United States)

    Bachireddy, P; Rakhra, K; Felsher, D W

    2012-02-01

    Despite complex genomic and epigenetic abnormalities, many cancers are irrevocably dependent on an initiating oncogenic lesion whose restoration to a normal physiological activation can elicit a dramatic and sudden reversal of their neoplastic properties. This phenomenon of the reversal of tumorigenesis has been described as oncogene addiction. Oncogene addiction had been thought to occur largely through tumour cell-autonomous mechanisms such as proliferative arrest, apoptosis, differentiation and cellular senescence. However, the immune system plays an integral role in almost every aspect of tumorigenesis, including tumour initiation, prevention and progression as well as the response to therapeutics. Here we highlight more recent evidence suggesting that oncogene addiction may be integrally dependent upon host immune-mediated mechanisms, including specific immune effectors and cytokines that regulate tumour cell senescence and tumour-associated angiogenesis. Hence, the host immune system is essential to oncogene addiction.

  7. Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia.

    Science.gov (United States)

    Retnakumari, Archana P; Hanumanthu, Prasanna Lakshmi; Malarvizhi, Giridharan L; Prabhu, Raghuveer; Sidharthan, Neeraj; Thampi, Madhavan V; Menon, Deepthy; Mony, Ullas; Menon, Krishnakumar; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2012-11-05

    Deregulated protein kinases play a very critical role in tumorigenesis, metastasis, and drug resistance of cancer. Although molecularly targeted small molecule kinase inhibitors (SMI) are effective against many types of cancer, point mutations in the kinase domain impart drug resistance, a major challenge in the clinic. A classic example is chronic myeloid leukemia (CML) caused by BCR-ABL fusion protein, wherein a BCR-ABL kinase inhibitor, imatinib (IM), was highly successful in the early chronic phase of the disease, but failed in the advanced stages due to amplification of oncogene or point mutations in the drug-binding site of kinase domain. Here, by identifying critical molecular pathways responsible for the drug-resistance in refractory CML patient samples and a model cell line, we have rationally designed an endogenous protein nanomedicine targeted to both cell surface receptors and aberrantly activated secondary kinase in the oncogenic network. Molecular diagnosis revealed that, in addition to point mutations and amplification of oncogenic BCR-ABL kinase, relapsed/refractory patients exhibited significant activation of STAT5 signaling with correlative overexpression of transferrin receptors (TfR) on the cell membrane. Accordingly, we have developed a human serum albumin (HSA) based nanomedicine, loaded with STAT5 inhibitor (sorafenib), and surface conjugated the same with holo-transferrin (Tf) ligands for TfR specific delivery. This dual-targeted "transferrin conjugated albumin bound sorafenib" nanomedicine (Tf-nAlb-Soraf), prepared using aqueous nanoprecipitation method, displayed uniform spherical morphology with average size of ∼150 nm and drug encapsulation efficiency of ∼74%. TfR specific uptake and enhanced antileukemic activity of the nanomedicine was found maximum in the most drug resistant patient sample having the highest level of STAT5 and TfR expression, thereby confirming the accuracy of our rational design and potential of dual

  8. [Oncogenes RET/PTC and mechanisms of their involvement in thyroid cancerogenesis].

    Science.gov (United States)

    Voskoboĭnyk, L H

    2009-01-01

    Papillary thyroid carcinomas are the most common type of thyroid oncopathology, and are rather often associated with the expression of RET/PTC oncogens. The first oncogen RET/PTC1 was isolated more than 20 years ago. Now 13 different forms of RET/PTC are known, and 12 different partner-genes are described, that could be involved in formation of RET/PTC oncogenes. The most common of them are RET/PTC1 and RET/PTC3 forms. The great majority of oncogens RET/PTC, except for two--ELKS-RET and HOOK3-RET, have been founded in radioaction-induced thyroid tumors. There is an opinion that the key role in development of papillary thyroid carcinomas belongs to RET/PTC oncogens. The data about different types of RET/PTC oncogens, factors, that lead to their formation have been described in the present review. Also different mechanisms of activation of transduction pathways and gene's expression in thyroid cells after RET/PTC induction have been presented.

  9. Restraining the Divider: A Drp1-Phospholipid Interaction Inhibits Drp1 Activity and Shifts the Balance from Mitochondrial Fission to Fusion.

    Science.gov (United States)

    Kashatus, David F

    2016-09-15

    In this issue of Molecular Cell, Adachi et al. (2016) describe a novel interaction between the mitochondrial fission GTPase Drp1 and phosphatidic acid that restrains Drp1 activity and shifts the balance toward mitochondrial fusion, adding another layer of complexity to the regulation of mitochondrial dynamics.

  10. Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity

    NARCIS (Netherlands)

    Smit, JM; Bittman, R; Wilschut, J

    2001-01-01

    The envelope glycoproteins E1 and E2 of Sindbis virus are palmitoylated at cysteine residues within their transmembrane domains (E1 at position 430, and E2 at positions 388 and 390), Here, we investigated the in vitro membrane fusion activity of Sindbis virus variants (derived from the Tote 1101 inf

  11. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  12. Synthetic fusion-protein containing domains of Bt Cry1Ac and Allium sativum lectin (ASAL) conferred enhanced insecticidal activity against major lepidopteran pests.

    Science.gov (United States)

    Tajne, Sunita; Boddupally, Dayakar; Sadumpati, Vijayakumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-02-10

    Different transgenic crop plants, developed with δ-endotoxins of Bacillus thuringiensis (Bt) and mannose-specific plant lectins, exhibited significant protection against chewing and sucking insects. In the present study, a synthetic gene (cry-asal) encoding the fusion-protein having 488 amino acids, comprising DI and DII domains from Bt Cry1Ac and Allium sativum agglutinin (ASAL), was cloned and expressed in Escherichia coli. Ligand blot analysis disclosed that the fusion-protein could bind to more number of receptors of brush border membrane vesicle (BBMV) proteins of Helicoverpa armigera. Artificial diet bioassays revealed that 0.025 μg/g and 0.50 μg/g of fusion-protein were sufficient to cause 100% mortality in Pectinophora gossypiella and H. armigera insects, respectively. As compared to Cry1Ac, the fusion-protein showed enhanced (8-fold and 30-fold) insecticidal activity against two major lepidopteran pests. Binding of fusion-protein to the additional receptors in the midgut cells of insects is attributable to its enhanced entomotoxic effect. The synthetic gene, first of its kind, appears promising and might serve as a potential candidate for engineering crop plants against major insect pests.

  13. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency.

    Science.gov (United States)

    Ceccon, M; Merlo, M E Boggio; Mologni, L; Poggio, T; Varesio, L M; Menotti, M; Bombelli, S; Rigolio, R; Manazza, A D; Di Giacomo, F; Ambrogio, C; Giudici, G; Casati, C; Mastini, C; Compagno, M; Turner, S D; Gambacorti-Passerini, C; Chiarle, R; Voena, C

    2016-07-21

    Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.

  14. Genetic interaction between Tmprss2-ERG gene fusion and Nkx3.1-loss does not enhance prostate tumorigenesis in mouse models.

    Science.gov (United States)

    Linn, Douglas E; Bronson, Roderick T; Li, Zhe

    2015-01-01

    Gene fusions involving ETS family transcription factors (mainly TMPRSS2-ERG and TMPRSS2-ETV1 fusions) have been found in ~50% of human prostate cancer cases. Although expression of TMPRSS2-ERG or TMPRSS2-ETV1 fusion alone is insufficient to initiate prostate tumorigenesis, they appear to sensitize prostate epithelial cells for cooperation with additional oncogenic mutations to drive frank prostate adenocarcinoma. To search for such ETS-cooperating oncogenic events, we focused on a well-studied prostate tumor suppressor NKX3.1, as loss of NKX3.1 is another common genetic alteration in human prostate cancer. Previous studies have shown that deletions at 8p21 (harboring NKX3.1) and 21q22 (resulting in TMPRSS2-ERG fusion) were both present in a subtype of prostate cancer cases, and that ERG can lead to epigenetic silencing of NKX3.1 in prostate cancer cells, whereas NKX3.1 can in turn negatively regulate TMPRSS2-ERG fusion expression via suppression of the TMPRSS2 promoter activity. We recently generated knockin mouse models for TMPRSS2-ERG and TMPRSS2-ETV1 fusions, utilizing the endogenous Tmprss2 promoter. We crossed these knockin models to an Nkx3.1 knockout mouse model. In Tmprss2-ERG;Nkx3.1+/- (or -/-) male mice, although we observed a slight but significant upregulation of Tmprss2-ERG fusion expression upon Nkx3.1 loss, we did not detect any significant cooperation between these two genetic events to enhance prostate tumorigenesis in vivo. Furthermore, retrospective analysis of a previously published human prostate cancer dataset revealed that within ERG-overexpressing prostate cancer cases, NKX3.1 loss or deletion did not predict biochemical relapse after radical prostatectomy. Collectively, these data suggest that although TMPRSS2-ERG fusion and loss of NKX3.1 are among the most common mutational events found in prostate cancer, and although each of them can sensitize prostate epithelial cells for cooperating with other oncogenic events, these two events

  15. Genetic interaction between Tmprss2-ERG gene fusion and Nkx3.1-loss does not enhance prostate tumorigenesis in mouse models.

    Directory of Open Access Journals (Sweden)

    Douglas E Linn

    Full Text Available Gene fusions involving ETS family transcription factors (mainly TMPRSS2-ERG and TMPRSS2-ETV1 fusions have been found in ~50% of human prostate cancer cases. Although expression of TMPRSS2-ERG or TMPRSS2-ETV1 fusion alone is insufficient to initiate prostate tumorigenesis, they appear to sensitize prostate epithelial cells for cooperation with additional oncogenic mutations to drive frank prostate adenocarcinoma. To search for such ETS-cooperating oncogenic events, we focused on a well-studied prostate tumor suppressor NKX3.1, as loss of NKX3.1 is another common genetic alteration in human prostate cancer. Previous studies have shown that deletions at 8p21 (harboring NKX3.1 and 21q22 (resulting in TMPRSS2-ERG fusion were both present in a subtype of prostate cancer cases, and that ERG can lead to epigenetic silencing of NKX3.1 in prostate cancer cells, whereas NKX3.1 can in turn negatively regulate TMPRSS2-ERG fusion expression via suppression of the TMPRSS2 promoter activity. We recently generated knockin mouse models for TMPRSS2-ERG and TMPRSS2-ETV1 fusions, utilizing the endogenous Tmprss2 promoter. We crossed these knockin models to an Nkx3.1 knockout mouse model. In Tmprss2-ERG;Nkx3.1+/- (or -/- male mice, although we observed a slight but significant upregulation of Tmprss2-ERG fusion expression upon Nkx3.1 loss, we did not detect any significant cooperation between these two genetic events to enhance prostate tumorigenesis in vivo. Furthermore, retrospective analysis of a previously published human prostate cancer dataset revealed that within ERG-overexpressing prostate cancer cases, NKX3.1 loss or deletion did not predict biochemical relapse after radical prostatectomy. Collectively, these data suggest that although TMPRSS2-ERG fusion and loss of NKX3.1 are among the most common mutational events found in prostate cancer, and although each of them can sensitize prostate epithelial cells for cooperating with other oncogenic events, these

  16. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+.

    Directory of Open Access Journals (Sweden)

    Leopoldo de Meis

    Full Text Available Brown adipose tissue (BAT mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1, GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER membrane with the mitochondrial outer membrane of rats BAT. Ca(2+-ATPase (SERCA 1 was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca(2+ effect in BAT mitochondria thermogenesis. We found that Ca(2+ increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca(2+ concentration needed for half-maximal activation varied between 0.08 and 0.11 microM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN. Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca(2+ strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca(2+ activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver.

  17. HUMAN PAPILLOMA VIRUS — ONCOGENIC VIRUS

    Directory of Open Access Journals (Sweden)

    A.N. Mayansky

    2010-01-01

    Full Text Available The lecture is devoted to oncogenic viruses, particularly human papilloma virus. Papilloma viral infection is found in all parts of the globe and highly contagious. In addition to exhaustive current data on classification, specifics of papilloma viruses composition and epidemiology, the author describes in great detail the malignization mechanisms of papilloma viruses pockets. Also, issues of diagnostics and specific prevention and treatment of diseases caused by this virus are illustrated. Key words: oncogenic viruses, papilloma viruses, prevention, vaccination. (Pediatric Pharmacology. – 2010; 7(4:48-55

  18. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Wu, Chengsheng; Molavi, Ommoleila; Zhang, Haifeng; Gupta, Nidhi; Alshareef, Abdulraheem; Bone, Kathleen M; Gopal, Keshav; Wu, Fang; Lewis, Jamie T; Douglas, Donna N; Kneteman, Norman M; Lai, Raymond

    2015-07-16

    The tumorigenicity of most cases of ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL) is driven by the oncogenic fusion protein NPM-ALK in a STAT3-dependent manner. Because it has been shown that STAT3 can be inhibited by STAT1 in some experimental models, we hypothesized that the STAT1 signaling pathway is defective in ALK+ ALCL, thereby leaving the STAT3 signaling unchecked. Compared with normal T cells, ALK+ ALCL tumors consistently expressed a low level of STAT1. Inhibition of the ubiquitin-proteasome pathway appreciably increased STAT1 expression in ALK+ ALCL cells. Furthermore, we found evidence that NPM-ALK binds to and phosphorylates STAT1, thereby promoting its proteasomal degradation in a STAT3-dependent manner. If restored, STAT1 is functionally intact in ALK+ ALCL cells, because it effectively upregulated interferon-γ, induced apoptosis/cell-cycle arrest, potentiated the inhibitory effects of doxorubicin, and suppressed tumor growth in vivo. STAT1 interfered with the STAT3 signaling by decreasing STAT3 transcriptional activity/DNA binding and its homodimerization. The importance of the STAT1/STAT3 functional interaction was further highlighted by the observation that short interfering RNA knockdown of STAT1 significantly decreased apoptosis induced by STAT3 inhibition. Thus, STAT1 is a tumor suppressor in ALK+ ALCL. Phosphorylation and downregulation of STAT1 by NPM-ALK represent other mechanisms by which this oncogenic tyrosine kinase promotes tumorigenesis.

  19. In-vitro activation of cytotoxic T lymphocytes by fusion of mouse hepatocellular carcinoma cells and lymphotactin gene-modified dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the in-vitro activation of cytotoxic T lymphocytes (CTLs) by fusion of mouse hepatocellular carcinoma (HCC) cells and lymphotactin gene-modified dendritic cells (DCs).METHODS: Lymphotactin gene modified DCs (DCLptn) were prepared by lymphotactin recombinant adenovirus transduction of mature DCs which differentiated from mouse bone marrow cells by stimulation with granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-α). DCLptn and H22 fusion was prepared using 50% PEG. Lymphotactin gene and protein expression levels were measured by RT-PCR and ELISA, respectively. Lymphotactin chemotactic responses were examined by in-vitro chemotaxis assay. In-vitro activation of CTLs by DCLptn/H22 fusion was measured by detecting CD25 expression and cytokine production after autologous T cell stimulation. Cytotoxic function of activated T lymphocytes stimulated with DCLptn/H22 cells was determined by LDH cytotoxicity assay.RESULTS: Lymphotactin gene could be efficiently transduced to DCs by adenovirus vector and showed an effective biological activity. After fusion, the hybrid DCLptn/H22 cells acquired the phenotypes of both DCLptn and H22 cells. In T cell proliferation assay, flow cytometry showed a very high CD25 expression, and cytokine release assay showed a significantly higher concentration of IFN-γ and IL-2 in DCLptn/H22 group than in DCLptn, DCLptn+H22, DC/H22 or H22 groups. Cytotoxicity assay revealed that T cells derived from DCLptn/H22 group had much higher anti-tumor activity than those derived from DCLptn, H22, DCLptn + H22, DC/H22 groups.CONCLUSION: Lymphotactin gene-modified dendritoma induces T-cell proliferation and strong CTL reaction against allogenic HCC cells. Immunization-engineered fusion hybrid vaccine is an attractive strategy in prevention and treatment of HCC metastases.

  20. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF.

    Directory of Open Access Journals (Sweden)

    Claudia Wellbrock

    Full Text Available The Microphthalmia-associated transcription factor (MITF is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its activation, but also targets it for degradation through the ubiquitin-proteosome pathway, coupling MITF degradation to its activation. We have previously shown that because ERK is hyper-activated in melanoma cells in which BRAF is mutated, the MITF protein is constitutively down-regulated. Here we describe another intriguing aspect of MITF regulation by oncogenic BRAF in melanoma cells. We show oncogenic BRAF up-regulates MITF transcription through ERK and the transcription factor BRN2 (N-Oct3. In contrast, we show that in melanocytes this pathway does not exist because BRN2 is not expressed, demonstrating that MITF regulation is a newly acquired function of oncogenic BRAF that is not performed by the wild-type protein. Critically, in melanoma cells MITF is required downstream of oncogenic BRAF because it regulates expression of key cell cycle regulatory proteins such as CDK2 and CDK4. Wild-type BRAF does not regulate this pathway in melanocytes. Thus, we show that oncogenic BRAF exerts exquisite control over MITF on two levels. It downregulates the protein by stimulating its degradation, but then counteracts this by increasing transcription through BRN2. Our data suggest that oncogenic BRAF plays a critical role in regulating MITF expression to ensure that its protein levels are compatible with proliferation and survival of melanoma cells. We propose that its ability to appropriate the regulation of this critical factor explains in part why BRAF is such a potent oncogene in melanoma.

  1. Role for membrane fusion in the activation of the respiratory burst in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Manara-Shediac, F.S.

    1986-01-01

    Components of the respiratory burst oxidase reside in intracellular membranes of the tertiary granules in resting cells, yet oxidase activity in the activated cells occurs at the neutrophil surface. The role of degranulation in activation of the neutrophil respiratory burst was therefore investigated. Surface labeling experiments were carried out on resting and activated neutrophils using three impermeant labeling methods. Activated neutrophils labeled with (/sup 35/S) diazobenzene sulfonic acid showed a fourfold higher specific radioactivity than resting neutrophils. Similar results were obtained with the pyridoxal phosphate/borotritide labeling method. On the other hand, little difference in labeling was seen using the periodate/borotritide method which detects the carbohydrate of glycoproteins. These results suggest that either a large amount of protein, or a highly reactive protein becomes exposed upon activation. Resting, activated, and enucleated cells were labeled using the (/sup 125/I) lactoperoxidase method, then subjected to polyacrylamide gel electrophoresis. Autoradiograms of these gels showed that two proteins of about 75 and 45 kD, are labeled at the external surface of enucleated and activated cells but not resting cells.

  2. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  3. Spinal Fusion

    Science.gov (United States)

    ... results in predictable healing. Autograft is currently the “gold standard” source of bone for a fusion. The ... pump. With this technique, the patient presses a button that delivers a predetermined amount of narcotic pain ...

  4. Activation of Notch in lgd mutant cells requires the fusion of late endosomes with the lysosome.

    Science.gov (United States)

    Schneider, Markus; Troost, Tobias; Grawe, Ferdi; Martinez-Arias, Alfonso; Klein, Thomas

    2013-01-15

    The tumour suppressor Lethal (2) giant discs (Lgd) is a regulator of endosomal trafficking of the Notch signalling receptor as well as other transmembrane proteins in Drosophila. The loss of its function results in an uncontrolled ligand-independent activation of the Notch signalling receptor. Here, we investigated the consequences of loss of lgd function and the requirements for the activation of Notch. We show that the activation of Notch in lgd cells is independent of Kuz and dependent on γ-secretase. We found that the lgd cells have a defect that delays degradation of transmembrane proteins, which are residents of the plasma membrane. Furthermore, our results show that the activation of Notch in lgd cells occurs in the lysosome. By contrast, the pathway is activated at an earlier phase in mutants of the gene that encodes the ESCRT-III component Shrub, which is an interaction partner of Lgd. We further show that activation of Notch appears to be a general consequence of loss of lgd function. In addition, electron microscopy of lgd cells revealed that they contain enlarged multi-vesicular bodies. The presented results further elucidate the mechanism of uncontrolled Notch activation upon derailed endocytosis.

  5. Oncogenic kinase NPM/ALK induces expression of HIF1α mRNA.

    Science.gov (United States)

    Marzec, M; Liu, X; Wong, W; Yang, Y; Pasha, T; Kantekure, K; Zhang, P; Woetmann, A; Cheng, M; Odum, N; Wasik, M A

    2011-03-17

    The mechanisms of malignant cell transformation mediated by the oncogenic anaplastic lymphoma kinase (ALK) tyrosine kinase remain only partially understood. In this study, we report that T-cell lymphoma (TCL) cells carrying the nucleophosmin (NPM)/ALK fusion protein (ALK+ TCL) strongly express hypoxia-induced factor 1α (HIF1α) mRNA, even under normoxic conditions, and markedly upregulate HIF1α protein expression under hypoxia. HIF1α expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as shown in BaF3 cells transfected with wild-type NPM/ALK and kinase-inactive NPM/ALK K210R mutant and by the inhibition of the NPM/ALK function in ALK+ TCL cells by a small-molecule ALK inhibitor. NPM/ALK induces HIF1α expression by upregulating its gene transcription through its key signal transmitter signal transducer and activator of transcription 3 (STAT3), which binds to the HIF1α gene promoter as shown by the chromatin immunoprecipitation assay and is required for HIF1α gene expression as demonstrated by its small interfering RNA-mediated depletion. In turn, depletion of HIF1α increases mammalian target of rapamycin complex 1 activation, cell growth and proliferation and decreases vascular endothelial growth factor synthesis. These results identify a novel cell-transforming property of NPM/ALK, namely its ability to induce the expression of HIF1α, a protein with an important role in carcinogenesis. These results also provide another rationale to therapeutically target NPM/ALK and STAT3 in ALK+ TCL.

  6. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  7. Gold nanorod in reverse micelles: a fitting fusion to catapult lipase activity.

    Science.gov (United States)

    Maiti, Subhabrata; Ghosh, Moumita; Das, Prasanta Kumar

    2011-09-21

    Lipase solubilized within gold nanorod doped CTAB reverse micelles exhibited remarkable improvement in its activity mainly due to the enhanced interfacial domain of newly developed self-assembled nanocomposites.

  8. Activity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for Mobile Navigation Application

    Directory of Open Access Journals (Sweden)

    Sara Saeedi

    2015-08-01

    Full Text Available Low-cost inertial and motion sensors embedded on smartphones have provided a new platform for dynamic activity pattern inference. In this research, a comparison has been conducted on different sensor data, feature spaces and feature selection methods to increase the efficiency and reduce the computation cost of activity recognition on the smartphones. We evaluated a variety of feature spaces and a number of classification algorithms from the area of Machine Learning, including Naive Bayes, Decision Trees, Artificial Neural Networks and Support Vector Machine classifiers. A smartphone app that performs activity recognition is being developed to collect data and send them to a server for activity recognition. Using extensive experiments, the performance of various feature spaces has been evaluated. The results showed that the Bayesian Network classifier yields recognition accuracy of 96.21% using four features while requiring fewer computations.

  9. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    Science.gov (United States)

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  10. Using a data fusion-based activity recognition framework to determine surveillance system requirements

    CSIR Research Space (South Africa)

    Le Roux, WH

    2007-07-01

    Full Text Available activity recognition framework for maritime applications (Adapted from [20]) III. APPLYING THE FRAMEWORK A. Use Cases Use cases [12] are valuable means of capturing transactions between users and systems. In the maritime surveillance environment, a.... D. Vessel Capabilities In terms of capabilities, the design, deployment and devel- opment sub-elements have to be estimated from information and data sources. To establish that a vessel is engaged in illegal fishing activities, basic criteria...

  11. Characterization of functionally active interleukin-18/eGFP fusion protein expression during cell cycle phases in recombinant chicken DF1 Cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shien, Jui Hung; Shen, Pin Chun; Lee, Long Huw

    2016-05-01

    The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL-18a cell line that stably expresses the fusion protein chIL-18 was constructed and the enhanced green fluorescence protein connected through a (G4 S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL-18a cells (1 × 10(5) ) were inoculated in 60-mm culture dishes containing 5 mL of media to achieve 50%-60% confluence and were cultured in the presence of the cycle-specific inhibitors 10058-F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058-F4, aphidicolin, and colchicine, respectively, the aphidicolin-induced single cells showed higher fusion protein levels than did the 10058-F4- or colchicine-induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin-treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN-γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581-591, 2016.

  12. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    Science.gov (United States)

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  13. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  14. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1.

    Directory of Open Access Journals (Sweden)

    Rita Fragoso

    Full Text Available Oncogenes, which are essential for tumor initiation, development, and maintenance, are valuable targets for cancer therapy. However, it remains a challenge to effectively inhibit oncogene activity by targeting their downstream pathways without causing significant toxicity to normal tissues. Here we show that deletion of mir-181a-1/b-1 expression inhibits the development of Notch1 oncogene-induced T cell acute lymphoblastic leukemia (T-ALL. mir-181a-1/b-1 controls the strength and threshold of Notch activity in tumorigenesis in part by dampening multiple negative feedback regulators downstream of NOTCH and pre-T cell receptor (TCR signaling pathways. Importantly, although Notch oncogenes utilize normal thymic progenitor cell genetic programs for tumor transformation, comparative analyses of mir-181a-1/b-1 function in normal thymocyte and tumor development demonstrate that mir-181a-1/b-1 can be specifically targeted to inhibit tumor development with little toxicity to normal development. Finally, we demonstrate that mir-181a-1/b-1, but not mir-181a-2b-2 and mir-181-c/d, controls the development of normal thymic T cells and leukemia cells. Together, these results illustrate that NOTCH oncogene activity in tumor development can be selectively inhibited by targeting the molecular networks controlled by mir-181a-1/b-1.

  15. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma

    Science.gov (United States)

    Parker, Brittany C.; Annala, Matti J.; Cogdell, David E.; Granberg, Kirsi J.; Sun, Yan; Ji, Ping; Li, Xia; Gumin, Joy; Zheng, Hong; Hu, Limei; Yli-Harja, Olli; Haapasalo, Hannu; Visakorpi, Tapio; Liu, Xiuping; Liu, Chang-gong; Sawaya, Raymond; Fuller, Gregory N.; Chen, Kexin; Lang, Frederick F.; Nykter, Matti; Zhang, Wei

    2013-01-01

    Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma. PMID:23298836

  16. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion.

    Science.gov (United States)

    Madu, Ikenna G; Belouzard, Sandrine; Whittaker, Gary R

    2009-10-25

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  17. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.

  18. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    Science.gov (United States)

    Zhang, Chao; He, Xinlong; Gu, Yaping; Zhou, Huayun; Cao, Jun; Gao, Qi

    2014-01-01

    Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.

  19. Spi-1, Fli-1 and Fli-3 (miR-17-92 oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    Directory of Open Access Journals (Sweden)

    Samer Kayali

    Full Text Available Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  20. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    Science.gov (United States)

    Kayali, Samer; Giraud, Guillaume; Morlé, François; Guyot, Boris

    2012-01-01

    Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  1. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  2. A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models

    Directory of Open Access Journals (Sweden)

    J. C. Vogeler

    2016-02-01

    Full Text Available Spatially explicit maps of wildlife habitat relationships have proven to be valuable tools for conservation and management applications including evaluating how and which species may be impacted by large scale climate change, ongoing fragmentation of habitat, and local land-use practices. Studies have turned to remote sensing datasets as a way to characterize vegetation for the examination of habitat selection and for mapping realized relationships across the landscape. Potentially one of the more difficult habitat types to try to characterize with remote sensing are the vertically and horizontally complex forest systems. Characterizing this complexity is needed to explore which aspects may represent driving and/or limiting factors for wildlife species. Active remote sensing data from lidar and radar sensors has thus caught the attention of the forest wildlife research and management community in its potential to represent three dimensional habitat features. The purpose of this review was to examine the applications of active remote sensing for characterizing forest in wildlife habitat studies through a keyword search within Web of Science. We present commonly used active remote sensing metrics and methods, discuss recent advances in characterizing aspects of forest habitat, and provide suggestions for future research in the area of new remote sensing data/techniques that could benefit forest wildlife studies that are currently not represented or may be underutilized within the wildlife literature. We also highlight the potential value in data fusion of active and passive sensor data for representing multiple dimensions and scales of forest habitat. While the use of remote sensing has increased in recent years within wildlife habitat studies, continued communication between the remote sensing, forest management, and wildlife communities is vital to ensure appropriate data sources and methods are understood and utilized, and so that creators of

  3. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene.

    Science.gov (United States)

    Wang, Yixin; Li, Jianliang; Li, Yang; Fang, Lichun; Sun, Xiaolong; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-06-01

    Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.

  4. ERBB oncogene proteins as targets for monoclonal antibodies.

    Science.gov (United States)

    Polanovski, O L; Lebedenko, E N; Deyev, S M

    2012-03-01

    General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.

  5. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  6. Fusion analysis of functional MRI data for classification of individuals based on patterns of activation.

    Science.gov (United States)

    Ramezani, Mahdi; Abolmaesumi, Purang; Marble, Kris; Trang, Heather; Johnsrude, Ingrid

    2015-06-01

    Classification of individuals based on patterns of brain activity observed in functional MRI contrasts may be helpful for diagnosis of neurological disorders. Prior work for classification based on these patterns have primarily focused on using a single contrast, which does not take advantage of complementary information that may be available in multiple contrasts. Where multiple contrasts are used, the objective has been only to identify the joint, distinct brain activity patterns that differ between groups of subjects; not to use the information to classify individuals. Here, we use joint Independent Component Analysis (jICA) within a Support Vector Machine (SVM) classification method, and take advantage of the relative contribution of activation patterns generated from multiple fMRI contrasts to improve classification accuracy. Young (age: 19-26) and older (age: 57-73) adults (16 each) were scanned while listening to noise alone and to speech degraded with noise, half of which contained meaningful context that could be used to enhance intelligibility. Functional contrasts based on these conditions (and a silent baseline condition) were used within jICA to generate spatially independent joint activation sources and their corresponding modulation profiles. Modulation profiles were used within a non-linear SVM framework to classify individuals as young or older. Results demonstrate that a combination of activation maps across the multiple contrasts yielded an area under ROC curve of 0.86, superior to classification resulting from individual contrasts. Moreover, class separability, measured by a divergence criterion, was substantially higher when using the combination of activation maps.

  7. Multiple oncogenic mutations related to targeted therapy in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jian-Wei Zhang; Hong-Yuan Zhao; Yu-Xiang Ma; Zhi-Huang Hu; Pei-Yu Huang; Li Zhang; Tao Qin; Shao-Dong Hong; Jing Zhang; Wen-Feng Fang; Yuan-Yuan Zhao; Yun-Peng Yang; Cong Xue; Yan Huang

    2015-01-01

    Introduction:An increasing number of targeted drugs have been tested for the treatment of nasopharyngeal carcinoma (NPC). However, targeted therapy-related oncogenic mutations have not been fully evaluated. This study aimed to detect targeted therapy-related oncogenic mutations in NPC and to determine which targeted therapy might be potentially effective in treating NPC. Methods:By using the SNaPshot assay, a rapid detection method, 19 mutation hotspots in 6 targeted therapy-related oncogenes were examined in 70 NPC patients. The associations between oncogenic mutations and clinicopathologic factors were analyzed. Results:Among 70 patients, 12 (17.1%) had mutations in 5 oncogenes:7 (10.0%) had v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) mutation, 2 (2.8%) had epidermal growth factor receptor (EGFR) mutation, 1 (1.4%) had phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutation, 1 (1.4%) had Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, and 1 (1.4%) had simultaneous EGFR and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations. No significant differences were observed between oncogenic mutations and clinicopathologic characteristics. Additionally, these oncogenic mutations were not associated with tumor recurrence and metastasis. Conclusions:Oncogenic mutations are present in NPC patients. The efficacy of targeted drugs on patients with the related oncogenic mutations requires further validation.

  8. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver|info:eu-repo/dai/nl/32291177X; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W|info:eu-repo/dai/nl/181688255; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723; Rottier, Peter J M|info:eu-repo/dai/nl/068451954; Bosch, Berend Jan|info:eu-repo/dai/nl/273306049

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  9. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Directory of Open Access Journals (Sweden)

    John J. Guiry

    2014-03-01

    Full Text Available In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices’ ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  10. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Science.gov (United States)

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  11. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  12. Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Du, Dan; Chen, Baowei; Heng, Chew-Kiat; Lim, Tit-Meng; Lin, Yuehe

    2014-09-07

    Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection was studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.

  13. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    Science.gov (United States)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  14. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Silvia A.; Paladino, Monica G. [Laboratorio de Virologia, CONICET-Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires (Argentina); Affranchino, Jose L., E-mail: jose.affranchino@comunidad.ub.edu.ar [Laboratorio de Virologia, CONICET-Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires (Argentina)

    2012-06-20

    The feline immunodeficiency virus (FIV) envelope glycoprotein (Env) possesses a short cytoplasmic domain of 53 amino acids containing four highly conserved cysteines at Env positions 804, 811, 815 and 848. Since palmitoylation of transmembrane proteins occurs at or near the membrane anchor, we investigated whether cysteines 804, 811 and 815 are acylated and analyzed the relevance of these residues for Env functions. Replacement of cysteines 804, 811 and 815 individually or in combination by serine residues resulted in Env glycoproteins that were efficiently expressed and processed. However, mutations C804S and C811S reduced Env fusogenicity by 93% and 84%, respectively, compared with wild-type Env. By contrast, mutant C815S exhibited a fusogenic capacity representing 50% of the wild-type value. Remarkably, the double mutation C804S/C811S abrogated both Env fusion activity and Env incorporation into virions. Finally, by means of Click chemistry assays we demonstrated that the four FIV Env cytoplasmic cysteines are palmitoylated.

  15. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    Science.gov (United States)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  16. An EGF receptor targeting Ranpirnase-diabody fusion protein mediates potent antitumour activity in vitro and in vivo.

    Science.gov (United States)

    Kiesgen, Stefan; Arndt, Michaela A E; Körber, Christoph; Arnold, Ulrich; Weber, Tobias; Halama, Niels; Keller, Armin; Bötticher, Benedikt; Schlegelmilch, Anne; Liebers, Nora; Cremer, Martin; Herold-Mende, Christel; Dyckhoff, Gerhard; Federspil, Philippe A; Jensen, Alexandra D; Jäger, Dirk; Kontermann, Roland E; Mier, Walter; Krauss, Jürgen

    2015-02-01

    Cytotoxic ribonucleases such as the leopard frog derivative Ranpirnase (Onconase(®)) have emerged as a valuable new class of cancer therapeutics. Clinical trials employing single agent Ranpirnase in cancer patients have demonstrated significant clinical activity and surprisingly low immunogenicity. However, dose-limiting toxicity due to unspecific uptake of the RNase into non-cancerous cells is reached at relatively low concentrations of > 1 mg/m(2). We have in the present study generated a dimeric anti-EGFR Ranpirnase-diabody fusion protein capable to deliver two Ranpirnase moieties per molecule to EGFR-positive tumour cells. We show that this compound mediated far superior efficacy for killing EGFR-positive tumour cells than a monomeric counterpart. Most importantly, cell killing was restricted to EGFR-positive target cells and no dose-limiting toxicity of Ranpirnase-diabody was observed in mice. These data indicate that by targeted delivery of Ranpirnase non-selective toxicity can be abolished and suggests Ranpirnase-diabody as a promising new drug for therapeutic interventions in EGFR-positive cancers.

  17. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    Science.gov (United States)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  18. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein

    Directory of Open Access Journals (Sweden)

    Alireza G. Senejani, J. Peter Gogarten

    2007-01-01

    Full Text Available Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1, is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn2+ and not Mg2+ metal cations for activity.

  19. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics.

    Science.gov (United States)

    Manikandan, Mayakannan; Munirajan, Arasambattu Kannan

    2014-02-01

    Cancer, a complex genetic disease involving uncontrolled cell proliferation, is caused by inactivation of tumor suppressor genes and activation of oncogenes. A vast majority of these cancer causing genes are known targets of microRNAs (miRNAs) that bind to complementary sequences in 3' untranslated regions (UTR) of messenger RNAs and repress them from translation. Single Nucleotide Polymorphisms (SNPs) occurring naturally in such miRNA binding regions can alter the miRNA:mRNA interaction and can significantly affect gene expression. We hypothesized that 3'UTR SNPs in miRNA binding sites of proto-oncogenes could abrogate their post-transcriptional regulation, resulting in overexpression of oncogenic proteins, tumor initiation, progression, and modulation of drug response in cancer patients. Therefore, we developed a systematic computational pipeline that integrates data from well-established databases, followed stringent selection criteria and identified a panel of 30 high-confidence SNPs that may impair miRNA target sites in the 3' UTR of 54 mRNA transcripts of 24 proto-oncogenes. Further, 8 SNPs amidst them had the potential to determine therapeutic outcome in cancer patients. Functional annotation suggested that altogether these SNPs occur in proto-oncogenes enriched for kinase activities. We provide detailed in silico evidence for the functional effect of these candidate SNPs in various types of cancer.

  20. Regulation of Proto-Oncogenic Dbl by Chaperone-Controlled, Ubiquitin-Mediated Degradation▿

    OpenAIRE

    Kamynina, Elena; Kauppinen, Krista; Duan, Faping; Muakkassa, Nora; Manor, Danny

    2006-01-01

    The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbl's amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto...

  1. Structural Effects of Oncogenic PI3K alpha Mutations

    Energy Technology Data Exchange (ETDEWEB)

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  2. Structural effects of oncogenic PI3Kα mutations.

    Science.gov (United States)

    Gabelli, Sandra B; Huang, Chuan-Hsiang; Mandelker, Diana; Schmidt-Kittler, Oleg; Vogelstein, Bert; Amzel, L Mario

    2010-01-01

    Physiological activation of PI3Kα is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3Kα result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  3. Trophoblast fusion.

    Science.gov (United States)

    Huppertz, Berthold; Gauster, Martin

    2011-01-01

    The villous trophoblast of the human placenta is the epithelial cover of the fetal chorionic villi floating in maternal blood. This epithelial cover is organized in two distinct layers, the multinucleated syncytiotrophoblast directly facing maternal blood and a second layer of mononucleated cytotrophoblasts. During pregnancy single cytotrophoblasts continuously fuse with the overlying syncytiotrophoblast to preserve this end-differentiated layer until delivery. Syncytial fusion continuously supplies the syncytiotrophoblast with compounds of fusing cytotrophoblasts such as proteins, nucleic acids and lipids as well as organelles. At the same time the input of cytotrophoblastic components is counterbalanced by a continuous release of apoptotic material from the syncytiotrophoblast into maternal blood. Fusion is an essential step in maintaining the syncytiotrophoblast. Trophoblast fusion was shown to be dependant on and regulated by multiple factors such as fusion proteins, proteases and cytoskeletal proteins as well as cytokines, hormones and transcription factors. In this chapter we focus on factors that may be involved in the fusion process of trophoblast directly or that may prepare the cytotrophoblast to fuse.

  4. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  5. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Nicolas Jacquet

    Full Text Available The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.

  6. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli.

    Science.gov (United States)

    Svensson, Johan; Andersson, Christer; Reseland, Janne E; Lyngstadaas, Petter; Bülow, Leif

    2006-07-01

    Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.

  7. Fusion, cold fusion, and space policy

    Energy Technology Data Exchange (ETDEWEB)

    Rotegard, D. (CST Ltd. (United States))

    1991-01-01

    This paper critiques Americal science policy through a consideration of two examples-cold fusion and asteroid mining. It points out that the failure of central planning in science and technology policy is just as marked as in more mundane activities. It highlights the current low level of debate and points out some technical issues that need to be addressed. It concludes with evidence that the alliance of flawed policy options is further lowering the level of debate. (author).

  8. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    Science.gov (United States)

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Low-activation W–Si–C composites for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Iveković, A., E-mail: aljaz.ivekovic@ijs.si [Dept. for Nanostructured Materials, Jožef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana (Slovenia); Galatanu, A. [National Institute of Materials Physics, Atomistilor Str. 105, 077125 Magurele, Bucharest (Romania); Novak, S. [Dept. for Nanostructured Materials, Jožef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, Jožef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana (Slovenia)

    2015-11-15

    Graphical abstract: - Highlights: • Effect of W fraction on pressureless densification of W–Si–C composites. • Full densification of high-W composite in a single PIP cycle. • High-W composite exhibits increase in thermal conductivity with temperature. • Low-W composites densified with six PIP cycles. • Low-W composites exhibit high mechanical and thermal properties. - Abstract: W–Si–C composites were fabricated by active filler controlled pyrolysis of W powder (high tungsten content) and W–SiC powder mixtures (low tungsten content), infiltrated by a preceramic polymer and heat treated at temperatures from 1600 to 2000 °C. Material with high volume fraction of W in initial powder–polymer mixture, formed a composite material composed of W, W{sub 2}C and W{sub 5}Si{sub 3} with closed porosity in a single polymer infiltration and pyrolysis (PIP) cycle. After heat treatment at 1700 °C the material exhibited flexural strength above 350 MPa, hardness of 7.8 GPa and indentation modulus of 250 GPa. Room temperature thermal conductivity of the composite was rather low, 23 W m{sup −1} K{sup −1}, however, thermal conductivity increased with increasing temperature achieving 35 W m{sup −1} K{sup −1} at 1000 °C. The effect of W as active filler in W–SiC powder mixtures with low volume fraction of tungsten was negligible. Therefore, six polymer infiltration and pyrolysis cycles were used to achieve significant densification with 15% porosity. The material fabricated at 1800 °C was composed of SiC, WC and WSi{sub 2} and exhibited flexural strength of ∼400 MPa and room temperature thermal conductivity of 100 W m{sup −1} K{sup −1}, which decreased to 32 W m{sup −1} K{sup −1} at 1000 °C.

  10. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    Directory of Open Access Journals (Sweden)

    Cornelia Brendel

    Full Text Available RAS mutations are frequently found among acute myeloid leukemia patients (AML, generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1 in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC driven differentiation. Taken together, our findings show that AML with inv(16 and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.

  11. Selection of low activation materials for fusion power plants using ACAB system: the effect of computational methods and cross section uncertainties on waste management assessment

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M.; Sanz, J.; Rodriguez, A.; Falquina, R. [Universidad Nacional de Educacion a Distancia (UNED), Dept. of Power Engineering, Madrid (Spain); Cabellos, O.; Sanz, J. [Universidad Politecnica de Madrid, Instituto de Fusion Nuclear (UPM) (Spain)

    2003-07-01

    The feasibility of nuclear fusion as a realistic option for energy generation depends on its radioactive waste management assessment. In this respect, the production of high level waste is to be avoided and the reduction of low level waste volumes is to be enhanced. Three different waste management options are commonly regarded in fusion plants: Hands-on Recycling, Remote Recycling and Shallow Land Burial (SLB). Therefore, important research work has been undertaken to find low activation structural materials. In performing this task, a major issue is to compute the concentration limits (CLs) for all natural elements, which will be used to select the intended constituent elements of a particular Low Activation Material (LAM) and assess how much the impurities can deteriorate the waste management properties. Nevertheless, the reliable computation of CLs depends on the accuracy of nuclear data (mainly activation cross-sections) and the suitability of the computational method both for inertial and magnetic fusion environments. In this paper the importance of nuclear data uncertainties and mathematical algorithms used in different activation calculations for waste management purposes will be studied. Our work is centred on the study of {sup 186}W activation under first structural wall conditions of Hylife-II inertial fusion reactor design. The importance of the dominant transmutation/decay sequence has been documented in several publications. From a practical point of view, W is used in low activation materials for fusion applications: Cr-W ferritic/martensitic steels, and the need to better compute its activation has been assessed, in particular in relation to the cross-section uncertainties for reactions leading to Ir isotopes. {sup 192n}Ir and {sup 192}Ir reach a secular equilibrium, and {sup 192n}Ir is the critical one for waste management, with a half life of 241 years. From a theoretical point of view, this is one of the most complex chains appearing in

  12. FOXM1 is an oncogenic mediator in Ewing Sarcoma.

    Directory of Open Access Journals (Sweden)

    Laura Christensen

    Full Text Available Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.

  13. Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Kiyoyuki, E-mail: Shiba.kiyoyuki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Tanigawa, Hiroyasu; Hirose, Takanori; Sakasegawa, Hideo; Jitsukawa, Shiro [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-12-15

    Thermal aging properties of reduced activation ferritic/martensitic steel F82H was researched. The aging was performed at temperature ranging from 400 Degree-Sign C to 650 Degree-Sign C up to 100,000 h. Microstructure, precipitates, tensile properties, and Charpy impact properties were carried out on aged materials. Laves phase was found at temperatures between 550 and 650 Degree-Sign C and M{sub 6}C type carbides were found at the temperatures between 500 and 600 Degree-Sign C over 10,000 h. These precipitates caused degradation in toughness, especially at temperatures ranging from 550 Degree-Sign C to 650 Degree-Sign C. Tensile properties do not have serious aging effect, except for 650 Degree-Sign C, which caused large softening even after 10,000 h. Increase of precipitates also causes some degradation in ductility, but it is not critical. Large increase in ductile-to-brittle transition temperature was observed in the 650 Degree-Sign C aging. It was caused by the large Laves phase precipitation at grain boundary. Laves precipitates at grain boundary also degrades the upper-shelf energy of the aged materials. These aging test results indicate F82H can be used up to 30,000 h at 550 Degree-Sign C.

  14. Data Fusion Using Different Activation Functions in Artificial Neural Networks for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    MALLESWARAN M,

    2010-12-01

    Full Text Available Global positioning System (GPS and Inertial Navigation System (INS data can be integrated together to provide a reliable navigation. GPS/INS data integration provides reliable navigation solutions by overcoming each of their shortcomings, including signal blockage for GPS and increase in position errors with time for INS. This paper aims to provide GPS/INS data integration utilizing Artificial Neural Network (ANN architecture. This architecture is based on Feed Forward Neural Networks, which generally includes Radial Basis Function (RBF neural network and Back Propagation neural network (BPN. These are systematic methods for training multi-layer artificial networks. The BPN-ANN and RBF-ANN modules are trained to predict the INS position error and provide accurate positioning of the moving vehicle. This paper also compares performance of theGPS/INS data integration system by using different activation function like Bipolar Sigmoidal Function (BPSF, Binary Sigmoidal Function (BISF, Hyperbolic Tangential Function (HTF and Gaussian Function (GF in BPN-ANN and using Gaussian function in RBF-ANN.

  15. A novel putative tyrosine kinase receptor with oncogenic potential.

    Science.gov (United States)

    Janssen, J W; Schulz, A S; Steenvoorden, A C; Schmidberger, M; Strehl, S; Ambros, P F; Bartram, C R

    1991-11-01

    We have detected transforming activity by a tumorigenicity assay using NIH3T3 cells transfected with DNA from a chronic myeloproliferative disorder patient. Here, we report the cDNA cloning of the corresponding oncogene, designated UFO, in allusion to the as yet unidentified function of its protein. Nucleotide sequence analysis of a 3116bp cDNA clone revealed a 2682-bp-long open reading frame capable of directing the synthesis of a 894 amino acid polypeptide. The predicted UFO protein exhibits characteristic features of a transmembrane receptor with associated tyrosine kinase activity. The UFO proto-oncogene maps to human chromosome 19q13.1 and is transcribed into two 5.0 kb and 3.2 kb mRNAs in human bone marrow and human tumor cell lines. The UFO locus is evolutionarily conserved between vertebrate species. A 4.0 kb mRNA of the murine UFO homolog is expressed in a variety of different mouse tissues. We thus have identified a novel element of the complex signaling network involved in the control of cell proliferation and differentiation.

  16. Metastatic pancreatic cancer is dependent on oncogenic Kras in mice.

    Directory of Open Access Journals (Sweden)

    Meredith A Collins

    Full Text Available Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years. Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here, we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer.

  17. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Directory of Open Access Journals (Sweden)

    Natalija Budimir

    Full Text Available BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV vaccine, that can target conserved internal antigens such as the nucleoprotein (NP and/or matrix protein (M1 need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs, protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane

  18. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Science.gov (United States)

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.

  19. Constitutively Active IRF7/IRF3 Fusion Protein Completely Protects Swine against Foot-and-Mouth Disease.

    Science.gov (United States)

    Ramírez-Carvajal, Lisbeth; Diaz-San Segundo, Fayna; Ramirez-Medina, Elizabeth; Rodríguez, Luis L; de Los Santos, Teresa

    2016-10-01

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype-specific vaccine formulations exist, but they require about 5 to 7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine interferon (IFN) regulatory factors (IRF) 7 and 3 [IRF7/3(5D)] strongly induced type I IFN and antiviral genes in vitro and prevented mortality in an FMD mouse model when delivered with a replication-defective adenoviral vector [Ad5-poIRF7/3(5D)]. Here, we demonstrate that pigs treated with 10(8), 10(9), or 10(10) PFU of Ad5-poIRF7/3(5D) 24 h before FMDV challenge were fully protected from FMD clinical signs and did not develop viremia, virus shedding or antibodies against FMDV nonstructural proteins. Pigs treated with Ad5-poIRF7/3(5D) had higher levels of IFN and antiviral activity in serum, and upregulated expression of several IFN-stimulated genes in peripheral blood mononuclear cells, compared to pigs treated with Ad5-Blue vector control. Importantly, treatment of porcine cultured cells with Ad5-poIRF7/3(5D) inhibited the replication of all 7 FMDV serotypes. In vitro experiments using cultured embryonic fibroblasts derived from IFN receptor knockout mice suggested that the antiviral response induced by Ad5-poIRF7/3(5D) was dependent on type I and III IFN pathways; however, experiments with mice demonstrated that a functional type I IFN pathway mediates Ad5-poIRF7/3(5D) protection conferred in vivo Our studies demonstrate that inoculation with Ad5-poIRF7/3(5D) completely protects swine against FMD by inducing a strong type I IFN response and highlights its potential application to rapidly and effectively prevent FMDV replication and dissemination. Foot-and-mouth disease virus (FMDV) causes a fast-spreading disease that affects farm animals, with economically and socially devastating consequences. Our study shows that inoculation with a constitutively active

  20. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ivičak-Kocjan, Karolina; Panter, Gabriela; Benčina, Mojca [Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana (Slovenia); The Centre of Excellence EN-FIST, 1000 Ljubljana (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana (Slovenia); The Centre of Excellence EN-FIST, 1000 Ljubljana (Slovenia); The Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana (Slovenia)

    2013-05-24

    Highlights: •The chimeric protein fusing flagellin to the TLR5 ectodomain is constitutively active. •Mutation P736H within the BB-loop of TLR5 TIR domain renders the receptor inactive. •The R90D mutation in flagellin inactivated autoactivation of the chimeric protein. •The 2:2 stoichiometry of the TLR5:flagellin complex is physiologically relevant. -- Abstract: Toll-like receptor 5 (TLR5) recognizes flagellin of most flagellated bacteria, enabling activation of the MyD88-dependent signaling pathway. The recently published crystal structure of a truncated zebrafish TLR5 ectodomain in complex with an inactive flagellin fragment indicated binding of two flagellin molecules to a TLR5 homodimer, however this complex did not dimerize in solution. In the present study, we aimed to determine the physiological stoichiometry of TLR5:flagellin activation by the use of a chimeric protein composed of an active flagellin fragment linked to the N-terminus of human TLR5 (SF-TLR5). This construct was constitutively active. Inactivation by the R90D mutation within flagellin demonstrated that autoactivation of the chimeric protein depended solely on the specific interaction between TLR5 and flagellin. Addition of wild-type hTLR5 substantially lowered autoactivation of SF-TLR5 in a concentration dependent manner, an effect which was reversible by the addition of exogenous Salmonella typhimurium flagellin, indicating the biological activity of a TLR5:flagellin complex with a 2:2 stoichiometry. These results, in addition to the combinations of inactive P736H mutation within the BB-loop of the TIR domain of TLR5 and SF-TLR5, further confirm the mechanism of TLR5 activation.

  1. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  2. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia.

    Science.gov (United States)

    Chong, Phyllis S Y; Zhou, Jianbiao; Cheong, Lip-Lee; Liu, Shaw-Cheng; Qian, Jingru; Guo, Tiannan; Sze, Siu Kwan; Zeng, Qi; Chng, Wee Joo

    2014-06-01

    PRL-3, an oncogenic dual-specificity phosphatase, is overexpressed in 50% of acute myelogenous leukemia (AML) and associated with poor survival. We found that stable expression of PRL-3 confers cytokine independence and growth advantage of AML cells. However, how PRL-3 mediates these functions in AML is not known. To comprehensively screen for PRL3-regulated proteins in AML, we performed SILAC-based quantitative proteomics analysis and discovered 398 significantly perturbed proteins after PRL-3 overexpression. We show that Leo1, a component of RNA polymerase II-associated factor (PAF) complex, is a novel and important mediator of PRL-3 oncogenic activi