WorldWideScience

Sample records for fusion hohlraum plasmas

  1. Impeding hohlraum plasma stagnation in inertial-confinement fusion.

    Science.gov (United States)

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M J; Rinderknecht, H G; Zylstra, A B; Petrasso, R D; Amendt, P A; Landen, O L; Mackinnon, A J; Town, R P J; Wilks, S C; Betti, R; Meyerhofer, D D; Soures, J M; Hund, J; Kilkenny, J D; Nikroo, A

    2012-01-13

    This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.

  2. Suppression of Stimulated Brillouin Scattering in multiple-ion species inertial confinement fusion Hohlraum Plasmas

    International Nuclear Information System (INIS)

    Neumayer, P

    2007-01-01

    A long-standing problem in the field of laser-plasma interactions is to successfully employ multiple-ion species plasmas to reduce stimulated Brillouin scattering (SBS) in inertial confinement fusion (ICF) hohlraum conditions. Multiple-ion species increase significantly the linear Landau damping for acoustic waves. Consequently, recent hohlraum designs for indirect-drive ignition on the National Ignition Facility investigate wall liner material options so that the liner gain for parametric instabilities will be below threshold for the onset SBS. Although the effect of two-ion species plasmas on Landau damping has been directly observed with Thomson scattering, early experiments on SBS in these plasmas have suffered from competing non-linear effects or laser beam filamentation. In this study, a reduction of SBS scattering to below the percent level has been observed in hohlraums at Omega that emulate the plasma conditions in an indirect drive ICF experiments. These experiments have measured the laser-plasma interaction processes in ignition-relevant high-electron temperature regime demonstrating Landau damping as a controlling process for SBS. The hohlraums have been filled with various fractions of CO 2 and C 3 H 8 varying the ratio of the light (H) to heavy (C and O) ion density from 0 to 2.6. They have been heated by 14.5 kJ of 351-nm light, thus increasing progressively Landau damping by an order of magnitude at constant electron density and temperature. A delayed 351-nm interaction beam, spatially smoothed to produce a 200-(micro)m laser spot at best focus, has propagated along the axis of the hohlraum. The backscattered light, both into the lens and outside, the transmitted light through the hohlraum plasma and the radiation temperature of the hohlraum has been measured. For ignition relevant laser intensities (3-9 10 14 Wcm -2 ), we find that the SBS reflectivity scales as predicted with Landau damping from >30% to <1%. Simultaneously, the hohlraum radiation

  3. Laser plasma interactions in hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.L.

    1994-10-05

    Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light on the Nova laser. Considerable attention is being given to the scaling of this excellent coupling to the larger hohlraums for an ignition target. Various instability control mechanisms such as large plasma wave damping and laser beam incoherence are discussed, as well as scaling experiments to check the instability levels.

  4. Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments

    International Nuclear Information System (INIS)

    Li, C.K.; Séguin, F.H.; Frenje, J.A.; Sinenian, N.; Rosenberg, M.J.; Manuel, M.J.-E; Rinderknecht, H.G.; Zylstra, A.B.; Petrasso, R.D.; Amendt, P.A.; Landen, O.L.; Mackinnon, A.J.; Town, R.P.J.; Wilks, S.C.; Betti, R.; Meyerhofer, D.D.; Soures, J.M.; Hund, J.; Kilkenny, J.D.; Nikroo, A.

    2013-01-01

    Proton radiography of the spatial structure and temporal evolution of plasma blowing off from a hohlraum wall reveals how the fill gas compresses the wall blow-off, inhibits plasma jet formation and impedes plasma stagnation in the hohlraum interior. The roles of spontaneously generated electric and magnetic fields in hohlraum dynamics and capsule implosions are demonstrated. The heat flux is shown to rapidly convect the magnetic field due to the Nernst effect, which is shown to be ∼10 times faster than convection by the plasma fluid from expanded wall blow-off (v N ∼ 10v). This leads to inhibition of heat transfer from the gas region in the laser beam paths to the surrounding cold gas, resulting in a local plasma temperature increase. The experiments show that interpenetration of the two materials (gas and wall) occurs due to the classical Rayleigh–Taylor instability as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blow-off. This experiment provides physics insight into the effects of fill gas on x-ray-driven implosions, and would impact the ongoing ignition experiments at the National Ignition Facility. (paper)

  5. Hohlraum manufacture for inertial confinement fusion

    International Nuclear Information System (INIS)

    Foreman, L.R.; Gobby, P.; Bartos, J.

    1994-01-01

    Hohlraums are an integral part of indirect drive targets for Inertial Confinement Fusion (ICF) research. Hohlraums are made by an electroforming process that combines elements of micromachining and coating technology. The authors describe how these target element are made and extension of the method that allow fabrication of other, more complex target components

  6. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  7. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    International Nuclear Information System (INIS)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-01-01

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed

  8. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    Science.gov (United States)

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  9. Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept

    International Nuclear Information System (INIS)

    Cuneo, Michael E.; Vesey, Roger A.; Porter, John L. Jr.; Chandler, Gordon A.; Fehl, David L.; Gilliland, Terrance L.; Hanson, David L.; McGurn, John S.; Reynolds, Paul G.; Ruggles, Laurence E.; Seamen, Hans; Spielman, Rick B.; Struve, Ken W.; Stygar, William A.; Simpson, Walter W.; Torres, Jose A.; Wenger, David F.; Hammer, James H.; Rambo, Peter W.; Peterson, Darrell L.

    2001-01-01

    Initial experiments to study the Z-pinch-driven hohlraum high-yield inertial confinement fusion (ICF) concept of Hammer, Tabak, and Porter [Hammer et al., Phys. Plasmas 6, 2129 (1999)] are described. The relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ('hohlraum energetics') is well understood from zero-dimensional semianalytic, and two-dimensional view factor and radiation magnetohydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pinch-driven secondary hohlraum (26±5 TW), indicating the concept could scale to fusion yields of >200 MJ. A novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry has also been developed. This source will permit investigation of the pinch power balance and hohlraum geometry requirements for ICF relevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)

  10. First laser-plasma interaction and hohlraum experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; Holder, J; McDonald, J W; Niemann, C; Mackinnon, A J; Hammel, B A [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550 (United States)

    2005-12-15

    Recently the first laser-plasma interaction and hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive inertial confinement fusion designs. The effects of laser beam smoothing by spectral dispersion and polarization smoothing on the intense (2 x 10{sup 15} W cm{sup -2}) beam propagation in gas-filled tubes has been studied at up to 7 mm plasma scales as found in indirect drive gas filled ignition hohlraum designs. These experiments have shown the expected full propagation without filamentation and beam break up when using full laser smoothing. In addition, vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the Nova and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment using in analytical models and radiation hydrodynamics calculations with the code LASNEX has been proven in these studies. The comparison of these results with modelling will be discussed.

  11. Mitigation of stimulated Raman scattering in hohlraum plasmas

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Rose, H A; Goldman, S R; Froula, D H; Ross, J S; Stevenson, R M; Lushnikov, P M

    2008-01-01

    One aspect of recent research to control Stimulated Raman Scattering (SRS) in hohlraum plasmas is the investigation of risk mitigation strategies for indirect drive inertial confinement fusion. Experimental tests of these strategies, based on prior theoretical and experimental knowledge of SRS, are performed in hohlraum experiments. In the last year, two strategies have been investigated. The first is the use of high Z dopants to reduce SRS backscatter. Forward stimulated Brillouin scattering (FSBS) could lead to beam spray reducing SRS. Since FSBS depends on the electron temperature and thermal effects depend strongly on Z 2 , a small amount of a high Z dopant, 1-2%, can have a large effect. Experiments have been conducted at the Omega laser to test this theory by varying the amount of Xe dopant in neo-pentane gas filled hohlraums. The experimental measurements do show a decrease in SRS backscatter as Xe dopant is added. However, there are still uncertainties regarding the responsible mechanism since increases inverse-Bremsstrahlung absorption of the SRS light may play a role. The second strategy investigated is using high kλ D plasmas to reduce SRS backscatter. Experiments conducted at the Omega laser facility in hohlraum plasmas determined the critical onset intensity for a range of kλ D . A scaling of the critical onset intensity as a function of kλ D has been determined

  12. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  13. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  14. Laser plasma interaction in rugby-shaped hohlraums

    Science.gov (United States)

    Masson-Laborde, P.-E.; Philippe, F.; Tassin, V.; Monteil, M.-C.; Gauthier, P.; Casner, A.; Depierreux, S.; Seytor, P.; Teychenne, D.; Loiseau, P.; Freymerie, P.

    2014-10-01

    Rugby shaped-hohlraum has proven to give high performance compared to a classical similar-diameter cylinder hohlraum. Due to this performance, this hohlraum has been chosen as baseline ignition target for the Laser MegaJoule (LMJ). Many experiments have therefore been performed during the last years on the Omega laser facility in order to study in details the rugby hohlraum. In this talk, we will discuss the interpretation of these experiments from the point of view of the laser plasma instability problem. Experimental comparisons have been done between rugby, cylinder and elliptical shape rugby hohlraums and we will discuss how the geometry differences will affect the evolution of laser plasma instabilities (LPI). The efficiency of laser smoothing techniques on these instabilities will also be discussed as well as gas filling effect. The experimental results will be compared with FCI2 hydroradiative calculations and linear postprocessing with Piranah. Experimental Raman and Brillouin spectrum, from which we can infer the location of the parametric instabilities, will be compared to simulated ones, and will give the possibility to compare LPI between the different hohlraum geometries.

  15. Prolate-Spheroid ('Rugby-Shaped') Hohlraum for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.

    2007-01-01

    A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy

  16. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    Science.gov (United States)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  17. Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z

    International Nuclear Information System (INIS)

    Vesey, Roger A.; Cuneo, Michael E.; Porter, John L. Jr.; Adams, Richard G.; Aragon, Rafael A.; Rambo, Patrick K.; Ruggles, Laurence E.; Simpson, Walter W.; Smith, Ian C.; Bennett, Guy R.

    2003-01-01

    The double Z-pinch hohlraum high-yield concept [Hammer et al., Phys. Plasmas 6, 2129 (1999)] utilizes two 63-MA Z pinches to heat separate primary hohlraums at either end of a secondary hohlraum containing the cryogenic fusion capsule. Recent experiments on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories have developed an advanced single-sided power feed, double Z-pinch load to study radiation symmetry and pinch power balance using implosion capsules [Cuneo et al., Phys. Rev. Lett. 88, 215004 (2002)]. Point-projection x-ray imaging with the Z-Beamlet Laser mapped the trajectory and distortion of 2-mm diameter plastic ablator capsules. Using the backlit capsule distortion as a symmetry diagnostic, the ability to predictably tune symmetry at the 2 Legendre mode asymmetry coefficient over a range of ±6% (±2% considering points nearest the optimum) was achieved by varying the length of the cylindrical secondary hohlraum containing the capsule, in agreement with viewfactor and radiation-hydrodynamics simulations

  18. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120--160 eV

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L. (and others)

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60{+-}20 kJ of x rays with a peak power of 13{+-}4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122{+-}6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155{+-}8 eV -- providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh--Taylor instability in the r--z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approx}40% with only a 3%--5% decrease in peak temperature, in agreement with measurements.

  19. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120--160 eV

    International Nuclear Information System (INIS)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.

    2000-01-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV -- providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh--Taylor instability in the r--z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH 2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ∼40% with only a 3%--5% decrease in peak temperature, in agreement with measurements

  20. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120-160 eV

    Science.gov (United States)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.; Bowers, R. L.; Matuska, W.

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ˜40% with only a 3%-5% decrease in peak temperature, in agreement with measurements.

  1. Laser beam smoothing and backscatter saturation processes in plasmas relevant to national ignition facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Cohen, B.I.

    2001-01-01

    We have used gas-filled targets irradiated by the Nova laser to simulate National Ignition Facility (NIF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3ω, 2-410 15 Wcm -2 ) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable. (author)

  2. Numerical simulations of inertial confinement fusion hohlraum with LARED-integration code

    International Nuclear Information System (INIS)

    Li Jinghong; Li Shuanggui; Zhai Chuanlei

    2011-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happened in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (author)

  3. Laser-plasma interactions and implosion symmetry in rugby hohlraums

    Science.gov (United States)

    Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.

    2011-10-01

    Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Mode-selective symmetry control for indirect-drive inertial confinement fusion hohlraums

    International Nuclear Information System (INIS)

    Vesey, R. A.; Slutz, S. A.; Herrmann, M. C.; Mehlhorn, T. A.; Campbell, R. B.

    2008-01-01

    Achieving a high degree of radiation symmetry is a critical feature of target designs for indirect-drive inertial confinement fusion. Typically, the radiation flux incident on the capsule is required to be uniform to 1% or better. It is generally possible to design a hohlraum that provides low values of higher-order asymmetry (Legendre mode P 10 and above) due to geometric averaging effects. Because low-order intrinsic asymmetry (e.g., Legendre modes P 2 and P 4 ) are less strongly reduced by geometric averaging alone, the development of innovative control techniques has been an active area of research in the inertial fusion community over the years. Shields placed inside the hohlraum are one example of a technique that has often been proposed and incorporated into hohlraum target designs. Simple mathematical considerations are presented indicating that radiation shields may be designed to specifically tune lower-order modes (e.g., P 4 ) without deleterious effects on the higher order modes. Two-dimensional view factor and radiation-hydrodynamics simulations confirm these results and support such a path to achieving a highly symmetric x-ray flux. The term ''mode-selective'' is used because these shields, essentially ring structures offset from the capsule, are designed to affect only a specific Legendre mode (or multiple modes) of interest

  5. 2D simulations of hohlraum targets for laser-plasma experiments and ion stopping measurement in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Basko, M.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Maruhn, J.; Tauschwitz, Anna [Frankfurt Univ. (Germany); Novikov, V.G.; Grushin, A.S. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2011-12-15

    An attractive way to create uniform plasma states at high temperatures and densities is by using hohlraums - cavities with heavy-metal walls that are either directly or indirectly heated by intense laser pulses to x-ray temperatures of tens and hundreds electron volts. A sample material, whose plasma state is to be studied, can be placed inside such a hohlraum (usually in the form of a low-density foam) and uniformly heated to a high temperature. In this case a high-Z hohlraum enclosure serves a double purpose: it prevents the hot plasma from rapid disassembly due to hydrodynamic expansion and, at the same time, suppresses its rapid radiative cooling by providing high diffusive resistivity for X-rays. Of course, both the inertial and the thermal confinement of high-temperature plasmas can be achieved only for a limited period of time - on the order of nanoseconds for millimeter-scale hohlraums. Some time ago such hohlraum targets were proposed for measurements of the stopping power of hot dense plasmas for fast ions at GSI (Darmstadt). Theoretical modeling of hohlraum targets has always been a challenging task for computational physics because it should combine multidimensional hydrodynamic simulations with the solution of the spectral transfer equation for thermal radiation. In this work we report on our latest progress in this direction, namely, we present the results of 2D (two-dimensional) simulations with a newly developed radiation-hydrodynamics code RALEF-2D of two types of the hohlraum targets proposed for experiments on the PHELIX laser at GSI. The first configuration is a simple spherical hohlraum with gold walls and empty interior, which has two holes - one for laser beam entrance, and the other for diagnostics. The hohlraums of this type have already been used in several experimental sessions with the NHELIX and PHELIX lasers at GSI. The second type is a two-chamber cylindrical hohlraum with a characteristic {omega}-shaped cross-section of the enclosure

  6. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  7. First hohlraum drive studies on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.L.; Landen, O.L.; Suter, L.J.; Schein, J.; Holder, J.; Campbell, K.; Glenzer, S.H.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Schneider, M.S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2006-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] using the first four laser beams have activated the indirect-drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 9 TW, 1 to 9 ns long square pulses and energies of up to 17 kJ to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed previously at other laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  8. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  9. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  10. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  11. Gas-filled hohlraum experiments at the National Ignition Facility

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Goldman, S.R.; Kline, J.L.; Dodd, E.S.; Gautier, C.; Grim, G.P.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.; Schmidt, D.W.; Workman, J.B.; Braun, D.G.; Dewald, E.L.; Landen, O.L.; Campbell, K.M.; Holder, J.P.; MacKinnon, A.J.; Niemann, C.; Schein, J.

    2006-01-01

    Experiments done at the National Ignition Facility laser [J. A. Paisner, E. M. Campbell, and W. Hogan, Fusion Technol. 26, 755 (1994)] using gas-filled hohlraums demonstrate a key ignition design feature, i.e., using plasma pressure from a gas fill to tamp the hohlraum-wall expansion for the duration of the laser pulse. Moreover, our understanding of hohlraum energetics and the ability to predict the hohlraum soft-x-ray drive has been validated in ignition-relevant conditions. Finally, the laser reflectivity from stimulated Raman scattering in the fill plasma, a key threat to hohlraum performance, is shown to be suppressed by choosing a design with a sufficiently high ratio of electron temperature to density

  12. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  13. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  14. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    International Nuclear Information System (INIS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  15. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility

    Directory of Open Access Journals (Sweden)

    Yaohua Chen

    2017-03-01

    Full Text Available We present our recent laser-plasmas instability (LPI comparison experiment at the SGIII laser facility between the spherical and cylindrical hohlraums. Three kinds of filling are considered: vacuum, gas-filling with or without a capsule inside. A spherical hohlraum of 3.6 mm in diameter, and a cylindrical hohlraum of 2.4 mm × 4.3 mm are used. The capsule diameter is 0.96 mm. A flat-top laser pulse with 3 ns duration and up to 92.73 kJ energy is used. The experiment has shown that the LPI level in the spherical hohlraum is close to that of the outer beam in the cylindrical hohlraum, while much lower than that of the inner beam. The experiment is further simulated by using our 2-dimensional radiation hydrodynamic code LARED-Integration, and the laser back-scattering fraction and the stimulated Raman scatter (SRS spectrum are post-processed by the high efficiency code of laser interaction with plasmas HLIP. According to the simulation, the plasma waves are strongly damped and the SRS is mainly developed at the plasma conditions of electron density from 0.08 nc to 0.1 nc and electron temperature from 1.5 keV to 2.0 keV inside the hohlraums. However, obvious differences between the simulation and experiment are found, such as that the SRS back-scattering is underestimated, and the numerical SRS spectrum peaks at a larger wavelength and at a later time than the data. These differences indicate that the development of a 3D radiation hydrodynamic code, with more accurate physics models, is mandatory for spherical hohlraum study.

  16. Plasma nuclear fusion method

    International Nuclear Information System (INIS)

    Yamazaki, Shunpei; Miyanaga, Shoji; Wakaizumi, Kazuhiro; Takemura, Yasuhiko.

    1990-01-01

    Nuclear fusion reactions are attained by plasma gas phase reactions using magnetic fields and microwaves, and the degree of the reactions is controlled. That is, deuterium (D 2 ) is introduced into a plasma container by utilizing the resonance of microwaves capable of generating plasmas at high density higher by more than 10 - 10 3 times as compared with the high frequency and magnetic fields, and an electric energy is applied to convert gaseous D 2 into plasmas and nuclear fusion is conducted. Further, the deuterium ions in the plasmas are attracted to a surface of a material causing nuclear fusion under a negatively biased electric field from the outside (typically represented by Pd or Ti). Then, deuterium nuclei (d) or deuterium ions collide to the surface of the cathode on the side of palladium to conduct nuclear reaction at the surface or the inside (vicinity) thereof. However, a DC bias is applied as an external bias with the side of the palladium being negative. The cold nuclear fusion was demonstrated by placing a neutron counter in the vicinity of the container and confirming neutrons generated there. (I.S.)

  17. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Jaquez, J. [General Atomics, San Diego, California 9212 (United States)

    2016-11-15

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  18. An investigation of the opacity of high-Z mixture and implications for inertial confinement fusion hohlraum design

    International Nuclear Information System (INIS)

    Wang, P.; MacFarlane, J.J.; Orzechowski, T.J.

    1997-01-01

    We use an unresolved transition array model to investigate the opacities of high-Z materials and their mixtures which are of interest to indirect-drive inertial confinement fusion hohlraum design. In particular, we report on calculated opacities for pure Au, Gd, and Sm, as well as Au endash Sm and Au endash Gd mixtures. Our results indicate that mixtures of Au endash Gd and Au endash Sm can produce a significant enhancement in the Rosseland mean opacity. Radiation hydrodynamics simulations of Au radiation burnthrough are also presented, and compared with NOVA experimental data. copyright 1997 American Institute of Physics

  19. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  20. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    International Nuclear Information System (INIS)

    Jiang, Shaoen; Ding, Yongkun; Huang, Yunbao; Li, Haiyan; Jing, Longfei; Huang, Tianxuan

    2016-01-01

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule

  1. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Li, Haiyan [Key Laboratory of Computer Integrated Manufacturing System, Guangdong University of Technology, Guangzhou 510006 (China); Jing, Longfei, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Huang, Tianxuan [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-01-15

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  2. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  3. Progress in octahedral spherical hohlraum study

    Directory of Open Access Journals (Sweden)

    Ke Lan

    2016-01-01

    Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.

  4. LDRD Final Report: Advanced Hohlraum Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Ogden S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-08

    Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternate design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO2 or Ta2O5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to

  5. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC)

  6. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  7. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  8. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  9. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  10. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  11. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  12. Fusion plasma theory project summaries

    Science.gov (United States)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  13. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  14. Fusion Plasma Theory: Task 1, Magnetic confinement Fusion Plasma Theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1993-01-01

    The research performed under this grant during the current year has concentrated on few tokamak plasma confinement issues: applications of our new Chapman-Enskog-like approach for developing hybrid fluid/kinetic descriptions of tokamak plasmas; multi-faceted studies as part of our development of a new interacting island paradigm for the tokamak equilibrium'' and transport; investigations of the resolution power of BES and ECE diagnostics for measuring core plasma fluctuations; and studies of net transport in the presence of fluctuating surfaces. Recent progress and publications in these areas, and in the management of the NERSC node and the fusion theory workstations are summarized briefly in this report

  15. Hollow wall to stabilize and enhance ignition hohlraums

    Science.gov (United States)

    Vandenboomgaerde, M.; Grisollet, A.; Bonnefille, M.; Clérouin, J.; Arnault, P.; Desbiens, N.; Videau, L.

    2018-01-01

    In the context of the indirect-drive scheme of the inertial-confinement fusion, performance of the gas-filled hohlraums at the National Ignition Facility appears to be reduced. Experiments ascertain a limited efficacy of the laser beam propagation and x-ray conversion. One identified issue is the growth of the gold plasma plume (or bubble) which is generated near the ends of the hohlraum by the impact of the laser beams. This bubble impedes the laser propagation towards the equator of the hohlraum. Furthermore, for high foot or low foot laser pulses, the gold-gas interface of the bubble can be unstable. If this instability should grow to mixing, the x-ray conversion could be degraded. A novel hollow-walled hohlraum is designed, which drastically reduces the growth of the gold bubble and stabilizes the gold-gas interface. The hollow walls are built from the combination of a thin gold foil and a gold domed-wall. We theoretically explain how the bubble expansion can be delayed and the gold-gas interface stabilized. This advanced design lets the laser beams reach the waist of the hohlraum. As a result, the x-ray drive on the capsule is enhanced, and more spherical implosions are obtained. Furthermore, this design only requires intermediate gas fill density to be efficient.

  16. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    Science.gov (United States)

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  17. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  18. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia for application to inertial fusion research. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. Research on these hohlraum systems will continue on Sandia's PBFA II-Z facility

  19. Plasma physics for controlled fusion

    International Nuclear Information System (INIS)

    Miyamoto, K.

    2010-01-01

    The primary objective of this lecture note is to present the theories and experiments of plasma physics for recent activities of controlled fusion research for graduate and senior undergraduate students. Chapters 1-6 describe the basic knowledge of plasma and magnetohydrodynamics (MHD). MHD instabilities limit the beta ratio (ratio of plasma pressure to magnetic pressure) of confined plasma. Chapters 7-9 provide the kinetic theory of hot plasma and discuss the wave heating and non-inductive current drive. The dispersion relation derived by the kinetic theory are used to discuss plasma waves and perturbed modes. Landau damping is the essential mechanism of plasma heating and the stabilization of perturbation. Landau inverse damping brings the amplification of waves and the destabilization of perturbed modes. Chapter 10 explains the plasma transport due to turbulence, which is the most important and challenging subject for plasma confinement. Theories and simulations including subject of zonal flow are introduced. Chapters 11, 12 and 13 describe the recent activities of tokamak including ITER as well as spherical tokamak, reversed field pinch (RFP) and stellarator including quasi-symmetric configurations. Emphasis has been given to tokamak research since it made the most remarkable progress and the construction phase of 'International Tokamak Experimental Reactor' called ITER has already started. (author)

  20. A review of laser–plasma interaction physics of indirect-drive fusion

    International Nuclear Information System (INIS)

    Kirkwood, R K; Moody, J D; Dewald, E; Glenzer, S; Divol, L; Michel, P; Hinkel, D; Berger, R; Williams, E; Milovich, J; MacGowan, B; Landen, O; Rosen, M; Lindl, J; Kline, J; Yin, L; Rose, H

    2013-01-01

    The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser–plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the

  1. Turbulence measurements in fusion plasmas

    International Nuclear Information System (INIS)

    Conway, G D

    2008-01-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  2. Z-pinch driven hohlraums design for the 100 nanoseconds current time scale; Conception de cavites radiatives chauffees par plasma de striction magnetique en regime 100ns

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, F

    2003-12-15

    This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)

  3. Developments in plasma physics and controlled fusion

    International Nuclear Information System (INIS)

    Thompson, W.B.

    1980-01-01

    Some developments in plasma physics over the past twenty years are considered from the theoretical physics standpoint under the headings; oscillations, waves and instabilities, plasma turbulence, basic kinetic theory, and developments in fusion. (UK)

  4. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  5. Computational modeling of z-pinch-driven hohlraum experiments on Z

    International Nuclear Information System (INIS)

    Vesey, R.A.; Porter, J.L. Jr.; Cuneo, M.E.

    1999-01-01

    The high-yield inertial confinement fusion concept based on a double-ended z-pinch driven hohlraum tolerates the degree of spatial inhomogeneity present in z-pinch plasma radiation sources by utilizing a relatively large hohlraum wall surface to provide spatial smoothing of the radiation delivered to the fusion capsule. The z-pinch radiation sources are separated from the capsule by radial spoke arrays. Key physics issues for this concept are the behavior of the spoke array (effect on the z-pinch performance, x-ray transmission) and the uniformity of the radiation flux incident on the surface of the capsule. Experiments are underway on the Z accelerator at Sandia National laboratories to gain understanding of these issues in a single-sided drive geometry. These experiments seek to measure the radiation coupling among the z-pinch, source hohlraum, and secondary hohlraum, as well as the uniformity of the radiation flux striking a foam witness ball diagnostic positioned in the secondary hohlraum. This paper will present the results of computational modeling of various aspects of these experiments

  6. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  7. Fusion plasma research and education in Japan

    International Nuclear Information System (INIS)

    Inoue, N.

    1995-01-01

    Japanese fusion plasma research and education is reviewed by focusing on the activities promoted by the Ministry of Education, Science, Culture, and Sports (MOE). University fusion research is pursued by the academic interest and student education. A hierarchical structure of budget and manpower arrangement is observed. The small research groups of universities play the role of recruiting young students into the fusion and plasma society. After graduating the master course, most students are engaged by industries

  8. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Regan, S. P. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Jaquez, J.; Huang, H. [General Atomics, San Diego, California 92121 (United States); Hansen, S. B. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2016-05-15

    The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.

  9. Tomography of laser fusion plasmas

    International Nuclear Information System (INIS)

    Ceglio, N.M.

    1977-01-01

    Experimental programs exist in a number of laboratories throughout the world to test the feasibility of using powerful laser systems to drive the implosion of hydrogen isotope fuel to thermonuclear burn conditions. In a typical experiment multiple laser beams are focused onto a glass microshell (typically 50 μm to 200 μm diameter) filled with an equimolar D-T gas mixture. X-ray and particle emissions from the target provide important information about the hydrodynamic implosion of the glass shell and the associated compression and heating of the D-T fuel. Standard diagnostics for imaging such emissions are the grazing incidence reflection (GIR) x-ray microscope and the pinhole camera. Recently, a particular coded imaging technique, Zone Plate Coded Imaging (ZPCI), has been successfully used for x-ray and particle microscopy of laser fusion plasmas. ZPCI is highly attractive for investigating laser produced plasmas because it possesses a tomographic capability not shared by either the GIR or pinhole imaging techniques. This presentation provides a brief discussion of the tomographic potential of ZPCI. In addition, the first tomographic x-ray images (tomographic resolution approximately 74 μm) of a laser produced plasma are presented

  10. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  11. Molecular Diagnostics of Fusion and Laboratory Plasmas

    Science.gov (United States)

    Fantz, U.

    2005-05-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.

  12. Molecular Diagnostics of Fusion and Laboratory Plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2005-01-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments

  13. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  14. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    1993-05-01

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  15. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1991-01-01

    On JET results were presented on additional heating power, on a recently discovered regime of enhanced pellet performance (PEP), on low-density H-mode plasma confinement with hot ions, bounds on very high electric currents by material limiters, the first experiments on lower hybrid current drive, on the L-H transition threshold dependence on the direction of the gradient-B drift, and on alpha-particle physics issues. The TFTR presentations focused on transport. Particle loss ramifications of the toroidal Alfven eigenmodes were found to be small, while their threshold of excitation is lower than theoretically predicted. On DIII-D a scaling study of transport with gyroradius as the only variable was reported, with approximately Bohm scaling emerging; but the effective heat diffusivity scaling could not be established due to profile consistency effects. While beta-limit investigations with DIII-D generally confirm the ideal, MHD limit found by Troyon, evidence of a reduction of the accessible range for the internal inductance with the safety factor seems to favour current-density control in a steady-state D-T burner. Onset of strongly sheared poloidal rotation in a thin layer during the L-H mode transition was experimentally shown, while a new, so-called VH (''very high'') confinement mode was discovered by boronization of the wall. The JT-90 tokamak has recently been upgraded to JT-60-U. Presentations by the ASDEX team summarized the lack of agreement with theory of L-mode confinement. With TEXTOR, an improved mode (I-mode) of confinement was found by boronization. Finally, reviews are included on the status of impurity transport and helium removal in tokamaks, on stellarators, alternative magnetic confinement systems, inertial confinement, and non-fusion plasma physics. 2 tabs

  16. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.; OLSON,RICHARD E.; MOCK,RAYMOND CECIL; CHANDLER,GORDON A.; LEEPER,RAMON J.; NASH,THOMAS J.; RUGGLES,LAURENCE E.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; PETERSON,D.L.; BOWERS,R.L.; MATUSKA,W.

    2000-07-10

    A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

  17. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    International Nuclear Information System (INIS)

    Sanford, Thomas W.L.; Olson, Richard E.; Mock, Raymond Cecil; Chandler, Gordon A.; Leeper, Ramon J.; Nash, Thomas J.; Ruggles, Laurence E.; Simpson, Walter W.; Struve, Kenneth W.; Peterson, D.L.; Bowers, R.L.; Matuska, W.

    2000-01-01

    A z-pinch radiation source has been developed that generates 60 ± 20 KJ of x-rays with a peak power of 13 ± 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 ± 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 ± 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm 3 CH 2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ∼40% with only a 3--5% decrease in peak temperature, in agreement with measurements

  18. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  19. Resistive Magnetohydrodynamics Simulation of Fusion Plasmas

    International Nuclear Information System (INIS)

    Tang, X.Z.; Fu, G.Y.; Jardin, S.C.; Lowe, L.L.; Park, W.; Strauss, H.R.

    2001-01-01

    Although high-temperature plasmas in laboratory magnetic fusion confinements are sufficiently collisionless that formal fluid closures are difficult to attain, the resistive MHD model has proven, by comparison with experimental data, to be useful for describing the large scale dynamics of magnetized plasmas. Resistive MHD model consists of Faraday's law for the evolution of the magnetic field and Navier-Stokes equation for the plasma flow. These equations are closed by the Ohm's law and an equation of state for the plasma

  20. Application of fusion plasma technology. Final report

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1976-06-01

    This report presents principal findings of studies conducted at Iowa State on Applications of Fusion Plasma Technology. Two tasks were considered. The first was to identify and investigate plasma processes for near term industrial applications of already developed plasma technology. The second was to explore the potential of reprocessing the fuel for fusion test facilities in a closed-cycle system. For the first task, two applications were considered. One was alumina reduction in magnetically confined plasmas, and the other was uranium enrichment using plasma centrifuges. For the second task, in-core and ex-core plasma purification were considered. Separation techniques that are compatible with the plasma state were identified and preliminary analysis of their effectiveness were carried out. The effects of differential ionization of impurities on the separation effectiveness are considered. Possible technical difficulties in both tasks are identified and recommendations for future work are given

  1. Radiation drive in laser heated hohlraums

    International Nuclear Information System (INIS)

    Suter, L.J.; Kauffman, R.L.; Darrow, C.B.

    1995-01-01

    Nearly 10 years of Nova experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser heated hohlraums. Our most successful quantitative modelling tool is 2D Lasnex numerical simulations. Analysis of the simulations provides us with insight into the details of the hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high Z blow-off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding

  2. Summary on inertial confinement fusion

    International Nuclear Information System (INIS)

    Meyer-Ter-Vehn, J.

    1995-01-01

    Highlights on inertial confinement during the fifteenth international conference on plasma physics and controlled nuclear fusion are briefly summarized. Specifically the following topics are discussed: the US National Ignition Facility presently planned by the US Department of Energy; demonstration of diagnostics for hot spot formation; declassification of Hohlraum target design; fusion targets, in particular, the Hohlraum target design for the National Ignition Facility (NIF), Hohlraum experiments, direct drive implosions, ablative Rayleigh-Taylor instabilities, laser imprinting (of perturbations by the laser on the laser target surface), hot spot formation and mixing, hot spot implosion experiments at Lawrence Livermore National Laboratory, Livermore, USA, time resolving hot spot dynamics at the Institute of Laser Engineering (ILE), Osaka, Japan, laser-plasma interaction

  3. Optical fibres for fusion plasma diagnostics systems

    International Nuclear Information System (INIS)

    Brichard, B.

    2005-01-01

    The condition to achieve and maintain the ignition of a thermonuclear fusion plasma ignition calls for the construction of a large scale fusion reactor, namely ITER. This reactor is designed to deliver an average fusion power of 500 MW. The burning of fusion plasma at such high power level will release a tremendous amount of energy in the form of particle fluxes and ionising radiation. This energy release, primarily absorbed by the plasma facing components, can significantly degrade the performances of the plasma diagnostic equipment surrounding the machine. To ensure a correct operation of the Tokamak we need to develop highly radiation-resistance devices. In plasma diagnostic systems, optical fibre is viewed as a convenient tool to transport light from the plasma edge to the diagnostic area. Radiation affects the optical performances of the fibre mainly by the occurrence of radiation-induced absorption and luminescence. Both effects degrade the light signal used for plasma diagnostic. SCK-CEN is currently assessing radiation-resistant glasses for optical fibres and is developing the associated qualification procedure. The main objectives of this study were to increase the lifetime of optical components in high radiation background and to develop a radiation resistance optical fibre capable to operate in the radiation background of ITER

  4. TMX: a new fusion plasma experiment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The primary goal of the magnetic fusion energy program at LLL is the development of a technically and economically feasible approach to the generation of fusion energy. Results from our earlier 2XIIB experiment lead us to believe that a fusion power plant based on a mirror system is technically feasible, assuming a favorable extrapolation to plasmas of reactor size. Achieving economic feasibility is more difficult. For power-producing applications, a reactor needs a large Q, the ratio of fusion power output to the power injected to sustain the system. In a conventional mirror reactor, the fusion power is only about equal to the power injected by the neutral beams--that is, Q is only about unity. A new idea, the tandem mirror concept described in this article, promises to increase this gain, enhancing Q by at least a factor of 5

  5. Three-dimensional modeling of capsule implosions in OMEGA tetrahedral hohlraums

    International Nuclear Information System (INIS)

    Schnittman, J. D.; Craxton, R. S.

    2000-01-01

    Tetrahedral hohlraums have been proposed as a means for achieving the highly uniform implosions needed for ignition with inertial confinement fusion (ICF) [J. D. Schnittman and R. S. Craxton, Phys. Plasmas 3, 3786 (1996)]. Recent experiments on the OMEGA laser system have achieved good drive uniformity consistent with theoretical predictions [J. M. Wallace et al., Phys. Rev. Lett. 82, 3807 (1999)]. To better understand these experiments and future investigations of high-convergence ICF implosions, the three-dimensional (3-D) view-factor code BUTTERCUP has been expanded to model the time-dependent radiation transport in the hohlraum and the hydrodynamic implosion of the capsule. Additionally, a 3-D postprocessor has been written to simulate x-ray images of the imploded core. Despite BUTTERCUP's relative simplicity, its predictions for radiation drive temperatures, fusion yields, and core deformation show close agreement with experiment. (c) 2000 American Institute of Physics

  6. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  7. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  8. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  9. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    International Nuclear Information System (INIS)

    Lan, Ke; Zheng, Wudi

    2014-01-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums

  10. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  11. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Coffield, F.E.; Davis, G.E.; Felker, B.

    1979-01-01

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  12. Optimizing implosion yields using rugby-shaped hohlraums

    Science.gov (United States)

    Park, Hye-Sook; Robey, H.; Amendt, P.; Philippe, F.; Casner, A.; Caillaud, T.; Bourgade, J.-L.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Glebov, V. Yu.

    2009-11-01

    We present the first experimental results on optimizing capsule implosion experiments by using rugby-shaped hohlraums [1] on the Omega laser, University of Rochester. This campaign compared D2-filled capsule performance between standard cylindrical Au hohlraums and rugby-shaped hohlraums for demonstrating the energetics advantages of the rugby geometry. Not only did the rugby-shaped hohlraums show nearly 20% more x-ray drive energy over the cylindrical hohlraums, but also the high-performance design of the capsules provided nearly 20 times more DD neutrons than in any previous Omega hohlraum campaigns, thereby enabling use of neutron temporal diagnostics. Comparison with simulations on neutron burn histories, x-ray core imaging, backscattered laser light and radiation temperature are presented. [1] P. Amendt et al., Phys. Plasmas 15, 012702 (2008)

  13. EDITORIAL: Plasma Surface Interactions for Fusion

    Science.gov (United States)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  14. Advanced fusion in ICRF injected plasmas

    International Nuclear Information System (INIS)

    Carpignano, F.; Coppi, B.; Detragiache, P.; Migliuolo, S.; Nassi, M.; Rogers, B.

    1994-01-01

    Fusion burning of a D- 3 He mixture in a high density, high magnetic field, compact toroidal experiment (Ignitor) with a high injected power density at the ion cyclotron frequency (ICRF) is investigated. A superthermal tail (with energies exceeding 1 MeV in the central part of the plasma column) is induced in the distribution of the minority 3 He population ( 0 20 m -3 ). This stems from the high value of the peak RF power density absorbed by the minority species (ρ RF ∼ 60 MW/m 3 ) that should be obtained in Ignitor when the total injected power is about 18 MW. This experiment is suitable to begin the study of advanced fusion burning, because of the high plasma currents (I p 3 He fusion powers of the order of 1 MW should be attained. (author) 8 refs., 3 figs

  15. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  16. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  17. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R; Russell, D.A.

    1991-01-01

    This report discusses: ICRF impurity studies; ICRF convective cells; sheath plasma waves and anomalous IBW loading; a quasilinear description for fast wave minority heating permitting off magnetic axis heating in a tokamak; and runaway electrons studies in support of TEXT

  18. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1993-01-01

    Work on ICRF interaction with the edge plasma is reported. ICRF generated convective cells have been established as an important mechanism for influencing edge transport and interaction with the H-mode, and for controlling profiles in the tokamak scrape-off-layer. Power dissipation by rf sheaths has been shown to be significant for some misaligned ICRF and IIBW antenna systems. Near-field antenna sheath work has been extended to the far-field case, important for experiments with low single pass absorption. Impurity modeling and Faraday screen design support has been provided for the ICRF community. In the area of core-ICRF physics, the kinetic theory of heating by applied ICRF waves has been extended to retain important geometrical effects relevant to modeling minority heated tokamak plasmas, thereby improving on the physics base that is standard in presently employed codes. Both the quasilinear theory of ion heating, and the plasma response function important in wave codes have been addressed. In separate studies, it has been shown that highly anisotropic minority heated plasmas can give rise to unstable field fluctuations in some situations. A completely separate series of studies have contributed to the understanding of tokamak confinement physics. Additionally, a diffraction formalism has been produced which will be used to access the focusability of lower hybrid, ECH, and gyrotron scattering antennas in dynamic plasma configurations

  19. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  20. Fusion Plasma Physics and ITER - An Introduction (2/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The second lecture will explore some of the key physics phenomena which govern the behaviour of magnetic fusion plasmas and which have been the subject of intense research during the past 50 years: plasma confinement, magnetohydrodynamic stability and plasma-wall interactions encompass the major areas of plasma physics which must be understood to assemble an overall description of fusion plasma behaviour. In addition, as fusion plasmas approach the “burning plasma” regime, where internal heating due to fusion products dominates other forms of heating, the physics of the interaction between the α-particles produced by D-T fusion reactions and the thermal “background” plasma becomes significant. This lecture will also introduce the basic physics of fusion plasma production, plasma heating and current drive, and plasma measurements (“diagnostics”).

  1. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1990-03-01

    This paper discusses tokamak transport, auxiliary heating physics; ICRF impurity study; ponderomotive stabilization studies; ICRF induced fluxes in the edge plasma; runaway electron confinement in TEXT; rf sheath modelling for ICRF antenna Faraday screens; and isotropic energetic in fluxes in tokamaks

  2. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  3. Plasma physics for controlled fusion. 2. ed.

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  4. Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  5. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  6. Plasma simulation and fusion calculation

    International Nuclear Information System (INIS)

    Buzbee, B.L.

    1983-01-01

    Particle-in-cell (PIC) models are widely used in fusion studies associated with energy research. They are also used in certain fluid dynamical studies. Parallel computation is relevant to them because (1) PIC models are not amenable to a lot of vectorization - about 50% of the total computation can be vectorized in the average model; (2) the volume of data processed by PIC models typically necessitates use of secondary storage with an attendant requirements for high-speed I/O; and (3) PIC models exist today whose implementation requires a computer 10 to 100 times faster than the Cray-1. This paper discusses parallel formulation of PIC models for master/slave architectures and ring architectures. Because interprocessor communication can be a decisive factor in the overall efficiency of a parallel system, we show how to divide these models into large granules that can be executed in parallel with relatively little need for communication. We also report measurements of speedup obtained from experiments on the UNIVAC 1100/84 and the Denelcor HEP

  7. X-ray spectroscopy from fusion plasmas

    International Nuclear Information System (INIS)

    Glenzer, S H.

    1998-01-01

    Our understanding of laser energy coupling into laser-driven inertial confinement fusion targets largely depends on our ability to accurately measure and simulate the plasma conditions in the underdense corona and in high density capsule implosions. X-ray spectroscopy is an important technique which has been applied to measure the total absorption of laser energy into the fusion target, the fraction of laser energy absorbed by hot electrons, and the conditions in the fusion capsule in terms of density and temperature. These parameters provide critical benchmarking data for performance studies of the fusion target and for radiation-hydrodynamic and laser-plasma interaction simulations. Using x-ray spectroscopic techniques for these tasks has required its application to non-standard conditions where kinetics models have not been extensively tested. In particular, for the conditions in high density implosions, where electron temperatures achieve 1 - 2 keV and electron densities reach 10 24 cm -3 evolving on time scales of 21 cm -3 and which am independently diagnosed with Thomson scattering and stimulated Raman scattering. We find that kinetics modeling is in good agreement with measured intensities of the dielectronic satellites of the He-β line (n= l-3) of Ar XVII. Applying these findings to the experimental results of capsule implosions provides additional evidence of temperature gradients at peak compression

  8. The physics of radiation driven ICF hohlraums

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1995-01-01

    On the Nova Laser at LLNL, we have recently demonstrated many of the key elements required for assuring that the next proposed laser, the National Ignition Facility (NIF) will drive an Inertial Confinement Fusion (ICF) target to ignition. The target uses the recently declassified indirect drive (sometimes referred to as open-quotes radiation driveclose quotes) approach which converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray open-quotes ovenclose quotes (called a hohlraum) to drive the fusion capsule in its center. On Nova we've demonstrated good understanding of the temperatures reached in hohlraums and of the ways to control the uniformity with which the x-rays drive the spherical fusion capsules. In this lecture we briefly review the fundamentals of ICF, and describe the capsule implosion symmetry advantages of the hohlraum approach. We then concentrate on a quantitative understanding of the scaling of radiation drive with hohlraum size and wall material, and with laser pulse length and power. We demonstrate that coupling efficiency of x-ray drive to the capsule increases as we proceed from Nova to the NIF and eventually to a reactor, thus increasing the gain of the system

  9. Progress in hohlraum physics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry “swings.” A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8–4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.

  10. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  11. 1-MW klystron for fusion plasma heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Miyake, Setsuo; Ohno, Hiroaki

    1985-01-01

    A plasma test apparatus to bring about the critical plasma conditions for nuclear fusion is now under construction in Japan Atomic Energy Research Institute. Among various means of plasma heating, the most promising is the lower hybrid resonance heating (LHRF) in the 2-GHz region. Although it has so far requied 7 to 8 MW of microwave power for the plasma test apparatus, the new klystron, E3778, now constructed by Toshiba has the world's highest output power of 1 MW in the 2-GHz region. In addition to the excellent high-power operation for 10 seconds, the wide operating frequency range of 1.7 to 2.26 GHz by dint of sophisticated high-speed tuning mechanism, and the high durability to reflected power of up to 2.0 of VSWR are the high-lighted features of this klystron, which have never been achieved by conventional klystrons. (author)

  12. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  13. Atomic resonances in nuclear fusion plasmas

    International Nuclear Information System (INIS)

    Clauser, C. F.; Barrachina, R. O.

    2013-01-01

    We present a study of zero energy resonances of photoionization and radiative recombination cross section for the different species in a fusion reactor. In this context, the interaction potential is screened and its typical length depends on the plasma density and temperature. Due to the nature of these resonances, we propose other atomic processes in which they can take place. Finally, we show the density and temperature conditions where these resonances occur and their probable consequence on the reactor performance. (author)

  14. Far infrared fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  15. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  16. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  17. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  18. Sawtooth control in fusion plasmas

    International Nuclear Information System (INIS)

    Graves, J P; Angioni, C; Budny, R V; Buttery, R J; Coda, S; Eriksson, L-G; Gimblett, C G; Goodman, T P; Hastie, R J; Henderson, M A; Koslowski, H R; Mantsinen, M J; Martynov, An; Mayoral, M-L; Mueck, A; Nave, M F F; Sauter, O; Westerhof, E

    2005-01-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth

  19. Sawtooth control in fusion plasmas

    Science.gov (United States)

    Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA

    2005-12-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.

  20. Thermonuclear fusion plasma produced by lasers

    International Nuclear Information System (INIS)

    Yamanaka, C.; Yokoyama, M.; Nakai, S.; Sasaki, T.; Yoshida, K.; Matoba, M.; Yamabe, C.; Tschudi, T.; Yamanaka, T.; Mizui, J.; Yamaguchi, N.; Nishikawa, K.

    1975-01-01

    Recently, much attention has been focused on laser fusion schemes using high-density plasmas produced by implosion. Scientific-feasibility laser-fusion experiments are now in time. But the physics of interaction between laser and plasma, the high-compression technique and the development of high-power lasers are still important problems to be solved if laser fusion is to make some progress. In the field of laser-plasma coupling, experiments were carried out in which hydrogen and deuterium sticks were bombarded by laser beams; in these experiments, a glass-laser system, LETKKO-I, with an energy of 50 J in a nanosecond pulse, and a double-discharge TEA CO 2 laser system with an energy of 100 J in a 100-ns pulse were used. A decrease in reflectivity occurred at a laser intensity one order of magnitude higher than the parametric-instability threshold. Self-phase modulation of scattered light due to modulational instability was found. A Brillouin-backscattering isotope effect due to the hydrogen and deuterium plasma has also been observed in the red-side part of the SHG-light. Preliminary compression experiments have been carried out using a glass-laser system LETKKO-II, with an energy of 250-1000 J in a ns-pulse. A hologram has been used to study shock waves in the plasma due to the SHG-light converted from the main laser beam. Development of high-power lasers has been promoted, such as disc-glass lasers, E-beam CO 2 lasers and excimer lasers. (author)

  1. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  2. Numerical studies of impurities in fusion plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest

  3. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  4. On interaction of large dust grains with fusion plasma

    International Nuclear Information System (INIS)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2009-01-01

    So far the models used to study dust grain-plasma interactions in fusion plasmas neglect the effects of dust material vapor, which is always present around dust in rather hot and dense edge plasma environment in fusion devices. However, when the vapor density and/or the amount of ionized vapor atoms become large enough, they can alter the grain-plasma interactions. Somewhat similar processes occur during pellet injection in fusion plasma. In this brief communication the applicability limits of the models ignoring vapor effects in grain-plasma interactions are obtained.

  5. Tetrahedral hohlraums at omega

    International Nuclear Information System (INIS)

    Kyrala, G.A.; Goldman, S.R.; Batha, S.H.; Wallace, J.M.; Klare, K.A.; Schappert, G.T.; Oertel, J.; Turner, R.E.

    2000-01-01

    We have initiated a study of the usefulness of tetrahedrally illuminated spherical hohlraums, using the Omega laser beams, to drive planar shocks in packages that require indirect drive. A first suite of experiments used spherical hohlraums with a 2-μm thick gold wall surrounded by a 100-μm thick epoxy layer and had an internal diameter of 2.8 mm. Four laser entrance holes each of diameter 700 μm, located on the tips of a regular tetrahedron were used. The shock velocities and the shock uniformities were measured using optical shock break out techniques. The hohlraum x-ray radiation spectrum was also measured using a 10-channel x-ray detector. Tentatively, peak temperatures approaching 195 eV were achieved and shock speeds of 60 μm/ns were measured, when the hohlraum was driven by 22 kJ of 3 ω radiation. (authors)

  6. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  7. Implosion spectroscopy in Rugby hohlraums on OMEGA

    Science.gov (United States)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  8. Magnetic confinement fusion plasma theory, Task 1

    International Nuclear Information System (INIS)

    Callen, J.D.

    1991-07-01

    The research performed under this grant during the current year has concentrated on a few key tokamak plasma confinement and heating theory issues: extensive development of a new Chapman-Enskog-like fluid/kinetic hybrid approach to deriving rigorously valid fluid moment equations; applications (neoclassical viscous force, instabilities in the banana-plateau collisionality regime, nonlinear gyroviscous force, unified plasma microinstability equations and their implications, semi-collisional presheath modeling, etc.) of this new formalism; interactions of fluctuating bootstrap-current-driven magnetic islands; determination of net transport processes and equations for a tokamak; and some other topics (extracting more information from heat-pulse-propagation data, modeling of BES fluctuation data, exploring sawtooth effects on energy confinement in DIII-D, divertor X-point modeling). Recent progress and publications in these areas, and in the management of the local NERSC node and fusion theory DECstation 5000 at UW-Madison are summarized briefly in this report

  9. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  10. Z-pinch generated X-rays in static-wall-hohlraum geometry demonstrate potential for indirect-drive ICF studies

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Olson, R.E.; Mock, R.C.; Chandler, G.A.; Hebron, D.E.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.

    2000-01-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry [Fusion Technol. 35, 260 (1999)]. A 2-μm-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm 3 CH, for example, produces foot-pulse conditions of ∼85 eV for a duration of ∼10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm 3 CH generates first-step-pulse conditions of ∼122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to ∼150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T∼(P/A) 1/4 . P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of 10 -3 g/cm 3 or less. (authors)

  11. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    Science.gov (United States)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  12. Brazilian programme for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Reusch, M.F.; Nascimento, I.C.; Pantuso-Sudano, J.

    1992-01-01

    A proposal for a National Programme of Plasma Physics and Controlled Thermonuclear Fusion in Brazil is presented, aimimg the dissemination of the researchers thought in plasma physics for the national authorities and the scientific community. (E.O.)

  13. NSTX Diagnostics for Fusion Plasma Science Studies

    International Nuclear Information System (INIS)

    Kaita, R.; Johnson, D.; Roquemore, L.; Bitter, M.; Levinton, F.; Paoletti, F.; Stutman, D.

    2001-01-01

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community

  14. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    International Nuclear Information System (INIS)

    1993-07-01

    This report discusses research being conducted at MIT's plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory

  15. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  16. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  17. Fusion-product energy loss in inertial confinement fusion plasmas with applications to target burns

    International Nuclear Information System (INIS)

    Harris, D.B.; Miley, G.H.

    1984-01-01

    Inertial confinement fusion (ICF) has been proposed as a competitor to magnetic fusion in the drive towards energy production, but ICF target performance still contains many uncertainties. One such area is the energy-loss rate of fusion products. This situation is due in part to the unique plasma parameters encountered in ICF plasmas which are compressed to more than one-thousand times solid density. The work presented here investigates three aspects of this uncertainty

  18. Transition to thermonuclear burn in fusion plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1991-01-01

    An analytical investigation is made of the time evolution of the 1-D temperature profile in a fusion reactor plasma where the nonlinear energy balance equation is dominated by alpha-particle heating and thermal conduction losses. Special emphasis is given to the problem of establishing sufficient conditions for the transition to thermonuclear burn for given initial temperature profiles. In particular, it is demonstrated that for strongly nonlinear alpha-particle heating, temperature profiles initially peaked on-axis are more easily ignited than profiles similar in form to the equilibrium profile of the energy balance equation. Simple analytical criteria for ignition are established and are shown to compare favourably with results of numerical calculations. (author)

  19. Plasma processed coating of laser fusion targets

    International Nuclear Information System (INIS)

    Johnson, W.L.; Letts, S.A.; Myers, D.W.; Crane, J.K.; Illige, J.D.; Hatcher, C.W.

    1979-01-01

    Coatings for laser fusion targets have been deposited in an inductively coupled discharge device by plasma polymerization. Two feed gases were used: perfluoro-2-butene, which produced a fluorocarbon coating (CF 1 3 ) with a density of 1.8 g/cc, and trans-2-butene which produced a hydrocarbon coating (CH 1 3 ) with a density of 1.0 g/cc. Uniform pin-hole free films have been deposited to a thickness of up to 30 μm of fluorocarbon and up to 110 μm of hydrocarbon. The effect of process variables on surface smoothness has been investigated. The basic defect in the coating has been found to result from shadowing by a small surface irregularity in an anisotropic coating flux

  20. Thermonuclear plasma physic: inertial confinement fusion

    International Nuclear Information System (INIS)

    Bayer, Ch.; Juraszek, D.

    2001-01-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  1. Fundamental studies of fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1998-01-01

    Lodestar has carried out a vigorous research program in the areas of rf, edge plasma and divertor physics, with emphasis largely geared towards improving the understanding and performance of ion-cyclotron heating and current drive (ICRF) systems. Additionally, a research program in the field of edge plasma and divertor modeling was initiated. Theoretical work on high power rf sheath formation for multi-strap rf arrays was developed and benchmarked against recent experimental data from the new JET A2 antennas. Sophisticated modeling tools were employed to understand the sheath formation taking into account realistic three-dimensional antenna geometry. A novel physics explanation of an observed anomaly in the low power loading of antennas was applied to qualitatively interpret data on DIII-D in terms of rf sheaths, and potential applications of the idea to develop a near-field sheath diagnostic were explored. Other rf-wave related topics were also investigated. Full wave ICRF modeling studies were carried out in support of ongoing and planned tokamaks experiments, including the investigation of low frequency plasma heating and current drive regimes for IGNITOR. In a cross-disciplinary study involving both MHD and ICRF physics, ponderomotive feedback stabilization by rf was investigated as a potential means of controlling external kink mode disruptions. In another study, the instability of the ion hybrid wave (IHW) in the presence of fusion alpha particles was studied. In the field of edge plasma and divertor modeling studies, Lodestar began the development of a theory of generalized ballooning and sheath instabilities in the scrape off layer (SOL) of divertor tokamaks. A detailed summary of the technical progress in these areas during the contract period is included, as well as where references to published work can be found. A separate listing of publications, meeting abstracts, and other presentations is also given at the end of this final report

  2. Final Report on The Theory of Fusion Plasmas

    International Nuclear Information System (INIS)

    Cowley, Steven C.

    2008-01-01

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research - some were funded under the grant.

  3. Scaling laws for steady-state fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Husseiny, A A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-12-01

    Experimental and semi-theoretical scaling laws are extrapolated to include the effect of fusion burn on the lifetime of plasma ions. Fractional burnups are also reconsidered on the same basis. The actual lifetime of fusion plasma ions and the estimated time necessary for feasible reactors, provide a correlation between the laboratory data and the hypothesis of reactor feasibility conditions. Based on these correlations criteria for the realization of self-heated plasmas are established.

  4. Scaling laws for specialized hohlraums

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1993-01-01

    The author presents scaling laws for the behavior of hohlraums that are somewhat more complex than a simple sphere or cylinder. In particular the author considers hohlraums that are in what has become known as a open-quotes primaryclose quotes open-quotes secondaryclose quotes configuration, namely geometries in which the laser is absorbed in a primary region of a hohlraum, and only radiation energy is transported to a secondary part of the hohlraum that is shielded from seeing the laser light directly. Such hohlraums have been in use of late for doing LTE opacity experiments on a sample in the secondary and in recently proposed open-quotes shimmedclose quotes hohlraums that use gold disks on axis to block a capsule's view of the cold laser entrance hole. The temperature/drive of the secondary, derived herein, scales somewhat differently than the drive in simple hohlraums

  5. Lithium beam characterization of cylindrical PBFA II hohlraum experiments

    International Nuclear Information System (INIS)

    Moats, A.R.; Derzon, M.S.; Chandler, G.A.; Haill, T.A.; Johnson, D.J.; Leeper, R.J.; Ruiz, C.L.; Wenger, D.F.

    1995-01-01

    Sandia National Laboratories is actively engaged in exploring indirect-drive inertial confinement fusion on the Particle Beam Fusion Accelerator (PBFA II) with pulsed-power accelerated lithium ions as the driver. Experiments utilizing cylindrical hohlraum targets were conducted in 1994. Using the incoming ion beam-induced line radiation from titanium wires surrounding these hohlraums, beam profiles during these experiments have been measured and characterized. These data, their comparison/cross-correlation with particle-based beam diagnostics, and an analysis of the beam parameters that most significantly influence target temperature are presented

  6. Physics of plasma-wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    Post, D.E.; Behrisch, R.

    1984-01-01

    In the areas of plasma physics, atomic physics, surface physics, bulk material properties and fusion experiments and theory, the following topics are presented: the plasma sheath; plasma flow in the sheath and presheath of a scrape-off layer; probes for plasma edge diagnostics in magnetic confinement fusion devices; atomic and molecular collisions in the plasma boundary; physical sputtering of solids at ion bombardment; chemical sputtering and radiation enhanced sublimation of carbon; ion backscattering from solid surfaces; implantation, retention and release of hydrogen isotopes; surface erosion by electrical arcs; electron emission from solid surfaces;l properties of materials; plasma transport near material boundaries; plasma models for impurity control experiments; neutral particle transport; particle confinement and control in existing tokamaks; limiters and divertor plates; advanced limiters; divertor tokamak experiments; plasma wall interactions in heated plasmas; plasma-wall interactions in tandem mirror machines; and impurity control systems for reactor experiments

  7. Plasma flow driven by fusion-generated alpha particles

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-05-01

    The confinement of fusion-generated alpha particles will affect the transports of the background plasma particles by the momentum transfer from the energetic alphas. The ions tend to migrate towards the center of plasma (i.e. fuel injection) and electrons towards the plasma periphery. This means the existence of a mechanism which enable to pump out the ashes in the fuel plasma because of the momentum conservation of whole plasma particles. (author)

  8. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole

    Directory of Open Access Journals (Sweden)

    Wenyi Huo

    2016-01-01

    Full Text Available The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.

  9. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J.; Campbell, K.; Glenzer, S H.; McDonald, J W.; Niemann, C.; Mackinnon, A J.; Schneider, M S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2005-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  10. Kinetic modeling of Nernst effect in magnetized hohlraums.

    Science.gov (United States)

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  11. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  12. Massachusetts Institute of Technology Plasma Fusion Center, 1988--1989 report to the President

    International Nuclear Information System (INIS)

    1989-07-01

    This report discusses the following topics on fusion energy: cold fusion; alcator confinement experiments; applied plasma physics research; fusion systems; coherent electromagnetic wave generation; and fusion technology and engineering

  13. Atomic collisions in fusion plasmas involving multiply charged ions

    International Nuclear Information System (INIS)

    Salzborn, E.

    1980-01-01

    A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)

  14. Study of charged fusion products in laser produced plasmas

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1981-07-01

    Charged reaction products play a central role in inertial confinement fusion. The investigation of the various processes these particles undergo in laser produced plasmas, their influence on the dynamics of the fusion and their utilization as a diagnostic tool are the main subjects of this thesis. (author)

  15. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  16. Passive cyclotron current drive for fusion plasmas

    International Nuclear Information System (INIS)

    Kernbichler, W.

    1995-01-01

    The creation of toroidal current using cyclotron radiation in a passive way is, together with the well known bootstrap current, an interesting method for stationary current drive in high-temperature fusion reactors. Here, instead of externally applied RF-waves, fish-scale like structures at the first wall help to create enough asymmetry in the self generated cyclotron radiation intensity to drive a current within the plasma. The problem of computing passive cyclotron current drive consists of actually two linked problems, which are the computation of the electron equilibrium under the presence of self-generated radiation, and the computation of the photon equilibrium in a bounded system with a distorted electron distribution. This system of integro-differential equations cannot be solved directly in an efficient way. Therefore a linearization procedure was developed to decouple both sets of equations, finally linked through a generalized local current drive efficiency. The problem of the exact accounting for the wall profile effects was reduced to the solution of a Fredholm-type integral equation of the 2 nd -kind. Based on all this an extensive computer code was developed to compute the passively driven current as well as radiation losses, radiation transport and overall efficiencies. The results therefrom give an interesting and very detailed insight into the problems related to passive cyclotron current drive

  17. Neutron measurements as fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hoek, M.

    1993-01-01

    Neutron measurements play important roles as the diagnostics of many aspects of the plasma in large tokamak devices such as JT-60U and JET. In the d-d discharges of JT-60U, the most important application of the neutron measurement is the investigation of the fusion performance using fission chambers. The ion velocity distribution function, and the triton slowing down are investigated by the neutron spectrometer and the 14 MeV neutron detector, respectively. TANSY is a combined proton-recoil and neutron time-of flight spectrometer for 14 MeV neutrons to be used during the d-t phase at JET. The detection principle is based on the measurements of the flight time of a scattered initial neutron and the energy of a corresponding recoil proton. The scattering medium is a polyethylene foil. The resolution and efficiency, using a thin foil (0.95 mg/cm 2 ), is 155 keV and 1.4x10 -5 cm 2 , respectively. (author)

  18. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics

  19. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  20. Studies on radiation symmetrization in heavy-ion driven hohlraum targets

    International Nuclear Information System (INIS)

    Temporal, M.; Atzeni, S.

    1993-01-01

    Radiation symmetrization within spherical, ellipsoidal and cylindral hohlraum targets for heavy ion inertial confinement fusion (ICF) is studied by means of a 3-D numerical, static model, in which realistic assumptions are made concerning the geometry of the system and, particularly, of the radiation converters. Among the systems so far studied, only spherical hohlraums with six converters achieve the illumination symmetry of the fusion capsule considered necessary for ICF applications. A parametric study of cylindrical hohlraums enlightens the effect of several parameter changes, and suggests directions for further studies, aiming at the design of two-converter targets

  1. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  2. Laser thermonuclear fusion with force confinement of hot plasma

    International Nuclear Information System (INIS)

    Korobkin, V.V.; Romanovsky, M.Y.

    1994-01-01

    The possibility of the utilization of laser radiation for plasma heating up to thermonuclear temperatures with its simultaneous confinement by ponderomotive force is investigated. The plasma is located inside a powerful laser beam with a tubelike section or inside a cavity of duct section, formed by several intersecting beams focused by cylindrical lenses. The impact of various physical processes upon plasma confinement is studied and the criteria of plasma confinement and maintaining of plasma temperature are derived. Plasma and laser beam stability is considered. Estimates of laser radiation energy necessary for thermonuclear fusion are presented

  3. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  4. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  5. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  6. Novel diagnostics for dust in space, Laboratory and fusion plasmas

    International Nuclear Information System (INIS)

    Castaldo, C.

    2011-01-01

    In situ diagnostics for mobile dust, based on dust impact ionization phenomena, as well as silica aerogel dust collectors are discussed for applications to space and fusion plasmas. The feasibility of an electro-optical probe to detect hypervelocity (>1 km/s) dust particles in tokamaks is evaluated. For quiescent plasmas, a diagnostic of submicron dust based on measurements of plasma fluctuation spectra can be used (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  8. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  9. Thermonuclear plasma physic: inertial confinement fusion; Physique des plasmas thermonucleaires: la fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Ch.; Juraszek, D

    2001-07-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  10. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    Science.gov (United States)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  11. Thermonuclear Tokamak plasmas in the presence of fusion alpha particles

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1988-01-01

    In this overview, we have focused on several results of the thermonuclear plasma research pertaining to the alpha particle physics and diagnostics in a fusion tokamak plasma. As regards the discussion of alpha particle effects, two distinct classes of phenomena have been distinguished: the simpler class containing phenomena exhibited by individual alpha particles under the influence of bulk plasma properties and, the more complex class including collective effects which become important for increasing alpha particle density. We have also discussed several possibilities to investigate alpha particle effects by simulation experiments using an equivalent population of highly energetic ions in the plasma. Generally, we find that the present theoretical knowledge on the role of fusion alpha particles in a fusion tokamak plasma is incomplete. There are still uncertainties and partial lack of quantitative results in this area. Consequently, further theoretical work and, as far a possible, simulation experiments are needed to improve the situation. Concerning the alpha particle diagnostics, the various diagnostic techniques and the status of their development have been discussed in two different contexts: the escaping alpha particles and the confined alpha particles in the fusion plasma. A general conclusion is that many of the different diagnostic methods for alpha particle measurements require further major development. (authors)

  12. Hohlraum modeling for opacity experiments on the National Ignition Facility

    Science.gov (United States)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  13. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  14. Massachusetts Institute of Technology, Plasma Fusion Center, technical research programs

    International Nuclear Information System (INIS)

    1982-02-01

    Research programs have produced significant results on four fronts: (1) the basic physics of high-temperature fusion plasmas (plasma theory, RF heating, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator A and C tokamaks, including pioneering investigations of the equilibrium, stability, transport and radiation properties of fusion plasmas at high densities, temperatures and magnetic fields; (3) development of a new and innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experimental facility scheduled for 1983; and (4) a broadly based program of fusion technology and engineering development that addresses problems in several critical subsystem areas

  15. Fusion plasma physics during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10{sup 8} K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks.

  16. Fusion plasma physics during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10 8 K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks

  17. Indirect drive targets for fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter A.; Miles, Robin R.

    2016-10-11

    A hohlraum for an inertial confinement fusion power plant is disclosed. The hohlraum includes a generally cylindrical exterior surface, and an interior rugby ball-shaped surface. Windows over laser entrance holes at each end of the hohlraum enclose inert gas. Infrared reflectors on opposite sides of the central point reflect fusion chamber heat away from the capsule. P2 shields disposed on the infrared reflectors help assure an enhanced and more uniform x-ray bath for the fusion fuel capsule.

  18. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  19. The near vacuum hohlraum campaign at the NIF: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  20. The near vacuum hohlraum campaign at the NIF: A new approach

    Science.gov (United States)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Kilkenny, J.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Zylstra, A.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.

    2016-05-01

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  1. Fusion performance analysis of plasmas with reversed magnetic shear in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Nazikian, R.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    A case for substantial loss of fast ions degrading the performance of tokamak fusion test reactor plasmas [Phys. Plasmas 2, 2176 (1995)] with reversed magnetic shear (RS) is presented. The principal evidence is obtained from an experiment with short (40 - 70 ms) tritium beam pulses injected into deuterium beam heated RS plasmas [Phys. Rev. Lett. 82, 924 (1999)]. Modeling of this experiment indicates that up to 40% beam power is lost on a time scale much shorter than the beam - ion slowing down time. Critical parameters which connect modeling and experiment are: The total 14 MeV neutron emission, its radial profile, and the transverse stored energy. The fusion performance of some plasmas with internal transport barriers is further deteriorated by impurity accumulation in the plasma core. copyright 1999 American Institute of Physics

  2. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  3. Atomic and molecular processes in fusion plasmas

    International Nuclear Information System (INIS)

    Kato, Daiji; Nakamura, Nobuyuki

    2013-01-01

    One of important issues concerning steady state sustainment of magnetically confined plasmas (MCPs) is distribution of impurity ions in the MCPs and radiation powers by the ions. Since tungsten divertors will be used in ITER, the primary element of heavy impurity ions would be tungsten. Tungsten cannot be fully ionized even in core plasmas of ITER. Line radiations by bound electrons of the tungsten ions following electron impact excitations decrease temperatures of the core plasmas. Thus, it is required to keep tungsten concentration in the core plasmas as small as possible. (J.P.N.)

  4. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  5. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  6. Lithium ion beam driven hohlraums for PBFA II

    International Nuclear Information System (INIS)

    Dukart, R.J.

    1994-01-01

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities

  7. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Bliss, David Emery; Vesey, Roger Alan; Rambo, Patrick K.; Lebedev, Sergey V.; Hanson, David L.; Nash, Thomas J.; Yu, Edmund P.; Matzen, Maurice Keith; Afeyan, Bedros B.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Campbell, Robert B.; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Waisman, Eduardo Mario; Mehlhorn, Thomas Alan

    2005-01-01

    Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

  8. Multiple-use plasma laboratory for graduate fusion education

    International Nuclear Information System (INIS)

    Hankins, O.E.; Gilligan, J.G.; Wehring, B.W.; Bourham, M.; Auciello, O.H.

    1989-01-01

    In a climate of tight fusion research and teaching laboratory budgets, it has become necessary to utilize equipment obtained for research purposes in the teaching program. Likewise, it is desirable to use plasma research equipment from nonfusion projects to support basic understanding of general plasma concepts. Multiple experiments can also be done on a single device. The plasma laboratory that has been developed at North Carolina State University in the last 4 yr incorporates all of the aforementioned ideas to support a 3-credit-hour hands-on laboratory course for graduate students. Incorporating teaching and research into the fusion plasma laboratory maximizes the resources and gives students experience on actual research tools. 2 refs

  9. Two component plasma vortex approach to fusion

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-09-01

    Two component operation of the field reversed theta pinch plasma by injection of the energetic ion beam with energy of the order of 1 MeV is considered. A possible trapping scheme of the ion beam in the plasma is discussed in detail. (author)

  10. Inertial Confinement Fusion quarterly report, January--March 1995. Volume 5, No. 2

    International Nuclear Information System (INIS)

    1995-01-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included this quarter include: the role of the National Ignition Facility in the development of Inertial Confinement Fusion, laser-plasma interactions in large gas-filled hohlraums, evolution of solid-state induction modulators for a heavy-ion recirculator, the National Ignition Facility project, and terminal-level relaxation in Nd-doped laser material

  11. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-15

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc.

  12. First fusion proton measurements in TEXTOR plasmas using

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Mlynář, Jan; Van Wassenhove, G.; Hult, M.; González de Orduña, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-01-01

    Roč. 83, č. 10 (2012), 10D318 ISSN 0034-6748. [Topical Conference High-Temperature Plasma Diagnostics/19./. Monterey, 06.05.2012-10.05.2012] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * fusion * activation * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2012 http://rsi.aip.org/resource/1/rsinak/v83/i10/p10D318_s1

  13. NIFS symposium: toward the research of fusion burning plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae

    1993-07-01

    NIFS symposium, entitled 'Toward the research of Fusion Burning Plasmas - Present status and Future Strategy' was held at NIFS on July 15th 1992. This NIFS symposium covers various topics related to burning plasma, e.g., JET DT experiment, Plan for DT experiment on TFTR as well as the future trends among researchers. To study the critical issues and trends of future research, a questionnaire was sent to about 100 researchers. This report presents such activities in the NIFS symposium. (author)

  14. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  15. Shock-tube study of fusion plasma-wall interactions

    International Nuclear Information System (INIS)

    Gross, R.A.; Tien, J.K.; Jensen, B.; Panayotou, N.F.; Feinberg, B.

    1977-01-01

    Theoretical and experimental studies have been made of phenomena which occur when a hot (T 1 approximately equal to 6 x 10 6 0 K), dense (n approximately equal to 10 16 cm -3 ), deuterium plasma containing a transverse magnetic field is brought into sudden contact with a cold metal wall. These studies are motivated by the need to understand plasma and metallurgical conditions at the first-wall of a fusion reactor. Experiments were carried out in the Columbia high energy electromagnetic shock tube. Computational simulation was used to investigate the detailed physics of the fusion plasma boundary layer which develops at the wall. The rate of energy transfer from the plasma to the wall was calculated and conditions under which surface melting occurs are estimated. Experimental measurements of plasma-wall heat transfer rates up to 3 x 10 5 watts/cm 2 were obtained and agreement with computed values are good. Fusion reactor first-wall materials have been exposed to 6.0 x 10 21 eV cm -2 (1,000 shots) of deuterium plasma bombardment. Scanning electron micrograph photographs show preferential erosion at grain boundaries, formation of deuterium surface blisters, and evidence of local surface melting. Some cracking is observed along grain boundaries, and a decrease in tensile ductiity is measured

  16. Interpretation of ion cyclotron emission from fusion and space plasmas

    International Nuclear Information System (INIS)

    Dendy, R.O.

    1994-01-01

    Superthermal ion cyclotron emission (ICE) is observed in both fusion and space plasma. Typical spectra display strong peaks at sequential multiple ion cyclotron harmonics, and distinct energetic ion populations are present in the emitting regions. In JET and TFTR, for example, ICE appears to be driven by fusion products or by injected beam ions in the outer mid plane; and in the Earth's ring current, radiation belts, and bow shock, ICE has been observed by the spacecraft OGO 3, GEOS 1 and 2 and AMPTE/IRM, often in conjunction with highly non-Maxwellian proton populations. Common emission mechanisms, arising from collective relaxation of energetic ion populations, appear to operate in both the fusion and space plasma environments. These are reviewed here, and the potential role of ICE as a diagnostic of energetic ion populations is also examined. (Author)

  17. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  18. Interplay between parametric instabilities in fusion - relevant laser plasmas

    International Nuclear Information System (INIS)

    Huller, St.

    2003-01-01

    The control of parametric instabilities plays an important role in laser fusion. They are driven by the incident laser beams in the underdense plasma surrounding a fusion capsule and hinder the absorption process of incident laser light which is necessary to heat the fusion target. Due to its high intensity and power, the laser light modifies the plasma density dynamically, such that two or more parametric instabilities compete, in particular stimulated Brillouin scattering and the filamentation instability. The complicated interplay between these parametric instabilities is studied in detail by developing an adequate model accompanied by numerical simulations with multidimensional codes. The model is applied to generic and to smoothed laser beams, which are necessary to limit parametric instabilities, with parameters close to experimental conditions. (author)

  19. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    Science.gov (United States)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  20. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  1. DIAGNOSTICS FOR EROSION AND DEPOSITION PROCESSES IN FUSION PLASMAS

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2010-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  2. Diagnostics for erosion and deposition processes in fusion plasmas

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2012-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  3. Diagnostics for erosion and deposition processes in fusion plasmas

    NARCIS (Netherlands)

    van Rooij, G. J.; Wright, G. M.

    2008-01-01

    An overview is given of the wide range of diagnostics that is providing valuable information on the interaction between plasma and the material wall in a fusion device. Of each technique, a brief description is given in combination with the main advantages and disadvantages for PSI research.

  4. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  5. Dust remobilization in fusion plasmas under steady state conditions

    NARCIS (Netherlands)

    Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic

  6. Critical plasma-materials issues for fusion reactor designs

    International Nuclear Information System (INIS)

    Wilson, K.L.; Bauer, W.

    1983-01-01

    Plasma-materials interactions are a dominant driving force in the design of fusion power reactors. This paper presents a summary of plasma-materials interactions research. Emphasis is placed on critical aspects related to reactor design. Particular issues to be addressed are plasma edge characterization, hydrogen recycle, impurity introduction, and coating development. Typical wall fluxes in operating magnetically confined devices are summarized. Recent calculations of tritium inventory and first wall permeation, based on laboratory measurements of hydrogen recycling, are given for various reactor operating scenarios. Impurity introduction/wall erosion mechanisms considered include sputtering, chemical erosion, and evaporation (melting). Finally, the advanced material development for in-vessel components is discussed. (author)

  7. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  8. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  9. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section

  10. Laser-plasma interaction physics in the context of fusion

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Depierreux, S.; Tikhonchuk, V.T.; Baldis, H.A.; Pesme, D.; Myatt, J.; Huller, S.; Laval, G.; Tikhonchuk, V.T.

    2000-01-01

    Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurrence of the Langmuir decay instability. This secondary instability may play an important role in the saturation of stimulated Raman scattering. Another mechanism for inducing the growth of the scattering instabilities is the so-called 'plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities. (authors)

  11. How much laser power can propagate through fusion plasma?

    International Nuclear Information System (INIS)

    Lushnikov, Pavel M; Rose, Harvey A

    2006-01-01

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data. This maximum is determined by the collective forward stimulated Brillouin scattering instability which suggests a way to increase the maximum power by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and therefore raises the possibility of indirect control of backscatter through manipulation of plasma ionization state or acoustic damping. We find a simple expression for laser intensity at onset of enhanced beam angular divergence (beam spray)

  12. Thermal energy and bootstrap current in fusion reactor plasmas

    International Nuclear Information System (INIS)

    Becker, G.

    1993-01-01

    For DT fusion reactors with prescribed alpha particle heating power P α , plasma volume V and burn temperature i > ∼ 10 keV specific relations for the thermal energy content, bootstrap current, central plasma pressure and other quantities are derived. It is shown that imposing P α and V makes these relations independent of the magnitudes of the density and temperature, i.e. they only depend on P α , V and shape factors or profile parameters. For model density and temperature profiles analytic expressions for these shape factors and for the factor C bs in the bootstrap current formula I bs ∼ C bs (a/R) 1/2 β p I p are given. In the design of next-step devices and fusion reactors, the fusion power is a fixed quantity. Prescription of the alpha particle heating power and plasma volume results in specific relations which can be helpful for interpreting computer simulations and for the design of fusion reactors. (author) 5 refs

  13. Polarization plasma spectroscopy (PPS) viewed from plasma physics and fusion research

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Recently the measurements of poloidal magnetic field become important in plasma physics and nuclear fusion research, since an improved confinement mode associating with a negative magnetic shear has been found. The polarization plasma spectroscopy is recognized to be a useful tool to measure poloidal magnetic field and pitch angle of magnetic field. (author)

  14. Far-infrared fusion plasma diagnostics. Task IIIA. Final report

    International Nuclear Information System (INIS)

    Luhmann, N.C. Jr.

    1986-01-01

    The Task IIIA program at UCLA has been concerned with the development of innovative yet practical plasma diagnostic systems capable of providing detailed information essential to the success of the fusion program but not presently available within the fusion community. Historically, this has involved an initial development in the laboratory, followed by a test of feasibility on the Microtor tokamak prior to transfer of the technique/instrument to main line fusion devices. Strong emphasis has been placed upon the far-infrared (FIR) spectral region where novel diagnostic systems and technology have been developed and then distributed throughout the fusion program. The major diagnostics under development have been the measurement of plasma microturbulence and coherent modes via multichannel cw collective Thomson scattering, and the application of phase/polarization imaging techniques to provide accurate and detailed (>20 channel) electron density and current profiles not presently available using conventional methods. The eventual transfer of the above techniques to main line fusion devices is, of course, a major goal of the UCLA development program. The multichannel scattering development at UCLA was efficiently transferred to TEXT a few years ago. The apparatus has been employed to investigate the strong spectral and spatial asymmetries in the microturbulence uncovered through the unique multichannel and spatial scanning capabilities of the system. The scattering apparatus has also produced evidence for the ion pressure gradient driven eta/sub i/ modes thought responsible for anomalous transport in the edge regions of tokamak plasmas, as well as providing insight into the wave-wave coupling processes between various plasma modes

  15. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    International Nuclear Information System (INIS)

    Counsell, G F

    2002-01-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV e e >10 19 m -3 ) but weakly ionized (n 0 >10 20 m -3 , n e /n 0 <0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues

  16. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    Science.gov (United States)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.

    2017-05-01

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.

  17. Introduction to turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    2006-01-01

    This introduction presents the main instabilities responsible for turbulence in tokamak plasmas, and the prominent features of the resulting transport. The usual techniques to construct reduced transport models are described. These models can be tested by analysing steady state and transient regimes. Another way to test the theory is to use a similarity principle, similar to the one used in fluid mechanics. Finally, the physics involved in the formation and sustainment of transport barriers is presented. (author)

  18. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  19. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Goutych, I F; Gresillon, D; Sitenko, A G

    1997-12-31

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas.

  20. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Goutych, I.F.; Gresillon, D.; Sitenko, A.G.

    1996-01-01

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas

  1. Energetic particle instabilities in fusion plasmas

    International Nuclear Information System (INIS)

    Sharapov, S.E.; Alper, B.; Challis, C.D.; Gryaznevich, M.P.; Kiptily, V.G.; Voitsekhovich, I.; Berk, H.L.; Breizman, B.N.; Borba, D.N.; Nabais, F.; Classen, I.G.J.; Edlund, E.M.; Fredrickson, E.D.; Fu, G.Y.; Ghantous, K.; Gorelenkov, N.N.; Kramer, G.J.; Nazikian, R.; Podesta, M.; White, R.B.; Eriksson, J.; Hellesen, C.; Fasoli, A.; Garcia-Munoz, M.; Lauber, P.; Thun, C. Perez von; Gassner, T.; Goloborodko, V.; Schoepf, K.; Yavorskij, V.; Hacquin, S.; Heidbrink, W.W.; Lilley, M.K.; Lisak, M.; Nyqvist, R.; Osakabe, M.; Todo, Y.; Toi, K.; Pinches, S.D.; Porkolab, M.; Shinohara, Koji; Van Zeeland, M.A.

    2012-11-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge. (author)

  2. Aneutronic fusion in a degenerate plasma

    International Nuclear Information System (INIS)

    Son, S.; Fisch, N.J.

    2004-01-01

    In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot

  3. Aneutronic Fusion in a Degenerate Plasma

    International Nuclear Information System (INIS)

    Son, S.; Fisch, N.J.

    2004-01-01

    In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot

  4. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    BOWERS,R.L.; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSKA,W.; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,RICHARD E.; PETERSON,D.L.; PETERSON,R.R.; RUGGLES,LAURENCE E.; RUIZ,CARLOS L.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; VESEY,ROGER A.

    1999-11-03

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed.

  5. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    International Nuclear Information System (INIS)

    BOWERS, R.L.; CHANDLER, GORDON A.; HEBRON, DAVID E.; LEEPER, RAMON J.; MATUSKA, W.; MOCK, RAYMOND CECIL; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; PETERSON, R.R.; RUGGLES, LAURENCE E.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SIMPSON, WALTER W.; VESEY, ROGER A.

    1999-01-01

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed

  6. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  7. Plasma-Jet Magneto-Inertial Fusion Burn Calculations

    Science.gov (United States)

    Santarius, John

    2010-11-01

    Several issues exist related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The poster will explore how well the liner's inertia provides transient plasma confinement and affects the burn dynamics. The investigation uses the University of Wisconsin's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, pressure contributions from all species, and one or two temperatures. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity on the magnetic field. [4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  8. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on NIF

    Science.gov (United States)

    Callahan, Debra

    2017-10-01

    Over the past two years, we have been exploring low gasfill hohlraums (He fill at 0.3-0.6 mg/cc) as an alternate to the high gasfill hohlraums used in NIC and the High Foot campaigns (He fill at 1-1.6 mg/cc). These low fill hohlraums have significantly reduced laser-plasma instabilities and increased coupling to the target as compared to the high fill hohlraums and take us to a new region of parameter space where the hohlraum is limited by hydrodynamic motion of the hohlraum wall rather than by laser plasma interactions. The outer cone laser beams interacting with the hohlraum wall produce a ``bubble'' of low density, high Z material that moves toward the center of the hohlraum. This gold or depleted uranium bubble eventually intercepts the inner cone beams and prevents the inner cone beams from reaching the waist of the hohlraum-where they are needed to get a symmetric implosion. Thus, the speed of the bubble expansion sets the allowable pulse duration in a given size hohlraum. Data and simulations suggest that the bubble is launched by the early part of the laser pulse (``picket'') and the gold/gas interfaces moves nearly linearly in time toward the axis of the hohlraum. The velocity of the bubble is related to the square root of the energy in the picket of the pulse - thus the picket energy and pulse duration set the allowable hohlraum size and case-to-capsule ratio. In this talk, will discuss a data based model to describe the bubble motion and apply this model to a broad set of data from a variety of ablators (CH, HDC, Be), pulse durations (6-14 ns), case-to-capsule ratios (rhohl/rcap of 3-4.2), hohlraum sizes (5.4-6.7 mm diameter), and hohlraum gasfill densities (0.3-0.6 mg/cc). We will discuss how this model can help guide future designs and how improvements in the hohlraum (foam liners, hohlraum shape) can open up new parts of parameter space. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

  9. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-01-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  10. Ignition Regime for Fusion in a Degenerate Plasma

    International Nuclear Information System (INIS)

    Son, S.; Fisch, N.J.

    2005-01-01

    We identify relevant parameter regimes in which aneutronic fuels can undergo fusion ignition in hot-ion degenerate plasma. Because of relativistic effects and partial degeneracy, the self-sustained burning regime is considerably larger than previously calculated. Inverse bremsstrahlung plays a major role in containing the reactor energy. We solve the radiation transfer equation and obtain the contribution to the heat conductivity from inverse bremsstrahlung

  11. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    International Nuclear Information System (INIS)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D 2 and D 3 He-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5x10 10 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  12. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    Science.gov (United States)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D2 and DHe3-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5×1010 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  13. Discriminant analysis of plasma fusion data

    International Nuclear Information System (INIS)

    Kardaun, O.J.W.F.; Kardaun, J.W.P.F.; Itoh, S.; Itoh, K.

    1992-06-01

    Several discriminant analysis methods has been applied and compared to predict the type of ELM's in H-mode discharges: (a) quadratic discriminant analysis (linear discriminant analysis being a special case), (b) discrimination by non-parametric (kernel-) density estimates, and (c) discrimination by a product multinomial model on a discretised scale. Practical evaluation was performed using SAS in the first two cases, and INDEP, a standard FORTRAN program, initially developed for medical applications, in the last case. We give here a flavour of the approach and its results. In summary, discriminant analysis can be used as a useful descriptive method of specifying regions where particular types of plasma discharges can be produced. Parametric methods have the advantage of a rather compact mathematical formulation . Pertinent graphical representations are useful to make the theory and the results more palatable to the experimental physicists. (J.P.N.)

  14. Laser fusion implosion and plasma interaction experiments

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1977-08-01

    Results related to the propagation, absorption and scattering of laser light by both spherical and planar targets are described. The absorption measurements indicate that for intensities of interest, inverse bremsstrahlung is not the dominant absorption mechanism. The laser light scattered by the plasma is polarization dependent and provides evidence that Brillouin scattering and resonance absorption are operative. Special diagnostics have been designed and experiments have been performed to elucidate the nature of these two processes. Implosion results on glass microshell targets filled with DT gas are also summarized. These experiments are for targets intentionally operated in the portion of parameter space characteristic of exploding pusher events. Experiments have been performed over a yield range from 0 to 10 9 neutrons per event. It is shown how this data can be normalized with a simple scaling law

  15. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light

    Science.gov (United States)

    Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.

    2018-02-01

    The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.

  16. Characterization of an electrothermal plasma source for fusion transient simulations

    Science.gov (United States)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  17. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  18. Material Challenges For Plasma Facing Components in Future Fusion Reactors

    International Nuclear Information System (INIS)

    Linke, J; Pintsuk, G.; Rödig, M.

    2013-01-01

    Increasing attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO2-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible materials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PFMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm-2; the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm-2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat sink materials as well as reliable fabrication processes for actively cooled plasma facing components. The technical solutions which are considered today are mainly based on the PFMs beryllium, carbon or tungsten joined to copper alloys or stainless steel heat sinks. In addition to the above mentioned quasi-stationary heat loads, short transient thermal pulses with deposited energy densities up to several tens of MJm-2 are a serious concern for next step tokamak devices. The most frequent events are so-called Edge Localized Modes (type I ELMs) and plasma disruptions

  19. Alushta-2012. International Conference-School on Plasma Physics and Controlled Fusion and the Adjoint Workshop 'Nano-and micro-sized structures in plasmas'. Book of Abstracts

    International Nuclear Information System (INIS)

    Makhlaj, V.A.

    2012-01-01

    The Conference was devoted to a new valuable information about the present status of plasma physics and controlled fusion research. The main topics was : magnetic confinement systems; plasma heating and current drive; ITER and fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics; formation of nano-and micro-sized structures in plasmas; properties of plasmas with nano- and micro- objects

  20. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  1. Quantitative Characterization of Phosphor Detector for Fusion Plasmas; Caracterizacion Cuantitativa de Detectores Luminiscentes para Plasmas de Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Baciero, A; Zurro, B; McCarthy, K J

    2004-07-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  2. Radiative processes in a laser-fusion plasma

    International Nuclear Information System (INIS)

    Campbell, P.M.; Kubis, J.J.; Mitrovich, D.

    1976-01-01

    Plasmas compressed and heated by an intense laser pulse offer promise for the ignition of propagating thermonuclear burn and, ultimately, for use in fusion reactors. It is evident theoretically that the emission and absorption of x-rays by the plasma has a significant effect on the dynamics of the laser compression process. In order to achieve densities high enough for efficient thermonuclear burn, the fusion pellet must be compressed along a low adiabat. This will not be possible if the compressed region of the pellet is significantly preheated by x-rays originating in the hot outer regions. A satisfactory model of compression hydrodynamics must, therefore, include a comprehensive treatment of radiation transport based on a non-LTE model of the plasma. The model must be valid for Fermi-Dirac statistics, since high compression along a low adiabat will, in general, produce degenerate electron distributions. This report is concerned with the plasma model and the corresponding radiation emission and absorption coefficients, including nonthermal processes which occur in the laser deposition region

  3. Atomic and plasma-material interaction data for fusion. V. 6

    International Nuclear Information System (INIS)

    1995-01-01

    Volume 6 of the supplement ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' includes critical assessments and results of original experimental and theoretical studies on inelastic collision processes among the basic and dominant impurity constituents of fusion plasmas. Processes considered in the 15 papers constituting this volume are: electron impact excitation of excited Helium atoms, electron impact excitation and ionization of plasma impurity ions and atoms, electron-impurity-ion recombination and excitation, ionization and electron capture in collisions of plasma protons and impurity ions with the main fusion plasma neutral components helium and atomic and molecular hydrogen. Refs, figs, tabs

  4. High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas

    CERN Document Server

    Spatschek, Karl-Heinz

    2012-01-01

    Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.

  5. Characterization of diagnostic hole-closure in Z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Baker, K. L.; Porter, J. L.; Ruggles, L. E.; Chandler, G. A.; Deeney, Chris; Vargas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J. S.

    2000-01-01

    In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. (c) 2000 American Institute of Physics

  6. Characterization of diagnostic hole-closure in Z-pinch driven hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Porter, J. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Ruggles, L. E. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Chandler, G. A. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Deeney, Chris [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Vargas, M. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moats, Ann [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Struve, Ken [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Torres, J. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); McGurn, J. S. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)] (and others)

    2000-02-01

    In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. (c) 2000 American Institute of Physics.

  7. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    Science.gov (United States)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50atm of deuterium (DD) are predicted to give in excess of 1010 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50atm of DHe3 are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production.

  8. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17 eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1 ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400 ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50 atm of deuterium (DD) are predicted to give in excess of 10 10 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50 atm of D 3 He are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production

  9. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  10. Trends in laser-plasma-instability experiments for laser fusion

    International Nuclear Information System (INIS)

    Drake, R.P.

    1991-01-01

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with ∼1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs

  11. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  12. Characterization of a deuterium-deuterium plasma fusion neutron generator

    Science.gov (United States)

    Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.

    2018-01-01

    We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.

  13. Atomic and plasma-material interaction data for fusion. V. 2

    International Nuclear Information System (INIS)

    1992-01-01

    This issues of the Atomic and Plasma-Material Interaction Data for Fusion contains 9 papers on atomic and molecular processes in the edge region of magnetically confined fusion plasmas, including spectroscopic data for fusion edge plasmas; electron collision processes with plasma edge neutrals; electron-ion collisions in the plasma edge; cross-section data for collisions of electrons with hydrocarbon molecules; dissociative and energy transfer reactions involving vibrationally excited hydrogen or deuterium molecules; an assessment of ion-atom collision data for magnetic fusion plasma edge modeling; an extended scaling of cross sections for the ionization of atomic and molecular hydrogen as well as helium by multiply-charged ions; ion-molecule collision processes relevant to fusion edge plasmas; and radiative losses and electron cooling rates for carbon and oxygen plasma impurities. Refs, figs and tabs

  14. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion targets were deposited up to 135 μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  15. Ultrasmooth plasma polymerized coatings for laser fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion were deposited up to 135μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power (20 watts), gas flow (0.3 sccm trans-2-butene, 10.0 sccm hydrogen), and pressure (75 millitorr), and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  16. Nuclear fusion research and plasma application technologies in SWIP (Southwestern Institute of Physics)

    International Nuclear Information System (INIS)

    Deng, X.W.

    1990-01-01

    A brief introduction of nuclear fusion research and plasma application technologies in SWIP is reported in this paper. The SWIP focuses its fusion efforts mainly on Tokamak with mirror as the supplemental experiments and fusion reactor conceptual design as preparation for future application of fusion energy. SWIP is making great efforts on fusion technology spin-off to make contribution towards national economic construction. (Author)

  17. An accelerated beam-plasma neutron/proton source and early application of a fusion plasma

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yoshikawa, K.; Yamamoto, Y.; Hoshino, C.; Masuda, K.; Miley, G.; Jurczyk, B.; Stubbers, R.; Gu, Y.

    1999-01-01

    We measured the number of the neutrons and protons produced by D-D reactions in an accelerated beam-plasma fusion and curried out the numerical simulations. The linear dependence of the neutron yield on a discharge current indicates that the fusion reactions occur between the background gas and the fast particles. i.e. charge exchanged neutrals and accelerated ions. The neutron yield divided by (fusion cross section x ion current x neutral gas pressure) still possesses the dependence of the 1.2 power of discharge voltage. which shows the fusion reactions are affected by the electrostatic potential built-up in the center. The measured proton birth profiles suggest the existence of a double potential well, which is supported by the numerical simulations. (author)

  18. The LMJ project - status of our knowledge in hohlraum energetics physics: production and control of the radiation flux

    International Nuclear Information System (INIS)

    Dattolo, E.

    2001-09-01

    CEA-DAM in France is working on Inertial controlled Fusion (ICF) since the beginning of nineties. In an indirect drive scheme, the laser light is converted in X-ray in a hohlraum made with an high-Z material. Part of this radiation flux is absorbed by a micro-balloon filled with DT, placed in the center of the hohlraum, and generates its implosion, ignition and burn. This paper gives the status of our knowledge and studies for production and control of the radiation flux in the hohlraum, in the perspective of the Laser MegaJoule (LMJ). (authors)

  19. Studies on the parametric decay of waves in fusion plasmas

    International Nuclear Information System (INIS)

    Paettikangas, T.

    1992-08-01

    Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)

  20. Gas-filled hohlraum fabrication

    International Nuclear Information System (INIS)

    Salazar, M.A.; Gobby, P.L.; Foreman, L.R.; Bush, H. Jr.; Gomez, V.M.; Moore, J.E.; Stone, G.F.

    1995-01-01

    Los Alamos National Laboratory (LANL) researchers have fabricated and fielded gas-filled hohlraums at the Lawrence Livermore National Laboratory (LLNL) Nova laser. Fill pressures of 1--5 atmospheres have been typical. We describe the production of the parts, their assembly and fielding. Emphasis is placed on the production of gas-tight polyimide windows and the fielding apparatus and procedure

  1. Symmetry control in subscale near-vacuum hohlraums

    Science.gov (United States)

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.

    2016-05-01

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  2. Symmetry control in subscale near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D., E-mail: turnbull2@llnl.gov; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J. [National Ignition Facility, LLNL, Livermore, California 94550 (United States); Mackinnon, A. [National Ignition Facility, LLNL, Livermore, California 94550 (United States); Linac Coherent Light Source, SLAC, Menlo Park, California 94025 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rinderknecht, H. G. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); National Ignition Facility, LLNL, Livermore, California 94550 (United States); Sio, H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  3. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  4. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    International Nuclear Information System (INIS)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki; Okino, Akitoshi

    2001-01-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  5. Interaction of ion clusters with fusion plasmas: Scaling laws

    International Nuclear Information System (INIS)

    Arista, N.R.; Bringa, E.M.

    1997-01-01

    The interaction between large ion clusters or very intense ion beams with fusion plasma is studied using the dielectric function formalism with appropriate quantum corrections. The contributions from individual and collective modes to the energy loss are calculated. The general properties of the interference effects are characterized in terms of the relevant parameters, and simple scaling laws are obtained. In particular, the conditions for a maximum enhancement in the energy deposition are derived. The study provides a unified view and a general formulation of collective effects in the energy loss for low and high velocities of the beam particles. copyright 1997 The American Physical Society

  6. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki [Tokyo Institute of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Okino, Akitoshi [Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, Tokyo (Japan)

    2001-09-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  7. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  8. Effect of a generalized particle momentum distribution on plasma nuclear fusion rates

    International Nuclear Information System (INIS)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-01-01

    We investigate the effect of a generalized particle momentum distribution derived by Galitskii and Yakimets (GY) on nuclear reaction rates in plasma. We derive an approximate semi-analytical formula for nuclear fusion reaction rate between nuclei in a plasma (quantum plasma nuclear fusion; or QPNF). The QPNF formula is applied to calculate deuteron-deuteron fusion rate in a plasma, and the results are compared with the results calculated with the conventional Maxwell-Boltzmann velocity distribution. As an application, we investigate the deuteron-deuteron fusion rate for mobile deuterons in a deuterated metal/alloy. The calculated deuteron-deuteron fusion rates at low energies are enormously enhanced due to the modified tail of the GY's generalized momentum distribution. Our preliminary estimates indicate also that the deuteron-lithium (D+Li) fusion rate and the proton-lithium (p+Li) fusion rate in a metal/alloy at ambient temperatures are also substantially enhanced. (author)

  9. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    Science.gov (United States)

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  10. Microwave Receivers for Fast-Ion Detection in Fusion Plasmas

    DEFF Research Database (Denmark)

    Furtula, Vedran

    for the frequency range from 100 to 110 GHz. In this thesis we follow the path of the radiation from a fusion plasma to the data acquisition unit. Firstly, the scattered radiation passes through the quasi-optical system. Quasi-optical elements required to be installed on the high field side (HFS) on the ITER...... are assessed. For the ITER HFS receiver we have designed and measured the quasioptical components that form a transmission link between the plasma and the radio frequency (RF) electronics. This HFS receiver is required to resolve the near parallel velocity components created by the alpha particles. Secondly...... is the mixer. The conversion loss of the mixer, together with loss in waveguide components and quasi-optic parts, is the main contributor to the noise and thereby degrades the signal to-noise ratio. The architecture of the mixer is a subharmonic type, optimized to be driven by a double local oscillator (LO...

  11. Radiation-magnetohydrodynamics of fusion plasmas on parallel supercomputers

    International Nuclear Information System (INIS)

    Yasar, O.; Moses, G.A.; Tautges, T.J.

    1993-01-01

    A parallel computational model to simulate fusion plasmas in the radiation-magnetohydrodynamics (R-MHD) framework is presented. Plasmas are often treated in a fluid dynamics context (magnetohydrodynamics, MHD), but when the flow field is coupled with the radiation field it falls into a more complex category, radiation magnetohydrodynamics (R-MHD), where the interaction between the flow field and the radiation field is nonlinear. The solution for the radiation field usually dominates the R-MHD computation. To solve for the radiation field, one usually chooses the S N discrete ordinates method (a deterministic method) rather than the Monte Carlo method if the geometry is not complex. The discrete ordinates method on a massively parallel processor (Intel iPSC/860) is implemented. The speedup is 14 for a run on 16 processors and the performance is 3.7 times better than a single CRAY YMP processor implementation. (orig./DG)

  12. Kinetic modeling of Nernst effect in magnetized hohlraums

    OpenAIRE

    Joglekar, A. S.; Ridgers, Christopher Paul; Kingham, R J; Thomas, A. G. R.

    2016-01-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such...

  13. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    Dachicourt, R.

    2012-10-01

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  14. Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas

    Czech Academy of Sciences Publication Activity Database

    Lorenzini, R.; Martines, E.; Piovesan, P.; Terranova, D.; Zanca, P.; Zuin, M.; Alfier, A.; Bonfiglio, D.; Bonomo, F.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Escande, D.F.; Fassina, A.; Franz, P.; Gobbin, M.; Innocente, P.; Marrelli, L.; Pasqualotto, R.; Puiatti, M.E.; Spolaore, M.; Valisa, M.; Vianello, N.; Martin, P.; Apolloni, L.; Adámek, Jiří; Agostini, M.; Annibaldi, S.V.; Antoni, V.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bolzonella, T.; Brombin, M.; Brotánková, Jana; Buffa, A.; Buratti, P.; Cavinato, M.; Chapman, B.E.; Chitarin, G.; Dal Bello, S.; De Lorenzi, A.; De Masi, G.; Ferro, A.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Grando, L.; Guazzotto, L.; Guo, S.C.; Igochine, V.; Liu, Y.Q.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Martini, S.; McCollam, K.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Peruzzo, S.; Piovan, R.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Reusch, J.A.; Rostagni, G.; Rubinacci, G.; Sarff, J.S.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Sopplesa, A.; Spagnolo, S.; Spizzo, G.; Taliercio, C.; Toigo, V.; Villone, F.; White, R.B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zohm, H.

    2009-01-01

    Roč. 5, č. 8 (2009), s. 570-574 ISSN 1745-2473 Institutional support: RVO:61389021 Keywords : plasma * fusion * ITER * helical equilibrium Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 15.491, year: 2009

  15. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In this report one invited and fifteen contributed papers by researchers of the `Centre de Recherche en Physique des Plasmas`, Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs.

  16. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    Directory of Open Access Journals (Sweden)

    Carvalho Paulo F.

    2018-01-01

    Full Text Available Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak. These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees. Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA® standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®, to meet the demands of telecommunications that require large amount of data (TB transportation at high transfer rates (Gb/s, to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency

  17. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    Science.gov (United States)

    Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, AntÓnio P.; Pereira, Rita C.; Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, AntÓnio J. N.; Correia, Carlos M. B. A.; Gonçalves, Bruno

    2018-01-01

    Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak). These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees). Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA®) standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®), to meet the demands of telecommunications that require large amount of data (TB) transportation at high transfer rates (Gb/s), to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency scenarios

  18. Fundamentals of plasma physics and controlled fusion. The third edition

    International Nuclear Information System (INIS)

    Miyamoto, Kenro

    2011-06-01

    Primary objective of this lecture note is to provide a basic text for the students to study plasma physics and controlled fusion researches. Secondary objective is to offer a reference book describing analytical methods of plasma physics for the researchers. This was written based on lecture notes for a graduate course and an advanced undergraduate course those have been offered at Department of Physics, Faculty of Science, University of Tokyo. In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits of ion and electron are described in several magnetic field configurations. Chapter 4 formulates Boltzmann equation of velocity space distribution function, which is the basic relation of plasma physics. From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equation of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic MHD equation of motion can be derived by taking an appropriate average of Boltzmann equation. This mathematical process is described in appendix A. The derivation of useful energy integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are described in app. B. From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity, the dielectric tensor of cold plasma can be easily derived and the properties of various wave can be discussed in the case of cold plasma. If the refractive index becomes large and the phase velocity of the

  19. Interplay of light and heavy impurities in a fusion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gaja, Mustafa [IPP, Garching (Germany); Tokar, Mikhail [IEK4, Juelich FZ, Juelich (Germany)

    2016-07-01

    Radiation from impurities eroded from the walls can lead to a broad spectrum of spectacular phenomena in fusion devices An example of such events are breathing oscillations observed in the large helical device (LHD), in long pulse discharges with a stainless steel divertor. They were characterized with oscillations of a period of a second in various plasma parameters. By optimizing magnetic geometry this operation mode, leading to a deteriorate plasma performance, can be avoided. Nonetheless it is of interest and practical importance to understand and firmly predict conditions for breathing phenomenon, in particular, in view of similar impurity environment in W-7 X stellarator. A qualitative explanation for breathing oscillations proposed earlier presumes that they arise due to non-linear synergetic interplay of diverse physical processes. A one-dimensional non-stationary model, describing the generation and transport of main, impurity particles and heat by including the radiation of high-Z (Fe) and low-Z (C and O) impurities is elaborated here. The calculations predict the appearance of oscillations in the relevant range of plasma parameters, reproduce well experimentally observed amplitudes and period of oscillations. It demonstrates that the smaller the fraction of the plasma interaction with a stainless steel surface, the higher the light impurity concentration needed to excite the breathing oscillations. This shows a way to avoid oscillations in future experiments.

  20. Twentyseventh European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Igitkhanov, Y.

    2000-01-01

    The twentyseventh European physical society conference on controlled fusion and plasma physics was held in Budapest, 12-16 June 2000. About 10 invited papers were presented, covering a wide range of problems in plasma physics, including confinement and transport issues in fusion devices, astrophysics and industrial application of plasmas. More than 100 papers were presented on plasma theory and experiments from tokamaks and stellarators. Some of the ITER-relevant issues covered are described in this newsletter

  1. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    Science.gov (United States)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA

    Science.gov (United States)

    Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.

    2010-11-01

    Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).

  3. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  4. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    International Nuclear Information System (INIS)

    Rawat, R S

    2015-01-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 10 10 J/m 3 . The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I 4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  5. Hohlraum targets for HIDIF

    International Nuclear Information System (INIS)

    Ramis, R.; Ramirez, J.; Meyer-ter-Vehn, J.

    2000-01-01

    An optimized high gain IFE indirect target design is presented. Beam parameters (5 MJ of 5 GeV Bi + ions in 10-20 ns and focal spot of 3 mm radius) are in agreement to the ones considered recently for the European Study Group on Heavy Ion Driven Inertial Fusion (HIDIF). The energy yield is close to 530 MJ, giving a large enough gain appropriate for industrial energy production. Numerical and analytical modeling are described and discussed. (authors)

  6. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  7. High Temperature Dynamic Hohlraums on the Pulsed Power Driver Z

    International Nuclear Information System (INIS)

    Armijo, J.; Chandler, G.A.; Cooper, G.; Derzon, M.S.; Fehl, D.; Gilliland, T.; Hawn, R.; Hebron, D.; Hurst, M.; Jobe, D.; Lash, J.; Lazier, S.; Leeper, R.; McGurn, J.; McKenney, J.; Mock, R.; Nash, T.J.; Nielsen, D.; Ruiz, C.; Ryan, P.; Seaman, J.F.; Torres, J.

    1999-01-01

    In the concept of the dynamic hohlraum an imploding z-pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 LMA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diameters with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diameter. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 CV by stabilizing the pinch with a solid current return can. A current return can with 9 slots imprints 9 filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diameter capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diameter. Dynamic hohlraum shots including pellets are scheduled to take place on Z in September of 1998

  8. Fusion plasma theory grant: Task 1, Magnetic confinement fusion plasma theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1989-07-01

    The research performed under this grant during the current year has concentrated on key tokamak plasma confinement and heating theory issues: further development of neoclassical MHD; development of a new fluid/kinetic hybrid model; energy confinement degradation due to macroscopic phenomena in tokamaks; and some other topics (magnetics analysis, coherent structures, presheath structure). Progress and publications in these areas are briefly summarized in this report. 20 refs

  9. Development of a Z-pinch-driven ICF hohlraum concept on Z

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Porter, J.L. Jr.; Vesey, R.A.

    1999-01-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity

  10. Development of a Z-pinch-driven ICF hohlraum concept on Z

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M E; Porter, Jr, J L; Vesey, R A [and others

    1999-07-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity.

  11. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    International Nuclear Information System (INIS)

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas

  12. Atomic and plasma-material interaction data for fusion. Vol.1

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency, through its Atomic and Molecular Data Unit, coordinates a wide spectrum of programmes for the compilation, evaluation, and generation of atomic, molecular, and plasma-wall interaction data for fusion research. The present, first, volume of Atomic and Plasma-Material Interaction Data for Fusion, contains extended versions of the reviews presented at the IAEA Advisory Group Meeting on Particle-Surface Interaction Data for Fusion, held 19-21 April 1989 at the IAEA Headquarters in Vienna, The plasma-wall interaction processes covered here are those considered most important for the operational performance of magnetic confinement fusion reactors. In addition to processes due to particle impact under normal operation, plasma-wall interaction effects due to off-normal plasma events (disruptions, electron runaway bombardment) are covered, and a summary of the status of data information on these processes is given from the point of view of magnetic fusion reactor design. Refs, figs and tabs

  13. Novel Approach to Plasma Facing Materials in Nuclear Fusion Reactors

    International Nuclear Information System (INIS)

    Livramento, V.; Correia, J. B.; Shohoji, N.; Osawa, E.; Nunes, D.; Carvalho, P. A.; Fernandes, H.; Silva, C.; Hanada, K.

    2008-01-01

    A novel material design in nuclear fusion reactors is proposed based on W-nDiamond nanostructured composites. Generally, a microstructure refined to the nanometer scale improves the mechanical strength due to modification of plasticity mechanisms. Moreover, highly specific grain-boundary area raises the number of sites for annihilation of radiation induced defects. However, the low thermal stability of fine-grained and nanostructured materials demands the presence of particles at the grain boundaries that can delay coarsening by a pinning effect. As a result, the concept of a composite is promising in the field of nanostructured materials. The hardness of diamond renders nanodiamond dispersions excellent reinforcing and stabilization candidates and, in addition, diamond has extremely high thermal conductivity. Consequently, W-nDiamond nanocomposites are promising candidates for thermally stable first-wall materials. The proposed design involves the production of W/W-nDiamond/W-Cu/Cu layered castellations. The W, W-nDiamond and W-Cu layers are produced by mechanical alloying followed by a consolidation route that combines hot rolling with spark plasma sintering (SPS). Layer welding is achieved by spark plasma sintering. The present work describes the mechanical alloying processsing and consolidation route used to produce W-nDiamond composites, as well as microstructural features and mechanical properties of the material produced Long term plasma exposure experiments are planned at ISTTOK and at FTU (Frascati)

  14. Plasma behavior and plasma-wall interaction in magnetic fusion divices

    International Nuclear Information System (INIS)

    Ohtsuka, Hideo

    1984-10-01

    To study the fundamental behavior of plasma in magnetic field is the main subject in the early stage of the magnetic fusion research. At the next stage, it is necessary to overcome some actual problems in order to attain reactor grade plasmas. One of them is to control impurities in the plasma. In these points of view, we carried out several experiments or theoretical analyses. Firstly, anomalous loss mechanisms in magnetic field were investigated in a toroidal multipole device JFT-1 and the role of motions of charged particles in the magnetic field was exhibited. Various measurements of plasma in the scrape-off layer were made in a divertor tokamak JFT-2a and in an ordinary tokamak JFT-2. The former study demonstrated the first successful divertor operation of the tokamak device and the latter one clarified the mechanism of arcing on the tokamak first wall. As to arcing, a new theory which describes the retrograde motion, the well known strange motion of arcs in a magnetic field, was proposed. Good agreement with the experimental results was shown. Finally, by considering a zero-dimensional sputtering model a self-consistent relation between light and metal impurities in tokamak plasmas was obtained. It was shown that the relation well describes some fundamental aspects of the plasma-wall interaction. As a conclusion, the importance of simple behavior of charged particles in magnetic fields was pointed out not only for the plasma confinement but also for the plasma-wall interaction. (author)

  15. Optimization of the NIF ignition point design hohlraum

    International Nuclear Information System (INIS)

    Callahan, D A; Hinkel, D E; Berger, R L; Divol, L; Dixit, S N; Edwards, M J; Haan, S W; Jones, O S; Lindl, J D; Meezan, N B; Michel, P A; Pollaine, S M; Suter, L J; Town, R P J; Bradley, P A

    2008-01-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt

  16. Optimization of the NIF ignition point design hohlraum

    Science.gov (United States)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  17. Relevance, Realization and stability of a cold layer at the plasma edge for fusion reactors

    International Nuclear Information System (INIS)

    1990-09-01

    The workshop was dedicated to the realization and stability of a cold layer at the plasma edge for fusion reactors. The subjects of the communications presented were: impurity transport, and control, plasma boundary layers, power balance, radiation control and modifications, limiter discharges, tokamak density limit, Asdex divertor discharges, thermal stability of a radiating diverted plasma, plasma stability, auxiliary heating in Textor, detached plasma in Tore Supra, poloidal divertor tokamak, radiation cooling, neutral-particle transport, plasma scrape-off layer, edge turbulence

  18. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    2001-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  19. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    1999-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  20. High quality actively cooled plasma facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.

    1993-01-01

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed

  1. High quality actively cooled plasma-facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1995-01-01

    This paper interweaves some suggestions for developing actively cooled plasma-facing components (PFCs) for future fusion devices, with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III outboard pump limiter (OPL). This actively cooled midplane limiter, designed for heat and particle removal during long-pulse operation, has been operated under essentially thermally steady state conditions. Testing to identify braze flaws, analysis of the impact of joining flaws on the thermal-hydraulic performance of the OPL, and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed. This experience suggests that, for PFCs in future fusion devices, flaw-tolerant designs are possible; analyses of the impacts of flaws on performance can provide criteria for quality assurance; and validating appropriate methods of inspection for such flaws early in the design development of PFCs is prudent. The need for in-service monitoring is also discussed. (orig.)

  2. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  3. Atomic and plasma-material interaction data for fusion. V. 5

    International Nuclear Information System (INIS)

    1994-01-01

    Volume 5 of the supplements on ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' is devoted to a critical assessment of the physical and thermo-mechanical properties of presently considered candidate plasma-facing and structural materials for next-generation thermonuclear fusion devices. It contains 9 papers. The subjects are: (i) requirements and selection criteria for plasma-facing materials and components in the ITER EDA (Engineering Design Activities) design; (ii) thermomechanical properties of Beryllium; (iii) material properties data for fusion reactor plasma-facing carbon-carbon composites; (iv) high-Z candidate plasma facing materials; (v) recommended property data for Molybdenum, Niobium and Vanadium alloys; (vi) copper alloys for high heat flux structure applications; (vii) erosion of plasma-facing materials during a tokamak disruption; (viii) runaway electron effects; and (ix) data bases for thermo-hydrodynamic coupling with coolants. Refs, figs, tabs

  4. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    Science.gov (United States)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  5. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  6. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    International Nuclear Information System (INIS)

    Linke, J.

    2006-01-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation

  7. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    Science.gov (United States)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  8. Review of Inertial Confinement Fusion

    Science.gov (United States)

    Haines, M. G.

    The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.

  9. Analysis of noble gas recycling at a fusion plasma divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1996-01-01

    Near-surface recycling of neon and argon atoms and ions at a divertor has been studied using impurity transport and surface interaction codes. A fixed background deuterium endash tritium plasma model is used corresponding to the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2, ITER EDA Documentation Series No. 5 (International Atomic Energy Agency, Vienna, 1994)] radiative plasma conditions (T e ≤10 eV). The noble gas transport depends critically on the divertor surface material. For low-Z materials (Be and C) both neon and argon recycle many (e.g., ∼100) times before leaving the near-surface region. This is also true for an argon on tungsten combination. For neon on tungsten, however, there is low recycling. These variations are due to differences in particle and energy reflection coefficients, mass, and ionization rates. In some cases a high flux of recycling atoms is ionized within the magnetic sheath and this can change local sheath parameters. Due to inhibited backflow, high recycling, and possibly high sputtering, noble gas seeding (for purposes of enhancing radiation) may be incompatible with Be or C surfaces, for fusion reactor conditions. On the other hand, neon use appears compatible with tungsten. copyright 1996 American Institute of Physics

  10. X-ray diodes for laser fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Day, R.H.; Lee, P.; Saloman, E.B.; Nagel, D.J.

    1981-02-01

    Photodiodes with x-ray sensitive photocathodes are commonly used as broadband x-ray detectors in fusion plasma diagnostics. We have measured the risetime of the detector system and have measured the quantum efficiency between 1 to 500 A of numerous photocathode materials of practical interest. The materials studied include aluminum, copper, nickel, gold, three forms of carbon, chromium, and cesium iodide. The results of the measurements are compared with Henke's semiempirical model of photoyield. We have studied the effects of long-term cathode aging and use as a plasma diagnostic on cathode quantum efficiency. In addition, we have measured the x-ray mass-absorption coefficient of several ultrasoft x-ray windows in energy regions where data were unavailable. Windows studied were made of aluminum, Formvar, polypropylene, and Kimfoil. Measurements between 1 to 50 A were performed with the Los Alamos Scientific Laboratory's low-energy x-ray calibration facility, and the measurements between 50 to 550 A were performed at the National Bureau of Standard's synchrotron ultraviolet radiation facility

  11. Microwave receivers for fast-ion detection in fusion plasmas

    International Nuclear Information System (INIS)

    Furtula, V.

    2012-02-01

    The main objectives of this thesis are to determine fundamental properties of a millimeter wave radiometer used to detect radiation associated with dynamics of fast ions and to investigate possibilities for improvements and new designs. The detection of fast ions is based on a principle called collective Thomson scattering (CTS). The Danish CTS group has been involved in fusion plasma experiments for more than 10 years and the future plans will most probably include the International Thermonuclear Experimental Reactor (ITER). Current CTS systems designed by the Danish group are specified for the frequency range from 100 to 110 GHz. In this thesis we follow the path of the radiation from a fusion plasma to the data acquisition unit. Firstly, the scattered radiation passes through the quasi-optical system. Quasi-optical elements required to be installed on the high field side (HFS) on the ITER are assessed. For the ITER HFS receiver we have designed and measured the quasi-optical components that form a transmission link between the plasma and the radio frequency (RF) electronics. This HFS receiver is required to resolve the near parallel velocity components created by the alpha particles. Secondly, the radiation will encounter the RF part. This part is not yet designed for ITER, but instead the solution is addressed to the CTS receiver installed at ASDEX Upgrade (AUG).We have put effort to thoroughly examine and evaluate the performance of the receiver components and the receiver as an assembled unit. We have measured and analyzed all the receiver components starting from the two notch filters to the fifty square-law detector diodes. The receiver sensitivity is calculated from the system measurements and compared with the expected sensitivity based on the individual component measurements. Besides the system considerations we have also studied improvements of two critical components of the receiver. The first component is the notch filter, which is needed to block

  12. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  13. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  14. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  15. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  16. Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums

    Science.gov (United States)

    Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian

    2008-11-01

    On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).

  17. Influence of collective nonideal shielding on fusion reaction in partially ionized classical nonideal plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.

  18. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  19. A1.5 Fusion Performance

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P

    2011-03-31

    Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x

  20. Progress of Rugby Hohlraum Experiments on Omega

    Science.gov (United States)

    Philippe, Franck; Tassin, Veronique; Casner, Alexis; Gauthier, Pascal; Seytor, Patricia; Monteil, Marie-Christine; Park, Hye-Sook; Robey, Harry; Ross, Steven; Amendt, Peter; Girard, Frederic; Villette, Bruno; Reverdin, Charles; Loiseau, Pascal; Caillaud, Tony; Landoas, Olivier; Li, Chi Kang; Petrasso, Richard; Seguin, Fredrick; Rosenberg, Markus

    2011-10-01

    The rugby hohlraum concept is predicted to enable better coupling and higher gains in the indirect drive approach to ignition. A collaborative experimental program is currently pursued on OMEGA to test this concept in preparation for future megajoule-scale ignition designs. A direct comparison of gas-filled rugby hohlraums with classical cylinders was recently performed, showing a significant (up to ~40%) observed x-ray drive enhancement and neutron yields that are consistently higher in the rugby case. This work extends and confirms our previous findings in empty rugby hohlraums.

  1. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  2. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-01-01

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices

  3. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  4. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  5. Understanding L-H transition in tokamak fusion plasmas

    Science.gov (United States)

    Xu, Guosheng; Wu, Xingquan

    2017-03-01

    This paper reviews the current state of understanding of the L-H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L-H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L-H transition. We uncover a comprehensive physical picture of the L-H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L-H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.

  6. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  7. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  8. THz Backward-wave oscillators for plasma diagnostic in nuclear fusion

    OpenAIRE

    Paoloni, Claudio; Yue, Lingna; Tang, Xiaopin; Zhang, Fuzhi; Popovic, Branko; Himes, Logan; Barchfeld, Robert; Gamzina, Diana; Mineo, Mauro; Letizia, Rosa; Luhmann Jr., Neville C.

    2015-01-01

    Summary form only given. The understanding of plasma turbulence in nuclear fusion is related to the availability of powerful THz sources and the possibility to map wider plasma regions. A novel approach to realize compact THz sources to be implemented in the plasma diagnostic at NSTX experiment (Princeton Plasma Physics Laboratory, USA) is reported.Two novel 0.346 THz Backward-Wave Oscillators (BWOs) have been designed and are presently in the fabrication phase. One BWO is based on the Double...

  9. Plasma focus as an heavy ion source in the problem of heavy ion fusion

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Dubrovskij, A.V.; Kalachev, N.V.; Krokhin, O.N.; Silin, P.V.; Nikulin, V.Ya.; Cheblukov, Yu.N.

    1984-01-01

    Results of experiments on the ion flux formation in a plasma focus (PF) to develop a multicharged ion source for thermonuclear facility driver are presented. In plasma focus accelerating section copper ions were injected. Advantages of the suggested method of ion beam formation are demonstrated. Beam emittance equalling < 0.1 cmxmrad is obtained. Plasma focus ion energy exceeds 1 MeV. Plasma focus in combination with a neodymium laser is thought to be a perspective ion source for heavy ion fusion

  10. Sausage instability of Z-discharged plasma channel in LIB-fusion device

    International Nuclear Information System (INIS)

    Murakami, H.; Kawata, S.; Niu, K.

    1982-07-01

    Current-carring plasma channels have been proposed for transporting intense ion beams from diodes to a target in a LIB-fusion device. In this paper, the growth rate of the most dangerous surface mode, that is, axisymmetric sausage instability is examined for the plasma channel. The growth rate is shown to be smaller than that of the plasma channel with no fluid motion in a sharp boundary. It is concluded that the stable plasma channel can be formed. (author)

  11. 3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF

    Science.gov (United States)

    Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.

    2007-11-01

    Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).

  12. 0-d energetics scaling models for Z-pinch-driven hohlraums

    International Nuclear Information System (INIS)

    CUNEO, MICHAEL E.; VESEY, ROGER A.; HAMMER, J.H.; PORTER, JOHN L.

    2000-01-01

    Wire array Z-pinches on the Z accelerator provide the most intense laboratory source of soft x-rays in the world. The unique combination of a highly-Planckian radiation source with high x-ray production efficiency (15% wall plug), large x-ray powers and energies ( >150 TW, ge1 MJ in 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm 3 ), and long pulse-lengths (5 to 20 ns) may make Z-pinches a good match to the requirements for driving high-yield scale ICF capsules with adequate radiation symmetry and margin. The Z-pinch driven hohlraum approach of Hammer and Porter [Phys.Plasmas, 6, 2129(1999)] may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple region, 0-d hohlraum energetic model for Z-pinch driven hohlraums in four configurations. The authors observe consistency between the models and the measured x-ray powers and hohlraum wall temperatures to within ±20% in flux, for the four configurations

  13. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  14. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  15. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  16. Gas-filled hohlraum experiments at the national ignition facility.

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, J. C. (Juan C.); Gautier, D. C. (Donald Cort); Goldman, S. R. (Sanford R.); Grimm, B. M.; Hegelich, B. M. (Bjorn M.); Kline, J. L. (John L.); Montgomery, D. S. (David S.); Lanier, N. E. (Nicholas E.); Rose, H. A. (Harvey A.); Schmidt, D. M. (David M.); Swift, D. C.; Workman, J. B. (Jonathan B.); Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K. (Katherine); DeWald, E.; Glenzer, S. (Siegfried); Holder, J. (Joe P.); Kamperschroer, J. H. (James H.); Kimbrough, Joe (Joseph R.); Kirkwood, Robert (Bob); Landen, O. L. (Otto L.); Mccarville, Tom (Tomas J.); Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li [number : znumber] 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  17. Hohlraum Radiation Drive Measurements on the Omega Laser

    International Nuclear Information System (INIS)

    Decker, C.; Turner, R.E.; Landen, O.L.; Suter, L.J.; Amendt, P.; Kornblum, H.N.; Hammel, B.A.; Murphy, T.J.; Wallace, J.; Delamater, N.D.; Gobby, P.; Hauer, A.A.; Magelssen, G.R.; Oertel, J.A.; Knauer, J.; Marshall, F.J.; Bradley, D.; Seka, W.; Soures, J.M.

    1997-01-01

    Time-resolved drive measurements with thin-walled hohlraum targets on Omega [J.M.Soures et al., Phys.Plasmas 3, 2108 (1996)] are presented and compared with two-dimensional hydrodynamical simulations. For the first time, radiation fluxes are measured through the laser entrance hole instead of through a diagnostic side hole. We find improved agreement between time dependent experiments and simulations using this new technique. In addition, the drive history obtained in this manner correlates well with the drive onto the capsule at target center. copyright 1997 The American Physical Society

  18. Gas-filled hohlraum experiments at the national ignition facility

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Gautier, D.C.; Goldman, S.R.; Grimm, B.M.; Hegelich, B.M.; Kline, J.L.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Schmidt, D.M.; Swift, D.C.; Workman, J.B.; Alvarez, Sharon; Bower, Dan; Braun, Dave; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J.H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O.L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M.; Watts, Phil; Young, Ben-li; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  19. Atomic and plasma-material interaction data for fusion. V. 3

    International Nuclear Information System (INIS)

    1992-01-01

    This volume of Atomic and Plasma-Material Interaction Data for Fusion is devoted to atomic collision processes of helium atoms and of beryllium and boron atoms and ions in fusion plasmas. Most of the articles included in this volume are extended versions of the contributions presented at the IAEA experts' meetings on Atomic Data for Helium Beam Fusion Alpha Particle Diagnostics and on the Atomic Database for Beryllium and Boron, held in June 1991 at the IAEA headquarters in Vienna, or have resulted from the cross-section data analyses and evaluations performed by the working groups of these meetings. Refs, figs and tabs

  20. Atomic and Plasma-Material Interaction Data for Fusion. V. 16

    International Nuclear Information System (INIS)

    Braams, B.J.; Chung, H.-K.

    2014-03-01

    A wide variety of atomic, molecular, radiative and plasma-wall interaction processes involving a mixture of atoms, ions and molecules occur in the plasmas produced in nuclear fusion experiments. In the low temperature divertor and near wall region, molecules and molecular ions are formed. The plasma particles react with electrons and with each other. Plasma modelling requires cross-sections and rate coefficients for all these processes, and in addition spectral signatures to support interpretation of data from fusion experiments. The mission of the International Atomic Energy Agency Nuclear Data Section (IAEA/NDS) in the area of atomic and molecular data is to enhance the competencies of Member States in their research into nuclear fusion through the provision of internationally recommended atomic, molecular, plasma-material interaction and material properties databases. One mechanism by which the IAEA pursues this mission is the Coordinated Research Project (CRP). The present volume of Atomic and Plasma-Material Interaction Data for Fusion contains contributions from participants in the CRP 'Atomic and Molecular Data for Plasma Modelling' (2004-2008). This CRP was concerned with data for processes in the near wall and divertor plasma and plasma-wall interaction in fusion experiments, with focus on cross-sections for molecular reactions. Participants in the CRP came from 14 different institutes, many with strong ties to fusion plasma modelling and experiment. D. Humbert of the Nuclear Data Section was scientific secretary of the CRP. Participants' contributions for this volume were collected and refereed after the conclusion of the CRP

  1. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  2. Non linear dynamics of magnetic islands in fusion plasmas

    International Nuclear Information System (INIS)

    Meshcheriakov, D.

    2012-10-01

    In this thesis we investigate the issues of linear stability of the tearing modes in a presence of both curvature and diamagnetic rotation using the non linear full-MHD toroidal code XTOR-2F, which includes anisotropic heat transport, diamagnetic and geometrical effects. This analysis is applied to one of the fully non-inductive discharges on Tore-Supra. Such experiments are crucially important to demonstrate reactor scale steady state operation for the tokamak. The possibility of a full linear stabilization of the tearing modes by diamagnetic rotation in the presence of toroidal curvature is shown. The stabilization threshold does not follow the classical scaling law connecting the growth rate of islands to plasma conductivity, measured here by the Lundquist number (S). However, for numerical reasons, the conductivity used in the simulations is lower than that of the experiment, which raises the question of extrapolation of the obtained results to the experimental situation. The extrapolation of the obtained results requires simulations with several different conductivities. It predicts that the mode at q = 2 surface to be stable at value of diamagnetic frequency consistent with the experimental one at S = S(exp). In the linearly stable domain, the mode is metastable: saturation level depends on the seed island size. In the non linear regime, the saturation of n=1, m=2 mode is found to be strongly reduced by diamagnetic rotation and by Lundquist number. However, the extrapolation to the experimental situation shows that if the island is destabilized, it will saturate at a detectable level for the Tore Supra diagnostic. For a large plasma aspect ratio (i.e. weak curvature effects), the reduction of the saturated width by diamagnetic frequency takes the form of a jump reminiscent of multiple states evidenced in slab geometry case. The question of extrapolation of the obtained results towards future generation of fusion devices is also addressed. In particular, for

  3. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  4. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma

  5. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  6. The LMJ project - status of our knowledge in hohlraum energetics physics: production and control of the radiation flux; Projet laser megajoule - les etudes et activites dans le domaine de la physique de la cavite (hohlraum): production et controle du flux radiatif

    Energy Technology Data Exchange (ETDEWEB)

    Dattolo, E

    2001-09-01

    CEA-DAM in France is working on Inertial controlled Fusion (ICF) since the beginning of nineties. In an indirect drive scheme, the laser light is converted in X-ray in a hohlraum made with an high-Z material. Part of this radiation flux is absorbed by a micro-balloon filled with DT, placed in the center of the hohlraum, and generates its implosion, ignition and burn. This paper gives the status of our knowledge and studies for production and control of the radiation flux in the hohlraum, in the perspective of the Laser MegaJoule (LMJ). (authors)

  7. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.; Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.; Schein, J.; Constantin, C.

    2008-01-01

    The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture ''cocktails'' used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  8. High precision measurement of fuel density profiles in nuclear fusion plasmas

    NARCIS (Netherlands)

    Svensson, J.; von Hellermann, M.; Konig, R.

    2002-01-01

    This paper presents a method for deducing fuel density profiles of nuclear fusion plasmas in realtime during an experiment. A Multi Layer Perceptron (MLP) neural network is used to create a mapping between plasma radiation spectra and indirectly deduced hydrogen isotope densities. By combining

  9. Control oriented modeling and simulation of the sawtooth instability in nuclear fusion tokamak plasmas

    NARCIS (Netherlands)

    Witvoet, G.; Westerhof, E.; Steinbuch, M.; Doelman, N.J.; Baar, de M.R.

    2009-01-01

    Tokamak plasmas in nuclear fusion are subject to various instabilities. A clear example is the sawtooth instability, which has both positive and negative effects on the plasma. To optimize between these effects control of the sawtooth period is necessary. This paper presents a simple control

  10. Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas

    International Nuclear Information System (INIS)

    Marchuk, O.; Biel, W.; Schlummer, T.; Ralchenko, Yu.; Schultz, D. R.

    2013-01-01

    Injection of high energy atoms into a confined plasma volume is an established diagnostic technique in fusion research. This method strongly depends on the quality of atomic data for charge-exchange recombination spectroscopy (CXRS), motional Stark effect (MSE) and beam-emission spectroscopy (BES). We present some examples of atomic data for CXRS and review the current status of collisional data for parabolic states of hydrogen atoms that are used for accurate MSE modeling. It is shown that the collisional data require knowledge of the excitation density matrix including the off-diagonal matrix elements. The new datasets for transitions between parabolic states are used in an extended collisional-radiative model. The ratios between the σ- and π-components and the beam-emission rate coefficients are calculated in a quasi-steady state approximation. Good agreement with the experimental data from JET is found which points out to strong deviations from the statistical distribution for magnetic sublevels

  11. Plasma lens focusing and plasma channel transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Tauschwitz, A.; Yu, S.S.; Bangerter, R.O.

    1996-01-01

    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs

  12. Plasma lens focusing and plasma channel transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tauschwitz, A; Yu, S S; Bangerter, R O [Lawrence Berkeley Lab., CA (United States); and others

    1997-12-31

    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs.

  13. PFMC-16. 16th international conference on plasma-facing materials and components for fusion applications. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The performances of fusion devices and of future fusion power plants strongly depend on the plasma-facing materials and components. Resistance to heat and particle loads, compatibility in plasma operations, thermo-mechanical properties, as well as the response to neutron irradiation are critical parameters which need to be understood and tailored from atomistic to component levels. The 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications addresses these issues.

  14. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    2001-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  15. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Von Goeler, S.; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  16. Cylindrical target Li-beam-driven hohlraum experiments

    International Nuclear Information System (INIS)

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 ± 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy (∼10 MeV at the gas cell) at the target at a peak power of 2.5 ± 0.3 TW/cm 2 and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of ∼2 cm/micros is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented

  17. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  18. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  19. Initial Computational Study of a New Multi-Hole Hohlraum (the "Midraum")

    Energy Technology Data Exchange (ETDEWEB)

    Tabak, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-02

    Existing cylindrical hohlraums with two oppositely positioned laser entrance holes (LEHs) have multiple constraints. Their goal is to produce radiation sources distributed over the sky, as visible from the spherical implosion capsule, with most of the deposition near the zeroes of the fourth Legendre polynomial in cosine of the polar angle. This requires some of the laser light to propagate across the hohlraum to positions near the hohlraum symmetry plane. The ratio of case spherical radius to capsule spherical radius should exceed 3 so that the light doesn’t pass through over-dense ablator plasma. Radiation transport can smooth higher radiation modes. For capsules that demand long pulse lengths, hohlraum walls can blow in and change the position where light is absorbed. This changes the radiation symmetry in a time dependent fashion. This affects both P2 and P4. This wall motion can be reduced by introducing fill gas into the hohlraum. The gas provides back pressure and tamps the wall motion. Adding the fill gas comes at some cost. It leads to increased absorption of laser light along the path. The fill gas adds heat capacity to the system, ultimately requiring more laser energy to meet the radiation flux goals, both in total and particularly in the amount of radiation coming from the vicinity of the capsule waist. Given the existing beam pointing at NIF energy from the outer beams must be transferred into the inner beams. Cross beam energy transport (CBET) is accomplished via a plasma instability. This transfer is not perfectly predictable. In addition, the higher intensity required to make up for the losses along the long path can lead to stimulated backscatter as well as the generation of suprathermal electrons. The inner beams will pass through the plasma ablated from the capsule toward the end of the pulse. Heating this plasma acts as another parasitic loss. In addition, the light passing through the turbulent blow-off can be refracted in unpredictable

  20. 2-D simulation of hohlraum targets for HIDIF: gold vs. beryllium converters

    International Nuclear Information System (INIS)

    Honrubia, J.J.; Meyer-ter-Vehn, J.

    2000-01-01

    Two cylindrical hohlraum targets for heavy-ion-fusion are compared from the point of view of total ion-energy required to ignite a specified capsule. Target a, a simple bare gold cylindrical cavity behaves much more efficiently than Target b, the former one internally cladded with solid beryllium where convenient, to ensure ion energy conversion to X-rays mainly in this cladding. A discussion of the problem is provided. (authors)

  1. Planar hydrodynamic instability computations and experiments with rugby-shaped hohlraums at the Omega laser

    International Nuclear Information System (INIS)

    Vandenboomgaerde, M; Liberatore, S; Galmiche, D; Casner, A; Huser, G; Jadaud, J P; Villette, B

    2008-01-01

    Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002, experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used. We present experimental results and comparisons with numerical simulations

  2. Planar hydrodynamic instability computations and experiments with rugby-shaped hohlraums at the Omega laser

    Energy Technology Data Exchange (ETDEWEB)

    Vandenboomgaerde, M; Liberatore, S; Galmiche, D; Casner, A; Huser, G; Jadaud, J P; Villette, B [Commissariat a l' Energie Atomique, CEA/DAM-Ile de France, BP 12, 91680 Bruyeres-Le-Chatel (France)

    2008-05-15

    Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002, experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used. We present experimental results and comparisons with numerical simulations.

  3. Vacuum Plasma Spraying W-coated Reduced Activation Structural Steels for Fusion Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Tungsten (W) and its alloys are considered as candidate materials for plasma facing materials of the first wall and diverter components in fusion reactor systems because of high sputtering resistance and low tritium retention in a fusion environment. Therefore, it is considered that the joining between W and reduced activation structural steels, and its evaluation, are critical issues for the development of fusion reactors. However, the joining between these materials is a very challenging process because of significant differences in their physical properties, particularly the mismatch of coefficients of thermal expansion (CTE). For instance, the CTE of pure W is known to be about 4.3Χ10{sup -6}K{sup -1}; however, that of martensitic steels reaches over three times, about 12-14Χ10{sup -6}K{sup -1} at room temperature even up to 373K. Nevertheless, several joining techniques have been developed for joining between W and structural steels, such as a vapor deposition method, brazing and diffusion bonding. Meanwhile, vacuum plasma spraying (VPS) is supposed to be one of the prospective methods to fabricate a sufficient W layer on the steel substrates because of the coating of a large area with a relatively high fabricating rate. In this study, the VPS method of W powders on reduced activation steels was employed, and its microstructure and hardness distribution were investigated. ODS ferritic steels and F82H steel were coated by VPS-W, and the microstructure and hardness distribution were investigated. A microstructure analysis revealed that pure W was successfully coated on steel substrates by the VPS process without an intermediate layer, in spite of a mismatch of the CTE between dissimilar materials. After neutron irradiation, irradiation hardening significantly occurred in the VPSW. However, the hardening of VPS-W was lesser than that of bulk W irradiated HFIR at 773K. Substrate materials, ODS ferritic steels, and F82H steel, did not show irradiation hardening

  4. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  5. Massachusetts Institute of Technology Plasma Fusion Center 1987--1988 report to the President

    International Nuclear Information System (INIS)

    1988-06-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on several fronts: the basic physics of high-temperature plasmas (plasmas theory, RF heating, free electron lasers, development of advanced diagnostics, and intermediate-scale experiments on the Versator tokamak and Constance mirror devices), major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields, experiments on the medium-scale TARA tandem mirror, including the development of novel MHD stabilization techniques in axisymmetric geometry, and a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter-wave source development, and system studies of fusion reactor design, operation, and technology requirements

  6. Massachusetts Institute of Technology, Plasma Fusion Center, 1984-1985. Report to the President

    International Nuclear Information System (INIS)

    1985-07-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on four fronts: (1) the basic physics of high-temperature plasmas (plasma theory, rf heating, free electron lasers, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields; (3) development of an innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experiment beginning in 1984; and (4) a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter wave source development, and system studies of fusion reactor design, operation, and technology requirements). A review of these programs is given

  7. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  8. Fusion plasma diagnostics with mm-waves an introduction

    CERN Document Server

    Hartfuss, Hans-Jürgen

    2013-01-01

    Filling a gap in the literature, this introduction to the topic covers the physics of the standard microwave diagnostics established on modern fusion experiments, and the necessary technological background from the field of microwave engineering. Written by well-known mm-wave diagnosticians in the field of fusion physics, the textbook includes such major diagnostic techniques as electron cyclotron emission, interferometry, reflectometry, polarimetry, and scattering.

  9. Numerical simulations of radiation hydrodynamics and modeling of high temperature hohlraum cavities

    International Nuclear Information System (INIS)

    Gupta, N.K.; Godwal, B.K.

    2003-10-01

    A summary of our efforts towards the validation of radiation hydrodynamics and opacity models are presented. Effects of various parameters on the radiation temperature inside an inertial confinement fusion (ICF) hohlraum, the effects of non-local thermodynamic equilibrium conditions on emission and absorption, and the hydrodynamics of aluminium and gold foils driven by radiation are studied. LTE and non-LTE predictions for emitted radiation are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland mean. An experimental study of soft x-ray emission from laser-irradiated Au-Cu mix-Z targets confirmed these predictions. It is seen that only multi group non-LTE radiation transport is able to explain experimentally observed features in the conversion efficiency of laser light to x-rays. One group radiation transport under predicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. Hydrodynamics of a wedge shaped aluminium foil driven by the hohlraum radiation is also presented and results are compared with NOVA laser experiments. Laser driven shock wave EOS and gold hohlraum experiments carried out at CAT are analyzed and they confirmed our theoretical estimates. (author)

  10. High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums

    Science.gov (United States)

    Robey, Harry F.

    2009-11-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).

  11. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  12. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

    International Nuclear Information System (INIS)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-01-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays

  13. Simulations of plasma heating caused by the coalescence of multiple current loops in a proton-boron fusion plasma

    International Nuclear Information System (INIS)

    Haruki, T.; Yousefi, H. R.; Sakai, J.-I.

    2010-01-01

    Two dimensional particle-in-cell simulations of a dense plasma focus were performed to investigate a plasma heating process caused by the coalescence of multiple current loops in a proton-boron-electron plasma. Recently, it was reported that the electric field produced during the coalescence of two current loops in a proton-boron-electron plasma heats up all plasma species; proton-boron nuclear fusion may therefore be achievable using a dense plasma focus device. Based on this work, the coalescence process for four and eight current loops was investigated. It was found that the return current plays an important role in both the current pinch and the plasma heating. The coalescence of four current loops led to the breakup of the return current from the pinched plasma, resulting in plasma heating. For the coalescence of eight current loops, the plasma was confined by the pinch but the plasma heating was smaller than the two and four loop cases. Therefore the heating associated with current loop coalescence depends on the number of initial current loops. These results are useful for understanding the coalescence of multiple current loops in a proton-boron-electron plasma.

  14. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  15. Fusion power production from TFTR plasmas fueled with deuterium and tritium

    International Nuclear Information System (INIS)

    Strachan, J.D.; Adler, H.; Alling, P.

    1994-03-01

    Peak fusion power production of 6.2 ± 0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2 x 10 17 m -3 without the appearance of either disruptive MHD events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits

  16. A conceptual fusion reactor based on the high-plasma-density Z-pinch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Carlson, G.; Hoffman, M.; Werner, R.

    1977-01-01

    Conceptual DT and DD fusion reactors are discussed based on magnetic confinement with the high-plasma-density Z-pinch. The reactor concepts have no ''first wall'', the fusion neutrons and plasma energy being absorbed directly into a surrounding lithium vortex blanket. Efficient systems with low re-circulated power are projected, based on a flow-through pinch cycle for which overall Q values can approach 10. The conceptual reactors are characterized by simplicity, small minimum size (100MW(e)) and by the potential for minimal radioactivity hazards. (author)

  17. 13th EU-US Transport Task Force Workshop on transport in fusion plasmas

    DEFF Research Database (Denmark)

    Connor, J.W.; Fasoli, A.; Hidalgo, C.

    2009-01-01

    This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape-off-layer ......This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape...

  18. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  19. Pulsed power driven hohlraum research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, R J; Alberts, T E; Allshouse, G A [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs.

  20. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs

  1. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Zinkle, Steven J. [University of Tennessee – Knoxville; Foster, Mark S. [U.S. Department of Energy

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasma facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions

  2. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  3. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  4. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically in influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the part of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material inter actions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (author)

  5. Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several cm from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the engineering design activities of the international thermonuclear experimental reactor project (ITER) and significant progress has been made in better understanding these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/re-deposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (orig.)

  6. Ignition of an overheated, underdense, fusioning tokamak plasma

    International Nuclear Information System (INIS)

    Singer, C.E.; Jassby, D.L.; Hovey, J.

    1979-08-01

    Methods of igniting an overheated but underdense D-T plasma core with a cold plasma blanket are investigated using a simple two-zone model with a variety of transport scaling laws, and also using a one-dimensional transport code. The power consumption of neutral-beam injectors required to produce ignition can be reduced significantly if the underdense core plasma is heated to temperatures much higher than the final equilibrium ignition values, followed by fueling from a cold plasma blanket. It is also found that the allowed impurity concentration in the initial hot core can be greater than normally permitted for ignition provided that the blanket is free from impurities

  7. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  8. Analysis of plasma behavior in a magnetic nozzle of laser fusion rocket

    International Nuclear Information System (INIS)

    Nagamine, Yoshihiko; Yoshimi, Naofumi; Nakama, Yuji; Muranaka, Takanobu; Mayumi, Takao; Nakashima, Hideki

    1997-01-01

    A magnetic nozzle concept in a laser fusion rocket is suitable for controlling the fusion plasma flow and it has an advantage that thermalization with wall structures in a thrust chamber can be avoided. Rayleigh-Taylor instability would occur at the surface of expanding plasma and it would lead to the degradation of thrust efficiency, due to diffusion of the plasma through ambient decelerating magnetic field. A 3D hybrid particle-in-cell code has been developed to analyze the plasma instability in the magnetic nozzle. The resultant linear growth rate γ of the instability is found to be 2.96 x 10 6 and it is in good agreement with the theoretical value from conventional Rayleigh Taylor instability. (author)

  9. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  10. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  11. Quantum shielding effects on the Gamow penetration factor for nuclear fusion reaction in quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-01-01

    The quantum shielding effects on the nuclear fusion reaction process are investigated in quantum plasmas. The closed expression of the classical turning point for the Gamow penetration factor in quantum plasmas is obtained by the Lambert W-function. The closed expressions of the Gamow penetration factor and the cross section for the nuclear fusion reaction in quantum plasmas are obtained as functions of the plasmon energy and the relative kinetic energy by using the effective interaction potential with the WKB analysis. It is shown that the influence of quantum screening suppresses the Sommerfeld reaction factor. It is also shown that the Gamow penetration factor increases with an increase of the plasmon energy. It is also shown that the quantum shielding effect enhances the deuterium formation by the proton-proton reaction in quantum plasmas. In addition, it is found that the energy dependences on the reaction cross section and the Gamow penetration factor are more significant in high plasmon-energy domains.

  12. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2002-01-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic

  13. Structural stability analysis considerations in fusion reactor plasma chamber design

    International Nuclear Information System (INIS)

    Delaney, M.J.; Cramer, B.A.

    1978-01-01

    This paper presents an approach to analyzing a toroidal plasma chamber for the prevention of both static and dynamic buckling. Results of stability analyses performed for the doublet shaped plasma chamber of the General Atomic 3.8 meter radius TNS ignition test reactor are presented. Load conditions are the static external atmospheric pressure load and the dynamic plasma disruption pulse load. Methods for analysis of plasma chamber structures are presented for both types of load. Analysis for static buckling is based on idealizing the plasma chamber into standard structural shapes and applying classical cylinder and circular torus buckling equations. Results are verified using the Buckling of Shells of Revolution (BOSOR4) finite difference computer code. Analysis for the dynamic loading is based on a pulse buckling analysis method for circular cylinders

  14. Development of time dependent safety analysis code for plasma anomaly events in fusion reactors

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    A safety analysis code SAFALY has been developed to analyze plasma anomaly events in fusion reactors, e.g., a loss of plasma control. The code is a hybrid code comprising a zero-dimensional plasma dynamics and a one-dimensional thermal analysis of in-vessel components. The code evaluates the time evolution of plasma parameters and temperature distributions of in-vessel components. As the plasma-safety interface model, we proposed a robust plasma physics model taking into account updated data for safety assessment. For example, physics safety guidelines for beta limit, density limit and H-L mode confinement transition threshold power, etc. are provided in the model. The model of the in-vessel components are divided into twenty temperature regions in the poloidal direction taking account of radiative heat transfer between each surface of each region. This code can also describe the coolant behavior under hydraulic accidents with the results by hydraulics code and treat vaporization (sublimation) from plasma facing components (PFCs). Furthermore, the code includes the model of impurity transport form PFCs by using a transport probability and a time delay. Quantitative analysis based on the model is possible for a scenario of plasma passive shutdown. We examined the possibility of the code as a safety analysis code for plasma anomaly events in fusion reactors and had a prospect that it would contribute to the safety analysis of the International Thermonuclear Experimental Reactor (ITER). (author)

  15. Plasma sprayed TiC coatings for first wall protection in fusion devices

    International Nuclear Information System (INIS)

    Groot, P.; Laan, J.G. van der; Laas, L.; Mack, M.; Dvorak, M.

    1989-01-01

    For protection of plasma facing components in nuclear fusion devices thick titanium carbide coatings are being developed. Coatings have been produced by plasma spraying at atmospheric pressure (APS) and low pressure (LPPS) and analyzed with respect to microstructure and chemical composition. Thermo-mechanical evaluation has been performed by applying short pulse laser heat flux tests. The influence of coating thickness and porosity on the resistance to spalling by thermal shocks appears to be more important than aspects of chemical composition. (author)

  16. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  17. Gettering high energy plasma in the end loss region of the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Goldner, A.I.; Margolies, D.S.

    1979-01-01

    The ions escaping from the end loss fan of the Mirror Fusion Test Facility (MFTF) neutralize when they hit the surface of the end dome. If the neutrals then bounce back into the oncoming plasma, they are likely to reionize, drawing power from the center of the plasma and reducing the overall electron temperature. In this paper we describe two methods for reducing the reionization rate and a computer code for estimating their effectiveness

  18. Raman-Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction

    Czech Academy of Sciences Publication Activity Database

    Riconda, C.; Weber, Stefan A.

    2016-01-01

    Roč. 4, Jul (2016), 1-16, č. článku e23. ISSN 2095-4719 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : inertial confinement fusion * kinetic effects * laser- plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Berk, Herb; Betti, Riccardo; Dahlburg, Jill; Freidberg, Jeff; Hopper, Bick; Meade, Dale; Navritil, Jerry; Nevins, Bill; Ono, Masa; Perkins, Rip; Prager, Stewart; Schoenburg, Kurt; Taylor, Tony; Uckan, Nermin

    2001-01-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called burning plasma regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It sets the stage for the remainder of the report.

  20. One-Dimensional Burn Dynamics of Plasma-Jet Magneto-Inertial Fusion

    Science.gov (United States)

    Santarius, John

    2009-11-01

    This poster will discuss several issues related to using plasma jets to implode a Magneto-Inertial Fusion (MIF) liner onto a magnetized plasmoid and compress it to fusion-relevant temperatures [1]. The problem of pure plasma jet convergence and compression without a target present will be investigated. Cases with a target present will explore how well the liner's inertia provides transient plasma stability and confinement. The investigation uses UW's 1-D Lagrangian radiation-hydrodynamics code, BUCKY, which solves single-fluid equations of motion with ion-electron interactions, PdV work, table-lookup equations of state, fast-ion energy deposition, and pressure contributions from all species. Extensions to the code include magnetic field evolution as the plasmoid compresses plus dependence of the thermal conductivity and fusion product energy deposition on the magnetic field.[4pt] [1] Y.C. F. Thio, et al.,``Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,'' in Current Trends in International Fusion Research, E. Panarella, ed. (National Research Council of Canada, Ottawa, Canada, 1999), p. 113.

  1. X-Pinch Plasma Generation Testing for Neutron Source Development and Nuclear Fusion

    Directory of Open Access Journals (Sweden)

    Hossam A.Gabbar

    2018-04-01

    Full Text Available Nuclear fusion is a sought-out technology in which two light elements are fused together to create a heavier element and releases energy. Two primary nuclear fusion technologies are being researched today: magnetic and inertial confinement. However, a new type of nuclear fusion technology is currently being research: multi-pinch plasma beams. At the University of Ontario Institute of Technology, there is research on multi-pinch plasma beam technology as an alternative to nuclear fusion. The objective is to intersect two plasma arcs at the center of the chamber. This is a precursor of nuclear fusion using multi-pinch. The innovation portion of the students’ work is the miniaturization of this concept using high energy electrical DC pulses. The experiment achieved the temperature of 2300 K at the intersection. In comparison to the simulation data, the temperature from the simulation is 7000 K at the intersection. Additionally, energy harvesting devices, both photovoltaics and a thermoelectric generator, were placed in the chamber to observe the viable energy extraction.

  2. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; Robey, H. F.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.

  3. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C. [Physics Department, University of Nevada, Reno, NV 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., P.O. Box 30780, Bethesda, MD 20824-0780 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cuneo, M. E.; Jones, B.; Vesey, R. A. [Sandia National Laboratories, Albuquerque, NM 87110 (United States)

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  4. Current fusion plasma theory grant: Task I, Magnetic confinement fusion plasma theory: Final report, December 1, 1987--November 14, 1988

    International Nuclear Information System (INIS)

    Callen, J.D.

    1988-07-01

    The research performed under this grant over the current 11-1/2 month period has concentrated on key tokamak plasma confinement and heating theory issues: extensions of neoclassical MHD; viscosity coefficients and transport; nonlinear resistive MHD simulations of Tokapole II plasmas; ICRF and edge plasma interactions; energy confinement degradation due to macroscopic phenomena; and coordination of a new transport initiative. Progress and publications in these areas are briefly summarized in this report. 21 refs

  5. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Bell, M.G.; Beer, M.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l i ). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q a ∼ 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l i plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q 0 > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions

  6. Atomic and plasma-material interaction data for fusion. V. 14

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2008-01-01

    Plasmas in fusion energy devices consist of hot core plasmas with cooler regions near the edge. The temperatures are much lower in the edge region than in the core and there is a relatively high population of neutral species. Neutral and charged molecular species may form in this region and influence the plasma diagnostics. A variety of molecules, including species of hydrocarbons, form in the edge region, and hydrocarbon species up to C 3 H 8 may be produced. As the plasma interacts with the surface of the containment vessel, erosion from the surface will take place. There is then the potential for a number of chemical reactions to occur near the surface. A wide variety of interaction processes will take place involving these molecules in the edge region. It is not well known to what extent these processes affect the efficiency of the divertor itself. Thus there is a need to gather spectroscopic and collisional data to better understand the extent to which these processes are important in the edge regions, including data derived from infrared spectroscopy. The importance of these molecular processes to fusion research led to a strong recommendation from the A+M Subcommittee of the International Fusion Research Council at its twelfth meeting in May 2000 to initiate a coordinated research project (CRP) to address data needs in this area. The IAEA initiated the CRP on Data for Molecular Processes in Edge Plasmas in 2001. The purpose of the CRP was to identify the specific molecular processes that are important to the plasma physics in the edge region and to provide data for some of these processes. During the course of the CRP that concluded in 2005, new data have been generated for a variety of processes impacting a number of issues in the edge region of fusion plasmas. Essentially all the goals of the original work plan were fulfilled during the course of the CRP, with the generation of new theoretical and measured cross-sections for a variety of processes in

  7. Experiments on the indirect heating of low density aerogels for applications in heavy ion stopping in plasma

    International Nuclear Information System (INIS)

    Rosmej, O.N.; Blazevic, A.; Suslov, N.; Kunin, A.; Pinegin, A.; Schaefer, D.; Nisius, Th.; Zhao, Y.; Rinecker, T.; Wiechula, J.

    2010-01-01

    Complete text of publication follows. The unique combination of a Petawatt High-Energy Laser System for Ion beam eXperiments - 'Phelix' (Nd:glass, 1053 nm, 300-500 J, 1-15 ns) and intense heavy ion beams of the UNILAC accelerator at GSI-Darmstadt allow creating and probing of hot plasma with a density of some percentage of solid-state density. The experimental program aims at the investigation of fundamental features of heavy ion stopping in ionized matter in view of promising applications for the Heavy Ion Fusion and astrophysics. For combined experiments on the interaction of heavy ion beams with ionized matter (GSI) a high density plasma target with homogeneous in time (∼ 5 ns) and space (∼ 1 mm) plasma parameters in required. For these purposes we are developing the combined target which consists on the Gold hohlraum (converter) and low Z foam target heated by the hohlraum radiation before probed by an ion bunch. Foam targets are rather promising due to the effective conversion of the deposited radiation energy into the internal plasma energy and slow hydrodynamic response on the heating. Direct irradiation of the Gold converter walls with a nanosecond pulse delivered by the PHELIX-laser system (GSI) leads to hohlraum radiation spectra in the photon energy range of 50-500 eV. Expected temperatures of the foam targets heated by this radiation amount to 20-30 eV at electron densities of 10 21 cm -3 . The results of the last hohlraum experiments carried out at PHELIX-laser energies of 200-250 J will be presented. In experiments the hohlraum radiation field, the conversion efficiency of the laser energy into soft X-rays, duration of the soft X-ray pulse, and parameters of the heated with X-rays foam targets have been measured. Acknowledgements. This work is supported by ISTC 2264 grant.

  8. Explosive-driven hemispherical implosions for generating fusion plasmas

    International Nuclear Information System (INIS)

    Sagie, D.; Glass, I.I.

    1982-03-01

    The UTIAS explosive-driven-implosion facility was used to produce stable, centered and focussed hemispherical implosions to generate neutrons from D-D reactions. A high resolution scintillator-detection system measured the neutrons and γ-rays resulting from the fusion of deuterium. Several approaches were used to initiate fusion in deuterium. The simplest and most direct proved to be in a predetonated stoichiometric mixture of deuterium-oxygen. The other successful method was a miniature Voitenko-type compressor where a plane diaphragm was driven by the implosion wave into a secondary small spherical cavity that contained pure deuterium gas at one atmosphere. A great deal of work still remains in order to measure accurately the neutron flux and its velocity distribution as well as the precise interactions of the neturons with the steel chamber which produced the γ-rays. Nevertheless, this is the only known work where fusion neutrons were produced by chemical energy only in a direct and indirect manner

  9. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  10. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball. (paper)

  11. Critical plasma-wall interaction issues for plasma-facing materials and components in near-term fusion devices

    International Nuclear Information System (INIS)

    Federici, G.; Coad, J.P.; Haasz, A.A.; Janeschitz, G.; Noda, N.; Philipps, V.; Roth, J.; Skinner, C.H.; Tivey, R.; Wu, C.H.

    2000-01-01

    The increase in pulse duration and cumulative run-time, together with the increase of the plasma energy content, will represent the largest changes in operation conditions in future fusion devices such as the International Thermonuclear Experimental Reactor (ITER) compared to today's experimental facilities. These will give rise to important plasma-physics effects and plasma-material interactions (PMIs) which are only partially observed and accessible in present-day experiments and will open new design, operation and safety issues. For the first time in fusion research, erosion and its consequences over many pulses (e.g., co-deposition and dust) may determine the operational schedule of a fusion device. This paper identifies the most critical issues arising from PMIs which represent key elements in the selection of materials, the design, and the optimisation of plasma-facing components (PFCs) for the first-wall and divertor. Significant advances in the knowledge base have been made recently, as part of the R and D supporting the engineering design activities (EDA) of ITER, and some of the most relevant data are reviewed here together with areas where further R and D work is urgently needed

  12. Review of the works on plasma-wall interactions in fusion reactors, 1

    International Nuclear Information System (INIS)

    Sone, Kazuho

    1975-09-01

    A review is made of the works on sputtering as one of the plasma-wall interactions in thermonuclear fusion devices. The present status and future problems are described mainly in experiments of low-energy light ions such as H + , H 2 + , D + , D 2 + and He + , heavy ions including self-ions, and fast neutrons for polycrystalline metal targets. (auth.)

  13. Plasma physics and controlled nuclear fusion research 1994. V. 3. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    1996-01-01

    This is the third volume of the proceedings of the 15th International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research held in Seville, Spain, from 26 September - 1 October 1994. Contained in it are 29 papers on inertial confinement and 46 papers on magnetic confinement. Refs, figs, tabs

  14. Atomic and plasma-material interaction data for fusion. V.4

    International Nuclear Information System (INIS)

    1993-01-01

    The International Atomic Energy Agency, through its Atomic and Molecular Data Unit, coordinates a wide spectrum of programmes for the compilation, evaluation, and generation of atomic, molecular, and plasma-wall interaction data for fusion research. The present volume is exclusively devoted to cross sections for collisions of hydrogen atoms with electron, protons and multiply charged ions

  15. Atomic and plasma-material interaction data for fusion. Vol. 13

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2007-01-01

    Plasmas generated in fusion energy research cover a wide range of conditions involving electron temperature, electron density and plasma constituents, as well as electric and magnetic fields. Performing diagnostics on such plasmas is a complex problem requiring many different types of atomic and molecular (A+M) data. The typical plasmas in fusion research naturally divide into a core region and an edge/divertor region, and the physical conditions differ significantly between these two regions. There is a need to use soft X-ray spectroscopy as well as optical spectroscopy for diagnostics in the core region. This requires information on the emission properties of the plasma under the core conditions. Information about several different processes for atomic species relevant to the plasma is needed in this process. Some data can be measured directly in experimental devices such as the electron beam ion trap (EBIT). This type of measurement would prove very useful in furthering databases for plasma diagnostics of core regions. Heating beams are used to raise the core temperature and doped beams are used for diagnostic purposes. Thus, beam spectroscopy is an important consideration in the core region. Radiation from impurities in the edge region is very important in understanding the formation of advanced discharge regimes (transport barriers). Temperatures are significantly lower in the edge/ divertor region and there is a relatively high population of neutral species. Molecules will also form in this region, requiring extensive data on a variety of molecular processes for diagnostic procedures. Processes such as charge exchange will also be important for diagnostic purposes in the edge - data needed for diagnostics include radiative as well as collision processes. Collision processes include both electron and heavy particle collisions. The importance of generating new data for support of diagnostics in fusion plasmas led to a strong recommendation at the 12th meeting

  16. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Kuang, Longyu; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Ding, Yongkun, E-mail: ding-yk@vip.sina.com [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Song, Tianming; Yang, Jiamin, E-mail: yjm70018@sina.cn; Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Hu, Guangyue; Zhao, Bin; Zheng, Jian [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  17. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    Worldwide demand for power, and in particular electricity, is growing. Increasing population, expanding dependence on electrical devices, as well as the development of emerging nations, has created significant challenges for the power production. Compounding the issue are concerns over pollution, natural resource supplies, and political obstacles in troubled parts of the world. Many believe that investment in renewable energy will solve the expected energy crisis; however, renewable energy has many shortfalls. Consequently, additional sources of energy should be explored to provide the best options for the future. Electricity from fusion power offers many advantages over competing technologies. It can potentially produce large amounts of clean energy, without the serious concerns of fission power plant safety and nuclear waste. Fuel supplies for fusion are plentiful. Fusion power plants can be operated as needed, without dependence on location, or local conditions. However, there are significant challenges before fusion can be realized. Many factors currently limit the effectiveness of fusion power, which prevents a commercial power plant from being feasible. Scientists in many countries have built, and operate, experimental fusion plants to study the fusion process. The leading examples are magnetic confinement reactors known as tokamaks. At present, reactor gain is near unity, where the fusion power output is nearly the same as the power required to operate the reactor. A tenfold increase in gain is what reactors such as ITER hope to achieve, where 50 MW will be used for plasma heating, magnetic fields, and so forth, with a power output of 500 MW. Before this can happen, further research is required. Loss of particle and energy confinement is a principal cause of low performance; therefore, increasing confinement time is key. There are many causes of thermal and particle transport that are being researched, and the prime tools for conducting this research are

  18. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    International Nuclear Information System (INIS)

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-01-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  19. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  20. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E. [Physics Department, West Virginia University, Morgantown, West Virginia 26506 (United States); Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N. [General Atomics, San Diego, California 92121 (United States); Porter, G. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  1. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.

    Science.gov (United States)

    Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D

    2012-10-01

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  2. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    Science.gov (United States)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  3. Z-pinch driven hohlraums design for the 100 nanoseconds current time scale

    International Nuclear Information System (INIS)

    Hamann, F.

    2003-12-01

    This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)

  4. Development of a Plasma Streaming System for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Holdsworth, T.; Clark, R.N.; McCotter, R.E.; Rossow, T.L.; Cruz, G.E.

    1979-01-01

    The Plasma Streaming System (PSS) is an essential portion of the Mirror Fusion Test Facility (MFTF), scheduled for completion in October 1981. The PSS will develop a plasma density of at least 2 x 10 12 particles/cm 3 at the MFTF magnet centerline by injecting particles along the field lines. The plasma will have a midplane plasma radius as large as 40 cm with variable plasma particle energy and beam geometry. Minimum amounts of impurities will be injected, with emphasis on minimizing high Z materials. Each of the 60 PSS units will consist of a gun magnet assembly (GMA) and a power supply. Each GMA consists of a plasma streaming gun, a pulse magnet that provides variable beam shaping, and a fast reaction pulse gas valve

  5. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  6. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  7. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  8. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  9. Possible further subjects of study in the field of fusion plasma theory in Latvia

    International Nuclear Information System (INIS)

    Dumbrajs, O.

    2004-01-01

    Full text: First fusion plasma theory relevant studies in Latvia were related to edge localized modes (ELMs). This work has been carried out at the Institute of Solid Physics and is nearing successful completion. The next suggested topic 'Stochastisation of magnetic field lines and its impact on fusion plasma' is related to the theory of ergotic magnetic fields. The stochastisation of magnetic field lines is thought to play a major role in fast energy loss events from magnetically confined fusion plasma due to magnetohydrodynamic (MHD) modes. Classical examples are sawtooth crashes and disruptions. Here it is thought that stochastisation plays a role in the enhanced reconnection rate, which is often observed. More recently, this process has also been proposed as an explanation for the neoclassical tearing modes (NTM) phenomenon, which is repetitive rapid decrease of a neoclassical magnetic island due to its interaction with other MHD modes. The timescale for this phenomenon is clearly too fast to be explained by a conventional reconnection. The theoretical study of the onset of stochastisation will be illustrated for plasma parameters typical for the ASDEX Upgrade tokamak operated at the Max-Planc-Institute for Plasma Physics in Garching, Germany

  10. Progress report 1990/91 of the Division of Fusion Plasma Physics

    International Nuclear Information System (INIS)

    Lehnert, B.

    1991-08-01

    A summary is given of the historical background, research, education and available resources of the Division of Fusion Plasma Physics at the newly established Alfven Laboratory. Experimental and theoretical research is performed, including basic physics of magnetized plasma as well as applications to magnetically confined fusion plasma, and to certain technical and cosmical problems. The major project consists of the 'Extrap' high-beta confinement scheme within which a large experimental facility, EXTRAP T2, is under preparation. This research is performed in terms of extensive international collaboration and commitments, in particular with the European Community (Euratom). The education includes pregraduate and postgraduate teaching, the latter being based on obligatory, optional and extra courses which are connected with the research activities

  11. Nonthermal fusion reactor concept based on Hall-effect magnetohydrodynamics plasma theory

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1988-01-01

    The failure of magnetic confinement controlled thermonuclear fusion research to achieve its goal is attributed to its foundation on the incomplete MHD plasma description instead of the more general HMHD (Hall-effect magnetohydrodynamics) theory. The latter allows for a certain magnetic plasma self-confinement under described stringent conditions. A reactor concept based on the formation, acceleration, and forced disintegration of magnetized whirl structures, plasmoids, is proposed. The four conventional MHD theory objections, i.e., absence of dynamo action, fast decay caused by resistivity, non-existence of magnetic self-confinement, and negligible non-thermal fusion yield, are shown not to apply. Support for the scheme from dense plasma focus research is pointed out. (orig.) [de

  12. Educational Outreach at the M.I.T. Plasma Fusion Center

    Science.gov (United States)

    Censabella, V.

    1996-11-01

    Educational outreach at the MIT Plasma Fusion Center consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a new and improved C-MOD Jr, a confinement video game which helps students to discover how computers manipulate magnetic pulses to keep a plasma confined for as long as possible. Also on display will be an educational toy created by the Cambridge Physics Outlet, a PFC spin-off company. The PFC maintains a Home Page on the World Wide Web, which can be reached at http://cmod2.pfc.mit.edu/.

  13. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Science.gov (United States)

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  14. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    1966-01-01

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  15. Experimental room temperature hohlraum performance study on the National Ignition Facility

    Science.gov (United States)

    Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.

    2016-12-01

    Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.

  16. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums

    International Nuclear Information System (INIS)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Doeppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Seguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.

    2010-01-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D 2 -filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≅20x more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≅3x more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D 3 He rather than D 2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  17. Atomic physics for fusion plasma spectroscopy; a soft x-ray study of molybdenum ions

    International Nuclear Information System (INIS)

    Fournier, K.B.

    1996-01-01

    Understanding the radiative patterns of the ions of heavy atoms (Z approx-gt 18) is crucial to fusion experiments. The present thesis applies ab initio, relativistic calculations of atomic data to modeling the emission of molybdenum (Z = 42) ions in magnetically confined fusion plasmas. The models are compared to observations made in the Alcator C-Mod tokamak (Plasma Fusion Center, Massachusetts Institute of Technology), and the Frascati Tokamak Upgrade. Experimental confirmation of these models allows confidence in calculations of the total molybdenum concentration and quantitative estimates of the total power lost from the plasmas due to molybdenum line radiation. Charge states in the plasma core (Mo 33+ to Mo 29+ ) emit strong x-ray and XUV spectra which allow benchmarking of models for the spatial distribution of highly stripped molybdenum ions; the models only achieve agreement with observations when the rates of indirect ionization and recombination processes are included in the calculation of the charge state distribution of the central molybdenum ions. The total concentration of molybdenum in the core of the plasma is found, and the total power radiated from the plasma core is computed. Observations of line emission from more highly charged molybdenum ions (Mo 36+ to Mo 34+ ) are presented. open-quotes Bulkclose quotes molybdenum charge states (Mo 25+ to Mo 23+ ) emit complicated XUV spectra from a position in the plasma near C-Mod's half radius; spatial profiles of these ions' emission are analyzed. Models for the line-emission spectra of adjacent ions (Mo 28+ to Mo 26+ ) are offered, and the accuracy and limits of ab initio energy level calculations are discussed. open-quotes Edgeclose quotes charge states (Mo 22+ to Mo 15 ) extend to the last closed magnetic flux surface of the C-Mod plasma. The strongest features from these charge states are emitted in a narrow band from ∼70 Angstrom

  18. Spectra of heliumlike krypton from tokamak fusion test reactor plasmas

    International Nuclear Information System (INIS)

    Bitter, M.; Hsuan, H.; Bush, C.; Cohen, S.; Cummings, C.J.; Grek, B.; Hill, K.W.; Schivell, J.; Zarnstorff, M.; Smith, A.; Fraenkel, B.

    1993-04-01

    Krypton has been injected into ohmically-heated TFTR plasmas with peak electron temperatures of 6 key to study the effects of krypton on the plasma performance and to investigate the emitted krypton line radiation, which is of interest for future-generation tokamaks such as ITER, both as a diagnostic of the central ion temperature and for the control of energy release from the plasma by radiative cooling. The emitted radiation was monitored with a bolometer array, an X-ray pulse height analysis system, and a high-resolution Johann-type crystal spectrometer; and it was found to depend very sensitively on the electron temperature profile. Satellite spectra of heliumlike krypton, KrXXXV, near 0.95 Angstrom including lithiumlike, berylliumlike and boronlike features were recorded in second order Bragg reflection. Radiative cooling and reduced particle recycling at the plasma edge region were observed as a result of the krypton injection for all investigated discharges. The observations are in reasonable agreement with modeling calculations of the krypton ion charge state distribution including radial transport

  19. Simulation of transition dynamics to high confinement in fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Xu, G. S.; Madsen, Jens

    2015-01-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST...

  20. Technological issues of ion cyclotron heating of fusion plasmas

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Fortgang, C.M.

    1985-01-01

    With the recent promising results of plasma heating using electromagnetic waves (EM waves) in the ion cyclotron range of frequency (ICRF) on the Princeton Large Torus (PLT) tokamak the feasibility of employing ICRF heating to a reactor-like magnetic confinement device is increasing. The high power ICRF experiments funded on JET (Joint European Torus in England) and JT-60 (in Japan) will have rf source power in the range of 10-30 MW. The time scale for the duration of the RF pulse will range from seconds up to steady-state. The development of new RF components that can transmit and launch such high power, long pulse length, EM waves in a plasma environment is a major technological task. In general, the technology issues may be divided into two categories. The first category concerns the region where the plasma comes in contact with the wave launchers. The problems here are dominated by plasmamaterial interaction, heat deposition by the plasma onto the wave launcher, and erosion of the launcher material. It is necessary to minimize the heat deposition from the plasma, the losses of the RF wave energy in the structure, and to prevent sputtering of the antenna components. A solution involves a combined design using special materials and optimal shaping of the Faraday shield (the electrostatic shields which can be used both for an EM wave polarization adjustment and as a particle shield for the launcher). Recent studies by PPPL and McDonnell Douglas Corp. on the Faraday shield designs will be discussed. The second important area where technology development will be necessary is the transmission of high power RF waves through a gas/vacuum interface region. In the past, the vacuum feedthrough has been the bottle neck which prevented high power operation of the PLT antenna

  1. Neutron degradation of UV enhanced optical fibers for fusion installation plasma diagnostics

    International Nuclear Information System (INIS)

    Sporea, D.; Vata, I.; Dudu, D.; Danis, Ana

    2004-01-01

    The remote diagnostics of plasmas in fusion installations requires adequate connection links to transfer the measured signals in media subjected to high electromagnetic disturbances. We evaluated the neutron irradiation induced optical absorption in several commercially available optical fibers, as they were assessed for their possible use in fusion installations. Optical fiber samples were subjected to subsequent irradiation with fluences from 6 x 10 11 to 6 x 10 13 n/cm 2 . Significant radiation induced absorption was observed in the 220-260 nm spectral band, mainly for small core diameter optical fibers (200/220 μm), independent of the cladding material used

  2. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  3. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  4. Participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    1990-01-01

    This is a report concerning the participation of the Instituto de Pesquisas Espaciais in the national program for plasma physics and controlled thermonuclear fusion. The report lists all the personnel enroled in research activities, both theoretical and experimental. The research subjects are the following: relativistic electron beams; plasma produced by laser; plasma theory; quiescent plasma; plasma centrifugal; ionic propulsion. (A.C.A.S.) [pt

  5. Plasma Surface Interactions Common to Advanced Fusion Wall Materials and EUV Lithography - Lithium and Tin

    Science.gov (United States)

    Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.

    2004-09-01

    Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.

  6. Teaching and research in fusion plasmas and technology at the University of Illinois

    International Nuclear Information System (INIS)

    Miley, G.H.; Southworth, F.H.

    1975-01-01

    Teaching in fusion at the University of Illinois is an integrated part of the nuclear engineering curriculum. Through the use of two key courses, ''Introduction to Fusion'' and ''Fusion Systems,'' basic preparation for those wishing to specialize in fusion is provided. These courses are primarily directed to plasma aspects of fusion, but materials and other engineering aspects have been integrated into the curriculum through a broadened coverage in such existing courses as nuclear materials, shielding, and reactor physics. Research is primarily focused at the PhD level, although some MS studies are in progress. While current theses involve a wide variety of topics, one major area being pursued is the study of advanced fuel (non-deuterium-tritium) reactors based on two-component fusion and other concepts. This effort consists of a series of loosely knit subtasks related to such problems as cyclotron emission and direct energy conversion. Also, various research involving charge-exchange losses during neutral-beam injection, vacuum-wall sputtering, and related topics has developed as a direct outgrowth of the PROMETHEUS project, which involved the conceptual design of a power-consuming mirror-type reactor for materials and engineering tests

  7. H-1NF: Australian national fusion plasma research facility

    International Nuclear Information System (INIS)

    Blackwell, B.D.; Borg, G.G.; Dewar, R.L.; Howard, J.; Gardner, H.J.; Rudakov, D.L.; Sharp, L.E.; Shats, M.G.; Warr, G.B.

    1997-01-01

    The H-1 heliac is a helical axis stellarator of moderate size and novel, flexible configuration. Since commissioning, H-1 has operated in quasi-continuous mode at low magnetic field. For higher fields ≤1T an ECRH heating system (28GHz, 200kW) has been installed under a collaborative agreement between ANU and NIFS. H-1 has recently been promoted to national facility status (H-1NF), which will include upgrades of the rf and ech heating systems to megawatt powers, and power supply and diagnostic and data system enhancements. This facilitates collaborative research locally (through the Australian Fusion Research Group consortium) and internationally. Results of a number of basic experiments in quasi-continuous mode are presented. (author)

  8. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  9. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  10. Fluctuations and transport in fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Gould, R.W.; Liewer, P.C.

    1995-01-01

    The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code

  11. Light absorption and scattering mechanisms in laser fusion plasmas

    International Nuclear Information System (INIS)

    Barnes, C.; Estabrook, K.G.; Kruer, W.L.; Langdon, A.B.; Lasinski, B.F.; Max, C.E.; Randall, C.; Thomson, J.J.

    1977-01-01

    The picture of laser light absorption and scattering which is emerging from theory and computer simulation studies of laser-plasma interactions is described. On the subject of absorption, we discuss theoretical and experimental evidence that resonance absorption in a steepened density profile is a dominant absorption mechanism. Recent work also indicates the presence of critical surface ripples, which we study using two and three dimensional computer simulations. Predictions of hot electron spectra due to resonance absorption are described, as are effects of plasma outflow. We then discuss two regimes where stimulated scattering may occur. Brillouin scattering is expected in the underdense target blow-off, for long laser pulses, and is limited by ion heating. Raman scattering in the background gas of a reactor target chamber is predicted to be at most a 10 percent effect for 1 μm lasers

  12. MHD equilibrium of toroidal fusion plasma with stationary flows

    International Nuclear Information System (INIS)

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs

  13. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  14. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  15. Multichannel far-infrared phase imaging for fusion plasmas

    International Nuclear Information System (INIS)

    Young, P.E.; Neikirk, D.P.; Tong, P.P.; Rutledge, D.B.; Luhmann, N.C. Jr.

    1985-01-01

    A 20-channel far-infrared imaging interferometer system has been used to obtain single-shot density profiles in the UCLA Microtor tokamak. This system differs from conventional multichannel interferometers in that the phase distribution produced by the plasma is imaged onto a single, monolithic, integrated microbolometer linear detector array and provides significantly more channels than previous far-infrared interferometers. The system has been demonstrated to provide diffraction-limited phase images of dielectric targets

  16. Burn stability of tokamak fusion plasmas with synergetic current drive

    International Nuclear Information System (INIS)

    Anderson, D.; Lisak, M.; Kolesnichenko, Ya.

    1991-01-01

    The stability of thermonuclear burn in Tokamak-reactors with non-inductive current generated with the simultaneous application of various methods is investigated. Particular emphasis is given to the ITER synergetic current drive scenario involving LH waves, neoclassical effects and NB injection. For ITER-like confinement laws, it is shown that this scenario may be unstable on the plasma skin time scale. Figs

  17. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2004-01-01

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic

  18. Including plasma and fusion topics in the science education in school

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2015-01-01

    Yutori education (more relaxed education policy) started with the revision of the Courses of Study to introduce 'five-day week system' in 1989, continued with the reduction of the content of school lessons by 30% in 1998, and ended with the introduction of the New Courses of Study in 2011. Focusing on science education, especially in the topics of plasma and nuclear fusion, the modality of the education system in Japan is discussed considering the transition of academic performance based on the Program for International Student Assessment (PISA) in comparison with the examples in other countries. Particularly, the issues with high school textbooks are pointed out from the assessment of current textbooks, and the significance and the need for including the topic of 'plasma' in them are stated. Lastly, in order to make the general public acknowledged with plasma and nuclear fusion, it is suggested to include them also in junior high school textbooks, by briefly mentioning the terms related to plasma, solar wind, aurora phenomenon, and nuclear fusion energy. (S.K.)

  19. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  20. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  1. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  2. Interaction between sheared flows and turbulent transport in magnetized fusion-grade plasmas; Interaction entre ecoulements cisailles et transport turbulent dans les plasmas de fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, M.

    2008-11-15

    The H confinement regime is set when the heating power reaches a threshold value P{sub c} and is linked to the formation of a transport barrier in the edge region of the plasma. Such a barrier is characterized by a high pressure gradient and is submitted to ELM (edge localized mode) instabilities. ELM instabilities trigger violent quasi-periodical ejections of matter and heat that induce quasi-periodical relaxations of the transport barrier called relaxation oscillations. In this work we studied the interaction between sheared flows and turbulence in fusion plasmas. In particular, we studied the complex dynamics of a transport barrier and we show through a simulation that resonant magnetic perturbations could control relaxation oscillations without a significant loss of confinement

  3. Fusion plasma theory. Task I. Magnetic confinement fusion plasma theory. Annual progress report, January 1, 1982-December 31, 1982

    International Nuclear Information System (INIS)

    Callen, J.D.

    1982-08-01

    The research on this contract over the past year has concentrated on some key tandem mirror confinement and heating issues (barrier trapping current, rf heating, low mode number stability) and on developing a comprehensive neoclassical transport theory for nonaxisymmetric toroidal plasmas (e.g., stellarators). Progress in these and some other miscellaneous areas are summarized briefly in this progress report

  4. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  5. Status Update: Modeling Energy Balance in NIF Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    We have developed a standardized methodology to model hohlraum drive in NIF experiments. We compare simulation results to experiments by 1) comparing hohlraum xray fluxes and 2) comparing capsule metrics, such as bang times. Long-pulse, high gas-fill hohlraums require a 20-28% reduction in simulated drive and inclusion of ~15% backscatter to match experiment through (1) and (2). Short-pulse, low fill or near-vacuum hohlraums require a 10% reduction in simulated drive to match experiment through (2); no reduction through (1). Ongoing work focuses on physical model modifications to improve these matches.

  6. High-temperature dynamic hohlraums on the pulsed power driver Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.; Leeper, R.; Fehl, D.; Lash, J.; Ruiz, C.; Cooper, G.; Seaman, J.F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Hurst, M.; Mock, R.; Ryan, P.; Nielsen, D.; Armijo, J.; McKenney, J.; Hawn, R.; Hebron, D.; MacFarlane, J.J.; Petersen, D.; Bowers, R.; Matuska, W.; Ryutov, D.D.

    1999-01-01

    In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diam with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diam. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 eV by stabilizing the pinch with a solid current return can. A current return can with nine slots imprints nine filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diam capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diam. Dynamic hohlraum shots including pellets were scheduled to take place on Z in September of 1998. copyright 1999 American Institute of Physics

  7. Fusion plasma theory: Task 3, Auxiliary heating in tokamaks

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1989-07-01

    The research that we have accomplished during the past year (1988--1989) includes the topics of ICRF fast wave waveguide coupling to H-mode profiles simulating CIT and full wave ICRF field solutions and a power conservation relation based on fundamental principles with JET and CIT heating applications. We have also published work on Fokker-Planck simulations of minority ion ICRF strong core electron sawteeth processes in JET, a publication on the effect of plasma edge density fluctuation and ponderomotive force effects on the coupling of ion Bernstein waves and a publication on the coupling of dielectric filled waveguides to plasmas in the ICRF. The analysis of ICRF H-mode coupling is crucial to the economic success of proposed ignition devices such as CIT and ITER. We have analyzed the coupling of ICRF waveguide launchers to H-mode density profiles modelled by a pedestal width and Gaussian edge variations with gradients comparable to current machines. We find that the launcher aperture spectrum, density gradients and width of the pedestal are important parameters in determining the coupling efficiency. The launcher-plasma admittance spectrum in k y -k z space is utilized to show that the H-mode launcher reflections increase when compared to the L-mode profile, but that they can be handled by launcher matching circuits and modest modifications of the H-mode profile. We plan to analyze the recent successful JET ICRF H-mode operation utilizing our formalism. We have also carried out a full wave ICRF field solution and the associated power conservation relation with expressions evaluated up to the third harmonic. We have implemented this in a computer code which utilizes invariant imbedding to solve the system of equations. 7 refs., 1 tab

  8. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    International Nuclear Information System (INIS)

    Sanchez, J.; Luna, E. de la.

    1997-11-01

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs

  9. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J; Luna, E de la

    1997-11-01

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs.

  10. Control of ITBs in Fusion Self-Heated Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul

    2015-11-01

    Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.

  11. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  12. Studies of neutron measurement methods for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Beimer, K.H.

    1986-03-01

    This thesis comprises several studies mainly devoted to neutron measurement systems for plasma diagnostics at JET (Joint European Torus). An in situ calibration of the U-235 fission chamber detectors located at JET is presented. These detectors are used for measuring the neutron yield from the thermonuclear reactions in the plasma. The energy spectrum of the neutrons from the reactions D(d,n) 3 He has been studied by means of a 3 He spectrometer. Especially, it was found that by measuring the width of the full energy peak in the response spectrum of the 3 He-spectrometer, the deuterium distribution in the deuterium targets used can be estimated. In order to measure different neutron energies it is necessary to obtain a detailed knowledge of the response of the spectrometer. Therefore, the response function to monoenergetic neutrons in the energy range 130-3030 keV was experimentally determined. Some work has been related to a design study of a 14 MeV spectrometer for neutron diagnostics. It is a combined proton-recoil and time-of-flight spectrometer for high resolution measurements. The main parts of it are the collimator, the scattering foil, and the detectors for the recoil protons and the scattered neutrons. The influence of proton straggling in the foil on the resolution and efficiency of the spectrometer has been studied. Furthermore, a three dimensional Monte Carlo code has been written and used for the design of the collimator. (author)

  13. A unified model of density limit in fusion plasmas

    Science.gov (United States)

    Zanca, P.; Sattin, F.; Escande, D. F.; Pucella, G.; Tudisco, O.

    2017-05-01

    In this work we identify by analytical and numerical means the conditions for the existence of a magnetic and thermal equilibrium of a cylindrical plasma, in the presence of Ohmic and/or additional power sources, heat conduction and radiation losses by light impurities. The boundary defining the solutions’ space having realistic temperature profile with small edge value takes mathematically the form of a density limit (DL). Compared to previous similar analyses the present work benefits from dealing with a more accurate set of equations. This refinement is elementary, but decisive, since it discloses a tenuous dependence of the DL on the thermal transport for configurations with an applied electric field. Thanks to this property, the DL scaling law is recovered almost identical for two largely different devices such as the ohmic tokamak and the reversed field pinch. In particular, they have in common a Greenwald scaling, linearly depending on the plasma current, quantitatively consistent with experimental results. In the tokamak case the DL dependence on any additional heating approximately follows a 0.5 power law, which is compatible with L-mode experiments. For a purely externally heated configuration, taken as a cylindrical approximation of the stellarator, the DL dependence on transport is found stronger. By adopting suitable transport models, DL takes on a Sudo-like form, in fair agreement with LHD experiments. Overall, the model provides a good zeroth-order quantitative description of the DL, applicable to widely different configurations.

  14. Workshop on Molecule Assisted Recombination and Other Processes in Fusion Divertor Plasmas, September 8-9, 2000

    International Nuclear Information System (INIS)

    Janev, R.K.; Schultz, D.R.

    2000-01-01

    A brief proceedings of the two-day Workshop on Molecule Assisted Recombination and Other Processes in Fusion Divertor Plasmas, organized by the ORNL Controlled Fusion Atomic Data Center on September 8-9, 2000, is presented. The conclusions and recommendations of the workshop regarding the topics discussed and the collaboration of the U.S. fusion research and atomic physics communities are also summarized

  15. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.

    Science.gov (United States)

    Lai, J; Domier, C W; Luhmann, N C

    2014-03-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.

  16. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    International Nuclear Information System (INIS)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-01-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T e and n e fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained

  17. Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.

    Science.gov (United States)

    Turrell, A E; Sherlock, M; Rose, S J

    2014-06-20

    Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30)  m(-3) and temperatures around 1 keV.

  18. Beam plasma 14 MeV neutron source for fusion materials development

    International Nuclear Information System (INIS)

    Ravenscroft, D.; Bulmer, D.; Coensgen, F.; Doggett, J.; Molvik, A.; Souza, P.; Summers, L.; Williamson, V.

    1991-09-01

    The conceptual engineering design and expected performance for a 14 MeV DT neutron source is detailed. The source would provide an intense neutron flux for accelerated testing of fusion reactor materials. The 150-keV neutral beams inject energetic deuterium atoms, that ionize, are trapped, then react with a warm (200 eV), dense tritium target plasma. This produces a neutron source strength of 3.6 x 10 17 n/sec for a neutron power density at the plasma edge of 5--10 MW/m 2 . This is several times the ∼2 MW/m 2 anticipated at the first wall of fusion reactors. This high flux provides accelerated end-of-life tests of 1- to 2-year duration, thus making materials development possible. The modular design of the source and the facilities are described

  19. Developing a plasma focus research training system for the fusion energy age

    International Nuclear Information System (INIS)

    Lee, S.

    2014-01-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  20. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  1. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    International Nuclear Information System (INIS)

    Leach, R.R.; Conder, A.; Edwards, O.; Kroll, J.; Kozioziemski, B.; Mapoles, E.; McGuigan, D.; Wilhelmsen, K.

    2010-01-01

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  2. A comparative study of x-ray emission from laser spots in laser-heated hohlraums relative to spots on simple disk targets

    International Nuclear Information System (INIS)

    Ze, F.; Langer, S.H.; Kauffman, R.L.; Kilkenny, J.D.; Landen, O.; Ress, D.; Rosen, M.D.; Suter, L.J.; Wallace, R.J.; Wiedwald, J.D.

    1997-01-01

    In this paper we report the results of experiments that compare the x-ray emission from a laser spot in a radiation-filled hohlraum to that from a similar laser spot on a simple disk target. The studies were done using the Nova laser facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] in its 0.35 μm wavelength, 1 ns square pulse configuration. Focal spot intensities were 2 endash 3.5x10 15 W/cm 2 . X-ray images measured x-ray conversion in a hohlraum and from an isolated disk simultaneously. A laser spot inside a hohlraum emitted more x rays, after subtracting the background emission from the hohlraum walls, than a spot on a disk. Numerical models suggest the enhanced spot emission inside the hohlraum is due to an increase in lateral transport relative to the disk. Filamentation in the hohlraum will also increase the spot size. The models agree fairly well with the results on spot spreading but do not explain the overall increase in conversion efficiency. copyright 1997 American Institute of Physics

  3. A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tian-Sen [Prairie View A& M Univ., Prairie View, TX (United States); Saganti, Premkumar [Prairie View A& M Univ., Prairie View, TX (United States)

    2017-02-17

    During recent years (2004-2015), with DOE support, the PVAMU plasma research group accomplished new instrumentation development, conducted several new plasma experiments, and is currently poised to advance with standing-wave microwave plasma propulsion research. On the instrumentation development, the research group completed: (i) building a new plasma chamber with metal CF flanges, (ii) setting up of a 6kW/2450MHz microwave input system as an additional plasma heating source at our rotamak plasma facility, (iii) installation of one programmatic Kepco ATE 6-100DMG fast DC current supply system used in rotamak plasma shape control experiment, built a new microwave, standing-wave experiment chamber and (iv) established a new plasma lab with field reversal configuration capability utilizing 1MHz/200kW RF (radio frequency) wave generator. Some of the new experiments conducted in this period also include: (i) assessment of improved magnetic reconnection at field-reversed configuration (FRC) plasma, (ii) introduction of microwave heating experiments, and (iii) suppression of n = 1 tilt instability by one coil with a smaller current added inside the rotamak’s central pipe. These experiments led to publications in Physical Review Letters, Reviews of Scientific Instruments, Division of Plasma Physics (DPP) of American Physical Society (APS) Reports, Physics of Plasmas Controlled Fusion, and Physics of Plasmas (between 2004 and 2015). With these new improvements and advancements, we also initiated and accomplished design and fabrication of a plasma propulsion system. Currently, we are assembling a plasma propulsion experimental system that includes a 5kW helicon plasma source, a 25 cm diameter plasma heating chamber with 1MHz/200kW RF power rotating magnetic field, and a 60 cm diameter plasma exhaust chamber, and expect to achieve a plasma mass flow of 0.1g/s with 60km/s ejection. We anticipate several propulsion applications in near future as we advance our capabilities

  4. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MegaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ=35, 50, and 70 μm) and two-mode perturbations (wavelength λ=35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  5. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-09-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  6. High Foot Implosion Experiments in Rugby Hohlraums

    Science.gov (United States)

    Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team

    2015-11-01

    The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.

  7. Using plasma waves to create in tokamaks the necessary quasi-stationary conditions for controlled fusion

    International Nuclear Information System (INIS)

    Moreau, D.

    1993-04-01

    It is studied, on the one hand, how using hybrid waves with frequency near from lower hybrid frequency in fusion plasma. Works about coupling waves in plasma (chap.I), their propagation and response of the plasma to the absorption of the waves (chap.II). This method is the most effective until today. Because of limits, it has been investigated, on the other hand, fast magnetosonic wave to control current density in the centre of the discharge in a reactor or a very hot plasma. Theoretical study (chap.III) and experimental results (chap.IV) are presented. Experiments are in progress or planned in following tokamaks: D3-D (USA), JET (Europe), TORE SUPRA (France), JT-60 (Japan). figs. refs. tabs

  8. Self-limitation of impurity production by radiation cooling at the edge of a fusion plasma

    International Nuclear Information System (INIS)

    Neuhauser, J.; Lackner, K.; Wunderlich, R.

    1982-04-01

    The influence of radiation cooling at the edge of a fusion plasma on the plasma-wall interaction is numerically studied for parameters typical of the ZEPHYR ignition experiment. Various transport and impurity influx models and different external heating methods are studied using the 1D tokamak transport code BALDUR developed at Princeton. The results demonstrate the self-consistent formation of a radiating boundary layer (photosphere) for a wide range of parameters, limiting the impurity concentration in the plasma to a tolerable value. While the plasma behaviour is rather insensitive to model assumptions, the sputtering rate and the corresponding wall erosion depend on various parameters. Methods for external control of the photosphere and - more important - of the wall erosion are also discussed. (orig.)

  9. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.S.; Chiara, P. De; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Wang, J.

    1992-01-01

    The same linear correlation between the distribution parameters (ΔT and Max ΔV) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D + ions. CSF's show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs

  10. EU-US transport task force workshop on transport in fusion plasmas: transport near operational limits

    International Nuclear Information System (INIS)

    Connor, J W; Garbet, X; Giannone, L; Greenwald, M; Hidalgo, C; Loarte, A; Mantica, P

    2003-01-01

    This conference report summarizes the contributions to, and discussions at, the 9th EU-US transport task force workshop on 'transport in fusion plasmas: transport near operational limits', held in Cordoba, Spain, during 9-12 September 2002. The workshop was organized under three main headings: edge localized mode physics and confinement, profile dynamics and confinement and confinement near operational limits: density and beta limits; this report follows the same structure

  11. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  12. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  13. Preliminary study on power balance in the plasma of an experimental fusion reactor

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Yamato, Harumi

    1976-03-01

    The preliminary study on power balance in the plasma is described in the first-stage design of an experimental fusion reactor. The purpose is to show the ranges of plasma parameters for the design output of about 100 MW with an injection power less than 50 MW. The impurity is permitted to the extent of Zsub(eff) -- 5 to meet the design requirement. Influences of the uncertainty in scaling law on the power output and injection power are discussed, and also possibility of the self-ignition. (auth.)

  14. On the link between ExB sheared flows and rational surfaces in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Erents, K.; Matthews, G.

    2000-11-01

    Experimental evidence of flattening in plasma profiles has been observed in the edge region of the JET tokamak. This observation has been interpreted in terms of the influence of rational surfaces on plasma profiles. In the framework of this interpretation, significant ExB sheared flows linked to rational surfaces have been identified. These ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. These results can explain the link between the magnetic topology and the generation of transport barriers reported in fusion devices. (author)

  15. Some considerations on a plasma in the JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Tone, T.; Yamato, H.; Maki, K.

    1976-01-01

    The preliminary analysis of the plasma characteristics for the JAERI tokamak experimental fusion reactor is reported. In order to make the reactor compact, the self-sustaining condition has been removed. Stationary heating by 200 keV neutral deuteron beam to maintain the power balance is applied expecting the power amplification by the TCT effect. The main parameters determined are power output of 100 MW, toroidal field on axis of 6 T, aspect ratio of 4.5 and major radius of 6.75 m. The results of the plasma power balance, fueling by means of the gas blanket scheme, power stabilization with feedback and the start-up are presented

  16. Interaction of heavy ions beams with hot and dense plasmas. Application to inertial fusion

    International Nuclear Information System (INIS)

    Maynard, Gilles

    1987-01-01

    The subject of this work is the variation with time, on one of the energy and charge state of an heavy ion beam which through a plasma, and on another side, of a target used in ion inertial confinement fusion. We take in account projectile excitation, and higher order corrections to the Born stopping power formula are calculated. Comparison with experimental results in gas and solid are good. In hot plasma case, non-equilibrium charge states are described. We present an hydrodynamic simulation code of one dimension and three temperatures. We show that the shortening of the heavy ions beams with temperature reinforces the radiative transfer importance. (author) [fr

  17. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  18. Interactions between plasma and wall materials in fusion reactors

    International Nuclear Information System (INIS)

    Marot, L.; Moser, L.

    2016-11-01

    First mirrors of optical diagnostics in ITER were exposed in Magnum-PSI linear plasma device and JET-ILW tokamak. For JET-ILW the mirrors with a rhodium (Rh) or a molybdenum (Mo) coating exhibited a decrease of the reflectivity according the location in the torus and especially the amount of beryllium (Be) deposited on them. No delamination of the coated reflective film was observed. Under very harsh erosion conditions in Magnum-PSI, Rh thick coated mock ups, cooled or not, for a high flux exposure the films underwent delamination. Mo coating on water cooled mock up mirrors exhibited a high diffuse reflectivity after H 2 /Ar plasma exposure inducing an important decrease of the specular reflectivity and show important oxidation of the surface. Cleaning of mirrors was extensively studied during this period, with magnetic field in collaboration with the SPC Lausanne, or in term of repetitive cleaning till 34 cycles. Polycrystalline molybdenum mirror shows a high diffuse reflectivity after cleaning cycle and clearly demonstrate that they are not suitable for this purpose. Coated Rh or Mo mirrors like single crystal maintained good reflectivity. Test under magnetic field revealed the non-uniform erosion of the mirrors according the orientation between the field and the mirror. All these tests bring to a suitable schematic of the implementation of this technique in ITER and were deeply explained. The cleaning of the Be contaminated mirrors will be carried out using new parameters in December 2016. Investigations on formation of tungsten fuzz were carried out either in Basel using a new setup or in Pilot-PSI. These thickness measurements showed the fuzz growth is in square root dependence to time or fluence. From the results in Pilot-PSI, it has been shown that time was a critical parameter for the development of He-induced morphology changes and one needs to keep that factor in mind. (authors)

  19. Fusion in the Era of Burning Plasma Studies: Workforce Planning for 2004 to 2014. Final report to FESA C

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    This report has been prepared in response to Dr. R. Orbach’s request of the Fusion Energy Sciences Advisory Committee (FESAC) to “address the issue of workforce development in the U.S. fusion program.” The report addresses three key questions: what is the current status of the fusion science, technology, and engineering workforce; what is the workforce that will be needed and when it will be needed to ensure that the U.S. is an effective partner in ITER and to enable the U.S. to successfully carry out the fusion program; and, what can be done to ensure a qualified, diversified, and sufficiently large workforce and a pipeline to maintain that workforce? In addressing the charge, the Panel considers a workforce that allows for a vigorous national program of fusion energy research that includes participation in magnetic fusion (ITER) and inertial fusion (NIF) burning plasma experiments.

  20. Hybrid modeling of plasma and applications to fusion and space physics

    International Nuclear Information System (INIS)

    Kazeminejad, F.

    1989-01-01

    Obtaining reasonable solutions to the nonlinear equations is crucial to the understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amount of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases the models demonstrate qualitative agreement with the experimental observations