WorldWideScience

Sample records for fusion imaging 18f-fdg

  1. (18)F-FDG PET imaging of murine atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Pedersen, Sune Folke; Christoffersen, Christina

    2012-01-01

    To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice....

  2. Oncological applications of 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Li Lin

    2000-01-01

    Considering normal distribution of 18 F-FDG in human body, 18 F-FDG imaging using PET can be applied to brain tumors, colorectal cancer, lymphoma, melanoma, lung cancer and head and neck cancer. The author briefly focuses on application of 18 F-FDG PET imaging to breast cancer, pancreatic cancer, hepatocellular carcinoma, musculoskeletal neoplasms, endocrine neoplasms, genitourinary neoplasms, esophageal and gastric carcinomas

  3. Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer

    International Nuclear Information System (INIS)

    Ueda, Shigeto; Tsuda, Hitoshi; Asakawa, Hideki

    2008-01-01

    Using integrated 18 F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging ( 18 F-FDG PET/CT), the clinical significance of 18 F-FDG uptake was evaluated in patients with primary breast cancer. Clinicopathological correlation with the level of maximum standardized uptake values (SUV) 60 min obtained from preoperative 18 F-FDG PET/CT were examined in 152 patients with primary breast cancer. The prognostic impact of the level of SUV was explored using simulated prognosis derived from computed program Adjuvant! in 136 (89%) patients with invasive ductal carcinoma (IDC). High SUV level was significantly correlated with tumor invasive size (≤2 cm) (P 18 F-FDG would be predictive of poor prognosis in patients with primary breast cancer, and aggressive features of cancer cells in patients with early breast cancer. 18 F-FDG PET/CT could be a useful tool to pretherapeutically predict biological characteristics and baseline risk of breast cancer. (author)

  4. Clinical significance of MRI/18F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    International Nuclear Information System (INIS)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi; Okazawa, Hidehiko; Kimura, Hirohiko; Kudo, Takashi

    2012-01-01

    18 F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/ 18 F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on 18 F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and 18 F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and 18 F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV max ). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV max was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV max with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV max . Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated with a poor postoperative neurological

  5. Clinical significance of MRI/{sup 18}F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi [University of Fukui, Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Okazawa, Hidehiko [University of Fukui, Department of Biomedical Imaging Research Center, Eiheiji, Fukui (Japan); Kimura, Hirohiko [University of Fukui, Departments of Radiology, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Kudo, Takashi [Nagasaki University, Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki (Japan)

    2012-10-15

    {sup 18}F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/{sup 18}F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on {sup 18}F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and {sup 18}F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and {sup 18}F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV{sub max}). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV{sub max} was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV{sub max} with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV{sub max}. Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated

  6. Using oral 18F-FDG for infection imaging

    International Nuclear Information System (INIS)

    Bolwell, Jacob J.

    2009-01-01

    Full text:A 22-year-old female with a complex medical history presented to our department with a complaint of pain around the site her Portocath (PaC). Multiple imaging techniques failed to identify any sign of infection around the pac. A 99 m Tc-Phytate Colloid labelled white cell (LWC) scan was arranged to identify any infective processes in or around the pac. Severe difficulty was encountered attempting to gain IV access aside from the pac and the LWC scan had to aborted. In order to identify infection of the pac a Positron Emission Tomography (PET) scan using oral administration 18F-fluorodeoxyglucose (18F-FDG) was arranged. The oral 18F-FDG PET scan showed active glucose metabolism around the site of the pac port and along the cathe tubing near the medial right clavicle. As a result of this the pac was removed and replaced and the patient is now receiving continued antibiotics and medication through her new POC. In conclusion we found oral administration of 18F-FDG to be a suitable alternative to IV administered 18F-FDG in on to obtain functional imaging in a case where there was severe difficulty in obtaining venous access.

  7. Low carbohydrate diet before 18F-FDG tumor imaging contributes to reduce myocardial 18F-FDG uptake

    International Nuclear Information System (INIS)

    Miao Weibing; Chen Shaoming; Zheng Shan; Wu Jing; Peng Jiequan; Jiang Zhihong

    2014-01-01

    Objective: To evaluate whether low carbohydrate diet before 18 F-FDG tumor imaging could reduce myocardial 18 F-FDG uptake. Methods: From April 2011 to January 2012, 70 patients were enrolled in this study.They were randomly divided into control group (34 cases) and test group (36 cases). Patients in control group were on regular diet, while those in test group had low carbohydrate diet in the evening before imaging. Blood samples were taken before injection of 18 F-FDG for the measurement of serum glucose, free fatty acid,insulin and ketone body. Whole body 18 F-FDG tomography was performed with dual-head coincidence SPECT. The myocardial uptake of FDG was assessed visually and scored as 0 for no uptake, 1 for uptake lower than liver, 2 for uptake similar to liver, 3 for uptake higher than liver, and 4 for remarkable uptake.The ratio of myocardium to liver (H/L) was calculated. Two-sample t test, Wilcoxon rank sum test and linear correlation analysis were performed. Results: The myocardial uptake in test group was significantly lower than that in control group with H/L ratios of 0.94±0.57 and 1.50±1.04, respectively (t=-2.75, P<0.05). The concentrations of serum free fatty acid and ketone body in test group were significantly higher than those in control group: (0.671±0.229) mmol/L vs (0.547±0.207) mmol/L and (0.88±0.60) mmol/L vs (0.57±0.32) mmol/L, t=2.38 and 2.67, both P<0.05. The concentrations of glucose and insulin were (5.28±1.06) mmol/L and (35.16±33.70) pmol/L in test group, which showed no significant difference with those in control group ((5.19±0.78) mmol/L and (41.64±35.13) pmol/L, t=0.39 and-0.79, both P>0.05). A negative correlation was found between the myocardial uptake of 18 F-FDG and serum free fatty acid/ketone body concentration (r=-0.40, -0.33, both P<0.01), respectively. There was no correlation between the myocardial uptake of 18 F-FDG and glucose/insulin (r=-0.02, 0.13, both P>0.05), respectively. Conclusion: Low carbohydrate

  8. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT.

    Science.gov (United States)

    Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A

    2014-03-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET

  9. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    International Nuclear Information System (INIS)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  10. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology

    DEFF Research Database (Denmark)

    Stauss, J.; Franzius, C.; Pfluger, T.

    2008-01-01

    tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published...

  11. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  12. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  13. Research progress in radiolabeling imaging mechanism and clinical applications of "1"8F-FDG

    International Nuclear Information System (INIS)

    Zhai Shizhen; Yang Zhi; Du Jin

    2011-01-01

    PET/CT is one of the most advanced technologies contemporarily, achieving the combination of anatomical imaging and functional imaging. "1"8F-FDG is the most important positron radiopharmaceutical, which was used over 95% in total PET/CT imaging. FDG- PET has been extensively used in diagnosis of several kinds of diseases such as tumor, cardiac disease and epilepsy. The present review provides the history, the quality control, the imaging mechanisms as well as the research progress of the clinical applications of "1"8F-FDG. (authors)

  14. Canine study on myocardial ischemic memory with 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Yang Minfu; Dou Kefei; Han Chunlei; Tian Yi; Zhang Ping; Yang Zihe; Yin Jiye; Wang Hao

    2012-01-01

    Objective: To explore whether the existence and duration of ischemia measured by dynamic 18 F-FDG PET/CT imaging correlated with the extent of myocardial ischemia in a canine model of myocardial ischemia-reperfusion. Methods: Canine coronary artery occlusion was carried out for 20 min (n=4) and for 40 min (n=4) followed by 24 h of open-artery reperfusion. All dogs underwent dynamic 18 F-FDG PET/CT and 99 Tc m -MIBI SPECT imaging at baseline and 1 h and 24 h after reperfusion.Quantitative analysis of myocardial 18 F-FDG uptake was performed using Carimas Core software,and the extraction ratio of 18 F-FDG (K) was calculated by the ratio of 18 F-FDG uptake rate in the ischemic area (k ischemia ) and normoperfused region (k normoperfused ). Echocardiographic data were also acquired between each PET/CT imaging study to detect the wall motion in the ischemic and normoperfused myocardium. Paired t test and non-parametric statistical tests, measured by SPSS 19.0, were used to analyze the data. Results: Coronary occlusion produced sustained, abnormal wall motion in the ischemic region for more than 1 h. Similar K values were demonstrated between the 20 min and 40 min groups at baseline (1.02 ±0.06 and 1.03 ±0.05, Z=-0.29, P>0.05). At 1 h after reperfusion, the reperfusion regions showed normal perfusion but with increased 18 F-FDG uptake, which was higher in the 40 min ischemic group than in the 20 min ischemic group (2.31 ±0.13 and 1.87 ±0.09, Z=-2.31, P<0.05). At 24 h after reperfusion, however, only the 40 min ischemic group showed slightly higher 18 F-FDG uptake than baseline (1.15 ± 0.02 and 1.03 ±0.05, t=4.32, P<0.05), whereas no significant difference was found in the 20 min ischemic group (1.05 ± 0.04 and 1.02 ± 0.06, t=0.87, P>0.05). Histological examination of the ischemic myocardium from both groups revealed neatly arranged cells without interstitial edema, hemorrhage nor inflammatory response. Conclusions: Myocardial 'ischemic memory' was

  15. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  16. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated

  17. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  18. 18F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats.

    Science.gov (United States)

    Matsusaka, Yohji; Nakahara, Tadaki; Takahashi, Kazuhiro; Iwabuchi, Yu; Nishime, Chiyoko; Kajimura, Mayumi; Jinzaki, Masahiro

    2017-12-01

    Red blood cells (RBCs) labeled with single-photon emitters have been clinically used for blood-pool imaging. Although some PET tracers have been introduced for blood-pool imaging, they have not yet been widely used. The present study investigated the feasibility of labeling RBCs with 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG) for blood-pool imaging with PET. RBCs isolated from venous blood of rats were washed with glucose-free phosphate-buffered saline and labeled with 18 F-FDG. To optimize labeling efficiency, the effects of glucose deprivation time and incubation (labeling) time with 18 F-FDG were investigated. Post-labeling stability was assessed by calculating the release fraction of radioactivity and identifying the chemical forms of 18 F in the released and intracellular components of 18 F-FDG-labeled RBCs incubated in plasma. Just after intravenous injection of the optimized autologous 18 F-FDG-labeled RBCs, dynamic PET scans were performed to evaluate in vivo imaging in normal rats and intraabdominal bleeding models (temporary and persistent bleeding). The optimal durations of glucose deprivation and incubation (labeling) with 18 F-FDG were 60 and 30 min, respectively. As low as 10% of 18 F was released as the form of 18 F-FDG from 18 F-FDG-labeled RBCs after a 60-min incubation. Dynamic PET images of normal rats showed strong persistence in the cardiovascular system for at least 120 min. In the intraabdominal bleeding models, 18 F-FDG-labeled RBC PET visualized the extravascular blood clearly and revealed the dynamic changes of the extravascular radioactivity in the temporary and persistent bleeding. RBCs can be effectively labeled with 18 F-FDG and used for blood-pool imaging with PET in rats.

  19. Value of retrospective image fusion of 18F-FDG PET and MRI for preoperative staging of head and neck cancer: Comparison with PET/CT and contrast-enhanced neck MRI

    International Nuclear Information System (INIS)

    Kanda, Tomonori; Kitajima, Kazuhiro; Suenaga, Yuko; Konishi, Jyunya; Sasaki, Ryohei; Morimoto, Koichi; Saito, Miki; Otsuki, Naoki; Nibu, Ken-ichi; Sugimura, Kazuro

    2013-01-01

    Purpose: To assess the clinical value of retrospective image fusion of neck MRI and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET for locoregional extension and nodal staging of neck cancer. Materials and methods: Thirty patients with carcinoma of the oral cavity or hypopharynx underwent PET/CT and contrast-enhanced neck MRI for initial staging before surgery including primary tumor resection and neck dissection. Diagnostic performance of PET/CT, MRI, and retrospective image fusion of PET and MRI (fused PET/MRI) for assessment of the extent of the primary tumor (T stage) and metastasis to regional lymph nodes (N stage) was evaluated. Results: Accuracy for T status was 87% for fused PET/MRI and 90% for MRI, thus proving significantly superior to PET/CT, which had an accuracy of 67% (p = 0.041 and p = 0.023, respectively). Accuracy for N status was 77% for both fused PET/MRI and PET/CT, being superior to MRI, which had an accuracy of 63%, although the difference was not significant (p = 0.13). On a per-level basis, the sensitivity, specificity and accuracy for detection of nodal metastasis were 77%, 96% and 93% for both fused PET/MRI and PET/CT, compared with 49%, 99% and 91% for MRI, respectively. The differences for sensitivity (p = 0.0026) and accuracy (p = 0.041) were significant. Conclusion: Fused PET/MRI combining the individual advantages of MRI and PET is a valuable technique for assessment of staging neck cancer

  20. Value of retrospective image fusion of {sup 18}F-FDG PET and MRI for preoperative staging of head and neck cancer: Comparison with PET/CT and contrast-enhanced neck MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Tomonori [Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Radiology, Hyogo Cancer Center, Hyogo (Japan); Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Suenaga, Yuko; Konishi, Jyunya [Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Sasaki, Ryohei [Division of Radiation Oncology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Morimoto, Koichi; Saito, Miki; Otsuki, Naoki; Nibu, Ken-ichi [Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan)

    2013-11-01

    Purpose: To assess the clinical value of retrospective image fusion of neck MRI and {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) PET for locoregional extension and nodal staging of neck cancer. Materials and methods: Thirty patients with carcinoma of the oral cavity or hypopharynx underwent PET/CT and contrast-enhanced neck MRI for initial staging before surgery including primary tumor resection and neck dissection. Diagnostic performance of PET/CT, MRI, and retrospective image fusion of PET and MRI (fused PET/MRI) for assessment of the extent of the primary tumor (T stage) and metastasis to regional lymph nodes (N stage) was evaluated. Results: Accuracy for T status was 87% for fused PET/MRI and 90% for MRI, thus proving significantly superior to PET/CT, which had an accuracy of 67% (p = 0.041 and p = 0.023, respectively). Accuracy for N status was 77% for both fused PET/MRI and PET/CT, being superior to MRI, which had an accuracy of 63%, although the difference was not significant (p = 0.13). On a per-level basis, the sensitivity, specificity and accuracy for detection of nodal metastasis were 77%, 96% and 93% for both fused PET/MRI and PET/CT, compared with 49%, 99% and 91% for MRI, respectively. The differences for sensitivity (p = 0.0026) and accuracy (p = 0.041) were significant. Conclusion: Fused PET/MRI combining the individual advantages of MRI and PET is a valuable technique for assessment of staging neck cancer.

  1. PET imaging of cerebral metabolic change in tinnitus using 18F-FDG

    International Nuclear Information System (INIS)

    Tian Jiahe; Wang Hongtian; Yin Dayi; Yao Shulin; Shao Mingzhe; Yang Weiyan; Jiang Sichang

    2000-01-01

    Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq 18 F-FDG. To ensure the quality of the PET study, all cases followed a normalized procedure with visual and auditory blockage. CT/MRI imaging and routine acoustic tests were carried out in all subjects. PET revealed that an increased uptake of 18 F-FDG at left med-temporal lobe (primary auditory center, PAC) present exclusively in tinnitus, regardless the side of hearing hallucination. Significant asymmetry was noted between left and right PAC, but not at other cortex area. While control cases showed no asymmetric uptake between two hemispheres. The abnormal PAC uptake did not respond to external pure sound stimulus, nor did it relate to the severity of hearing loss assessed by acoustic tests. No anatomical or morphological alteration could be proven on CT/MRI. In conclusion, PET/ 18 F-FDG objectively revealed an increased metabolic change at left PAC in tinnitus, which is of diagnostic value; and there is evidence suggesting tinnitus is most likely induced by a functional change in the brain

  2. PET imaging of cerebral metabolic change in tinnitus using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Jiahe, Tian; Hongtian, Wang; Dayi, Yin; Shulin, Yao; Mingzhe, Shao; Weiyan, Yang; Sichang, Jiang [The PLA General Hospital, Beijing (China)

    2000-11-01

    Tinnitus is an auditory disorder hardly assessable by clinical technology. PET imaging of the brain in 13 cases with and 10 without tinnitus was undertaken at 40 min after injection of 280-440 MBq {sup 18}F-FDG. To ensure the quality of the PET study, all cases followed a normalized procedure with visual and auditory blockage. CT/MRI imaging and routine acoustic tests were carried out in all subjects. PET revealed that an increased uptake of {sup 18}F-FDG at left med-temporal lobe (primary auditory center, PAC) present exclusively in tinnitus, regardless the side of hearing hallucination. Significant asymmetry was noted between left and right PAC, but not at other cortex area. While control cases showed no asymmetric uptake between two hemispheres. The abnormal PAC uptake did not respond to external pure sound stimulus, nor did it relate to the severity of hearing loss assessed by acoustic tests. No anatomical or morphological alteration could be proven on CT/MRI. In conclusion, PET/{sup 18}F-FDG objectively revealed an increased metabolic change at left PAC in tinnitus, which is of diagnostic value; and there is evidence suggesting tinnitus is most likely induced by a functional change in the brain.

  3. A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images.

    Science.gov (United States)

    Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming

    2016-01-01

    It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after

  4. Imaging findings and literature review of 18F-FDG PET/CT in primary systemic AL amyloidosis

    International Nuclear Information System (INIS)

    Lee, Joo Hee; Lee, Ga Yeon; Kim, Seok Jin; Kim, Ki Hyun; Jeon, Eun Seok; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young

    2015-01-01

    Although several case reports and case series have described 18 F-FDG PET/CT in amyloidosis, the value of 18 F-FDG PET/CT for diagnosing amyloidosis has not been clarified. We investigated the imaging findings of 18 F-FDG PET/CT in patients with primary systemic AL amyloidosis. Subjects were 15 patients (M:F = 12:3; age, 61.5 ± 7.4 years) with histologically confirmed primary systemic AL amyloidosis who underwent pretreatment 18 F-FDG PET/CT to rule out the possibility of malignancy or for initial workup of alleged cancer. For involved organs, visual and semiquantitative analyses were performed on 18 F-FDG PET/CT images. In total, 22 organs (10 hearts, 5 kidneys, 2 stomachs, 2 colons, 1 ileum, 1 pancreas, and 1 liver) were histologically confirmed to have primary systemic AL amyloidosis. F-FDG uptake was significantly increased in 15 of the 22 organs (68.2 %; 10 hearts, 2 kidneys, 1 colon, 1 ileum, and 1 liver; SUV max  = 7.0 ± 3.2, range 2.1–14.1). However, in 11 of 15 PET-positive organs (78.6 %; 10 hearts and the ileum), it was difficult to differentiate pathological uptake from physiological uptake. Definitely abnormal 18 F-FDG uptake was found in only 4 of the 22 organs (18.2 %; 2 kidneys, 1 colon, and the liver). 18 F-FDG uptake was negative for pancreas and gastric lesions. Although 18 F-FDG PET/CT showed high uptake in two-thirds of the organs involving primary systemic AL amyloidosis, its sensitivity appeared to be low to make differentiation of pathological uptake from physiological uptake. However, due to the small number of cases, further study for the role of 18 F-FDG PET/CT in amyloidosis will be warranted

  5. Automatic extraction analysis of the anatomical functional area for normal brain 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Guo Wanhua; Jiang Xufeng; Zhang Liying; Lu Zhongwei; Li Peiyong; Zhu Chengmo; Zhang Jiange; Pan Jiapu

    2003-01-01

    Using self-designed automatic extraction software of brain functional area, the grey scale distribution of 18 F-FDG imaging and the relationship between the 18 F-FDG accumulation of brain anatomic function area and the 18 F-FDG injected dose, the level of glucose, the age, etc., were studied. According to the Talairach coordinate system, after rotation, drift and plastic deformation, the 18 F-FDG PET imaging was registered into the Talairach coordinate atlas, and then the average gray value scale ratios between individual brain anatomic functional area and whole brain area was calculated. Further more the statistics of the relationship between the 18 F-FDG accumulation of every brain anatomic function area and the 18 F-FDG injected dose, the level of glucose and the age were tested by using multiple stepwise regression model. After images' registration, smoothing and extraction, main cerebral cortex of the 18 F-FDG PET brain imaging can be successfully localized and extracted, such as frontal lobe, parietal lobe, occipital lobe, temporal lobe, cerebellum, brain ventricle, thalamus and hippocampus. The average ratios to the inner reference of every brain anatomic functional area were 1.01 ± 0.15. By multiple stepwise regression with the exception of thalamus and hippocampus, the grey scale of all the brain functional area was negatively correlated to the ages, but with no correlation to blood sugar and dose in all areas. To the 18 F-FDG PET imaging, the brain functional area extraction program could automatically delineate most of the cerebral cortical area, and also successfully reflect the brain blood and metabolic study, but extraction of the more detailed area needs further investigation

  6. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer

    International Nuclear Information System (INIS)

    Ueda, Shigeto; Ishida, Jiro; Abe, Yoshiyuki; Mochizuki, Hidetaka; Tsuda, Hitoshi; Asakawa, Hideki; Omata, Jiro; Fukatsu, Kazuhiko; Kondo, Nobuo; Kondo, Tadaharu; Hama, Yukihiro; Tamura, Katsumi

    2008-01-01

    Accurate evaluation of axillary lymph node (ALN) involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18 F-fluorodeoxyglucose ( 18 F-FDG PET/CT) and axillary ultrasonography (AUS) for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18 F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB) and preoperative systemic chemotherapy (PSC). One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18 F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND). Using 18 F-FDG PET/CT, we studied both a visual assessment of 18 F-FDG uptake and standardized uptake value (SUV) for axillary staging. In a visual assessment of 18 F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18 F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18 F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12) in 18 F-FDG PET uptake only, 80% (4 of 5) in AUS positive only, and 100% (28 of 28) in dual positive. By the combination of AUS and 18 F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18 F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03). The diagnostic accuracy of 18 F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their limited sensitivities, the high radiation

  7. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT in combination with ultrasonography for axillary staging in primary breast cancer

    Directory of Open Access Journals (Sweden)

    Tamura Katsumi

    2008-06-01

    Full Text Available Abstract Background Accurate evaluation of axillary lymph node (ALN involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT and axillary ultrasonography (AUS for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB and preoperative systemic chemotherapy (PSC. Methods One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND. Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV for axillary staging. Results In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12 in 18F-FDG PET uptake only, 80% (4 of 5 in AUS positive only, and 100% (28 of 28 in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03. Conclusion The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their

  8. Clinical value of 18F-FDG coincidence imaging for diagnosis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Ning Yanli; Lou Cen; Huang Zhongke; Shi Guohua; Chen Dongfang; Mu Da

    2012-01-01

    Objective: To investigate the value of 18 F-FDG coincidence imaging for diagnosis of nasopharyngeal carcinoma. Methods: A total of 45 patients with nasopharyngeal carcinoma (33 males and 12 females, average age (55.56 ± 13.50) years), who underwent 18 F-FDG coincidence imaging before treatment, were studied retrospectively. The images of 18 F-FDG coincidence imaging (GE Millennium VG SPECT) and MRI were analyzed. The radioactivity ratio of the accumulated regions to cerebellum (T/NT)was calculated by ROI technique. The volume of nasopharyngeal carcinoma was recorded by MRI. The positive rates of 18 F-FDG coincidence imaging and EB virus-related antibody measurements were compared by paired χ 2 test. The correlation between T/NT ratios and tumor volumes were tested by Pearson correlation, and then ROC curves were established. The T/NT ratios and tumor volumes of different groups (different first symptoms, clinical stages, T stages, pathological classification and outcomes, with or without lymph node enlargement) were compared by t-test and rank sum test. Results: The positive rate of 18 F-FDG coincidence imaging was 97.78% (44/45), and the positive rate of EB virus-related antibody measurement was 95.56% (43/45, χ 2 =1.33, P>0.05). The T/NT ratio (2.439 ±1.119) and tumor volume ((7.311 ± 8.280) cm 3 ) of primary lesions had a positive correlation (r=0.463, P<0.05). The cut-off values of T/NT ratio and the tumor volume were 2.396 and 7.348 cm 3 , respectively, by ROC curves. T/NT ratios in groups with or without first symptom of epistaxis (2.847 ± 1.254 vs 2.082 ± 0.863, t=-2.409) and groups with or without facial numbness (2.855 ± 1.261 vs 2.134 ± 0.913, t=-2.225) were both significantly different (both P<0.05). T/NT ratios of differentiated and undifferentiated cancer were 2.266 ± 0.997 and 2.971 ± 1.351, respectively (t=-2.018, P<0.05). There was a significant difference of tumor volumes between groups with or without facial numbness (t=-2.684, P<0

  9. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent.

    Science.gov (United States)

    AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M

    2015-10-01

    Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. 123I-Mibg scintigraphy and 18F-Fdg-Pet imaging for diagnosing neuroblastoma

    Science.gov (United States)

    Bleeker, Gitta; Tytgat, Godelieve Am; Adam, Judit A; Caron, Huib N; Kremer, Leontien Cm; Hooft, Lotty; van Dalen, Elvira C

    2015-01-01

    Background Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood. Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (123I-MIBG), which can be used for imaging the tumour. Moreover, 123I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of 123I-MIBG scintigraphy to detect neuroblastoma varies according to the literature. Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of 123I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of 123I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose (18F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. Objectives Primary objectives: 1.1 To determine the diagnostic accuracy of 123I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 1.2 To determine the diagnostic accuracy of negative 123I-MIBG scintigraphy in combination with 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. Secondary objectives: 2.1 To determine the diagnostic accuracy of 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 2.2 To compare the diagnostic accuracy of 123I

  11. Effect of 18F-FDG dosage alternation on final PET image

    International Nuclear Information System (INIS)

    Yin Dayi; Yao Shulin; Chen Yingmao; Shao Mingzhe; Tian Jiahe

    2002-01-01

    Objective: To assess PET reconstructed image effected by different 18 F-FDG dosages with quantitative and qualitative analysis. Methods: To perform PET phantom acquisition by routine clinical parameters after filled with different doses of 18 F-FDG solution. An identical slice was extracted from reconstructed image for doing following analysis: the hot area standard uptake value (SUV), the ratio of hot area to cold area, the standard deviation on background area, the ratio of true coincidence to random. Results: 296 MBq: The image uniformity was terribly worse, T/R=0.83, other indexes were irregular. 148 MBq: The image presentation looked like the image without attenuation correction, T/R=1.64, other indexes were moderate. 74, 37 and 18.5 MBq: The images were with excellent uniformity, resolution and contrast, the background noise was suitable, all of the quantitative indexes were good. 9.25 and 4.625 MBq: The uniformity and resolution was degraded terribly because of the higher noise and lower information. Conclusion: Combining above results with other considerations, such as radiation exposure, information amount and acquisition time, the authors think the optimal dosage should be 4.625-11.1 MBq/kg

  12. The manifestation of 18F-FDG imaging of coincidence SPECT in benign pulmonary diseases

    International Nuclear Information System (INIS)

    Miao Jisheng; Liu Jinjun; Wu Jiyong; Pan Huizhong; Wang Huoqiang; Shen Yi; Shi Degang

    2001-01-01

    Objective: To study the uptake of the 18 F-FDG in the benign pulmonary diseases with dual head SPECT coincidence detection system. Methods: Scanning were performed with dual head SPECT coincidence detection system for patients with pulmonary diseases,the uptake and the imaging characteristic of the diseases were analysed. Results: 1) In 28 tuberculosis (TB) patients, 19 cases with a negative imaging (68%, 19/28), whereas 9 cases with a positive result (32%, 9/28). The T/N value of the TB is 1.7 +- 1.2, but the T/N of the lung cancer is 4.1 +- 2.4, significantly different from them. In the skin PPD test, 9 cases with positive scans showed a 16.2 (12 - 22) mm diameter red spot, but 7 cases of negative scans with a 8.6 (0 - 15) mm diameter, both also have a significant difference. 2) Out of the 8 patients suffered from sarcoidosis, among them 5 active stage with positive scans, whereas another 3 remission cases with negative results. 3) In 18 inflammation cases, positive imagings were showed in 6 patients with cryptococcosis, mycoplasma pneumonia, mycosis, organized pneumonia, lung abscess and bacteria pneumonia. Conclusions: In some benign pulmonary diseases, 18 F-FDG imaging can be positive also. Analysing the characteristic of the imaging could rise specificity in lung cancer and also give some new clues to treatment of these benign pulmonary diseases

  13. Value of 18F-FDG PET imaging for differentiation of benign and malignant pancreatic mass

    International Nuclear Information System (INIS)

    Zhang Liying; Guo Wanhua; Guan Liang; Li Peiyong

    2002-01-01

    To evaluate the value of positron emission tomography (PET) imaging with 18 F-FDG in differentiation of benign and malignant pancreatic mass. 12 patients with pancreatic occupying lesion diagnosed by ultrasound or CT/MR including 7 pancreatic cancer and 5 pancreatitis underwent 18 F-FDG PET imaging. Visual interpretation and semiquantitative analysis by calculating the tumor/liver (T/L) ratio based on ROI were performed on attenuation corrected images. 9 positive findings were detected. Among them, 7 were confirmed to be cancer, but the other 2 were mass-forming pancreatitis. Final diagnoses of the 3 patients with negative findings were confirmed to be pancreatitis. The mean T/L ratio was 2.58 +- 0.95 in pancreatic cancer, significantly higher than that in pancreatitis (1.29 +- 0.87) (p = 0.037). With a T/L ratio cutoff value of 1.5, all 7 cancer patients were correctly categorized. However, one pancreatitis had T/L ratio higher than 1.5. 18 F-FEG PET imaging was a potential reliable method in differentiating benign or malignant pancreatic mass with high negative predictive value, but the specificity was limited. Semiquantitative analysis may improve the accuracy of the diagnosis

  14. Effect of subcutaneous injection of insulin on 18F-FDG myocardial imaging in diabetics

    International Nuclear Information System (INIS)

    Tian Yueqin; Shi Rongfang; Guo Feng; Wei Hongxing; Wu Qingwen; Liu Xiujie

    2001-01-01

    Objective: To evaluate the effect of subcutaneous injection of insulin on 18 F-fluorodeoxyglucose (FDG) myocardial imaging in patients with diabetes mellitus. Methods: Fifty-seven patients with coronary artery disease complicated with diabetes mellitus [mean age (60 +- 8) years] underwent 18 F-FDG PET and dual isotope simultaneous acquisition SPECT with 99 Tc m -MIBI/ 18 F-FDG. Thirty minutes before FDG injection, blood glucose was measured with an automatic glucose analyzer and insulin was subcutaneously used, the dose was adjusted according to the level of blood glucose. Results: Regression analysis showed that the insulin was positively associated with blood glucose. The linear regression analysis showed that the correlation between dose of insulin (y) and blood glucose (x) was good, r 0.8172; the linear regression equation was y = -5.4 + 1.2x. 52 of 57 images were of good quality with 91% success rate. Conclusion: Subcutaneous injection of insulin is an effective and simple method for obtaining cardiac FDG images of good quality in patients with diabetes mellitus

  15. 18F-FDG PET imaging before and after capsulotomy in obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Guan Yihui; Sun Bomin; Zhang Haiying; Lin Xiangtong; Zuo Chuantao; Zhao Jun; Liu Yongchang

    2001-01-01

    Objective: To evaluate the therapeutic effect of surgery in obsessive-compulsive disorder (OCD) patients with 18 F-FDG PET imaging. Methods: 18 F-fluorodeoxyglucose (FDG)-PET images were obtained in 9 patients with OCD (6 male and 3 female) before and after 3 to 4 weeks of bilateral capsulotomy, PET images were also performed in 10 controls. Each OCD patient was also evaluated both before and after the surgery by various neuropsychiatric tests including Y-BOCS, HAMA and HAMD. Results: Compare with normal controls, 9 cases of OCD demonstrated high 18 F-FDG uptake in frontal, cingulate, orbital gyri, caudate and thalamus. After capsulotomy, 6 of 9 cases showed better results, the metabolic ratios were also significant decreased in the following areas: anterior cingule gyrus: right (P < 0.001) left (P < 0.05), caudate nuclei: right (P < 0.01) left (P < 0.05), anterolateral orbital frontal cortex: right (P < 0.01) left (P < 0.05), there is no significant changes in bilateral thalamus. Meanwhile, the OCD scales also have significant decreased values in Y-BOCS (P < 0.05) and HARS (P < 0.001). Conclusions: These results indicated that cingule-striatum-pallidum-thalamic circuit is closely related to OCD, and glucose metabolism in these areas decreases significantly after bilateral capsulotomy

  16. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  17. Imaging findings and literature review of {sup 18}F-FDG PET/CT in primary systemic AL amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Hee; Lee, Ga Yeon; Kim, Seok Jin; Kim, Ki Hyun; Jeon, Eun Seok; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-09-15

    Although several case reports and case series have described {sup 18}F-FDG PET/CT in amyloidosis, the value of {sup 18}F-FDG PET/CT for diagnosing amyloidosis has not been clarified. We investigated the imaging findings of {sup 18}F-FDG PET/CT in patients with primary systemic AL amyloidosis. Subjects were 15 patients (M:F = 12:3; age, 61.5 ± 7.4 years) with histologically confirmed primary systemic AL amyloidosis who underwent pretreatment {sup 18}F-FDG PET/CT to rule out the possibility of malignancy or for initial workup of alleged cancer. For involved organs, visual and semiquantitative analyses were performed on {sup 18}F-FDG PET/CT images. In total, 22 organs (10 hearts, 5 kidneys, 2 stomachs, 2 colons, 1 ileum, 1 pancreas, and 1 liver) were histologically confirmed to have primary systemic AL amyloidosis. F-FDG uptake was significantly increased in 15 of the 22 organs (68.2 %; 10 hearts, 2 kidneys, 1 colon, 1 ileum, and 1 liver; SUV{sub max} = 7.0 ± 3.2, range 2.1–14.1). However, in 11 of 15 PET-positive organs (78.6 %; 10 hearts and the ileum), it was difficult to differentiate pathological uptake from physiological uptake. Definitely abnormal {sup 18}F-FDG uptake was found in only 4 of the 22 organs (18.2 %; 2 kidneys, 1 colon, and the liver). {sup 18}F-FDG uptake was negative for pancreas and gastric lesions. Although {sup 18}F-FDG PET/CT showed high uptake in two-thirds of the organs involving primary systemic AL amyloidosis, its sensitivity appeared to be low to make differentiation of pathological uptake from physiological uptake. However, due to the small number of cases, further study for the role of {sup 18}F-FDG PET/CT in amyloidosis will be warranted.

  18. 18F-FDG PET/CT imaging of 100 normal adrenal gland cases

    International Nuclear Information System (INIS)

    Yu Zhiguo; Qu Wanying; Yao Zhiming; Zheng Jianguo; Song Renhe; Liu Xiuqin

    2008-01-01

    Objective: The purpose of this study was to obtain the 18 F-fluorodeoxyglucose (FDG) uptake characteristics in normal adrenal gland as the criteria to diagnose abnormal glucose metabolism in ad- renal gland by 18 F-FDG PET or PET/CT imaging. Methods: One hundred healthy persons underwent 18 F- FDG PET/CT imaging in this study. The images were reviewed by visual judgement and measured by stand-ardized uptake value (SUV). With reference to normal liver, the uptake of adrenal gland was scored from 0 to 3, namely, 0=no uptake, 1=less than the uptake of normal liver, 2=equal to the uptake of normal liver, 3=more than the uptake of normal liver. SUV was measured on the trans-axial images. The regions of interest (ROIs) of adrenal glands and livers were manually drawn based on the CT images. Both average SUV (SUV avg ) and maximum SUV(SUV max ) were calculated. Results: (1) By visual judgment, 94% and 91% of left and right normal adrenal glands had uptake intensity less than that of livers. (2) The SUV avg of left and right adrenal glands were 1.39 and 1.65, and the SUV max 1.98 and 2.19, respectively with the up- per limit of 95% confidence interval (Cf). (3)The ratios of left and right adrenal glands SUV avg to livers SUV avg were 0.65 and 0.75 and left and right adrenal glands SUV max to livers SUV max were 0.76 and 0.83 respectively with the upper limit of 95% CI. (4)The uptake of right adrenal gland was higher than that of the left. (5)There was no significant difference of the SUVs between men and women, except that right ad- renal gland SUV max of men was higher than that of women. (6) There was no significant difference in 18 F- FDG uptake between persons younger and elder than 60 years old. Conclusion: The physiological FDG uptake of the adrenal gland in normal healthy individuals is generally lower than that of liver. (authors)

  19. Appropriate uptake period for myocardial PET imaging with 18F-FDG after oral glucose loading

    International Nuclear Information System (INIS)

    Brink, I.; Hentschell, M.; Hoegerle, S.; Moser, E.; Nitzsche, E.U.; Mix, M.; Schindler, T.

    2003-01-01

    Aim: Identification of a rationale for the appropriate uptake period for myocardial 18 F-FDG-PET imaging of patients with and without diabetes mellitus. Methods: In a subset of 27 patients, static 2D-PET examination was performed of patients with chronic coronary artery disease and known myocardial infarction. The patients fasted (at least 4 h) before examination. 18 F-FDG (330 ± 20 MBq) was injected intravenously. The image quality was semiquantitativly determined by ROI-analysis and the myocardium-to-blood pool activity ratio (M/B) was calculated. I.) Scans 30, 60, and 90 min p. i. of 10 non-diabetic patients (60 g oral glucose loading one hour before FDG-injection, low-dose intravenous insulin bolus if necessary). II.) Scans 30, 60, and 90 min p. i. of 10 patients with known non-insulin dependent diabetes (20 g glucose, insulin bolus). III.) Scans 90 min p. i. of 7 patients with known non-insulin dependent diabetes and elevated fasting serum glucose level (140-200 mg/dl; insulin bolus, no glucose). Results: I.) The M/B ratio significantly increases in non-diabetic patients with the uptake time (30 min 1.95 ± 0.20; 60 min 2.96 ± 0.36; 90 min 3.78 ± 0.43). II.) In patients with non-insulin dependent diabetes the M/B ratio also significantly increases with uptake time. Compared to non-diabetic patients group II reached smaller M/B values (30 min 1.56 ± 0.10; 60 min 2.15 ± 0.14; 90 min 2.71 ± 0.19). III.) In the group of patients with elevated fasting serum glucose level (who only got insulin but no glucose loading) the M/B activity ratio 90 min p. i. was clearly inferior compared with diabetic patients after oral glucose loading and insulin administration (M/B 2.71 ± 0.19 versus 2.16 ± 0.07). Conclusions: In static myocardial viability PET studies with 18 F-FDG an uptake time of 90 min yields image quality superior to that obtained after shorter uptake time. (orig.) [de

  20. SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells

    International Nuclear Information System (INIS)

    Zaman, R; Tuerkcan, S; Mahmoudi, M; Toshinobu, T; Kosuge, H; Yang, P; Chin, F; McConnell, M; Xing, L

    2015-01-01

    Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hour before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for each

  1. SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, R; Tuerkcan, S; Mahmoudi, M; Toshinobu, T; Kosuge, H; Yang, P; Chin, F; McConnell, M; Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hour before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for each

  2. Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Su, Ming Gang; Tian, Rong; Fan, Qiu Ping; Tian, Ye; Li, Fang Lan; Li, Lin; Kuang, An Ren; Miller, John Howard

    2011-01-01

    Fibrous dysplasia of bone (FDB) reveals intense 18F-FDG uptake mimicking metastases on 18F-FDG PET/CT. We reviewed sites of FDB revealed by 18F-FDG PET/CT imaging to allow identification of this abnormality. Eleven patients (7 male, 4 female, aged 16-78 years) were evaluated after 55 MBq (0.15 mCi)/kg 18F-FDG utilizing a 16-slice multiple detector CT (MDCT) whole-body PET scanner, with LOR algorithm 3D reconstruction. One- and 2-h imaging was performed in 9 patients. Standard uptake value (SUV) for each lesion, on early and delayed imaging, was calculated. Lesions were confirmed in 6 patients by biopsy. The PET images correlated with MDCT to establish the imaging characteristics. Solitary lesions were found in 4 patients, two lesions in 1 patient, and in 6 patients there were multiple bone lesions. The SUV early ranged from 1.23 to 9.64 with an average of 3.76 ± 2.40. The SUV delayed ranged from 1.76 to 11.42 with an average of 4.51 ± 3.07. The SUV delayed decreased or increased slightly (-31% to 5%) in 6 of our patients, and increased significantly (11% to 39%) in 3. There was a negative correlation between SUVs and age, as well as the number of affected bones. In our study, FDB had wide skeletal distribution with variability of 18F-FDG uptake and CT appearance. SUV in the delayed stage was seen to either decrease or increase on dual-time 18F-FDG PET scanning. It is very important to recognize the characteristics of this skeletal dysplasia to allow differentiation from skeletal metastasis. (orig.)

  3. Adrenal tuberculosis masquerading as disseminated malignancy: A pitfall of (18)F-FDG PET/CT Imaging.

    Science.gov (United States)

    Gorla, A K R; Gupta, K; Sood, A; Biswal, C K; Bhansali, A; Mittal, B R

    2016-01-01

    Non-invasive characterization of adrenal lesions is a commonly encountered diagnostic challenge. Characteristic clinical and correlative imaging findings may assist in only arriving at a probable diagnosis. Currently, (18)F-FDG PET/CT is considered to provide the most comprehensive imaging information. We here present a case of bilateral adrenal tuberculosis that highlights the need for caution during the interpretation of (18)F-FDG PET/CT and also the need to suggest histopathological correlation. Copyright © 2016 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  4. Extramedullary Solitary Plasmacytoma: Demonstrating the Role of 18F-FDG PET Imaging.

    Science.gov (United States)

    Gautam, Archana; Sahu, Kamal Kant; Alamgir, Ahsan; Siddiqi, Imran; Ailawadhi, Sikander

    2017-04-01

    An Extramedullary Plasmacytoma (EMP) is characterized by a neoplastic proliferation of clonal plasma cells outside the medullary cavity. EMPs are a rare occurrence compared to other malignant plasma cell disorders and account for approximately 3-5% of plasma-cell neoplasms. Although most cases of EMP are not immediately life threatening at diagnosis, EMPs can progress to Multiple Myeloma (MM) and thus, warrant monitoring. Currently, there are no standard guidelines for when and how to monitor patients who are diagnosed with or treated for a solitary plasmacytoma. We present a case of solitary EMP who was treated adequately and definitively but developed a distinct, non-contiguous subsequent solitary EMP and was only discovered due to surveillance 18 F-Fludeoxyglucose Positron Emission Tomography ( 18 F-FDG) (PET) scan. Uniform surveillance guidelines should be developed and the potential benefits of PET and other imaging techniques as well as their cost should be considered.

  5. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Directory of Open Access Journals (Sweden)

    Knopp Michael V

    2007-12-01

    Full Text Available Abstract Background 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing 18F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection. Methods Two breast cancer patients were evaluated. 18F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered 18F-FDG dose. Results One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions. Conclusion Immediate preoperative and postoperative PET/CT imaging, utilizing the same 18F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and

  6. Experimental study of the molecular mechanisms of myocardial ischemic memory with 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Yang Minfu; Ye Jue; Yang Zihe; Dou Kefei; Tian Yi; Han Chunlei

    2012-01-01

    This study was aimed to explore whether the changes of mRNA and the existence and duration of ischemic 18 F-FDG uptake correlate with the extent of myocardial ischemia in ischemia-reperfusion canine model. The 20-minute (n= 4) and 40-minute (n=4) coronary artery occlusion followed by 24 h of open-artery reperfusion in canine model were per- formed. All dogs underwent fasting (>12 h) dynamic 18 F-FDG PET/CT and 99 Tc m -MIBI SPECT imaging at baseline, 1 h and 24 h after reperfusion. When all imaging were completed, myocardial samples from the ischemic and nonischemic region were obtained, and the mRNA expression of glucose transporter-l (GLUT-1), glucose transporter-4 (GLUT-4), and heart-fatty acid binding protein (H-FABP) were estimated by Real Time PCR. There was no difference in the ratio of hypoperfused region/nomoperfused region of 18 F-FDG up- take between the 20-minute group and 40-minute group at baseline. When examined at 1 h, increased 18 F-FDG uptake was observed in the 40-minute group. When estimated at 24 h, only the 40-minute group showed slightly higher 18 F-FDG uptake than baseline, whereas no such difference was demonstrated in the 20-minute group. Similar mRNA expression of GLUT-1, GLUT-4 and H-FABP were demonstrated in the nonischemic regions between the 2 groups, whereas increased expressions of GLUT-1 and GLUT-4, and decreased H-FABP mRNA were demonstrated in the ischemic regions. The changes of mRNA expression were more obvious in the 40 minute group than in the 20-minute group. The results showed that the existence and persistent period of ischemic 18 F-FDG uptake (ischemic memory) was correlated with the extent of myocardial ischemia. (authors)

  7. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET

    International Nuclear Information System (INIS)

    Ossenkoppele, Rik; Tolboom, Nelleke; Adriaanse, Sofie F.; Foster-Dingley, Jessica C.; Boellaard, Ronald; Yaqub, Maqsood; Windhorst, Albert D.; Lammertsma, Adriaan A.; Berckel, Bart N.M. van; Barkhof, Frederik; Scheltens, Philip; Flier, Wiesje M. van der

    2012-01-01

    [ 11 C]PIB and [ 18 F]FDDNP are PET tracers for in vivo detection of the neuropathology underlying Alzheimer's disease (AD). [ 18 F]FDG is a glucose analogue and its uptake reflects metabolic activity. The purpose of this study was to examine longitudinal changes in these tracers in patients with AD or mild cognitive impairment (MCI) and in healthy controls. Longitudinal, paired, dynamic [ 11 C]PIB and [ 18 F]FDDNP (90 min each) and static [ 18 F]FDG (15 min) PET scans were obtained in 11 controls, 12 MCI patients and 8 AD patients. The mean interval between baseline and follow-up was 2.5 years (range 2.0-4.0 years). Parametric [ 11 C]PIB and [ 18 F]FDDNP images of binding potential (BP ND ) and [ 18 F]FDG standardized uptake value ratio (SUVr) images were generated. A significant increase in global cortical [ 11 C]PIB BP ND was found in MCI patients, but no changes were observed in AD patients or controls. Subsequent regional analysis revealed that this increase in [ 11 C]PIB BP ND in MCI patients was most prominent in the lateral temporal lobe (p 18 F]FDDNP, no changes in global BP ND were found. [ 18 F]FDG uptake was reduced at follow-up in the AD group only, especially in frontal, parietal and lateral temporal lobes (all p 11 C]PIB binding (ρ = -0.42, p 18 F]FDG uptake (ρ = 0.54, p 18 F]FDDNP binding (ρ = -0.18, p = 0.35) were not. [ 11 C]PIB and [ 18 F]FDG track molecular changes in different stages of AD. We found increased amyloid load in MCI patients and progressive metabolic impairment in AD patients. [ 18 F]FDDNP seems to be less useful for examining disease progression. (orig.)

  8. Significance of 18F-FDG PET/CT imaging in the evaluation of the efficacy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    CHEN Chengcheng; WANG Zhengguang; CHENG Nan

    2014-01-01

    To evaluate the 18F-labeled deoxyglucose (18F-FDG) PET/CT imaging in the evaluation of the efficacy of ly-mphoma significance.Methods:42 cases of our hospital patients with malignant lymphoma for 2-5 times 18F-FDG PET/CT imaging results in the treatment process, and the treatment process simple CT results were compared and analyzed, the final results were confirmed by pathology and clinical. Results:The lesions were found in153,including 141 malignant, benign 12, sensitivity, specificity, and accuracy evaluating of lymphoma treatment effect of 18F-FDG PET/CT were, 99.30%, 91.67%, 98.70%, were significantly better than CT examination (P18F-FDG PET/CT in the evaluation of ly-mphoma treatment was superior to CT scan purely, it is an effective means of monitoring the efficacy of lymphoma, it can provide the basis for effective treatment programs in clinical work.

  9. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response.

    Science.gov (United States)

    Chacko, Ann-Marie; Watanabe, Satoru; Herr, Keira J; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M F; Cheung, Yin Bun; Low, Jenny G H; Vasudevan, Subhash G

    2017-05-04

    Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.

  10. 18F-FDG PET brain images as features for Alzheimer classification

    Science.gov (United States)

    Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.

    2017-08-01

    2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).

  11. Characterization of brown adipose tissue 18F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population

    International Nuclear Information System (INIS)

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    18 F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake 18 F-FDG. The purpose of this study was to determine the imaging characteristics of 18 F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of 18 F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of 18 F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had 18 F-FDG uptake in BAT. 18 F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of 18 F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUV max ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT 18 F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT 18 F-FDG uptake rate (P < 0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR < 1, P < 0.05). Based on the value of OR, the most significant factor that affects BAT 18 F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of 18 F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT 18 F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting 18 F-FDG uptake.

  12. 神经淋巴瘤病的18F-FDG PET/CT影像特征分析%Analysis of 18F-FDG PET/CT imaging features of neurolymphomatosis

    Institute of Scientific and Technical Information of China (English)

    方雷; 安建平; 赵辉; 毛军峰; 徐晓红; 李运; 代伟; 廖兰萍

    2014-01-01

    Objective To evaluate the imaging characteristics and value of 18F-FDG PET/CT in neurolymphomatosis.Methods Eight cases (3 males,5 females,age range: 35-82 years) with neurolymphomatosis confirmed by histopathology were included in this study.The imaging characteristics of the peripheral nerves surrounding the neurolymphoma lesions and contralateral normal tissue on 18F-FDG PET/CT were analyzed,and SUVmax was measured.Paired t test was used for data analysis by SPSS 12.0.Results Eleven lesions with increased 18F-FDG uptake in 8 cases distributed along the plexus,nerve bundle or intervertebral foramen,and shaped like bars,nodules or masses.The lesion SUVmax(6.54±3.23) was significantly higher than that of the contralateral normal peripheral nerves (1.15±0.48; t =9.357,P<0.001).The neurolymphoma lesions on CT showed no significant density change with reference to the surrounding tissue.Conclusions The most common 18F-FDG PET/CT features of neurolymphomatosis is high 18F-FDG uptake along the neurovascular plexus,bundles or intervertebral foramina with shapes like bars,nodules or masses.18F-FDG PET/CT is a useful tool for the localization and T staging of neurolymphomatosis.%目的 分析神经淋巴瘤病18 F-FDG PET/CT影像特征,并探讨其在评估神经淋巴瘤病中的应用价值.方法 回顾性分析经病理检查证实的8例神经淋巴瘤病患者(男3例,女5例,年龄35~ 82岁)18F-FDG PET/CT影像学资料,比较神经淋巴瘤病受累周围神经与健侧周围神经PET/CT表现的异同,并利用SPSS 12.0软件对两者SUVmax行配对t检验.结果 8例神经淋巴瘤病患者PET/CT共发现病灶11个,PET示病灶均沿神经丛、神经束或椎间孔走行,表现为束条形、根块状或结节状FDG代谢异常增高,SUVmax为6.54±3.23;病灶CT表现为沿神经束或神经根管走行的束条形、根块状或结节状软组织密度影,与周围软组织及邻近脂肪间隙分界不清.健侧对应部位周围神经在18F-FDG PET

  13. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    Science.gov (United States)

    Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  14. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    Directory of Open Access Journals (Sweden)

    Tien T Tang

    Full Text Available Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS at a dose of 7.5 Gy, or whole body irradiated (WBI with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this

  15. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jiayin [School of Electronics Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China and IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shi, Feng [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Lalush, David S. [Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Lin, Weili [MRI Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Shen, Dinggang, E-mail: dgshen@med.unc.edu [IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-09-15

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET

  16. The value of delayed 18F-FDG PET/CT imaging for differentiating axillary lymph nodes in breast cancer

    International Nuclear Information System (INIS)

    Ji, Young Sik; Son, Ju Cheol; Park, Cheol Woo

    2013-01-01

    Positron emission tomography/computed tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) have been used as a powerful fusion modality in nuclear medicine not only for detecting cancer but also for staging and therapy monitoring. Nevertheless, there are various causes of FDG uptake in normal and/or benign tissues. The purpose of present study was to investigate whether additional delayed imaging can improve the diagnosis to differentiate the rates of FDG uptake at axillary lymph nodes (ALN) between malignant and benign in breast cancer patients. 180 PET/CT images were obtained for 27 patients with ALN uptake. The patients who had radiotherapy and chemotherapy were excluded from the study. 18 F-FDG PET/CT scan at 50 min (early phase) and 90 min (delayed phase) after 18 F-FDG injection were included in this retrospective study. The staging of cancers was confirmed by final clinical according to radiologic follow-up and pathologic findings. The standardized uptake value (SUV) of ALN was measured at the Syngo Acquisition Workplace by Siemens. The 27 patients included 18 malignant and 9 ALN benign groups and the 18 malignant groups were classified into the 3 groups according to number of metastatic ALN in each patient. ALNs were categorized less than or equal 3 as N1, between 4 to 9 as N2 and more than 10 as N3 group. Results are expressed as the mean ± standard deviation (S.D.) and statistically analyzed by SPSS. As a result, Retention index (RI-SUV max) in metastasis was significantly higher than that in non-metastasis about 5 fold increased. On the other hand, RI-SUV max in N group tended to decrease gradually from N1 to N3. However, we could not prove significance statistically in malignant group with ANOVA. As a consequence, RI-SUV max was good indicator for differentiating ALN positive group from node negative group in breast cancer patients. These results show that dual-time-point scan appears to be useful in distinguishing malignant from benign

  17. Basic principles and applications of {sup 18}F-FDG-PET/CT in oral and maxillofacial imaging: A pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Omami, Galal [Dept. of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The Hong Kong University, Hong Kong (Hong Kong); Tamimi, Dania [BeamReaders Inc., Orlando (United States); Branstette, Barton F. [Dept. of Otolaryngology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh (United States)

    2014-12-15

    A combination of positron emission tomography (PET) with 18F-labeled fluoro-2-deoxyglucose ({sup 18}F-FDG) and computed tomography ({sup 18}F-FDG-PET/CT) has increasingly become a widely used imaging modality for the diagnosis and management of head and neck cancer. On the basis of both recent literature and our professional experience, we present a set of principles with pictorial illustrations and clinical applications of FDG-PET/CT in the evaluation and management planning of squamous cell carcinoma of the oral cavity and oropharynx. We feel that this paper will be of interest and will aid the learning of oral and maxillofacial radiology trainees and practitioners.

  18. Improved characterization of molecular phenotypes in breast lesions using 18F-FDG PET image homogeneity

    Science.gov (United States)

    Cao, Kunlin; Bhagalia, Roshni; Sood, Anup; Brogi, Edi; Mellinghoff, Ingo K.; Larson, Steven M.

    2015-03-01

    Positron emission tomography (PET) using uorodeoxyglucose (18F-FDG) is commonly used in the assessment of breast lesions by computing voxel-wise standardized uptake value (SUV) maps. Simple metrics derived from ensemble properties of SUVs within each identified breast lesion are routinely used for disease diagnosis. The maximum SUV within the lesion (SUVmax) is the most popular of these metrics. However these simple metrics are known to be error-prone and are susceptible to image noise. Finding reliable SUV map-based features that correlate to established molecular phenotypes of breast cancer (viz. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) expression) will enable non-invasive disease management. This study investigated 36 SUV features based on first and second order statistics, local histograms and texture of segmented lesions to predict ER and PR expression in 51 breast cancer patients. True ER and PR expression was obtained via immunohistochemistry (IHC) of tissue samples from each lesion. A supervised learning, adaptive boosting-support vector machine (AdaBoost-SVM), framework was used to select a subset of features to classify breast lesions into distinct phenotypes. Performance of the trained multi-feature classifier was compared against the baseline single-feature SUVmax classifier using receiver operating characteristic (ROC) curves. Results show that texture features encoding local lesion homogeneity extracted from gray-level co-occurrence matrices are the strongest discriminator of lesion ER expression. In particular, classifiers including these features increased prediction accuracy from 0.75 (baseline) to 0.82 and the area under the ROC curve from 0.64 (baseline) to 0.75.

  19. {sup 18}F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    Energy Technology Data Exchange (ETDEWEB)

    Bagrosky, Brian M. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States); Hayes, Kari L.; Fenton, Laura Z. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); Koo, Phillip J. [University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States)

    2013-08-15

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using {sup 18}F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in

  20. The result analysis of 18F-FDG imaging in suspected malignant pleural effusion or atelectasis on CT scanning

    International Nuclear Information System (INIS)

    Wang Huoqiang; Wu Jiyong; Pan Huizhong; Liu Jinjun; Zhao Xianguo

    2004-01-01

    Objective: To determine the ability of 18 F-fluorodeoxyglucose (FDG) dual-head tomography with coincidence (DHTC) imaging in detecting lung cancer in patients with suspected malignant pleural effusion or malignant atelectasis on CT scanning and to differentiate benign and malignant pleural effusions in patients with lung cancer. Methods: One hundred and ten patients with suspected malignant pleural effusion (n=84) or atelectasis (n=26) but without primary lesions in the lungs on CT scanning underwent 18 F-FDG DHTC. Results: Thirty-eight of 110 patients were proven with lung cancer. Among the 38 lung cancer patients, 30 of them had pleural effusion and 8 of them had atelectasis. Seventy-two of 110 patients were proven with benign lung diseases. The sensitivity, specificity and accuracy of 18 F-FDG DHTC for detecting lung cancer in patients with suspected malignant pleural effusion or atelectasis were 97%, 78% and 85%, respectively. In 30 patients with lung cancer plus pleural effusion, 18 F-FDG DHTC correctly detected the presence of malignant pleural effusion and malignant pleural metastatic involvement in 18 of 21 patients and excluded malignant pleural effusion or pleural metastatic involvement in 8 of 9 patients (sensitivity, specificity and accuracy of 86%, 8/9 and 87%, respectively). Conclusion: 18 F-FDG DHTC imaging is a highly accurate and reliable noninvasive test for detecting primary malignant lesions in lung in patients with pleural effusion or atelectasis findings on CT scanning and is useful to differentiate malignant from benign pleural effusion in patients with lung cancer. (authors)

  1. Combined early dynamic (18)F-FDG PET/CT and conventional whole-body (18)F-FDG PET/CT provide one-stop imaging for detecting hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang

    2015-06-01

    It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (PPET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  3. Evaluation of 19 cases of benign lesions with high accumulation of tracer on 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Wang Quanshi; Wu Hubing; Wang Mingfang; Huang Zuhan

    2003-01-01

    Objective: To review PET images of benign lesions with high accumulation of 18 F-FDG and to analyse the possibility of FDG PET imaging for differentiating the benign from the malignant. Methods: 18 F-FDG PET imaging was performed on 19 patients with benign diseases including 13 cases of active tuberculosis and 6 cases of other benign diseases. Positive pathologic or bacteriological results were obtained for all the patients. PET images were evaluated with standardized uptake value (SUV), lesion shapes , and radioactivity distribution. CT or MRI and histopathologic findings also were reviewed. Results: 1) Thirteen patients with active tuberculosis showed high uptake of 18 F-FDG. The SUV was 3.1±1.8. But radioactivity distribution in some lesions was not uniform and there were defect areas in the lesions. Histopathologic findings proved that the defect areas were induced by caseous necrosis. Seven cases of pulmonary tuberculosis showed two or multiple stripe and funicular high accumulation and other lesions displayed high uptake in sheet or irregular shape; 1 case of scrofula and 1 case of splenetic tuberculosis showed defect areas in the lesions; the other scrofula case showed focal intense uptake. Two of lumbar tuberculosis showed intense uptake in the lumbar vertebra, and one of the two cases complicated with the cold abscess showed bilateral high accumulation in the shape of sheet along musculus psoas major. In the peritoneal tuberculosis case, PET images showed diffuse incrassation and intense uptake in peritoneum and mesentery. CT findings revealed that the peritoneum and mesentery thickened. 2) Pulmonary abscess, pulmonary cryptococcus granuloma, cerebral cryptococcus granuloma, pulmonary inflammatory pseudotumor, leiomyoma, and breast adenoma all showed high accumulation in the shapes of nodule or mass. Mean SUV was 4.5±3.1. CT or MRI findings were the same as on PET images shape. Histopathologic work-up did not find necrosis in the lesions. Conclusions

  4. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Science.gov (United States)

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  5. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Myocardial infarction (MI causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro.Macrophages (both M1 and M2, human induced pluripotent stem cells (hiPSCs, and human amniotic mesenchymal stem cells (hAMSCs were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus and an Electron Multiplying Charge-Couple Device (EM-CCD camera. Custom-written software was developed in MATLAB for image processing.The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001 was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003 and macrophages (0.430±0.023 fCi/μm2, P = 0.002, respectively. hAMSCs exhibited the slowest influx (0.210 min-1 but the fastest efflux (0.327 min-1 rate compared to the other

  6. The value of dual time point 18F-FDG PET imaging for the differentiation between malignant and benign lesions

    International Nuclear Information System (INIS)

    Lan, X.-L.; Zhang, Y.-X.; Wu, Z.-J.; Jia, Q.; Wei, H.; Gao, Z.-R.

    2008-01-01

    Aim: To assess the clinical value of dual time point 2-[ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography ( 18 F-FDG PET) imaging for the differentiation between malignant and benign lesions. Materials and methods: Ninety-six patients (28 patients with primary lung cancer, 18 patients with digestive system carcinoma, 13 patients with other malignant tumours, and 37 patients with benign lesions) underwent FDG-PET/CT at two time points: examination 1 at 45-55 min and examination 2 at 160 ± 24 (150-180) min after the intravenous injection of 233 ± 52 (185-370) MBq 18 F-FDG. Reconstructed images were evaluated qualitatively and quantitatively. The maximum standardized uptake values (SUVmax) of the lesions were calculated for both time points. An increase was considered to have occurred if the SUVs at examination 2 had increased by >10% as compared with those at the examination 1. Results: The lesions in 24 of 28 (86%) patients with primary lung cancer had an SUVmax ≥2.5 at examination 1. Of these, SUVmax values increased in 23 patients, but had not changed in one patient, at examination 2. The lesions in the other four patients with primary lung tumour had SUVmax values between 1.5 and 2.5 at examination 1, which were considered as suspected positive, increased SUVmax values were observed in three of these patients at examination 2. The malignant lesions in 17 of 18 patients with digestive system carcinoma showed SUVmax values ≥2.5 and only one patient had an SUVmax value 18 F-FDG PET imaging is an important noninvasive method for the differentiation of malignant and nonmalignant lesions

  7. Assessment of aortitis by semiquantitative analysis of 180-min {sup 18}F-FDG PET/CT acquisition images

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, Isabel [University of Cantabria, Department of Nuclear Medicine, Marques de Valdecilla University Hospital, Santander (Spain); Hospital Universitario Marques de Valdecilla, S. Medicina Nuclear, Santander (Spain); Martinez-Amador, N.; Banzo, I.; Quirce, R.; Jimenez-Bonilla, J.; Arcocha-Torres, M. de; Ibanez-Bravo, S.; Lavado-Perez, C.; Bravo-Ferrer, Z.; Carril, J.M. [University of Cantabria, Department of Nuclear Medicine, Marques de Valdecilla University Hospital, Santander (Spain); Blanco, R.; Gonzalez-Gay, M.A. [University of Cantabria, Department of Rheumatology, Marques de Valdecilla University Hospital, Santander (Spain)

    2014-12-15

    The aim of this study was to evaluate the contribution of semiquantitative analysis of 180-min {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images for the assessment of aortitis in cases of suspected large vessel vasculitis (LVV) and to establish a threshold index for application in the clinical setting. This prospective study included 43 patients (mean age 67.5 ± 12.9 years) with suspicion of LVV (25 with a final diagnosis of aortitis). {sup 18}F-FDG PET/CT scan was acquired 180 min after injection of 7 MBq/kg of {sup 18}F-FDG. A semiquantitative analysis was performed calculating the aortic wall maximum standardized uptake value (SUV{sub max}) (T), the lumen SUV{sub max} (B) and the target to background ratio (TBR). These results were also compared with those obtained in a control population. The mean aortic wall SUV{sub max} was 2.00 ± 0.62 for patients with aortitis and 1.45 ± 0.31 for patients without aortitis (p < 0.0001). The TBR was 1.66 ± 0.26 for patients with aortitis and 1.24 ± 0.08 for patients without aortitis (p < 0.0001). The differences were also statistically significant when the patients with aortitis and controls were compared. Receiver-operating characteristic (ROC) analysis revealed that the area under the curve was greater for the TBR than for the aortic wall SUV{sub max} (0.997 vs 0.871). The highest sensitivity and specificity was obtained for a TBR of 1.34 (sensitivity 100 %, specificity 94.4 %). Semiquantitative analysis of PET/CT images acquired 180 min after {sup 18}F-FDG injection and the TBR index of 1.34 show very high accuracy and, therefore, are strongly recommended for the diagnosis of aortitis in the clinical setting. (orig.)

  8. Fever of unknown origin: A value of 18F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging

    International Nuclear Information System (INIS)

    Ferda, Jiri; Ferdova, Eva; Zahlava, Jan; Matejovic, Martin; Kreuzberg, Boris

    2010-01-01

    Aim: The aim of presented work is to evaluate the clinical value of 18 F-FDG-PET/CT in patients with fever of unknown origin (FUO) and to compare PET/CT finding with the results of the following investigation. Material and method: 48 patients (24 men, 24 women, mean age 57.6 years with range 15-89 years) underwent 18 F-FDG-PET/CT due to the fever of unknown origin. All examinations were performed using complex PET/CT protocol combined PET and whole diagnostic contrast enhanced CT with sub-millimeter spatial resolution (except patient with history of iodine hypersensitivity or sever renal impairment). CT data contained diagnostic images reconstructed with soft tissue and high-resolution algorithm. PET/CT finding were compared with results of biopsies, immunology, microbiology or autopsy. Results: The cause of FUO was explained according to the PET/CT findings and followed investigations in 44 of 48 cases-18 cases of microbial infections, nine cases of autoimmune inflammations, four cases of non-infectious granulomatous diseases, eight cases of malignancies and five cases of proved immunity disorders were found. In 46 cases, the PET/CT interpretation was correct. Only in one case, the cause was overlooked and the uptake in atherosclerotic changes of arteries was misinterpreted as vasculitis in the other. The reached sensitivity was 97% (43/44), and specificity 75% (3/4) respectively. Conclusion: In patients with fever of unknown origin, 18 F-FDG-PET/CT might enable the detection of its cause.

  9. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice

    International Nuclear Information System (INIS)

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M.; Wang, Yong; Wollert, Kai C.

    2015-01-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial 18 F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial 18 F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial 18 F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In contrast to

  10. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for {sup 18}F-FDG imaging of myocardial inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M. [Hanover Medical School, Department of Nuclear Medicine, Hanover (Germany); Wang, Yong; Wollert, Kai C. [Hanover Medical School, Department of Cardiology and Angiology, Hanover (Germany)

    2015-04-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial {sup 18}F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial {sup 18}F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial {sup 18}F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In

  11. Uterine leiomyosarcoma metastatic to thyroid shown by 18F-FDG PET/CT imaging.

    Science.gov (United States)

    Gauthé, M; Testart Dardel, N; Nascimento, C; Trassard, M; Banal, A; Alberini, J-L

    About one third of focal thyroid uptakes in a fluorodeoxyglucose (FDG) positron emission tomography/computerized tomography (PET/CT) study are malignant, the most frequent histological type being papillary carcinoma. Metastases to the thyroid account for approximately 7.5% of thyroid malignancies and come mainly from kidney, lung, head and neck, and breast cancers. We report the case of a 64-year-old woman presenting a fast growing thyroid nodule whose primitive or metastatic origin was not obvious, for which 18 F-FDG PET/CT helped in the diagnostic process and in the later management of the patient. Histopathologic findings finally revealed a metastasis of uterine leiomyosarcoma. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  12. Missed causative tumors in diagnosing tumor-induced osteomalacia with (18)F-FDG PET/CT: a potential pitfall of standard-field imaging.

    Science.gov (United States)

    Kaneuchi, Yoichi; Hakozaki, Michiyuki; Yamada, Hitoshi; Hasegawa, Osamu; Tajino, Takahiro; Konno, Shinichi

    2016-01-01

    We describe herein two tumor-induced osteomalacia (TIO) cases for whom the causative lesions, located in their popliteal fossa, that were not identified in the standard field of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT), which usually images only the head, trunk, and proximal parts of the extremities. A 47 years old Japanese man with multiple pathological fractures due to osteomalacia, accompanied by muscle weakness, hypophosphatemia, and an elevation of alkaline phosphatase (ALP) was referred to our hospital. A (18)F-FDG PET/CT scan was performed, but no (18)F-FDG uptake was detected in the standard field of imaging. Magnetic resonance imaging revealed a small subcutaneous tumor (1.9×1.2×0.6cm) of the left posteriomedial knee, displaying uniform enhancement on gadolinium-enhanced T1-weighted fat-suppression imaging. The tumor was resected widely and diagnosed as phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT). The other patient was a 31 years old Japanese woman with multiple pathological fractures, hypophosphatemia and elevated of ALP and was referred to our hospital on suspicion of TIO. Although the causative lesion was not identified in the standard field of (18)F-FDG PET/CT, (18)F-FDG uptake (SUVmax 2.9) was detected on the right knee in the additional whole-body (18)F-FDG PET/CT. Magnetic resonance imaging revealed a soft-tissue tumor (6.4×4.1×2.9cm) in the right posterior knee. Following biopsy, the tumor was marginally resected, and was pathologically diagnosed as PMTMCT. Once patients are suspected to have TIO, a whole-body nuclear imaging study such as (18)F-FDG PET/CT should be performed, in order not to miss the hidden causative tumor, especially occurring in the distal extremities.

  13. The Diagnostic Value of 18F-FDG PET/CT Imaging in Preoperative Staging of Colorectal Cancer%18F-FDG PET/CT显像在结直肠癌术前分期中的价值

    Institute of Scientific and Technical Information of China (English)

    王大龙; 于丽娟; 田墨涵; 任美丽; 张士德; 高波

    2012-01-01

    Objective To evaluate the value of 18F-FDG PET/CT on the TNM staging of colorectal cancer before surger-y. Materials and Methods 33 patients with colorectal tumor received 18F-FDG PET/CT before surgery. PET/CT findings were compared with pathological results and statistical analysis were performed. Results The sensitivity, accuracy of diagnosing primary colorectal lesions was 100% ,96. 97% respectively by PET/CT. The diagnostic accuracy of local chorion invasion and Lymph node metastasis and distant metastasis and TNM stage before operation in colorectal cancer were 75. 00% ,78. 12% ,96.87% ,71.87% respectively, and the correlation with pathological results were 0.429,0. 559,0. 920,0. 619, respectively ( P < 0. 05 ) . Kappa coefficients showed that the correlation between manifestations on PET/CT and operative pathology were good. Conclusion PET/CT is an effective diagnostic imaging method in evaluating the staging of colorectal carcinomas before surgery.%目的 探讨18F-FDG PET/CT在结直肠癌术前TNM分期中的应用价值.资料与方法 33例疑结直肠肿瘤患者均于手术治疗前行全身PET/CT扫描,将患者PET/CT检查结果与手术病理学检查结果进行比较分析.结果 PET/CT诊断结直肠癌原发灶的敏感性、准确性分别为100%和96.97%;PET/CT对术前结直肠癌侵犯局部浆膜、淋巴结转移、远处转移及TNM分期的准确性分别为75.00%、78.12%、96.87%和71.87%,经Kappa一致性检验,PET/CT 上述诊断结果与手术病理学检查结果具有较好的一致性(0.429,0.559,0.920,0.619,P均<0.05).结论 结直肠癌18F-FDG PET/CT术前检查,是结盲肠癌的术前临床分期中有效的影像学评价手段.

  14. A method of adjusting SUV for injection-acquisition time differences in {sup 18}F-FDG PET Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, Eric [Hopital du Haut Leveque, CHU de Bordeaux, Pessac (France); Centre de Recherche Cardio-Thoracique, Bordeaux (France); Hopital du Haut-Leveque, Service de Medecine Nucleaire, Pessac (France); Clermont, Henri de [Hopital du Haut Leveque, CHU de Bordeaux, Pessac (France); Marthan, Roger [Hopital du Haut Leveque, CHU de Bordeaux, Pessac (France); Centre de Recherche Cardio-Thoracique, Bordeaux (France)

    2011-11-15

    A time normalisation method of tumour SUVs in {sup 18}F-FDG PET imaging is proposed that has been verified in lung cancer patients. A two-compartment model analysis showed that, when SUV is not corrected for {sup 18}F physical decay (SUV{sub uncorr}), its value is within 5% of its peak value (t = 79 min) between 55 and 110 min after injection, in each individual patient. In 10 patients, each with 1 or more malignant lesions (n = 15), two PET acquisitions were performed within this time delay, and the maximal SUV of each lesion, both corrected and uncorrected, was assessed. No significant difference was found between the two uncorrected SUVs, whereas there was a significant difference between the two corrected ones: mean differences were 0.04 {+-} 0.22 and 3.24 {+-} 0.75 g.ml{sup -1}, respectively (95% confidence intervals). Therefore, a simple normalisation of decay-corrected SUV for time differences after injection is proposed: SUV{sub N} = 1.66*SUV{sub uncorr}, where the factor 1.66 arises from decay correction at t = 79 min. When {sup 18}F-FDG PET imaging is performed within the range 55-110 min after injection, a simple SUV normalisation for time differences after injection has been verified in patients with lung cancer, with a {+-}2.5% relative measurement uncertainty. (orig.)

  15. Identification of low variability textural features for heterogeneity quantification of 18F-FDG PET/CT imaging.

    Science.gov (United States)

    Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I

    To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (feature is, indeed, correlated (Ptextural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  16. Prediction of standard-dose brain PET image by using MRI and low-dose brain ["1"8F]FDG PET images

    International Nuclear Information System (INIS)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain ["1"8F]FDG PET image by using a low-dose brain ["1"8F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain ["1"8F]FDG PET image by low-dose brain ["1"8F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain ["1"8F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain ["1"8F]FDG PET image and substantially

  17. {sup 18}F-FDG PET as novel imaging biomarker for disease progression after ablation therapy in colorectal liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Samim, M. [University Medical Centre Utrecht, Department Surgery, Utrecht (Netherlands); University Medical Centre Utrecht, Department Radiology and Nuclear Medicine, Utrecht (Netherlands); Prevoo, W.; Wit-van der Veen, B.J. de; Stokkel, M.P.M. [Antoni van Leeuwenhoek Hospital, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Kuhlmann, K.F.; Ruers, T. [Antoni van Leeuwenhoek Hospital, Department Surgical Oncology, Amsterdam (Netherlands); Hillegersberg, R. van [University Medical Centre Utrecht, Department Surgery, Utrecht (Netherlands); Bosch, M.A.A.J. van den; Verkooijen, H.M.; Lam, M.G.E.H. [University Medical Centre Utrecht, Department Radiology and Nuclear Medicine, Utrecht (Netherlands)

    2017-07-15

    Recurrent disease following thermal ablation therapy is a frequently reported problem. Preoperative identification of patients with high risk of recurrent disease might enable individualized treatment based on patients' risk profile. The aim of the present work was to investigate the role of metabolic parameters derived from the pre-ablation {sup 18}F-FDG PET/CT as imaging biomarkers for recurrent disease in patients with colorectal liver metastases (CLM). Included in this retrospective study were all consecutive patients with CLM treated with percutaneous or open thermal ablation therapy who had a pre-treatment baseline {sup 18}F-FDG PET/CT available. Multivariable cox regression for survival analysis was performed using different models for the metabolic parameters (SUL{sub peak}, SUL{sub mean}, SUL{sub max}, partial volume corrected SUL{sub mean} (cSUL{sub mean}), and total lesion glycolysis (TLG)) corrected for tumour and procedure characteristics. The study endpoints were defined as local tumour progression free survival (LTP-FS), new intrahepatic recurrence free survival (NHR-FS) and extrahepatic recurrence free survival (EHR-FS). Clinical and imaging follow-up data was used as the reference standard. Fifty-four patients with 90 lesions were selected. Univariable cox regression analysis resulted in eight models. Multivariable analysis revealed that after adjusting for lesion size and the approach of the procedure, none of the metabolic parameters were associated with LTP-FS or EHR-FS. Percutaneous approach was significantly associated with a shorter LTP-FS. It was demonstrated that lower values of SUL{sub peak}, SUL{sub max}, SUL{sub mean}, and cSUL{sub mean} are associated with a significant better NHR-FS, independent of the lesion size and number and prior chemotherapy. We found no association between the metabolic parameters on pre-ablation {sup 18}F-FDG PET/CT and the LTP-FS. However, low values of the metabolic parameters were significantly

  18. Comparative studies of '18F-FDG PET/CT brain imaging and EEG in preoperative localization of temporal lobe epileptic focus

    International Nuclear Information System (INIS)

    Chen Ziqian; Zhao Chunlei; Liu Yao; Ni Ping; Zhong Qun; Bai Wei; Peng Dexin

    2012-01-01

    Objective: To compare the value of 18 F-FDG PET/CT brain imaging and EEG in preoperative localization of the epileptic focus at the temporal lobe. Methods: A total of 152 patients (108 males, 44 females, age ranged from 3 to 59 years old) with past history of temporal lobe epilepsy were included.All patients underwent 18 F-FDG PET/CT brain imaging and long-range or video EEG, and 29 patients underwent intracranial electrode EEG due to the failure to localize the disease focus by non-invasive methods.Histopathologic findings after operative treatment were considered the gold standard for disease localization. All patients were followed up for at least six months after the operation. The accuracy of the 18 F-FDG PET/CT brain imaging and long-range or video EEG examination were compared using χ 2 test. Results: The accuracy of locating the epileptic focus was 80.92% (123/152) for 18 F-FDG PET/CT brain imaging and 43.42% (66/152) for long-range or video EEG (χ 2 =22.72, P<0.01). The accuracy of locating the epileptic focus for the 29 cases with intracranial electrode EEG was 100%. Conclusions: Interictal 18 F-FDG PET/CT brain imaging is a sensitive and effective method to locate the temporal lobe epileptic focus and is better than long-range or video EEG. The combination of 18 F-FDG PET/CT brain imaging and intracranial electrode EEG examination can further improve the accuracy of locating the epileptic focus. (authors)

  19. Computer-aided diagnosis of interictal 18F-FDG PET images for presurgical evaluation of epileptic foci in extratemporal lobe epilepsy

    International Nuclear Information System (INIS)

    Imabayashi, Etsuko

    2003-01-01

    Interictal 18 F-FDG PET is beneficial to patients with epilepsy to define the epileptic foci before operation, especially to decide the laterality of temporal lobe epilepsy (TLE). However usefulness has not been clearly established in extra TLE. We retrospectively applied Z-score analysis to interictal preoperative 18 F-FDG PET images for detection of the epileptic foci in order to achieve better performance. Seventeen epileptic patients (women/men; 8/9, age; 11-55 yrs) underwent resection of epileptic foci with good outcome (Engel's stage of I or II) even after more than a year from operation. Presurgical 18 F-FDG PET images were spatially normalized using statistical parametric mapping 99 (SPM99) with an original Japanese template for 18 F-FDG and compared with normal database constructed from 31 healthy volunteers (women/men; 14/17, age; 19-59 yrs). A software program, easy Z-score imaging system (eZIS), for analysis of patient data was developed by calculating Z-score in each voxel and visualizing the score in a standardized stereotactic space; Z-score=(normal mean-patient's value)/a standard deviation of normal data. Detectability of epileptic foci for this computer-aided analysis was compared with visual inspection of original 18 F-FDG PET images by five radiologists without any clinical information. In all cases, there was significant reduction of glucose metabolism in the operated area. The sensitivities of the detection of epileptic foci obtained from visual inspection were 47-59%. In contrast to, computer analysis by eZIS showed 71% sensitivity when we defined the highest Z-score in the cerebrum to be the focus diagnosed by eZIS. Computer-aided diagnosis with eZIS for 18 F-FDG PET study is useful for detecting epileptic foci in extra TLE. (author)

  20. {sup 18}F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jahae; Song, Ho-Chun [Chonnam National University Hospital, Department of Nuclear Medicine, Gwangju (Korea, Republic of); Choi, Kang-Ho [Chonnam National University Hospital, Cerebrovascular Center, Gwangju (Korea, Republic of); Chonnam National University Hwasun Hospital, Department of Neurology, Hwasun-gun, Jeollanam-do (Korea, Republic of); Kim, Joon-Tae; Park, Man-Seok; Cho, Ki-Hyun [Chonnam National University Hospital, Cerebrovascular Center, Gwangju (Korea, Republic of)

    2016-11-15

    {sup 18}F-FDG PET/CT can acquire both anatomical and functional images in a single session. We investigated which factors of {sup 18}F-FDG PET/CT imaging have potential as biomarkers for an increased risk of ischaemic stroke in cancer patients. From among cancer patients presenting with various neurological symptoms and hemiparesis, 134 were selected as eligible for this retrospective analysis. A new infarct lesion on brain MRI within 1 year of FDG PET/CT defined future ischaemic stroke. The target-to-background ratio (TBR) of each arterial segment was used to define arterial inflammation on PET imaging. Abdominal obesity was defined in terms of the area and proportion of visceral adipose tissue (VAT), subcutaneous adipose tissue and total adipose tissue (TAT) on a single CT slice at the umbilical level. Ischaemic stroke confirmed by MRI occurred in 30 patients. Patients with stroke had higher TBRs in the carotid arteries and abdominal aorta (P < 0.001) and a higher VAT proportion (P = 0.021) and TAT proportion (P = 0.041) than patients without stroke. Multiple logistic regression analysis showed that TBRs of the carotid arteries and abdominal aorta, VAT and TAT proportions, and the presence of a metabolically active tumour were significantly associated with future ischaemic stroke. Combining PET and CT variables improved the power for predicting future ischaemic stroke. Our findings suggest that arterial FDG uptake and hypermetabolic malignancy on PET and the VAT proportion on CT could be independent predictors of future ischaemic stroke in patients with cancer and could identify those patients who would benefit from medical treatment. (orig.)

  1. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor.

    Science.gov (United States)

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W; Smith, Tim A D

    2011-02-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. (18)F-FDG is available at all PET centres. (18)F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its (18)F-labelling by conjugation with (18)F-FDG and confirm its ability to interact with avidin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: Synthesis and radio-labelling of a PEGylated precursor

    International Nuclear Information System (INIS)

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W.; Smith, Tim A.D.

    2011-01-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. 18 F-FDG is available at all PET centres. 18 F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its 18 F-labelling by conjugation with 18 F-FDG and confirm its ability to interact with avidin.

  3. 利尿后延迟18F-FDG PET/CT显像诊断直肠癌盆腔局部复发的临床研究%Clinical study of 18F-FDG PET/CT delayed imaging after diuretic in the diagnosis of pelvic local recurrence of rectal cancer

    Institute of Scientific and Technical Information of China (English)

    何强

    2017-01-01

    目的 观察利尿后延迟18F-FDG PET/CT显像诊断直肠癌盆腔局部复发的临床价值.方法 回顾性分析2013年2月至2015年10月在本院进行直肠癌根治术后复查的患者54例,均予以CT扫描与PET发射扫描,且扫描前予以插入导尿管、注射1500 mL的0.9%氯化钠溶液、口服葡萄糖20 min后推注速尿等进行膀胱准备,采用CT图像重建及PET图像重建并用CT图像对PET图像进行衰减校正.分析患者的CT及PET/CT融合图,并以病理结果为金标准计算18F-FDG PET/CT与CT诊断直肠癌术后盆腔局部复发的准确率.结果 54例患者病理结果证实共49例发生盆腔局部复发,复发率90.74%.利尿后延迟18F-FDG PET/CT与CT的特异性、阳性预测值分别为60.00%、28.57%与96.08%、91.43%,无明显差异(P>0.05).利尿后延迟18F-FDG PET/CT诊断直肠癌盆腔局部复发的敏感性、准确率、阴性预测值分别为100.00%、96.30%、100.00%,均显著高于CT(均P<0.05).结论 利尿后延迟18F-FDG PET/CT显像诊断直肠癌盆腔局部复发具有较高准确率,效果优于传统强化CT,值得推广应用.%Objective To evaluate the clinical value of 18F-FDG PET/CT delayed imaging after diuretic in the diagnosis of pelvic local recurrence of rectal cancer.Methods Clinical data of 54 patients undergoing radical resection of rectal cancer in our hospital from February 2013 to October 2015 were analyzed retrospectively.Patients were given CT scan and PET emission scan.Before the scan,1500 mL of 0.9% sodium chloride solution was administrated through catheter,followed by injection of furosemide after 20 min of oral glucose and other bladder preparation.CT and PET image reconstruction were performed and the PET images were attenuated and corrected with CT images.CT and PET/CT fusion images were analyzed and the accuracy of 18F-FDG PET/CT and CT in the diagnosis of postoperative recurrence of rectal cancer was evaluated with the pathological

  4. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    Science.gov (United States)

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  5. Diuretic {sup 18}F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Brusabhanu; Dogra, Prem Nath [All India Institute of Medical Sciences, Department of Urology, New Delhi (India); Naswa, Niraj [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Kumar, Rakesh [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); New Delhi (India)

    2013-03-15

    Positron emission tomography/computed tomography (PET/CT) with {sup 18}F-fluorodeoxyglucose (FDG) has been used with limited success in the past in primary diagnosis and locoregional staging of urinary bladder cancer, mainly because of the pharmacokinetics of renal excretion of {sup 18}F-FDG. In the present prospective study, we have evaluated the potential application of diuretic {sup 18}F-FDG PET/CT in improving detection and locoregional staging of urinary bladder tumours. Twenty-five patients suspected of having primary carcinoma of the urinary bladder were evaluated prospectively for diagnosis and staging. All of these 25 patients underwent conventional contrast-enhanced computed tomography (CECT) of the abdomen/pelvis and whole-body diuretic {sup 18}F-FDG PET/CT. In addition, pelvic PET/CT images were obtained using the special technique of forced diuresis using intravenous furosemide (20-40 mg). Of the 25 patients, 10 underwent radical cystectomy and 15 underwent transurethral resection of the bladder tumour (TURBT). Results of CECT and diuretic {sup 18}F-FDG PET/CT were compared considering histopathology as a reference standard. Of the 25 patients, CECT detected a primary tumour in 23 (sensitivity 92 %), while {sup 18}F-FDG PET/CT was positive in 24 patients (sensitivity 96 %). Mean size and maximum standardized uptake value of the bladder tumours were 3.33 cm (range 1.6-6.2) and 5.3 (range 1.3-11.7), respectively. Of the 25 patients, only 10 patients underwent radical cystectomy based on disease status on TURBT. Among those ten patients, nine had locoregional metastases. Among the nine patients who had positive lymph nodes for metastasis on histopathology, CECT and PET/CT scan had a sensitivity of 44 and 78 %, respectively. {sup 18}F-FDG PET/CT was found to be superior to CECT in the detection of the primary tumour and locoregional staging (p < 0.05). Diuretic {sup 18}F-FDG PET/CT is highly sensitive and specific and plays an important role in improving

  6. Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique

    International Nuclear Information System (INIS)

    Nayak, Brusabhanu; Dogra, Prem Nath; Naswa, Niraj; Kumar, Rakesh

    2013-01-01

    Positron emission tomography/computed tomography (PET/CT) with 18 F-fluorodeoxyglucose (FDG) has been used with limited success in the past in primary diagnosis and locoregional staging of urinary bladder cancer, mainly because of the pharmacokinetics of renal excretion of 18 F-FDG. In the present prospective study, we have evaluated the potential application of diuretic 18 F-FDG PET/CT in improving detection and locoregional staging of urinary bladder tumours. Twenty-five patients suspected of having primary carcinoma of the urinary bladder were evaluated prospectively for diagnosis and staging. All of these 25 patients underwent conventional contrast-enhanced computed tomography (CECT) of the abdomen/pelvis and whole-body diuretic 18 F-FDG PET/CT. In addition, pelvic PET/CT images were obtained using the special technique of forced diuresis using intravenous furosemide (20-40 mg). Of the 25 patients, 10 underwent radical cystectomy and 15 underwent transurethral resection of the bladder tumour (TURBT). Results of CECT and diuretic 18 F-FDG PET/CT were compared considering histopathology as a reference standard. Of the 25 patients, CECT detected a primary tumour in 23 (sensitivity 92 %), while 18 F-FDG PET/CT was positive in 24 patients (sensitivity 96 %). Mean size and maximum standardized uptake value of the bladder tumours were 3.33 cm (range 1.6-6.2) and 5.3 (range 1.3-11.7), respectively. Of the 25 patients, only 10 patients underwent radical cystectomy based on disease status on TURBT. Among those ten patients, nine had locoregional metastases. Among the nine patients who had positive lymph nodes for metastasis on histopathology, CECT and PET/CT scan had a sensitivity of 44 and 78 %, respectively. 18 F-FDG PET/CT was found to be superior to CECT in the detection of the primary tumour and locoregional staging (p 18 F-FDG PET/CT is highly sensitive and specific and plays an important role in improving detection of the primary tumour and locoregional staging of

  7. Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, Michala H.; Larsen, Rasmus

    2014-01-01

    We investigated the use of a simple calibration method to remove bias in previously proposed approaches to image-derived input functions (IDIFs) when used to calculate the metabolic uptake rate of glucose (Km) from dynamic [18F]-FDG PET scans of the thigh. Our objective was to obtain nonbiased, low...

  8. Correlation of Perfusion MRI and 18F-FDG PET Imaging Biomarkers for Monitoring Regorafenib Therapy in Experimental Colon Carcinomas with Immunohistochemical Validation

    Science.gov (United States)

    Eschbach, Ralf S.; Fendler, Wolfgang P.; Kazmierczak, Philipp M.; Hacker, Marcus; Rominger, Axel; Carlsen, Janette; Hirner-Eppeneder, Heidrun; Schuster, Jessica; Moser, Matthias; Havla, Lukas; Schneider, Moritz J.; Ingrisch, Michael; Spaeth, Lukas; Reiser, Maximilian F.; Nikolaou, Konstantin; Cyran, Clemens C.

    2015-01-01

    Objectives To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group) female athymic nude rats (Hsd:RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight) using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min), plasma volume (PV, %) and endothelial permeability-surface area product (PS, mL/100 mL/min) were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB) was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31) and cell proliferation (Ki-67). Results Regorafenib significantly (pregorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F-FDG-PET validated by immunohistochemistry. PMID:25668193

  9. Targeting post-infarct inflammation by PET imaging: comparison of 68Ga-citrate and 68Ga-DOTATATE with 18F-FDG in a mouse model

    International Nuclear Information System (INIS)

    Thackeray, James T.; Bankstahl, Jens P.; Walte, Almut; Wittneben, Alexander; Bengel, Frank M.; Wang, Yong; Korf-Klingebiel, Mortimer; Wollert, Kai C.

    2015-01-01

    Imaging of inflammation early after myocardial infarction (MI) is a promising approach to the guidance of novel molecular interventions that support endogenous healing processes. 18 F-FDG PET has been used, but may be complicated by physiological myocyte uptake. We evaluated the potential of two alternative imaging targets: lactoferrin binding by 68 Ga-citrate and somatostatin receptor binding by 68 Ga-DOTATATE. C57Bl/6 mice underwent permanent coronary artery ligation. Serial PET imaging was performed 3 - 7 days after MI using 68 Ga-citrate, 68 Ga-DOTATATE, or 18 F-FDG with ketamine/xylazine suppression of myocyte glucose uptake. Myocardial perfusion was evaluated by 13 N-ammonia PET and cardiac geometry by contrast-enhanced ECG-gated CT. Mice exhibited a perfusion defect of 30 - 40 % (of the total left ventricle) with apical anterolateral wall akinesia and thinning on day 7 after MI. 18 F-FDG with ketamine/xylazine suppression demonstrated distinct uptake in the infarct region, as well as in the border zone and remote myocardium. The myocardial standardized uptake value in MI mice was significantly higher than in healthy mice under ketamine/xylazine anaesthesia (1.9 ± 0.4 vs. 1.0 ± 0.1). 68 Ga images exhibited high blood pool activity with no specific myocardial uptake up to 90 min after injection (tissue-to-blood contrast 0.9). 68 Ga-DOTATATE was rapidly cleared from the blood, but myocardial SUV was very low (0.10 ± 0.03). Neither 68 Ga nor 68 Ga-DOTATATE is a useful alternative to 18 F-FDG for PET imaging of myocardial inflammation after MI in mice. Among the three tested approaches, 18 F-FDG with ketamine/xylazine suppression of cardiomyocyte uptake remains the most practical imaging marker of post-infarct inflammation. (orig.)

  10. Can multimodality imaging using {sup 18}F-FDG/{sup 18}F-FLT PET/CT benefit the diagnosis and management of patients with pulmonary lesions?

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baixuan; Guan, Zhiwei; Liu, Changbin; Wang, Ruimin; Yin, Dayi; Zhang, Jinming; Chen, Yingmao; Yao, Shulin; Shao, Mingzhe; Wang, Hui; Tian, Jiahe [Chinese PLA General Hospital, Department of Nuclear Medicine, Beijing (China)

    2011-02-15

    Dual-tracer, {sup 18}F-fluorodeoxyglucose and {sup 18}F-fluorodeoxythymidine ({sup 18}F-FDG/{sup 18}F-FLT), dual-modality (positron emission tomography and computed tomography, PET/CT) imaging was used in a clinical trial on differentiation of pulmonary nodules. The aims of this trial were to investigate if multimodality imaging is of advantage and to what extent it could benefit the patients in real clinical settings. Seventy-three subjects in whom it was difficult to establish the diagnosis and determine management of their pulmonary lesions were prospectively enrolled in this clinical trial. All subjects underwent {sup 18}F-FDG and {sup 18}F-FLT PET/CT imaging sequentially. The images were interpreted with different strategies as either individual or combined modalities. The pathological or clinical evidence during a follow-up period of more than 22 months served as the standard of truth. The diagnostic performance of each interpretation and their impact on clinical decision making was investigated. {sup 18}F-FLT/{sup 18}F-FDG PET/CT was proven to be of clinical value in improving the diagnostic confidence in 28 lung tumours, 18 tuberculoses and 27 other benign lesions. The ratio between maximum standardized uptake values of {sup 18}F-FLT and {sup 18}F-FDG was found to be of great potential in separating the three subgroups of patients. The advantage could only be obtained with the full use of the multimodality interpretation. Multimodality imaging induced substantial change in clinical management in 31.5% of the study subjects and partial change in another 12.3%. Multimodality imaging using {sup 18}F-FDG/{sup 18}F-FLT PET/CT provided the best diagnostic efficacy and the opportunity for better management in this group of clinically challenging patients with pulmonary lesions. (orig.)

  11. Parametric features of image textures in 18F-FDG PET/CT evaluation of lung nodules

    International Nuclear Information System (INIS)

    Wang Changmei; Guan Yihui; Zhang Wenqiang; Zuo Chuantao; Hua Fengchun

    2013-01-01

    Objective: To evaluate the parametric features of image textures on 18 F-FDG PET/CT for the differentiation between malignant and benign pulmonary nodules and compare the diagnostic performance of these parameters with SUV max . Methods: 18 F-FDG PET/CT images of 170 patients (102 males, 68 females, age range: 29-81 (mean 59) years) with pulmonary nodules were retrospectively evaluated. Eighty-nine pulmonary nodules (230 slices) were malignant and 81 (193 slices) were benign. The pulmonary nodules were contoured on CT images and mapped to the co-registered PET images. Thirteen parameters of textural features were extracted and SUV max was measured. Logistic regression analysis was used to identify the significant texture parameters and create a regression model. The efficacy of the textural features and SUV max to distinguish between malignant and benign pulmonary nodules was evaluated by ROC curve analysis. The textural features of squamous cell carcinoma and adenocarcinoma were compared via the Mann-Whitney u test. The sensitivity and specificity of the textural features and SUV max for the differential diagnosis were compared with χ 2 test. Results: Logistic regression model identified 4 textural features (skewness (β=1.7058), kurtosis (β=-1.0989), angular second moment (ASM, 3=-4.4140) and strength (β=0.5626); all P<0.05) to have significant correlation with the malignancy of lung nodules. The AUC of ROC curve was 0.775 (95% CI 0.732-0.819; P<0.001) with the sensitivity of 89.6% (206/230) and specificity of 50.8% (98/193). ASM and strength had statistically significant differences between squamous cell carcinoma and adenocarcinoma [ASM: 0.0303 (95% CI 0.0392-0.0724) vs 0.0594 (95% CI 0.0721-0.0947); strength: 2.4714 (95% CI 2.4632-4.1050) vs 1.5945 (95% CI 1.9003-2.4652); u=3082.0 and 3115.0, both P<0.01]. The AUC of SUV max -based diagnosis was 0.757 (95% CI 0.711-0.802; P<0.001) with the sensitivity of 80.9% (186/230) and specificity of 50.3% (97/193) at

  12. 18F-FDG PET-CT显像在淋巴瘤疗效评价中的应用%18F-FDG PET-CT imaging for treatment evaluation in lymphoma

    Institute of Scientific and Technical Information of China (English)

    闫瑾; 杨建伟; 李鹏

    2009-01-01

    Objective To investigate the clinical value of PET-CT scans in lymphomatous patients in post-therapy evaluation. Methods 18F-FDG PET-CT imaging were performed in 40 lymphomatous patients whom had been received therapy. Successive PET-CT imaging were performed in 5 cases, and the treatment was evaluated with clinical evaluation. Results Successive PET-CT imaging were performed in 5 cases, in which the tumor was eradicated in 2 cases, improved in 2 cases, and relapsed in 1 case. In 35 patients PET-CT imaging was repeated after treatment, among them 30 cases with complete or partial remission, and PET-CT imaging was positive in 25 cases. PET-CT imaging was still positive in 8 cases with recurrent or remnant tumor. PET-CT imaging changed the therapeutic regime. Conclusion PET-CT imaging can detect the recurrent or remnant tumor sensitively and accurately. There is a significant value for the guidance of clinical therapeutic.%目的 研究PET-CT对淋巴瘤治疗后评估的临床价值.方法 40例经治疗的淋巴瘤患者行18FDG PET-CT显像,其中5例于治疗前后多次显像,评价其疗效,与临床疗效评价作对比.结果 5例患者行多次显像,其中2例治疗后病灶消失,2例缓解,1例肿瘤复发,皆与临床相符.35例患者治疗后行PET-CT显像,30例临床疗效为完全缓解和部分缓解的患者中,PET-CT显像阳性者25例;5例临床确认有肿瘤复发或明显残余,PET-cT显像均为阳性,PET-CT显像后改变了进一步临床治疗方案.结论 18F-FDG PET-CT显像能灵敏、准确地检出淋巴瘤复发及残余病灶,对疗效评价及指导临床治疗有重要价值.

  13. Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Vinicius O., E-mail: vinicius@radtec.com.br [Nuclear Medicine Department, São Rafael Hospital, Salvador 41720-375, Brazil and Nuclear Medicine Department, Hospital das Clínicas da Universidade Federal de Pernambuco/Ebserh, Recife 50670-901 (Brazil); Machado, Marcos A. D. [Nuclear Medicine Department, São Rafael Hospital, Salvador 41720-375, Brazil and Nuclear Medicine Department, Hospital das Clínicas da Universidade Federal de Bahia/Ebserh, Salvador 40110-060 (Brazil); Queiroz, Cleiton C. [Nuclear Medicine Department, São Rafael Hospital, Salvador 41720-375, Brazil and Nuclear Medicine Department, Hospital Universitário Professor Alberto Antunes/Ebserh, Maceió 57072-900 (Brazil); Souza, Susana O. [Department of Physics, Universidade Federal de Sergipe, São Cristóvão 49100-000 (Brazil); D’Errico, Francesco [Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 and School of Engineering, University of Pisa, Pisa 56126 (Italy); Namías, Mauro [Fundación Centro Diagnóstico Nuclear, Buenos Aires C1417CVE (Argentina); Larocca, Ticiana F. [Centro de Biotecnologia e Terapia Celular, São Rafael Hospital, Salvador 41253-190 (Brazil); Soares, Milena B. P. [Centro de Biotecnologia e Terapia Celular, São Rafael Hospital, Salvador 41253-190, Brazil and Fundação Oswaldo Cruz, Centro de Pesq. Gonçalo Moniz, Salvador 40296-710 (Brazil)

    2016-02-15

    Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread function and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.

  14. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    Science.gov (United States)

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in

  15. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners.

    Science.gov (United States)

    Reuzé, Sylvain; Orlhac, Fanny; Chargari, Cyrus; Nioche, Christophe; Limkin, Elaine; Riet, François; Escande, Alexandre; Haie-Meder, Christine; Dercle, Laurent; Gouy, Sébastien; Buvat, Irène; Deutsch, Eric; Robert, Charlotte

    2017-06-27

    To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Eight features were statistically significant predictors of local recurrence in G1 (p features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.

  16. Clinical study of 18F-FDG PET/CT whole-body imaging in disseminated carcinoma of unknown primary site

    International Nuclear Information System (INIS)

    Wang Guohui; Liang Peiyan; Cai Yanjun; Zhang Weiguang; Xie Chuanmiao; Wu Peihong

    2008-01-01

    Objective: Carcinoma of unknown primary (CUP) is not uncommon in usual clinical settings. They are, by definition, those cases with clinically suspected primary malignancy but not revealed by conventional investigation. The aim of this study was to investigate the efficacy of whole-body 18 F-fluoro- deoxyglucose (FDG) PET/CT in detecting a primary neoplasm for these patients. Methods: A totle of 150 patients with retrievable records from 169 CUP patients were selected within a group of consecutive 2589 patients from Jan. 2006 to Jun. 2007. All cases underwent whole-body FDG PET/CT scan. The final diagnoses were confirmed by pathologic results, other imaging modalities or clinical follow-up. Results: Among 150 patients, primary tumor sites were successfully detected by whole-body 18 F-FDG PET/CT scan in 70 cases (46.7%), of which 52 were pathologically confirmed and 18 by clinical follow-up. And 38 cases (54.3%) were lung cancer, 8 (11.4%) were nasopharyngeal carcinoma, 13 (18.6%) in digestive sys- tem, and 11 (15.7%) in other systems. Three clinically suspected CUP cases with negative 18 F-FDG PET/ CT were subsequently confirmed of benign processes by clinical follow-up. Six patients were wrongly diagnosed by 18 F-FDG PET/CT, and 15 patients did not have a confirmed diagnosis by the end of research. The primary cause of malignancy after 18 F-FDG PET/CT remained obscure in 56 patients, only 3 of whom be- came known during the course of clinical follow-up (nasopharyngeal bladder and esophageal carcinoma). Conclusion: 18 F-FDG PET/CT whole-body imaging plays an important role in patients with metastatic CUP. (authors)

  17. Coupled Imaging with [18F]FBB and [18F]FDG in AD Subjects Show a Selective Association Between Amyloid Burden and Cortical Dysfunction in the Brain.

    Science.gov (United States)

    Chiaravalloti, Agostino; Castellano, Anna Elisa; Ricci, Maria; Barbagallo, Gaetano; Sannino, Pasqualina; Ursini, Francesco; Karalis, Georgios; Schillaci, Orazio

    2018-02-05

    The present study was aimed to investigate the relationships between dysfunction of cortical glucose metabolism as detectable by means of 2-deoxy-2-[ 18 F]fluoro -D-glucose ([ 18 F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) and amyloid burden as detectable by means of 4-{(E)-2-[4-(2-{2-[2-[ 18 F]fluoroethoxy]ethoxy}ethoxy)phenyl]vinyl}-N-methylaniline (florbetaben; [ 18 F]FBB) in a group of patients affected by Alzheimer's disease (AD). We examined 38 patients newly diagnosed with AD according to the NINCDS-ADRDA criteria. All the subjects underwent a PET/CT scan using both [ 18 F]FDG and [ 18 F]FBB with an average interval of 1 month. We used statistical parametric mapping (SPM8) implemented in Matlab R2012b and WFU pickatlas for the definition of a region of interest (ROI) mask including the whole cortex. These data were then normalized on the counts of the cerebellum and then used for a regression analysis on [ 18 F]FDG scans in SPM. Furthermore, 58 control subjects were used as control group for [ 18 F]FDG PET/CT scans. SPM analysis in AD patients showed a significant negative correlation between [ 18 F] FBB and [ 18 F] FDG uptake in temporal and parietal lobes bilaterally. Of note, these areas in AD patients displayed a marked glucose hypometabolism compared to control group. Combined imaging with [ 18 F]FBB and [ 18 FFDG shows that amyloid burden in the brain is related to cortical dysfunction of temporal and parietal lobes in AD.

  18. Normalization in quantitative [18F]FDG PET imaging: the 'body surface area' may be a volume

    International Nuclear Information System (INIS)

    Laffon, Eric; Suarez, Kleydis; Berthoumieu, Yannick; Ducassou, Dominique; Marthan, Roger

    2006-01-01

    Non-invasive methods for quantifying [ 18 F]FDG uptake in tumours often require normalization to either body weight or body surface area (BSA), as a surrogate for [ 18 F]FDG distribution volume (DV). Whereas three dimensions are involved in DV and weight (assuming that weight is proportional to volume), only two dimensions are obviously involved in BSA. However, a fractal geometry interpretation, related to an allometric scaling, suggests that the so-called 'body surface area' may stand for DV. (note)

  19. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1 developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2 validating the system on ex vivo murine plaques.A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylamino-6-Deoxyglucose (6-NBDG, respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs (2.6 × 10(4 ± 1.4 × 10(3 vs. 5.4 × 10(3 ± 1.3 × 10(3 A.U., P = 0.008. Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6 × 10(2 ± 2.7 × 10(1 vs. 3.8 × 10(1 ± 5.9 A.U., P = 0.002. The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a

  20. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  1. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  2. Clinical studies of 18F-FDG and 18F-FP-β-CIT PET imaging in hemi-Parkinson's disease

    International Nuclear Information System (INIS)

    Zhao Jun; Lin Xiangtong; Guan Yihui; Zuo Chuantao; Zhang Zhengwei; Wang Jian; Sun Bomin; Chen Zhengping

    2003-01-01

    Objective: To study the characteristics of 18 F-fluorodeoxyglucose (FDG) and 18 F-N-3-fluoro-propyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 18 F-FP-β-CIT) PET imaging in patients with hemi-Parkinson's disease (hemi-PD) and to assess their value in early diagnosis. Methods: 34 cases of hemi-PD (Hoehn and Yahr stage I-II) and 16 normal control subjects were selected for this study. 16 patients were performed with 18 F-FDG PET imaging, 18 patients with 18 F-FP-β-CIF, while 6 patients of them both 18 F-FDG and 18 F-FP-β-CIT. 30 min after injection of 185-259 MBq 18 F-FDG, 3D brain scans were acquired. Region of interest (ROI) analysis and statistical parametric mapping (SPM) were applied. 18 F-FP-β-CIT PET imaging was carried out 2-3 h post injection, and (ROI-cerebellum)/cerebellum ratio was calculated. Results: In right hemi-PD, reductions in 18 F-FDG metabolism were observed in the left basal ganglia compared with control group, but with no significant difference (P>0.05). The results of SPM analysis showed that a significant reduction in FDG uptake in the left superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus and left middle temporal gyrus, whereas a significant increase in the bilateral precentral gyrus , superior parietal lobule, left middle occipital gyrus and left thalamus as compared with the control group. There was a significant reduction in 18 F-FP-β-CIT uptake in putamen, its reduction was found not only in the contralateral putamen, but also in the ipsilateral ones, and more pronounced in the contralateral posterior putamen. Conclusions: 18 F-FDG PET imaging is non-specific for the early diagnosis of PD. 18 F-FP-β-CIT PET imaging could find the changes of striatum dopamine transporter at early stage, therefore it was helpful for early diagnosis and differential diagnosis of PD. Combined with 18 F-FDG PET imaging, the changes of local cerebral glucose metabolism in PD could also be evaluated

  3. Optimization of whole-body PET imaging protocol for the detection of 18F-FDG overlappings in oncology

    International Nuclear Information System (INIS)

    Lartizien, C.

    2001-01-01

    Positron emission tomography (PET) is a nuclear imaging modality that allows studying in vivo cellular metabolic and biochemical processes. During the 90's, there has been a growing interest in the applications of PET in oncology related to the use of a glucose analog (FDG) labeled with the positron emitter 18 F. This tracer of the glucose metabolism is trapped in the cancer cells characterized by a deregulated glycolytic activity. This allows detecting tumors and metastases. The interest of PET in oncology has lead to develop imaging systems and protocols to perform whole-body acquisitions of the patient. Whole-body PET imaging has been limited in practice by the high level of statistical noise that affects the detection of small lesions due to limited radioactive dose injected to the patient and short acquisition time. In this context, our work focused on the optimization of detection performances in whole-body 18 F-FDG PET images. We have first developed an original method to evaluate detectability based on the psychophysical approach of the ROC methodology and adapted to the specificity of whole-body PET images. This method was used to evaluate detection performances of different reconstruction algorithms used for whole-body imaging. We have also studied the influence of the acquisition mode, namely the 2D and the 3D modes. To that purpose, we have used the NEC index to select relevant statistical acquisition conditions in both acquisition modes as a function of the injected dose to the patient. Then, we have compared the detection performances of these different acquisition conditions based on our psychophysical evaluation technique. (author) [fr

  4. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    Science.gov (United States)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  5. Longitudinal imaging of Alzheimer pathology using [{sup 11}C]PIB, [{sup 18}F]FDDNP and [{sup 18}F]FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Ossenkoppele, Rik; Tolboom, Nelleke; Adriaanse, Sofie F. [VU University Medical Center, Department of Neurology and Alzheimer Center, PO Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Foster-Dingley, Jessica C.; Boellaard, Ronald; Yaqub, Maqsood; Windhorst, Albert D.; Lammertsma, Adriaan A.; Berckel, Bart N.M. van [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Barkhof, Frederik [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Scheltens, Philip [VU University Medical Center, Department of Neurology and Alzheimer Center, PO Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Center, Department of Neurology and Alzheimer Center, PO Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands)

    2012-06-15

    [{sup 11}C]PIB and [{sup 18}F]FDDNP are PET tracers for in vivo detection of the neuropathology underlying Alzheimer's disease (AD). [{sup 18}F]FDG is a glucose analogue and its uptake reflects metabolic activity. The purpose of this study was to examine longitudinal changes in these tracers in patients with AD or mild cognitive impairment (MCI) and in healthy controls. Longitudinal, paired, dynamic [{sup 11}C]PIB and [{sup 18}F]FDDNP (90 min each) and static [{sup 18}F]FDG (15 min) PET scans were obtained in 11 controls, 12 MCI patients and 8 AD patients. The mean interval between baseline and follow-up was 2.5 years (range 2.0-4.0 years). Parametric [{sup 11}C]PIB and [{sup 18}F]FDDNP images of binding potential (BP{sub ND}) and [{sup 18}F]FDG standardized uptake value ratio (SUVr) images were generated. A significant increase in global cortical [{sup 11}C]PIB BP{sub ND} was found in MCI patients, but no changes were observed in AD patients or controls. Subsequent regional analysis revealed that this increase in [{sup 11}C]PIB BP{sub ND} in MCI patients was most prominent in the lateral temporal lobe (p < 0.05). For [{sup 18}F]FDDNP, no changes in global BP{sub ND} were found. [{sup 18}F]FDG uptake was reduced at follow-up in the AD group only, especially in frontal, parietal and lateral temporal lobes (all p < 0.01). Changes in global [{sup 11}C]PIB binding ({rho} = -0.42, p < 0.05) and posterior cingulate [{sup 18}F]FDG uptake ({rho} = 0.54, p < 0.01) were correlated with changes in Mini-Mental-State Examination score over time across groups, whilst changes in [{sup 18}F]FDDNP binding ({rho} = -0.18, p = 0.35) were not. [{sup 11}C]PIB and [{sup 18}F]FDG track molecular changes in different stages of AD. We found increased amyloid load in MCI patients and progressive metabolic impairment in AD patients. [{sup 18}F]FDDNP seems to be less useful for examining disease progression. (orig.)

  6. Imaging of the myocardium using {sup 18}F-FDG-PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiří, E-mail: ferda@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Hromádka, Milan, E-mail: hromadkam@fnplzen.cz [Department of Cardiology, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Baxa, Jan, E-mail: baxaj@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic)

    2016-10-15

    Highlights: • The natural combination of the metabolic and structural information is the most important strenghtof myocardial PET/MRI. • Metabolic conversion to glycolysis is needed in the assesment ov the viable myocardium. • Metabolic conversion to the fatty acid metabolism is the crucial in the assesment of the ischemic memory and myocardial inflammation. - Abstract: The introduction of the integrated hybrid PET/MRI equipment creates the possibility to perform PET and MRI simultaneously. Depending on the clinical question, the metabolic conversion to glycolytic activity or beta-oxidation is performed before the application of FDG. Since FDG aids to evaluate the energetic metabolism of the myocytes and myocardial MRI reaches the imaging capabilities of perfusion and tissue characterization in the daily routine, FDG-PET/MRI looks to be a promising method of PET/MRI exploitation in cardiac imaging. When myocardial FDG uptake should be evaluated in association with the perfusion distribution, the cross-evaluation of FDG accumulation distribution and perfusion distribution pattern is necessary. The different scenarios may be used in the assessment of myocardium, the conversion to glycolytic activity is used in the imaging of the viable myocardium, but the glycolytic activity suppression might be used in the indications of the identification of injured myocardium by ischemia or inflammation. FDG-PET/MRI might aid to answer the clinical tasks according to the structure, current function and possibilities to improve the function in ischemic heart disease or to display the extent or activity of myocardial inflammation in sarcoidosis. The tight coupling between metabolism, perfusion and contractile function offers an opportunity for the simultaneous assessment of cardiac performance using one imaging modality.

  7. Measurement and evaluation of personal radiation dose during 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Lu Ning; Wang Jing; Qiao Hongqing; Deng Jinglan; Li Guoquan; Zhou Yi

    2004-01-01

    Objective: To measure and evaluate the personal radiation dose for medical staff and patient accompanying persons in PET imaging, in order to offer the reference data for clinical radiation protection. Methods: Analysis of γ-ray radiation dose rate was performed on 30 medical staff members by using radiation dose meter during each medical procedure in injection room and scanning room , and the instantaneous, 1 and 2 h dose rate at 0.1, 0.5, 1.0 and 2.0 m from the mid-thorax of the patient received injection of the isotope were also measured. Then the mean dose per medical procedure per person and the assuming annual dose at different working sites were all calculated. Results: The mean personal doses per procedure were: left hand (30.0 ± 8.0) μSv, right hand (6.0 ± 1.5) μSv, whole-body (0.5 ± 0.1) μSv for syringe preparation; hand (3.00 ± 0.75) μSv, whole-body (1.27 ± 0.20) μSv for injection; (9.9 ± 1.4) μSv for imaging operation; (310 ± 91) μSv for close contact accompanying persons. Annual dose for staff members working in different sites were: left hand (16.63 ± 4.41) mSv, right hand (6.45 ± 1.23) mSv, whole-body (1.18 ± 0.15) mSv in the injection room; whole-body (4.99 ± 0.70) mSv in the imaging room. Conclusion: Under the normal operational conditions, the dose received by staff members and accompanying persons do not exceed the annual limit for professional and non-professional persons that has published as GuoBiao safe standard (GBSS)

  8. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT) in a Dog with Fibrosarcoma

    DEFF Research Database (Denmark)

    Zornhagen, Kamilla; Clausen, Malene; Hansen, Anders Elias

    2015-01-01

    of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three......Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management...... tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response....

  9. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  10. 18F-FDG-PET/CT in patients with breast cancer and rising Ca 15-3 with negative conventional imaging: A multicentre study

    International Nuclear Information System (INIS)

    Grassetto, Gaia; Fornasiero, Adriano; Otello, Daniele; Bonciarelli, Giorgio; Rossi, Elena; Nashimben, Ottorino; Minicozzi, Anna Maria; Crepaldi, Giorgio; Pasini, Felice; Facci, Enzo; Mandoliti, Giovanni; Marzola, Maria Cristina; Al-Nahhas, Adil; Rubello, Domenico

    2011-01-01

    Objectives: Breast cancer is the second cause of death in women in Europe and North America. The mortality of this disease can be reduced with effective therapy and regular follow up to detect early recurrence. Tumor markers are sensitive in detecting recurrent or residual disease but imaging is required to customize the therapeutic option. Rising tumor markers and negative conventional imaging (US, X-mammography, CT and MR) poses a management problem. Our aim is to assess the role of 18 F-FDG-PET/CT in the management of post-therapy patients with rising markers but negative conventional imaging. Materials and methods: In the period from January 2008 to September 2009, 89 female patients with breast cancer who developed post-therapy rising markers (serum Ca 15-3 levels = 64.8 ± 16.3 U/mL) but negative clinical examination and conventional imaging were investigated with 18 F-FDG-PET/CT. Results: Tumor deposits were detected in 40/89 patients in chest wall, internal mammary nodes, lungs, liver and skeleton. The mean SUVmax value calculated in these lesions was 6.6 ± 1.7 (range 3.1–12.8). In 23/40 patients solitary small lesion were amenable to radical therapy. In 7 out of these 23 patients a complete disease remission lasting more than 1 year was observed. Conclusions: 18 F-FDG-PET/CT may have a potential role in asymptomatic patients with rising markers and negative conventional imaging. Our findings agree with other studies in promoting regular investigations such as tumor markers and 18 F-FDG-PET/CT rather than awaiting the developments of physical symptoms as suggested by current guidelines since the timely detection of early recurrence may have a major impact on therapy and survival.

  11. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    Science.gov (United States)

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  12. 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging

    International Nuclear Information System (INIS)

    London, Kevin; Cross, Siobhan; Dalla-Pozza, Luciano; Onikul, Ella; Howman-Giles, Robert

    2011-01-01

    In children with Hodgkin's disease and non-Hodgkin's lymphoma, the ability of 18 F-fluoro-2-deoxy-D-glucose PET/CT and conventional imaging (CI) to detect malignant lesions and predict poor lesion response to therapy was assessed and compared. A retrospective review of findings reported on PET/CT and CI was performed using a lesion-based analysis of 16 lymph node and 8 extra-nodal regions. Lesions were defined by histopathological findings or follow-up > 6 months. The study included 209 PET/CT scans with a valid CI comparator. A total of 5,014 regions (3,342 lymph node, 1,672 extra-nodal) were analysed. PET/CT performed significantly better than CI in the detection of malignant lesions with sensitivity and specificity of 95.9 and 99.7% compared to 70.1 and 99.0%, respectively. For predicting poor lesion response to therapy, PET/CT had fewer false-positive lesions than CI. The specificity for predicting poor lesion response to treatment for PET/CT was 99.2% compared to 96.9% for CI. PET/CT was the correct modality in 86% of lesions with discordant findings. PET/CT is more accurate than CI in detecting malignant lesions in childhood lymphoma and in predicting poor lesion response to treatment. In lesions with discordant findings, PET/CT results are more likely to be correct. (orig.)

  13. Semiautomatic volume of interest drawing for 18F-FDG image analysis - method and preliminary results

    International Nuclear Information System (INIS)

    Green, A.J.; Baig, S.; Begent, R.H.J.; Francis, R.J.

    2008-01-01

    Functional imaging of cancer adds important information to the conventional measurements in monitoring response. Serial 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), which indicates changes in glucose metabolism in tumours, shows great promise for this. However, there is a need for a method to quantitate alterations in uptake of FDG, which accounts for changes in tumour volume and intensity of FDG uptake. Selection of regions or volumes [ROI or volumes of interest (VOI)] by hand drawing, or simple thresholding, suffers from operator-dependent drawbacks. We present a simple, robust VOI growing method for this application. The method requires a single seed point within the visualised tumour and another in relevant normal tissue. The drawn tumour VOI is insensitive to the operator inconsistency and is, thus, a suitable basis for comparative measurements. The method is validated using a software phantom. We demonstrate the use of the method in the assessment of tumour response in 31 patients receiving chemotherapy for various carcinomas. Valid assessment of tumour response could be made 2-4 weeks after starting chemotherapy, giving information for clinical decision making which would otherwise have taken 9-12 weeks. Survival was predicted from FDG-PET 2-4 weeks after starting chemotherapy (p = 0.04) and after 9-12 weeks FDG-PET gave a better prediction of survival (p = 0.002) than CT or MRI (p = 0.015). FDG-PET using this method of analysis has potential as a routine tool for optimising use of chemotherapy and improving its cost effectiveness. It also has potential for increasing the accuracy of response assessment in clinical trials of novel therapies. (orig.)

  14. The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson's disease.

    Science.gov (United States)

    Tomše, Petra; Jensterle, Luka; Rep, Sebastijan; Grmek, Marko; Zaletel, Katja; Eidelberg, David; Dhawan, Vijay; Ma, Yilong; Trošt, Maja

    2017-09-01

    To evaluate the reproducibility of the expression of Parkinson's Disease Related Pattern (PDRP) across multiple sets of 18F-FDG-PET brain images reconstructed with different reconstruction algorithms. 18F-FDG-PET brain imaging was performed in two independent cohorts of Parkinson's disease (PD) patients and normal controls (NC). Slovenian cohort (20 PD patients, 20 NC) was scanned with Siemens Biograph mCT camera and reconstructed using FBP, FBP+TOF, OSEM, OSEM+TOF, OSEM+PSF and OSEM+PSF+TOF. American Cohort (20 PD patients, 7 NC) was scanned with GE Advance camera and reconstructed using 3DRP, FORE-FBP and FORE-Iterative. Expressions of two previously-validated PDRP patterns (PDRP-Slovenia and PDRP-USA) were calculated. We compared the ability of PDRP to discriminate PD patients from NC, differences and correlation between the corresponding subject scores and ROC analysis results across the different reconstruction algorithms. The expression of PDRP-Slovenia and PDRP-USA networks was significantly elevated in PD patients compared to NC (palgorithms. PDRP expression strongly correlated between all studied algorithms and the reference algorithm (r⩾0.993, palgorithms varied within 0.73 and 0.08 of the reference value for PDRP-Slovenia and PDRP-USA, respectively. ROC analysis confirmed high similarity in sensitivity, specificity and AUC among all studied reconstruction algorithms. These results show that the expression of PDRP is reproducible across a variety of reconstruction algorithms of 18F-FDG-PET brain images. PDRP is capable of providing a robust metabolic biomarker of PD for multicenter 18F-FDG-PET images acquired in the context of differential diagnosis or clinical trials. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III

    International Nuclear Information System (INIS)

    Desseroit, Marie-Charlotte; Visvikis, Dimitris; Majdoub, Mohamed; Hatt, Mathieu; Tixier, Florent; Perdrisot, Remy; Cheze Le Rest, Catherine; Guillevin, Remy

    2016-01-01

    Our goal was to develop a nomogram by exploiting intratumour heterogeneity on CT and PET images from routine 18 F-FDG PET/CT acquisitions to identify patients with the poorest prognosis. This retrospective study included 116 patients with NSCLC stage I, II or III and with staging 18 F-FDG PET/CT imaging. Primary tumour volumes were delineated using the FLAB algorithm and 3D Slicer trademark on PET and CT images, respectively. PET and CT heterogeneities were quantified using texture analysis. The reproducibility of the CT features was assessed on a separate test-retest dataset. The stratification power of the PET/CT features was evaluated using the Kaplan-Meier method and the log-rank test. The best standard metric (functional volume) was combined with the least redundant and most prognostic PET/CT heterogeneity features to build the nomogram. PET entropy and CT zone percentage had the highest complementary values with clinical stage and functional volume. The nomogram improved stratification amongst patients with stage II and III disease, allowing identification of patients with the poorest prognosis (clinical stage III, large tumour volume, high PET heterogeneity and low CT heterogeneity). Intratumour heterogeneity quantified using textural features on both CT and PET images from routine staging 18 F-FDG PET/CT acquisitions can be used to create a nomogram with higher stratification power than staging alone. (orig.)

  16. The value of delayed {sup 18}F-FDG PET/CT imaging for differentiating axillary lymph nodes in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young Sik; Son, Ju Cheol [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of); Park, Cheol Woo [Dept. of Radiological Technology Dong-Eui Institute of Technology, Busan (Korea, Republic of)

    2013-12-15

    Positron emission tomography/computed tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) have been used as a powerful fusion modality in nuclear medicine not only for detecting cancer but also for staging and therapy monitoring. Nevertheless, there are various causes of FDG uptake in normal and/or benign tissues. The purpose of present study was to investigate whether additional delayed imaging can improve the diagnosis to differentiate the rates of FDG uptake at axillary lymph nodes (ALN) between malignant and benign in breast cancer patients. 180 PET/CT images were obtained for 27 patients with ALN uptake. The patients who had radiotherapy and chemotherapy were excluded from the study. {sup 18}F-FDG PET/CT scan at 50 min (early phase) and 90 min (delayed phase) after {sup 18}F-FDG injection were included in this retrospective study. The staging of cancers was confirmed by final clinical according to radiologic follow-up and pathologic findings. The standardized uptake value (SUV) of ALN was measured at the Syngo Acquisition Workplace by Siemens. The 27 patients included 18 malignant and 9 ALN benign groups and the 18 malignant groups were classified into the 3 groups according to number of metastatic ALN in each patient. ALNs were categorized less than or equal 3 as N1, between 4 to 9 as N2 and more than 10 as N3 group. Results are expressed as the mean ± standard deviation (S.D.) and statistically analyzed by SPSS. As a result, Retention index (RI-SUV max) in metastasis was significantly higher than that in non-metastasis about 5 fold increased. On the other hand, RI-SUV max in N group tended to decrease gradually from N1 to N3. However, we could not prove significance statistically in malignant group with ANOVA. As a consequence, RI-SUV max was good indicator for differentiating ALN positive group from node negative group in breast cancer patients. These results show that dual-time-point scan appears to be useful in distinguishing malignant from benign.

  17. Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer

    International Nuclear Information System (INIS)

    Oh, Jong-Ryool; Chong, Ari; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Bom, Hee-Seung; Byun, Byung-Hyun; Hong, Sun-Pyo; Yoo, Su-Woong; Kim, Dong-Yeon; Min, Jung-Joon

    2011-01-01

    The aim of this study was to compare 131 I whole-body scintigraphy (WBS), WBS with 131 I single photon emission computed tomography/computed tomography (SPECT/CT), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. 131 I WBS, 131 I SPECT/CT, and 18 F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for 131 I WBS; 65, 95, and 85% for 131 I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for 18 F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p 18 F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  18. Preclinical Multimodal Molecular Imaging Using 18F-FDG PET/CT and MRI in a Phase I Study of a Knee Osteoarthritis in In Vivo Canine Model

    Directory of Open Access Journals (Sweden)

    Maria I. Menendez DVM, PhD

    2017-03-01

    Full Text Available The aim of this study was to use a multimodal molecular imaging approach to serially assess regional metabolic changes in the knee in an in vivo anterior cruciate ligament transection (ACLT canine model of osteoarthritis (OA. Five canine underwent ACLT in one knee and the contralateral knee served as uninjured control. Prior, 3, 6, and 12 weeks post-ACLT, the dogs underwent 18F-fluoro-d-glucose (18F-FDG positron emission tomography (PET/computed tomography (CT and magnetic resonance imaging (MRI. The MRI was coregistered with the PET/CT, and 3-dimensional regions of interest (ROIs were traced manually and maximum standardized uptake values (SUVmax were evaluated. 18F-fluoro-d-glucose SUVmax in the ACLT knee ROIs was significantly higher compared to the uninjured contralateral knees at 3, 6, and 12 weeks. Higher 18F-FDG uptake observed in ACLT knees compared to the uninjured knees reflects greater metabolic changes in the injured knees over time. Knee 18F-FDG uptake in an in vivo ACLT canine model using combined PET/CT and MRI demonstrated to be highly sensitive in the detection of metabolic alterations in osseous and nonosteochondral structures comprising the knee joint. 18F-fluoro-d-glucose appeared to be a capable potential imaging biomarker for early human knee OA diagnosis, prognosis, and management.

  19. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    Directory of Open Access Journals (Sweden)

    Moisés Mera Iglesias

    2015-01-01

    Full Text Available Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets.

  20. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging.

    Science.gov (United States)

    Takkinen, Jatta S; López-Picón, Francisco R; Al Majidi, Rana; Eskola, Olli; Krzyczmonik, Anna; Keller, Thomas; Löyttyniemi, Eliisa; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2017-08-01

    Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo 18 F-FDG and 18 F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18 F-FDG and 18 F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18 F-FDG SUVs were lower and the 18 F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo 18 F-DPA-714 studies but not the 18 F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.

  1. Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve.

    Science.gov (United States)

    Yoshizawa, Hiroshi; Gazes, Yunglin; Stern, Yaakov; Miyata, Yoko; Uchiyama, Shinichiro

    2014-01-30

    The aim of this study was to investigate findings of positron emission tomography with 18F-fluorodeoxyglucose (18F-FDG PET) in normal subjects to clarify the effects of sex differences, aging, and cognitive reserve on cerebral glucose metabolism. Participants comprised 123 normal adults who underwent 18F-FDG PET and a neuropsychological battery. We used statistical parametric mapping (SPM8) to investigate sex differences, and aging effects. The effects of cognitive reserve on 18F-FDG uptake were investigated using years of education as a proxy. Finally, we studied the effect of cognitive reserve on the recruitment of glucose metabolism in a memory task by dichotomizing the data according to educational level. Our results showed that the overall cerebral glucose metabolism in females was higher than that in males, whereas male participants had higher glucose metabolism in the bilateral inferior temporal gyri and cerebellum than females. Age-related hypometabolism was found in anterior regions, including the anterior cingulate gyrus. These areas are part of the attentional system, which may decline with aging even in healthy elderly individuals. Highly educated subjects revealed focal hypermetabolism in the right hemisphere and lower recruitment of glucose metabolism in memory tasks. This phenomenon is likely a candidate for a neural substrate of cognitive reserve. © 2013 Published by Elsevier Ireland Ltd.

  2. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    Science.gov (United States)

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  3. Comparative study of 99Tcm-ciprofloxacin scintigraphy, 18F-FDG PET and diffusion weighted imaging for detecting secondary infection associated with severe acute pancreatitis

    International Nuclear Information System (INIS)

    Wang Jianhua; Sun Gaofeng; Zhang Jian; Shao Chengwei; Pan Guixia; Peng Ye; Mao Juanli; Zheng Jianming; Zuo Changjing

    2013-01-01

    Objective: To compare the diagnostic values of 99 Tc m -ciprofloxacin SPECT, 18 F-FDG PET and MR diffusion weighted imaging (DWI) for detecting secondary infection associated with severe acute pancreatitis (SAP) in swine. Methods: Swine models were constructed and grouped, including control group (normal swine, n=6), non-infected SAP group (inoculated with inactivation Escherichia coli, n=6)and infected SAP group (inoculated with Escherichia coli, n=16). At 7 d after inoculation,a series of 99 Tc m ciprofloxacin SPECT, 18 F-FDG PET and MR DWI scans were performed. The imaging findings were visually evaluated and semi-quantitative analyzed. Lesion-background radioactive counts ratio (L/B), SUV max and the apparent diffusion coefficient (ADC) were calculated. The image results were compared with histopathological and bacteriological results, and the sensitivity, specificity, accuracy, positive predictive value and negative predictive value were calculated. Bonferroni test, the least significant difference t test and χ 2 test were used for statistical data analysis. Results: (1) The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of 99 Tc m -ciprofloxacin SPECT via visual analysis were 93.8% (15/16), 5/6, 90.9% (20/22), 93.8%(15/16) and 5/6, whereas 81.2% (13/16), 2/6, 68.2% (15/22), 76.5%(13/17) and 2/5 for 18 F-FDG PET, and 15.4% (2/13), 5/6, 36.8%(7/19), 2/3 and 31.3% (5/16) for MRI DWI respectively. Both 99 Tc m -ciprofloxacin SPECT and 18 F-FDG PET had higher sensitivities (both P>0.05), but the specificity of 18 F-FDG PET was lower. (2) 99 Tc m -ciprofloxacin imaging showed the changes of L/B for the infected SAP swine were significantly different from those of the non-infected and normal swine (F=95.66, P<0.001). 18 F-FDG PET early-phase images showed SUV max was not significantly different between infected SAP (2.61±1.07) and non-infected SAP (1.87±0.76) groups (P>0.05), but the SUV max of infected SAP group was

  4. Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia

    International Nuclear Information System (INIS)

    Umeda, Yukihiro; Demura, Yoshiki; Ishizaki, Takeshi; Ameshima, Shingo; Miyamori, Isamu; Saito, Yuji; Tsuchida, Tatsuro; Fujibayashi, Yasuhisa; Okazawa, Hidehiko

    2009-01-01

    Individual clinical courses of idiopathic interstitial pneumonia (IIP) are variable and difficult to predict because the pathology and disease activity are contingent, and chest computed tomography (CT) provides little information about disease activity. In this study, we applied dual-time-point [ 18 F]-fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography (PET), commonly used for diagnosis of malignant tumours, to the differential diagnosis and prediction of disease progression in IIP patients. Fifty patients with IIP, including idiopathic pulmonary fibrosis (IPF, n = 21), non-specific interstitial pneumonia (NSIP, n = 18) and cryptogenic organizing pneumonia (COP, n = 11), underwent 18 F-FDG PET examinations at two time points: scan 1 at 60 min (early imaging) and scan 2 at 180 min (delayed imaging) after 18 F-FDG injection. The standardized uptake values (SUV) at the two points and the retention index (RI-SUV) calculated from them were evaluated and compared with chest CT findings, disease progression and disease types. To evaluate short-term disease progression, all patients were examined by pulmonary function test every 3 months for 1 year after 18 F-FDG PET scanning. The early SUV for COP (2.47 ± 0.74) was significantly higher than that for IPF (0.99 ± 0.29, p = 0.0002) or NSIP (1.22 ± 0.44, p= 0.0025). When an early SUV cut-off value of 1.5 and greater was used to distinguish COP from IPF and NSIP, the sensitivity, specificity and accuracy were 90.9, 94.3 and 93.5%, respectively. The RI-SUV for IPF and NSIP lesions was significantly greater in patients with deteriorated pulmonary function after 1 year of follow-up (progressive group, 13.0 ± 8.9%) than in cases without deterioration during the 1-year observation period (stable group, -16.8 ± 5.9%, p 18 F-FDG PET are useful parameters for the differential diagnosis and prediction of disease progression in patients with IIP. (orig.)

  5. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment 18F-FDG PET/CT Imaging.

    Science.gov (United States)

    Beukinga, Roelof J; Hulshoff, Jan B; van Dijk, Lisanne V; Muijs, Christina T; Burgerhof, Johannes G M; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Slump, Cornelis H; Mul, Véronique E M; Plukker, John Th M

    2017-05-01

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUV max in 18 F-FDG PET/CT imaging. To improve the prediction of response, we constructed a model to predict complete response to nCRT in EC based on pretreatment clinical parameters and 18 F-FDG PET/CT-derived textural features. Methods: From a prospectively maintained single-institution database, we reviewed 97 consecutive patients with locally advanced EC and a pretreatment 18 F-FDG PET/CT scan between 2009 and 2015. All patients were treated with nCRT (carboplatin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed clinical, geometric, and pretreatment textural features extracted from both 18 F-FDG PET and CT. The current most accurate prediction model with SUV max as a predictor variable was compared with 6 different response prediction models constructed using least absolute shrinkage and selection operator regularized logistic regression. Internal validation was performed to estimate the model's performances. Pathologic response was defined as complete versus incomplete response (Mandard tumor regression grade system 1 vs. 2-5). Results: Pathologic examination revealed 19 (19.6%) complete and 78 (80.4%) incomplete responders. Least absolute shrinkage and selection operator regularization selected the clinical parameters: histologic type and clinical T stage, the 18 F-FDG PET-derived textural feature long run low gray level emphasis, and the CT-derived textural feature run percentage. Introducing these variables to a logistic regression analysis showed areas under the receiver-operating-characteristic curve (AUCs) of 0.78 compared with 0.58 in the SUV max model. The discrimination slopes were 0.17 compared with 0.01, respectively. After internal validation, the AUCs decreased to 0.74 and 0.54, respectively. Conclusion

  6. Dual-time-point {sup 18}F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Yukihiro; Demura, Yoshiki; Ishizaki, Takeshi; Ameshima, Shingo [University of Fukui, Department of Respiratory Medicine, Yoshida-gun, Fukui (Japan); Miyamori, Isamu [University of Fukui, Third Department of Internal Medicine, Yoshida-gun, Fukui (Japan); Saito, Yuji [Fujita Health University, Division of Respirology and Allergology, Department of Internal Medicine, School of Medicine, Toyoake, Aichi (Japan); Tsuchida, Tatsuro [University of Fukui, Department of Radiology, Yoshida-gun, Fukui (Japan); Fujibayashi, Yasuhisa; Okazawa, Hidehiko [University of Fukui, Biomedical Imaging Research Center, Yoshida-gun, Fukui (Japan)

    2009-07-15

    Individual clinical courses of idiopathic interstitial pneumonia (IIP) are variable and difficult to predict because the pathology and disease activity are contingent, and chest computed tomography (CT) provides little information about disease activity. In this study, we applied dual-time-point [{sup 18}F]-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography (PET), commonly used for diagnosis of malignant tumours, to the differential diagnosis and prediction of disease progression in IIP patients. Fifty patients with IIP, including idiopathic pulmonary fibrosis (IPF, n = 21), non-specific interstitial pneumonia (NSIP, n = 18) and cryptogenic organizing pneumonia (COP, n = 11), underwent {sup 18}F-FDG PET examinations at two time points: scan 1 at 60 min (early imaging) and scan 2 at 180 min (delayed imaging) after {sup 18}F-FDG injection. The standardized uptake values (SUV) at the two points and the retention index (RI-SUV) calculated from them were evaluated and compared with chest CT findings, disease progression and disease types. To evaluate short-term disease progression, all patients were examined by pulmonary function test every 3 months for 1 year after {sup 18}F-FDG PET scanning. The early SUV for COP (2.47 {+-} 0.74) was significantly higher than that for IPF (0.99 {+-} 0.29, p = 0.0002) or NSIP (1.22 {+-} 0.44, p= 0.0025). When an early SUV cut-off value of 1.5 and greater was used to distinguish COP from IPF and NSIP, the sensitivity, specificity and accuracy were 90.9, 94.3 and 93.5%, respectively. The RI-SUV for IPF and NSIP lesions was significantly greater in patients with deteriorated pulmonary function after 1 year of follow-up (progressive group, 13.0 {+-} 8.9%) than in cases without deterioration during the 1-year observation period (stable group, -16.8 {+-} 5.9%, p < 0.0001). However, the early SUV for all IIP types provided no additional information of disease progression. When an RI-SUV cut-off value of 0% and greater was

  7. Optimizing {sup 18}F-FDG PET/CT imaging of vessel wall inflammation: the impact of {sup 18}F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels

    Energy Technology Data Exchange (ETDEWEB)

    Bucerius, Jan [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital, RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Mani, Venkatesh; Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Moncrieff, Colin [Icahn School of Medicine at Mount Sinai, Translational and Molecular Imaging Institute, One Gustave L. Levy Place, P.O. Box 1234, New York, NY (United States); Mount Sinai School of Medicine, Department of Radiology, New York, NY (United States); Machac, Josef [Mount Sinai School of Medicine, Division of Nuclear Medicine, Department of Radiology, New York, NY (United States); Fuster, Valentin [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); The Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid (Spain); Farkouh, Michael E. [Mount Sinai School of Medicine, Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josee and Henry R. Kravis Cardiovascular Health Center, New York, NY (United States); Mount Sinai School of Medicine, Cardiovascular Imaging Clinical Trials Unit, New York, NY (United States); Tawakol, Ahmed [Massachusetts General Hospital, Harvard University, Cardiac MR PET CT Program, Boston, MA (United States); Rudd, James H.F. [Cambridge University, Division of Cardiovascular Medicine, Cambridge (United Kingdom)

    2014-02-15

    {sup 18}F-FDG PET is increasingly used for imaging of vessel wall inflammation. However, limited data are available on the impact of methodological variables, i.e. prescan fasting glucose, FDG circulation time and injected FDG dose, and of different FDG uptake parameters, in vascular FDG PET imaging. Included in the study were 195 patients who underwent vascular FDG PET/CT of the aorta and the carotids. Arterial standardized uptake values ({sub mean}SUV{sub max}), target-to-background ratios ({sub mean}TBR{sub max}) and FDG blood-pool activity in the superior vena cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake values classified according to the tertiles of prescan fasting glucose levels, the FDG circulation time, and the injected FDG dose were compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood-pool FDG uptake. Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l, showing a favorable relationship between arterial and blood-pool FDG uptake. FDG circulation times showed negative associations with aortic{sub mean}SUV{sub max} values as well as SVC and JV FDG blood-pool activity, but positive correlations with aortic and carotid{sub mean}TBR{sub max} values. Prescan glucose levels were negatively associated with aortic and carotid{sub mean}TBR{sub max} and carotid{sub mean}SUV{sub max} values, but were positively correlated with SVC blood-pool uptake. The injected FDG dose failed to show any significant association with vascular FDG uptake. FDG circulation times and prescan blood glucose levels significantly affect FDG uptake in the aortic and carotid walls and may bias the results of image interpretation in patients undergoing vascular FDG PET/CT. The injected FDG dose was less critical. Therefore, circulation times of about 2.5 h and prescan glucose levels less than 7.0 mmol

  8. {sup 18}F-FDG PET/CT imaging of pulmonary mucinous cystadenocarcinoma with signet ring cells

    Energy Technology Data Exchange (ETDEWEB)

    Kalkanis, Alexandros [Dept. of Respiratory Medicine, Army General Hospital, Athens (Greece); Palaiodimos, Leonidas [Dept. of Medicine, Jacobi Medical Center / Albert Einstein College of Medicine, Bronx (United States); Klinaki, Ifigeneia [Dept. of Nuclear MedicineBiotypos Diagnostic Center, Athens (Greece); Kranranis, Dimitrios; Kalkanis, Dimitrios [Dept. of Nuclear Medicine, 251 Greek Airforce Hospital, Athens (Greece)

    2017-09-15

    A 63-year-old male with a recently diagnosed right lung lesion was referred for staging. F-FDG PET/CT scan revealed a hypodense, cystic-like mass in the right upper lung lobe, which demonstrated low, diffuse {sup 18}F-FDG uptake, likely due to the presence of mucus, as well as intensely hypermetabolic right hilar and right paratracheal lymph nodes. Transbronchial biopsy revealed a primary pulmonary mucinous cystadenocarcinoma with the presence of signet ring cell carcinoma, a co-existence of two rare variants of lung adenocarcinoma. This case report demonstrates the metabolic phenotype along with the radiographic characteristics of this rare tumor and its metastases.

  9. Fluorescence imaging of bombesin and transferrin receptor expression is comparable to 18F-FDG PET in early detection of sorafenib-induced changes in tumor metabolism.

    Directory of Open Access Journals (Sweden)

    Jen-Chieh Tseng

    Full Text Available Physical measurement of tumor volume reduction is the most commonly used approach to assess tumor progression and treatment efficacy in mouse tumor models. However, it is relatively insensitive, and often requires long treatment courses to achieve gross physical tumor destruction. As alternatives, several non-invasive imaging methods such as bioluminescence imaging (BLI, fluorescence imaging (FLI and positron emission tomography (PET have been developed for more accurate measurement. As tumors have elevated glucose metabolism, 18F-fludeoxyglucose (18F-FDG has become a sensitive PET imaging tracer for cancer detection, diagnosis, and efficacy assessment by measuring alterations in glucose metabolism. In particular, the ability of 18F-FDG imaging to detect drug-induced effects on tumor metabolism at a very early phase has dramatically improved the speed of decision-making regarding treatment efficacy. Here we demonstrated an approach with FLI that offers not only comparable performance to PET imaging, but also provides additional benefits, including ease of use, imaging throughput, probe stability, and the potential for multiplex imaging. In this report, we used sorafenib, a tyrosine kinase inhibitor clinically approved for cancer therapy, for treatment of a mouse tumor xenograft model. The drug is known to block several key signaling pathways involved in tumor metabolism. We first identified an appropriate sorafenib dose, 40 mg/kg (daily on days 0-4 and 7-10, that retained ultimate therapeutic efficacy yet provided a 2-3 day window post-treatment for imaging early, subtle metabolic changes prior to gross tumor regression. We then used 18F-FDG PET as the gold standard for assessing the effects of sorafenib treatment on tumor metabolism and compared this to results obtained by measurement of tumor size, tumor BLI, and tumor FLI changes. PET imaging showed ~55-60% inhibition of tumor uptake of 18F-FDG as early as days 2 and 3 post-treatment, without

  10. Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI.

    Science.gov (United States)

    Kirchner, Julian; Deuschl, Cornelius; Schweiger, Bernd; Herrmann, Ken; Forsting, Michael; Buchbender, Christian; Antoch, Gerald; Umutlu, Lale

    2017-09-01

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted 18 F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 18 F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI 1 ; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI 2 ; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI 3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. 18 F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.

  11. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    Science.gov (United States)

    Tixier, Florent; Le Rest, Catherine Cheze; Hatt, Mathieu; Albarghach, Nidal; Pradier, Olivier; Metges, Jean-Philippe; Corcos, Laurent; Visvikis, Dimitris

    2011-03-01

    (18)F-FDG PET is often used in clinical routine for diagnosis, staging, and response to therapy assessment or prediction. The standardized uptake value (SUV) in the primary or regional area is the most common quantitative measurement derived from PET images used for those purposes. The aim of this study was to propose and evaluate new parameters obtained by textural analysis of baseline PET scans for the prediction of therapy response in esophageal cancer. Forty-one patients with newly diagnosed esophageal cancer treated with combined radiochemotherapy were included in this study. All patients underwent pretreatment whole-body (18)F-FDG PET. Patients were treated with radiotherapy and alkylatinlike agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were classified as nonresponders (progressive or stable disease), partial responders, or complete responders according to the Response Evaluation Criteria in Solid Tumors. Different image-derived indices obtained from the pretreatment PET tumor images were considered. These included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 features (such as entropy, size, and magnitude of local and global heterogeneous and homogeneous tumor regions) extracted from the 5 different textures considered. The capacity of each parameter to classify patients with respect to response to therapy was assessed using the Kruskal-Wallis test (P textural analysis can provide nonresponder, partial-responder, and complete-responder patient identification with higher sensitivity (76%-92%) than any SUV measurement. Textural features of tumor metabolic distribution extracted from baseline (18)F-FDG PET images allow for the best stratification of esophageal carcinoma patients in the context of therapy-response prediction.

  12. Imaging children suffering from lymphoma: an evaluation of different {sup 18}F-FDG PET/MRI protocols compared to whole-body DW-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Julian; Buchbender, Christian; Antoch, Gerald [University Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Dusseldorf (Germany); Deuschl, Cornelius; Schweiger, Bernd; Forsting, Michael; Umutlu, Lale [University Hospital Essen, University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Herrmann, Ken [University Hospital Essen, University of Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany)

    2017-09-15

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted {sup 18}F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 {sup 18}F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI{sub 1}; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI{sub 2}; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI{sub 3} and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. {sup 18}F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future. (orig.)

  13. Correlation of perfusion MRI and 18F-FDG PET imaging biomarkers for monitoring regorafenib therapy in experimental colon carcinomas with immunohistochemical validation.

    Directory of Open Access Journals (Sweden)

    Ralf S Eschbach

    Full Text Available To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation.Human colorectal adenocarcinoma xenografts (HT-29 were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group female athymic nude rats (Hsd:RH-Foxn1rnu. Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min, plasma volume (PV, % and endothelial permeability-surface area product (PS, mL/100 mL/min were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31 and cell proliferation (Ki-67.Regorafenib significantly (p<0.01 suppressed PF (81.1±7.5 to 50.6±16.0 mL/100mL/min, PV (12.1±3.6 to 7.5±1.6% and PS (13.6±3.2 to 7.9±2.3 mL/100mL/min as well as TTB (3.4±0.6 to 1.9±1.1 between baseline and day 7. Immunohistochemistry revealed significantly (p<0.03 lower tumor microvascular density (CD-31, 7.0±2.4 vs. 16.1±5.9 and tumor cell proliferation (Ki-67, 434.0 ± 62.9 vs. 663.0 ± 98.3 in the therapy group. Perfusion MRI parameters ΔPF, ΔPV and ΔPS showed strong and significant (r = 0.67-0.78; p<0.01 correlations to the PET parameter ΔTTB and significant correlations (r = 0.57-0.67; p<0.03 to immunohistochemical Ki-67 as well as to CD-31-stainings (r = 0.49-0.55; p<0.05.A multimodal, multiparametric perfusion MRI/PET imaging protocol allowed for non-invasive monitoring of regorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F-FDG

  14. Fever of unknown origin: A value of {sup 18}F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic)], E-mail: ferda@fnplzen.cz; Ferdova, Eva [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Zahlava, Jan [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Matejovic, Martin [Ist Internal Department, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Kreuzberg, Boris [Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic)

    2010-03-15

    Aim: The aim of presented work is to evaluate the clinical value of {sup 18}F-FDG-PET/CT in patients with fever of unknown origin (FUO) and to compare PET/CT finding with the results of the following investigation. Material and method: 48 patients (24 men, 24 women, mean age 57.6 years with range 15-89 years) underwent {sup 18}F-FDG-PET/CT due to the fever of unknown origin. All examinations were performed using complex PET/CT protocol combined PET and whole diagnostic contrast enhanced CT with sub-millimeter spatial resolution (except patient with history of iodine hypersensitivity or sever renal impairment). CT data contained diagnostic images reconstructed with soft tissue and high-resolution algorithm. PET/CT finding were compared with results of biopsies, immunology, microbiology or autopsy. Results: The cause of FUO was explained according to the PET/CT findings and followed investigations in 44 of 48 cases-18 cases of microbial infections, nine cases of autoimmune inflammations, four cases of non-infectious granulomatous diseases, eight cases of malignancies and five cases of proved immunity disorders were found. In 46 cases, the PET/CT interpretation was correct. Only in one case, the cause was overlooked and the uptake in atherosclerotic changes of arteries was misinterpreted as vasculitis in the other. The reached sensitivity was 97% (43/44), and specificity 75% (3/4) respectively. Conclusion: In patients with fever of unknown origin, {sup 18}F-FDG-PET/CT might enable the detection of its cause.

  15. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer

    International Nuclear Information System (INIS)

    Hatt, Mathieu; Visvikis, Dimitris; Cheze-le Rest, Catherine; Pradier, Olivier

    2011-01-01

    The objectives of this study were to investigate the predictive value of tumour measurements on 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG) positron emission tomography (PET) pretreatment scan regarding therapy response in oesophageal cancer and to evaluate the impact of tumour delineation strategies. Fifty patients with oesophageal cancer treated with concomitant radiochemotherapy between 2004 and 2008 were retrospectively considered and classified as complete, partial or non-responders (including stable and progressive disease) according to Response Evaluation Criteria in Solid Tumors (RECIST). The classification of partial and complete responders was confirmed by biopsy. Tumours were delineated on the 18 F-FDG pretreatment scan using an adaptive threshold and the automatic fuzzy locally adaptive Bayesian (FLAB) methodologies. Several parameters were then extracted: maximum and peak standardized uptake value (SUV), tumour longitudinal length (TL) and volume (TV), SUV mean , and total lesion glycolysis (TLG = TV x SUV mean ). The correlation between each parameter and response was investigated using Kruskal-Wallis tests, and receiver-operating characteristic methodology was used to assess performance of the parameters to differentiate patients. Whereas commonly used parameters such as SUV measurements were not significant predictive factors of the response, parameters related to tumour functional spatial extent (TL, TV, TLG) allowed significant differentiation of all three groups of patients, independently of the delineation strategy, and could identify complete and non-responders with sensitivity above 75% and specificity above 85%. A systematic although not statistically significant trend was observed regarding the hierarchy of the delineation methodologies and the parameters considered, with slightly higher predictive value obtained with FLAB over adaptive thresholding, and TLG over TV and TL. TLG is a promising predictive factor of concomitant

  16. Baseline {sup 18}F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, Mathieu; Visvikis, Dimitris; Cheze-le Rest, Catherine [CHU Morvan, LaTIM, INSERM U650, Brest (France); Pradier, Olivier [CHU Morvan, LaTIM, INSERM U650, Brest (France); CHU Morvan, Department of Radiotherapy, Brest (France)

    2011-09-15

    The objectives of this study were to investigate the predictive value of tumour measurements on 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ({sup 18}F-FDG) positron emission tomography (PET) pretreatment scan regarding therapy response in oesophageal cancer and to evaluate the impact of tumour delineation strategies. Fifty patients with oesophageal cancer treated with concomitant radiochemotherapy between 2004 and 2008 were retrospectively considered and classified as complete, partial or non-responders (including stable and progressive disease) according to Response Evaluation Criteria in Solid Tumors (RECIST). The classification of partial and complete responders was confirmed by biopsy. Tumours were delineated on the {sup 18}F-FDG pretreatment scan using an adaptive threshold and the automatic fuzzy locally adaptive Bayesian (FLAB) methodologies. Several parameters were then extracted: maximum and peak standardized uptake value (SUV), tumour longitudinal length (TL) and volume (TV), SUV{sub mean}, and total lesion glycolysis (TLG = TV x SUV{sub mean}). The correlation between each parameter and response was investigated using Kruskal-Wallis tests, and receiver-operating characteristic methodology was used to assess performance of the parameters to differentiate patients. Whereas commonly used parameters such as SUV measurements were not significant predictive factors of the response, parameters related to tumour functional spatial extent (TL, TV, TLG) allowed significant differentiation of all three groups of patients, independently of the delineation strategy, and could identify complete and non-responders with sensitivity above 75% and specificity above 85%. A systematic although not statistically significant trend was observed regarding the hierarchy of the delineation methodologies and the parameters considered, with slightly higher predictive value obtained with FLAB over adaptive thresholding, and TLG over TV and TL. TLG is a promising predictive factor of

  17. Production And Quality Control Of Radiopharmaceutical 18F-FDG

    International Nuclear Information System (INIS)

    Dinh Thi Bich Lieu; Nguyen Van Si; Vu Van Tien

    2011-01-01

    18 F-FDG is a radiopharmaceutical for imaging diagnosis with PET/CT in Nuclear Medicine. Criteria of injection pharmaceuticals are the highest standards. So, quality assurance and quality control must be followed very strictly. The selection of the procedure for 18 F-FDG has based on several criteria: high chemical efficiency, short synthesis time, toxic component free and etc. The quality control of 18 F-FDG consist many fields such as: nuclear physic (nuclear purity), radiochemistry (radionuclear purity, radiochemical purity), chemistry (chemical purity), radiation measurement (half life), microbiology (pyrogen, endotoxin), etc. which is following USP, BP or EP. (author)

  18. [68Ga]DOTATATE PET/MRI and [18F]FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Stegger, Lars; Wenning, Christian; Noto, Benjamin; Konnert, Julia Renate; Riemann, Burkhard; Weckesser, Matthias; Burg, Matthias Christian; Allkemper, Thomas; Heindel, Walter; Schaefers, Michael

    2016-01-01

    The purpose of this study was to determine whether [ 68 Ga]DOTATATE PET/MRI with diffusion-weighted imaging (DWI) can replace or complement [ 18 F]FDG PET/CT in patients with radioactive-iodine (RAI)-refractory differentiated thyroid cancer (DTC). The study population comprised 12 patients with elevated thyroglobulin and a negative RAI scan after thyroidectomy and RAI remnant ablation who underwent both [ 18 F]FDG PET/CT and [ 68 Ga]DOTATATE PET/MRI within 8 weeks of each other. The presence of recurrent cancer was evaluated on a per-patient, per-organ and per-lesion basis. Histology, and prior and follow-up examinations served as the standard of reference. Recurrent or metastatic tumour was confirmed in 11 of the 12 patients. [ 68 Ga]DOTATATE PET(/MRI) correctly identified the tumour burden in all 11 patients, whereas in one patient local relapse was missed by [ 18 F]FDG PET/CT. In the lesion-based analysis, overall lesion detection rates were 79/85 (93 %), 69/85 (81 %) and 27/82 (33 %) for [ 18 F]FDG PET/CT, [ 68 Ga]DOTATATE PET/MRI and DWI, respectively. [ 18 F]FDG PET(/CT) was superior to [ 68 Ga]DOTATATE PET(/MRI) in the overall evaluation and in the detection of pulmonary metastases. In the detection of extrapulmonary metastases, [ 68 Ga]DOTATATE PET(/MRI) showed a higher sensitivity than [ 18 F]FDG PET(/CT), at the cost of lower specificity. DWI achieved only poor sensitivity and was significantly inferior to [ 18 F]FDG PET in the lesion-based evaluation in the detection of both extrapulmonary and pulmonary metastases. [ 18 F]FDG PET/CT was more sensitive than [ 68 Ga]DOTATATE PET/MRI in the evaluation of RAI-refractory DTC, mostly because of its excellent ability to detect lung metastases. In the evaluation of extrapulmonary lesions, [ 68 Ga]DOTATATE PET(/MRI) was more sensitive and [ 18 F]FDG PET(/CT) more specific. Furthermore, DWI did not provide additional information and cannot replace [ 18 F]FDG PET for postoperative monitoring of patients with

  19. The value of "1"8F-FDG PET/CT imaging in diagnosis of postoperative recurrence of rectal carcinoma and metastasis of colon

    International Nuclear Information System (INIS)

    Zhuo Xiaoli; Li Shiyun; Dai Ruqi

    2016-01-01

    Objective: To investigate the value "1"8F-FDG PET/CT imaging in the diagnosis of rectal cancer recurrence and metastasis after operation. Methods: 42 cases of colorectal cancer patients after surgery were involved, all patients were given general "1"8F-FDG PET/CT examination and strengthen CT examination. According to the PET/CT results, the postoperative anastomotic recurrence and metastasis were determined and patients were taken for reoperation or biopsy pathology diagnosis. Results: Among 42 colorectal cancer patients after resection, there were 2 cases recurrence without metastasis, 19 cases metastasis without recurrence, 11 cases with metastasis and recurrence, and 10 cases without recurrence and metastasis. The accuracy, specificity and positive predictive value of PET/CT examination were higher than that of strengthen CT(P < 0.05). Conclusion: The clinical application value of "1"8FFDG PET/CT imaging in the diagnosis of colorectal cancer recurrence and metastasis is higher than that of the traditional strengthening CT, and it can be wildly applied in clinical applications. (authors)

  20. Study of the Influence of Age in 18F-FDG PET Images Using a Data-Driven Approach and Its Evaluation in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Jiehui Jiang

    2018-01-01

    Full Text Available Objectives. 18F-FDG PET scan is one of the most frequently used neural imaging scans. However, the influence of age has proven to be the greatest interfering factor for many clinical dementia diagnoses when analyzing 18F-FDG PET images, since radiologists encounter difficulties when deciding whether the abnormalities in specific regions correlate with normal aging, disease, or both. In the present paper, the authors aimed to define specific brain regions and determine an age-correction mathematical model. Methods. A data-driven approach was used based on 255 healthy subjects. Results. The inferior frontal gyrus, the left medial part and the left medial orbital part of superior frontal gyrus, the right insula, the left anterior cingulate, the left median cingulate, and paracingulate gyri, and bilateral superior temporal gyri were found to have a strong negative correlation with age. For evaluation, an age-correction model was applied to 262 healthy subjects and 50 AD subjects selected from the ADNI database, and partial correlations between SUVR mean and three clinical results were carried out before and after age correction. Conclusion. All correlation coefficients were significantly improved after the age correction. The proposed model was effective in the age correction of both healthy and AD subjects.

  1. Regional nodal staging with 18F-FDG PET–CT in non-small cell lung cancer: Additional diagnostic value of CT attenuation and dual-time-point imaging

    International Nuclear Information System (INIS)

    Li, Meng; Wu, Ning; Liu, Ying; Zheng, Rong; Liang, Ying; Zhang, Wenjie; Zhao, Ping

    2012-01-01

    Background: [Fluorine-18]-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET–CT) is widely performed in the regional nodal staging of non-small cell lung cancer (NSCLC). However, the uptake of 18 F-FDG by tubercular granulomatous tissues may lead to false-positive diagnosis. This is of special concern in China, where tubercular granulomatous disease is epidemic. Herein, we evaluated the efficacy of an additional CT attenuation and a dual-time-point scan in determining the status of lymph nodes. Methods: Eighty NSCLC patients underwent curative surgical resection after 18 F-FDG PET–CT and separate breath-hold CT examinations. The initial images were analyzed by two methods. In method 1, nodal status was determined by 18 F-FDG uptake only. In Method 2, nodal status was determined by 18 F-FDG uptake associated with CT attenuation. For dual-time-point imaging, the retention index (RI) of benign and malignant nodal groups with positive uptake in the initial scan was examined. Results: A total of 265 nodal groups were documented. On a per-nodal-group basis, the diagnostic sensitivity, specificity, and accuracy of Method 1 were 66.7%, 89.7%, and 85.3%, respectively, whereas those of Method 2 were 64.7%, 96.7%, and 90.6%, respectively. The improvement in diagnostic specificity and accuracy associated with the addition of CT attenuation in Method 2 as compared to Method 1 was statistically significant (p 0.05). Conclusion: 18 F-FDG PET–CT has high diagnostic value for preoperative lymph-node (N) staging of NSCLC patients. We show that 18 F-FDG uptake combined with CT attenuation improves the diagnostic specificity and accuracy of nodal diagnosis in NSCLC. For the lymph nodes with positive uptake in the initial scan, dual-time-point imaging has limited effect in differentiation.

  2. PET/CT imaging in polymyalgia rheumatica: praepubic 18F-FDG uptake correlates with pectineus and adductor longus muscles enthesitis and with tenosynovitis

    Directory of Open Access Journals (Sweden)

    Rehak Zdenek

    2017-01-01

    Full Text Available The role of 18F-fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT is increasing in the diagnosis of polymyalgia rheumatica (PMR, one of the most common inflammatory rheumatic diseases. In addition to other locations, increased 18F-FDG accumulation has been detected in the praepubic region in some patients. However, a deeper description and pathophysiological explanation of this increased praepubic accumulation has been lacking. The aim of the presented study is to confirm a decrease in praepubic 18F-FDG accumulation in response to therapy and to describe potential correlations to other 18F-FDG PET/CT scan characteristics during the course of disease. As a secondary objective, we describe the pathological aspects of the observed praepubic 18F-FDG uptake.

  3. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Chang, Joseph Tung-Chieh; Huang, Chung-Guei; Tsan, Din-Li; Ng, Shu-Hang; Wang, Hung-Ming; Lin, Chien-Yu; Liao, Chun-Ta; Yen, Tzu-Chen

    2013-10-01

    Previous studies have shown that total lesion glycolysis (TLG) may serve as a prognostic indicator in oropharyngeal squamous cell carcinoma (OPSCC). We sought to investigate whether the textural features of pretreatment (18)F-FDG PET/CT images can provide any additional prognostic information over TLG and clinical staging in patients with advanced T-stage OPSCC. We retrospectively analyzed the pretreatment (18)F-FDG PET/CT images of 70 patients with advanced T-stage OPSCC who had completed concurrent chemoradiotherapy, bioradiotherapy, or radiotherapy with curative intent. All of the patients had data on human papillomavirus (HPV) infection and were followed up for at least 24 mo or until death. A standardized uptake value (SUV) of 2.5 was taken as a cutoff for tumor boundary. The textural features of pretreatment (18)F-FDG PET/CT images were extracted from histogram analysis (SUV variance and SUV entropy), normalized gray-level cooccurrence matrix (uniformity, entropy, dissimilarity, contrast, homogeneity, inverse different moment, and correlation), and neighborhood gray-tone difference matrix (coarseness, contrast, busyness, complexity, and strength). Receiver-operating-characteristic curves were used to identify the optimal cutoff values for the textural features and TLG. Thirteen patients were HPV-positive. Multivariate Cox regression analysis showed that age, tumor TLG, and uniformity were independently associated with progression-free survival (PFS) and disease-specific survival (DSS). TLG, uniformity, and HPV positivity were significantly associated with overall survival (OS). A prognostic scoring system based on TLG and uniformity was derived. Patients who presented with TLG > 121.9 g and uniformity ≤ 0.138 experienced significantly worse PFS, DSS, and OS rates than those without (P 121.9 g or uniformity ≤ 0.138 were further divided according to age, and different PFS and DSS were observed. Uniformity extracted from the normalized gray

  4. 18F-FDG PET/CT findings of sinonasal inverted papilloma with or without coexistent malignancy: comparison with MR imaging findings in eight patients

    International Nuclear Information System (INIS)

    Yeon Jeon, Tae; Kim, Hyung-Jin; Lee, In Ho; Kim, Sung Tae; Jeon, Pyoung; Kim, Keon Ha; Byun, Hong Sik; Choi, Joon Young

    2009-01-01

    Sinonasal inverted papilloma (IP) is known for high rate of associated malignancy. The purpose of this study was to identify 18 F-FDG PET/CT findings of sinonasal IPs. We also tried to compare the PET/CT findings with the MR imaging findings. We retrospectively reviewed PET/CT and MR images of eight patients with sinonasal IP with (n = 6) or without (n = 2) coexistent squamous cell carcinoma (SCC). Particular attention was paid to correlate the PET/CT findings with the MR imaging findings in terms of area distribution of standard uptake values (SUVs) and a convoluted cerebriform pattern (CCP). In two benign IPs, the maximum SUVs measured 8.2 and 7.8, respectively (mean, 8.0). In both tumors, MR images demonstrated a diffuse CCP. In six IPs with coexistent SCC, the maximum SUVs ranged from 13.3 to 31.9 (mean ± SD, 20.2 ± 6.6). In these tumors, MR images demonstrated a diffuse CCP in two, a partial CCP in three, and no CCP in one. A wide discrepancy was noted between MR imaging and PET/CT in terms of area distribution of a CCP and SUVs. In sinonasal lesions with MR imaging features of IP, 18 F-FDG PET/CT demonstrating avid FDG uptake does not necessarily imply the presence of coexistent malignancy. In our small series, although IPs containing foci of SCC had consistently higher SUVs than IPs without SCC, the limited literature on this subject suggests that PET cannot be used reliably to make the distinction. (orig.)

  5. Characteristic of 18F-FDG Excretion According to Use Diuretics in 18F-FDG of PET/CT

    International Nuclear Information System (INIS)

    Jang, Dong Gun; Yang, Seoung Oh; Lee, Sang Ho; Bae, Jong Lim; Kim, Jeong Koo

    2012-01-01

    18 F-fluorodeoxyglucose ( 18 F-FDG) causes a significant amount of radioactivity retention in kidneys and urinary tract and degrades image quality and diagnostic performance. Diuretics are used to perform tests and prevent the urinary tract retention of 18 F-FDG. The purpose of the study is to investigate how the diuretics affect images and excretion rates of 18 F-FDG. The study consists of a group using diuretics for patients with no primary tumors or transfer lesions in kidneys according to PET/CT images, a group using physiological saline and the control group injecting only 18 F-FDG and SUVs are measured by configuring interested areas for each group. Also, SUVs are compared and evaluated depending on the lasix injection after basic inspection and injecting 18 F-FDG for quantitative analysis. The study shows that images with decreased background radioactivity and increased urine excretion due to using diuretics. However, an opposite result that there is no change in the amount of radioactivity in urine appears. The study concludes that the diuretics may decrease background radioactivity in the images but may not affect the 18 F-FDG excretion.

  6. SU-F-R-13: Decoding 18F-FDG Uptake Heterogeneity for Primary and Lymphoma Tumors by Using Texture Analysis in PET Images

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To explore 18F-FDG uptake heterogeneity of primary tumor and lymphoma tumor by texture features of PET image and quantify the heterogeneity difference between primary tumor and lymphoma tumor. Methods: 18 patients with primary tumor and lymphoma tumor in lung cancer were enrolled. All patients underwent whole-body 18F-FDG PET/CT scans before treatment. Texture features, based on Gray-level Co-occurrence Matrix, second and high order matrices are extracted from code using MATLAB software to quantify 18F-FDG uptake heterogeneity. The relationships of volume between energy, entropy, correlation, homogeneity and contrast were analyzed. Results: For different cases, tumor heterogeneity was not the same. Texture parameters (contrast, entropy, and correlation) of lymphoma were lower than primary tumor. On the contrast, the texture parameters (energy, homogeneity and inverse different moment) of lymphoma were higher than primary tumor. Significantly, correlations were observed between volume and energy (primary, r=−0.194, p=0.441; lymphoma, r=−0.339, p=0.582), homogeneity (primary, r=−0.146, p=0.382; lymphoma, r=−0.193, p=0.44), inverse difference moment (primary, r=−0.14, p=0.374; lymphoma, r=−0.172, p=0.414) and a positive correlation between volume and entropy (primary, r=0.233, p=0.483; lymphoma, r=0.462, p=0.680), contrast (primary, r=0.159, p=0.399; lymphoma, r=0.341, p=0.584), correlation (primary, r=0.027, p=0.165; lymphoma, r=0.046, p=0.215). For the same patient, energy for primary and lymphoma tumor is equal. The volume of lymphoma is smaller than primary tumor, but the homogeneity were higher than primary tumor. Conclusion: This study showed that there were effective heterogeneity differences between primary and lymphoma tumor by FDG-PET image texture analysis.

  7. SU-F-R-13: Decoding 18F-FDG Uptake Heterogeneity for Primary and Lymphoma Tumors by Using Texture Analysis in PET Images

    International Nuclear Information System (INIS)

    Ma, C; Yin, Y

    2016-01-01

    Purpose: To explore 18F-FDG uptake heterogeneity of primary tumor and lymphoma tumor by texture features of PET image and quantify the heterogeneity difference between primary tumor and lymphoma tumor. Methods: 18 patients with primary tumor and lymphoma tumor in lung cancer were enrolled. All patients underwent whole-body 18F-FDG PET/CT scans before treatment. Texture features, based on Gray-level Co-occurrence Matrix, second and high order matrices are extracted from code using MATLAB software to quantify 18F-FDG uptake heterogeneity. The relationships of volume between energy, entropy, correlation, homogeneity and contrast were analyzed. Results: For different cases, tumor heterogeneity was not the same. Texture parameters (contrast, entropy, and correlation) of lymphoma were lower than primary tumor. On the contrast, the texture parameters (energy, homogeneity and inverse different moment) of lymphoma were higher than primary tumor. Significantly, correlations were observed between volume and energy (primary, r=−0.194, p=0.441; lymphoma, r=−0.339, p=0.582), homogeneity (primary, r=−0.146, p=0.382; lymphoma, r=−0.193, p=0.44), inverse difference moment (primary, r=−0.14, p=0.374; lymphoma, r=−0.172, p=0.414) and a positive correlation between volume and entropy (primary, r=0.233, p=0.483; lymphoma, r=0.462, p=0.680), contrast (primary, r=0.159, p=0.399; lymphoma, r=0.341, p=0.584), correlation (primary, r=0.027, p=0.165; lymphoma, r=0.046, p=0.215). For the same patient, energy for primary and lymphoma tumor is equal. The volume of lymphoma is smaller than primary tumor, but the homogeneity were higher than primary tumor. Conclusion: This study showed that there were effective heterogeneity differences between primary and lymphoma tumor by FDG-PET image texture analysis.

  8. Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma.

    Science.gov (United States)

    Chan, Sheng-Chieh; Yeh, Chih-Hua; Yen, Tzu-Chen; Ng, Shu-Hang; Chang, Joseph Tung-Chieh; Lin, Chien-Yu; Yen-Ming, Tsang; Fan, Kang-Hsing; Huang, Bing-Shen; Hsu, Cheng-Lung; Chang, Kai-Ping; Wang, Hung-Ming; Liao, Chun-Ta

    2018-03-03

    Both head and neck magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) play a crucial role in the staging of primary nasopharyngeal carcinoma (NPC). In this study, we sought to prospectively investigate the clinical utility of simultaneous whole-body 18F-FDG PET/MRI for primary staging of NPC patients. We examined 113 patients with histologically confirmed NPC who underwent pretreatment, simultaneous whole-body PET/MRI and PET/CT for primary tumor staging. The images obtained with the different imaging modalities were interpreted independently and compared with each other. PET/MRI increased the accuracy of head and neck MRI for assessment of primary tumor extent in four patients via addition of FDG uptake information to increase the conspicuity of morphologically subtle lesions. PET/MR images were more discernible than PET/CT images for mapping tumor extension, especially intracranial invasion. Regarding the N staging assessment, the sensitivity of PET/MRI (99.5%) was higher than that of head and neck MRI (94.2%) and PET/CT (90.9%). PET/MRI was particularly useful for distinguishing retropharyngeal nodal metastasis from adjacent nasopharyngeal tumors. For distant metastasis evaluation, PET/MRI exhibited a similar sensitivity (90% vs. 86.7% vs. 83.3%), but higher positive predictive value (93.1% vs. 78.8% vs. 83.3%) than whole-body MRI and PET/CT, respectively. For tumor staging of NPC, simultaneous whole-body PET/MRI was more accurate than head and neck MRI and PET/CT, and may serve as a single-step staging modality.

  9. Active Brown Fat During 18F-FDG PET/CT Imaging Defines a Patient Group with Characteristic Traits and an Increased Probability of Brown Fat Redetection.

    Science.gov (United States)

    Gerngroß, Carlos; Schretter, Johanna; Klingenspor, Martin; Schwaiger, Markus; Fromme, Tobias

    2017-07-01

    Brown adipose tissue (BAT) provides a means of nonshivering thermogenesis. In humans, active BAT can be visualized by 18 F-FDG uptake as detected by PET combined with CT. The retrospective analysis of clinical scans is a valuable source to identify anthropometric parameters that influence BAT mass and activity and thus the potential efficacy of envisioned drugs targeting this tissue to treat metabolic disease. Methods: We analyzed 2,854 18 F-FDG PET/CT scans from 1,644 patients and identified 98 scans from 81 patients with active BAT. We quantified the volume of active BAT depots (mean values in mL ± SD: total BAT, 162 ± 183 [ n = 98]; cervical, 40 ± 37 [ n = 53]; supraclavicular, 66 ± 68 [ n = 71]; paravertebral, 51 ± 53 [ n = 69]; mediastinal, 43 ± 40 [ n = 51]; subphrenic, 21 ± 21 [ n = 29]). Because only active BAT is detectable by 18 F-FDG uptake, these numbers underestimate the total amount of BAT. Considering only 32 scans of the highest activity as categorized by a visual scoring strategy, we determined a mean total BAT volume of 308 ± 208 mL. In 30 BAT-positive patients with 3 or more repeated scans, we calculated a much higher mean probability to redetect active BAT (52% ± 25%) as compared with the overall prevalence of 4.9%. We calculated a BAT activity index (BFI) based on volume and intensity of individual BAT depots. Results: We detected higher total BFI in younger patients ( P = 0.009), whereas sex, body mass index, height, mass, outdoor temperature, and blood parameters did not affect total or depot-specific BAT activity. Surprisingly, renal creatinine clearance as estimated from mass, age, and plasma creatinine was a significant predictor of BFI on the total ( P = 0.005) as well as on the level of several individual depots. In summary, we detected a high amount of more than 300 mL of BAT tissue. Conclusion: BAT-positive patients represent a group with a higher than usual probability to activate BAT during a scan. Estimated renal creatinine

  10. Variability in "1"8F-FDG PET/CT methodology of acquisition, reconstruction and analysis for oncologic imaging: state survey

    International Nuclear Information System (INIS)

    Fischer, Andreia C.F. da S.; Druzian, Aline C.; Bacelar, Alexandre; Pianta, Diego B.; Silva, Ana M. Marques da

    2016-01-01

    The SUV in "1"8F-FDG PET/CT oncological imaging is useful for cancer diagnosis, staging and treatment assessment. There are, however, several factors that can give rise to bias in SUV measurements. When using SUV as a diagnostic tool, one needs to minimize the variability in this measurement by standardization of patient preparation, acquisition and reconstruction parameters. The aim of this study is to evaluate the methodological variability in PET/CT acquisition in Rio Grande do Sul State. For that, in each department, a questionnaire was applied to survey technical information from PET/CT systems and about the acquisitions and analysis methods utilized. All departments implement quality assurance programs consistent with (inter)national recommendations. However, the acquisition and reconstruction methods of acquired PET data differ. The implementation of a harmonized strategy for quantifying the SUV is suggested, in order to obtain greater reproducibility and repeatability. (author)

  11. Role of 18F-FDG PET/CT in the evaluation of primary tumours of unknown origin; experience of the Hospital Angeles del Pedregal

    International Nuclear Information System (INIS)

    Sanchez, N.; Serna, J.A.; Quiroz, O.; Valenzuela, J.; Romo, C.; Ramirez, J.L.

    2007-01-01

    It was in 1994 when published studies appear that evaluate the utility of the 18 F-FDG PET in the patients with primary tumors of unknown origin (TOD); starting from then diverse studies that support the clinical utility of the study arise with 18 F-FDG PET in the detection of the primary tumor. It is as well as it has been calculated that the study with 18 F-FDG PET is able to detect the primary tumor in around 40% of the patients with negative results in the conventional diagnostic procedures. Until the moment, most of the studies published in relation to the primary tumors of unknown origin only evaluate the paper of the study with 18 F-FDG PET, without including the image fusion technique PET/CT, which has demonstrated in diverse studies; in oncological scenarios different from the TOD, a superior diagnosis certainty. (Author)

  12. Experiment study on the relationship between radiotherapy effect and 99Tcm-HL-91 and 18F-FDG imaging in S180 mouse

    International Nuclear Information System (INIS)

    Yang Aimin; Deng Huixing; Li Jie; Yu Yan; Li Xu; Chen Wei; Luo Wei

    2010-01-01

    To investigate the relationship between radiotherapy effect and 99 Tc m - HL-91 and 18 F-FDG imaging in S180 mouse. Methods: Animal: twenty male Kunming mice (27±3 g), obtained from animal center of medical school of Xi'an Jiaotong university, were randomly divided into two groups of radiotherapy and non-radiotherapy control group. Cells: S180 cell lines, obtained from molecular and biology center of medical school of Xi'an Jiaotong university, were thawed injected into peritoneal cavity of the 5 mouse. When the S180 tumor liquid developed, l ml liquid were dripped and dilute to the suspension solution of 2 × 106 cells. Then, 0.2 ml of it was injected into the hippo of right rear leg of mouse. The mouse model was used to experiment while the tumor dimension developed to 1-1.5 cm. 99 Tc m -HL-91 imaging: 37 MBq 99 Tc m -HL-91, obtained from Guangdong Xiai Radio-pharmaceutical Center, was injected into mouse models by tail vein. After for 4h, SPECT imaging were taken before and after radiotherapy at the time of 1 h, 2 d and 10 d. GE Hawkeye VG SPECT, equipped with low energy collimator, matrix 128 × 128, zoom 1.3, was used to acquire images for 150 seconds. Radiotherapy: Two groups mouse was irradiated to 0 Gy and 8 Gy X-ray after the first 99 Tc m -HL-91 and 18 F-FDG imaging. Images analysis: the ROI region, in tumor and lung site, was drawn for calculating the UR (uptake ratio). Results: After 1 h, 2 d and 10 d of radiation exposure, the UR values in 99 Tc m -HL-91 imaging were 3.53±1.62, 3.41±1.42, 2.5% 1.57 and 1.26±0.03, respectively, while the UR values were 3.62±1.65. 3.02±1.94, 4.10±1.48 and 2.96±2.02 in control group. This revealed that tumors hypoxic level was decreased after radiation and suggested that tumors develop re-oxygenation. After 11 d of radiation exposure, the UR values in 18 F-FDG imaging were 2.49±1.29 and 1.49±0.56, while the UR values were 2.22±0.45 and 1.89±0.08, expressing a coincident trend with 99 Tc m -HL-91 imaging. This

  13. Recommendations on the use of {sup 18}F-FDG PET/CT in oncology: consensus between the Brazilian Society of Cancerology and the Brazilian Society of Biology, Nuclear Medicine and Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soares Junior, Jose, E-mail: sbbmn@sbbmn.org.b [Sociedade Brasileira de Biologia, Medicina Nuclear e Imagem Molecular (SBBMN), Sao Paulo, SP (Brazil); Fonseca, Roberto Porto [Sociedade Brasileira de Cancerologia, Salvador, BA (Brazil); Cerci, Juliano Julio [Quanta Diagnostico Nuclear, Curitiba, PR (Brazil); Buchpiguel, Carlos Alberto [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Cunha, Marcelo Livorsi da [Hospital Albert Einstein, Sao Paulo, SP (Brazil). Dept. de Radiologia. Servico de Medicina Nuclear e PET/CT; Mamed, Marcelo [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Almeida, Sergio Altino de [Clinica Felippe Mattoso, Rio de Janeiro, RJ (Brazil)

    2010-07-15

    The authors present a list of recommendations on the utilization of {sup 18}F-FDG PET/CT in oncology for the diagnosis, staging and detection of cancer, as well as in the follow-up of the disease progression and possible recurrence. The recommendations were based on the analysis of controlled studies and a systematic review of the literature including both retrospective and prospective studies regarding the clinical usefulness and the impact of {sup 18}F-FDG PET/CT on the management of cancer patients. {sup 18}F-FDG PET/CT should be utilized as a supplement to other conventional imaging methods such as computed tomography and magnetic resonance imaging. Positive results suggesting changes in the clinical management should be confirmed by histopathological studies. {sup 18}F-FDG PET should be utilized in the diagnosis and appropriate clinical management of cancer involving the respiratory system, head and neck, digestive system, breast, genital organs, thyroid, central nervous system, besides melanomas, lymphomas and occult primary tumors (author)

  14. Determining the Minimal Required Radioactivity of 18F-FDG for Reliable Semiquantification in PET/CT Imaging: A Phantom Study.

    Science.gov (United States)

    Chen, Ming-Kai; Menard, David H; Cheng, David W

    2016-03-01

    In pursuit of as-low-as-reasonably-achievable (ALARA) doses, this study investigated the minimal required radioactivity and corresponding imaging time for reliable semiquantification in PET/CT imaging. Using a phantom containing spheres of various diameters (3.4, 2.1, 1.5, 1.2, and 1.0 cm) filled with a fixed (18)F-FDG concentration of 165 kBq/mL and a background concentration of 23.3 kBq/mL, we performed PET/CT at multiple time points over 20 h of radioactive decay. The images were acquired for 10 min at a single bed position for each of 10 half-lives of decay using 3-dimensional list mode and were reconstructed into 1-, 2-, 3-, 4-, 5-, and 10-min acquisitions per bed position using an ordered-subsets expectation maximum algorithm with 24 subsets and 2 iterations and a gaussian 2-mm filter. SUVmax and SUVavg were measured for each sphere. The minimal required activity (±10%) for precise SUVmax semiquantification in the spheres was 1.8 kBq/mL for an acquisition of 10 min, 3.7 kBq/mL for 3-5 min, 7.9 kBq/mL for 2 min, and 17.4 kBq/mL for 1 min. The minimal required activity concentration-acquisition time product per bed position was 10-15 kBq/mL⋅min for reproducible SUV measurements within the spheres without overestimation. Using the total radioactivity and counting rate from the entire phantom, we found that the minimal required total activity-time product was 17 MBq⋅min and the minimal required counting rate-time product was 100 kcps⋅min. Our phantom study determined a threshold for minimal radioactivity and acquisition time for precise semiquantification in (18)F-FDG PET imaging that can serve as a guide in pursuit of achieving ALARA doses. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging

    International Nuclear Information System (INIS)

    Hyafil, Fabien; Schindler, Andreas; Obenhuber, Tilman; Saam, Tobias; Sepp, Dominik; Hoehn, Sabine; Poppert, Holger; Bayer-Karpinska, Anna; Boeckh-Behrens, Tobias; Hacker, Marcus; Nekolla, Stephan G.; Rominger, Axel; Dichgans, Martin; Schwaiger, Markus

    2016-01-01

    The aim of this study was to investigate in 18 patients with ischaemic stroke classified as cryptogenic and presenting non-stenotic carotid atherosclerotic plaques the morphological and biological aspects of these plaques with magnetic resonance imaging (MRI) and 18 F-fluoro-deoxyglucose positron emission tomography ( 18 F-FDG PET) imaging. Carotid arteries were imaged 150 min after injection of 18 F-FDG with a combined PET/MRI system. American Heart Association (AHA) lesion type and plaque composition were determined on consecutive MRI axial sections (n = 460) in both carotid arteries. 18 F-FDG uptake in carotid arteries was quantified using tissue to background ratio (TBR) on corresponding PET sections. The prevalence of complicated atherosclerotic plaques (AHA lesion type VI) detected with high-resolution MRI was significantly higher in the carotid artery ipsilateral to the ischaemic stroke as compared to the contralateral side (39 vs 0 %; p = 0.001). For all other AHA lesion types, no significant differences were found between ipsilateral and contralateral sides. In addition, atherosclerotic plaques classified as high-risk lesions with MRI (AHA lesion type VI) were associated with higher 18 F-FDG uptake in comparison with other AHA lesions (TBR = 3.43 ± 1.13 vs 2.41 ± 0.84, respectively; p < 0.001). Furthermore, patients presenting at least one complicated lesion (AHA lesion type VI) with MRI showed significantly higher 18 F-FDG uptake in both carotid arteries (ipsilateral and contralateral to the stroke) in comparison with carotid arteries of patients showing no complicated lesion with MRI (mean TBR = 3.18 ± 1.26 and 2.80 ± 0.94 vs 2.19 ± 0.57, respectively; p < 0.05) in favour of a diffuse inflammatory process along both carotid arteries associated with complicated plaques. Morphological and biological features of high-risk plaques can be detected with 18 F-FDG PET/MRI in non-stenotic atherosclerotic plaques ipsilateral to the stroke, suggesting a causal

  16. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined {sup 18}F-FDG PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hyafil, Fabien [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Bichat University Hospital, Department of Nuclear Medicine, Paris (France); Schindler, Andreas; Obenhuber, Tilman; Saam, Tobias [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Sepp, Dominik; Hoehn, Sabine; Poppert, Holger [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Bayer-Karpinska, Anna [Ludwig Maximilians University Hospital Munich, Institute for Stroke and Dementia Research, Munich (Germany); Boeckh-Behrens, Tobias [Technische Universitaet Muenchen, Department of Neuroradiology, Klinikum Rechts der Isar, Munich (Germany); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Nekolla, Stephan G. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Munich (Germany); Rominger, Axel [Ludwig Maximilians University Hospital Munich, Department of Nuclear Medicine, Munich (Germany); Dichgans, Martin [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Munich Cluster of Systems Neurology (SyNergy), Munich (Germany); Schwaiger, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany)

    2016-02-15

    The aim of this study was to investigate in 18 patients with ischaemic stroke classified as cryptogenic and presenting non-stenotic carotid atherosclerotic plaques the morphological and biological aspects of these plaques with magnetic resonance imaging (MRI) and {sup 18}F-fluoro-deoxyglucose positron emission tomography ({sup 18}F-FDG PET) imaging. Carotid arteries were imaged 150 min after injection of {sup 18}F-FDG with a combined PET/MRI system. American Heart Association (AHA) lesion type and plaque composition were determined on consecutive MRI axial sections (n = 460) in both carotid arteries. {sup 18}F-FDG uptake in carotid arteries was quantified using tissue to background ratio (TBR) on corresponding PET sections. The prevalence of complicated atherosclerotic plaques (AHA lesion type VI) detected with high-resolution MRI was significantly higher in the carotid artery ipsilateral to the ischaemic stroke as compared to the contralateral side (39 vs 0 %; p = 0.001). For all other AHA lesion types, no significant differences were found between ipsilateral and contralateral sides. In addition, atherosclerotic plaques classified as high-risk lesions with MRI (AHA lesion type VI) were associated with higher {sup 18}F-FDG uptake in comparison with other AHA lesions (TBR = 3.43 ± 1.13 vs 2.41 ± 0.84, respectively; p < 0.001). Furthermore, patients presenting at least one complicated lesion (AHA lesion type VI) with MRI showed significantly higher {sup 18}F-FDG uptake in both carotid arteries (ipsilateral and contralateral to the stroke) in comparison with carotid arteries of patients showing no complicated lesion with MRI (mean TBR = 3.18 ± 1.26 and 2.80 ± 0.94 vs 2.19 ± 0.57, respectively; p < 0.05) in favour of a diffuse inflammatory process along both carotid arteries associated with complicated plaques. Morphological and biological features of high-risk plaques can be detected with {sup 18}F-FDG PET/MRI in non-stenotic atherosclerotic plaques ipsilateral

  17. Assessment of the usefulness of the standardized uptake values and the radioactivity levels for the preoperative diagnosis of thyroid cancer measured by using 18F-FDG PET/CT dual-time-point imaging

    Science.gov (United States)

    Lee, Hyeon-Guck; Hong, Seong-Jong; Cho, Jae-Hwan; Han, Man-Seok; Kim, Tae-Hyung; Lee, Ik-Han

    2013-02-01

    The purpose of this study was to assess and compare the changes in the SUV (standardized uptake value), the 18F-FDG (18F-fluorodeoxyglucose) uptake pattern, and the radioactivity level for the diagnosis of thyroid cancer via dual-time-point 18F-FDG PET/CT (positron emission tomographycomputed tomography) imaging. Moreover, the study aimed to verify the usefulness and significance of SUV values and radioactivity levels to discriminate tumor malignancy. A retrospective analysis was performed on 40 patients who received 18F-FDG PET/CT for thyroid cancer as a primary tumor. To set the background, we compared changes in values by calculating the dispersion of scattered rays in the neck area and the lung apex, and by comparing the mean and SD (standard deviation) values of the maxSUV and the radioactivity levels. According to the statistical analysis of the changes in 18F-FDG uptake for the diagnosis of thyroid cancer, a high similarity was observed with the coefficient of determination being R2 = 0.939, in the SUVs and the radioactivity levels. Moreover, similar results were observed in the assessment of tumor malignancy using dual-time-point. The quantitative analysis method for assessing tumor malignancy using radioactivity levels was neither specific nor discriminative compared to the semi-quantitative analysis method.

  18. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  19. Comparisons of [18F]-1-deoxy-1-fluoro-scyllo-inositol with [18F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    International Nuclear Information System (INIS)

    McLarty, Kristin; Moran, Matthew D.; Scollard, Deborah A.; Chan, Conrad; Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit; McLaurin, JoAnne; Nitz, Mark; Houle, Sylvain; Wilson, Alan A.; Reilly, Raymond M.; Vasdev, Neil

    2011-01-01

    Introduction: The aim of the study was to evaluate the uptake of [ 18 F]-1-deoxy-1-fluoro-scyllo-inositol ([ 18 F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [ 18 F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [ 18 F]-scyllo-inositol and [ 18 F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [ 18 F]-scyllo-inositol was automated with good radiochemical yields (24.6%±3.3%, uncorrected for decay, 65±2 min, n=5) and high specific activities (≥195 GBq/μmol at end of synthesis). Uptake of [ 18 F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [ 18 F]-FDG (4.6±0.5 vs. 5.5±2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [ 18 F]-scyllo-inositol in inflammation was lower than [ 18 F]-FDG. While uptake of [ 18 F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [ 18 F]-FDG, the tumour-to-brain ratio was significantly higher (10.6±2.5 vs. 2.1±0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [ 18 F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [ 18 F]-FDG. The tumour-to-brain ratio of [ 18 F]-scyllo-inositol was also significantly higher than that of [ 18 F]-FDG for visualizing intracranial glioma xenografts in NOD SCID mice, giving a better contrast. -- Graphical Abstract: Display Omitted

  20. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With 1H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [18F]FDG-PET

    International Nuclear Information System (INIS)

    Jansen, Jacobus F.A.; Schöder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ( 1 H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and 18 F-labeled fluorodeoxyglucose positron emission tomography ([ 18 F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with 1 H-MRS, DCE-MRI, and [ 18 F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among 1 H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K trans ]; volume fraction of the extravascular extracellular space [v e ]; and redistribution rate constant [k ep ]), and [ 18 F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG (ρ = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v e ) (ρ = −0.691; p = 0.004) and std(k ep ) (ρ = −0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume (ρ = 0.643; p = 0.007). Logistic regression indicated that std(K trans ) and SUVmean were significant predictors of short-term response (p 1 H-MRS, DCE-MRI, and [ 18 F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [ 18 F]FDG PET parameters were predictive of short-term response to treatment.

  1. In Vivo Phenotyping of Tumor Metabolism in a Canine Cancer Patient with Simultaneous 18F-FDG-PET and Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopic Imaging (hyperPET: Mismatch Demonstrates that FDG may not Always Reflect the Warburg Effect

    Directory of Open Access Journals (Sweden)

    Henrik Gutte

    2015-06-01

    Full Text Available In this communication the mismatch between simultaneous 18F-FDG-PET and a 13C-lactate imaging (hyperPET in a biopsy verified squamous cell carcinoma in the right tonsil of a canine cancer patient is shown. The results demonstrate that 18F-FDG-PET may not always reflect the Warburg effect in all tumors.

  2. In Vivo Phenotyping of Tumor Metabolism in a Canine Cancer Patient with Simultaneous (18)F-FDG-PET and Hyperpolarized (13)C-Pyruvate Magnetic Resonance Spectroscopic Imaging (hyperPET): Mismatch Demonstrates that FDG may not Always Reflect the Warburg Effect

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    In this communication the mismatch between simultaneous (18)F-FDG-PET and a (13)C-lactate imaging (hyperPET) in a biopsy verified squamous cell carcinoma in the right tonsil of a canine cancer patient is shown. The results demonstrate that (18)F-FDG-PET may not always reflect the Warburg effect...

  3. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars; Burg, Matthias Christian; Allkemper, Thomas; Schaefers, Michael

    2016-01-01

    To evaluate the diagnostic potential of PET/MRI with [ 18 F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [ 18 F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [ 18 F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [ 18 F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [ 18 F]FDG PET/MRI was inferior to low-dose [ 18 F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [ 18 F]FDG PET/MRI was equal to contrast-enhanced neck [ 18 F]FDG PET/CT. Therefore, [ 18 F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  4. Influence of Animal Heating on PET Imaging Quantification and Kinetics: Biodistribution of 18F-Tetrafluoroborate and 18F-FDG in Mice.

    Science.gov (United States)

    Goetz, Christian; Podein, Matthias; Braun, Friederike; Weber, Wolfgang A; Choquet, Philippe; Constantinesco, André; Mix, Michael

    2017-07-01

    Different environmental conditions under anesthesia may lead to unstable homeostatic conditions in rodents and therefore may alter kinetics. In this study, the impact of different heating conditions on PET imaging quantification was evaluated. Methods: Two groups of 6 adult female BALB/c nude mice with subcutaneously implanted tumors underwent microPET imaging after injection of 18 F-labeled tetrafluoroborate or 18 F-FDG. Dynamic scans were acquired under optimal and suboptimal heating conditions. Time-activity curves were analyzed to calculate uptake and washout time constants. Results: With 18 F-labeled tetrafluoroborate, optimal animal heating led to a stable heart rate during acquisition (515 ± 35 [mean ± SD] beats/min), whereas suboptimal heating led to a lower heart rate and a higher SD (470 ± 84 beats/min). Both uptake and washout time constants were faster ( P heating. Conclusion: Although the difference in heart rates was slight, optimal heating yielded significantly faster uptake and washout kinetics than suboptimal heating in all organs for both tracers. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. 18F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic resonance and sonographic assessments as well as with the serum level of metalloproteinase-3

    International Nuclear Information System (INIS)

    Beckers, Catherine; Foidart, Jacqueline; Hustinx, Roland; Jeukens, Xavier; Marcelis, Stefaan; Ribbens, Clio; Andre, Beatrice; Leclercq, Philippe; Kaiser, Marie-Joelle; Malaise, Michel G.

    2006-01-01

    The aim of this study was to assess rheumatoid arthritis (RA) synovitis with positron emission tomography (PET) and 18 F-fluorodeoxyglucose ( 18 F-FDG) in comparison with dynamic magnetic resonance imaging (MRI) and ultrasonography (US). Sixteen knees in 16 patients with active RA were assessed with PET, MRI and US at baseline and 4 weeks after initiation of anti-TNF-α treatment. All studies were performed within 4 days. Visual and semi-quantitative (standardised uptake value, SUV) analyses of the synovial uptake of FDG were performed. The dynamic enhancement rate and the static enhancement were measured after i.v. gadolinium injection and the synovial thickness was measured in the medial, lateral patellar and suprapatellar recesses by US. Serum levels of C-reactive protein (CRP) and metalloproteinase-3 (MMP-3) were also measured. PET was positive in 69% of knees while MRI and US were positive in 69% and 75%. Positivity on one imaging technique was strongly associated with positivity on the other two. PET-positive knees exhibited significantly higher SUVs, higher MRI parameters and greater synovial thickness compared with PET-negative knees, whereas serum CRP and MMP-3 levels were not significantly different. SUVs were significantly correlated with all MRI parameters, with synovial thickness and with serum CRP and MMP-3 levels at baseline. Changes in SUVs after 4 weeks were also correlated with changes in MRI parameters and in serum CRP and MMP-3 levels, but not with changes in synovial thickness. (orig.)

  6. SUV navigator enables rapid [18F]-FDG PET/CT image interpretation compared with 2D ROI and 3D VOI evaluations

    International Nuclear Information System (INIS)

    Okizaki, Atsutaka; Nakayama Michihiro; Ishitoya, Shunta; Nakajima, Kaori; Yamashina Masaaki; Aburano, Tamio; Takahashi, Koji

    2017-01-01

    Positron emission tomography (PET) and the maximum standardized uptake value (SUV max ) is a useful technique for assessing malignant tumors. Measurements of SUV max in multiple lesions per patient frequently require many time-consuming procedures. To address this issue, we designed a novel interface named SUV Navigator (SUVnavi), and the purpose of this study was to investigate its utility. We measured SUV max in 661 lesions from 100 patients with malignant tumors. Diagnoses and SUV max measurements were made with SUVnavi, 2D, and 3D measurements. SUV measurement accuracy in each method were also evaluated. The average reduction in time with SUVnavi versus 2D was 53.8% and 3D was 37.5%; time required with SUVnavi was significantly shorter than with 2D and 3D (P < 0.001 and P < 0.001, respectively). The time reduction and lesion number had a positive correlation (P < 0.001 and P < 0.001, respectively). SUV max agreed with precise SUV max in all lesions measured with SUVnavi and 3D but in only 466 of 661 lesions (70.5%) measured with 2D. Conclusion SUVnavi may be useful for rapid [ 18 F]-fluorodeoxyglucose positron emission tomogra phy/computed tomography ([ 18 F]-FDG PET/CT) image interpretation without reducing the accuracy of SUV max measurement. (author)

  7. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology

    International Nuclear Information System (INIS)

    Hatt, Mathieu; Visvikis, Dimitris; Tixier, Florent; Albarghach, Nidal M.; Pradier, Olivier; Cheze-le Rest, Catherine

    2011-01-01

    18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) image-derived parameters, such as standardized uptake value (SUV), functional tumour length (TL) and tumour volume (TV) or total lesion glycolysis (TLG), may be useful for determining prognosis in patients with oesophageal carcinoma. The objectives of this work were to investigate the prognostic value of these indices in oesophageal cancer patients undergoing combined chemoradiotherapy treatment and the impact of TV delineation strategies. A total of 45 patients were retrospectively analysed. Tumours were delineated on pretreatment 18 F-FDG scans using adaptive threshold and automatic (fuzzy locally adaptive Bayesian, FLAB) methodologies. The maximum standardized uptake value (SUV max ), SUV peak , SUV mean , TL, TV and TLG were computed. The prognostic value of each parameter for overall survival was investigated using Kaplan-Meier and Cox regression models for univariate and multivariate analyses, respectively. Large differences were observed between methodologies (from -140 to +50% for TV). SUV measurements were not significant prognostic factors for overall survival, whereas TV, TL and TLG were, irrespective of the segmentation strategy. After multivariate analysis including standard tumour staging, only TV (p < 0.002) and TL (p = 0.042) determined using FLAB were independent prognostic factors. Whereas no SUV measurement was a significant prognostic factor, TV, TL and TLG were significant prognostic factors for overall survival, irrespective of the delineation methodology. Only functional TV and TL derived using FLAB were independent prognostic factors, highlighting the need for accurate and robust PET tumour delineation tools for oncology applications. (orig.)

  8. Role of {sup 18}F-FDG PET/CT in the evaluation of primary tumours of unknown origin; experience of the Hospital Angeles del Pedregal; Papel del 18F-FDG PET/CT en la evaluacion de tumores primarios de origen desconocido; experiencia del Hospital Angeles del Pedregal

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, N; Serna, J A; Quiroz, O; Valenzuela, J; Romo, C; Ramirez, J L [Hospital Angeles del Pedregal, Mexico D.F. (Mexico)

    2007-07-01

    It was in 1994 when published studies appear that evaluate the utility of the {sup 18}F-FDG PET in the patients with primary tumors of unknown origin (TOD); starting from then diverse studies that support the clinical utility of the study arise with {sup 18}F-FDG PET in the detection of the primary tumor. It is as well as it has been calculated that the study with {sup 18}F-FDG PET is able to detect the primary tumor in around 40% of the patients with negative results in the conventional diagnostic procedures. Until the moment, most of the studies published in relation to the primary tumors of unknown origin only evaluate the paper of the study with {sup 18}F-FDG PET, without including the image fusion technique PET/CT, which has demonstrated in diverse studies; in oncological scenarios different from the TOD, a superior diagnosis certainty. (Author)

  9. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer.

    Science.gov (United States)

    Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P

    2016-11-01

    Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most

  10. 18F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1α

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Græbe, Martin; Hag, Anne Mette F

    2013-01-01

    /computed tomography (CT) scans performed the day before CEA. Immunohistochemistry was used to validate target-gene protein expression. In univariate linear regression analysis HIF-1α was significantly correlated with (18)F-FDG-uptake (SUVmax) as was CD68. A two-tailed Pearson regression model demonstrated that HIF-1α...

  11. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  12. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging

    International Nuclear Information System (INIS)

    Dong, Xinzhe; Wu, Peipei; Yu, Jinming; Xing, Ligang; Sun, Xiaorong; Li, Wenwu; Wan, Honglin

    2015-01-01

    This study aims to explore whether the intra-tumour 18 F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received 18 F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV) ) were delineated on the CT images (GTV CT ), the fused PET/CT images (GTV PET-CT ) and the PET images, using a threshold at 40% SUV max (GTV PET40% ) or the SUV cut-off value of 2.5 (GTV PET2.5 ). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV CT , GTV PET-CT , GTV PET40% and GTV PET2.5 was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system.

  13. Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers

    International Nuclear Information System (INIS)

    Nishizawa, Sadahiko; Inubushi, Masayuki; Okada, Hiroyuki

    2005-01-01

    Good knowledge of physiological 18 F-fluorodeoxglucose ( 18 F-FDG) uptake in the healthy population is of great importance for the correct interpretation of 18 F-FDG positron emission tomography (PET) images of pathological processes. The purpose of this study was to investigate the physiological 18 F-FDG uptake in the ovaries and uterus of healthy female volunteers. One hundred and 33 healthy females, 78 of whom were premenopausal (age 37.2±6.9 years) and 55 postmenopausal (age 55.0±2.7 years), were examined using whole-body 18 F-FDG PET and pelvic magnetic resonance (MR) imaging. Focal 18 F-FDG uptake in the ovaries and uterus was evaluated visually and using standardised uptake value (SUVs). Anatomical and morphological information was obtained from MR images. Distinct ovarian 18 F-FDG uptake with an SUV of 3.9±0.7 was observed in 26 premenopausal women out of 32 examined during the late follicular to early luteal phase of the menstrual cycle. Eighteen of the 32 women also showed focal 18 F-FDG uptake in the endometrium, with an SUV of 3.3±0.3. On the other hand, all nine women in the first 3 days of the menstrual cycle demonstrated intense 18 F-FDG uptake in the endometrium, with an SUV of 4.6±1.0. No physiological 18 F-FDG uptake was observed in the ovaries or uterus of any postmenopausal women. In women of reproductive age, 18 F-FDG imaging should preferably be done within a week before or a few days after the menstrual flow phase to avoid any misinterpretation of pelvic 18 F-FDG PET images. (orig.)

  14. Quantification of 18F-FDG PET images using probabilistic brain atlas: clinical application in temporal lobe epilepsy patients

    International Nuclear Information System (INIS)

    Kang, Keon Wook; Lee, Dong Soo; Cho, Jae Hoon; Lee, Jae Sung; Yeo, Jeong Seok; Lee, Sang Gun; Chung, June Key; Lee, Myung Chul

    2000-01-01

    A probabilistic atlas of the human brain (Statistical Probability Anatomical Maps: SPAM) was developed by the international consortium for brain mapping (ICBM). After calculating the counts in volume of interest (VOI) using the product of probability of SPAM images and counts in FDG images, asymmetric indexes(AI) were calculated and used for finding epileptogenic zones in temporal lobe epilepsy (TLE). FDG PET images from 28 surgically confirmed TLE patients and 12 age-matched controls were spatially normalized to the averaged brain MRI atlas of ICBM. The counts from normalized PET images were multiplied with the probability of 12 VOIs (superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, hippocampus, parahippocampal gyrus, and amygdala in each hemisphere) of SPAM images of Montreal Neurological Institute. Finally AI was calculated on each pair of VOI, and compared with visual assessment. If AI was deviated more than 2 standard deviation of normal controls, we considered epileptogenic zones were found successfully. The counts of VOIs in normal controls were symmetric (AI 0.05) except those of inferior temporal gyrus (p<0.01). AIs in 5 pairs of VOI excluding inferior temporal gyrus were deviated to one side in TLE (p<0.05). Lateralization was correct in 23/28 of patients by AI, but all of 28 were consistent with visual inspection. In 3 patients with normal AI was symmetric on visual inspection. In 2 patients falsely lateralized using AI, metabolism was also decreased visually on contra-lateral side. Asymmetric index obtained by the product of statistical probability anatomical map and FDG PET correlated well with visual assessment in TLE patients. SPAM is useful for quantification of VOIs in functional images

  15. Quantification of {sup 18}F-FDG PET images using probabilistic brain atlas: clinical application in temporal lobe epilepsy patients

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Keon Wook; Lee, Dong Soo; Cho, Jae Hoon; Lee, Jae Sung; Yeo, Jeong Seok; Lee, Sang Gun; Chung, June Key; Lee, Myung Chul [Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    A probabilistic atlas of the human brain (Statistical Probability Anatomical Maps: SPAM) was developed by the international consortium for brain mapping (ICBM). After calculating the counts in volume of interest (VOI) using the product of probability of SPAM images and counts in FDG images, asymmetric indexes(AI) were calculated and used for finding epileptogenic zones in temporal lobe epilepsy (TLE). FDG PET images from 28 surgically confirmed TLE patients and 12 age-matched controls were spatially normalized to the averaged brain MRI atlas of ICBM. The counts from normalized PET images were multiplied with the probability of 12 VOIs (superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, hippocampus, parahippocampal gyrus, and amygdala in each hemisphere) of SPAM images of Montreal Neurological Institute. Finally AI was calculated on each pair of VOI, and compared with visual assessment. If AI was deviated more than 2 standard deviation of normal controls, we considered epileptogenic zones were found successfully. The counts of VOIs in normal controls were symmetric (AI <6%, paired t-test p>0.05) except those of inferior temporal gyrus (p<0.01). AIs in 5 pairs of VOI excluding inferior temporal gyrus were deviated to one side in TLE (p<0.05). Lateralization was correct in 23/28 of patients by AI, but all of 28 were consistent with visual inspection. In 3 patients with normal AI was symmetric on visual inspection. In 2 patients falsely lateralized using AI, metabolism was also decreased visually on contra-lateral side. Asymmetric index obtained by the product of statistical probability anatomical map and FDG PET correlated well with visual assessment in TLE patients. SPAM is useful for quantification of VOIs in functional images.

  16. [11C]PIB, [18F]FDG and MR imaging in patients with mild cognitive impairment

    DEFF Research Database (Denmark)

    Brück, A; Virta, J R; Koivunen, J

    2013-01-01

    Cortical glucose metabolism, brain amyloid β accumulation and hippocampal atrophy imaging have all been suggested as potential biomarkers in predicting which patients with mild cognitive impairment (MCI) will convert to Alzheimer's disease (AD). The aim of this study was to compare the prognostic...

  17. Value of fusion of PET and MRI for staging of endometrial cancer: Comparison with {sup 18}F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Suenaga, Yuko; Ueno, Yoshiko [Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Kanda, Tomonori [Department of Obsterics and Gynecology of Kobe University School of Medicine, Kobe (Japan); Department of Radiology, Hyogo Cancer Center, Hyogo (Japan); Maeda, Tetsuo; Takahashi, Satoru [Department of Radiology, Kobe University School of Medicine, Kobe (Japan); Ebina, Yasuhiko; Miyahara, Yoshiya; Yamada, Hideto [Department of Obsterics and Gynecology of Kobe University School of Medicine, Kobe (Japan); Department of Radiology, Hyogo Cancer Center, Hyogo (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University School of Medicine, Kobe (Japan)

    2013-10-01

    Purpose: To investigate the diagnostic value of retrospective fusion of pelvic MRI and {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) PET images for assessment of locoregional extension and nodal staging of endometrial cancer. Materials and methods: Thirty patients with biopsy-proven endometrial cancer underwent preoperative contrast-enhanced PET/CT (PET/ceCT) and pelvic dynamic contrast-enhanced MRI for initial staging. Diagnostic performance of PET/ceCT, contrast-enhanced MRI, and retrospective image fusion from PET and MRI (fused PET/MRI) for assessing the extent of the primary tumor (T stage) and metastasis to regional LNs (N stage) was evaluated by two experienced readers. Histopathological and follow-up imaging results were used as the gold standard. The McNemar test was employed for statistical analysis. Results: Fused PET/MRI and MRI detected 96.7% of the primary tumors, whereas PET/ceCT detected 93.3%. Accuracy for T status was 80.0% for fused PET/MRI, and MRI proved significantly more accurate than PET/ceCT, which had an accuracy of 60.0% (p = 0.041). Patient-based sensitivity, specificity and accuracy for detecting pelvic nodal metastasis were 100%, 96.3% and 96.7% for both fused PET/MRI and PET/ceCT, and 66.7%, 100% and 96.7% for MRI, respectively. These three parameters were not statistically significant (p = 1). Conclusion: Fused PET/MRI, which complements the individual advantages of MRI and PET, is a valuable technique for assessment of the primary tumor and nodal staging in patients with endometrial cancer.

  18. Value of fusion of PET and MRI for staging of endometrial cancer: Comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Suenaga, Yuko; Ueno, Yoshiko; Kanda, Tomonori; Maeda, Tetsuo; Takahashi, Satoru; Ebina, Yasuhiko; Miyahara, Yoshiya; Yamada, Hideto; Sugimura, Kazuro

    2013-01-01

    Purpose: To investigate the diagnostic value of retrospective fusion of pelvic MRI and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET images for assessment of locoregional extension and nodal staging of endometrial cancer. Materials and methods: Thirty patients with biopsy-proven endometrial cancer underwent preoperative contrast-enhanced PET/CT (PET/ceCT) and pelvic dynamic contrast-enhanced MRI for initial staging. Diagnostic performance of PET/ceCT, contrast-enhanced MRI, and retrospective image fusion from PET and MRI (fused PET/MRI) for assessing the extent of the primary tumor (T stage) and metastasis to regional LNs (N stage) was evaluated by two experienced readers. Histopathological and follow-up imaging results were used as the gold standard. The McNemar test was employed for statistical analysis. Results: Fused PET/MRI and MRI detected 96.7% of the primary tumors, whereas PET/ceCT detected 93.3%. Accuracy for T status was 80.0% for fused PET/MRI, and MRI proved significantly more accurate than PET/ceCT, which had an accuracy of 60.0% (p = 0.041). Patient-based sensitivity, specificity and accuracy for detecting pelvic nodal metastasis were 100%, 96.3% and 96.7% for both fused PET/MRI and PET/ceCT, and 66.7%, 100% and 96.7% for MRI, respectively. These three parameters were not statistically significant (p = 1). Conclusion: Fused PET/MRI, which complements the individual advantages of MRI and PET, is a valuable technique for assessment of the primary tumor and nodal staging in patients with endometrial cancer

  19. Analysis of glucose metabolism in patients with diabetes mellitus by using functional images derived from 18F-FDG PET

    International Nuclear Information System (INIS)

    Ohtake, Tohru; Yokoyama, Ikuo; Watanabe, Toshiaki; Kosaka, Noboru; Momose, Toshimitsu; Nishikawa, Jun-ichi; Serizawa, Takashi; Sasaki, Yasuhito

    1993-01-01

    Functional images of K complex (KC) and regional myocardial glucose utilization rates (rMGU), derived from F-18-fluoro-deoxy-glucose (F-18-FDG) positron emission computed tomography, were prepared. Using functional images obtained, myocardial glucose metabolism was examined in the fasting state, oral glucose loading (OG), and insulin clamp (IC) condition. The subjects were 10 patients with diabetes mellitus (DM), consisting of 8 with non-insulin dependent DM and 2 with insulin dependent DM, and 4 normal persons. Image quality, derived from both OG and IC approaches, was favorable in the normal group. In the groups of non-insulin dependent DM and insulin dependent DM patients, however, image quality was good with IC method but not with OG method. In the group of non-insulin dependent DM, rMGU derived by IC method was relatively high, but was significantly lower than that in the control group, suggesting a decreased function in glucose transporter. When using OG method, rMGU was even more decreased due to high blood sugar and low insulin. In the group of insulin dependent DM, both IC and OG approaches achieved the same rMGU as that in the control group, with the exception of KC derived by OG method that was decreased due to high blood sugar. In moderate or severe DM, myocardial viability seems to be difficult to evaluate because F-18-FDG uptake is decreased in the ischemic area associated with fasting high blood sugar. Mismatching between blood flow and metabolism is also difficult to detect due to high insulin or glucose load. Thus, myocardial viability should be evaluated in the condition of slightly loaded insulin by decreasing blood sugar. (N.K.)

  20. Value of surveillance {sup 18}F FDG PET/CT in colorectal cancer:comparison with conventional imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Kyoung; Yoo, Ie Ryung; Park, Hye Lim; Choi, Hyun Su; Han, Eun Ji; Kim, Sung Hoon; Chung, Soo Kyo; O, Joo Hyun [The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2012-09-15

    To assess the value of PET/CT for detecting local or distant recurrence in patients who undergo surgery for colorectal cancer (CRC)and to compare the accuracy of PET/CT to that of conventional imaging studies (CIS). Tumor surveillance PET/CT scans done between March 2005 and December 2009 of disease free patients after surgery with or without adjuvant chemotherapy for CRC were retrospectively studied. CIS (serial enhanced CT from lung base to pelvis and plain chest radiograph)were performed within 1 month of PET/CT. We excluded patients with distant metastasis on initial staging, a known recurrent tumor, and a lack of follow up imaging. The final diagnosis was based on at least 6 months of follow up with colonoscopy, biopsy, and serial imaging studies in combination with carcinoembryonic antigen levels. A total of 262 PET/CT scans of 245 patients were included. Local and distant recurrences were detected in 27 cases (10.3%). On case based analysis, the overall sensitivity, specificity, and accuracy were 100, 97.0, and 97.3% for PET/CT and 85.1, 97.0, and 95.8% for CIS, respectively. On lesion based analysis, PET/CT detected more lesions compared to CIS in local recurrence and lung metastasis. PET/CT and CIS detected the same number of lesions in abdominal lymph nodes, hepatic metastasis, and peritoneal carcinomatosis. PET/CT detected two more metachronous tumors than did CIS in the lung and thyroid gland. PET/CT detected more recurrences in patients who underwent surgery for CRC than did CIS and had the additional advantage of evaluating the entire body during a single scan.

  1. Grading of Cerebral Glioma with Multiparametric MR Imaging and {sup 18}F-FDG-PET: Concordance and Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hee; Kim, Ji-hoon; Sohn, Chul-Ho; Choi, Seung Hong; Yun, Tae Jin; Song, Yong Sub [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kang, Won Jun [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Yonsei University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Eun, Yong [Seoul National University, College of Medicine, Seoul (Korea, Republic of); Chang, Kee-Hyun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Soonchunhyang University Bucheon Hospital, Department of Radiology, Bucheon (Korea, Republic of)

    2014-02-15

    To retrospectively evaluate concordance rates and predictive values in concordant cases among multiparametric MR techniques and FDG-PET to grade cerebral gliomas. Multiparametric MR imaging and FDG-PET were performed in 60 consecutive patients with cerebral gliomas (12 low-grade and 48 high-grade gliomas). As the dichotomic variables, conventional MRI, minimum apparent diffusion coefficient in diffusion-weighted imaging, maximum relative cerebral blood volume ratio in perfusion-weighted imaging, choline/creatine ratio and (lipid and lactate)/creatine ratio in MR spectroscopy, and maximum standardised uptake value ratio in FDG-PET in low- and high-grade gliomas were compared. Their concordance rates and positive/negative predictive values (PPV/NPV) in concordant cases were obtained for the various combinations of multiparametric MR techniques and FDG-PET. There were significant differences between low- and high-grade gliomas in all techniques. Combinations of two, three, four, and five out of the five techniques showed concordance rates of 77.0 ± 4.8 %, 65.5 ± 4.0 %, 58.3 ± 2.6 % and 53.3 %, PPV in high-grade concordant cases of 97.3 ± 1.7 %, 99.1 ± 1.4 %, 100.0 ± 0 % and 100.0 % and NPV in low-grade concordant cases of 70.2 ± 7.5 %, 78.0 ± 6.0 %, 80.3 ± 3.4 % and 80.0 %, respectively. Multiparametric MR techniques and FDG-PET have a concordant tendency in a two-tiered classification for the grading of cerebral glioma. If at least two examinations concordantly indicated high-grade gliomas, the PPV was about 95 %. (orig.)

  2. Imaging of neurolymphomatosis with 18F-FDG PET/CT: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Guo-zheng WU

    2016-03-01

    Full Text Available Objective  To explore the value of FDG PET-CT in the diagnosis of neurolymphomatosis (NL. Methods  The clinical manifestation and FDG PET/CT imaging results in a patient with diffuse large B cell lymphoma accompanying peripheral neuropathy, which was confirmed by pathological examination, were introduced. The images as shown by PET/CT were compared with the findings of traditional imaging including MRI and CT. Relevant literature was reviewed. Results  A 38year female patient complaining of left chest-back pain for 2 months came to hospital for treatment. An enhanced MRI of thoracic vertebrae showed osseous destruction on the left side of 4th thoracic vertebra and left posterior segment of 5th rib, and it was primarily diagnosed as a tumor. FDG PET/CT revealed a massively increased radioactive uptake in intervertebral foramen of left 4th, 5th thoracic vertebrae. The lesion was shown as an increase in uptake of radio-active substance along the left 5th intercostal nerve in the form of bundle or threads. A round-like nodule with increased radioactive uptake was observed in the left parasternal 2nd intercostal space. A CT-guided percutaneous needle biopsy of the nodule revealed a diffuse large B-cell lymphoma (A type. The lesion was shown to involve 4th, 5th thoracic vertebrae and left 5th intercostal nerve. It was diagnosed as NL. Repeated FDG PET imaging after chemotherapy showed normal radioactive distribution in the site of primary lesion area. Conclusions  PET/CT is effective and sensitive in the diagnosis of NL, especially in patient with a history of malignant hematologic disease with clinical symptoms concerning peripheral nerve, accompanied by negative results with other examinations. Comparing with MRI, PET/CT can reveal involvement of peripheral nerve earlier, better reflect the degree of pathological condition, and reveal the number of nerves involved, as well as size and morphology of the lesion. It can reveal the active

  3. 99MTC-HL91 spect image versus 18F-FDG PET for detection of head and neck carcinoma

    International Nuclear Information System (INIS)

    Chu, L.S.; Liu, R.S.; Chou, K.L.; Yang, B.H.; Liao, S.Q.; Yeh, S.H.

    2004-01-01

    Objective: Tumor hypoxia is a major complication of oncologic cell switch for chemotherapy(C/T) and / or radiotherapy(R/T). Such lesions detected by selective modem conventional examination remains difficult. 99mTc-HL91 is a potential agent for imaging hypoxic tissue in vivo. This study aimed to assess efficacy of 99mTc- HL91 in imaging of head and neck cancer and compared the result with 18F-fluorodeoxyglucose(FDG)PET. Methods: Sixteen pts with head and neck cancers (7 hypopharyngeal cancers, 4 laryngeal cancers, 5 tongue base cancers) were enrolled in this study. Primary tumors and suspicious local,regional metastases were diagnosed by clinical examination, CT/MRI , and biopsy. After intravenous injection of 740 MBq of 99mTc-HL91, whole body planar scan and regional SPECT at 2hr postinjection were performed. Tumor lesion -to- normal background(T/N) ratios with 3x3 pixels of background ROI were also measured. The reference range of T/N ratio greater 3.0 defined +, close to 2.4 defined +/- and less than 1.5 defined as -. The FDG images with dedicated PET system was performed at 4hr after completion of 99mTc-HL91 study. The visualized tumors uptake with ratio of standardized uptake value (SUV) greater than 2.5 defined as +.. less than 2.5 defined -. Results: In 7 hypopharyngeal cancers, there are 2FDG+/HL91+, 3FDG+/HL91-, 2FDG+/HL91+/-, In 4 laryngeal cancers, there are 3FDG+/HL91-, 1FDG+/HL91 +/-. In 5 tongue base cancers, there are 5FDG+/HL91-.(Table 1). The T/N ratios of all head and neck cancers in primary tumor and regional lymph nodes were ranged from l.3/1.5 and 1.1/1.2 respectively. The frequency of FDG + in hypopharyngeal cancers is 1.0,in laryngeal cancers is 1.0 and in tongue base cancers is 1.0. The frequency of HL91+/+/- in hypopharyngeal cancers is 0..58,in laryngeal cancers is 0.25.and in tongue base cancers is 0. The overall detection rate of head and neck cancer by FDG+ in this study is 100% and overall detection rate of local-regional hypoxia, by

  4. 18F-FDG PET as a single imaging modality in pediatric neuroblastoma. Comparison with abdomen CT and bone scintigraphy

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Hwang, Hee Sung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2014-01-01

    The purpose of this study was to evaluate the diagnostic performance of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a single imaging agent in neuroblastoma in comparison with other imaging modalities. A total of 30 patients with pathologically proven neuroblastoma who underwent FDG PET for staging were enrolled. Diagnostic performance of FDG PET and abdomen CT was compared in detecting soft tissue lesions. FDG PET and bone scintigraphy (BS) were compared in bone metastases. Maximal standardized uptake value (SUVmax) of primary or recurrent lesions was calculated for quantitative analysis. Tumor FDG uptake was detected in 29 of 30 patients with primary neuroblastoma. On initial FDG PET, SUVmax of primary lesions were lower in early stage (I-II) than in late stage (III-IV) (3.03 vs. 5.45, respectively, p=0.019). FDG PET was superior to CT scan in detecting distant lymph nodes (23 vs. 18 from 23 lymph nodes). FDG PET showed higher accuracy to identify bone metastases than BS both on patient-based analyses (100 vs. 94.4% in sensitivity, 100 vs. 77.8% in specificity), and on lesion-based analyses (FDG PET: 203 lesions, BS: 86 lesions). Sensitivity and specificity of FDG PET to detect recurrence were 87.5% and 93.8, respectively. FDG PET was superior to CT in detecting distant LN metastasis and to BS in detecting skeletal metastasis in neuroblastoma. BS might be eliminated in the evaluation of neuroblastoma when FDG PET is performed. (author)

  5. Preoperative imaging of charcot neuroarthropathy. Does the additional application of 18F-FDG-PET make sense?

    International Nuclear Information System (INIS)

    Hoepfner, S.; Krolak, C.; Kessler, S.; Tiling, R.

    2006-01-01

    With about 4 million diabetics in Germany and presumed inclination over the following years the treatment of diabetic complications like diabetic foot will become an even more important point. The management of Charcot's foot has undergone fundamental change in the last few years. Formerly, treatment was almost exclusively limited to non surgical measures; since the late 1990's, however, current practice has shifted to early, stage-appropriate surgical therapy. The aim of the present prospective study was to investigate the value of positron emission tomography (PET) in the pre-operative work-up of Charcot's foot. PET were compared to magnetic resonance tomography (MRI). Patients, methods: MRI and PET imaging were used as part of the preoperative work-up in 18 patients with Type II diabetes mellitus. The diagnosis of Charcot's foot requiring surgical treatment were made on the basis of clinical and radiologic criteria. Results: of 46 Charcot's lesions confirmed at surgery, 44 and 35 were detected by means of PET and MRI, respectively. PET can be used in the work-up of patients with metal implants where the MRI does not show adequate findings. PET shows the areas of detritus formation exhibit only moderately increased glucose metabolism and at visual interpretation do not usually impress as typical for acute osteomyelitis. Average SUV values stood at 1.2 (range: 0.5-2.9). Conclusions: the differentiation between Charcot's lesions and floride osteomyelitis provides the surgeon with important additional information, which is often unavailable from MRI. Because of this important additional data, PET could be considered preferable to morphologic imaging (CT, projection radiography) in the preoperative work-up of Charcot's foot. (orig.)

  6. Preoperative imaging of charcot neuroarthropathy. Does the additional application of {sup 18}F-FDG-PET make sense?

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, S. [Abt. fuer Diagnostische Radiologie, Universitaetsklinikum Giessen und Marburg, Standort Giessen (Germany); Krolak, C. [Inst. fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany); Kessler, S. [Chirurgische Klinik und Poliklinik, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany); Tiling, R. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany)

    2006-07-01

    With about 4 million diabetics in Germany and presumed inclination over the following years the treatment of diabetic complications like diabetic foot will become an even more important point. The management of Charcot's foot has undergone fundamental change in the last few years. Formerly, treatment was almost exclusively limited to non surgical measures; since the late 1990's, however, current practice has shifted to early, stage-appropriate surgical therapy. The aim of the present prospective study was to investigate the value of positron emission tomography (PET) in the pre-operative work-up of Charcot's foot. PET were compared to magnetic resonance tomography (MRI). Patients, methods: MRI and PET imaging were used as part of the preoperative work-up in 18 patients with Type II diabetes mellitus. The diagnosis of Charcot's foot requiring surgical treatment were made on the basis of clinical and radiologic criteria. Results: of 46 Charcot's lesions confirmed at surgery, 44 and 35 were detected by means of PET and MRI, respectively. PET can be used in the work-up of patients with metal implants where the MRI does not show adequate findings. PET shows the areas of detritus formation exhibit only moderately increased glucose metabolism and at visual interpretation do not usually impress as typical for acute osteomyelitis. Average SUV values stood at 1.2 (range: 0.5-2.9). Conclusions: the differentiation between Charcot's lesions and floride osteomyelitis provides the surgeon with important additional information, which is often unavailable from MRI. Because of this important additional data, PET could be considered preferable to morphologic imaging (CT, projection radiography) in the preoperative work-up of Charcot's foot. (orig.)

  7. [18F]FDG-PET in large vessel vasculitis

    International Nuclear Information System (INIS)

    Hauser, A.S.D.; Walter, M.A.

    2007-01-01

    [ 18 F]FDG-PET is a non-invasive metabolic imaging modality based on the regional distribution of fluorine-18-fluorodeoxyglucose that is highly effective in assessing the activity and the extent of giant cell arteritis and Takayasu's arteritis. It has shown to identify more affected vascular regions than morphologic imaging with Magnetic Resonance Imaging in both diseases. A visual grading of vascular [ 18 F]FDG-uptake helps to discriminate arteritis from atherosclerosis und therefore provides high specificity. High sensitivity is reached by scanning during the active inflammatory phase. [ 18 F]FDG-PET has the potential to develop into a valuable tool in the diagnostic work-up of giant cell arteritis and Takayasu's arteritis, respectively, and might become a first-line investigation technique. Therefore consensus regarding the most favorable imaging procedure as well as further clinical evidence is needed. The purpose of this review is to summarize current information on the present clinical data and to assist nuclear medicine practitioners in recommending, performing and interpreting the results of [ 18 F]FDG-PET in patients with suspected large vessel vasculitis. (orig.)

  8. Preoperative 18F-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma.

    Science.gov (United States)

    Singh, Baljinder; Ezziddin, Samer; Palmedo, Holger; Reinhardt, Michael; Strunk, Holger; Tüting, Thomas; Biersack, Hans-Jürgen; Ahmadzadehfar, Hojjat

    2008-10-01

    The objective of this study was to evaluate the role of preoperative 18F-fluorodeoxyglucose-positron emission tomography/computed tomography scanning, preoperative lymphoscintigraphy (LS), and sentinel lymph node biopsy in patients with malignant melanoma. Fifty-two patients (36 men: 16 women; mean age 55.0+/-13.0 years; median age 61 years; range 17-76 years) with malignant melanoma were selected. According to the latest version of the American Joint Committee on Cancer staging system, the disease in the study patients was initially classified as either stage I or II. The other primary tumor characteristics were mean Breslow depth=2.87 mm and median=2 mm; range 1-12.0 mm and Clarks levels III-V. None of the study patients had clinical or radiological evidence of regional lymph node metastatic disease. At least one sentinel node was identified in all patients. Preoperative LS detected a total of 111 sentinel lymph nodes (average 2.13 sentinel lymph node per patient) and demonstrated a single nodal draining basin in 38 (73%) patients and multiple (2-3 draining basins) in the remaining 14 (27%) patients. Fourteen out of the 52 patients (27%) had at least one involved sentinel node. Positron emission tomography was true positive in two patients with a sentinel node greater than 1 cm and false positive in two other patients. In this study, the detection of sentinel lymph node by LS and gamma probe had a sensitivity of 100%. In contrast, 18F-FDG-PET imaging demonstrated very low sensitivity (14.3%; 95% CI, 2.5 to 44%) and positive predictive value (50%; 95% CI, 9 to 90%) for localizing the subclinical nodal metastases. The specificity, net present value, and diagnostic accuracy were 94.7, 75, and 73%, respectively. Preoperative fluorodeoxyglucose-positron emission tomography/computed tomography imaging is not able to substitute LS/sentinel lymph node biopsy in patients at stage I or II.

  9. {sup 18}F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors

    Energy Technology Data Exchange (ETDEWEB)

    London, Kevin [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia); Stege, Claudia; Kaspers, Gertjan [VU Medical Centre, Divisions of Paediatric Oncology/Haematology, Amsterdam (Netherlands); Cross, Siobhan; Dalla-Pozza, Luciano [The Children' s Hospital at Westmead, Department of Oncology, Sydney (Australia); Onikul, Ella [The Children' s Hospital at Westmead, Department of Medical Imaging, Sydney (Australia); Graf, Nicole [The Children' s Hospital at Westmead, Department of Pathology, Sydney (Australia); Howman-Giles, Robert [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Imaging, Sydney Medical School, Sydney, NSW (Australia)

    2012-04-15

    F-Fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) is useful in adults with primary bone tumors. Limited published data exist in children. To compare hybrid FDG positron emission tomography/computed tomography (PET/CT) with conventional imaging (CI) modalities in detecting malignant lesions, predicting response to chemotherapy and diagnosing physeal involvement in pediatric primary bone tumors. Retrospective analysis of PET/CT and CI reports with histopathology or follow-up > 6 months as reference standard. Response parameters and physeal involvement at diagnosis were compared to histopathology. A total of 314 lesions were detected in 86 scans. Excluding lung lesions, PET/CT had higher sensitivity and specificity than CI (83%, 98% and 78%, 97%, respectively). In lung lesions, PET/CT had higher specificity than CI (96% compared to 87%) but lower sensitivity (80% compared to 93%). Higher initial SUV{sub max} and greater SUV{sub max} reduction on PET/CT after chemotherapy predicted a good response. Change in tumor size on MRI did not predict response. Both PET/CT and MRI were very sensitive but of low specificity in predicting physeal tumor involvement. PET/CT appears more accurate than CI in detecting malignant lesions in childhood primary bone tumors, excluding lung lesions. It seems better than MRI at predicting tumor response to chemotherapy. (orig.)

  10. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors

    International Nuclear Information System (INIS)

    London, Kevin; Stege, Claudia; Kaspers, Gertjan; Cross, Siobhan; Dalla-Pozza, Luciano; Onikul, Ella; Graf, Nicole; Howman-Giles, Robert

    2012-01-01

    F-Fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) is useful in adults with primary bone tumors. Limited published data exist in children. To compare hybrid FDG positron emission tomography/computed tomography (PET/CT) with conventional imaging (CI) modalities in detecting malignant lesions, predicting response to chemotherapy and diagnosing physeal involvement in pediatric primary bone tumors. Retrospective analysis of PET/CT and CI reports with histopathology or follow-up > 6 months as reference standard. Response parameters and physeal involvement at diagnosis were compared to histopathology. A total of 314 lesions were detected in 86 scans. Excluding lung lesions, PET/CT had higher sensitivity and specificity than CI (83%, 98% and 78%, 97%, respectively). In lung lesions, PET/CT had higher specificity than CI (96% compared to 87%) but lower sensitivity (80% compared to 93%). Higher initial SUV max and greater SUV max reduction on PET/CT after chemotherapy predicted a good response. Change in tumor size on MRI did not predict response. Both PET/CT and MRI were very sensitive but of low specificity in predicting physeal tumor involvement. PET/CT appears more accurate than CI in detecting malignant lesions in childhood primary bone tumors, excluding lung lesions. It seems better than MRI at predicting tumor response to chemotherapy. (orig.)

  11. [68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with [18F]FDG PET/CT, MRI and ex vivo receptor expression.

    Science.gov (United States)

    Schwarzenböck, Sarah M; Stenzel, Jan; Otto, Thomas; Helldorff, Heike V; Bergner, Carina; Kurth, Jens; Polei, Stefan; Lindner, Tobias; Rauer, Romina; Hohn, Alexander; Hakenberg, Oliver W; Wester, Hans J; Vollmar, Brigitte; Krause, Bernd J

    2017-11-10

    The aim was to characterize the properties of [ 68 Ga]Pentixafor as tracer for prostate cancer imaging in a PC-3 prostate cancer xenograft mouse model and to investigate its correlation with [ 18 F]FDG PET/CT, magnetic resonance imaging (MRI) and ex vivo analyses. Static [ 68 Ga]Pentixafor and [ 18 F]FDG PET as well as morphological/ diffusion weighted MRI and 1 H MR spectroscopy was performed. Imaging data were correlated with ex vivo biodistribution and CXCR4 expression in PC-3 tumors (immunohistochemistry (IHC), mRNA analysis). Flow cytometry was performed for evaluation of localization of CXCR4 receptors ( in vitro PC-3 cell experiments). Tumor uptake of [ 68 Ga]Pentixafor was significantly lower compared to [ 18 F]FDG. Ex vivo CXCR4 mRNA expression of tumors was shown by PCR. Only faint tumor CXCR4 expression was shown by IHC (immuno reactive score of 3). Accordingly, flow cytometry of PC-3 cells revealed only a faint signal, cell membrane permeabilisation showed a slight signal increase. There was no significant correlation of [ 68 Ga]Pentixafor tumor uptake and ex vivo receptor expression. Spectroscopy showed typical spectra of prostate cancer. PC-3 tumor uptake of [ 68 Ga]Pentixafor was existent but lower compared to [ 18 F]FDG. No significant correlation of ex vivo tumor CXCR4 receptor expression and [ 68 Ga]Pentixafor tumor uptake was shown. CXCR4 receptor expression on the surface of PC-3 cells was existent but rather low possibly explaining the limited [ 68 Ga]Pentixafor tumor uptake; receptor localization in the interior of PC-3 cells is presumable as shown by cell membrane permeabilisation. Further studies are necessary to define the role of [ 68 Ga]Pentixafor in prostate cancer imaging.

  12. Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yu Huiming; Liu Yunfang; Hou Ming; Liu Jie; Li Xiaonan; Yu Jinming

    2009-01-01

    Purpose: The correlation of gross tumor sizes between combined 18 F-FDG PET/CT images and macroscopic surgical samples has not yet been studied in detail. In the present study, we compared CT, 18 F-FDG PET and combined 18 F-FDG PET/CT for the delineation of gross tumor volume (GTV) and validated the results through examination of the macroscopic surgical specimen. Methods: Fifty-two operable non-small cell lung cancer (NSCLC) patients had integrated 18 F-FDG PET/CT scans preoperatively and pathological examination post-operation. Four separate maximal tumor sizes at X (lateral direction), Y (ventro-dorsal direction) and Z (cranio-caudal direction) axis were measured on 18 F-FDG PET, CT, combined 18 F-FDG PET/CT and surgical specimen, respectively. Linear regression was calculated for each of the three imaging measurements versus pathological measurement. Results: No significant differences were observed among the tumor sizes measured by three images and pathological method. Compared with pathological measurement, CT size at X, Y, Z axis was larger, whereas combined 18 F-FDG PET/CT and 18 F-FDG PET size were smaller. Combined 18 F-FDG PET/CT size was more similar to the pathological size than that of 18 F-FDG PET or CT. Results of linear regressions showed that integrated 18 F-FDG PET/CT was the most accurate modality in measuring the size of cancer. Conclusions: 18 F-FDG PET/CT correlates more faithfully with pathological findings than 18 F-FDG PET or CT. Integrated 18 F-FDG PET/CT is an effective tool to define the target of GTV in radiotherapy.

  13. Diagnostic performance of 18F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma.

    Science.gov (United States)

    Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji

    2018-04-17

    Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV

  14. [{sup 18}F]FDG-PET in large vessel vasculitis; [{sup 18}F]FDG-PET bei Grossgefaess-Vaskulitiden

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, A.S.D.; Walter, M.A. [Universitaetsspital Basel (Switzerland). Inst. fuer Nuklearmedizin

    2007-06-15

    [{sup 18}F]FDG-PET is a non-invasive metabolic imaging modality based on the regional distribution of fluorine-18-fluorodeoxyglucose that is highly effective in assessing the activity and the extent of giant cell arteritis and Takayasu's arteritis. It has shown to identify more affected vascular regions than morphologic imaging with Magnetic Resonance Imaging in both diseases. A visual grading of vascular [{sup 18}F]FDG-uptake helps to discriminate arteritis from atherosclerosis und therefore provides high specificity. High sensitivity is reached by scanning during the active inflammatory phase. [{sup 18}F]FDG-PET has the potential to develop into a valuable tool in the diagnostic work-up of giant cell arteritis and Takayasu's arteritis, respectively, and might become a first-line investigation technique. Therefore consensus regarding the most favorable imaging procedure as well as further clinical evidence is needed. The purpose of this review is to summarize current information on the present clinical data and to assist nuclear medicine practitioners in recommending, performing and interpreting the results of [{sup 18}F]FDG-PET in patients with suspected large vessel vasculitis. (orig.)

  15. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Erichsen, Kamille Dumong; Johnbeck, Camilla Bardram

    2013-01-01

    Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3'-deoxy-3'-[(18)F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[(18)F]fluoro-......]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) following treatment with belinostat in ovarian cancer in vivo models....

  16. A Comparison between 18F-FDG PET/CT Imaging and Biological and Radiological Findings in Restaging of Hepatoblastoma Patients

    Directory of Open Access Journals (Sweden)

    Angelina Cistaro

    2013-01-01

    Full Text Available Background. In this study we retrospectively evaluated if 18F-FDG-PET/CT provided incremental diagnostic information over CI in a group of hepatoblastoma patients performing restaging. Procedure. Nine patients (mean age: 5.9 years; range: 3.1–12 years surgically treated for hepatoblastoma were followed up by clinical examination, serum α-FP monitoring, and US. CI (CT or MRI and PET/CT were performed in case of suspicion of relapse. Fine-needle aspiration biopsies (FNAB were carried out for final confirmation if the results of CI, PET/CT, and/or α-FP levels were suggestive of relapse. PET/CT and CI findings were analyzed for comparison purposes, using FNAB as reference standard. Results. α-FP level was suggestive of disease recurrence in 8/9 patients. Biopsy was performed in 8/9 cases. CI and PET/CT resulted to be concordant in 5/9 patients (CI identified recurrence of disease, but 18F-FDG-PET/CT provided a better definition of disease extent; in 4/9 cases, CI diagnostic information resulted in negative findings, whereas PET/CT correctly detected recurrence of disease. 18F-FDG-PET/CT showed an agreement of 100% (8/8 with FNAB results. Conclusions. 18F-FDG-PET/CT scan seems to better assess HB patients with respect to CI and may provide incremental diagnostic value in the restaging of this group of patients.

  17. Targeting post-infarct inflammation by PET imaging: comparison of {sup 68}Ga-citrate and {sup 68}Ga-DOTATATE with {sup 18}F-FDG in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T. [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Hannover Medical School, Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover (Germany); Bankstahl, Jens P.; Walte, Almut; Wittneben, Alexander; Bengel, Frank M. [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Wang, Yong; Korf-Klingebiel, Mortimer; Wollert, Kai C. [Hannover Medical School, Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover (Germany)

    2014-08-12

    Imaging of inflammation early after myocardial infarction (MI) is a promising approach to the guidance of novel molecular interventions that support endogenous healing processes. {sup 18}F-FDG PET has been used, but may be complicated by physiological myocyte uptake. We evaluated the potential of two alternative imaging targets: lactoferrin binding by {sup 68}Ga-citrate and somatostatin receptor binding by {sup 68}Ga-DOTATATE. C57Bl/6 mice underwent permanent coronary artery ligation. Serial PET imaging was performed 3 - 7 days after MI using {sup 68}Ga-citrate, {sup 68}Ga-DOTATATE, or {sup 18}F-FDG with ketamine/xylazine suppression of myocyte glucose uptake. Myocardial perfusion was evaluated by {sup 13}N-ammonia PET and cardiac geometry by contrast-enhanced ECG-gated CT. Mice exhibited a perfusion defect of 30 - 40 % (of the total left ventricle) with apical anterolateral wall akinesia and thinning on day 7 after MI. {sup 18}F-FDG with ketamine/xylazine suppression demonstrated distinct uptake in the infarct region, as well as in the border zone and remote myocardium. The myocardial standardized uptake value in MI mice was significantly higher than in healthy mice under ketamine/xylazine anaesthesia (1.9 ± 0.4 vs. 1.0 ± 0.1). {sup 68}Ga images exhibited high blood pool activity with no specific myocardial uptake up to 90 min after injection (tissue-to-blood contrast 0.9). {sup 68}Ga-DOTATATE was rapidly cleared from the blood, but myocardial SUV was very low (0.10 ± 0.03). Neither {sup 68}Ga nor {sup 68}Ga-DOTATATE is a useful alternative to {sup 18}F-FDG for PET imaging of myocardial inflammation after MI in mice. Among the three tested approaches, {sup 18}F-FDG with ketamine/xylazine suppression of cardiomyocyte uptake remains the most practical imaging marker of post-infarct inflammation. (orig.)

  18. 18F-FDG PET imaging on the neuronal network of Parkinson's disease patients following deep brain stimulation of bilateral subthalamic nucleus

    International Nuclear Information System (INIS)

    Zuo Chuantao; Huang Zhemin; Zhao Jun; Guan Yihui; Lin Xiangtong; Li Dianyou; Sun Bomin

    2007-01-01

    Objective: There is evidence that the cause and progression of Parkinson's disease (PD) may be attributed to subthalamic nucleus (STN) dysfunction and that external electrical stimulation of the STN may improve the underlying neuronal network. This study aimed at using 18 F-FDG PET to monitor the functional status of the neuronal network of advanced PD patients following deep brain stimulation (DBS) of bilateral STN. Methods: Five PD patients in advanced stage, rated according to unified PD rat- ing scale (UPDRS) motion score, underwent bilateral STN DBS implantation. Six months after the implantation, each patient was studied with 18 F-FDG PET scans under stimulation turned 'on' and 'off' conditions. Statistical parametric mapping 2 (SPM2) was applied for data analyses. Results: Bilateral STN DBS reduced glucose utilization in lentiform nucleus (globus pallidus), bilateral thalamus, cerebellum, as well as the distal parietal cortex. However, glucose utilization in midbrain and pons was increased. The PD-related pattern (PDRP) scores were significantly different during the 'on' status (2.12 ± 15.24) and 'off' status (4.93 ± 13.01), which corresponded to the clinical improvement of PD symptoms as PDRP scores decreased. Conclusion: 18 F-FDG PET may be useful in monitoring and mapping the metabolism of the neuronal network during bilateral STN DBS, thus supporting its therapeutic impact on PD patients. (authors)

  19. Multimodal imaging and detection approach to 18F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience

    Directory of Open Access Journals (Sweden)

    Povoski Stephen P

    2011-11-01

    Full Text Available Abstract Background 18F-FDG PET/CT is widely utilized in the management of cancer patients. The aim of this paper was to comprehensively describe the specific methodology utilized in our single-institution cumulative retrospective experience with a multimodal imaging and detection approach to 18F-FDG-directed surgery for known/suspected malignancies. Methods From June 2005-June 2010, 145 patients were injected with 18F-FDG in anticipation of surgical exploration, biopsy, and possible resection of known/suspected malignancy. Each patient underwent one or more of the following: (1 same-day preoperative patient diagnostic PET/CT imaging, (2 intraoperative gamma probe assessment, (3 clinical PET/CT specimen scanning of whole surgically resected specimens (WSRS, research designated tissues (RDT, and/or sectioned research designated tissues (SRDT, (4 micro PET/CT specimen scanning of WSRS, RDT, and/or SRDT, (5 total radioactivity counting of each SRDT piece by an automatic gamma well counter, and (6 same-day postoperative patient diagnostic PET/CT imaging. Results Same-day 18F-FDG injection dose was 15.1 (± 3.5, 4.6-26.1 mCi. Fifty-five same-day preoperative patient diagnostic PET/CT scans were performed. One hundred forty-two patients were taken to surgery. Three of the same-day preoperative patient diagnostic PET/CT scans led to the cancellation of the anticipated surgical procedure. One hundred forty-one cases utilized intraoperative gamma probe assessment. Sixty-two same-day postoperative patient diagnostic PET/CT scans were performed. WSRS, RDT, and SRDT were scanned by clinical PET/CT imaging and micro PET/CT imaging in 109 and 32 cases, 33 and 22 cases, and 49 and 26 cases, respectively. Time from 18F-FDG injection to same-day preoperative patient diagnostic PET/CT scan, intraoperative gamma probe assessment, and same-day postoperative patient diagnostic PET/CT scan were 73 (± 9, 53-114, 286 (± 93, 176-532, and 516 (± 134, 178-853 minutes

  20. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images.

    Science.gov (United States)

    Wang, Hongkai; Zhou, Zongwei; Li, Yingci; Chen, Zhonghua; Lu, Peiou; Wang, Wenzhi; Liu, Wanyu; Yu, Lijuan

    2017-12-01

    This study aimed to compare one state-of-the-art deep learning method and four classical machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from 18 F-FDG PET/CT images. Another objective was to compare the discriminative power of the recently popular PET/CT texture features with the widely used diagnostic features such as tumor size, CT value, SUV, image contrast, and intensity standard deviation. The four classical machine learning methods included random forests, support vector machines, adaptive boosting, and artificial neural network. The deep learning method was the convolutional neural networks (CNN). The five methods were evaluated using 1397 lymph nodes collected from PET/CT images of 168 patients, with corresponding pathology analysis results as gold standard. The comparison was conducted using 10 times 10-fold cross-validation based on the criterion of sensitivity, specificity, accuracy (ACC), and area under the ROC curve (AUC). For each classical method, different input features were compared to select the optimal feature set. Based on the optimal feature set, the classical methods were compared with CNN, as well as with human doctors from our institute. For the classical methods, the diagnostic features resulted in 81~85% ACC and 0.87~0.92 AUC, which were significantly higher than the results of texture features. CNN's sensitivity, specificity, ACC, and AUC were 84, 88, 86, and 0.91, respectively. There was no significant difference between the results of CNN and the best classical method. The sensitivity, specificity, and ACC of human doctors were 73, 90, and 82, respectively. All the five machine learning methods had higher sensitivities but lower specificities than human doctors. The present study shows that the performance of CNN is not significantly different from the best classical methods and human doctors for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images

  1. Texture analysis of high-resolution dedicated breast {sup 18}F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, Alexis; Dominguez-Prado, Ines; Herranz, Michel; Argibay, Sonia; Silva-Rodriguez, Jesus [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); Ruibal, Alvaro [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); University of Santiago de Compostela (USC), Molecular Imaging Group, Department of Radiology, Faculty of Medicine, Santiago de Compostela (Spain); Fundacion Tejerina, Madrid (Spain); Fernandez-Ferreiro, Anxo [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Pharmacy Department and Pharmacology Group, Santiago de Compostela (Spain); Albaina, Luis [University Hospital A Coruna (SERGAS), Department of General Surgery, A Coruna (Spain); Pardo-Montero, Juan [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Medical Physics Department, Santiago de Compostela (Spain); Aguiar, Pablo [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); University of Santiago de Compostela (USC), Molecular Imaging Group, Department of Radiology, Faculty of Medicine, Santiago de Compostela (Spain)

    2018-02-15

    This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors. One hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a {sup 18}F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUV{sub m} {sub a} {sub x}, SUV{sub m} {sub e} {sub a} {sub n}, metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 - (LB -), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests. Along with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB - (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features. PET parameters

  2. Diagnostic value of exercise induced 18F-FDG myocardial metabolism scintigraphy in myocardial ischemia

    International Nuclear Information System (INIS)

    Shen Rui; He Zuoxiang; Shi Rongfang; Liu Xiujie; Tian Yueqin; Guo Feng; Wei Hongxing; Wu Yongjian; Qin Xuewen; Gao Runlin

    2006-01-01

    Objective: To evaluate the feasibility and diagnostic accuracy of exercise induced myocardial imaging with 18 F-fluorodeoxyglucose (FDG) in myocardial ischemia. Methods: Twenty-six patients with known or suspected coronary artery, disease (CAD) and with no prior myocardial infarction underwent simultaneous myocardial perfusion and metabolism imaging following intravenous injection of 99 Tc m -methoxy-isobutylisonitrile ( 99 Tc m -sestamibi) and 18 F-FDG at peak exercise. Subsequently rest perfusion imaging and coronary angiography (CAG) were performed in all patients. Exercise 18 F-FDG myocardial imaging was compared with 99 Tc m -sestamibi imaging and CAG. Results: In 22 patients with ≥50% narrowing over l coronary artery, 18 had perfusion abnormalities (sensitivity 82%), whereas 20 had abnormal myocardial 18 F-FDG uptake (sensitivity 91%, P>0.05). Patients with reversible (12 cases) or partial reversible (3 cases) perfusion abnormalities had increased myocardial 18 F-FDG uptake in abnormal perfusion segments. Compared with CAG, perfusion defect was seen in myocardial segments corresponding to 25 vascular territories of 51 vessels with ≥50% narrowing in 22 patients in 99 Tc m -sestamibi imaging (sensitivity 49%), whereas increased 18 F-FDG uptake was seen in 34 vascular territories (sensitivity 67%, P=0.008). Conclusions: Exercise induced myocardial ischemia can be imaged directly with 18 F-FDG. Combined exercise 18 F-FDG and 99 Tc m -sestamibi imaging provides a better assessment of exercise-induced myocardial ischemia as compared with exercise-rest perfusion imaging. (authors)

  3. Stability and the improved methods of "1"8F-FDG

    International Nuclear Information System (INIS)

    Zhang Jinming; Li Yungang; Liu Jian; Zhang Xiaojun; Tian Jiahe

    2011-01-01

    To study the stability of "1"8F-FDG with routinely synthesis at high radio-dose and high radioconcentration, "1"8F-FDG was added 0.1% ethanol or repurification by solid-phase extract ion for radiolytic "1"8F-FDG to improve its radiochemical purity (RCP). The results showed that the RCP declined from 99% to 95% within 4 h at 6 TBq/L for room temperature (RT). The radiolysis could be depressed with 0.1% ethanol, the RCP could be over 95% even if the radioactivity concentration was 7.4 TBq/L at RT for 6 h. The repurification method could improve the RCP of "1"8F-FDG from 80% to 99%. Micro PET/ CT imagings of normal rats showed that the vertebra had high uptake with radiolytic "1"8F-FDG because of impurity. There were no radioactivity uptaking in bone with repuification of "1"8F- FDG. It indicated that 0.1% ethanol could be used as stabilizers for "1"8F-FDG to improve the RCP when "1"8F-FDG had high radio-do se and high radioconcentrtion. The radiolytic 18 F-FDG could be repurified by so lid-phase extraction to remove the radio-impurity. The method of added 0.1% thanot could be combined with repurification method to assure the RCP of "1"8F-FDG for over 95% at any given time andradiodose or contcentrayion. (authors)

  4. Characteristic of {sup 18}F-FDG Excretion According to Use Diuretics in {sup 18}F-FDG of PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dong Gun; Yang, Seoung Oh; Lee, Sang Ho [Dept. of Nuclear Medicine, Dongnam Institute of Radiological and Medical Sciences Cancer Center, Busan (Korea, Republic of); Bae, Jong Lim [Dept. of Physics, Daegu University, Daegu (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) causes a significant amount of radioactivity retention in kidneys and urinary tract and degrades image quality and diagnostic performance. Diuretics are used to perform tests and prevent the urinary tract retention of {sup 18}F-FDG. The purpose of the study is to investigate how the diuretics affect images and excretion rates of {sup 18}F-FDG. The study consists of a group using diuretics for patients with no primary tumors or transfer lesions in kidneys according to PET/CT images, a group using physiological saline and the control group injecting only {sup 18}F-FDG and SUVs are measured by configuring interested areas for each group. Also, SUVs are compared and evaluated depending on the lasix injection after basic inspection and injecting {sup 18}F-FDG for quantitative analysis. The study shows that images with decreased background radioactivity and increased urine excretion due to using diuretics. However, an opposite result that there is no change in the amount of radioactivity in urine appears. The study concludes that the diuretics may decrease background radioactivity in the images but may not affect the {sup 18}F-FDG excretion.

  5. Development of 18F-FDG ([F-18]-2-fluoro-2-deoxy-D-glucose) injection for imaging of tumor reflecting glucose metabolism. Results of preclinical studies

    International Nuclear Information System (INIS)

    Ino, Sento; Shimada, Takayuki; Kanagawa, Masaru; Suzuki, Noriaki; Kondo, Susumu; Shirakami, Yoshifumi; Ito, Osamu; Kato-Azuma, Makoto

    1999-01-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose ( 18 F-FDG) injection was prepared by a modification of a method originally developed by Hamacher et al. The dosage form is the injectable solution (2 ml) containing 185 MBq of 18 F-FDG at a calibration time. Preclinical studies of the agent were performed. Its radiochemical purity is more than 95% and expiration time is 4 hours after the calibration time at ambient temperature. No toxicity was observed with up to 200 mg/kg and 100 mg/kg of non-radioactive FDG intravenously injected to rats and dogs in single dose toxicity tests, respectively. Biodistribution studies demonstrated that the radioactivity was mainly distributed into brain (3.0 to 3.3% I.D./Organ at 30 minutes) and heart (4.2 to 5.8% I.D./Organ at 1 to 3 hours) after intravenous injection of the agent to normal rats. In a tumor transplanted mouse model (colon 26), tumor uptake was 10.9±3.5% I.D./g at 1 hr after intravenous injection of the agent, the radioactivity was retained until 3 hours. The radiation absorbed dose was estimated according to the MIRD Pamphlet based on the biodistribution data both in humans reported by Mejia et al. and rats described in this report. The radiation absorbed dose was not higher than those of commercially available radiopharmaceuticals. In conclusion, the 18 F-FDG injection is expected to be useful for further clinical application. (author)

  6. Management of epithelial ovarian cancer from diagnosis to restaging: an overview of the role of imaging techniques with particular regard to the contribution of 18F-FDG PET/CT.

    Science.gov (United States)

    Musto, Alessandra; Grassetto, Gaia; Marzola, Maria Cristina; Rampin, Lucia; Chondrogiannis, Sotirios; Maffione, Anna Margherita; Colletti, Patrick M; Perkins, Alan C; Fagioli, Giorgio; Rubello, Domenico

    2014-06-01

    Epithelial ovarian carcinoma is a major form of cancer affecting women in the western world. The silent nature of this disease results in late presentation at an advanced stage in many patients. It is therefore important to assess the role of imaging techniques in the management of these patients. This article presents a review of the literature on the role of (18)F-FDG-PET/CT in the different stages of management of epithelial ovarian cancer. Moreover, a comparison with other imaging techniques has been made and the relationship between (18)F-PET/CT and the assay of serum CA-125 levels has been discussed.

  7. Comparison of {sup 131}I whole-body imaging, {sup 131}I SPECT/CT, and {sup 18}F-FDG PET/CT in the detection of metastatic thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Ryool; Chong, Ari; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Bom, Hee-Seung [Chonnam National University Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Gwangju (Korea, Republic of); Byun, Byung-Hyun; Hong, Sun-Pyo; Yoo, Su-Woong [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Hwasun, Jeonnam (Korea, Republic of); Kim, Dong-Yeon [Dongguk University, Department of Chemistry, Seoul (Korea, Republic of); Chonnam National University Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Gwangju (Korea, Republic of); Min, Jung-Joon [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Hwasun, Jeonnam (Korea, Republic of); Center for Biomedical Human Resources at Chonnam National University, Brain Korea 21 Project, Gwangju (Korea, Republic of)

    2011-08-15

    The aim of this study was to compare {sup 131}I whole-body scintigraphy (WBS), WBS with {sup 131}I single photon emission computed tomography/computed tomography (SPECT/CT), and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. {sup 131}I WBS, {sup 131}I SPECT/CT, and {sup 18}F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for {sup 131}I WBS; 65, 95, and 85% for {sup 131}I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for {sup 18}F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p<0.001) in all patient groups. SPECT/CT was superior to WBS and PET/CT (p<0.001) in patients who received a single challenge of radioiodine therapy, whereas PET/CT was superior to WBS (p=0.005) and SPECT/CT (p=0.013) in patients who received multiple challenges. Both SPECT/CT and PET/CT demonstrated high diagnostic performance in detecting metastatic thyroid cancer. SPECT/CT was highly accurate in patients who underwent a single challenge of radioiodine therapy. In contrast, {sup 18}F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  8. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.

    Science.gov (United States)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-05-01

    The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10-37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to

  9. A Dirichlet process mixture model for automatic {sup 18}F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Giri, Maria Grazia, E-mail: mariagrazia.giri@ospedaleuniverona.it; Cavedon, Carlo [Medical Physics Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Mazzarotto, Renzo [Radiation Oncology Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Ferdeghini, Marco [Nuclear Medicine Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy)

    2016-05-15

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a

  10. A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    International Nuclear Information System (INIS)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-01-01

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve

  11. Diffusion-weighted magnetic resonance imaging in metastatic gastrointestinal stromal tumor (GIST) - A pilot study on the assessment of treatment response in comparison with 18F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sabine; Koehli, Melanie; Meuli, Reto [Dept. of Radiology, Centre Hospitalier Universitaire Vaudois, Univ. of Lausanne, Lausanne (Switzerland)], e-mail: sabine.schmidt@chuv.ch; Dunet, Vincent; Prior, John O. [Dept. of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, Uniausanne, Lausanne (Switzerland); Montemurro, Michael [Dept. of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Univ. of Lausanne, Lausanne (Switzerland)

    2013-10-15

    Background: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment success in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. Purpose: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Material and Methods: Eight patients (mean age, 56{+-}11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUV{sub max}) and the corresponding minimum ADC{sub min} were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUV{sub max} and ADCmin was analyzed (Spearman's correlation). Results: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUV{sub max} decreased from 7.7{+-}8.1 g/mL to 5.5{+-}5.4 g/mL (P = 0.20), while ADC{sub min} increased from 1.2{+-}0.3 X 10{sup -3}mm{sup 2}/s to 1.5{+-}0.3 X 10{sup -3}mm{sup 2}/s (P = 0.0002). There was a significant association between changes in SUV{sub max} and ADC{sub min} (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). Conclusion: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.

  12. Evaluation of {sup 18}F-FDG PET in acute ischemic stroke. Assessment of hyper accumulation around the lesion

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Seiji; Hata, Takashi; Nakajima, Tooru [Yokohama Stroke and Brain Center (Japan); Suzuki, Yutaka [Tokai Univ., Isehara, Kanagawa (Japan). Hospital

    2002-05-01

    Although pathophysiology of cerebrovascular disease has been reported previously, few clinical studies of glucose metabolism in acute stroke have been published. Purpose of this study is to evaluate glucose metabolism in acute stroke patients by {sup 18}F-FDG PET. Twenty-four patients with acute ischemic stroke were involved in this study. All subjects underwent MRI (conventional T1- and T2-weighted images, diffusion-weighted imaging, and MR angiography), CT and {sup 18}F-FDG PET. {sup 18}F-FDG PET was performed within 1 to 7 days after the first episode. {sup 18}F-FDG PET images were visually evaluated as well as MRI and CT images. Four patients out of 24 showed no abnormal {sup 18}F-FDG accumulation, while MRI demonstrated abnormal signal area and abnormal vascular findings that suggested acute stroke. Decreased {sup 18}F-FDG accumulation corresponding with abnormal signal area on MR images was noted in 20 cases. In 7 cases among these 20 with decreased {sup 18}F-FDG, hyper accumulation of {sup 18}F-FDG was recognized around the decreased accumulation area. Increased {sup 18}F-FDG accumulation (increased glucose metabolization) around the lesion may be due to: acceleration of anaerobic glycolysis, activated repair process of damaged brain tissue, i.e., phagocytosis and gliosis, and neuronal excitation by excito-toxic amino acids which can be released after ischemia. (author)

  13. Evaluation of 18F-FDG PET in acute ischemic stroke. Assessment of hyper accumulation around the lesion

    International Nuclear Information System (INIS)

    Nasu, Seiji; Hata, Takashi; Nakajima, Tooru; Suzuki, Yutaka

    2002-01-01

    Although pathophysiology of cerebrovascular disease has been reported previously, few clinical studies of glucose metabolism in acute stroke have been published. Purpose of this study is to evaluate glucose metabolism in acute stroke patients by 18 F-FDG PET. Twenty-four patients with acute ischemic stroke were involved in this study. All subjects underwent MRI (conventional T1- and T2-weighted images, diffusion-weighted imaging, and MR angiography), CT and 18 F-FDG PET. 18 F-FDG PET was performed within 1 to 7 days after the first episode. 18 F-FDG PET images were visually evaluated as well as MRI and CT images. Four patients out of 24 showed no abnormal 18 F-FDG accumulation, while MRI demonstrated abnormal signal area and abnormal vascular findings that suggested acute stroke. Decreased 18 F-FDG accumulation corresponding with abnormal signal area on MR images was noted in 20 cases. In 7 cases among these 20 with decreased 18 F-FDG, hyper accumulation of 18 F-FDG was recognized around the decreased accumulation area. Increased 18 F-FDG accumulation (increased glucose metabolization) around the lesion may be due to: acceleration of anaerobic glycolysis, activated repair process of damaged brain tissue, i.e., phagocytosis and gliosis, and neuronal excitation by excito-toxic amino acids which can be released after ischemia. (author)

  14. 18F-FDG PET-CT imaging versus bone marrow biopsy in pediatric Hodgkin's lymphoma: a quantitative assessment of marrow uptake and novel insights into clinical implications of marrow involvement

    International Nuclear Information System (INIS)

    Hassan, Aamna; Siddique, Maimoona; Bashir, Humayun; Riaz, Saima; Nawaz, M.K.; Wali, Rabia; Mahreen, Asma

    2017-01-01

    To evaluate whether positron emission tomography/computed tomography using fluorine-18 fluoro-deoxyglucose ( 18 F-FDG PET-CT) predicts bone marrow involvement (BMI) in pediatric Hodgkin's lymphoma (pHL) with sufficient accuracy to supplant routine staging bone marrow biopsy (BMB), and to assess the clinical importance of marrow disease by comparing the prognosis of stage IV HL with BMI versus that without BMI. Data were retrospectively analyzed for all cases of pHL between July 2010 and June 2015 referred for staging 18 F-FDG PET-CT scan and BMB. The reference standard was BMB. Stage IV patients were divided into three groups to compare their progression-free and overall survival: PET+ BMB-, PET+ BMB+, and PET- BMB-. Of the 784 patients, 83.3% were male and 16.7% female, with age ranging from 2 to 18 years (mean 10.3 years). Among the total cases, 104 (13.3%) had BMI; of these, 100 were detected by PET imaging and 58 by BMB. BMB and 18 F-FDG PET/CT scans were concordant for BMI detection in 728 patients (93%): positive concordance in 54 and negative in 674. Of the 56 discordant cases, four had a false-negative PET scans and were upstaged by BMB, 46 with focal uptake were PET/CT-positive and BMB-negative (not obtained from active sites), and six with diffuse uptake were false-positive on PET due to paraneoplastic marrow activation. The sensitivity, specificity, PPV, and NPV of PET for identifying BMI was 93.6, 94, 53, and 99.4% respectively. On quantitative assessment, mean iBM-SUV max of bilateral iliac crests was significantly higher in those with BMI versus those without (p < 0.05). 18 F-FDG PET-CT imaging is more sensitive than BMB for BMI detection in pHL staging. BMB should be limited to those with normal marrow uptake in the presence of poor risk factors or those with diffusely increased uptake to exclude marrow involvement in the background of reactive marrow. (orig.)

  15. {sup 18}F-FDG PET-CT imaging versus bone marrow biopsy in pediatric Hodgkin's lymphoma: a quantitative assessment of marrow uptake and novel insights into clinical implications of marrow involvement

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Aamna; Siddique, Maimoona; Bashir, Humayun; Riaz, Saima; Nawaz, M.K. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Department of Nuclear Medicine, Lahore (Pakistan); Wali, Rabia; Mahreen, Asma [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Paediatric Oncology, Lahore (Pakistan)

    2017-07-15

    To evaluate whether positron emission tomography/computed tomography using fluorine-18 fluoro-deoxyglucose ({sup 18}F-FDG PET-CT) predicts bone marrow involvement (BMI) in pediatric Hodgkin's lymphoma (pHL) with sufficient accuracy to supplant routine staging bone marrow biopsy (BMB), and to assess the clinical importance of marrow disease by comparing the prognosis of stage IV HL with BMI versus that without BMI. Data were retrospectively analyzed for all cases of pHL between July 2010 and June 2015 referred for staging {sup 18}F-FDG PET-CT scan and BMB. The reference standard was BMB. Stage IV patients were divided into three groups to compare their progression-free and overall survival: PET+ BMB-, PET+ BMB+, and PET- BMB-. Of the 784 patients, 83.3% were male and 16.7% female, with age ranging from 2 to 18 years (mean 10.3 years). Among the total cases, 104 (13.3%) had BMI; of these, 100 were detected by PET imaging and 58 by BMB. BMB and {sup 18}F-FDG PET/CT scans were concordant for BMI detection in 728 patients (93%): positive concordance in 54 and negative in 674. Of the 56 discordant cases, four had a false-negative PET scans and were upstaged by BMB, 46 with focal uptake were PET/CT-positive and BMB-negative (not obtained from active sites), and six with diffuse uptake were false-positive on PET due to paraneoplastic marrow activation. The sensitivity, specificity, PPV, and NPV of PET for identifying BMI was 93.6, 94, 53, and 99.4% respectively. On quantitative assessment, mean iBM-SUV{sub max} of bilateral iliac crests was significantly higher in those with BMI versus those without (p < 0.05). {sup 18}F-FDG PET-CT imaging is more sensitive than BMB for BMI detection in pHL staging. BMB should be limited to those with normal marrow uptake in the presence of poor risk factors or those with diffusely increased uptake to exclude marrow involvement in the background of reactive marrow. (orig.)

  16. 99Tcm-MIBI and 18F-FDG DISA imaging in the evaluation of CABG combined with autologous bone marrow mononuclear cell transplantation in patients with myocardial infarction

    International Nuclear Information System (INIS)

    Zhang Fuqiang; Chen Xianying; Zhang Guoxu; Wang Zhiguo; Ma Dongchu; Wang Huishan

    2009-01-01

    Objective: Autologous bone marrow mononuclear cell transplantation is a treatment modality under investigation for severe coronary heart disease. Its beneficial effects on ventricular function, myocardial perfusion and metabolism remain to be evaluated. The present study proposed a 18 F-fluorodeoxyglucose (FDG) and 99 Tc m -methoxyisobutylisinitrile (MIBI) dual-isotope simultaneous acquisition (DISA) imaging technique to assess the effects of coronary artery bypass grafting (CABG) combined with autologous bone marrow mononuclear cell transplantation in patients with old myocardial infarction (OMI). Methods: Twenty patients with OMI, whose diagnosis was confirmed with angiography. were divided into a convention. al CABG group (group A, n=11) and CABG+ autologous bone marrow mononuclear cell transplantation group (group B, n=9). All subjects underwent gated cardiac DISA tomography at one week preoperatively and four months postoperatively. The segmental myocardial uptake of the tracers was scored as 3, 2, 1 and 0. Paired-samples t test was used to compare data of the two groups. Results In group A, there were 52 perfusion/metabolism mismatched segments, 99 Tc m -MIBI and 18 F-FDG uptake scores of these segments in-creased from preoperatively 1.48 ± 0.75( 99 Tc m -MIBI)and 1.90 ± 0.75( 18 F-FDG) to postoperatively 1.75 ± 0.68 and 2.13 ± 0.74 (t=3.25 and 2.37, both P 0.05). However, in group B, there was significant increase of the myocardial uptake scores both in mismatched segments and matched segments. In the 45 mismatched segments of this group,preoperative and postoperative 99 Tc m -MIBI/ 18 F-FDG uptake scores were 1.24 ± 0.68/1.71 ± 0.76 and 1.53 ± 0.66/2.00 ± 0.64, respectively (t=2.93 and 2.56. both P 99 Tc m -MIBI/ 18 F-FDG uptake scores were 0.94 ± 0.75/1.50 ± 0.74 and 1.22 ± 0.76/1.78 ± 0.64. respectively (t=2.71 and 3.37. both P 0.05). Conclusions: CABG combined with autologous bone marrow mononuclear cell transplantation may improve myocardial

  17. 18F-FDG and 18F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice.

    Directory of Open Access Journals (Sweden)

    Camilla Bardram Johnbeck

    Full Text Available The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging.The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily for 10 days. PET/CT scans were repeated at day 1,3 and 10.Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016, day 7 (164±7% vs. 226±13%; p<0.001 and at day 10 (194±10% vs. 281±18%; p<0.001. Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034, 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019 and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001 and day 10 (r2 = 0.58; P = 0.027.Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.

  18. [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson's disease with and without dementia

    DEFF Research Database (Denmark)

    Jokinen, Pekka; Scheinin, Noora; Aalto, Sargo

    2010-01-01

    and controls, and hippocampal atrophy was associated with impaired memory. This cross-sectional data suggests that development of dementia in PD is associated with extensive spread of hypometabolism beyond the occipital cortex, and with hippocampal and frontal atrophy but not beta-amyloid deposition consistent...... impairment and dementia in PD. We performed a neuropsychological evaluation, structural brain MRI, [(18)F]FDG PET and [(11)C]PIB PET in 19 PD patients [eight non-demented (PD), eleven demented (PDD)] and 24 healthy elderly volunteers. [(11)C]PIB region-to-cerebellum ratios did not differ significantly...... between the groups in any brain region (p > 0.05). PDD patients showed impaired glucose metabolism in cortical brain regions and this reduction was associated with the degree of cognitive impairment. PDD patients had more atrophy both in the hippocampus and the frontal cortex compared with PD patients...

  19. {sup 18}F-FDG-Avid Adenocarcinoma of the Rectum Presenting as a Subtle Filling Defect on Maximum Intensity Projection Image: Report of a Case

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee; Lee, Kwang Chan [SungAe General Hospital, Seoul (Korea, Republic of)

    2009-04-15

    {sup 18}F-FDG avid polypoid or tumefacient carcinomas of the gastrointestinal (GI) tract including the rectum are characteristically featured on PET-CT as an intraluminal tumor surrounded by completely or partially cleared background. However, the carcinomas of intramural or sessile variant may not so easily be detected especially when tumors are obliterated by feces or mucus retained in the host bowel loop. Recently, we observed a case of cauliflower-like adenocarcinoma of the rectum that was diagnosed by noting a subtle, flat filling defect created against the background of 'black' feces-mucus filled rectum. To our knowledge such a 'filling defect' produced by sessile tumor has not previously been reported as a useful diagnostic sign of GI tract carcinoma on PET-CT.

  20. Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT.

    Science.gov (United States)

    Epelbaum, Ron; Frenkel, Alex; Haddad, Riad; Sikorski, Natalia; Strauss, Ludwig G; Israel, Ora; Dimitrakopoulou-Strauss, Antonia

    2013-01-01

    This study aimed to assess the role of a quantitative dynamic PET model in pancreatic cancer as a potential index of tumor aggressiveness and predictor of survival. Seventy-one patients with (18)F-FDG-avid adenocarcinoma of the pancreas before treatment were recruited, including 27 with localized tumors (11 underwent pancreatectomy, and 16 had localized nonresectable tumors) and 44 with metastatic disease. Dynamic (18)F-FDG PET images were acquired over a 60-min period, followed by a whole-body PET/CT study. Quantitative data measurements were based on a 2-compartment model, and the following variables were calculated: VB (fractional blood volume in target area), K(1) and k(2) (kinetic membrane transport parameters), k(3) and k(4) (intracellular (18)F-FDG phosphorylation and dephosphorylation parameters, respectively), and (18)F-FDG INF (global (18)F-FDG influx). The single significant variable for overall survival (OS) in patients with localized disease was (18)F-FDG INF. Patients with a high (18)F-FDG INF (>0.033 min(-1)) had a median OS of 6 and 5 mo for nonresectable and resected tumors, respectively, versus 15 and 19 mo for a low (18)F-FDG INF in nonresectable and resected tumors, respectively (P measured by dynamic PET in newly diagnosed pancreatic cancer correlated with the aggressiveness of disease. The (18)F-FDG INF was the single most significant variable for OS in patients with localized disease, whether resectable or not.

  1. Evaluation of thymic tumors with 18F-FDG PET-CT - A pictorial review

    International Nuclear Information System (INIS)

    Sharma, Punit; Singhal, Abhinav; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh; Kumar, Arvind

    2013-01-01

    Thymic tumors represent a broad spectrum of neoplastic disorders and pose considerable diagnostic difficulties. A non-invasive imaging study to determine the nature of thymic lesions can have significant impact on management of such tumors. 18F-flurorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) has shown promising results in characterization of thymic tumors. The objective of this article is to provide an illustrative tutorial highlighting the clinical utility of 18F-FDG PET-CT imaging in patients with thymic tumors. We have pictorially depicted the 18F-FDG PET-CT salient imaging characteristics of various thymic tumors, both epithelial and non-epithelial. Also discussed is the dynamic physiology of thymus gland which is to be kept in mind when evaluating thymic pathology on 18F-FDG PET-CT, as it can lead to interpretative pitfalls

  2. 18F-FLT Positron Emission Tomography/Computed Tomography Imaging in Pancreatic Cancer: Determination of Tumor Proliferative Activity and Comparison with Glycolytic Activity as Measured by 18F-FDG Positron Emission Tomography/Computed Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Senait Aknaw Debebe

    2016-02-01

    Full Text Available Objective: This phase-I imaging study examined the imaging characteristic of 3’-deoxy-3’-(18F-fluorothymidine (18F-FLT positron emission tomography (PET in patients with pancreatic cancer and comparisons were made with (18F-fluorodeoxyglucose (18F-FDG. The ultimate aim was to develop a molecular imaging tool that could better define the biologic characteristics of pancreas cancer, and to identify the patients who could potentially benefit from surgical resection who were deemed inoperable by conventional means of staging. Methods: Six patients with newly diagnosed pancreatic cancer underwent a combined FLT and FDG computed tomography (CT PET/CT imaging protocol. The FLT PET/CT scan was performed within 1 week of FDG PET/CT imaging. Tumor uptake of a tracer was determined and compared using various techniques; statistical thresholding (z score=2.5, and fixed standardized uptake value (SUV thresholds of 1.4 and 2.5, and applying a threshold of 40% of maximum SUV (SUVmax and mean SUV (SUVmean. The correlation of functional tumor volumes (FTV between 18F-FDG and 18F-FLT was assessed using linear regression analysis. Results: It was found that there is a correlation in FTV due to metabolic and proliferation activity when using a threshold of SUV 2.5 for FDG and 1.4 for FLT (r=0.698, p=ns, but a better correlation was obtained when using SUV of 2.5 for both tracers (r=0.698, p=ns. The z score thresholding (z=2.5 method showed lower correlation between the FTVs (r=0.698, p=ns of FDG and FLT PET. Conclusion: Different tumor segmentation techniques yielded varying degrees of correlation in FTV between FLT and FDGPET images. FLT imaging may have a different meaning in determining tumor biology and prognosis.

  3. Production of PET radiopharmaceutical 18F-FDG using synthesizer automatic module

    International Nuclear Information System (INIS)

    Purwoko; Chairuman; Adang Hardi Gunawan; Yayan Tahyan; Eny Lestari; Sri Aguswarini Lestiyowati; Karyadi; Sri Bagiawati

    2010-01-01

    Radiopharmaceutical 2-( 18 F)Fluoro-2-Deoxy-D-Glucose or 18 F(FDG) is an important PET (Positron Emission Tomography) radiopharmaceutical for tumour imaging. In the PET technique glucose metabolism in tumour tissues can be determined quantitatively and used for diagnosis staging and monitoring of treatment tumour or cancer disease in medical oncology. The production of 2-( 18 F)Fluoro-2-Deoxy-D-Glucose 18 F-FDG using compact automated system module TRACERlab MX has been carried out. The modular setup of the apparatus permits reliable for routine synthesis of radiopharmaceuticals 18 F-FDG based on kriptofix mediated nucleophilic fluorination to mannose triflate precursor. Radiochemical yield of 18 F-FDG was 53.895 % (decay time uncorrected) in 40 minutes. The product showed that the colorless and clear solution at pH:6, sterile and pirogen free, kriptofix impurities was low and radiochemical purity was 99.595%. (author)

  4. 18F-FDG PET is superior to 67Ga SPECT in the staging of non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Yamamoto, Fumiyasu; Tsukamoto, Eriko; Nakada, Kunihiro; Takei, Toshiki; Zhao, Songji; Asaka, Masahiro; Tamaki, Nagara

    2004-01-01

    Our study aims to compare diagnostic accuracy between 18 F-FDG PET and 67 Ga SPECT in the staging of non-Hodgkin's lymphoma. Twenty-eight patients with non-Hodgkin's lymphoma, underwent 18 F-FDG PET, 67 Ga SPECT and CT for the pretreatment staging of malignant lymphoma between August 1999 and March 2002. 18 F-FDG PET imaging was obtained 60 minutes after the intravenous administration of 185 MBq of 18 F-FDG. 67 Ga SPECT imaging was obtained 2 days after the intravenous administration of 148 MBq of 67 Ga. 18 F-FDG PET and 67 Ga SPECT were performed within one month. Both imagings were performed on the area from the neck to the pelvis. The 18 F-FDG PET and 67 Ga SPECT findings were compared with the CT findings and the clinical course. Sixty-six nodal lesions were clinically confirmed. Of these, 32 were identified by both 18 F-FDG PET and 67 Ga SPECT. The remaining 34 lesions were identified only by 18 F-FDG PET. The mean (±SD) sizes of the nodes were 34.7±32.4 mm for 18 F-FDG-positive and 67 Ga-positive lesions and 15.7±8.3 mm for 18 F-FDG-positive and 67 Ga-negative lesions (p 18 F-FDG PET and 67 Ga SPECT, whereas 6 lesions were identified by only 18 F-FDG PET. Five lesions were not identified by either technique. No 18 F-FDG-negative but 67 Ga-positive nodal or extranodal lesions were observed. The difference in findings between the two studies is related to the difference in the size but not in the histology or site of the lesions. 18 F-FDG PET detected significantly more lesions particularly small lesions than 67 Ga SPECT. Thus, 18 F-FDG PET is considered to be superior to 67 Ga SPECT in the staging of non-Hodgkin's lymphoma. (author)

  5. [{sup 18}F]FDG PET/CT outperforms [{sup 18}F]FDG PET/MRI in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Burg, Matthias Christian; Allkemper, Thomas [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Schaefers, Michael [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Westfaelische Wilhelms University Muenster, European Institute for Molecular Imaging, Muenster (Germany)

    2016-02-15

    To evaluate the diagnostic potential of PET/MRI with [{sup 18}F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [{sup 18}F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [{sup 18}F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [{sup 18}F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [{sup 18}F]FDG PET/MRI was inferior to low-dose [{sup 18}F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [{sup 18}F]FDG PET/MRI was equal to contrast-enhanced neck [{sup 18}F]FDG PET/CT. Therefore, [{sup 18}F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast

  6. An approach of imaging technique using MRI and {sup 18}F-fludeoxyglucose ({sup 18}F-FDG) PET/CT for longitudinal monitoring of mouse hepatocellular carcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Hui; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2012-05-15

    Hepatocellular carcinoma (HCC) is the most common cancers with growing incidence around the world. Some researchers have developed preclinical models in which tumors arise in a background that resembles the naturally developing HCC in human. There are genetically modified mouse models to mimic pathophysiological and molecular features of HCC (1) as well as chemical carcinogen-treated mouse models (2). For the detection of tumor lesions, among various imaging modalities, computed tomography (CT) and magnetic resonance imaging (MRI) provide for anatomical information and positron emission tomography (PET) supply functional information of disease (3-5). The purpose of the present work is to evaluate non-invasive and reliable monitoring method for HCC models developed by the treatment with diethylnitrosamine (DEN) as a chemical carcinogen or Hepatitis B virus (HBV) X gene expressing transgenic mice (HBx-Tg model) using {sup 18}F-FDG PET/CT and 3.0 T MRI

  7. Potential use of "1"8F-FDG-PET/CT to visualize hypermetabolism associated with muscle pain in patients with adult spinal deformity: a case report

    International Nuclear Information System (INIS)

    Taniguchi, Yuki; Takahashi, Miwako; Momose, Toshimitsu; Matsudaira, Ko; Oka, Hiroyuki

    2016-01-01

    Patients with adult spinal deformity (ASD) are surgically treated for pain relief; however, visualization of the exact origin of the pain with imaging modalities is still challenging. We report the first case of a 60-year-old female patient who presented with painful degenerative kyphoscoliosis and was evaluated with flourine-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ("1"8F-FDG-PET/CT) preoperatively. Because her low back pain was resistant to conservative treatment, she was treated with posterior spinal correction and fusion surgery from Th2 to the ilium. One year after the surgery, her low back pain had disappeared completely. In accordance with her clinical course, "1"8F-FDG-PET imaging revealed the uptake of "1"8F-FDG in the paravertebral muscles preoperatively and showed the complete absence of uptake at 1 year after surgery. The uptake site coincided with the convex part of each curve of the lumbar spine and was thought to be the result of the increased activity of paravertebral muscles due to their chronic stretched state in the kyphotic posture. This case report suggests the possibility of using "1"8F-FDG-PET/CT to visualize increased activity in paravertebral muscles and the ensuing pain in ASD patients. (orig.)

  8. Potential use of {sup 18}F-FDG-PET/CT to visualize hypermetabolism associated with muscle pain in patients with adult spinal deformity: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yuki [The University of Tokyo Hospital, Department of Orthopedic Surgery, Bunkyo-ku, Tokyo (Japan); Takahashi, Miwako; Momose, Toshimitsu [The University of Tokyo, Division of Nuclear Medicine, Department of Radiology, Graduate School of Medicine, Tokyo (Japan); Matsudaira, Ko; Oka, Hiroyuki [The University of Tokyo, Department of Medical Research and Management for Musculoskeletal Pain, 22nd Century Medical and Research Center, Faculty of Medicine, Tokyo (Japan)

    2016-11-15

    Patients with adult spinal deformity (ASD) are surgically treated for pain relief; however, visualization of the exact origin of the pain with imaging modalities is still challenging. We report the first case of a 60-year-old female patient who presented with painful degenerative kyphoscoliosis and was evaluated with flourine-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) preoperatively. Because her low back pain was resistant to conservative treatment, she was treated with posterior spinal correction and fusion surgery from Th2 to the ilium. One year after the surgery, her low back pain had disappeared completely. In accordance with her clinical course, {sup 18}F-FDG-PET imaging revealed the uptake of {sup 18}F-FDG in the paravertebral muscles preoperatively and showed the complete absence of uptake at 1 year after surgery. The uptake site coincided with the convex part of each curve of the lumbar spine and was thought to be the result of the increased activity of paravertebral muscles due to their chronic stretched state in the kyphotic posture. This case report suggests the possibility of using {sup 18}F-FDG-PET/CT to visualize increased activity in paravertebral muscles and the ensuing pain in ASD patients. (orig.)

  9. Prognostic value of tumour blood flow, [{sup 18}F]EF5 and [{sup 18}F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Komar, Gaber; Eskola, Olli; Sipilae, Hannu; Solin, Olof [Turku PET Centre, Turku (Finland); Lehtioe, Kaisa; Levola, Helena; Lindholm, Paula; Seppaelae, Jan [Turku University Hospital and University of Turku, Department of Oncology and Radiotherapy, Turku (Finland); Seppaenen, Marko [Turku PET Centre, Turku (Finland); Turku University Hospital and University of Turku, Department of Nuclear Medicine, Turku (Finland); Grenman, Reidar [Turku University Hospital and University of Turku, Department of Otorhinolaryngology, Head and Neck Surgery, Turku (Finland); Minn, Heikki [Turku PET Centre, Turku (Finland); Turku University Hospital and University of Turku, Department of Oncology and Radiotherapy, Turku (Finland)

    2014-11-15

    In order to improve the treatment of squamous cell carcinoma of the head and neck, precise information on the treated tumour's biology is required and the prognostic importance of different biological parameters needs to be determined. The aim of our study was to determine the predictive value of pretreatment PET/CT imaging using [{sup 18}F]FDG, a new hypoxia tracer [{sup 18}F]EF5 and the perfusion tracer [{sup 15}O]H{sub 2}O in patients with squamous cell cancer of the head and neck treated with radiochemotherapy. The study group comprised 22 patients with confirmed squamous cell carcinoma of the head and neck who underwent a PET/CT scan using the above tracers before any treatment. Patients were later treated with a combination of radiochemotherapy and surgery. Parametric blood flow was calculated from dynamic [{sup 15}O]H{sub 2}O PET images using a one-tissue compartment model. [{sup 18}F]FDG images were analysed by calculating standardized uptake values (SUV) and metabolically active tumour volumes (MATV). [{sup 18}F]EF5 images were analysed by calculating tumour-to-muscle uptake ratios (T/M ratio). A T/M ratio of 1.5 was considered a significant threshold and used to determine tumour hypoxic subvolumes (HS) and hypoxic fraction area. The findings were finally correlated with the pretreatment clinical findings (overall stage and TNM stage) as well as the outcome following radiochemotherapy in terms of local control and overall patient survival. Tumour stage and T-classification did not show any significant differences in comparison to the patients' metabolic and functional characteristics measured on PET. Using the Cox proportional hazards model, a shorter overall survival was associated with MATV (p = 0.008, HR = 1.108), maximum [{sup 18}F]EF5 T/M ratio (p = 0.0145, HR = 4.084) and tumour HS (p = 0.0047, HR = 1.112). None of the PET parameters showed a significant effect on patient survival in the log-rank test, although [{sup 18}F]EF5 maximum T

  10. Brain 18F-FDG, 18F-florbtaben PET/CT, 123I-FP-CIT SPECT and cardiac 123I-MBG imaging for diagnosis of a 'cerebral type' of Lewy Body disease

    International Nuclear Information System (INIS)

    Gucht, Axel Van Der; Bélissant, Ophélie; Rabu, Corenti; Cottereau, Anne-Ségolène; Evangelista, Eva; Chalaye, Julia; Bonnot-Lours, Sophie; Fénelon, Gilles; Itti, Emmanuel; De Langavant, Laurent Cleret

    2016-01-01

    A 67-year-old man was referred for fluctuating neuropsychiatric symptoms, featuring depression, delirious episodes, recurrent visual hallucinations and catatonic syndrome associated with cognitive decline. No parkinsonism was found clinically even under neuroleptic treatment. 18 F-FDG PET/CT showed hypometabolism in the posterior associative cortex including the occipital cortex, suggesting Lewy body dementia, but 123 I-FP-CIT SPECT was normal and cardiac 123 I-MIBG imaging showed no signs of sympathetic denervation. Alzheimer's disease was excluded by a normal 18 F-florbetaben PET/CT. This report suggests a rare case of α-synucleinopathy without brainstem involvement, referred to as 'cerebral type' of Lewy body disease

  11. Prognostic value of tumour blood flow, [18F]EF5 and [18F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy

    International Nuclear Information System (INIS)

    Komar, Gaber; Eskola, Olli; Sipilae, Hannu; Solin, Olof; Lehtioe, Kaisa; Levola, Helena; Lindholm, Paula; Seppaelae, Jan; Seppaenen, Marko; Grenman, Reidar; Minn, Heikki

    2014-01-01

    In order to improve the treatment of squamous cell carcinoma of the head and neck, precise information on the treated tumour's biology is required and the prognostic importance of different biological parameters needs to be determined. The aim of our study was to determine the predictive value of pretreatment PET/CT imaging using [ 18 F]FDG, a new hypoxia tracer [ 18 F]EF5 and the perfusion tracer [ 15 O]H 2 O in patients with squamous cell cancer of the head and neck treated with radiochemotherapy. The study group comprised 22 patients with confirmed squamous cell carcinoma of the head and neck who underwent a PET/CT scan using the above tracers before any treatment. Patients were later treated with a combination of radiochemotherapy and surgery. Parametric blood flow was calculated from dynamic [ 15 O]H 2 O PET images using a one-tissue compartment model. [ 18 F]FDG images were analysed by calculating standardized uptake values (SUV) and metabolically active tumour volumes (MATV). [ 18 F]EF5 images were analysed by calculating tumour-to-muscle uptake ratios (T/M ratio). A T/M ratio of 1.5 was considered a significant threshold and used to determine tumour hypoxic subvolumes (HS) and hypoxic fraction area. The findings were finally correlated with the pretreatment clinical findings (overall stage and TNM stage) as well as the outcome following radiochemotherapy in terms of local control and overall patient survival. Tumour stage and T-classification did not show any significant differences in comparison to the patients' metabolic and functional characteristics measured on PET. Using the Cox proportional hazards model, a shorter overall survival was associated with MATV (p = 0.008, HR = 1.108), maximum [ 18 F]EF5 T/M ratio (p = 0.0145, HR = 4.084) and tumour HS (p = 0.0047, HR = 1.112). None of the PET parameters showed a significant effect on patient survival in the log-rank test, although [ 18 F]EF5 maximum T/M ratio was the closest (p = 0.109). By contrast

  12. In vivo quantification of {sup 18}F-Fdg uptake in human placenta during early pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti-Fregonara, P.; Jan, S.; Trebossen, R.; Maroy, R. [CEA, DSV, I2BM, SHFJ, F-91401 Orsay (France); Champion, C. [Univ Paul Verlaine Metz, Lab Phys Mol et Collis, Inst Phys, Metz (France); Hindie, E. [Hop St Antoine, AP-HP, F-75571 Paris (France); Hindie, E. [Univ Paris 07, IMDCT, IUH, Ecole Doctorale B2T, F-75221 Paris (France)

    2008-07-01

    {sup 18}F-FDG is the most widely used PET radiopharmaceutical. Nevertheless, no data for {sup 18}F-FDG uptake in the human placenta have been reported. We recently reported on embryo dosimetry in a woman who underwent an {sup 18}F-FDG PET/CT scan during early pregnancy. In the present work we attempt an in vivo quantification of the {sup 18}F-FDG uptake by the placenta. The 27-y-old woman received 320 MBq of {sup 18}F-FDG for a follow-up study for Hodgkin's lymphoma and was later discovered to be pregnant (embryo age 8 wk). Imaging started 1 h after injection. The maximum placental tissue uptake (SUVmax) was 2.5. This value was conservatively attributed to the entire placental volume, i.e., 45 mL, a value representative of the average dimensions of a normal placenta at 8 wk. On the basis of these measurements, placenta {sup 18}F-FDG uptake in our patient was 0.19% of the injected activity. A Monte Carlo simulation was used to derive the photon dose to the embryo from the placenta (0.022 * 10{sup -2} mGy per MBq of injected {sup 18}F-FDG) and from the surrounding amniotic fluid (0.017 * 10{sup -2} mGy MBq{sup -1}). This increases our previously calculated dose (3.3 * 10{sup -2} mGy MBq{sup -1}) by only a small fraction (1.18%), which does not justify modifying the previous estimate given the overall uncertainties. (authors)

  13. Hepatosplenic Candidiasis Detected by 18F-FDG-PET/CT

    International Nuclear Information System (INIS)

    Albano, Domenico; Bosio, Giovanni; Bertoli, Mattia; Petrilli, Giulia; Bertagna, Francesco

    2016-01-01

    Hepatosplenic candidiasis is a fungal infection, which mostly affects patients with hematologic malignancies such as leukemia. The pathogenesis of this infection is not clear yet, and the liver is the most commonly affected organ. Diagnosis of hepatosplenic candidiasis can be only established via biopsy, since computed tomography (CT) scan, ultrasonography, and magnetic resonance imaging (MRI) yield non-specific results. The role of fluorine-18 fluorodeoxyglucose positron emission tomography /computed tomography ( 18 F-FDG PET/CT) in diagnosis of hepatosplenic candidiasis remains undetermined, considering a few evidences in the literature. In this case report, we present the case of a 47-year-old patient, affected by acute myeloid leukemia, which was treated with three cycles of chemotherapy, resulting in the development of neutropenia and fever following the last cycle. The 18 F-FDG PET/CT scan showed some foci of intense FDG uptake in the liver and spleen. The subsequent diagnostic investigations (i.e., abdominal CT scan and biopsy) were suggestive of hepatosplenic candidiasis. The patient was started on antifungal treatment with fluconazole. After one month, the clinical conditions were resolved, and the subsequent abdominal CT scan was negative

  14. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    Science.gov (United States)

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  15. Disseminated osteomyelitis or bone metastases of breast cancer. 18F-FDG-PET/CT helps unravel an unusual presentation

    International Nuclear Information System (INIS)

    Mandegaran, Ramin; Wagner, Thomas; Debard, Alexa; Alvarez, Muriel; Marchou, Bruno; Massip, Patrice

    2014-01-01

    We present a case wherein striking 18 F-FDG-PET/CT findings initially considered consistent with recurrent disseminated skeletal metastases of breast cancer were later identified as an unusual presentation of disseminated chronic pyogenic osteomyelitis with Staphylococcus aureus and warneri identified on microbiological culture. A 76-year-old female with previous history of breast cancer presented with a 6-month history of pyrexia, myalgia and weight loss. Besides neutrophilia and elevated C-reactive protein, other blood indices, cultures and conventional imaging failed to identify the cause of pyrexia of unknown origin (PUO). 18 F-FDG-PET/CT demonstrated multiple widespread foci of intense FDG uptake in lytic lesions throughout the skeleton. Coupled with previous history of malignancy, findings were strongly suggestive of disseminated metastases of breast cancer. Through targeting an FDG avid lesion, 18 F-FDG-PET/CT aided CT-guided biopsy, which instead identified the lesions as chronic pyogenic osteomyelitis. Following prolonged antibiotic therapy, repeat 18 F-FDG-PET/CT demonstrated significant resolution of lesions. This case demonstrated an unusual presentation of disseminated osteomyelitis on 18 F-FDG-PET/CT and highlighted the use of 18 F-FDG-PET/CT as a trouble shooter in PUO but demonstrated that unusual presentations of benign or malignant pathologies cannot always reliably be differentiated on imaging alone without aid of tissue sampling. Furthermore, this case highlights the potential role 18 F-FDG-PET/CT could provide in assessing response to antibiotic therapy. (author)

  16. [Study of patients with prolonged fever with (18)F-FDG PET/CT].

    Science.gov (United States)

    Moragas, M; Cozar, M Puig; Buxeda, M; Soler, M; Riera, E; García, J R

    2015-01-01

    To review the findings on (18)F-FDG PET-CT in patients with fever of unknown origin lasting more than 7 days. This retrospective descriptive observational study included 93 (18)F-FDG PET-CT studies to detect a fever-causing focus done at three nuclear medicine centers from October 2006 through February 2014. A nuclear medicine specialist and a radiologist reviewed the images for foci of pathological uptake; another specialist's opinion resolved discrepancies. The findings on (18)F-FDG PET-CT studies were checked against clinical and/or histological findings. Abnormal (18)F-FDG uptake on PET-CT that could explain the cause of the fever was found in 52 (56%) of the 93 studies, and the cause of the fever was confirmed in 50 of these 52 studies. In the 50 cases in which the cause of the fever was confirmed, infection was the most common cause (54%), followed by noninfectious inflammatory disease (28%) and tumors (18%). (18)F-FDG PET-CT is useful in diagnosing the cause of prolonged febrile illness, so it might be practical to use it earlier in the diagnostic process. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  17. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives

    International Nuclear Information System (INIS)

    Morbelli, Silvia; Garibotto, Valentina; Giessen, Elsmarieke van de; Arbizu, Javier; Chetelat, Gael; Drezgza, Alexander; Hesse, Swen; Lammertsma, Adriaan A.; Law, Ian; Pappata', Sabina; Payoux, Pierre; Pagani, Marco

    2015-01-01

    Based on a large body of evidence on its diagnostic sensitivity for the identification of AD, in 2004 [18F]FDG PET imaging was approved by the Centers for Medicare and Medicaid Services (CMS, USA) as a routine examination tool for early and differential diagnosis of AD. Since then, large amounts of additional [18F]FDG PET data have become available showing that the addition of [18F]FDG PET to clinical examinations increases diagnostic accuracy in identifying AD patients even in the predementia stage. Of course, new opportunities and new challenges are coming up, which require the definition of the specific role of [18F]FDG PET in the era of AD biomarkers (i.e. relationship with other biomarkers and role as a marker of progression in AD [46, 48]). Meanwhile, in daily clinical practice, nuclear medicine experts should continue to perform high-quality [18F]FDG PET scans, constantly improving the standard through continuous education and the use of appropriate tools, knowing that it is one of the most informative biomarkers currently available for the prediction of dementia at the MCI stage.

  18. 18F-FDG PET/CT in detection of gynecomastia in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Hsin-Yi; Jeng, Long-Bin; Lin, Ming-Chia; Chao, Chih-Hao; Lin, Wan-Yu; Kao, Chia-Hung

    2013-01-01

    We retrospectively investigate the prevalence of gynecomastia as false-positive 2-[18F]fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) imaging in patients with hepatocellular carcinoma (HCC). Among the 127 male HCC patients who underwent 18F-FDG PET/CT scan, the 18FDG uptakes at the bilateral breasts in 9 patients with gynecomastia were recorded as standard uptake value (SUVmax) and the visual interpretation in both early and delayed images. The mean early SUVmax was 1.58/1.57 (right/left breast) in nine gynecomastia patients. The three patients with early visual score of 3 had higher early SUVmaxs. Gynecomastia is a possible cause of false-positive uptake on 18F-FDG PET/CT images. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Multi-site abdominal tuberculosis mimics malignancy on ~(18)F-FDG PET/CT:Report of three cases

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    18 F-fluorodeoxyglucose positron emission/computed tomography( 18 F-FDG PET/CT)imaging,an established procedure for evaluation of malignancy,shows an increased 18 F-FDG uptake in inflammatory conditions.We present three patients with abdominal pain and weight loss.Conventional imaging studies indicated that abdominal neoplasm and 18 F-FDG PET/CT for assessment of malignancy showed multiple lesions with intense 18 FFDG uptake in abdomen of the three cases.However,the three patients were finally diagnosed wit...

  20. {alpha}{sub v}{beta}{sub 3} imaging can accurately distinguish between mature teratoma and necrosis in {sup 18}F-FDG-negative residual masses after treatment of non-seminomatous testicular cancer: a preclinical study

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [Francois Baclesse Cancer Centre and Caen University, Bioticla Team, EA1772, IFR 146 ICORE, GRECAN, Caen (France); Caen University Hospital and Francois Baclesse Cancer Centre, PET Unit, Caen (France); Centre Francois Baclesse, Service de Medecine Nucleaire, Caen (France); Briand, Melanie; Dutoit, Soizic; Deslandes, Edwiges; Poulain, Laurent [Francois Baclesse Cancer Centre and Caen University, Bioticla Team, EA1772, IFR 146 ICORE, GRECAN, Caen (France); Bohn, Pierre; Rouvet, Jean; Modzelewski, Romain; Vera, Pierre [Henri Becquerel Cancer Center and Rouen University Hospital and QuantIF- LITIS (EA4108), Department of Nuclear Medicine, Rouen (France); Lasnon, Charline [Caen University Hospital and Francois Baclesse Cancer Centre, PET Unit, Caen (France); Chasle, Jacques [Francois Baclesse Cancer Centre and Caen University, Pathology Department, Caen (France); Vela, Antony [Francois Baclesse Cancer Centre and Caen University, Radiophysics Unit, Caen (France); Carreiras, Franck [Universite de Cergy Pontoise, UFR Sciences et Techniques, ERRMECe, EA 1391, Institut des materiaux, Cergy-Pontoise (France)

    2011-02-15

    We assessed whether imaging {alpha}{sub v}{beta}{sub 3} integrin could distinguish mature teratoma from necrosis in human non-seminomatous germ cell tumour (NSGCT) post-chemotherapy residual masses. Human embryonal carcinoma xenografts (six/rat) were untreated (controls) or treated to form mature teratomas with low-dose cisplatin and all-trans retinoic acid (ATRA) over a period of 8 weeks. In another group, necrosis was induced in xenografts with high-dose cisplatin plus etoposide (two cycles).{sup 18}F-Fluorodeoxyglucose ({sup 18}F-FDG) small animal positron emission tomography (SA PET) imaging was performed in three rats (one control and two treated for 4 and 8 weeks with cisplatin+ATRA). Imaging of {alpha}{sub v}{beta}{sub 3} expression was performed in six rats bearing mature teratomas and two rats with necrotic lesions on a microSPECT/CT device after injection of the tracer [{sup 99m}Tc]HYNIC-RGD [6-hydrazinonicotinic acid conjugated to cyclo(Arg-Gly-Asp-D-Phe-Lys)]. Correlative immunohistochemistry studies of human and mouse {alpha}{sub v}{beta}{sub 3} expression were performed. Cisplatin+ATRA induced differentiation of the xenografts. After 8 weeks, some glandular structures and mesenchymal cells were visible; in contrast, control tumours showed undifferentiated tissues. SA PET imaging showed that mature teratoma had very low avidity for {sup 18}F-FDG [mean standardised uptake value (SUV{sub mean}) = 0.48 {+-} 0.05] compared to untreated embryonal carcinoma (SUV{sub mean} = 0.92 {+-} 0.13) (p = 0.005). {alpha}{sub v}{beta}{sub 3} imaging accurately distinguished mature teratoma (tumour to muscle ratio = 4.29 {+-} 1.57) from necrosis (tumour to muscle ratio = 1.3 {+-} 0.26) (p = 0.0002). Immunohistochemistry studies showed that {alpha}{sub v}{beta}{sub 3} integrin expression was strong in the glandular structures of mature teratoma lesions and negative in host stroma. Imaging {alpha}{sub v}{beta}{sub 3} integrin accurately distinguished mature teratoma from

  1. Diagnosing neuroleukemiosis: Is there a role for 18F-FDG-PET/CT?

    Science.gov (United States)

    Sabaté-Llobera, A; Cortés-Romera, M; Gamundí-Grimalt, E; Sánchez-Fernández, J J; Rodríguez-Bel, L; Gámez-Cenzano, C

    An imaging case is presented on a patient referred to our department for an 18 F-FDG-PET/CT, as a paraneoplastic syndrome was suspected due to his clinical situation. He had a history of acute myeloid leukemia (AML) treated two years earlier, with sustained complete remission to date. 18 F-FDG-PET/CT findings revealed hypermetabolism in almost all nerve roots, suggesting meningeal spread, consistent with the subsequent MRI findings. Cerebrospinal fluid (CSF) findings confirmed a leptomeningeal reactivation of AML. Although not many studies have evaluated the role of 18 F-FDG-PET/CT in leukemia, it is a noninvasive tool for detecting extramedullary sites of disease and a good imaging alternative for those patients on whom an MRI cannot be performed. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  2. 18F-FDG PET/CT显像在肺部恶性肿瘤治疗中的疗效评价%Assessment of therapy effect for chest malignity lesions with 18 F-FDG PET/CT imaging

    Institute of Scientific and Technical Information of China (English)

    陈翼; 彭艳梅; 潘兴华; 董丽华; 徐昕明; 李懿; 杨洪文

    2016-01-01

    目的:探讨18 F-FDG PET/CT显像观察98例胸部恶性肿瘤治疗后疗效的作用。方法18 F-FDG PET/CT显像检查了98例手术+放化疗、放化疗和氩氦刀3类治疗后的胸部恶性肿瘤患者,分析3种治疗方法的疗效;并对比同机CT病灶分布的特征,分析与18 F-FDG PET显像的异同。结果受检患者98例中阳性87例,阴性11例,其中手术+放化疗44例(阳性34例,阴性10例);放化疗组15例(阳性14例,阴性1例);氩氦刀组39例(阳性39例)。各治疗组之间18 F-FDG PET/CT显示的治疗后残存病灶数量差异有显著意义(礸2=24.40, P <0.001)。18 F-FDG PET显示病灶130个,病灶最大横径2.2~9.4cm,平均(5.20±1.73)cm;同机CT显示病灶132个,最大横径1.0~10.6cm,平均(4.48±2.19)cm,18 F-FDG PET与同机CT显示的病灶大小基本一致,差异无显著意义( t =0.079, P >0.05),二者正相关性关系( r =0.85, P <0.01)。但是PET反应的是残留恶性组织的活性而CT仅是解剖改变。18 F-FDG PET病灶的T/NT比值1.3~26.07,平均6.32±5.48。结论18 F-FDG PET/CT在观察胸部恶性肿瘤疗效中有较大临床价值。%Objective This study was performed to evaluate the ability of 18 F-FDG PET/CT to assess therapy effect for chest lesion.Methods Ninety-nine cases with chest cancer were performed using 18 F-FDG PET/CT.Those imagings were compared between 18 F-FDG PET and CT on the same instrument .Results There were Eighty-seven cases in positive and eleven cases in negative in this study.Forty-four cases (34 in positive and 10 in negative) were surgery and chemotherapy and radiotherapy treat-ment.Fifteen cases (14 in positive and 1 in negative) were treated using radio-chemotherapy methods.Thirty-nine patients were treated by argon-helium cryotherapy (positive 39 cases).There were different in residual mass among 3

  3. (18)F-FDG PET/CT Findings in Acute Epstein-Barr Virus Infection Mimicking Malignant Lymphoma

    DEFF Research Database (Denmark)

    Ørbæk, Mathilde; Graff, Jesper; Markova, Elena

    2016-01-01

    We present a case demonstrating the diagnostic work-up and follow-up of a patient with acute Epstein-Barr virus (EBV) infection in which the clinical picture and imaging on (18)F-FDG PET/CT mimicked malignant lymphoma. Follow-up (18)F-FDG PET/CT scan in the patient performed 7 weeks after...... the abnormal scan revealed complete resolution of the metabolically active disease in the neck, axillas, lung hili, and spleen. This case highlights inflammation as one of the most well established false positives when interpreting (18)F-FDG PET/CT scans....

  4. 18F-FDG PET/CT Findings in Acute Epstein-Barr Virus Infection Mimicking Malignant Lymphoma

    Directory of Open Access Journals (Sweden)

    Mathilde Ørbæk

    2016-05-01

    Full Text Available We present a case demonstrating the diagnostic work-up and follow-up of a patient with acute Epstein-Barr virus (EBV infection in which the clinical picture and imaging on 18F-FDG PET/CT mimicked malignant lymphoma. Follow-up 18F-FDG PET/CT scan in the patient performed 7 weeks after the abnormal scan revealed complete resolution of the metabolically active disease in the neck, axillas, lung hili, and spleen. This case highlights inflammation as one of the most well established false positives when interpreting 18F-FDG PET/CT scans.

  5. The influence of blood glucose level on distribution of 18F-FDG in mice with tumor

    International Nuclear Information System (INIS)

    Fu Zhanli; Lin Jinghui; Wang Rongfu; Zhu Shaoli; Zhang Chunli; Pan Zhongyun

    2003-01-01

    To explore the influence of blood glucose level on 18 F-FDG uptake in tumor and normal tissues of mice, thirty five mice carrying Ehrlich ascitic cancer (EAC) are fasted 20 h and divided into four groups. The glucose loading group (n=12) and the control group (n=11) is given a solution of 50% glucose and distilled water orally just one hour before the 18 F FDG injection. Another two groups (n=5, n=7) is given a solution of 10%, 30% glucose respectively. Before 18 F-FDG intravenous injection, blood glucose levels are measured. The mice are killed one hour after the 18 F FDG injection. The tumor and normal tissues are excised, weighed, and counted by a γ well counter. The quantity of 18 F-FDG uptake is expressed as standardized uptake value (SUV). Blood glucose levels of the mice with EAC in the glucose loading group are significantly elevated than the control group (11.98 ± 3.01 mmol/L vs. 3.95 ± 1. 11 mmol/L, P 18 F-FDG uptake ratios of tumor and muscle in the glucose-loading group (1.34, 0.86, 0.48, 0.09, 1.38 respectively) are significantly lower than those in the control group (3.02, 2.62, 0.80, 0.16, 5.38 respectively) (P 18 F-FDG uptake ratios of tumor and brain, heart and blood in the glucose loading group (8.31. 1.05, 1.58, 103.00 respectively) are significantly higher than those in the control group (1.57, 0.64, 1.20, 9.73 respectively) (P 18 F-FDG distribution in mice. suggesting the blood glucose level should be controlled during clinically 18 F-FDG imaging

  6. Analysis of 18F-FDG PET mapping in malignant tumor patients with depression by SPM

    International Nuclear Information System (INIS)

    Su Liang; Zuo Chuantao; Guan Yihui; Zhao Jun; Shi Shenxun

    2005-01-01

    Objective: To investigate brain 18 F-fluorodeoxyglucose (FDG) PET mapping in malignant tumor patients with depressive emotion. Methods: 18 F-FDG PET imaging was performed in 21 malignant tumor patients (tumor group) and 21 healthy controls (control group). All were evaluated by self-rating depression scale (SDS)and 24 questions Hamilton rating scale for depression (HAMD). Results: (1) The standard total score of SDS and HAMD of the tumor group were higher than those of the control group (P 18 F-FDG PET imagings. The abnormalities of glucose metabolism might be related to their depressive emotion. (authors)

  7. Anatomical accuracy of lesion localization. Retrospective interactive rigid image registration between 18F-FDG-PET and X-ray CT

    International Nuclear Information System (INIS)

    Noemayr, A.; Roemer, W.; Kuwert, T.; Hothorn, T.; Pfahlberg, A.; Hornegger, J.; Bautz, W.

    2005-01-01

    The aim of this study was to evaluate the anatomical accuracy and reproducibility of retrospective interactive rigid image registration (RIR) between routinely archived X-ray computer tomography (CT) and positron emission tomography performed with 18 F-deoxyglucose (FDG-PET) in oncological patients. Methods: two observers registered PET and CT data obtained in 37 patients using a commercially available image fusion tool. RIR was performed separately for the thorax and the abdomen using physiological FDG uptake in several organs as a reference. One observer performed the procedure twice (01a and 01b), another person once (02). For 94 malignant lesions, clearly visible in CT and PET, the signed and absolute distances between their representation on PET and CT were measured in X-, Y-, and Z-direction with reference to a coordinate system centered in the CT representation of each lesion (X-, Y-, Z-distances). Results: the mean differences of the signed and absolute distances between 01a, 01b, and 02 did not exceed 3 mm in any dimension. The absolute X-, Y-, and Z-distances ranged between 0.57 ± 0.58 cm for 01a (X-direction) and 1.12 ± 1.28 cm for 02 (Z-direction). When averaging the absolute distances measured by 01a, 01b, and 02, the percentage of lesions misregistered by less than 1.5 cm was 91% for the X-, 88% for the Y-, and 77% for the Z-direction. The larger error of fusion determined for the remaining lesions was caused by non-rigid body transformations due to differences in breathing, arm position, or bowel movements between the two examinations. Mixed effects analysis of the signed and absolute X-, Y-, and Z-distances disclosed a significantly greater misalignment in the thorax than in the abdomen as well as axially than transaxially. Conclusion: the anatomical inaccuracy of RIR can be expected to be <1.5 cm for the majority of neoplastic foci. errors of alignment are bigger in the thorax and in Z-direction, due to non-rigid body transformations caused, e

  8. Sequential {sup 123}I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and {sup 18}F-FDG PET imaging)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Armin [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Royal Prince Alfred Hospital, Comprehensive Epilepsy Service, Camperdown, NSW (Australia); University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Fulham, Michael J. [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Kassiou, Michael [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); University of Sydney, Department of Pharmacology, Sydney, NSW (Australia); Zaman, Aysha [University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Lo, Sing Kai [University of Sydney, Institute of International Health, Sydney, NSW (Australia)

    2005-02-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with {sup 123}I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; {kappa}=0.83, p=0.003) was superior to the 0-h (36%; {kappa}=0.01, p>0.05), 3-h (55%; {kappa}=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; {kappa}=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  9. Sequential 123I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and 18F-FDG PET imaging)

    International Nuclear Information System (INIS)

    Mohamed, Armin; Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris; Fulham, Michael J.; Kassiou, Michael; Zaman, Aysha; Lo, Sing Kai

    2005-01-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with 123 I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; κ=0.83, p=0.003) was superior to the 0-h (36%; κ=0.01, p>0.05), 3-h (55%; κ=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; κ=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  10. Clinical Significance of Focal Breast Lesions Incidentally Identified by 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Cho, Young Seok; Choi, Joon Young; Lee, Su Jin; Hyun, Seung Hyup; Lee, Ji Young; Choi, Yong; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae

    2008-01-01

    We evaluated the incidence and malignant risk of focal breast lesions incidentally detected by 18 F-FDG PET/CT. Various PET/CT findings of the breast lesions were also analyzed to improve the differentiation between benign from malignant focal breast lesions. The subjects were 3,768 consecutive 18 F-FDG PET/CT exams performed in adult females without a history of breast cancer. A focal breast lesion was defined as a focal 18 F-FDG uptake or a focal nodular lesion on CT image irrespective of 18 F-FDG uptake in the breasts. The maximum SUV and CT pattern of focal breast lesions were evaluated, and were compared with final diagnosis. The incidence of focal breast lesions on PET/CT in adult female subjects was 1.4% (58 lesions in 53 subjects). In finally confirmed 53 lesions of 48 subjects, 11 lesions of 8 subjects (20.8%) were proven to be malignant. When the PET/CT patterns suggesting benignancy (maximum attenuation value > 75 HU or 20) were added as diagnostic criteria of PET/CT to differentiate benign from malignant breast lesions along with maximum SUV, the area under ROC curve of PET/CT was significantly increased compared with maximum SUV alone (0.680±0.093 vs. 0.786±0.076, p 18 F-FDG PET/CT is not low, deserving further diagnostic confirmation. Image interpretation considering both 18 F-FDG uptake and PET/CT pattern may be helpful to improve the differentiation from malignant and benign focal breast lesion

  11. The impact of optimal respiratory gating and image noise on evaluation of intra-tumor heterogeneity in 18F-FDG positron emission tomography imaging of lung cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; Vos, C.S. van der; Vriens, D.; Rest, C.C. Le; Bussink, J.; Oyen, W.J.G.; Geus-Oei, L.F. de; Visvikis, D.; Visser, E.P.

    2016-01-01

    Assessment of measurement accuracy of intra-tumor heterogeneity using texture features in positron emission tomography (PET) images is essential to characterize cancer lesions with high precision. In this study, we investigated the influence of respiratory motion and varying noise levels on

  12. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; van der Vos, Charlotte Sophie; Vriens, D.; Le Rest, C.C.; Bussink, J.; Oyen, W.J.; de Geus-Oei, Lioe-Fee; Visvikis, D.; Visser, E.P.

    2016-01-01

    Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients

  13. The value of 18F-FDG PET in three-dimensional conformal radiotherapy of cancer

    International Nuclear Information System (INIS)

    Lv Huiqing; Zhang Zhongmin; Lv Zhonghong

    2006-01-01

    Three-dimensional conformal radiotherapy (3D-CRT) is based on an extensive use of modern medical imaging techniques. Delineation of the gross tumor volume and organs at risk constitutes one of the most important phases of conformal radiotherapy procedures. 18 F-fluorodeoxyglucose ( 18 F-FDG) PET possesses greater sensitivity and accuracy in detecting diseased lymph nodes, is an important staging examination for patients considered for radiation treatment with curative intent. 18 F-FDG PET has an important role in delineation of gross tumor volume for patients treated with three-dimensional conformal radiotherapy. (authors)

  14. 18F-FDG SPECT/CT in the diagnosis of differentiated thyroid carcinoma with elevated thyroglobulin and negative iodine-131 scans

    International Nuclear Information System (INIS)

    Ma, C.; Wu, Z.; Wang, H.; Wang, X.; Shao, M.; Zhao, L.; Jiawei, X.

    2015-01-01

    Aim of the present study was to investigate the usefulness of 18 F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18 F-FDG SPECT/CT and 18 F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18 F-FDG SPECT/CT or 18 F-FDG PET/CT. Of these, 45 patients had 18 F-FDG SPECT/CT, the other 41 patients had 18 F-FDG PET/CT 3-4 weeks after thyroid hormone withdrawal. The results of 18 F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18 F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18 F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18 F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multi kinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical

  15. Thyroid Incidentalomas on 18F-FDG PET/CT: Clinical Significance and Controversies

    Directory of Open Access Journals (Sweden)

    William Makis

    2017-10-01

    Full Text Available Objective: The purpose of the current study is to examine the incidence and clinical significance of unexpected focal uptake of 18F-fluorodeoxyglucose (18F-FDG on positron emission tomography/computed tomography (PET/CT in the thyroid gland of oncology patients, the maximum standardized uptake value (SUVmax of benign and malignant thyroid incidentalomas in these patients, and review the literature. Methods: Seven thousand two hundred fifty-two 18F-FDG PET/CT studies performed over four years, were retrospectively reviewed. Studies with incidental focal 18F-FDG uptake in the thyroid gland were further analyzed. Results: Incidental focal thyroid 18F-FDG uptake was identified in 157 of 7252 patients (2.2%. Sufficient follow-up data (≥12 months were available in 128 patients, of whom 57 (45% had a biopsy performed and 71 had clinical follow-up. Malignancy was diagnosed in 14 of 128 patients (10.9%. There was a statistically significant difference between the median SUVmax of benign thyroid incidentalomas (SUVmax 4.8 vs malignant (SUVmax 6.3, but the wide range of overlap between the two groups yielded no clinically useful SUVmax threshold value to determine malignancy. Conclusion: 18F-FDG positive focal thyroid incidentalomas occurred in 2.2% of oncologic PET/CT scans, and were malignant in 10.9% of 128 patients. This is the lowest reported malignancy rate in a North American study to date, and significantly lower than the average malignancy rate (35% reported in the literature. Invasive biopsy of all 18F-FDG positive thyroid incidentalomas, as recommended by some studies, is unwarranted and further research to determine optimal management is needed. There was no clinically useful SUVmax cut-off value to determine malignancy and PET/CT may not be a useful imaging modality to follow these patients conservatively.

  16. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer.

    Science.gov (United States)

    Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2014-01-01

    Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-valueheterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.

  17. Role of 18F-FDG PET/CT in Posttreatment Evaluation of Anal Carcinoma.

    Science.gov (United States)

    Houard, Clémence; Pinaquy, Jean-Baptiste; Mesguich, Charles; Henriques de Figueiredo, Bénédicte; Cazeau, Anne-Laure; Allard, Jean-Baptiste; Laharie, Hortense; Bordenave, Laurence; Fernandez, Philippe; Vendrely, Véronique

    2017-09-01

    evaluation of anal cancer and has a relevant impact on patient management. Moreover, CMR is associated with good survival outcome. Thus, 18 F-FDG PET/CT may play a significant role during posttreatment follow-up of anal cancer. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Chilean experience in production of 18F-FDG from 18F in a reactor

    International Nuclear Information System (INIS)

    Chandia, M.; Godoy, N.; Errazu, X.; Hernandez; Figols, M.; Firnau, G.; Tronsoco, F.

    2000-01-01

    18 F-FDG (fluorine-deoxy-D-glucose) is an important and useful radiopharmaceutical for imaging and study of myocardial viability. Usually cyclotron-produced 18 F is used to label 18 F-FDG. The availability of a 5 MW Nuclear Reactor in Chile and the absence of a quality cyclotron to produce 18 F required that we developed a method in order to obtain suitable 18 F to label 18 F-FDG using the facilities we have at the Nuclear Center of La Reina, Chilean Nuclear Energy Commission. The nuclear reactions involved are: 6 Li(n,aα) 3 H and 16 O( 3 H,n) 18 F. Enriched Li 2 CO 3 ( 6 Li = 95 %) was irradiated in a 5 MW swimming pool type nuclear reactor with a neutron flux of 5. 7 x 10 13 n cm -2 s -1 for 4 hours. The irradiated Li 2 CO 3 was dissolved in H 2 SO 4 (1:1) and distilled as trimethylsilyl( 18 F)fluoride ( 18 F-TMS). The labelling of the sugar was carried out using the method described by Hamacker. The 18 F-TMS was trapped in a solution of acetonitrile, water, potassium carbonate, and kriptofix and hydrolysed to form 18 F fluoride. The nucleophilic complex reacts with 1,3,4,6, tetra-O-acetyl- 2-O-trifluoromethanesulfonyl-bβ-D-mannopyranose. The acetylated carbohydrate by acid hydrolysis produces 18 F-FDG. The final product was purified using an ion retarding resin (AG11-A8) and a system two Sep Pak Plus: Alumina and C-18 cartridge and sterilised by Millipore 0.22 μm filter. The 18 F-FDG was obtained in an apyrogenic and sterile solution. The 18 F radionuclide purity was higher than 99.9% and the radiochemical purity ofthe 18 F-FDG obtained was over than 99%. Residual 3 H content was as low as 20 (Bq 3 H/MBq 18 F-FDG.). The yield of the process 18 F-FDG was 13.2 %. (authors)

  19. 18F-FDG PET in children with lymphomas

    International Nuclear Information System (INIS)

    Depas, Gisele; Barsy, Caroline De; Foidart, Jacqueline; Rigo, Pierre; Hustinx, Roland; Jerusalem, Guy; Hoyoux, Claire; Dresse, Marie-Francoise; Fassotte, Marie-France; Paquet, Nancy

    2005-01-01

    The aim of this study was to retrospectively evaluate the performance of positron emission tomography (PET) with 18 F-fluorodeoxyglucose ( 18 F-FDG) in children with lymphomas, at various stages of their disease. Twenty-eight children (mean age 12.5 years, 14 girls, 14 boys) with Hodgkin's disease (HD, n=17) or non-Hodgkin's lymphoma (NHL, n=11) were evaluated. Patients were investigated at initial staging (n=19), early in the course of treatment (n=19), at the end of treatment (n=16) and during long-term follow-up (n=19). A total of 113 whole-body PET studies were performed on dedicated scanners. PET results were compared with the results of conventional methods (CMs) such as physical examination, laboratory studies, chest X-rays, computed tomography, magnetic resonance imaging, ultrasonography and bone scan when available. At initial evaluation (group 1), PET changed the disease stage and treatment in 10.5% of the cases. In early evaluation of the response to treatment (group 2), PET failed to predict two relapses and one incomplete response to treatment. In this group, however, PET did not show any false positive results. There were only 4/75 false positive results for PET among patients studied at the end of treatment (group 3, specificity 94%) or during the systematic follow-up (group 4, specificity 95%), as compared with 27/75 for CMs (specificity 54% and 66%, respectively). 18 F-FDG-PET is a useful tool for evaluating children with lymphomas. Large prospective studies are needed to appreciate its real impact on patient management. (orig.)

  20. Interactive 3-dimensional registration of stand-along 18F-FDG whole-body PET with CT in the thorax

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Tang Anwu; He Zuoxiang

    2004-01-01

    Objective: To establish a method of 3-dimensional volume fusion of stand-alone 18 F-fluorodeoxyglucose (FDG) PET with CT in the thorax. Methods: 18 F-FDG PET and CT studies were performed on 8 patients with lung cancer. CT raw data were reconstructed into three dimensional volume data. The mutual positioning of the volume data of PET and CT was repeatedly adjusted according to the inner marker of apparent anatomical structures and lesions until the accurate registrations were obtained. The registered PET study was then displayed on a hot metal scale overlaid on top of the gray scale CT study. Results: All of the 25 lesions on 18 F-FDG PET imaging in 8 patients were correctly located on CT images using the software of three dimension volumetric fusion of stand-alone 18 F-FDG PET with CT in the thorax. The software can be run in a PC computer, and the whole computational performance time of the software algorithm is less than 10 min for one patient. Conclusion: This technique can correctly locate the FDG uptake lesions in the thorax. (authors)

  1. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.

    Science.gov (United States)

    Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee

    2018-05-01

    The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.

  2. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous Staphylococcus aureus osteomyelitis model

    DEFF Research Database (Denmark)

    Nielsen, Ole L.; Afzelius, Pia; Bender, Dirk

    characterized as abscesses/cellulitis, arthritis in three joints and five enlarged lymph nodes. None of the tracers accumulated in joints with arthritis. By comparing the 10 infectious lesions, 18F-FDG accumulated in nine, 111In-leukocytes in eight, 11C-methionine in six, 68Ga-citrate in four and 11C-PK11195...

  3. Low-order non-spatial effects dominate second-order spatial effects in the texture quantifier analysis of 18F-FDG-PET images.

    Directory of Open Access Journals (Sweden)

    Frank J Brooks

    Full Text Available There is increasing interest in applying image texture quantifiers to assess the intra-tumor heterogeneity observed in FDG-PET images of various cancers. Use of these quantifiers as prognostic indicators of disease outcome and/or treatment response has yielded inconsistent results. We study the general applicability of some well-established texture quantifiers to the image data unique to FDG-PET.We first created computer-simulated test images with statistical properties consistent with clinical image data for cancers of the uterine cervix. We specifically isolated second-order statistical effects from low-order effects and analyzed the resulting variation in common texture quantifiers in response to contrived image variations. We then analyzed the quantifiers computed for FIGOIIb cervical cancers via receiver operating characteristic (ROC curves and via contingency table analysis of detrended quantifier values.We found that image texture quantifiers depend strongly on low-effects such as tumor volume and SUV distribution. When low-order effects are controlled, the image texture quantifiers tested were not able to discern only the second-order effects. Furthermore, the results of clinical tumor heterogeneity studies might be tunable via choice of patient population analyzed.Some image texture quantifiers are strongly affected by factors distinct from the second-order effects researchers ostensibly seek to assess via those quantifiers.

  4. 18F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To evaluate the value of 18F-DG PET/CT in detecting recurrence and/or metastasis of colorectal cancer (CRC).METHODS: Combined visual analysis with semiquantitative analysis, the 18F-DG PET/CT wholebody imaging results and the corresponding clinical data of 68 postoperative CRC patients including 48 male and 20 female with average age of 58.1 were analyzed retrospectively.RESULTS: Recurrence and/or metastasis were confirmed in 56 patients in the clinical follow-up after the PET/CT imaging. The sensitivity of PET/CT diagnosis of CRC recurrence and/or metastasis was 94.6%, and the specificity was 83.3%. The positive predictive value (PPV)was 96.4% and the negative predictive value (NPV) was 76.9%. PET/CT imaging detected one or more occult malignant lesions in 8 cases where abdominal/pelvic CT and/or ultrasonography showed negative findings, and also detected more lesions than CT or ultrasonography did in 30.4% (17/56) cases. Recurrence and/or metastasis was detected in 91.7% (22/24) cases with elevated serum CEA levels by 18F-DG PET/CT imaging.CONCLUSION: 18F-DG PET/CT could detect the recurrence and/or metastasis of CRC with high sensitivity and specificity.

  5. 18F-FDG PET/CT in fever and inflammation of unknown origin

    NARCIS (Netherlands)

    Balink, J.J.M.

    2015-01-01

    This thesis describes the role and the interpretation of imaging results with hybrid 18F-FDG PET/CT in patients with non-localizing or non-specific signs and symptoms like fever, weight loss, malaise and prolonged increased inflammatory parameters, without a diagnosis after routine diagnostic

  6. Advantages of 18F FDG-PET/CT over Conventional Staging for Sarcoma Patients.

    Science.gov (United States)

    Németh, Zsuzsanna; Boér, Katalin; Borbély, Katalin

    2017-10-09

    The effective management of patients with sarcomas requires accurate diagnosis and staging. Imaging, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) are the most freqently used methods for the detection of the lesion location, size, morphology and structural changes to adjacent tissues; however, these modalities provide little information about tumour biology. MRI is a robust and useful modality in tumour staging of sarcomas, however metabolic-fluorodeoxyglucose positron emission tomography/ computer tomography ( 18 F-FDG PET/CT) provides greater accuracy to overall staging in combination with MRI [1]. The advantages of 18 F-FDG PET/CT method compared with CT and MRI is that it provides a whole body imaging, maps the viability of the tumour or the metabolic activity of the tissue. Additionally, PET detects the most agressive part of the tumour, demonstrates the biological behaviour of the tumour and therefore has a predictive value. Little data ara available on the role of 18 F-FDG PET/CT in the management of sarcomas. The present manuscript aims to provide a review of the major indications of 18 F-FDG PET/CT for diagnosis, staging, restaging and monitoring response to therapy and to compare its usefulness with the conventional imaging modalities in the management of patients with sarcomas.

  7. Gender differences in the cerebral uptake of [18F]FDG

    NARCIS (Netherlands)

    Sijbesma, Jurgen; van Waarde, Aren; Vállez García, David; Boersma, Hendrikus; Slart, Riemer; Dierckx, Rudi; Doorduin, Janine

    2017-01-01

    An important issue in rodent imaging is the question whether it is possible to use both female and male animals in tracer development and evaluation, rather than animals from a single sex. For this reason, we have made repeated 18F-FDG scans of the brain of adult rats (either males, or females at

  8. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT) in a Dog with Fibrosarcoma

    DEFF Research Database (Denmark)

    Zornhagen, Kamilla; Clausen, Malene; Hansen, Anders Elias

    2015-01-01

    Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management...

  9. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    Science.gov (United States)

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    .53, with no significant difference between fasting and clamping. The large volume of distribution of (18)F-FDG in the prehepatic splanchnic bed may complicate the analysis of dynamic PET data because it represents the mixed tracer input to the liver via the portal vein. Therefore, dynamic (18)F-FDG data for human hepatic glucose metabolism should be interpreted with caution, but constant tracer infusion seems to yield more robust results than bolus injection. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Comparison of {sup 18}F-FET and {sup 18}F-FDG PET in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pauleit, Dirk; Stoffels, Gabriele [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Bachofner, Ansgar [Clinic of Nuclear Medicine, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Floeth, Frank W.; Sabel, Michael [Department of Neurosurgery, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Herzog, Hans; Tellmann, Lutz [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Jansen, Paul [Institute of Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Reifenberger, Guido [Department of Neuropathology, Heinrich-Heine-University, D-40001 Duesseldorf (Germany); Hamacher, Kurt; Coenen, Heinz H. [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany); Langen, Karl-Josef [Institute of Neuroscience and Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany)], E-mail: k.j.langen@fz-juelich.de

    2009-10-15

    The purpose of this study was to compare the diagnostic value of positron emission tomography (PET) using [{sup 18}F]-fluorodeoxyglucose ({sup 18}F-FDG) and O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) in patients with brain lesions suspicious of cerebral gliomas. Methods: Fifty-two patients with suspicion of cerebral glioma were included in this study. From 30 to 50 min after injection of 180 MBq {sup 18}F-FET, a first PET scan ({sup 18}F-FET scan) was performed. Thereafter, 240 MBq {sup 18}F-FDG was injected and a second PET scan was acquired from 30 to 60 min after the second injection ({sup 18}F-FET/{sup 18}F-FDG scan). The cerebral accumulation of {sup 18}F-FDG was calculated by decay corrected subtraction of the {sup 18}F-FET scan from the {sup 18}F-FET/{sup 18}F-FDG scan. Tracer uptake was evaluated by visual scoring and by lesion-to-background (L/B) ratios. The imaging results were compared with the histological results and prognosis. Results: Histology revealed 24 low-grade gliomas (LGG) of World Health Organization (WHO) Grade II and 19 high-grade gliomas (HGG) of WHO Grade III or IV, as well as nine others, mainly benign histologies. The gliomas showed increased {sup 18}F-FET uptake (>normal brain) in 86% and increased {sup 18}F-FDG uptake (>white matter) in 35%. {sup 18}F-FET PET provided diagnostically useful delineation of tumor extent while this was impractical with {sup 18}F-FDG due to high tracer uptake in the gray matter. A local maximum in the tumor area for biopsy guidance could be identified with {sup 18}F-FET in 76% and with {sup 18}F-FDG in 28%. The L/B ratios showed significant differences between LGG and HGG for both tracers but considerable overlap so that reliable preoperative grading was not possible. A significant correlation of tracer uptake with overall survival was found with {sup 18}F-FDG only. In some benign lesions like abscesses, increased uptake was observed for both tracers indicating a limited specificity of both

  11. Phantom studies on the artifacts of barium on 18F-FDG DHC/CT images induced by X-ray attenuation correction

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Jiarui; Wang Xinqiang; Zhao Wenrui; Chuan Ling; Xu Genxiang; Gao Chunhua; Fang Tingzheng

    2007-01-01

    Objective: Attenuation correction (AC) based on X-ray transmission map may result in false positive readings or artifacts on PET images, some of them due to the internal residue of high density contrast media used in diagnostic X-ray imaging. The aim of this study was to experimentally estimate the impacts of different concentrations and volumes of barium contrast on X-CT AC (CTAC) for dual-head coincidence (DHC/CT) images. Methods: A cylindrical phantom containing 18 F solution (3.7 kBq/ml), in which plastic fingertips enclosed with different concentrations (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 3.0 kg/L)and volumes(0.5, 1.0, 1.5, 2.0, 2.5 ml) of BaSO 4 contrast media were inserted, was used to modulate routine 18 F-fluorodeoxyglucose (FDG) imaging study on a DHC/CT scanner (GE Discovery VH). Sequential 18 F emission and X-CT transmission acquisitions followed by data processing and reconstruction were carried out in clinical settings. For comparison, both visual and quantitative analyses were performed on CTAC and non-AC (NAC) images of the phantom. Results: In NAC images, the radioactivity distribution within the whole phantom was non-uniform with lower counts in the center; the plastic fingertips were all seen as 'cold spots' with much lower counts in the contrast region than in their surrounding areas. On the contrary, in CTAC images, the radioactivity distribution within the whole phantom was almost uniform; while most plastic fingertips with media concentration ≥0.1 kg/L and volume >0.5 ml were all depicted as 'hot spots' with higher counts than in surrounding areas. Conclusions: Barium contrast with relative high concentration or large volume can induce artifacts on CTAC DHC/CT images. In clinical setting, proper interpretation of CTAC DHC/CT images should refer to NAC DHC/CT images to exclude any artifacts related to the contrast media residues. (authors)

  12. 18F-FDG PET/CT in solitary plasmacytoma: metabolic behavior and progression to multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Domenico; Bosio, Giovanni [Spedali Civili di Brescia, Nuclear Medicine, Brescia (Italy); Treglia, Giorgio [Oncology Institute of Southern Switzerland, Department of Nuclear Medicine and PET/CT Center, Bellinzona (Switzerland); Giubbini, Raffaele; Bertagna, Francesco [University of Brescia and Spedali Civili Brescia, Nuclear Medicine, Brescia (Italy)

    2018-01-15

    Solitary plasmacytoma (SP) is a rare plasma-cell neoplasm, which can develop both in skeletal and/or soft tissue and frequently progresses to multiple myeloma (MM). Our aim was to study the metabolic behavior of SP and the role of 18F-FDG-PET/CT in predicting progression to MM. Sixty-two patients with SP who underwent 18F-FDG-PET/CT before any treatment were included. PET images were qualitatively and semiquantitatively analyzed by measuring the maximum standardized uptake value body weight (SUVbw), lean body mass (SUVlbm), body surface area (SUVbsa), metabolic tumor volume (MTV), total lesion glycolysis (TLG) and compared with age, sex, site of primary disease, and tumor size. Fifty-one patients had positive 18F-FDG-PET/CT (average SUVbw was 8.3 ± 4.7; SUVlbm 5.8 ± 2.6; SUVbsa 2 ± 1; MTV 45.4 ± 37; TLG 227 ± 114); the remaining 11 were not 18F-FDG-avid. Tumor size was significantly higher in patients avid lesions compared to FDG not avid; no other features are associated with FDG-avidity. Progression to MM occurred in 29 patients with an average of 18.3 months; MM was more likely to develop in patients with bone plasmacytoma and in patients with 18F-FDG avid lesion. Time to transformation in MM (TTMM) was significantly shorter in patients with osseous SP, in 18F-FDG avid lesion, for SUVlbm > 5.2 and SUVbsa > 1.7. 18F-FDG pathological uptake in SP occurred in most cases, being independently associated with tumor size. PET/CT seemed to be correlated to a higher risk of transformation in MM, in particular for 18F-FDG avid plasmacytoma and SBP. Among semiquantitative features, SUVlbm > 5.2 and SUVbsa > 1.7 were significantly correlated with TTMM. (orig.)

  13. Chronic bacterial osteomyelitis: prospective comparison of 18F-FDG imaging with a dual-head coincidence camera and 111In-labelled autologous leucocyte scintigraphy

    International Nuclear Information System (INIS)

    Meller, J.; Siefker, U.; Lehmann, K.; Meyer, I.; Schreiber, K.; Altenvoerde, G.; Becker, W.; Liersch, T.

    2002-01-01

    Indium-111-labelled white blood cells ( 111 In-WBCs) are currently considered the tracer of choice in the diagnostic work-up of suspected active chronic osteomyelitis (COM). Previous studies in a limited number of patients, performed with dedicated PET systems, have shown that [ 18 F]2'-deoxy-2-fluoro-D-glucose (FDG) imaging may offer at least similar diagnostic accuracy. The aim of this prospective study was to compare FDG imaging with a dual-head coincidence camera (DHCC) and 111 In-WBC imaging in patients with suspected COM. Thirty consecutive non-diabetic patients with possible COM underwent combined skeletal scintigraphy (30/30 patients), 111 In-WBC imaging (28/30 patients) and FDG-PET with a DHCC (30/30 patients). During diagnostic work-up, COM was proven in 11/36 regions of suspected skeletal infection and subsequently excluded in 25/36 regions. In addition, soft tissue infection was present in five patients and septic arthritis in three. 111 In-WBC imaging in 28 patients was true positive in 2/11 regions with proven COM and true negative in 21/23 regions without further evidence of COM. False-positive results occurred in two regions and false-negative results in nine regions suspected for COM. Most of the false-negative results (7/9) occurred in the central skeleton. If the analysis was restricted to the 18 regions with available histology (n=17) or culture (n=1), 111 In-WBC imaging was true positive in 2/18 regions, true negative in 8/18 regions, false negative in 7/18 regions and false positive in 1/18 regions. FDG-DHCC imaging was true positive in 11/11 regions with proven COM and true negative in 23/25 regions without further evidence of COM. False-positive results occurred in two regions. If the analysis was restricted to the 19 regions with available histology (n=18) or culture (n=1), FDG-DHCC imaging was true positive in 9/9 regions with proven COM and true negative in 10/10 regions without further evidence of COM. It is concluded that FDG

  14. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from 18F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer

    International Nuclear Information System (INIS)

    Gao, Xuan; Chu, Chunyu; Li, Yingci; Lu, Peiou; Wang, Wenzhi; Liu, Wanyu; Yu, Lijuan

    2015-01-01

    Highlights: • Three support vector machine classifiers were constructed from PET-CT images. • The areas under the ROC curve for SVM1, SVM2, and SVM3 were 0.689, 0.579, and 0.685, respectively. • The areas under curves for maximum short diameter and SUV max were 0.684 and 0.652, respectively. • The algorithm based on SVM was potential in the diagnosis of mediastinal lymph nodes. - Abstract: Objectives: In clinical practice, image analysis is dependent on simply visual perception and the diagnostic efficacy of this analysis pattern is limited for mediastinal lymph nodes in patients with lung cancer. In order to improve diagnostic efficacy, we developed a new computer-based algorithm and tested its diagnostic efficacy. Methods: 132 consecutive patients with lung cancer underwent 18 F-FDG PET/CT examination before treatment. After all data were imported into the database of an on-line medical image analysis platform, the diagnostic efficacy of visual analysis was first evaluated without knowing pathological results, and the maximum short diameter and maximum standardized uptake value (SUV max ) were measured. Then lymph nodes were segmented manually. Three classifiers based on support vector machine (SVM) were constructed from CT, PET, and combined PET-CT images, respectively. The diagnostic efficacy of SVM classifiers was obtained and evaluated. Results: According to ROC curves, the areas under curves for maximum short diameter and SUV max were 0.684 and 0.652, respectively. The areas under the ROC curve for SVM1, SVM2, and SVM3 were 0.689, 0.579, and 0.685, respectively. Conclusion: The algorithm based on SVM was potential in the diagnosis of mediastinal lymph nodes

  15. Evaluation of head and neck cancer with 18F-FDG PET: a comparison with conventional methods

    International Nuclear Information System (INIS)

    Kresnik, E.; Mikosch, P.; Gallowitsch, H.J.; Heinisch, M.; Unterweger, O.; Kumnig, G.; Gomez, I.; Lind, P.; Kogler, D.; Wieser, S.; Gruenbacher, G.; Raunik, W.

    2001-01-01

    The aim of this study was to evaluate the usefulness of 18 F-FDG PET in the diagnosis and staging of primary and recurrent malignant head and neck tumours in comparison with conventional imaging methods [including ultrasonography, radiography, computed tomography (CT) and magnetic resonance imaging (MRI)], physical examination, panendoscopy and biopsies in clinical routine. A total of 54 patients (13 female, 41 male, age 61.3±12 years) were investigated retrospectively. Three groups were formed. In group I, 18 F-FDG PET was performed in 15 patients to detect unknown primary cancers. In group II, 24 studies were obtained for preoperative staging of proven head and neck cancer. In group III, 18 F-FDG PET was used in 15 patients to monitor tumour recurrence after radiotherapy and/or chemotherapy. In all patients, imaging was obtained at 70 min after the intravenous administration of 180 MBq 18 F-FDG. In 11 of the 15 patients in group I, the primary cancer could be found with 18 F-FDG, yielding a detection rate of 73.3%. In 4 of the 15 patients, CT findings were also suggestive of the primary cancer but were nonetheless equivocal. In these patients, 18 F-FDG showed increased 18 F-FDG uptake by the primary tumour, which was confirmed by histology. One patient had recurrence of breast carcinoma that could not be detected with 18 F-FDG PET, but was detected by CT. In three cases, the primary cancer could not be found with any imaging method. Among the 24 patients in group II investigated for staging purposes, 18 F-FDG PET detected a total of 13 local and three distant lymph node metastases, whereas the conventional imaging methods detected only nine local and one distant lymph node metastases. The results of 18 F-FDG PET led to an upstaging in 5/24 (20.8%) patients. The conventional imaging methods were false positive in 5/24 (20.8%). There was one false positive result using 18 F-FDG PET. Among the 15 patients of group III with suspected recurrence after radiotherapy

  16. Fever of unknown origin: prospective comparison of [18F]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPET

    International Nuclear Information System (INIS)

    Meller, J.; Altenvoerde, G.; Jauho, A.; Behe, M.; Gratz, S.; Luig, H.; Becker, W.; Munzel, U.

    2000-01-01

    Gallium-67 citrate is currently considered as the tracer of first choice in the diagnostic workup of fever of unknown origin (FUO). Fluorine-18 2'-deoxy-2-fluoro-D-glucose (FDG) has been shown to accumulate in malignant tumours but also in inflammatory processes. The aim of this study was to prospectively evaluate FDG imaging with a double-head coincidence camera (DHCC) in patients with FUO in comparison with planar and single-photon emission tomography (SPET) 67 Ga citrate scanning. Twenty FUO patients underwent FDG imaging with a DHCC which included transaxial and longitudinal whole-body tomography. In 18 of these subjects, 67 Ga citrate whole-body and SPET imaging was performed. The 67 Ga citrate and FDG images were interpreted by two investigators, both blinded to the results of other diagnostic modalities. Forty percent (8/20) of the patients had infection, 25% (5/20) had auto-immune diseases, 10% (2/20) had neoplasms and 15% (3/20) had other diseases. Fever remained unexplained in 10% (2/20) of the patients. Of the 20 patients studied, FDG imaging was positive and essentially contributed to the final diagnosis in 11 (55%). The sensitivity of transaxial FDG tomography in detecting the focus of fever was 84% and the specificity, 86%. Positive and negative predictive values were 92% and 75%, respectively. If the analysis was restricted to the 18 patients who were investigated both with 67 Ga citrate and FDG, sensitivity was 81% and specificity, 86%. Positive and negative predictive values were 90% and 75%, respectively. The diagnostic accuracy of whole-body FDG tomography (again restricted to the aforementioned 18 patients) was lower (sensitivity, 36%; specificity, 86%; positive and negative predictive values, 80% and 46%, respectively). 67 Ga citrate SPET yielded a sensitivity of 67% in detecting the focus of fever and a specificity of 78%. Positive and negative predictive values were 75% and 70%, respectively. A low sensitivity (45%), but combined with a high

  17. The study of automatic brain extraction of basal ganglia based on atlas of Talairach in 18F-FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chantao; Guan Yihui; Zhao Jun; Lin Xiangtong; Wang Jian; Zhang Jiange; Zhang Lu

    2005-01-01

    Objective: To establish a method which can extract functional areas of the brain basal ganglia automatically. Methods: 18 F-fluorodeoxyglucose (FDG) PET images were spatial normalized to Talairach atlas space through two steps, image registration and image deformation. The functional areas were extracted from three dimension PET images based on the coordinate obtained from atlas; caudate and putamen were extracted and rendered, the grey value of the area was normalized by whole brain. Results: The normal ratio of left caudate head, body and tail were 1.02 ± 0.04, 0.92 ± 0.07 and 0.71 ± 0.03, the right were 0.98 ± 0.03, 0.87 ± 0.04 and 0.71 ± 0.01 respectively. The normal ratio of left and right putamen were 1.20 ± 0.06 and 1.20 ± 0.04. The mean grey value between left and right basal ganglia had no significant difference (P>0.05). Conclusion: The automatic functional area extracting method based on atlas of Talairach is feasible. (authors)

  18. The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis

    International Nuclear Information System (INIS)

    Webb, Myles; Chambers, Anthony; AL-Nahhas, Adil; Maudlin, Lucy; Rahman, Lucy; Frank, John; Mason, Justin C.

    2004-01-01

    Takayasu arteritis (TA) is a rare, sporadic and chronic inflammatory arteritis, which predominantly affects the aorta and its branches. Diagnosis can be difficult and there are limitations to the current diagnostic work-up. By detecting areas of active glucose metabolism present in active vasculitis, imaging with fluorine-18 fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) could potentially have a role in the management of TA. Our aim was to assess this role by reviewing 28 18 F-FDG PET scans performed on 18 patients suspected of having TA. All patients had full clinical and laboratory assessment, cross-sectional imaging and angiography, and 16/18 satisfied the American College of Rheumatologists' criteria for TA. 18 F-FDG PET achieved a sensitivity of 92%, a specificity of 100%, and negative and positive predictive values of 85% and 100% respectively in the initial assessment of active vasculitis in TA. We conclude that 18 F-FDG PET can be used to diagnose early disease, to detect active disease (even within chronic changes) and to monitor the effectiveness of treatment. (orig.)

  19. The role of {sup 18}F-FDG PET in characterising disease activity in Takayasu arteritis

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Myles; Chambers, Anthony; AL-Nahhas, Adil; Maudlin, Lucy; Rahman, Lucy; Frank, John [Department of Nuclear Medicine, Hammersmith Hospital, Du Cane Road, W12 0HS, London (United Kingdom); Mason, Justin C. [Department of Rheumatology, Hammersmith Hospital, London (United Kingdom)

    2004-05-01

    Takayasu arteritis (TA) is a rare, sporadic and chronic inflammatory arteritis, which predominantly affects the aorta and its branches. Diagnosis can be difficult and there are limitations to the current diagnostic work-up. By detecting areas of active glucose metabolism present in active vasculitis, imaging with fluorine-18 fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) could potentially have a role in the management of TA. Our aim was to assess this role by reviewing 28 {sup 18}F-FDG PET scans performed on 18 patients suspected of having TA. All patients had full clinical and laboratory assessment, cross-sectional imaging and angiography, and 16/18 satisfied the American College of Rheumatologists' criteria for TA. {sup 18}F-FDG PET achieved a sensitivity of 92%, a specificity of 100%, and negative and positive predictive values of 85% and 100% respectively in the initial assessment of active vasculitis in TA. We conclude that {sup 18}F-FDG PET can be used to diagnose early disease, to detect active disease (even within chronic changes) and to monitor the effectiveness of treatment. (orig.)

  20. A Score-Based Approach to 18F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility

    Directory of Open Access Journals (Sweden)

    Matteo Bauckneht

    2017-10-01

    Full Text Available Purpose: To verify the capability of 18F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT to identify patients at higher risk of developing doxorubicin (DXR-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin’s disease (DXR dose: 40–50 mg/m2 per cycle, and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. Results: In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism, FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%. In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. Conclusions: the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting.

  1. Recurrent dermatofibrosarcoma protuberans with pulmonary metastases presenting twelve years after initial diagnosis: 18F-FDG PET/CT imaging findings.

    Science.gov (United States)

    Suman, Sudhir; Sharma, Punit; Jain, Tarun Kumar; Sahoo, Manas Kumar; Bal, Chandrasekhar; Kumar, Rakesh

    2014-01-01

    Dermatofibrosarcoma protuberans is a rare cutaneous tumor that is locally aggressive and has a high rate of recurrence after surgical excision. The tumor grows slowly, typically over years. On rare occasions, metastasis to distant sites (especially the lung) or regional lymph nodes may occur. Here, we present F-FDG PET/CT imaging findings of a 52-year-old man with a local recurrence of dermatofibrosarcoma protuberans in the anterior abdominal wall with metastases to bilateral lungs.

  2. Positron emission tomographic imaging with 11C-choline in differential diagnosis of head and neck tumors. Comparison with 18F-FDG PET

    International Nuclear Information System (INIS)

    Khan, N.; Oriuchi, Noboru; Ninomiya, Hiroshi; Higuchi, Tetsuya; Kamada, Hideo; Endo, Keigo

    2004-01-01

    The aim of this study was to evaluate the clinical value of positron emission tomography (PET) with 11 C-labeled choline (CHOL) for the differential diagnosis of malignant head and neck tumors from benign lesions as compared with 18 F-fluorodeoxyglucose PET. We studied 45 patients (28 males, 17 females, age range, 29-84 years) with suspected lesions in the head and neck region using both CHOL and FDG PET within a 2-week period on each patient. All patients fasted for at least 6 hours for both the CHOL and FDG studies. PET imaging was performed 5 min and 50-60 min after intravenous injection of CHOL and FDG, respectively. After data acquisition, PET images were corrected for attenuation, and the reconstructed images were analyzed by visual interpretation. Then, the standardized uptake value (SUV) was calculated for semiquantitative evaluation of tumor tracer uptake. Finally the results of PET scans were compared with the histological diagnoses from surgical specimens or biopsies. With CHOL PET, malignant tumors were correctly detected in 24 (96%) of 25 patients, and benign lesions in 14 (70%) of 20 patients with an accuracy of 84.4%. With FDG PET, malignancy was correctly diagnosed in 23 (92%) of 25 patients, and benign lesions in 13 (65%) of 20 patients resulting an accuracy of 80%. A significant positive correlation between CHOL and FDG SUVs was found for all lesions (r=0.677, p=0.004, n=45). Malignant tumors showed significantly higher tracer accumulation than the benign lesions in both CHOL and FDG studies (5.69±1.61, n=25 vs. 2.98±2.13, n=20, p<0.0001; 9.21±4.23, n=25 vs. 3.60±2.57, n=20, p<0.0001). The cutoff SUV for differentiating malignant and benign lesions was 3.5 for CHOL and 3.9 for FDG. CHOL showed slightly better differentiation between malignant and benign lesions than FDG although some overlap existed on both studies. But the difference was not statistically significant. The results of this study indicate that CHOL PET may be feasible clinically

  3. Value of (18F)-FDG positron emission tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma

    International Nuclear Information System (INIS)

    Kubik-Huch, R.A.; Doerffler, W.; Marincek, B.; Schulthess, G.K.; Steinert, H.C.; Koechli, O.R.; Haller, U.; Seifert, B.

    2000-01-01

    The aim of this study was to compare prospectively the accuracy of whole-body positron emission tomography (PET), CT and MRI in diagnosing primary and recurrent ovarian cancer. Nineteen patients (age range 23-76 years) were recruited with suspicious ovarian lesions at presentation (n = 8) or follow-up for recurrence (n = 11). All patients were scheduled for laparotomy and histological confirmation. Whole-body PET with FDG, contrast-enhanced spiral CT of the abdomen, including the pelvis, and MRI of the entire abdomen were performed. Each imaging study was evaluated separately. Imaging findings were correlated with histopathological diagnosis. The sensitivity, specificity and accuracy for lesion characterization in patients with suspicious ovarian lesions (n = 7) were, respectively: 100, 67 and 86 % for PET; 100, 67 and 86 % for CT; and 100, 100 and 100 % for MRI. For the diagnosis of recurrent disease (n = 10), PET had a sensitivity of 100 %, specificity of 50 % and accuracy of 90 %. The PET technique was the only technique which correctly identified a single transverse colon metastasis. Results for CT were 40, 50 and 43 %, and for MRI 86, 100 and 89 %, respectively. No statistically significant difference was seen. Neither FDG PET nor CT nor MRI can replace surgery in the detection of microscopic peritoneal disease. No statistically significant difference was observed for the investigated imaging modalities with regard to lesion characterization or detection of recurrent disease; thus, the methods are permissible alternatives. The PET technique, however, has the drawback of less accurate spatial assignment of small lesions compared with CT and MRI. (orig.)

  4. Diffusion-weighted MR imaging in comparison to integrated [18F]-FDG PET/CT for N-staging in patients with lung cancer

    International Nuclear Information System (INIS)

    Pauls, Sandra; Schmidt, Stefan A.; Juchems, Markus S.; Klass, Oliver; Luster, Markus; Reske, Sven Norbert; Brambs, Hans-Juergen; Feuerlein, Sebastian

    2012-01-01

    Purpose The purpose of this study was to prospectively determine the diagnostic accuracy of diffusion-weighted imaging (DWI) using MRI in the staging of thoracic lymph nodes in patients with lung cancer, and to compare the performance to that of PET/CT. Patients and Method 20 consecutive patients (pts) with histologically proven lung cancer were included in this study. In all pts FDG-PET/CT was routinely performed to stage lung carcinoma. Additionally, MRI (1.5 T) was performed including native T1w, T1w post contrast medium, T2w, and DWI sequences. Regarding the N stage based on the results of the PET/CT there were 5 patients with N0, 3 patients with N1, 5 patients with N2 and 7 patients with N3. Image analysis was performed by two radiologists (R1 and R2), respectively. The reviewers had to chose between 1 (at least one lymph node within a station is malignant) or 0 (no lymph nodes suspicious for malignancy). First the T1 post contrast sequence was analyzed. In a second step the DWI sequence (b = 800) was analyzed. Both steps were performed in a blinded fashion. Results MR imaging with or without DWI only agreed with the results of the PET/CT regarding the N stage in 80% of the patients—15% were understaged and 5% overstaged. There was excellent interobserver agreement; the N-staging result only differed in 1 patient for DWI, resulting in correlation coefficients of 0.98 for DWI and 1.0 for MRI. Compared to PET-CT MRI overstaged one and understaged 4 patients, while DWI overstaged one and understaged 3 patients. This resulted in correlation coefficients of 0.814 (R1 and R2) for MRI and 0.815 (R1) and 0.804 (R2) for DWI. Regarding the ADC values there were no significant differences between ipsilateral hilar (1.03 mm 2 /s ± 0.13), subcarinal (0.96 mm 2 /s ± 0.24), ipsilateral mediastinal (1.0 mm 2 /s ± 0.18), contralateral mediastinal (0.93 mm 2 /s ± 0.23) and supraclavicular (0.9 mm 2 /s ± 0.23) lymph nodes. Conclusion Diffusion-weighted imaging does not

  5. The impact of image reconstruction settings on 18F-FDG PET radiomic features. Multi-scanner phantom and patient studies

    International Nuclear Information System (INIS)

    Shiri, Isaac; Abdollahi, Hamid; Rahmim, Arman; Ghaffarian, Pardis; Geramifar, Parham; Bitarafan-Rajabi, Ahmad

    2017-01-01

    The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings. Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV). Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively. Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies. (orig.)

  6. The impact of image reconstruction settings on 18F-FDG PET radiomic features. Multi-scanner phantom and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Shiri, Isaac; Abdollahi, Hamid [Iran University of Medical Sciences, Department of Medical Physics, School of Medicine, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States); Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, MD (United States); Ghaffarian, Pardis [Shahid Beheshti University of Medical Sciences, Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Tehran (Iran, Islamic Republic of); Shahid Beheshti University of Medical Sciences, PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Tehran (Iran, Islamic Republic of); Geramifar, Parham [Tehran University of Medical Sciences, Research Center for Nuclear Medicine, Shariati Hospital, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad [Iran University of Medical Sciences, Department of Medical Physics, School of Medicine, Tehran (Iran, Islamic Republic of); Iran University of Medical Sciences, Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Tehran (Iran, Islamic Republic of)

    2017-11-15

    The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings. Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV). Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively. Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies. (orig.)

  7. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    Science.gov (United States)

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  8. [{sup 18}F]FMISO and [{sup 18}F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, J.G.; Peterson, L.M.; Grierson, J.R.; Eary, J.F. [Division of Nuclear Medicine, Department of Radiology, University of Washington Medical Center, Box 356113, WA 98195, Seattle (United States); Wilson, D.C. [Radiation Oncology, British Columbia Cancer Control Agency, Vancouver, BC (Canada); Conrad, E.U.; Bruckner, J.D. [Department of Orthopedic Surgery, University of Washington Medical Center, Seattle, Washington (United States); Rasey, J.S.; Chin, L.K.; Hofstrand, P.D. [Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington (United States); Krohn, K.A. [Division of Nuclear Medicine, Department of Radiology, University of Washington Medical Center, Box 356113, WA 98195, Seattle (United States); Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington (United States)

    2003-05-01

    Hypoxia imparts resistance to radiotherapy and chemotherapy and also promotes a variety of changes in tumor biology through inducible promoters. The purpose of this study was to evaluate the use of positron emission tomography (PET) imaging with fluorine-18 fluoromisonidazole (FMISO) in soft tissue sarcomas (STS) as a measure of hypoxia and to compare the results with those obtained using [{sup 18}F]fluorodeoxyglucose (FDG) and other known biologic correlates. FDG evaluates energy metabolism in tumors while FMISO uptake is proportional to tissue hypoxia. FMISO uptake was compared with FDG uptake. Vascular endothelial growth factor (VEGF) expression was also compared with FMISO uptake. Nineteen patients with STS underwent PET scanning with quantitative determination of FMISO and FDG uptake prior to therapy (neo-adjuvant chemotherapy or surgery alone). Ten patients receiving neo-adjuvant chemotherapy were also imaged after chemotherapy but prior to surgical resection. Standardized uptake value (SUV) was used to describe FDG uptake; regional tissue to blood ratio ({>=}1.2 was considered significant) was used for FMISO uptake. Significant hypoxia was found in 76% of tumors imaged prior to therapy. No correlation was identified between pretherapy hypoxic volume (HV) and tumor grade (r=0.15) or tumor volume (r=0.03). The correlation of HV with VEGF expression was 0.39. Individual tumors showed marked heterogeneity in regional VEGF expression. The mean pixel-by-pixel correlation between FMISO and FDG uptake was 0.49 (range 0.09-0.79) pretreatment and 0.32 (range -0.46-0.72) after treatment. Most tumors showed evidence of reduced uptake of both FMISO and FDG following chemotherapy. FMISO PET demonstrates areas of significant and heterogeneous hypoxia in soft tissue sarcomas. The significant discrepancy between FDG and FMISO uptake seen in this study indicates that regional hypoxia and glucose metabolism do not always correlate. Similarly, we did not find any relationship

  9. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?

    Science.gov (United States)

    Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P DOTA-NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P DOTA-NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.

  10. Staging and Functional Characterization of Pheochromocytoma and Paraganglioma by 18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography

    Science.gov (United States)

    Timmers, Henri J. L. M.; Chen, Clara C.; Carrasquillo, Jorge A.; Whatley, Millie; Ling, Alexander; Eisenhofer, Graeme; King, Kathryn S.; Rao, Jyotsna U.; Wesley, Robert A.; Adams, Karen T.

    2012-01-01

    Background Pheochromocytomas and paragangliomas (PPGLs) are rare tumors of the adrenal medulla and extra-adrenal sympathetic chromaffin tissues; their anatomical and functional imaging are critical to guiding treatment decisions. This study aimed to compare the sensitivity and specificity of 18F-fluorodeoxyglucose positron emission tomography with computed tomography (18F-FDG PET/CT) for tumor localization and staging of PPGLs with that of conventional imaging by [123I]-metaiodobenzylguanidine single photon emission CT (123I-MIBG SPECT), CT, and magnetic resonance imaging (MRI). Methods A total of 216 patients (106 men, 110 women, aged 45.2 ± 14.9 years) with suspected PPGL underwent CT or MRI, 18F-FDG PET/CT, and 123I-MIBG SPECT/CT. Sensitivity and specificity were measured as endpoints and compared by the McNemar test, using two-sided P values only. Results Sixty (28%) of patients had nonmetastatic PPGL, 95 (44%) had metastatic PPGL, and 61 (28%) were PPGL negative. For nonmetastatic tumors, the sensitivity of 18F-FDG was similar to that of 123I-MIBG but less than that of CT/MRI (sensitivity of 18F-FDG = 76.8%; of 123I-MIBG = 75.0%; of CT/MRI = 95.7%; 18F-FDG vs 123I-MIBG: difference = 1.8%, 95% confidence interval [CI] = −14.8% to 14.8%, P = .210; 18F-FDG vs CT/MRI: difference = 18.9%, 95% CI = 9.4% to 28.3%, P < .001). The specificity was 90.2% for 18F-FDG, 91.8% for 123I-MIBG, and 90.2% for CT/MRI. 18F-FDG uptake was higher in succinate dehydrogenase complex– and von Hippel–Lindau syndrome–related tumors than in multiple endocrine neoplasia type 2 (MEN2) related tumors. For metastases, sensitivity was greater for 18F-FDG and CT/MRI than for 123I-MIBG (sensitivity of 18F-FDG = 82.5%; of 123I-MIBG = 50.0%; of CT/MRI = 74.4%; 18F-FDG vs 123I-MIBG: difference = 32.5%, 95% CI = 22.3% to 42.5%, P < .001; CT/MRI vs 123I-MIBG: difference = 24.4%, 95% CI = 11.3% to 31.6%, P < .001). For bone metastases, 18F-FDG was more sensitive than CT/MRI (sensitivity of 18

  11. (18F) FDG PET/CT in patients with fever of unknown origin: AIIMS experience

    International Nuclear Information System (INIS)

    Nazar, A.H.; Naswa, N.; Ramya, S.; Patnecha, M.; Bangkim, Chandra K.H.; Kumar, R.; Bandopadhyay, G.P.; Bal, C.S.; Malhotra, A.

    2010-01-01

    Full text: The aim of this study was to assess the value of ( 18 F) FDG PET/CT in evaluation of patients with Fever of Unknown Origin (FUO). We retrospectively analysed clinical data and ( 18 F) FDG PET scan of 48 patients over a period of 1 year. These patients met the revised definition criteria of FUO (febrile illness of greater than 3 weeks duration, temperature greater than 38.3 C and no diagnosis after appropriate in-patient or out-patient evaluation). Most of the patients recruited in this study had normal clinical and radiological examination. ( 18 F) FDG PET was helpful in making a diagnosis in 24 patients. An infective/inflammatory cause of FUO was found in thirteen (27%) patients, a neoplasm in six (12.5%) patients, autoimmune cause in five (10.4%) patients. A definitive diagnosis could not be made in twenty four (50%) patients. Out of these 24 patients, 15 had normal PET/CT study, 9 had positive PET/CT findings but they lost in follow up and 2 died within 1 month of PET/CT study without any diagnosis. ( 18 F) FDG PET/CT is a useful tool for evaluation of patients with FUO. It provides important diagnostic clues not suggested by other conventional imaging modalities. Patients with positive PET/CT findings but no definitive diagnosis should be followed up further to improve utility of PET/CT

  12. 18F-FDG imaging with a coincidence dual-headed gamma camera (Co-PET) in the diagnosis, staging and management of lung cancer

    International Nuclear Information System (INIS)

    Lin, P.; Chu, J.; Pocock, N.; Quach, T.; Sorensen, B.

    1999-01-01

    Full text: FDG-PET has an established role in the management of lung cancer, while the experience with FDG-Co-PET is limited. Our study aims to demonstrate the feasibility of Co-PET in staging and management of lung cancer. Thirty-nine Co-PET studies were performed on our first 36 patients (pts) with primary lung cancer between November 1997 and October 1998. Tomography of brain and torso with an ADAC Solus MCD gamma camera was performed (60 min after 200 MBq of 18 FFDG and > 6 h fasting). Histology subgroups included squamous (14 pts), small cell (1), adeno-carcinoma (11), broncho-alveolar (1), large cell (8), carcinoid (1). CT/clinical staging subgroups included 18 pts in stage 1, 4 in stage 2, 7 in stage 3a, 2 in stage 3b, 8 in stage 4. Compared with CT/clinical staging, FDG upstaged 5 pts (14%) with regional nodal metastases (mets) and 8 pts (22%) with distant mets (cervical = 2, lung = 1, brain = 3, bone = 3, abdomen = 4). FDG under-staged 2 pts in 3 sites (all < 15 mm). Surgical nodal staging was performed in 14 pts: false-positives occurred in 3 CT and 1 Co-PET studies, and false-negatives in one CT/Co-PET. Site sensitivities for primary (smallest 7 mm) and regional lymph nodes are 100% and 88% respectively. Specificities for primary and regional nodes are 100% and 96% respectively. Co-PET also has impact on management: treatment intent (6 pts), radiotherapy fields (1), diagnosis of lung mets (2) and radiation pneumonitis (1). In conclusion, our initial data demonstrate FDG-Co-PET scanning could provide a valuable addition to conventional imaging studies in diagnosis, staging and management of lung cancer

  13. {sup 18}F-FDG PET/CT imaging versus dynamic contrast-enhanced CT for staging and prognosis of inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Champion, Laurence; Edeline, Veronique; Giraudet, Anne-Laure; Wartski, Myriam [Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Service d' Oncologie Medicale, Saint-Cloud (France); Cherel, Pascal [Institut Curie, Hopital Rene Huguenin, Service de Radiologie, Saint-Cloud (France); Bellet, Dominique [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de medecine, Saint-Quentin-en-Yvelines (France)

    2013-08-15

    Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer with a poor prognosis. Locoregional staging is based on dynamic contrast-enhanced (DCE) CT or MRI. The aim of this study was to compare the performances of FDG PET/CT and DCE CT in locoregional staging of IBC and to assess their respective prognostic values. The study group comprised 50 women (median age: 51 {+-} 11 years) followed in our institution for IBC who underwent FDG PET/CT and DCE CT scans (median interval 5 {+-} 9 days). CT enhancement parameters were net maximal enhancement, net early enhancement and perfusion. The PET/CT scans showed intense FDG uptake in all primary tumours. Concordance rate between PET/CT and DCE CT for breast tumour localization was 92 %. No significant correlation was found between SUVmax and CT enhancement parameters in primary tumours (p > 0.6). PET/CT and DCE CT results were poorly correlated for skin infiltration (kappa = 0.19). Ipsilateral foci of increased axillary FDG uptake were found in 47 patients (median SUV: 7.9 {+-} 5.4), whereas enlarged axillary lymph nodes were observed on DCE CT in 43 patients. Results for axillary node involvement were fairly well correlated (kappa = 0.55). Nineteen patients (38 %) were found to be metastatic on PET/CT scan with a significant shorter progression-free survival than patients without distant lesions (p = 0.01). In the primary tumour, no statistically significant difference was observed between high and moderate tumour FDG uptake on survival, using an SUVmax cut-off of 5 (p = 0.7 and 0.9), or between high and low tumour enhancement on DCE CT (p > 0.8). FDG PET/CT imaging provided additional information concerning locoregional involvement to that provided by DCE CT on and allowed detection of distant metastases in the same whole-body procedure. Tumour FDG uptake or CT enhancement parameters were not correlated and were not found to have any prognostic value. (orig.)

  14. Hybrid [{sup 18}F]-FDG PET/MRI including non-Gaussian diffusion-weighted imaging (DWI): Preliminary results in non-small cell lung cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Heusch, Philipp [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf (Germany); Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen (Germany); Köhler, Jens [Univ Duisburg-Essen, Medical Faculty, Department of Medical Oncology, D-45147 Essen (Germany); Wittsack, Hans-Joerg [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf (Germany); Heusner, Till A., E-mail: Heusner@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf (Germany); Buchbender, Christian [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf (Germany); Poeppel, Thorsten D. [Univ Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, D-45147 Essen (Germany); Nensa, Felix; Wetter, Axel [Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen (Germany); Gauler, Thomas [Univ Duisburg-Essen, Medical Faculty, Department of Medical Oncology, D-45147 Essen (Germany); Hartung, Verena [Univ Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, D-45147 Essen (Germany); Lanzman, Rotem S. [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf (Germany)

    2013-11-01

    Purpose: To assess the feasibility of non-Gaussian DWI as part of a FDG-PET/MRI protocol in patients with histologically proven non-small cell lung cancer. Material and methods: 15 consecutive patients with histologically proven NSCLC (mean age 61 ± 11 years) were included in this study and underwent whole-body FDG-PET/MRI following whole-body FDG-PET/CT. As part of the whole-body FDG-PET/MRI protocol, an EPI-sequence with 5 b-values (0, 100, 500, 1000 and 2000 s/mm{sup 2}) was acquired for DWI of the thorax during free-breathing. Volume of interest (VOI) measurements were performed to determine the maximum and mean standardized uptake value (SUV{sub max}; SUV{sub mean}). A region of interest (ROI) was manually drawn around the tumor on b = 0 images and then transferred to the corresponding parameter maps to assess ADC{sub mono}, D{sub app} and K{sub app}. To assess the goodness of the mathematical fit R{sup 2} was calculated for monoexponential and non-Gaussian analysis. Spearman's correlation coefficients were calculated to compare SUV values and diffusion coefficients. A Student's t-test was performed to compare the monoexponential and non-Gaussian diffusion fitting (R{sup 2}). Results: T staging was equal between FDG-PET/CT and FDG-PET/MRI in 12 of 15 patients. For NSCLC, mean ADC{sub mono} was 2.11 ± 1.24 × 10{sup −3} mm{sup 2}/s, D{sub app} was 2.46 ± 1.29 × 10{sup −3} mm{sup 2}/s and mean K{sub app} was 0.70 ± 0.21. The non-Gaussian diffusion analysis (R{sup 2} = 0.98) provided a significantly better mathematical fitting to the DWI signal decay than the monoexponetial analysis (R{sup 2} = 0.96) (p < 0.001). SUV{sub max} and SUV{sub mean} of NSCLC was 13.5 ± 7.6 and 7.9 ± 4.3 for FDG-PET/MRI. ADC{sub mono} as well as D{sub app} exhibited a significant inverse correlation with the SUV{sub max} (ADC{sub mono}: R = −0.67; p < 0.01; D{sub app}: R = −0.69; p < 0.01) as well as with SUV{sub mean} assessed by FDG-PET/MRI (ADC{sub mono}: R

  15. [18F]FDG Accumulation in Early Coronary Atherosclerotic Lesions in Pigs.

    Directory of Open Access Journals (Sweden)

    Miikka Tarkia

    Full Text Available Inflammation is an important contributor to atherosclerosis progression. A glucose analogue 18F-fluorodeoxyglucose ([18F]FDG has been used to detect atherosclerotic inflammation. However, it is not known to what extent [18F]FDG is taken up in different stages of atherosclerosis. We aimed to study the uptake of [18F]FDG to various stages of coronary plaques in a pig model.First, diabetes was caused by streptozotocin injections (50 mg/kg for 3 days in farm pigs (n = 10. After 6 months on high-fat diet, pigs underwent dual-gated cardiac PET/CT to measure [18F]FDG uptake in coronary arteries. Coronary segments (n = 33 were harvested for ex vivo measurement of radioactivity and autoradiography (ARG.Intimal thickening was observed in 16 segments and atheroma type plaques in 10 segments. Compared with the normal vessel wall, ARG showed 1.7±0.7 times higher [18F]FDG accumulation in the intimal thickening and 4.1±2.3 times higher in the atheromas (P = 0.004 and P = 0.003, respectively. Ex vivo mean vessel-to-blood ratio was higher in segments with atheroma than those without atherosclerosis (2.6±1.2 vs. 1.3±0.7, P = 0.04. In vivo PET imaging showed the highest target-to-background ratio (TBR of 2.7. However, maximum TBR was not significantly different in segments without atherosclerosis (1.1±0.5 and either intimal thickening (1.2±0.4, P = 1.0 or atheroma (1.6±0.6, P = 0.4.We found increased uptake of [18F]FDG in coronary atherosclerotic lesions in a pig model. However, uptake in these early stage lesions was not detectable with in vivo PET imaging. Further studies are needed to clarify whether visible [18F]FDG uptake in coronary arteries represents more advanced, highly inflamed plaques.

  16. Early dynamic 18F-FDG PET to detect hyperperfusion in hepatocellular carcinoma liver lesions.

    Science.gov (United States)

    Schierz, Jan-Henning; Opfermann, Thomas; Steenbeck, Jörg; Lopatta, Eric; Settmacher, Utz; Stallmach, Andreas; Marlowe, Robert J; Freesmeyer, Martin

    2013-06-01

    In addition to angiographic data on vascularity and vascular access, demonstration of hepatocellular carcinoma (HCC) liver nodule hypervascularization is a prerequisite for certain intrahepatic antitumor therapies. Early dynamic (ED) (18)F-FDG PET/CT could serve this purpose when the current standard method, contrast-enhanced (CE) CT, or other CE morphologic imaging modalities are unsuitable. A recent study showed ED (18)F-FDG PET/CT efficacy in this setting but applied a larger-than-standard (18)F-FDG activity and an elaborate protocol likely to hinder routine use. We developed a simplified protocol using standard activities and easily generated visual and descriptive or quantitative endpoints. This pilot study assessed the ability of these endpoints to detect HCC hyperperfusion and, thereby, evaluated the suitability in of the protocol everyday practice. Twenty-seven patients with 34 HCCs (diameter ≥ 1.5 cm) with hypervascularization on 3-phase CE CT underwent liver ED (18)F-FDG PET for 240 s, starting with (18)F-FDG (250-MBq bolus injection). Four frames at 15-s intervals, followed by 3 frames at 60-s intervals were reconstructed. Endpoints included focal tracer accumulation in the first 4 frames (60 s), subsequent focal washout, and visual and quantitative differences between tumor and liver regions of interest in maximum and mean ED standardized uptake value (ED SUVmax and ED SUVmean, respectively) 240-s time-activity curves. All 34 lesions were identified by early focal (18)F-FDG accumulation and faster time-to-peak ED SUVmax or ED SUVmean than in nontumor tissue. Tumor peak ED SUVmax and ED SUVmean exceeded liver levels in 85% and 53%, respectively, of lesions. Nadir tumor signal showed no consistent pattern relative to nontumor signal. HCC had a significantly shorter time to peak and significantly faster rate to peak for both ED SUVmax and ED SUVmean curves and a significantly higher peak ED SUVmax but not peak ED SUVmean than the liver. This pilot study

  17. 18F-FDG uptake in bone metastases

    International Nuclear Information System (INIS)

    Dineva, S.; Kostadinova, I.; Hadjidekov, V.

    2012-01-01

    Full text: Introduction: PET-CT is an established technique in staging cancer patients and monitoring the therapeutic response. In the literature it has been pointed out the different uptake in osteosclerotic and osteolytic metastases due to different metabolic activity. Objective: The aim of this study is to share authors initial experience in 18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) evaluation of bone metastases secondary to breast cancer with different morphological appearance and to compare the diagnostic accuracy of CT and PET alone and in combination. Patients and methods: Fifty-nine (59) patients with bone lesions secondary to breast carcinoma are included in the retrospective study. The imaging protocol included a low-dose 16-raw detector CT scan with consequent PET scanning after the administration of 5 MBq/kg 18F-FDG activity. Bone metastases were characterized morphologically as being osteolytic, osteoblastic or mixed and metabolically as active, nonactive. Standard uptake value (SUV) of the most active metastatic lesion in each patient is measured. Results: Most patients had more than one type of bone metastases. 23 patients (38.98%) had osteolytic bone metastases, 32 (54.23%) had mixed, 14 (23.72%) had osteoblastic and 8 (13.55%) patients had metabolically active bone metastases without any morphological evidence. All of the osteolytic and all of the mixed bone lesions were metabolically active (100%). Amongst the osteoblastic bone metastases metabolic activity was seen in 11 (78.57%) patients and the rest 3 (21.42%) of them had only morphological evidence of bone lesions due to good therapeutic response. SUV varies from 3.2 to 18.5 (normal uptake threshold - 2.5). The aggressiveness of bone lesions is related to high metabolic activity and the lack of the latter is usually a sign of good therapeutic response. Metabolic activity without morphological changes is a feature of early bone marrow affection and

  18. [18F]-FDG imaging with an ''hybrid'' CDET gamma-camera a tool for the detection of breast cancer recurrence; La scintigraphie au [18F]-FDG realisee a l'aide d'une gamma-camera ''hybride'' TEDC, un outil diagnostique performant pour la detection des recidives du cancer du sein

    Energy Technology Data Exchange (ETDEWEB)

    Grahek, D.; Montravers, F.; Kerrou, K.; Younsi, N.; Mabille, L.; Zerbib, E.; Achaibou, F.; Beco, V. de; Colombet, C.; Petegnief, Y.; Talbot, J.N. [Hopital Tenon, 75 - Paris (France)

    2001-05-01

    We searched for recurrence of breast cancer after a curative treatment by means of [18F]-FDG imaging using a 'hybrid' gamma-camera with coincidence detection (CDET). The 44 patients whose examinations are currently evaluable were referred either for occult disease (rising blood levels of tumor markers CEA or CA 15.3 without detectable lesions at conventional work-up) in 20 cases or for a recurrence suspected at imaging or assessed histologically in 24 cases. In the first clinical setting FDG-CDET had a 100 % sensitivity (13/13) and a 71% specificity (5/7); in the second clinical setting, the corresponding values were 90% (18/20) and 100% (4/4); globally the values were respectively 94% (31/33) and 82% (9/11). In 11 cases (35%), the recurrence appeared at CDET as an isolated focus, that left open the opportunity of a targeted therapy by radiotherapy or surgery. CDET detection of FDG did allow localisation of occult disease and of foci that were smaller than 10 mm. This modality could develop rapidly (as long as the number of patients referred is not too large) and would allow the clinician to prescribe it as a first line examination in case of rising tumor marker levels, in order to avoid useless imaging procedures in those patients. Its excellent sensitivity and positive predictive value (94%) favours the detection of recurrences at an early stage when they can be treated by a targeted therapy. Concerning detection of bone metastases, FDG-CDET appeared more efficient than conventional scintigraphy (sensitivity at lesion level = 75% versus 44%). (author)

  19. The impact of 18F-FDG PET on the management of patients with suspected large vessel vasculitis

    International Nuclear Information System (INIS)

    Fuchs, Martin; Rasch, Helmut; Berg, Scott; Ng, Quinn K.T.; Mueller-Brand, Jan; Walter, Martin A.; Briel, Matthias; Daikeler, Thomas; Tyndall, Alan; Walker, Ulrich A.; Raatz, Heike; Jayne, David; Koetter, Ina; Blockmans, Daniel; Cid, Maria C.; Prieto-Gonzalez, Sergio; Lamprecht, Peter; Salvarani, Carlo; Karageorgaki, Zaharenia; Watts, Richard; Luqmani, Raashid

    2012-01-01

    We aimed to assess the impact of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on the management of patients with suspected large vessel vasculitis. An international expert panel determined diagnoses and clinical management in patients with suspected large vessel vasculitis, with and without the results of 18 F-FDG PET, respectively. The accuracy of the clinical diagnosis and the resulting clinical management with and without the 18 F-FDG PET results were compared using logistic regression models. The analysis included 30 patients referred to a tertiary care centre with large vessel vasculitis and 31 controls. 18 F-FDG PET had an overall sensitivity of 73.3% [95% confidence interval (CI) 54.1-87.7%], a specificity of 83.9% (95% CI 66.3-94.5%), a positive predictive value of 81.5% (95% CI 61.9-93.7%) and a negative predictive value of 76.5% (95% CI 58.8-89.3%). The diagnostic accuracy of 18 F-FDG PET was higher in patients not receiving immunosuppressive drugs (93.3 vs 64.5%, p = 0.006). Taken in context with other available diagnostic modalities, the addition of 18 F-FDG PET increased the clinical diagnostic accuracy from 54.1 to 70.5% (p = 0.04). The addition of 18 F-FDG PET increased the number of indicated biopsies from 22 of 61 patients (36.1%) to 25 of 61 patients (41.0%) and changed the treatment recommendation in 8 of 30 patients (26.7%) not receiving immunosuppressive medication and in 7 of 31 patients (22.6%) receiving immunosuppressive medication. 18 F-FDG PET is a sensitive and specific imaging tool for large vessel vasculitis, especially when performed in patients not receiving immunosuppressive drugs. It increases the overall diagnostic accuracy and has an impact on the clinical management in a significant proportion of patients. (orig.)

  20. Value of 18F-FDG PET/CT in the detection of ovarian malignancy

    International Nuclear Information System (INIS)

    Park, Tae Gyu; Lee, Si Nae; Park, So Yeon

    2015-01-01

    Ovarian cancer is a leading cause of gynecologic malignancy. As symptoms of ovarian cancer are nonspecific, only 20 % of ovarian cancers are diagnosed while they are still limited to the ovaries. Thus, early and accurate detection of disease is important for an improved prognosis. For the accurate and effective diagnosis of ovarian malignancy on 18 F-fluorodeoxyglucose ( 18 F--FDG) positron emission tomography/computed tomography (PET/CT), we analyzed several parameters, including visual assessment. A total of 51 peritoneal lesions in 19 patients who showed ovarian masses with diffuse peritoneal infiltration were enrolled. Twelve patients were confirmed to have ovarian malignancy and seven patients with benign disease by pathologic examination. All patients were examined by 18 F--FDG PET/CT, and an additional 2-h delayed 18 F--FDG PET/CT was also performed for 15 patients with 42 peritoneal lesions. We measured semiquantitative parameters including maximum and mean standardized uptake values (SUV max , SUV mean ), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on a 1-h initial 18 F--FDG PET/CT image (Parameter1) and on a 2-h delayed image (Parameter2). Additionally, retention indices of each parameter were calculated, and each parameter among the malignant and benign lesions was compared by Mann-Whitney U test. We also assessed the visual characteristics of each peritoneal lesion, including metabolic extent, intensity, shape, heterogeneity, and total visual score. Associations between visual grades and malignancy were analyzed using linear by linear association methods. Moreover, a receiver operating characteristic (ROC) curve was analyzed to compare the effectiveness of significant parameters. In a comparison between the malignant and benign groups in the analysis of 51 total peritoneal lesions, SUV max1 , SUV mean1 , and TLG1 showed significant differences. Also, in the analysis of 42 peritoneal lesions that underwent an additional 2-h 18 F--FDG

  1. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    Science.gov (United States)

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. Early diagnosis and follow-up of aortitis with [{sup 18}F]FDG PET and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Meller, J.; Siefker, U.; Sahlmann, C.O.; Lehmann, K.; Conrad, M. [Department of Nuclear Medicine, Georg August University, Robert Koch-Strasse 40, 37075, Goettingen (Germany); Strutz, F.; Scheel, A. [Department of Nephrology and Rheumatology, Georg August University, Goettingen (Germany); Vosshenrich, R. [Department of Radiology, Georg August University, Goettingen (Germany)

    2003-05-01

    The aim of this prospective study was to compare fluorine-18 fluorodeoxyglucose ([{sup 18}F]FDG) positron emission tomography (PET) with magnetic resonance imaging (MRI) in patients with early aortitis, at the time of initial diagnosis and during immunosuppressive therapy. The study population consisted of 15 patients (nine females and six males; median age 62 years, range 26-76 years) who presented with fever of unknown origin or an elevated erythrocyte sedimentation rate or elevated C-reactive protein and who showed pathological aortic [{sup 18}F]FDG uptake. Fourteen of these patients had features of early giant cell arteritis (GCA), while one had features of early Takayasu arteritis. During follow-up, seven PET scans were performed in six patients with GCA 4-30 months (median 19 months) after starting immunosuppressive medication. The results of [{sup 18}F]FDG imaging were compared with the results of MRI at initial evaluation and during follow-up and with the clinical findings. At baseline, abnormal [{sup 18}F]FDG uptake was present in 59/104 (56%) of the vascular regions studied in 15 patients. Seven follow-up PET studies were performed in six patients. Of 30 regions with initial pathological uptake in these patients, 24 (80%) showed normalisation of uptake during follow-up. Normalisation of [{sup 18}F]FDG uptake correlated with clinical improvement and with normalisation of the laboratory findings. All except one of the patients with positive aortic [{sup 18}F]FDG uptake were investigated with MRI and MRA. Thirteen of these 14 patients showed inflammation in at least one vascular region. Of 76 vascular regions studied, 41 (53%) showed vasculitis on MRI. Of 76 vascular regions studied with both PET and MRI, 47 were concordantly positive or negative on both modalities, 11 were positive on MRI only and 18 were positive on PET only. MRI was performed during follow-up in six patients: of 17 regions with inflammatory changes, 15 regions remained unchanged and two

  3. Preclinical dynamic 18F-FDG PET - tumor characterization and radiotherapy response assessment by kinetic compartment analysis

    International Nuclear Information System (INIS)

    Roee, Kathrine; Aleksandersen, Thomas B.; Nilsen, Line B.; Hong Qu; Ree, Anne H.; Malinen, Eirik; Kristian, Alexandr; Seierstad, Therese; Olsen, Dag R.

    2010-01-01

    Background. Non-invasive visualization of tumor biological and molecular processes of importance to diagnosis and treatment response is likely to be critical in individualized cancer therapy. Since conventional static 18 F-FDG PET with calculation of the semi-quantitative parameter standardized uptake value (SUV) may be subject to many sources of variability, we here present an approach of quantifying the 18 F-FDG uptake by analytic two-tissue compartment modeling, extracting kinetic tumor parameters from dynamic 18 F-FDG PET. Further, we evaluate the potential of such parameters in radiotherapy response assessment. Material and methods. Male, athymic mice with prostate carcinoma xenografts were subjected to dynamic PET either untreated (n=8) or 24 h post-irradiation (7.5 Gy single dose, n=8). After 10 h of fasting, intravenous bolus injections of 10-15 MBq 18 F-FDG were administered and a 1 h dynamic PET scan was performed. 4D emission data were reconstructed using OSEM-MAP, before remote post-processing. Individual arterial input functions were extracted from the image series. Subsequently, tumor 18 F-FDG uptake was fitted voxel-by-voxel to a compartment model, producing kinetic parameter maps. Results. The kinetic model separated the 18 F-FDG uptake into free and bound tracer and quantified three parameters; forward tracer diffusion (k1), backward tracer diffusion (k2), and rate of 18 F-FDG phosphorylation, i.e. the glucose metabolism (k3). The fitted kinetic model gave a goodness of fit (r2) to the observed data ranging from 0.91 to 0.99, and produced parametrical images of all tumors included in the study. Untreated tumors showed homogeneous intra-group median values of all three parameters (k1, k2 and k3), whereas the parameters significantly increased in the tumors irradiated 24 h prior to 18 F-FDG PET. Conclusions. This study demonstrates the feasibility of a two-tissue compartment kinetic analysis of dynamic 18 F-FDG PET images. If validated, extracted

  4. Predictive value of brain 18F-FDG PET/CT in macrophagic myofasciitis?

    OpenAIRE

    Van Der Gucht, Axel; Abulizi, Mukedaisi; Blanc-Durand, Paul; Aoun-Sebaiti, Mehdi; Emsen, Berivan; Gherardi, Romain K.; Verger, Antoine; Authier, François-Jérôme; Itti, Emmanuel

    2017-01-01

    Abstract Rationale: Although several functional studies have demonstrated that positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) appears to be efficient to identify a cerebral substrate in patients with known macrophagic myofasciitis (MMF), the predictive value of this imaging technique for MMF remains unclear. Patient concerns: We presented data and images of a 46-year-old woman. Diagnoses: The patient was referred to our center for suspected MMF d...

  5. 18F-FDG PET/CT in gastric MALT lymphoma: a bicentric experience

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Domenico; Bertoli, Mattia [Nuclear Medicine, Spedali Civili Brescia, Brescia (Italy); University Milano-Bicocca, Milan (Italy); Ferro, Paola [University Milano-Bicocca, Milan (Italy); Fallanca, Federico; Gianolli, Luigi; Picchio, Maria [IRCCS San Raffaele Scientific Institute, Department of Nuclear Medicine, Milan (Italy); Giubbini, Raffaele; Bertagna, Francesco [University of Brescia and Spedali Civili Brescia, Nuclear Medicine, Brescia (Italy)

    2017-04-15

    The role of 18F-FDG-PET/CT in evaluating gastric MALT lymphoma is still controversial. In the literature the detection rate of 18F-FDG-PET/CT in patients with gastric MALT lymphoma is variable, and the reason for this heterogeneity is not still clear. Our aim was to investigate the particular metabolic behavior of these lymphoma. Sixty-nine patients (26 female, 43 male) with histologically confirmed gastric MALT lymphoma who underwent a 18F-FDG-PET/CT for initial staging from two centers were included. The PET images were analyzed visually and semi-quantitatively by measuring the maximum standardized uptake value (SUVmax), lesion-to-liver SUVmax ratio, and lesion-to-blood pool SUVmax ratio and compared with Ann Arbor stage, epidemiological (age, sex), histological (presence of gastritis, ulcer, H. pylori infection, plasmacytic differentiation, Ki-67 index), and morphological (tumor size, superficial lesions or mass-forming) characteristics. Thirty-six patients (52 %) had positive PET/CT (average SUVmax was 9±6.7; lesion-to-liver SUVmax ratio 3.7±2.6, lesion-to-blood pool SUVmax ratio 4.8±3.3) at the corresponding gastric lesion; the remaining 33 were not 18F-FDG-avid. In the univariate analysis, 18F-FDG avidity was significantly associated with morphological features (mass forming p<0.001 and high maximum diameter p<0.001), Ann Arbor stage (p=0.010), and Ki67 index (p<0.001) and not correlated with age, sex, presence of gastritis, ulcer, Helicobacter pylori infection, and plasmacytic differentiation. In the multivariate analysis, the correlations with gross morphological appearance, Ann Arbor stage, and Ki-67 score were confirmed. SUVmax, lesion-to-liver SUVmax ratio, and lesion-to-blood pool SUVmax ratio correlated significantly only with Ki67 index (p=0.047; p=0.012; p=0.042). 18F-FDG avidity was noted in 52 % of gastric MALT lymphoma and this avidity is correlated with gross morphological characteristics, tumor stage, and Ki-67 index. SUVmax, lesion

  6. 18F-FDG PET/CT in gastric MALT lymphoma: a bicentric experience

    International Nuclear Information System (INIS)

    Albano, Domenico; Bertoli, Mattia; Ferro, Paola; Fallanca, Federico; Gianolli, Luigi; Picchio, Maria; Giubbini, Raffaele; Bertagna, Francesco

    2017-01-01

    The role of 18F-FDG-PET/CT in evaluating gastric MALT lymphoma is still controversial. In the literature the detection rate of 18F-FDG-PET/CT in patients with gastric MALT lymphoma is variable, and the reason for this heterogeneity is not still clear. Our aim was to investigate the particular metabolic behavior of these lymphoma. Sixty-nine patients (26 female, 43 male) with histologically confirmed gastric MALT lymphoma who underwent a 18F-FDG-PET/CT for initial staging from two centers were included. The PET images were analyzed visually and semi-quantitatively by measuring the maximum standardized uptake value (SUVmax), lesion-to-liver SUVmax ratio, and lesion-to-blood pool SUVmax ratio and compared with Ann Arbor stage, epidemiological (age, sex), histological (presence of gastritis, ulcer, H. pylori infection, plasmacytic differentiation, Ki-67 index), and morphological (tumor size, superficial lesions or mass-forming) characteristics. Thirty-six patients (52 %) had positive PET/CT (average SUVmax was 9±6.7; lesion-to-liver SUVmax ratio 3.7±2.6, lesion-to-blood pool SUVmax ratio 4.8±3.3) at the corresponding gastric lesion; the remaining 33 were not 18F-FDG-avid. In the univariate analysis, 18F-FDG avidity was significantly associated with morphological features (mass forming p<0.001 and high maximum diameter p<0.001), Ann Arbor stage (p=0.010), and Ki67 index (p<0.001) and not correlated with age, sex, presence of gastritis, ulcer, Helicobacter pylori infection, and plasmacytic differentiation. In the multivariate analysis, the correlations with gross morphological appearance, Ann Arbor stage, and Ki-67 score were confirmed. SUVmax, lesion-to-liver SUVmax ratio, and lesion-to-blood pool SUVmax ratio correlated significantly only with Ki67 index (p=0.047; p=0.012; p=0.042). 18F-FDG avidity was noted in 52 % of gastric MALT lymphoma and this avidity is correlated with gross morphological characteristics, tumor stage, and Ki-67 index. SUVmax, lesion

  7. Adrenergic pathway activation enhances brown adipose tissue metabolism: A [18 F]FDG PET/CT study in mice

    International Nuclear Information System (INIS)

    Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar

    2014-01-01

    Objective: Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [ 18 F]fluoro-2-deoxyglucose ([ 18 F]FDG) positron emission tomography (PET)/computed tomography (CT) in mice. Methods: A β 3 -adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine), were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [ 18 F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results: Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [ 18 F]FDG PET images. CL 316243 increased the total [ 18 F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [ 18 F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [ 18 F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [ 18 F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [ 18 F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT Hounsfield unit (HU

  8. Defining optimal tracer activities in pediatric oncologic whole-body {sup 18}F-FDG-PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gatidis, Sergios; Schmidt, Holger; Nikolaou, Konstantin; Schwenzer, Nina F.; Schaefer, Juergen F. [University of Tuebingen, Department of Radiology, Diagnostic and Interventional Radiology, Tuebingen (Germany); La Fougere, Christian [University of Tuebingen, Department of Radiology, Nuclear Medicine, Tuebingen (Germany)

    2016-12-15

    To explore the feasibility of reducing administered tracer activities and to assess optimal activities for combined {sup 18}F-FDG-PET/MRI in pediatric oncology. 30 {sup 18}F-FDG-PET/MRI examinations were performed on 24 patients with known or suspected solid tumors (10 girls, 14 boys, age 12 ± 5.6 [1-18] years; PET scan duration: 4 min per bed position). Low-activity PET images were retrospectively simulated from the originally acquired data sets using randomized undersampling of list mode data. PET data of different simulated administered activities (0.25-2.5 MBq/kg body weight) were reconstructed with or without point spread function (PSF) modeling. Mean and maximum standardized uptake values (SUV{sub mean} and SUV{sub max}) as well as SUV variation (SUV{sub var}) were measured in physiologic organs and focal FDG-avid lesions. Detectability of organ structures and of focal {sup 18}F-FDG-avid lesions as well as the occurrence of false-positive PET lesions were assessed at different simulated tracer activities. Subjective image quality steadily declined with decreasing tracer activities. Compared to the originally acquired data sets, mean relative deviations of SUV{sub mean} and SUV{sub max} were below 5 % at {sup 18}F-FDG activities of 1.5 MBq/kg or higher. Over 95 % of anatomic structures and all pathologic focal lesions were detectable at 1.5 MBq/kg {sup 18}F-FDG. Detectability of anatomic structures and focal lesions was significantly improved using PSF. No false-positive focal lesions were observed at tracer activities of 1 MBq/kg {sup 18}F-FDG or higher. Administration of {sup 18}F-FDG activities of 1.5 MBq/kg is, thus, feasible without obvious diagnostic shortcomings, which is equivalent to a dose reduction of more than 50 % compared to current recommendations. Significant reduction in administered {sup 18}F-FDG tracer activities is feasible in pediatric oncologic PET/MRI. Appropriate activities of {sup 18}F-FDG or other tracers for specific clinical

  9. Defining optimal tracer activities in pediatric oncologic whole-body "1"8F-FDG-PET/MRI

    International Nuclear Information System (INIS)

    Gatidis, Sergios; Schmidt, Holger; Nikolaou, Konstantin; Schwenzer, Nina F.; Schaefer, Juergen F.; La Fougere, Christian

    2016-01-01

    To explore the feasibility of reducing administered tracer activities and to assess optimal activities for combined "1"8F-FDG-PET/MRI in pediatric oncology. 30 "1"8F-FDG-PET/MRI examinations were performed on 24 patients with known or suspected solid tumors (10 girls, 14 boys, age 12 ± 5.6 [1-18] years; PET scan duration: 4 min per bed position). Low-activity PET images were retrospectively simulated from the originally acquired data sets using randomized undersampling of list mode data. PET data of different simulated administered activities (0.25-2.5 MBq/kg body weight) were reconstructed with or without point spread function (PSF) modeling. Mean and maximum standardized uptake values (SUV_m_e_a_n and SUV_m_a_x) as well as SUV variation (SUV_v_a_r) were measured in physiologic organs and focal FDG-avid lesions. Detectability of organ structures and of focal "1"8F-FDG-avid lesions as well as the occurrence of false-positive PET lesions were assessed at different simulated tracer activities. Subjective image quality steadily declined with decreasing tracer activities. Compared to the originally acquired data sets, mean relative deviations of SUV_m_e_a_n and SUV_m_a_x were below 5 % at "1"8F-FDG activities of 1.5 MBq/kg or higher. Over 95 % of anatomic structures and all pathologic focal lesions were detectable at 1.5 MBq/kg "1"8F-FDG. Detectability of anatomic structures and focal lesions was significantly improved using PSF. No false-positive focal lesions were observed at tracer activities of 1 MBq/kg "1"8F-FDG or higher. Administration of "1"8F-FDG activities of 1.5 MBq/kg is, thus, feasible without obvious diagnostic shortcomings, which is equivalent to a dose reduction of more than 50 % compared to current recommendations. Significant reduction in administered "1"8F-FDG tracer activities is feasible in pediatric oncologic PET/MRI. Appropriate activities of "1"8F-FDG or other tracers for specific clinical questions have to be further established in selected

  10. Development of {sup 18}F-FDG ([F-18]-2-fluoro-2-deoxy-D-glucose) injection for imaging of tumor reflecting glucose metabolism. Results of preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Sento; Shimada, Takayuki; Kanagawa, Masaru; Suzuki, Noriaki; Kondo, Susumu; Shirakami, Yoshifumi; Ito, Osamu; Kato-Azuma, Makoto [Nihon Medi-Physics Co., Ltd., Sodegaura, Chiba (Japan). Research Center

    1999-07-01

    Fluorine-18-2-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) injection was prepared by a modification of a method originally developed by Hamacher et al. The dosage form is the injectable solution (2 ml) containing 185 MBq of {sup 18}F-FDG at a calibration time. Preclinical studies of the agent were performed. Its radiochemical purity is more than 95% and expiration time is 4 hours after the calibration time at ambient temperature. No toxicity was observed with up to 200 mg/kg and 100 mg/kg of non-radioactive FDG intravenously injected to rats and dogs in single dose toxicity tests, respectively. Biodistribution studies demonstrated that the radioactivity was mainly distributed into brain (3.0 to 3.3% I.D./Organ at 30 minutes) and heart (4.2 to 5.8% I.D./Organ at 1 to 3 hours) after intravenous injection of the agent to normal rats. In a tumor transplanted mouse model (colon 26), tumor uptake was 10.9{+-}3.5% I.D./g at 1 hr after intravenous injection of the agent, the radioactivity was retained until 3 hours. The radiation absorbed dose was estimated according to the MIRD Pamphlet based on the biodistribution data both in humans reported by Mejia et al. and rats described in this report. The radiation absorbed dose was not higher than those of commercially available radiopharmaceuticals. In conclusion, the {sup 18}F-FDG injection is expected to be useful for further clinical application. (author)

  11. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    Science.gov (United States)

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  12. The development of [18F]FDG synthesizer

    International Nuclear Information System (INIS)

    Hu, M. G.; Kim, S. W.; Lee, J. Y.; Yang, S. D.; Jun, G. S.

    2003-01-01

    The automatic system for [ 18 F]FDG production using for the diagnosis of cancer has been developed. This automation system was consisted of a synthesizer module, a PLC based controller and a PMU for graphic user interface. By this system, the radiochemical purity was over 98%, the production yield was over 30% after synthesize and elapsed time was 35 minute

  13. Detection of distant metastasis and prognostic prediction of recurrent salivary gland carcinomas using 18 F-FDG PET/CT.

    Science.gov (United States)

    Lee, S H; Roh, J-L; Kim, J S; Lee, J H; Choi, S-H; Nam, S Y; Kim, S Y

    2018-04-24

    To compare the diagnostic accuracy of 18 F-FDG PET/CT and conventional contrast-enhanced CT for the re-staging of recurrent salivary gland carcinoma (SGC). This study included 58 consecutive patients who underwent recurrent SGCs after definitive treatment. The recurrences were evaluated by 18 F-FDG PET/CT and contrast-enhanced CT of the neck and chest. McNemar's test was used to compare the diagnostic accuracy of 18 F-FDG PET/CT with standard neck and chest CT imaging, and a Cox proportional hazards model was used to assess the prognostic value of PET/CT. Of 58 patients with recurrent SGCs, 17 (29%) had a local recurrence, 17 (29%) had a regional recurrence, and 38 (66%) had a distant metastasis, with these classifications showing overlap. The sensitivity and accuracy of 18 F-FDG PET/CT for the detection of distant metastases were significantly higher than those of CT (P 0.1). The 18 F-FDG PET/CT-positive findings at distant sites were predictors of poor progression-free and overall survival outcome (all P PET/CT is a more effective method than CT for detecting distant site recurrences of SGC. This may lead to prognostic prediction for recurrent SGCs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. A Cochrane review on brain [{sup 18}F]FDG PET in dementia: limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia [University of Genoa, Nuclear Medicine Unit, IRCCS San Martino - IST, Department of Health Sciences, Genoa (Italy); Garibotto, Valentina [Geneva University and Geneva University Hospitals, Department of Medical Imaging, Geneva (Switzerland); Giessen, Elsmarieke van de [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Arbizu, Javier [University of Navarra, Nuclear Medicine Department, Clinica Universidad de Navarra, Pamplona (Spain); Chetelat, Gael [Inserm, U1077, Caen (France); Universite de Caen Basse-Normandie, UMR-S1077, Caen (France); Ecole Pratique des Hautes Etudes, UMR-S1077, Caen (France); CHU de Caen, U1077, Caen (France); Drezgza, Alexander [Universitaet zu Koeln, Klinik und Poliklinik fuer Nuklearmedizin, Koeln (Germany); Hesse, Swen [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Lammertsma, Adriaan A. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Law, Ian [Copenhagen University Hospital, Rigshospitalet, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); Pappata' , Sabina [Institute of Biostructure and Bioimaging, CNR, Naples (Italy); Payoux, Pierre [INSERM UMR 825 Toulouse Univ., Imagerie Cerebrale et Handicaps Neurologiques (France); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Collaboration: European Association of Nuclear Medicine

    2015-09-15

    Based on a large body of evidence on its diagnostic sensitivity for the identification of AD, in 2004 [18F]FDG PET imaging was approved by the Centers for Medicare and Medicaid Services (CMS, USA) as a routine examination tool for early and differential diagnosis of AD. Since then, large amounts of additional [18F]FDG PET data have become available showing that the addition of [18F]FDG PET to clinical examinations increases diagnostic accuracy in identifying AD patients even in the predementia stage. Of course, new opportunities and new challenges are coming up, which require the definition of the specific role of [18F]FDG PET in the era of AD biomarkers (i.e. relationship with other biomarkers and role as a marker of progression in AD [46, 48]). Meanwhile, in daily clinical practice, nuclear medicine experts should continue to perform high-quality [18F]FDG PET scans, constantly improving the standard through continuous education and the use of appropriate tools, knowing that it is one of the most informative biomarkers currently available for the prediction of dementia at the MCI stage.

  15. The clinical impact of {sup 18}F-FDG PET/CT in extracranial pediatric germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Adam; Vali, Reza; Marie, Eman; Shammas, Amer [The Hospital for Sick Children and University of Toronto, Department of Medical Imaging, Nuclear Medicine, Toronto, ON (Canada); Shaikh, Furqan [The Hospital for Sick Children and University of Toronto, Division of Haematology and oncology, Toronto, ON (Canada)

    2017-10-15

    Extracranial germ cell tumors are an uncommon pediatric malignancy with limited information on the clinical impact of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the literature. The purpose of this study was to evaluate and compare the clinical impact on management of {sup 18}F-FDG PET/CT with diagnostic computed tomography (CT) in pediatric extracranial germ cell tumor. The list of {sup 18}F-FDG PET/CT performed for extracranial germ cell tumor between May 2007 and November 2015 was obtained from the nuclear medicine database. {sup 18}F-FDG PET/CT and concurrent diagnostic CT were obtained and independently reviewed. Additionally, the patients' charts were reviewed for duration of follow-up and biopsy when available. The impact of {sup 18}F-FDG PET/CT compared with diagnostic CT on staging and patient management was demonstrated by chart review, imaging findings and follow-up studies. During the study period, 9 children (5 males and 4 females; age range: 1.6-17 years, mode age: 14 years) had 11 {sup 18}F-FDG PET/CT studies for the evaluation of germ cell tumor. Diagnostic CTs were available for comparison in 8 patients (10 {sup 18}F-FDG PET/CT studies). The average interval between diagnostic CT and PET/CT was 7.2 days (range: 0-37 days). In total, five lesions concerning for active malignancy were identified on diagnostic CT while seven were identified on PET/CT. Overall, {sup 18}F-FDG PET/CT resulted in a change in management in 3 of the 9 patients (33%). {sup 18}F-FDG PET/CT had a significant impact on the management of pediatric germ cell tumors in this retrospective study. Continued multicenter studies are required secondary to the rarity of this tumor to demonstrate the benefit of {sup 18}F-FDG PET/CT in particular clinical scenarios. (orig.)

  16. Role of 18F FDG PET scan to localize tumor in patients of oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Malhotra, Gaurav; Mukta, K.; Asopa, V.; Varsha, J.; Vijaya, S.; Shah, Nalini S.; Padmavathy, M.

    2010-01-01

    Full text: Oncogenic osteomalacia is a rare paraneoplastic syndrome of renal phosphate wasting which is usually caused by phosphaturic mesenchymal tumors. Conventional radiologic techniques usually fail to detect these small, slow growing neoplasms located at unusual sites. The objective of this study was to evaluate the role of 18 F FDG PET imaging in patients of oncogenic osteomalacia. Materials and Methods: Fifteen patients (8 males and 7 females) (mean age: 38.5 ± 12.2 years) with clinical and biochemical evidence of oncogenic osteomalacia were subjected to 'total' whole body 18 F FDG PET scan including both limbs and skull views. The images were reconstructed and the final output was displayed as per the standard institution protocol. Results: 18 F FDG PET imaging localized suspicious hypermetabolic foci of SUVmax ranging from 1.4 to 3.8 (Mean ± S.D.: 2.39 ± 0.63) suggesting presence of occult tumor in 11 of 15 patients. The suspected foci were localized in lower limbs in ten patients and in the petrous temporal region of skull in 1 patient. FDG localized tumors were histopathologically correlated in 6 patients who underwent surgical biopsy/excision after correlative radiological investigations. Four of these patients were cured after surgical excision while partial surgical excision/biopsy was performed in two patients. Conclusions: 18 F FDG PET imaging is a promising technique for detection of occult tumors in patients of oncogenic osteomalacia. It is mandatory to include limbs in the field as these tumors are common in limbs and may be easily missed. Preoperative localization increases odds for cure after surgical removal of tumor

  17. Brain 18F-FDG PET Metabolic Abnormalities in Patients with Long-Lasting Macrophagic Myofascitis.

    Science.gov (United States)

    Van Der Gucht, Axel; Aoun Sebaiti, Mehdi; Guedj, Eric; Aouizerate, Jessie; Yara, Sabrina; Gherardi, Romain K; Evangelista, Eva; Chalaye, Julia; Cottereau, Anne-Ségolène; Verger, Antoine; Bachoud-Levi, Anne-Catherine; Abulizi, Mukedaisi; Itti, Emmanuel; Authier, François-Jérôme

    2017-03-01

    The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with 18 F-FDG. Methods: 18 F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all 18 F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; P = 0.87) and sex (73% women; P = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment ( n = 42), those with frontal subcortical (FSC) dysfunction ( n = 29), those with Papez circuit dysfunction ( n = 22), and those with callosal disconnection ( n = 7). Results: In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism ( P glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. [18F] FDG PET in gastric non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Rodriguez, M.; Ahlstroem, H.; Sundin, A.; Rehn, S.; Hagberg, H.; Glimelius, B.; Sundstroem, C.

    1997-01-01

    The possibility of using [ 18 F] FDG PET for assessment of tumor extension in primary gastric non-Hodgkin's lymphoma (NHL) was studied in 8 patients (6 high-grade and 2 low-grade, one of the MALT type) and in a control group of 7 patients (5 patients with NHL without clinical signs of gastric involvement, 1 patient with NHL and benign gastric ulcer and 1 patient with adenocarcinoma of the stomach). All patients with gastric NHL and the two with benign gastric ulcer and adenocarcinoma, respectively, underwent endoscopy including multiple biopsies for histopathological diagnosis. All patients with high-grade and one of the two with low-grade NHL and the patient with adenocarcinoma displayed high gastric uptake of [ 18 F] FDG corresponding to the pathological findings at endoscopy and/or CT. No pathological tracer uptake was seen in the patient with low-grade gastric NHL of the MALT type. In 6/8 patients with gastric NHL, [ 18 F] FDG PET demonstrated larger tumor extension in the stomach than was found at endoscopy, and there was high tracer uptake in the stomach in two patients who were evaluated as normal on CT. [ 18 F] FDG PET correctly excluded gastric NHL in the patient with a benign gastric ulcer and in the patients with NHL without clinical signs of gastric involvement. Although the experience is as yet limited, [ 18 F] FDG PET affords a novel possibility for evaluation of gastric NHL and would seem valuable as a complement to endoscopy and CT in selected patients, where the technique can yield additional information decisive for the choice of therapy. (orig.)

  19. Using 18F FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    International Nuclear Information System (INIS)

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2011-01-01

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by 18F fluorodeoxyglucose positron emission tomography/computed tomography ( 18F FDG PET/CT). This case illustrates the advantages of 18F FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  20. (18)F-FDG PET/CT in a rare case of Stewart-Treves syndrome

    DEFF Research Database (Denmark)

    Jensen, Mads Radmer; Friberg, Lars; Karlsmark, Tonny

    2011-01-01

    high (18)F-FDG uptake in STS, but is at the same time an example of the low specificity of this imaging modality. CONCLUSIONS: We suggest that (18)F-FDG PET/CT has the potential to become an important tool in the staging and treatment planning of Stewart-Treves syndrome. Furthermore, (18)F...... of Stewart-Treves Syndrome (STS), angiosarcoma secondary to chronic extremity lymphedema, are presented. Lymphedema of the extremities is a debilitating disease characterized by chronic swelling due to interstitial edema caused by insufficient lymphatic drainage capacity. Progression with skin thickening......-FDG-accumulation may be a sensitive tool in detecting low grade inflammation in the skin and subcutis, which has been suggested to cause tissue remodeling in lymphedema progression. However, further studies are needed to elucidate this theory....

  1. {sup 18}F-FDG PET/CT in POEMS syndrome

    Energy Technology Data Exchange (ETDEWEB)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2007-02-15

    POEMS syndrome is a rare disorder, also known as Crow-Fukase, PEP or Takatsuki syndrome. The acronym, POEMS, represents polyneuropathy, organomegaly, endocrinopathy, M protein and skin change. However, there are associated features not included in the acronym such as sclerotic bone lesions, Castleman disease, papilledema, thromobocytosis, peripheral edema, ascites, effusion, polycythemia, fatigue and clubbing. In most cases, osseous lesions in POEMS syndrome present as an isolated sclerotic deposit and that reveal as osteosclerotic myeloma. Several cases of {sup 18}F-FDG PET in multiple myeloma involvements were reported, but there was no previous literature that reported FDG PET findings in POEMS syndrome. We describe here a 66-year-old patient with POEMS syndrome who underwent {sup 18}F-FDG PET/CT image.

  2. Detection of recurrent colorectal carcinoma with 18F-FDG positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Scott, A.M.; Berlangieri, S.U.; Zalcberg, J.; Fox, R.; Cebon, J.; McLeish, A.; Thomas, D.; Chan, G.; Tochon-Danguy, H.; Egan, G.F.; McKay, W.J.

    1998-01-01

    Full text: The appropriate surgical management of recurrent colorectal carcinoma is dependent on the accurate detection of possible primary site recurrence and distant spread of disease. The aim of this study was therefore to evaluate the clinical accuracy of 18 F-FDG PET in detecting recurrent colorectal carcinoma. Over a 12-month period we have performed 21 studies in 17 patients (12 M: 5 F, age range 52-73 y) with known or suspected recurrent colorectal carcinoma. All patients underwent PET imaging of the abdomen and pelvis, or whole body imaging, with a whole body PET scanner (Siemens 951/R) following injection of 400 MBq of 18 F-FDG. All PET studies were interpreted with full knowledge of CT findings, and results were compared to subsequent surgical findings, biopsy or follow-up by conventional imaging methods (e.g. CT scan). Of the 21 studies performed, 18 (86%) had abnormal sites of 18 F-FDG uptake; all sites were subsequently confirmed as recurrent colorectal carcinoma. PET identified a total of 30 sites of disease in the pelvis (n = 4), abdomen (n =10), liver (n = 6), thorax (n = 9) and abdominal surgical scar (n 1), and was false negative in one lung lesion. CT scan correctly identified 14 sites as recurrent tumour; 9/12 patients (pts) with equivocal changes on CT scan had recurrent disease identified by PET. In 10 pts with elevated serum CEA but negative or equivocal CT scans, PET correctly identified 8 pts with proven recurrent disease. Previously unsuspected disease was found at six sites by PET. Lesions as small as 1.2 cm proven at surgery were identified with PET. In conclusion, this study shows 18 F-FDG PET to be a promising method for accurate detection of recurrent colorectal carcinoma

  3. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from {sup 68}Ga-RGD PET/CT and {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai-Jeon [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Ewha Womans University School of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Chun, In Kook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kangwon National University Hospital, Department of Nuclear Medicine, Chuncheon, Kangwon-Do (Korea, Republic of); Cho, Nariya [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Im, Seock-Ah [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Jeong, Sunjoo [Dankook University, Department of Molecular Biology, Yongin (Korea, Republic of); Lee, Song [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Jung, Kyeong Cheon [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Lee, Yun-Sang [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Lee, Dong Soo [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul (Korea, Republic of); Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Biomedical Sciences, Seoul (Korea, Republic of); Seoul National University College of Medicine, The Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2014-08-15

    /PR-,Her2- subgroup versus the other subgroups. There was no correlation between FDG and RGD PET parameters in the overall group. Only the ER/PR-,Her2- subgroup showed a significant positive correlation between FDG and RGD PET parameters (r = 0.59, p = 0.03 for SUV{sub max}). {sup 68}Ga-RGD and {sup 18}F-FDG PET/CT are promising functional imaging modalities for predicting biomarkers and molecular phenotypes in breast cancer patients. (orig.)

  4. 18F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment.

    Science.gov (United States)

    Meyer, Philipp T; Frings, Lars; Rücker, Gerta; Hellwig, Sabine

    2017-12-01

    Accurate differential diagnosis of parkinsonism is of paramount therapeutic and prognostic importance. In addition, with the development of invasive therapies and novel disease-specific therapies, strategies for patient enrichment in trial populations are of growing importance. Imaging disease-specific patterns of regional glucose metabolism with PET and 18 F-FDG allows for a highly accurate distinction between Parkinson disease (PD) and atypical parkinsonian syndromes, including multiple-system atrophy, progressive supranuclear palsy, and corticobasal degeneration. On the basis of a preliminary metaanalysis of currently available studies with inclusion of multiple disease groups, we estimated that the diagnostic sensitivity and specificity for visual PET readings supported by voxel-based statistical analyses for diagnosis of atypical parkinsonian syndromes are 91.4% and 90.6%, respectively. The diagnostic specificity of 18 F-FDG PET for diagnosing multiple-system atrophy, progressive supranuclear palsy, and corticobasal degeneration was consistently shown to be high (>90%), whereas sensitivity was more variable (>75%). It is increasingly acknowledged that cognitive impairment represents a major challenge in PD, with mild cognitive impairment being a prodromal stage of PD with dementia (PDD). In line with clinical and neuropsychologic studies, recent PET studies demonstrated that posterior cortical dysfunction in nondemented PD patients precedes cognitive decline and the development of PDD by several years. Taken together, the current literature underscores the utility of 18 F-FDG PET for diagnostic evaluation of parkinsonism and the promising role of 18 F-FDG PET for assessment and risk stratification of cognitive impairment in PD. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Different metabolic patterns analysis of Parkinsonism on the {sup 18}F-FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Juh, Rahyeong; Kim, Jaesung; Moon, Daehyuk; Choe, Boyoung; Suh, Tasuk E-mail: suhsanta@catholic.ac.kr

    2004-09-01

    Idiopathic Parkinson's disease (IPD), progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) are the most common movement disorders associated with neurodegenerative disease. A clinical differential diagnosis of IPD and atypical Parkinsonian disorders, such as MSA and PSP, is often complicated by the presence of symptoms common to both groups. Since Parkinsonism has a different pathophysiology in the cortical and subcortical brain structures, assessing the regional cerebral glucose metabolism may assist in making a differential diagnosis of Parkinsonism. The {sup 18}F-FDG PET images of IPD, MSA and PSP were assessed using statistical parametric mapping (SPM) in order to determine the useful metabolic patterns. Twenty-four patients with Parkinsonism: eight patients (mean age 67.9{+-}10.7 years; M/F: 3/5) with IPD, nine patients (57.9{+-}9.2 years; M/F: 4/5) with MSA and seven patients (67.6{+-}4.8 years; M/F: 3/4) with PSP were enrolled in this study. All patients with Parkinsonism and 22 age-matched normal controls underwent {sup 18}F-FDG PET, (after 370 MBq {sup 18}F-FDG). The three groups and the individual IPD, MSA and PSP patients were compared with a normal control group using a two-sided t-test of SPM (uncorrected P<0.01, extent threshold >100 voxel). The IPD, MSA and PSP groups showed significant hypometabolism in the cerebral neocortex compared to the normal control group. The MSA group showed significant hypometabolism in the putamen, pons and cerebellum compared to the normal controls and IPD groups. In addition, PSP showed significant hypometabolism in the caudate nucleus, the thalamus, midbrain and the cingulate gyrus compared to the normal controls, the IPD and the MSA groups. In conclusion, an assessment of the {sup 18}F-FDG PET images using SPM may be a useful adjunct to a clinical examination when making a differential diagnosis of Parkinsonism.

  6. Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET

    International Nuclear Information System (INIS)

    Juh, Rahyeong; Kim, Jaesung; Moon, Daehyuk; Choe, Boyoung; Suh, Tasuk

    2004-01-01

    Idiopathic Parkinson's disease (IPD), progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) are the most common movement disorders associated with neurodegenerative disease. A clinical differential diagnosis of IPD and atypical Parkinsonian disorders, such as MSA and PSP, is often complicated by the presence of symptoms common to both groups. Since Parkinsonism has a different pathophysiology in the cortical and subcortical brain structures, assessing the regional cerebral glucose metabolism may assist in making a differential diagnosis of Parkinsonism. The 18 F-FDG PET images of IPD, MSA and PSP were assessed using statistical parametric mapping (SPM) in order to determine the useful metabolic patterns. Twenty-four patients with Parkinsonism: eight patients (mean age 67.9±10.7 years; M/F: 3/5) with IPD, nine patients (57.9±9.2 years; M/F: 4/5) with MSA and seven patients (67.6±4.8 years; M/F: 3/4) with PSP were enrolled in this study. All patients with Parkinsonism and 22 age-matched normal controls underwent 18 F-FDG PET, (after 370 MBq 18 F-FDG). The three groups and the individual IPD, MSA and PSP patients were compared with a normal control group using a two-sided t-test of SPM (uncorrected P 100 voxel). The IPD, MSA and PSP groups showed significant hypometabolism in the cerebral neocortex compared to the normal control group. The MSA group showed significant hypometabolism in the putamen, pons and cerebellum compared to the normal controls and IPD groups. In addition, PSP showed significant hypometabolism in the caudate nucleus, the thalamus, midbrain and the cingulate gyrus compared to the normal controls, the IPD and the MSA groups. In conclusion, an assessment of the 18 F-FDG PET images using SPM may be a useful adjunct to a clinical examination when making a differential diagnosis of Parkinsonism

  7. A False Positive {sup 18}F-FDG PET/CT Scan Caused by Breast Silicone Injection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao Jung; Lee, Bi Fang; Yao, Wei Jen; Wu, Pei Shan; Chen, Wen Chung; Peng, Shu Lin; Chiu, Nan Tsing [Cheng Kung University Medical College and Hospital, Tainan (Turkmenistan)

    2009-04-15

    We present here the case of a 40-year-old woman with a greater than 10 year prior history of bilateral breast silicone injection and saline bag implantation. Bilateral palpable breast nodules were observed, but the ultrasound scan was suboptimal and the magnetic resonance imaging showed no gadolinium enhanced tumor. The {sup 18}F-FDG PET/CT scan showed a hypermetabolic nodule in the left breast with a 30% increase of {sup 18}F-FDG uptake on the delayed imaging, and this mimicked breast cancer. She underwent a left partial mastectomy and the pathology demonstrated a siliconoma.

  8. 18F-FDG-PET/CT in the diagnosis of paraneoplastic neurological syndromes: a retrospective analysis

    International Nuclear Information System (INIS)

    Bannas, Peter; Weber, Christoph; Adam, Gerhard; Derlin, Thorsten; Lambert, Joerg; Mester, Janos; Klutmann, Susanne; Leypoldt, Frank

    2010-01-01

    Paraneoplastic neurological syndromes (PNS) constitute a challenging diagnostic problem, as the underlying tumour often remains unidentified for a long time, even with frequent conventional diagnostic procedures. For appropriate patient management timely identification of the tumour is critical. We evaluated the value of 18 F-FDG-PET/CT in the investigation of PNS. The case notes of 46 consecutive patients with clinically suspected PNS who underwent 18 F-FDG-PET/CT were reviewed retrospectively and the performance of PET/CT for detecting underlying tumours was assessed. PET/CT detected foci of increased 18 F-FDG uptake in 10 out of 46 patients. In six of these 10 patients combined PET/CT identified the underlying disease: four patients suffered from PNS; vasculitic and local metastatic disease was detected in two other patients. Based on our results, we believe that the role of positron emission tomography in the detection of occult neoplasms in patients with PNS has been overestimated in the past. In clinical practice, PNS is far more often suspected than proven. In our study combined PET/CT identified malignancy as the underlying cause of suspected PNS in only 8.7% (4/46). We believe that combined PET/CT should be reserved for stringently selected patients with a high clinical index of suspicion for PNS and after conventional imaging techniques fail to detect a tumour. (orig.)

  9. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma

    International Nuclear Information System (INIS)

    Alongi, Pierpaolo; Evangelista, Laura; Caobelli, Federico; Spallino, Marianna; Gianolli, Luigi; Picchio, Maria; Midiri, Massimo

    2018-01-01

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of 18 F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 18 F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent 18 F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted 18 F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological 18 F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of 18 FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively. 18 F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from ''wait and watch'' to new chemotherapy in six patients and the ''wait-and-watch'' approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological 18 F-FDG PET/CT scan (98% and 95% vs 48% and 38%, respectively; p = 0.02). An

  10. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Alongi, Pierpaolo [IRCSS San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); San Raffaele G. Giglio Institute, Department of Radiological Sciences, Nuclear Medicine Unit, Cefalu (Italy); Evangelista, Laura [Veneto Institute of Oncology IOV - IRCCS, Nuclear Medicine and Molecular Imaging Unit, Padua (Italy); Caobelli, Federico [Basel University Hospital, Department of Nuclear Medicine, Basel (Switzerland); Spallino, Marianna [University of Milano-Bicocca, Milan (Italy); Gianolli, Luigi; Picchio, Maria [IRCSS San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); Midiri, Massimo [San Raffaele G. Giglio Institute, Department of Radiological Sciences, Nuclear Medicine Unit, Cefalu (Italy); University of Palermo, Department of Radiology, DIBIMED, Palermo (Italy)

    2018-01-15

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of {sup 18}F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 {sup 18}F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent {sup 18}F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted {sup 18}F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological {sup 18}F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of {sup 18}FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively.{sup 18}F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from ''wait and watch'' to new chemotherapy in six patients and the ''wait-and-watch'' approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological {sup 18}F-FDG PET/CT scan (98% and 95% vs 48% and

  11. {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel; Riedl, Christopher C.; Jochelson, Maxine S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Goldman, Debra A.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Pinker-Domenig, Katja [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2016-10-15

    National Comprehensive Cancer Network guidelines recommend {sup 18}F-FDG-PET/CT, in addition to standard staging procedures, for systemic staging of newly diagnosed stage III breast cancer patients. However, factors in addition to stage may influence PET/CT utility. As breast cancers that are negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (triple-negative breast cancer, or TNBC) are more aggressive and metastasize earlier than other breast cancers, we hypothesized that receptor expression may be one such factor. This study assesses {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed TNBC. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with TNBC who underwent {sup 18}F-FDG-PET/CT in 2007-2013 prior to systemic or radiation therapy. Initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery, if performed prior to {sup 18}F-FDG-PET/CT. {sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases, as well as unsuspected synchronous malignancies. Kaplan Meier survival estimates were calculated for initial stage IIB patients stratified by whether or not stage 4 disease was detected by {sup 18}F-FDG-PET/CT. A total of 232 patients with TNBC met inclusion criteria. {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 30 (13 %): 0/23 initial stage I, 4/82 (5 %) stage IIA, 13/87 (15 %) stage IIB, 4/23 (17 %) stage IIIA, 8/14 (57 %) stage IIIB, and 1/3 (33 %) stage IIIC. Twenty-six of 30 patients upstaged to IV by {sup 18}F-FDG-PET/CT were confirmed by pathology, with the remaining four patients confirmed by follow-up imaging. In addition, seven unsuspected synchronous malignancies were identified in six patients. Initial stage 2B patients who were upstaged to 4 by {sup 18}F-FDG-PET/CT had significantly shorter survival compared to

  12. Diagnostic accuracy of 18F-FDG PET/CT for detection of suspected recurrence in patients with oesophageal carcinoma

    International Nuclear Information System (INIS)

    Sharma, Punit; Jain, Sachin; Karunanithi, Sellam; Malhotra, Arun; Bal, Chandrasekhar; Kumar, Rakesh; Pal, Sujoy; Julka, Pramod Kumar; Thulkar, Sanjay

    2014-01-01

    To evaluate the role of 18 F-FDG PET/CT in the detection of recurrence in patients with oesophageal carcinoma, suspected clinically or following conventional investigations. This was a retrospective study. Data from 180 patients (age 56.3 ± 10.4 years; 126 men, 54 women) with histopathologically proven oesophageal carcinoma (squamous cell 115, adenocarcinoma 59, neuroendocrine carcinoma 4, small cell 1, poorly differentiated 1) who had undergone 227 18 F-FDG PET/CT studies for suspected recurrence were analysed. Recurrence was suspected clinically or following conventional investigations. PET/CT images were revaluated by two nuclear medicine physicians in consensus. Findings were grouped into local, nodal and distant recurrence. Results were compared to those from contrast-enhanced (CE) CT when available (109 patients). Clinical/imaging follow-up (minimum 6 months) with histopathology (when available) was taken as the reference standard. Of the 227 18 F-FDG PET/CT studies,166 were positive and 61 were negative for recurrent disease. PET/CT showed local recurrence in 134, nodal recurrence in 115 and distant recurrence in 47, with more than one site of recurrence in 34. The PET/CT findings were true-positive in 153 studies, true-negative in 54, false-positive in 13 and false-negative in 7. The sensitivity of 18 F-FDG PET/CT was 96 %, the specificity was 81 %, the positive and negative predictive values were 92 % and 89 %, respectively, and the accuracy was 91 %. PET/CT showed similar accuracy in patients with squamous cell carcinoma and in those with adenocarcinoma (P = 0.181). 18 F-FDG PET/CT was more specific than CECT (67 % vs. 21 %; P 18 F-FDG PET/CT shows high accuracy in the detection of suspected recurrence in patients with oesophageal carcinoma. It is more specific than and is superior to CECT in the detection of nodal recurrence. (orig.)

  13. 18F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer

    International Nuclear Information System (INIS)

    Groheux, David; Hindié, Elif; Marty, Michel; Espié, Marc; Rubello, Domenico; Vercellino, Laetitia; Bousquet, Guilhem; Ohnona, Jessica; Toubert, Marie-Elisabeth; Merlet, Pascal; Misset, Jean-Louis

    2014-01-01

    Purpose: Male breast cancer (BC) is a rare disease, with patterns different from those found in women. Most tumors are detected at more advanced stages than in women. The aim of this study was to analyze the performance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG-PET/CT) in staging, restaging, and therapy response assessment. Methods: We performed a systematic analysis in the database of Saint-Louis Hospital to identify male patients with BC referred for PET/CT. 18 F-FDG-PET/CT findings considered suspicious for malignancy were compared to biopsy results, further work-up and/or patient follow-up of at least 6 months. Performances of 18 F-FDG-PET/CT were compared to that of conventional imaging (CI) using the McNemar test. The impact of PET/CT on management was evaluated. Results: During 6 consecutive years, among 12,692 18 F-FDG-PET/CT oncology studies, 30 were performed in 15 men with BC: 7 examinations for initial staging, 11 for restaging, and 12 for response assessment. Tumors profile was ER+ and one had HER2 overexpression. PET/CT sensitivity, specificity, positive predictive value, negative predictive value and accuracy to detect distant metastases were 100%, 67%, 86%, 100% and 89%, respectively. PET/CT was more informative than CI in 40% of studies (p = 0.03; 95% confidence interval: 3.26 – 40%). Findings from 18 F-FDG-PET/CT led to modification in the planned treatment in 13/30 cases (43%). Conclusion: Although all the tumors were ER+, primary lesions and metastases were diagnosed with high sensitivity. 18 F-FDG-PET/CT seems to be a powerful imaging method to perform staging, restaging and treatment response assessment in male patients with BC

  14. {sup 18}F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groheux, David, E-mail: dgroheux@yahoo.fr [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Hindié, Elif [Department of Nuclear Medicine, Haut-Lévêque Hospital, CHU Bordeaux, University Bordeaux-Segalen, Bordeaux (France); Marty, Michel [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris (France); Espié, Marc [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Rubello, Domenico [Department of Nuclear Medicine, Santa Maria della Misericordia, Rovigo Hospital, Rovigo (Italy); Vercellino, Laetitia [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Bousquet, Guilhem [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); INSERM U728, University Institute of Hematology, University of Paris VII, Paris (France); Ohnona, Jessica; Toubert, Marie-Elisabeth [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Merlet, Pascal [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Misset, Jean-Louis [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France)

    2014-10-15

    Purpose: Male breast cancer (BC) is a rare disease, with patterns different from those found in women. Most tumors are detected at more advanced stages than in women. The aim of this study was to analyze the performance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) in staging, restaging, and therapy response assessment. Methods: We performed a systematic analysis in the database of Saint-Louis Hospital to identify male patients with BC referred for PET/CT. {sup 18}F-FDG-PET/CT findings considered suspicious for malignancy were compared to biopsy results, further work-up and/or patient follow-up of at least 6 months. Performances of {sup 18}F-FDG-PET/CT were compared to that of conventional imaging (CI) using the McNemar test. The impact of PET/CT on management was evaluated. Results: During 6 consecutive years, among 12,692 {sup 18}F-FDG-PET/CT oncology studies, 30 were performed in 15 men with BC: 7 examinations for initial staging, 11 for restaging, and 12 for response assessment. Tumors profile was ER+ and one had HER2 overexpression. PET/CT sensitivity, specificity, positive predictive value, negative predictive value and accuracy to detect distant metastases were 100%, 67%, 86%, 100% and 89%, respectively. PET/CT was more informative than CI in 40% of studies (p = 0.03; 95% confidence interval: 3.26 – 40%). Findings from {sup 18}F-FDG-PET/CT led to modification in the planned treatment in 13/30 cases (43%). Conclusion: Although all the tumors were ER+, primary lesions and metastases were diagnosed with high sensitivity. {sup 18}F-FDG-PET/CT seems to be a powerful imaging method to perform staging, restaging and treatment response assessment in male patients with BC.

  15. MCNPX dosimetry and radiation-induced cancer risk estimation from 18F-FDG pediatric PET at Brazilian population

    International Nuclear Information System (INIS)

    Mendes, Bruno M.; Fonseca, Telma C.F.; Campos, Tarcisio P.R.

    2017-01-01

    Positron emission tomography (PET) using 18 F-FDG has increased significantly in pediatric patients. PET with 18 F-FDG has often been applied in oncology. Cancer induction is one of the main stochastic risk from exposure to ionizing radiation of 18 F-FDG. Radiation-induced cancer risk estimation due to medical exposures is an important tool for risk/benefit assessing. The objective was to perform dosimetry and estimate the risk of cancer induction due to pediatric use of 18 F-FDG. MCNPX Computational dosimetry was performed to estimate organ absorbed doses resulting from 18 F-FDG pediatric use. Two voxelized phantoms, kindly provided by the GSF - Helmholtz Zentrum, were used: 'Child' - 7 years child and 'Baby' 8-week-old infant. ICRP-128 publication provided the radiopharmaceutical biodistribution of F-18. Tables containing organ absorbed dose and effective dose per unit of injected activity for the two phantoms were obtained. The injected activities were estimated according to data provided in the literature. Images of the absorbed dose distribution were generated from both models. The BEIR VII methodology was used to calculate the risk of cancer induction. The risk of cancer induction (per imaging procedure) for the seven-year-old child was (0.09% ♂ and 0.15% ♀) and for the eight-week old baby was (0.11% ♂ and 0.21% ♀). The 18 F-FDG absorbed dose distribution in the children and infants showed some divergences in comparison to adult data. Probably, the biokinetic data used to children and infants is the main reason for this disconnection. (author)

  16. MCNPX dosimetry and radiation-induced cancer risk estimation from {sup 18}F-FDG pediatric PET at Brazilian population

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno M.; Fonseca, Telma C.F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Campos, Tarcisio P.R., E-mail: bmm@cdtn.br, E-mail: tcff@cdtn.br, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Programa de Pós-Graduação em Ciências e Técnicas Nucleares

    2017-07-01

    Positron emission tomography (PET) using {sup 18}F-FDG has increased significantly in pediatric patients. PET with {sup 18}F-FDG has often been applied in oncology. Cancer induction is one of the main stochastic risk from exposure to ionizing radiation of {sup 18}F-FDG. Radiation-induced cancer risk estimation due to medical exposures is an important tool for risk/benefit assessing. The objective was to perform dosimetry and estimate the risk of cancer induction due to pediatric use of {sup 18}F-FDG. MCNPX Computational dosimetry was performed to estimate organ absorbed doses resulting from {sup 18}F-FDG pediatric use. Two voxelized phantoms, kindly provided by the GSF - Helmholtz Zentrum, were used: 'Child' - 7 years child and 'Baby' 8-week-old infant. ICRP-128 publication provided the radiopharmaceutical biodistribution of F-18. Tables containing organ absorbed dose and effective dose per unit of injected activity for the two phantoms were obtained. The injected activities were estimated according to data provided in the literature. Images of the absorbed dose distribution were generated from both models. The BEIR VII methodology was used to calculate the risk of cancer induction. The risk of cancer induction (per imaging procedure) for the seven-year-old child was (0.09% ♂ and 0.15% ♀) and for the eight-week old baby was (0.11% ♂ and 0.21% ♀). The {sup 18}F-FDG absorbed dose distribution in the children and infants showed some divergences in comparison to adult data. Probably, the biokinetic data used to children and infants is the main reason for this disconnection. (author)

  17. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    OpenAIRE

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component ...

  18. Variability of Gross Tumor Volume in Nasopharyngeal Carcinoma Using 11C-Choline and 18F-FDG PET/CT.

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    Full Text Available This study was conducted to evaluate the variability of gross tumor volume (GTV using 11C-Choline and 18F-FDG PET/CT images for nasopharyngeal carcinomas boundary definition. Assessment consisted of inter-observer and inter-modality variation analysis. Four radiation oncologists were invited to manually contour GTV by using PET/CT fusion obtained from a cohort of 12 patients with nasopharyngeal carcinoma (NPC and who underwent both 11C-Choline and 18F-FDG scans. Student's paired-sample t-test was performed for analyzing inter-observer and inter-modality variability. Semi-automatic segmentation methods, including thresholding and region growing, were also validated against the manual contouring of the two types of PET images. We observed no significant variation in the results obtained by different oncologists in terms of the same type of PET/CT volumes. Choline fusion volumes were significantly larger than the FDG volumes (p < 0.0001, mean ± SD = 18.21 ± 8.19. While significantly consistent results were obtained between the oncologists and the standard references in Choline volumes compared with those in FDG volumes (p = 0.0025. Simple semi-automatic delineation methods indicated that 11C-Choline PET images could provide better results than FDG volumes (p = 0.076, CI = [-0.29, 0.025]. 11C-Choline PET/CT may be more advantageous in GTV delineation for the radiotherapy of NPC than 18F-FDG. Phantom simulations and clinical trials should be conducted to prove the possible improvement of the treatment outcome.

  19. 18F-FDG versus 11C-choline PET/CT for the imaging of advanced head and neck cancer after combined intra-arterial chemotherapy and radiotherapy: the time period during which PET/CT can reliably detect non-recurrence

    International Nuclear Information System (INIS)

    Ito, Kimiteru; Matsuda, Hiroshi; Yokoyama, Jyunkichi; Kubota, Kazuo; Morooka, Miyako; Shiibashi, Michio

    2010-01-01

    The purpose of this prospective study was to evaluate the usefulness of 18 F-fluorodeoxyglucose (FDG) and 11 C-choline positron emission tomography (PET)/computed tomography (CT) for detecting recurrences of advanced head and neck cancer after combined intra-arterial chemotherapy and radiotherapy. Additionally, we surveyed the time period during which an effective negative predictive value could be maintained after the first follow-up PET/CT examination and estimated the optimal timing of a second PET/CT examination for detecting late recurrences. Fifty-three subjects (36 men and 17 women; mean age: 59.4±11.5 years) with advanced head and neck squamous cell carcinoma were recruited. Post-treatment 18 F-FDG PET/CT and 11 C-choline examinations were performed in all patients between 8 and 12 weeks after combined intra-arterial chemotherapy and radiotherapy. The PET/CT images were evaluated using a patient-based analysis and a lesion-based analysis. All of the patients were prospectively followed for at least 9 months after the post-treatment PET/CT examination, with surveillance using conventional images (including CT and/or MRI) and a physical examination performed every 3 months. Recurrences, as determined using the patient-based analysis, were eventually confirmed in 18, 6 and 5 patients at 3, 4-6 and 7-9 months after the post-treatment PET/CT examination, respectively. The sensitivity and specificity of the 18F-FDG PET/CT and the 11C-choline PET/CT examinations to predict recurrence within 3 months were higher (FDG: 89 and 91%; choline: 83 and 80%, respectively) than for recurrence detection 6 months (FDG: 67 and 90%; choline: 62 and 76%, respectively) and 9 months later (FDG: 59 and 92%; choline: 55 and 75%, respectively). The lesion-based analysis showed that the maximum standardized uptake value of 18 F-FDG and 11 C-choline in the recurrent lesions were correlated with each other, compared with their relation in scar tissues (R 2 = 0.492 and 0

  20. [18F]FDG PET accurately differentiates infected and non-infected non-unions after fracture fixation

    International Nuclear Information System (INIS)

    Wenter, Vera; Albert, Nathalie L.; Brendel, Matthias; Fendler, Wolfgang P.; Bartenstein, Peter; Cyran, Clemens C.; Friederichs, Jan; Mueller, Jan-Philipp; Militz, Matthias; Hungerer, Sven; Hacker, Marcus

    2017-01-01

    Complete fracture healing is crucial for good patient outcomes. A major complication in the treatment of fractures is non-union. The pathogenesis of non-unions is not always clear, although implant-associated infections play a significant role, especially after surgical treatment of open fractures. We aimed to evaluate the value of [ 18 F]FDG PET in suspected infections of non-union fractures. We retrospectively evaluated 35 consecutive patients seen between 2000 and 2015 with suspected infection of non-union fractures, treated at a level I trauma center. The patients underwent either [ 18 F]FDG PET/CT (N = 24), [ 18 F]FDG PET (N = 11) plus additional CT (N = 8), or conventional X-ray (N = 3). Imaging findings were correlated with final diagnosis based on intraoperative culture or follow-up. In 13 of 35 patients (37 %), infection was proven by either positive intraoperative tissue culture (N = 12) or positive follow-up (N = 1). [ 18 F]FDG PET revealed 11 true-positive, 19 true-negative, three false-positive, and two false-negative results, indicating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 85 %, 86 %, 79 %, 90 %, and 86 %, respectively. The SUV max was 6.4 ± 2.7 in the clinically infected group and 3.0 ± 1.7 in the clinically non-infected group (p <0.01). The SUV ratio was 5.3 ± 3.3 in the clinically infected group and 2.6 ± 1.5 in the clinically non-infected group (p <0.01). [ 18 F]FDG PET differentiates infected from non-infected non-unions with high accuracy in patients with suspected infections of non-union fractures, for whom other clinical findings were inconclusive for a local infection. [ 18 F]FDG PET should be considered for therapeutic management of non-unions. (orig.)

  1. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    Science.gov (United States)

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  2. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects.

    Directory of Open Access Journals (Sweden)

    Kenji Ishibashi

    Full Text Available Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images.Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR was calculated.Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05, and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4-5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002, and no correlation with plasma insulin levels (r = 0.156, p = 0.12 or HOMA-IR (r = 0.096, p = 0.24.This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images.

  3. {sup 18}F-FDG uptake on PET in primary mediastinal non-thymic neoplasm: A clinicopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Kaira, Kyoichi, E-mail: kkaira1970@yahoo.co.jp [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Abe, Masato [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Nakagawa, Kazuo; Ohde, Yasuhisa; Okumura, Takehiro [Division of Thoracic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Takahashi, Toshiaki; Murakami, Haruyasu; Shukuya, Takehito; Kenmotsu, Hirotsugu; Naito, Tateaki [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Hayashi, Isamu [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Oriuchi, Noboru [Department of Diagnostic Radiology and Nuclear medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi 371-8511, Gunma (Japan); Endo, Masahiro [Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Kondo, Haruhiko [Division of Thoracic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Nakajima, Takashi [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Yamamoto, Nobuyuki [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan)

    2012-09-15

    Background: The usefulness of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography (PET) has been investigated in thymic epithelial tumors. However, little is known about PET imaging of {sup 18}F-FDG in primary non-thymic mediastinal neoplasms. The aim of this study is to explore the clinicopathological significance of {sup 18}F-FDG PET in primary mediastinal (non-thymic) neoplasms. Methods: Twenty-one patients with mediastinal neoplasms who underwent {sup 18}F-FDG PET before treatment were included in this study. Tumor sections were stained by immunohistochemistry for glucose transporter 1 (Glut1); glucose transporter 3 (Glut3); hypoxia-inducible factor-1 alpha (HIF-1α); hexokinase I; vascular endothelial growth factor (VEGF); microvessels (CD34); epidermal growth factor receptor (EGFR); Akt/mTOR signaling pathway (p-Akt and p-mTOR); cell cycle control (p53). Results: Seventeen of 21 patients were imaged on PET system using {sup 18}F-FDG, but 4 patients with a histology of cyst showed nothing abnormal in PET scans. The histology of the resected tumors was as follows: 6 schwannoma, 3 teratoma, 4 cyst, 3 sarcoma, 1 undifferentiated carcinoma, 1 seminoma, 1 mediastinal goiter, 1 ganglioneuroma, and 1 Hodgkin lymphoma. {sup 18}F-FDG uptake was significantly correlated with Glut1, HIF-1α, EGFR, p-Akt and p-S6K. These biomarkers were highly expressed in schwannoma, teratoma and high grade malignancies, whereas all patients with cyst and ganglioneuroma had no positive expression of these biomarkers. High uptake of {sup 18}F-FDG was significant associated with Glut1, VEGF, EGFR, p-Akt, p-S6K and tumor maximal size. Conclusion: The amount of {sup 18}F-FDG uptake in primary mediastinal non-thymic neoplasms is determined by the presence of glucose metabolism (Glut1), hypoxia (HIF-1α) and upstream components of HIF-1α (EGFR, p-Akt and p-S6K)

  4. Labelling of leucocytes with 18 F-FDG

    International Nuclear Information System (INIS)

    Tomas, M.B.; Tronco, G.G.; Palestro, C.J.

    2003-01-01

    Full text: Objective: To investigate the effect of blood glucose levels on in-vitro 18 F-FDG labeling of autologous leucocytes. Methods: Seventeen volunteers, 11 men and 6 women, 20 - 54 years old, participated in this study. Using standard techniques, a mixed leucocyte suspension was prepared from 40 ml of blood withdrawn from each volunteer. Blood glucose levels were also measured for each blood sample. After resuspension in 3 ml heparinized saline, the leucocytes were incubated with 11.03 (± 4.48) mCi 18 F-FDG for 30 minutes at 370 C. The labeled cell suspension was then centrifuged for 5 min (150 g). Activity in the cell pellet and supernatant were measured and labelling efficiency calculated. Results: Blood glucose levels ranged from 80 to 178 mg% with a mean of 113 mg%. The overall labelling efficiency was 61.2% (±7.3%). The mean labelling efficiency for blood glucose levels 100 mg%. There is no statistically significant difference between the labeling efficiencies obtained at blood glucose levels 100 mg% (p =0.72). Blood Glucose Level (mg%) Labelling Efficiency (%) 100 61. Conclusion: In summary, no correlation between blood glucose levels and labeling efficiency was observed. Blood glucose levels up to 178 mg% do not affect 18 F-FDG in-vitro labelling of autologous leucocytes. (author)

  5. Application of 18F-FDG PET/CT combined with HRCT in diagnosing pneumonia type of bronchioloalveolar carcinoma%18F-FDG PET/CT结合HRCT在肺炎型细支气管肺泡癌诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    彭辽河; 丁久荣; 胡晓燕; 邱大胜; 李杰; 周静; 朱佳

    2012-01-01

    Objective: To evaluate the application value of 18F-FDG PET/CT combined with HRCT in diagnosing pneumonia type of bronchioloalveolar carcinoma (PTBAC). Materials and Methods: The 18F-FDG PET/CT images of 26 cases with pathologically confirmed PTBAC were studied. Fifteen of the 26 cases were followed up after 0~3 days by HRCT study. The diagnostic accuracy rate of 18F-FDG PET/CT combined with HRCT were analyzed. Results: According to 18F-FDG PET/CT imaging, definite diagnosis of malignant was made in 9 cases, no exclusion of malignancies in 13 cases, and definite diagnosis of pulmonary inflammation in 4 cases. The diagnostic accuracy rate of 18F-FDG PET/CT imaging was 34.6%. The misdiagnosis rate of 18F-FDG PET/CT was higher. Associating 18F-FDG PET/CT with HRCT, 13 of 15 cases were diagnosed as malignant tumors. Pulmonary inflammation was diagnosed firstly in 1 case by PET/CT, and then definite diagnosis of malignancy was confirmed by HRCT. In addition, the other one case of malignant tumor was analyzed as pulmonary inflammation by PET/CT and HRCT. However, 18F—FDG PET/CT displayed metastasis during the delay scanning, which was approved by pathology. Based on 18F-FDG PET/CT and HRCT results, 15 cases were diagnosed correctly. Conclusion: PTBAC displays a variety of characteristics in 18F-FDG PET/CT and HRCT. Combining I8F-FDG PET/CT with HRCT is reasonable and practicable for PTBAC diagnosis, which may be due to the synergistic effect on diagnosing PTBAC and can greatly improve the diagnostic accuracy.%目的:探讨18F-FDG PET/CT结合高分辨率CT(HRCT)在肺炎型细支气管肺泡癌(PTBAC)诊断中的应用价值,以提高诊断准确率.资料与方法:搜集经病理证实26例PTBAC患者的18F-FDG PET/CT及HRCT影像资料,患者均先行18F_FDG PET/CT显像,其中15例根据诊断需要0~3 d内行HRCT检查,分析两者结合对PTBAC的诊断价值.结果:全组26例患者18F-FDG PET/CT显像检查,确切诊断肺癌9例,恶性不除外13

  6. Diagnostic value of combining {sup 11}C-choline and {sup 18}F-FDG PET/CT in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Castilla-Lievre, Maria-Angela [University Department Hepatinov, Assistance-Publique Hopitaux de Paris, Department of Nuclear Medicine, Hopital Antoine Beclere, Clamart (France); IMIV - UMR 1023 Inserm/CEA/Universite Paris Sud - ERL 9218 CNRS, Orsay (France); Franco, Dominique [Universite Paris-Sud, Department of Surgery, Hopital Antoine Beclere, University Department Hepatinov, Assistance-Publique Hopitaux de Paris, Clamart (France); Gervais, Philippe; Kuhnast, Bertrand; Desarnaud, Serge; Helal, Badia-Ourkia [IMIV - UMR 1023 Inserm/CEA/Universite Paris Sud - ERL 9218 CNRS, Orsay (France); CEA, DSV, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Agostini, Helene [University Department Hepatinov, Assistance-Publique Hopitaux de Paris, Clinical Research Unit of Hopitaux universitaires Paris-Sud, Hopital Kremlin Bicetre (France); Marthey, Lysiane [Universite Paris-Sud, Department of Gastroenterology, Hopital Antoine Beclere, University Department Hepatinov, Assistance-Publique Hopitaux de Paris, Clamart (France)

    2016-05-15

    In this prospective study, our goal was to emphasize the diagnostic value of combining {sup 11}C-choline and {sup 18}F-FDG PET/CT for hepatocellular carcinoma (HCC) in patients with chronic liver disease. Thirty-three consecutive patients were enrolled. All patients were suspected to have HCC based on CT and/or MRI imaging. A final diagnosis was obtained by histopathological examination or by imaging alone according to American Association for the Study of Liver Disease criteria. All patients underwent PET/CT with both tracers within a median of 5 days. All lesions showing higher tracer uptake than normal liver were considered positive for HCC. We examined how tracer uptake was related to biological (serum α-fetoprotein levels) and pathological (differentiation status, peritumoral capsule and vascular invasion) prognostic markers of HCC, as well as clinical observations at 6 months (recurrence and death). Twenty-eight HCC, four cholangiocarcinomas and one adenoma were diagnosed. In the HCC patients, the sensitivity of {sup 11}C-choline, {sup 18}F-FDG and combined {sup 11}C-choline and {sup 18}F-FDG PET/CT for the detection of HCC was 75 %, 36 % and 93 %, respectively. Serum α-fetoprotein levels >200 ng/ml were more frequent among patients with {sup 18}F-FDG-positive lesions than those with {sup 18}F-FDG-negative lesions (p < 0.05). Early recurrence (n=2) or early death (n=5) occurred more frequently in patients with {sup 18}F-FDG-positive lesions than in those with {sup 18}F-FDG-negative lesions (p < 0.05). The combined use of {sup 11}C-choline and {sup 18}F-FDG PET/CT detected HCC with high sensitivity. This approach appears to be of potential prognostic value and may facilitate the selection of patients for surgical resection or liver transplantation. (orig.)

  7. Evolving role of 18F-FDG-PET/CT for the body tumor and metastases in pediatrics

    International Nuclear Information System (INIS)

    Chen Zhengguang; Li Xiaozhen; Li Fang; Ouyang Qiaohong; Yu Tong

    2010-01-01

    18 F-FDG-positron emission tomography-computerized tomography ( 18 F-FDG-PET/CT) scan is an important imaging tool which may provide both functional and anatomical information in a single diagnostic test. It has the potential to be a valuable tool in the noninvasive evaluation and monitoring of pediatric tumors including the metastases because 18 fluorodeoxyglucose ( 18 F-FDG) is a glucose analogue that concentrates in areas of active metabolic activity. This review provides an update on functional and metabolic imaging approaches for assessment and management of the body tumor and metastases in pediatrics using a combined whole body 18 F-FDG-PET/CT scanners. We discuss the benefits include improved pediatric patients' outcome facilitated by staging and monitoring of disease and better treatment planning. It is worth to concern the preparation of children undergoing PET studies and radiation dosimetry and its implications for family and caregivers. It is important to consider the normal distribution of 18 FDG in children, common variations of the normal distribution. We show some of our cases that most tumors in children accumulate and retain FDG, allowing high-quality images of their distribution and pathophysiology either at the primary site as well as in the areas of metastatic disease.

  8. 18F-FDG PET imaging for staging and treatment evaluation in lymphoma%18F-FDG显像对淋巴瘤分期及疗效评价的价值

    Institute of Scientific and Technical Information of China (English)

    王全师; 吴湖炳; 王明芳; 郭晓君

    2004-01-01

    目的探讨18F-脱氧葡萄糖(FDG)PET和PET/CT显像在淋巴瘤诊断、分期及疗效评价中的价值.方法 107例淋巴瘤或淋巴瘤疑似患者行18F-FDG PET或PET/CT显像,其中16例多次行PET或PET/CT显像.所有患者皆经病理学检查确诊,随访时间>6个月.结果淋巴瘤31例,PET显像阳性30例(96.8%),7例淋巴结转移癌及活动性淋巴结结核PET显像均为阳性,淋巴瘤与原发灶不明的淋巴结转移癌及活动性淋巴结结核难以鉴别.37%(10/27例)初诊淋巴瘤PET显像多发现恶性病灶而提高临床分期.16例淋巴瘤行多次PET显像,发现8例治疗后病灶消失,2例缓解,1例肿瘤复发,5例无瘤生存,皆与临床相符.53例淋巴瘤治疗后行PET显像,其中8例临床确认有肿瘤复发或明显残余,PET显像均为阳性;45例临床疗效为完全缓解(CR)和部分缓解(PR)的患者中,PET显像阳性者18例,3例肿瘤处于活跃状态,15例(非霍奇金淋巴瘤12例,霍奇金淋巴瘤3例)处于抑制状态,PET显像后改变了进一步临床治疗方案.结论 18F-FDG PET显像对检测淋巴瘤的体内分布及分期灵敏、准确、全面,但难以与活动性淋巴结结核、原发灶不明的淋巴结转移癌相鉴别.18F-FDG PET显像能灵敏、准确地检出淋巴瘤复发及残余病灶,对疗效评价及指导临床治疗有重要价值.

  9. Clinical Application of 18F-FDG PET in Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Choi, Joon Young

    2008-01-01

    This review focuses on the clinical use of 18 F-FDG PET to evaluate solitary pulmonary nodule (SPN) and non-small cell lung cancer (NSCLC). When SPN or mass without calcification is found on chest X-ray or CT, 18 F-FDG PET is an effective modality to differentiate benign from malignant lesions. For initial staging of NSCLC, 18 F-FDG PET is useful, and proved to be cost-effective in several countries. 18 F-FDG PET is useful for detecting recurrence, restaging and evaluating residual tumor after curative therapy in NSCLC. For therapy response assessment, 18 F-FDG PET may be effective after chemotherapy or radiation therapy. 18 F-FDG PET is useful to predict pathological response after neoadjuvant therapy in NSCLC. For radiation therapy planning, 18 F-FDG PET may be helpful, but requires further investigations. PET/CT is better for evaluating NSCLC than conventional PET

  10. Comparison of CT and 18F-FDG PET for Detecting Peritoneal Metastasis on the Preoperative Evaluation for Gastric Carcinoma

    International Nuclear Information System (INIS)

    Lim, Joon Seok; Kim, Myeong Jin; Yun, Mi jin

    2006-01-01

    The aim of our study was to compare the accuracy of CT and 18 F-FDG PET for detecting peritoneal metastasis in patients with gastric carcinoma. One-hundred-twelve patients who underwent a histologic confirmative exam or treatment (laparotomy, n = 107; diagnostic laparoscopy, n = 4; peritoneal washing cytology, n = 1) were retrospectively enrolled. All the patients underwent CT and 18 F-FDG PET scanning for their preoperative evaluation. The sensitivities, specificities and accuracies of CT and 18 FFDG PET imaging for the detection of peritoneal metastasis were calculated and then compared using Fisher's exact probability test (p 18 F-FDG PET imaging for detecting peritoneal metastasis. Based on the original preoperative reports, CT and 18 F-FDG PET showed sensitivities of 76.5% and 35.3% (p = 0.037), specificities of 91.6% and 98.9% (p = 0.035), respectively, and equal accuracies of 89.3% (p = 1.0). The receptor operating characteristics curve analysis showed a significantly higher diagnostic performance for CT (Az 0.878) than for PET (Az = 0.686) (p 0.004). The interobserver agreement for detecting peritoneal metastasis was good (κ value = 0.684) for CT and moderate ((κ value = 0.460) for PET. For the detection of peritoneal metastasis, CT was more sensitive and showed a higher diagnostic performance than PET, although CT had a relatively lower specificity than did PET

  11. [18F]FDG PET/MRI of patients with chronic pain alters management: early experience

    International Nuclear Information System (INIS)

    Biswal, Sandip; Behera, Deepak; Yoon, Dae Hyun; Holley, Dawn; Ith, Ma Agnes Martinez; Carroll, Ian; Smuck, Matthew; Hargreaves, Brian

    2015-01-01

    The chronic pain sufferer is currently faced with a lack of objective tools to identify the source of their pain. The overarching goal is to develop clinical [18F]FDG PET/MRI methods to more accurately localize sites of increased neuronal and muscular metabolism or inflammation as it relates to neurogenic sources of pain and to ultimately improve outcomes of chronic pain sufferers. The aims are to 1) correlate imaging findings with location of pain symptomology, 2) predict location of symptoms based on imaging findings alone and 3) to determine whether the imaging results affect current management decisions. Six patients suffering from chronic lower extremity neuropathic pain (4 complex regional pain syndrome, 1 chronic sciatica and 1 neuropathic pain) have been imaged with a PET/MRI system (time-of-flight PET; 3.0T bore) from mid thorax through the feet. All patients underwent PET/MR imaging one hour after a injection of 10mCi [18F]FDG. Two radiologists evaluated PET/MR images (one blinded and the other unblinded to patient exam/history). ROI analysis showed focal increased [18F]FDG uptake in affected nerves and muscle (approx 2-4 times more) over background tissue in various regions of the body in 5 of 6 patients at the site of greatest pain symptoms and other areas of the body (SUVmax of Target 0.9-4.2 vs. Background 0.2-1.2). The radiologist blind to the patient history/exam was able to correctly identify side/location of the symptoms in 5 out of 6 patients. Imaging results were reviewed with the referring physician, who then determined whether a modification in the management plan was needed: 1/6 no change, 2/6 mild modification (e.g., additional diagnostic test ordered) and 3/6 significant modification.

  12. [18F]FDG PET/MRI of patients with chronic pain alters management: early experience

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Sandip; Behera, Deepak; Yoon, Dae Hyun; Holley, Dawn; Ith, Ma Agnes Martinez; Carroll, Ian; Smuck, Matthew; Hargreaves, Brian [Stanford University School of Medicine, California (United States)

    2015-05-18

    The chronic pain sufferer is currently faced with a lack of objective tools to identify the source of their pain. The overarching goal is to develop clinical [18F]FDG PET/MRI methods to more accurately localize sites of increased neuronal and muscular metabolism or inflammation as it relates to neurogenic sources of pain and to ultimately improve outcomes of chronic pain sufferers. The aims are to 1) correlate imaging findings with location of pain symptomology, 2) predict location of symptoms based on imaging findings alone and 3) to determine whether the imaging results affect current management decisions. Six patients suffering from chronic lower extremity neuropathic pain (4 complex regional pain syndrome, 1 chronic sciatica and 1 neuropathic pain) have been imaged with a PET/MRI system (time-of-flight PET; 3.0T bore) from mid thorax through the feet. All patients underwent PET/MR imaging one hour after a injection of 10mCi [18F]FDG. Two radiologists evaluated PET/MR images (one blinded and the other unblinded to patient exam/history). ROI analysis showed focal increased [18F]FDG uptake in affected nerves and muscle (approx 2-4 times more) over background tissue in various regions of the body in 5 of 6 patients at the site of greatest pain symptoms and other areas of the body (SUVmax of Target 0.9-4.2 vs. Background 0.2-1.2). The radiologist blind to the patient history/exam was able to correctly identify side/location of the symptoms in 5 out of 6 patients. Imaging results were reviewed with the referring physician, who then determined whether a modification in the management plan was needed: 1/6 no change, 2/6 mild modification (e.g., additional diagnostic test ordered) and 3/6 significant modification.

  13. Targeting personalized medicine in a non-Hodgkin lymphoma patient with {sup 18F}-FDG and {sup 18F}-choline PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Thalles H.; Filho, Raul S.; Castro, Ana Carolina G.; Paulino Junior, Eduardo; Mamede, Marcelo, E-mail: mamede.mm@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-02-15

    Early diagnosis and staging of non-Hodgkin lymphoma (NHL) is essential for therapeutic strategy decision. Positron emission tomography/computed tomography (PET/CT) with fluorodeoxyglucose (FDG), a glucose analogue, labeled with fluor-18 ({sup 18F}-FDG) has been used to evaluate staging, therapy response and prognosis in NHL patients. However, in some cases, {sup 18F}-FDG has shown false- -positive uptake due to inflammatory reaction after chemo and/or radiation therapy. In this case report, we present a NHL patient evaluated with {sup 18F}-FDG and {sup 18F}-choline PET/CT scan imaging pre- and post-therapy. {sup 18F}-FDG and {sup 18F}-choline PET/CT were performed for the purpose of tumor staging and have shown intense uptake in infiltrative tissue as well as in the lymph node, but with some mismatching in the tumor. Post-treatment {sup 18F}-FDG and {sup 18F}-choline PET/ CT scans revealed no signs of radiotracer uptake, suggesting complete remission of the tumor. {sup 18F}-choline may be a complimentary tool for staging and assessment of therapeutic response in non-Hodgkin lymphoma, while non-{sup 18F}-FDG tracer can be used for targeted therapy and patient management. (author)

  14. Thoracic staging with {sup 18}F-FDG PET/MR in non-small cell lung cancer - does it change therapeutic decisions in comparison to {sup 18}F-FDG PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Schaarschmidt, Benedikt M. [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany); University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Grueneisen, Johannes; Umutlu, Lale [University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Metzenmacher, Martin [University Duisburg-Essen, Medical Faculty, Department of Medical Oncology, Essen (Germany); Gomez, Benedikt; Ruhlmann, Verena [University Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Gauler, Thomas [University Duisburg-Essen, Medical Faculty, Radiation and Tumour Clinic, Essen (Germany); Roesel, Christian [University Duisburg-Essen, Ruhrlandklinik, Thoracic Surgery and Endoscopy, Essen (Germany); Heusch, Philipp; Antoch, Gerald; Buchbender, Christian [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany)

    2017-02-15

    To investigate whether differences in thoracic tumour staging between {sup 18}F-FDG PET/CT and PET/MR imaging lead to different therapeutic decisions in Non-Small Cell Lung Cancer (NSCLC). Seventy-seven NSCLC patients that underwent whole-body {sup 18}F-FDG PET/CT from the base of skull to the upper thighs and thoracic PET/MR were enrolled in this retrospective study. Thoracic PET/CT and PET/MR images were staged according to the 7th edition of the AJCC staging manual. Staging results of both modalities were discussed separately in a simulated interdisciplinary tumour board and therapeutic decisions based on both imaging modalities were recorded. Descriptive statistics were used to compare the results and reasons for changes in the therapeutic decision were investigated. Staging results differed in 35 % of patients (27 patients) between thoracic PET/CT and PET/MR. Differences were detected when assessing the T-stage in 18 % (n = 14), the N-stage in 23 % (n = 18), and the M-stage in 1 % (n = 1). However, patient therapy management was changed in only six patients (8 %). Despite the variability of thoracic {sup 18}F-FDG PET/CT and PET/MR in TNM-staging, both modalities lead to comparable therapeutic decisions in patients suffering from NSCLC. Hence, {sup 18}F-FDG PET/MR can be considered an possible alternative to {sup 18}F-FDG PET/CT for clinical NSCLC staging. (orig.)

  15. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Hyun, Seung Hyup; Kim, Ho Seong; Lee, Kyung-Han; Kim, Byung-Tae; Choi, Joon Young; Choi, Seong Ho; Choi, Dong Wook; Lee, Jong Kyun; Lee, Kwang Hyuck; Park, Joon Oh

    2016-01-01

    To assess whether intratumoral heterogeneity measured by 18 F-FDG PET texture analysis has potential as a prognostic imaging biomarker in patients with pancreatic ductal adenocarcinoma (PDAC). We evaluated a cohort of 137 patients with newly diagnosed PDAC who underwent pretreatment 18 F-FDG PET/CT from January 2008 to December 2010. First-order (histogram indices) and higher-order (grey-level run length, difference, size zone matrices) textural features of primary tumours were extracted by PET texture analysis. Conventional PET parameters including metabolic tumour volume (MTV), total lesion glycolysis (TLG), and standardized uptake value (SUV) were also measured. To assess and compare the predictive performance of imaging biomarkers, time-dependent receiver operating characteristic (ROC) curves for censored survival data and areas under the ROC curve (AUC) at 2 years after diagnosis were used. Associations between imaging biomarkers and overall survival were assessed using Cox proportional hazards regression models. The best imaging biomarker for overall survival prediction was first-order entropy (AUC = 0.720), followed by TLG (AUC = 0.697), MTV (AUC = 0.692), and maximum SUV (AUC = 0.625). After adjusting for age, sex, clinical stage, tumour size and serum CA19-9 level, multivariable Cox analysis demonstrated that higher entropy (hazard ratio, HR, 5.59; P = 0.028) was independently associated with worse survival, whereas TLG (HR 0.98; P = 0.875) was not an independent prognostic factor. Intratumoral heterogeneity of 18 F-FDG uptake measured by PET texture analysis is an independent predictor of survival along with tumour stage and serum CA19-9 level in patients with PDAC. In addition, first-order entropy as a measure of intratumoral metabolic heterogeneity is a better quantitative imaging biomarker of prognosis than conventional PET parameters. (orig.)

  16. Is 18F-FDG PET/CT useful for distinguishing between primary thyroid lymphoma and chronic thyroiditis?

    Science.gov (United States)

    Nakadate, Masashi; Yoshida, Katsuya; Ishii, Akihiro; Koizumi, Masayuki; Tochigi, Naobumi; Suzuki, Yoshio; Ryu, Yoshiharu; Nakagawa, Tassei; Umehara, Isao; Shibuya, Hitoshi

    2013-09-01

    This study aims to investigate the usefulness of (18)F-FDG PET/CT for distinguishing between primary thyroid lymphoma (PTL) and chronic thyroiditis. We retrospectively reviewed the data of 196 patients with diffuse (18)F-FDG uptake of the thyroid gland and enrolled patients who were diagnosed as having PTL or chronic thyroiditis based on the medical records, pathological findings, and laboratory data. The enrolled patients comprised 10 PTL patients (M/F = 4:6) and 51 chronic thyroiditis patients (M/F = 8:43). Images had been acquired on a PET/CT scanner at 100 minutes after intravenous injection of (18)F-FDG. The PTL group consisted of 7 patients with diffuse large B-cell lymphoma (DLBCL) and 3 with mucosa-associated lymphoid tissue (MALT) lymphoma. The maximum standardized uptake value (SUV(max)) was significantly higher in the PTL group than that in the chronic thyroiditis group (25.3 ± 8.0 and 7.4 ± 3.2, P thyroiditis group (46.1 ± 7.0 HU and 62.1 ± 6.9 HU, P thyroiditis. Thus, (18)F-FDG PET/CT may be useful for distinguishing between PTL and chronic thyroiditis.

  17. Acute and subacute toxicity of 18F-FDG

    International Nuclear Information System (INIS)

    Dantas, Danielle Maia

    2013-01-01

    Before starting clinical trials of a new drug, it is necessary to perform a battery of safety tests for assessing human risk. Radiopharmaceuticals like any new drug must be tested taking into account its specificity, duration of treatment and especially the toxicity of both parties, the unlabeled molecule and its radionuclide, apart from impurities emanating from radiolysis. Regulatory agencies like the Food and Drug Administration - USA (FDA) and the European Medicine Agency (EMEA), establish guidelines for the regulation of production and research of radiopharmaceuticals. In Brazil the production of radiopharmaceuticals was not regulated until the end of 2009, when were established by the National Agency for Sanitary Surveillance (ANVISA) resolutions No. 63, which refers to the Good Manufacturing Practices of Radiopharmaceuticals and No. 64 which seeks the registration of record radiopharmaceuticals. To obtain registration of radiopharmaceuticals are necessary to prove the quality, safety, efficacy and specificity of the drug . For the safety of radiopharmaceuticals must be presented studies of acute toxicity, subacute and chronic toxicity as well as reproductive, mutagenic and carcinogenic. Nowadays IPEN-CNEN/SP produces one of the most important radiopharmaceutical of nuclear medicine, the 18 F-FDG, which is used in many clinical applications, particularly in the diagnosis and staging of tumors. The objective of this study was to evaluate the systemic toxicity (acute/ subacute) radiopharmaceutical 18 F-FDG in an in vivo test system, as recommended by the RDC No. 64, which will serve as a model for protocols toxicity of radiopharmaceuticals produced at IPEN. The following tests were performed: tests of acute and subacute toxicity, biodistribution studies of 18 F-FDG, comet assay and reproductive toxicity. In acute toxicity, healthy rats were injected . (author)

  18. 18F FDG PET/CT in differential diagnosis of Parkinsonian disorders

    International Nuclear Information System (INIS)

    Deepa; Moon, S.; Mahajan, S.; Thapa, P.; Gupta, P.; Sahana; Tripathi, M.; Sharma, R.; Mondal, A.; Batla, A.; Nehru, R.; Kushwaha, S.; Mishra, A.K.

    2010-01-01

    Full text: Differential diagnosis of Parkinsonian disorders can be challenging in the early phase of disease course. Positron Emission Tomography (PET) imaging with 18 F Fluorodeoxyglucose (FDG) has been used to identify characteristic patterns of glucose metabolism in patients with idiopathic Parkinson's Disease (PD) as well as variant forms of Parkinsonism such as Multisystem Atrophy (MSA), Progressive Supranuclear Palsy (PSP) and cortico basal ganglionic degeneration (CBGD). In this study we assessed the utility of 18 F FDG PET/CT in the differential diagnosis Parkinsonian syndromes. 66 Parkinsonian patients with a mean age of 59.6 ± 11.50 years, male: female ratio of 3.12:1, age range of 35-84 years with a disease duration of 2.6 ± .68 years were referred for FDG PET to determine whether their scan patterns could distinguish idiopathic Parkinsons from the Parkinson plus syndromes. Approximately 60 minutes following intravenous injection of 370 MBq of 18 F-FDG, PET/CT scan of the brain was acquired in a whole-body Full Ring PET/CT scanner (Discovery STE16 camera). A low dose CT was obtained on the same area without IV contrast for attenuation correction and coregistration. Images were reconstructed using a 3D VUE algorithm and slices were reformatted into transaxial, coronal and sagittal views. Subsequently the images were processed and visually analyzed on Xeleris workstation. Images were classified by visual analysis into the various subgroups, those with normal to increased basal ganglia uptake were classified into Idiopathic Parkinson's (40/45) and when basal ganglia uptake was decreased they were Parkinsons Plus (19/21). The study demonstrates that 18 F FDG PET performed at the time of initial referral for parkinsonism could accurately classify patients into Parkinson's disease and Parkinson plus subtypes

  19. Estimation of the {beta}+ dose to the embryo resulting from {sup 18}F-FDG administration during early pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti-Fregonara, P.; Trebossen, R.; Maroy, R. [CEA, DSV, I2BM, SHFJ, LIME, Orsay (France); Champion, C. [Univ Paul Verlaine Metz, Inst Phys, Lab Phys Mol et Collis, Metz (France); Hindie, E. [Univ Paris 07, IUH, Ecole Doctorale B2T, Paris (France); Hindie, E. [Hop St Louis, AP-HP, Nucl Med Serv, F-75475 Paris 10 (France)

    2008-07-01

    Although {sup 18}F-FDG examinations are widely used, data are lacking on the dose to human embryo tissues in cases of exposure in early pregnancy. Although the photon component can easily be estimated from available data on the pharmacokinetics of {sup 18}F-FDG in female organs and from phantom measurements (considering the uterus as the target organ), the intensity of embryo tissue uptake, which is essential for deriving the {beta}+ dose, is not known. We report the case of a patient who underwent {sup 18}F-FDG PET/CT for tumor surveillance and who was later found to have been pregnant at the time of the examination(embryo age, 8 wk). Methods: The patient received 320 MBq of {sup 18}F-FDG. Imaging started with an unenhanced CT scan 1 h after the injection, followed by PET acquisition. PET images were used to compute the total number of {beta}+ emissions in embryo tissues per unit of injected activity, from standardized uptake value (SUV) measurements corrected for partial-volume effects. A Monte Carlo track structure code was then used to derive the {beta}+ self-dose and the {beta}+ cross-dose from amniotic fluid. The photon and CT doses were added to obtain the final dose received by the embryo. Results: The mean SUV in embryo tissues was 2.7, after correction for the partial-volume effect. The mean corrected SUV of amniotic fluid was 1.1. Monte Carlo simulation showed that the {beta}+ dose to the embryo (self-dose plus cross-dose from amniotic fluid) was 1.8 E-2 mGy per MBq of injected {sup 18}F-FDG. Based on MIRD data for the photon dose to the uterus, the estimated photon dose to the embryo was 1.5 E-2 mGy/MBq. Thus, the specific {sup 18}F-FDG dose to the embryo was 3.3 E-2 mGy/MBq (10.6 mGy in this patient). The CT scan added a further 8.3 mGy. Conclusion: The dose to the embryo is 3.3 E-2 mGy/MBq of {sup 18}F-FDG. The {beta}+ dose contributes 55% of the total dose. This value is higher than previous estimates in late nonhuman-primate pregnancies. (authors)

  20. Characterizing IgG4-related disease with 18F-FDG PET/CT: a prospective cohort study

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Ma, Yanru; Niu, Na; Wang, Xinwei; Li, Fang; Zhu, Zhaohui; Chen, Hua; Lin, Wei; Zhang, Fengchun; Zhang, Wen; Xiao, Yu; Liang, Zhiyong

    2014-01-01

    IgG4-related disease (IgG4-RD) is an increasingly recognized clinicopathological disorder with immune-mediated inflammatory lesions mimicking malignancies. A cohort study was prospectively designed to investigate the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in characterizing IgG4-RD. Thirty-five patients diagnosed with IgG4-RD according to the consensus criteria were enrolled with informed consent. All patients underwent baseline 18 F-FDG PET/CT evaluation. Among them, 29 patients underwent a second 18 F-FDG PET/CT scan after 2 to 4 weeks of steroid-based therapy. All 35 patients were found with 18 F-FDG-avid hypermetabolic lesion(s); 97.1 % (34/35) of these patients showed multi-organ involvement. Among the 35 patients, 71.4 % (25/35) patients were found with more organ involvement on 18 F-FDG PET/CT than conventional evaluations including physical examination, ultrasonography, and computed tomography (CT). 18 F-FDG PET/CT demonstrated specific image characteristics and pattern of IgG4-RD, including diffusely elevated 18 F-FDG uptake in the pancreas and salivary glands, patchy lesions in the retroperitoneal region and vascular wall, and multi-organ involvement that cannot be interpreted as metastasis. Comprehensive understanding of all involvement aided the biopsy-site selection in seven patients and the recanalization of ureteral obstruction in five patients. After 2 to 4 weeks of steroid-based therapy at 40 mg to 50 mg prednisone per day, 72.4 % (21/29) of the patients showed complete remission, whereas the others exhibited > 81.8 % decrease in 18 F-FDG uptake. F-FDG PET/CT is a useful tool for assessing organ involvement, monitoring therapeutic response, and guiding interventional treatment of IgG4-RD. The image pattern is suggested to be updated into the consensus diagnostic criteria for IgG4-RD. (orig.)

  1. The precision of textural analysis in {sup 18}F-FDG-PET scans of oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Doumou, Georgia; Siddique, Musib [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Tsoumpas, Charalampos [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); University of Leeds, The Division of Medical Physics, Leeds (United Kingdom); Goh, Vicky [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Guy' s and St Thomas' Hospitals NHS Foundation Trust, Radiology Department, London (United Kingdom); Cook, Gary J. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Guy' s and St Thomas' Hospitals NHS Foundation Trust, The PET Centre, London (United Kingdom); University of Leeds, The Division of Medical Physics, Leeds (United Kingdom); St Thomas' Hospital, Clinical PET Centre, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London (United Kingdom)

    2015-09-15

    Measuring tumour heterogeneity by textural analysis in {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) provides predictive and prognostic information but technical aspects of image processing can influence parameter measurements. We therefore tested effects of image smoothing, segmentation and quantisation on the precision of heterogeneity measurements. Sixty-four {sup 18}F-FDG PET/CT images of oesophageal cancer were processed using different Gaussian smoothing levels (2.0, 2.5, 3.0, 3.5, 4.0 mm), maximum standardised uptake value (SUV{sub max}) segmentation thresholds (45 %, 50 %, 55 %, 60 %) and quantisation (8, 16, 32, 64, 128 bin widths). Heterogeneity parameters included grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRL), neighbourhood grey-tone difference matrix (NGTDM), grey-level size zone matrix (GLSZM) and fractal analysis methods. The concordance correlation coefficient (CCC) for the three processing variables was calculated for each heterogeneity parameter. Most parameters showed poor agreement between different bin widths (CCC median 0.08, range 0.004-0.99). Segmentation and smoothing showed smaller effects on precision (segmentation: CCC median 0.82, range 0.33-0.97; smoothing: CCC median 0.99, range 0.58-0.99). Smoothing and segmentation have only a small effect on the precision of heterogeneity measurements in {sup 18}F-FDG PET data. However, quantisation often has larger effects, highlighting a need for further evaluation and standardisation of parameters for multicentre studies. (orig.)

  2. Clearance of the high intestinal 18F-FDG uptake associated with metformin after stopping the drug

    International Nuclear Information System (INIS)

    Oezuelker, Tamer; Oezuelker, Filiz; Oezpacaci, Tevfik; Mert, Meral

    2010-01-01

    This study was done to determine whether interruption of metformin before 18 F-FDG PET/CT imaging could prevent the increased 18 F-FDG uptake in the intestine caused by this drug. Included in the study were 41 patients with known type 2 diabetes mellitus who were referred to our department for evaluation of various neoplastic diseases. Patients underwent two 18 F-FDG PET/CT scans, the first while they were on metformin and the second after they had stopped metformin. They stopped metformin and did not take any other oral antidiabetic medication starting 3 days before the second study and their blood glucose level was regulated with insulin when necessary to keep it within the range 5.55-8.33 mmol/l. FDG uptake was graded visually according to a four-point scale and semiquantitatively by recording the maximum standardized uptake value (SUVmax) in different bowel segments. A paired-samples t-test method was used to determine whether there was a significant difference between SUVmax measurements and visual analysis scores of the metabolic activity of the bowel in the PET/CT scans before and after stopping metformin. Diffuse and intense 18 F-FDG uptake was observed in bowel segments of patients, and the activity in the colon was significantly decreased both visually and semiquantitatively in PET/CT scans performed after patients stopped metformin (p 0.05). Metformin causes an increase in 18 F-FDG uptake in the bowel and stopping metformin before PET/CT study significantly decreased this unwanted uptake, especially in the colon, facilitating the interpretation of images obtained from the abdomen and preventing the obliteration of lesions. (orig.)

  3. The impact of {sup 18}F-FDG PET on the management of patients with suspected large vessel vasculitis

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin; Rasch, Helmut; Berg, Scott; Ng, Quinn K.T.; Mueller-Brand, Jan; Walter, Martin A. [University Hospital, Institute of Nuclear Medicine, Basel (Switzerland); Briel, Matthias [University Hospital Basel, Institute for Clinical Epidemiology and Biostatistics, Basel (Switzerland); McMaster University, Department of Clinical Epidemiology and Biostatistics, Hamilton, ON (Canada); Daikeler, Thomas; Tyndall, Alan [University Hospital Basel, Department of Rheumatology, Basel (Switzerland); Walker, Ulrich A. [Felix Platter Spital, Department of Rheumatology of Basle University, Basel (Switzerland); Raatz, Heike [University Hospital Basel, Institute for Clinical Epidemiology and Biostatistics, Basel (Switzerland); Jayne, David [Addenbrooke' s Hospital, Vasculitis and Lupus Unit, Cambridge (United Kingdom); Koetter, Ina [University Hospital Tuebingen, Department of Internal Medicine II, Tuebingen (Germany); Blockmans, Daniel [University Hospital Gasthuisberg, Department of General Internal Medicine, Leuven (Belgium); Cid, Maria C.; Prieto-Gonzalez, Sergio [Hospital Clinic, University of Barcelona, IDIBAPS, Department of Systemic Autoimmune Diseases, 08036-Barcelona (Spain); Lamprecht, Peter [University Hospital of Schleswig-Holstein, Department of Rheumatology, Luebeck (Germany); Salvarani, Carlo [Arcispedale S. Maria Nuova, Department of Rheumatology, Reggio Emilia (Italy); Karageorgaki, Zaharenia [Agios Dimitrios General Hospital, 1st Department of Internal Medicine, Thessaloniki (Greece); Watts, Richard [University of East Anglia, Norwich Medical School, Norwich (United Kingdom); Ipswich Hospital NHS Trust, Ipswich (United Kingdom); Luqmani, Raashid [Nuffield Orthopaedic Centre, Department of Rheumatology, Oxford (United Kingdom)

    2012-02-15

    We aimed to assess the impact of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on the management of patients with suspected large vessel vasculitis. An international expert panel determined diagnoses and clinical management in patients with suspected large vessel vasculitis, with and without the results of {sup 18}F-FDG PET, respectively. The accuracy of the clinical diagnosis and the resulting clinical management with and without the {sup 18}F-FDG PET results were compared using logistic regression models. The analysis included 30 patients referred to a tertiary care centre with large vessel vasculitis and 31 controls. {sup 18}F-FDG PET had an overall sensitivity of 73.3% [95% confidence interval (CI) 54.1-87.7%], a specificity of 83.9% (95% CI 66.3-94.5%), a positive predictive value of 81.5% (95% CI 61.9-93.7%) and a negative predictive value of 76.5% (95% CI 58.8-89.3%). The diagnostic accuracy of {sup 18}F-FDG PET was higher in patients not receiving immunosuppressive drugs (93.3 vs 64.5%, p = 0.006). Taken in context with other available diagnostic modalities, the addition of {sup 18}F-FDG PET increased the clinical diagnostic accuracy from 54.1 to 70.5% (p = 0.04). The addition of {sup 18}F-FDG PET increased the number of indicated biopsies from 22 of 61 patients (36.1%) to 25 of 61 patients (41.0%) and changed the treatment recommendation in 8 of 30 patients (26.7%) not receiving immunosuppressive medication and in 7 of 31 patients (22.6%) receiving immunosuppressive medication. {sup 18}F-FDG PET is a sensitive and specific imaging tool for large vessel vasculitis, especially when performed in patients not receiving immunosuppressive drugs. It increases the overall diagnostic accuracy and has an impact on the clinical management in a significant proportion of patients. (orig.)

  4. Value of {sup 18}F-FDG PET/CT in the detection of ovarian malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tae Gyu; Lee, Si Nae; Park, So Yeon [Dept. of Nuclear Medicine, Korea University Guro Hospital, Seoul (Korea, Republic of); and others

    2015-03-15

    Ovarian cancer is a leading cause of gynecologic malignancy. As symptoms of ovarian cancer are nonspecific, only 20 % of ovarian cancers are diagnosed while they are still limited to the ovaries. Thus, early and accurate detection of disease is important for an improved prognosis. For the accurate and effective diagnosis of ovarian malignancy on {sup 18}F-fluorodeoxyglucose ({sup 18}F--FDG) positron emission tomography/computed tomography (PET/CT), we analyzed several parameters, including visual assessment. A total of 51 peritoneal lesions in 19 patients who showed ovarian masses with diffuse peritoneal infiltration were enrolled. Twelve patients were confirmed to have ovarian malignancy and seven patients with benign disease by pathologic examination. All patients were examined by {sup 18}F--FDG PET/CT, and an additional 2-h delayed {sup 18}F--FDG PET/CT was also performed for 15 patients with 42 peritoneal lesions. We measured semiquantitative parameters including maximum and mean standardized uptake values (SUV{sub max}, SUV{sub mean}), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on a 1-h initial {sup 18}F--FDG PET/CT image (Parameter1) and on a 2-h delayed image (Parameter2). Additionally, retention indices of each parameter were calculated, and each parameter among the malignant and benign lesions was compared by Mann-Whitney U test. We also assessed the visual characteristics of each peritoneal lesion, including metabolic extent, intensity, shape, heterogeneity, and total visual score. Associations between visual grades and malignancy were analyzed using linear by linear association methods. Moreover, a receiver operating characteristic (ROC) curve was analyzed to compare the effectiveness of significant parameters. In a comparison between the malignant and benign groups in the analysis of 51 total peritoneal lesions, SUV{sub max1}, SUV{sub mean1}, and TLG1 showed significant differences. Also, in the analysis of 42 peritoneal lesions

  5. Chondromyxoid fibroma of the rib mimics a chondrosarcoma on 18F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Makis, William (Dept. of Nuclear Medicine, Brandon Regional Health Centre, Brandon (Canada)), email: makisw79@yahoo.com; Ciarallo, Anthony; Lisbona, Robert (Dept. of Nuclear Medicine, Royal Victoria Hospital, McGill Univ. Health Centre, Montreal (Canada))

    2011-06-15

    Chondromyxoid fibroma (CMF) is a rare benign bone tumor of chondroid origin that occurs mostly in the metaphyses of long bones. CMF can occasionally mimic a chondrosarcoma on CT, and the literature on the 18F-FDG PET/CT imaging characteristics of CMF tumors is limited. In the presented case, a large histologically proven CMF chest wall mass was initially misinterpreted as a chondrosarcoma. This case highlights a potential pitfall in the PET/CT evaluation of these rare benign bone tumors

  6. Does Antibiotic Treatment Affect the Diagnostic Accuracy of 18F-FDG PET/CT Studies in Patients with Suspected Infectious Processes?

    Science.gov (United States)

    Kagna, Olga; Kurash, Marina; Ghanem-Zoubi, Nesrin; Keidar, Zohar; Israel, Ora

    2017-11-01

    18 F-FDG PET/CT plays a significant role in the assessment of various infectious processes. Patients with suspected or known sites of infection are often referred for 18 F-FDG imaging while already receiving antibiotic treatment. The current study assessed whether antibiotic therapy affected the detectability rate of infectious processes by 18 F-FDG PET/CT. Methods: A 5-y retrospective study of all adult patients who underwent 18 F-FDG PET/CT in search of a focal source of infection was performed. The presence, duration, and appropriateness of antibiotic treatment before 18 F-FDG imaging were recorded. Diagnosis of an infectious process was based on microbiologic or pathologic data as well as on clinical and radiologic follow-up. Results: Two hundred seventeen patients underwent 243 PET/CT studies in search of a focal source of infection and were included in the study. Sixty-seven studies were excluded from further analysis because of a final noninfectious etiology or lack of further follow-up or details regarding the antibiotic treatment. The final study population included 176 18 F-FDG PET/CT studies in 153 patients (107 men, 46 women; age range, 18-86 y). One hundred nineteen studies (68%) were performed in patients receiving antibiotic therapy for a range of 1-73 d. A diagnosis of infection was made in 107 true-positive cases (61%), including 63 studies (59%) in patients receiving appropriate antibiotic therapy started before the performance of the 18 F-FDG PET/CT study. There were 52 true-negative (29%) and 17 false-positive (10%) 18 F-FDG PET/CT studies. No false-negative results were found. Conclusion: 18 F-FDG PET/CT correctly identified foci of increased uptake compatible with infection in most patients, including all patients receiving appropriate antimicrobial therapy, with no false-negative cases. On the basis of the current study results, the administration of antibiotics appears to have no clinically significant impact on the diagnostic accuracy of 18

  7. Acute and subacute toxicity of 18F-FDG

    International Nuclear Information System (INIS)

    Dantas, Danielle M.; Silva, Natanael G. da; Manetta, Ana Paula; Osso Junior, Joao A.

    2013-01-01

    Before initiating clinical trials of a new drug, it is necessary to perform a battery of safety tests, for evaluating the risk in humans. Radiopharmaceuticals must be tested taking into account its specificity, duration of treatment and especially the toxicity of both, the unlabelled molecule and its radionuclide, apart from impurities emanating from radiolysis. In Brazil the production of radiopharmaceuticals was not regulated until the end of 2009, when ANVISA established the Resolutions No. 63, which refers to the Good Manufacturing Practices of radiopharmaceuticals and No. 64 which seeks the registration of radiopharmaceuticals. Nowadays IPEN produces one of the most important radiopharmaceutical for nuclear medicine, the 18 F-FDG, which is used in the diagnosis. The objective of this study is to assess systemic toxicity (acute / subacute) of 18 F-FDG in an in vivo test system, as recommended by the RDC No. 64. In acute tests the administration occurred on the first day, healthy rats were observed for 14 days reporting their clinical signs and water consumption, and on the 15th day they were euthanized and necropsied. The assay of subacute toxicity observations were made over a period of 28 days and the first dose was administered at the beginning of the test and after a fortnight a second dose was administered. The parameters evaluated were the necropsy, histopathology of target organs, hematology studies and liver and kidney function. The results are being processed and evaluated. Initial observations did not show any acute toxicity in animals when compared to control animals. (