WorldWideScience

Sample records for fungal wheat pathogen

  1. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics.

    Science.gov (United States)

    Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe

    2015-05-08

    Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.

  2. Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-04-01

    Full Text Available The Dothideomycete fungus Zymoseptoria tritici (previously known as Mycosphaerella graminicola and Septoria tritici is the causative agent of Septoria tritici leaf blotch (STB disease of wheat (Triticum aestivum L.. In Europe, STB is the most economically damaging disease of wheat, with an estimated ~€1 billion per year in fungicide expenditure directed towards its control. Here, an overview of our current understanding of the molecular events that occur during Z. tritici infection of wheat leaves is presented. On the host side, this includes the contribution of (1 the pathogen-associated molecular pattern-triggered immunity (PTI layer of the plant defence, and (2 major Stb resistance loci to Z. tritici resistance. On the pathogen side of the interaction, we consolidate evidence from recent bioinformatic, transcriptomic and proteomic studies that begin to explain the contribution of Z. tritici effector proteins to the biphasic lifestyle of the fungus. This includes the discovery of chitin-binding proteins in the Z. tritici secretome, which contribute to evasion of immune surveillance by this pathogen, and the possible existence of ‘necrotrophic’ effectors from Z. tritici, which may actively stimulate host recognition in a manner similar to related necrotrophic fungal pathogens. We finish by speculating on how some of these recent fundamental discoveries might be harnessed to help improve resistance to STB in the world’s second largest food crop.

  3. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    Science.gov (United States)

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  4. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    Science.gov (United States)

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  5. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  6. Investigation of seed damaging pathogens associated with wheat crop in bhimber azad kashmir, pakistan and their managements

    International Nuclear Information System (INIS)

    Hussain, T.; Ishtiaq, M.; Azam, S.; Maqbool, M.; Mushtaq, W.

    2017-01-01

    Mycopathogens were explored from wheat germplasm cultivars from District Bhimber of Azad Kashmir. In this study, 10 different seed-borne pathogens were isolated from District of Bhimber, Azad Jammu and Kashmir, Pakistan. The Agar Plate Method (APM) and Towel Paper Method (TPM) were used for detection of seed borne pathogens. The disease incidence (percentage) and disease severity of fungi varied with respect to type of pathogen and seed sampling sites. Kernel bunt caused by Tilletia indica showed highest incidence (67.25%) and severity (7.0) on 0-9 rating scale. Fusarium graminearum showed the highest infection rate in three sub-divisions of district Bhimber as compared to others. The fungal attacking pathogens on wheat crop were control through fungicides treatment and treatments with plant extracts. Maximum germination rates were calculated in three sub-divisions of Bhimber after treatment of Tilt fungicide. As 86% germination rate in Samahni, 87.5% in Bhimber and 84.5% in Bernala was calculated. Antifungal activity of five plant extracts (Acacia nilotica L., Azadirachta indica L. Juss., Eucalyptus citriodora Hook, Ficus bengalensis L. and Allium sativum L.) were evaluated in four different solvents. Highest minimum inhibitory concentration (MIC) was calculated of all plants in methanolic extracts. Maximum MIC (57.38 mcg/ml) exhibited by extracts of Acacia nilotica leaves against ten fungi. Azadirachta indica extracts in different solvents against wheat-seed fungal pathogens was shown more antimicrobial activity as compared to other four plants. Azadirachta indica extract in methanol showed the highest mean of antifungal activity (62.20 mcg/ml) against ten different fungal pathogens. Antimicrobial activity (MIC) of Ficus bengalensis in different solvents against nine wheat-seed fungal pathogens was also investigated. Highest MIC was measured against B. graminis (57.50 mcg/ml) and S. macrospora (57.00 mcg/ml) by using methanolic extract of Ficus bengalensis

  7. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici

    DEFF Research Database (Denmark)

    Yang, Fen; Yin, Qi

    2016-01-01

    Zymoseptoria tritici causes Septoria tritici blotch disease of wheat. To obtain a comprehensive protein dataset of this fungal pathogen, proteomes of Z. tritici growing in nutrient-limiting and rich media and in vivo at a late stage of wheat infection were fractionated by 1D gel or strong cation...

  8. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat.

    Science.gov (United States)

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil

    2018-04-01

    Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. IRIDOID GLYCOSIDES FROM LINARIA GENISTIFOLIA (L. MILL. IN BIOLOGICAL CONTROL OF SOIL-BORNE FUNGAL PATHOGENS OF WHEAT AND SOME STRUCTURE CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    Natalia Mashcenko

    2015-06-01

    Full Text Available Biological activity of the iridoid glycosides extract from Linaria genistifolia (L. Mill. has been investigated, namely its influence on the resistance of the winter wheat Odesschi 51 plant to the caused by the Fusarium oxysporum and Helminthosporium avenae pathogenic fungi root rot. Our results indicate that summary iridoid glycosides from this plant, containing four major known compounds: 5-O-allosylantirrinoside, antirrinoside, linarioside and 6-β-hidroxiantirride, can be successfully employed in biological control of the afore-mentioned wheat pathogens: it stimulates wheat grains germination and embryonic root growth in conditions of fungal infection. 1H and 13C NMR characteristics of 5-O-allosylantirrinoside in Py-d5 are for the first time presented. Structures of two conformers of 5-O-allosylantirrinoside in D2O and Py-d5 solutions are proposed, based on the experimental NMR evidence and molecular modelling studies.

  10. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics.

    Science.gov (United States)

    Yang, Fen; Melo-Braga, Marcella N; Larsen, Martin R; Jørgensen, Hans J L; Palmisano, Giuseppe

    2013-09-01

    The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger accumulation of signal molecules, including calcium, H2O2, NO, and sugars, in the resistant than in the susceptible cultivar in response to the infection. Additionally, 31 proteins and 5 phosphoproteins from the pathogen were identified, including metabolic proteins and signaling proteins such as GTP-binding proteins, 14-3-3 proteins, and calcium-binding proteins. Quantitative PCR analysis showed the expression of fungal signaling genes and genes encoding a superoxide dismutase and cell-wall degrading enzymes. These results indicate roles of signaling, antioxidative stress mechanisms, and nutrient acquisition in facilitating the initial symptomless growth. Taken in its entirety, our dataset suggests interplay between the plant and S. tritici through complex signaling networks and downstream molecular events. Resistance is likely related to several rapidly and intensively triggered signal transduction cascades resulting in a multiple-level activation of transcription and translation processes of defense responses. Our sensitive approaches and model provide a comprehensive

  11. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.

    Science.gov (United States)

    Cheng, Wei; Li, He-Ping; Zhang, Jing-Bo; Du, Hong-Jie; Wei, Qi-Yong; Huang, Tao; Yang, Peng; Kong, Xian-Wei; Liao, Yu-Cai

    2015-06-01

    Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.-specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea-specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea-specific in transgenic wheat. Single-floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography-mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB-susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real-time PCR analysis revealed that the tissue-specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue-specific and pathogen-inducible expression of this Fusarium-specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  13. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply.

    Science.gov (United States)

    Meyer, M; Cox, J A; Hitchings, M D T; Burgin, L; Hort, M C; Hodson, D P; Gilligan, C A

    2017-10-01

    Infectious crop diseases spreading over large agricultural areas pose a threat to food security. Aggressive strains of the obligate pathogenic fungus Puccinia graminis f.sp. tritici (Pgt), causing the crop disease wheat stem rust, have been detected in East Africa and the Middle East, where they lead to substantial economic losses and threaten livelihoods of farmers. The majority of commercially grown wheat cultivars worldwide are susceptible to these emerging strains, which pose a risk to global wheat production, because the fungal spores transmitting the disease can be wind-dispersed over regions and even continents 1-11 . Targeted surveillance and control requires knowledge about airborne dispersal of pathogens, but the complex nature of long-distance dispersal poses significant challenges for quantitative research 12-14 . We combine international field surveys, global meteorological data, a Lagrangian dispersion model and high-performance computational resources to simulate a set of disease outbreak scenarios, tracing billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes for more than a decade. This provides the first quantitative assessment of spore transmission frequencies and amounts amongst all wheat producing countries in Southern/East Africa, the Middle East and Central/South Asia. We identify zones of high air-borne connectivity that geographically correspond with previously postulated wheat rust epidemiological zones (characterized by endemic disease and free movement of inoculum) 10,15 , and regions with genetic similarities in related pathogen populations 16,17 . We quantify the circumstances (routes, timing, outbreak sizes) under which virulent pathogen strains such as 'Ug99' 5,6 pose a threat from long-distance dispersal out of East Africa to the large wheat producing areas in Pakistan and India. Long-term mean spore dispersal trends (predominant direction, frequencies, amounts) are

  14. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance

    NARCIS (Netherlands)

    Kema, Gerrit H.J.; Mirzadi Gohari, Amir; Aouini, Lamia; Gibriel, Hesham A.Y.; Ware, Sarah B.; Den Bosch, van Frank; Manning-Smith, Robbie; Alonso-Chavez, Vasthi; Helps, Joe; M’Barek, Ben Sarrah; Mehrabi, Rahim; Diaz-Trujillo, Caucasella; Zamani, Elham; Schouten, Henk J.; Lee, van der Theo A.J.; Waalwijk, Cees; Waard, de Maarten A.; Wit, de Pierre J.G.M.; Verstappen, Els C.P.; Thomma, Bart P.H.J.; Meijer, Harold J.G.; Seidl, Michael F.

    2018-01-01

    Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici–wheat interaction complies with the gene-for-gene model by

  15. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  16. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  17. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    be the driver of the degradation process. Thus, earthworms contribute to a sustainable control of fungal pathogens like Fusarium and its mycotoxins in wheat straw by reducing the risk of plant diseases and environmental pollution as ecosystem services. Further studies are planned within the EU-project SoilMan under the BiodivERsA network. In context of the suppression of fungal plant pathogens and the detoxification of their mycotoxins by soil organisms in agroecosystems it is hypothesised that (1) processes related to services or disservices are induced and directed by abundance and activity of functional groups of soil biota; (2) dynamics and interaction in the soil biota community control ecosystem function and services.

  18. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    Science.gov (United States)

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A genome-wide association study of field and seedling response to stem rust pathogen races reveals combinations of race-specific resistance genes in North American spring wheat

    Science.gov (United States)

    Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...

  20. Comprehensive proteomic analysis of the wheat pathogenic fungus Zymoseptoria tritici.

    Science.gov (United States)

    Yang, Fen; Yin, Qi

    2016-01-01

    Zymoseptoria tritici causes Septoria tritici blotch disease of wheat. To obtain a comprehensive protein dataset of this fungal pathogen, proteomes of Z. tritici growing in nutrient-limiting and rich media and in vivo at a late stage of wheat infection were fractionated by 1D gel or strong cation exchange (SCX) chromatography and analyzed by LC-MS/MS. A total of 5731, 5376 and 3168 Z. tritici proteins were confidently identified from these conditions, respectively. Of these in vitro and in planta proteins, 9 and 11% were predicted to contain signal peptides, respectively. Functional classification analysis revealed the proteins were involved in the various cellular activities. Comparison of three distinct protein expression profiles demonstrates the elevated carbohydrate, lipid and secondary metabolisms, transport, protein processing and energy production specifically in the host environment, in contrast to the enhancement of signaling, defense, replication, transcription and cell division in vitro. The data provide useful targets towards a better understanding of the molecular basis of Z. tritici growth, development, stress response and pathogenicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fungal flora and deoxynivalenol (DON) level in wheat from Jeddah ...

    African Journals Online (AJOL)

    This study aimed to explore the fungal flora along with the DON concentration in the collected wheat samples from Jeddah market to correlate between this flora and the detected DON. Whole grain wheat samples were collected from Jeddah market and this represents imported and locally produced wheat. The results ...

  2. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  3. Organic farming increases richness of fungal taxa in the wheat phyllosphere.

    Science.gov (United States)

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-01

    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10 3 -10 5 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem. © 2017 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  4. An In Planta-Expressed Polyketide Synthase Produces (R)-Mellein in the Wheat Pathogen Parastagonospora nodorum

    Science.gov (United States)

    Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.

    2014-01-01

    Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302

  5. [Effects of wheat root exudates on cucumber growth and soil fungal community structure].

    Science.gov (United States)

    Wu, Feng-Zhi; Li, Min; Cao, Peng; Ma, Ya-Fei; Wang, Li-Li

    2014-10-01

    With wheat as the donor plant and cucumber as the receptor plant, this study investigated the effects of root exudates from wheat cultivars with different allelopathic potentials (positive or negative) and companion cropping with wheat on soil fungal community structure by PCR-DGGE method and cucumber growth. Results showed that the wheat root exudates with positive allelopathic potential increased height and stem diameter of cucumber seedlings significantly, compared to the control seedlings (W) after 6 days and 12 days treatment, respectively. Also, wheat root exudates with both positive and negative allelopathic potential increased the seedling height of cucumber significantly after 18 days treatment. The wheat root exudates with different allelopathic potentials decreased the band number, Shannon and evenness indices of soil fungal community significantly in cucumber seedling rhizosphere, and those in the soil with the control seedlings (W) were also significantly higher than that in the control soil without seedlings (Wn) after 6 days treatment. The band number, Shannon and evenness indices in all the treatments were significantly higher than those in the control soil without seedlings (Wn) after 18 days treatment. Companion cropping with negative allelopathic potential wheat decreased the Shannon and evenness indices of soil fungi community significantly in the cucumber seedling rhizosphere, suggesting the wheat root exudates and companion cropping with wheat changed soil fungal community structure in the cucumber seedling rhizosphere. The results of DGGE map and the principal component analysis showed that companion cropping with wheat cultivars with different allelopathic potentials changed soil fungal community structure in cucumber seedling rhizosphere.

  6. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    Directory of Open Access Journals (Sweden)

    Dipak Sharma-Poudyal

    Full Text Available In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT plots adjacent to conventionally tilled (CT plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  7. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Alexandre Morais do Amaral

    Full Text Available The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328 which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks, and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies.

  8. Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Michael Habig

    2017-11-01

    Full Text Available The fungal wheat pathogen Zymoseptoria tritici possesses a large complement of accessory chromosomes showing presence/absence polymorphism among isolates. These chromosomes encode hundreds of genes; however, their functional role and why the chromosomes have been maintained over long evolutionary times are so far not known. In this study, we addressed the functional relevance of eight accessory chromosomes in reference isolate IPO323. We induced chromosome losses by inhibiting the β-tubulin assembly during mitosis using carbendazim and generated several independent isogenic strains, each lacking one of the accessory chromosomes. We confirmed chromosome losses by electrophoretic karyotyping and whole-genome sequencing. To assess the importance of the individual chromosomes during host infection, we performed in planta assays comparing disease development results in wild-type and chromosome mutant strains. Loss of the accessory chromosomes 14, 16, 18, 19, and 21 resulted in increased virulence on wheat cultivar Runal but not on cultivars Obelisk, Titlis, and Riband. Moreover, some accessory chromosomes affected the switch from biotrophy to necrotrophy as strains lacking accessory chromosomes 14, 18, 19, and 21 showed a significantly earlier onset of necrosis than the wild type on the Runal cultivar. In general, we observed that the timing of the lifestyle switch affects the fitness of Z. tritici. Taking the results together, this study was the first to use a forward-genetics approach to demonstrate a cultivar-dependent functional relevance of the accessory chromosomes of Z. tritici during host infection.

  9. Fungal contamination of produced wheat flour in West Azerbaijan, northwest of Iran

    Directory of Open Access Journals (Sweden)

    Jafar Asadzadeh

    2014-09-01

    Full Text Available Objective: To investigate fungal contamination of produced wheat flours in West Azarbaijan Province, located in the North West of Iran as wheat flour is one of the most important food and nutrient in the Iranians diet. Methods: This descriptive study was performed during March 2011 to April 2013 in flour mills of West Azerbaijan province. A total of 17 samples of produced wheat flour in Azerbaijan Province of Iran were tested for mold contamination based on Iran National Standard Method No. 2393. Results: Presence of molds in all collected 151 samples from flour factories of Azerbaijan Province were at the limit based on Iranian national standard. Conclusions: The obtained results showed that the process of flour production was hygienic quietly. Bread is staple ingredient of Iranian diet, and strict control on its processing of wheat flour, maintenance and distribution results nonpolluting or reduction of fungal contamination. Objective: To investigate fungal contamination of produced wheat flours in West Azarbaijan Province, located in the North West of Iran as wheat flour is one of the most important food and nutrient in the Iranians diet. Methods: This descriptive study was performed during March 2011 to April 2013 in flour mills of West Azerbaijan province. A total of 17 samples of produced wheat flour in Azerbaijan Province of Iran were tested for mold contamination based on Iran National Standard Method No. 2393. Results: Presence of molds in all collected 151 samples from flour factories of Azerbaijan Province were at the limit based on Iranian national standard. Conclusions: The obtained results showed that the process of flour production was hygienic quietly. Bread is staple ingredient of Iranian diet, and strict control on its processing of wheat flour, maintenance and distribution results nonpolluting or reduction of fungal contamination.

  10. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  11. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Lamia LOUNACI

    2017-01-01

    Full Text Available A seedling bioassay was developed for screening a wheat root-associated rhizobacterial strain of Paenibacillus polymyxa for ability to suppress crown and root rot pathogens of wheat. The primary aim was to evaluate the ability of P. polymyxa to suppress Fusarium graminearum, F. culmorum, F. verticillioides and Microdochium nivale, the fungal pathogens responsible for Fusarium crown and root rot and head blight of wheat in Algeria. Bioassays conducted under controlled conditions indicated that seed treatments with P. polymyxa strain SGK2 significantly reduced disease symptoms caused by all four fungal pathogens. Plant growth promotion (increased shoot and root dry weights, however, depended on the pathogen tested. Our results indicate that seed treatments with a biocontrol agent could be an additional strategy for management of wheat crown and root rot pathogens.

  12. Distribution and prevalence of crown rot pathogens affecting wheat crops in southern Chile

    Directory of Open Access Journals (Sweden)

    Ernesto Moya-Elizondo

    2015-03-01

    Full Text Available Crown rot pathogens are associated with higher losses for wheat crop farmers, but information about the distribution and prevalence of these pathogens in Chile is inadequate. Distribution and prevalence of wheat (Triticum aestivum L. crown rot pathogens were examined in a survey of 48 commercial fields from December 2011 to February 2012 in southern Chile. These fields were located between Collipulli (37°56'00" S; 72°26'39" W and Purranque (40°50'30" S; 73°22'03" W. Severity of crown rot disease was determined through visual assessment of the first internode of 20 tillers obtained from each field. Incidence of crown rot pathogens per field was determined by plating the 20 tillers on Petri plates with 20% potato dextrose agar amended with lactic acid (aPDA medium. Resulting fungal colonies from monoxenic culture were identified by morphological or molecular-assisted identification. Severity of crown rot varied between 11.3% and 80% for individual fields. Culture plate analysis showed 72.2% of stems were infected with some fungus. Fusarium avenaceum, F. graminearum, and F. culmorum, pathogens associated with Fusarium crown rot disease were isolated from 13.5% of tillers. Gaeumannomyces graminis, causal agent of take-all disease in cereals, was isolated from 11.1% of culms. Phaeosphaeria sp., an endophyte and possibly a non-pathogenic fungus, was isolated from 13.9% of tillers. Pathogenic fungi such as Rhizoctonia spp. and Microdochium nivale, other saprophyte, and several unidentified non-sporulating fungi were isolated at frequencies lower than 3% of the total. Fusarium crown rot and take-all were the most prevalent and distributed crown rot diseases present in wheat crops in southern Chile.

  13. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  14. Drug transporters of the fungal wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Roohparvar, R.

    2007-01-01

    Wheat is the most important cereal crop in the world. It occupies 17% of the cultivated land and is the main source of food for 35% of the world population. InIran, wheat is the most important agricultural crop and

  15. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  16. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.

    Science.gov (United States)

    Sinha, R N; Tuma, D; Abramson, D; Muir, W E

    1988-01-01

    The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.

  17. Genome structure and pathogenicity of the fungal wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    M'Barek, Ben S.

    2011-01-01

    The phytopathogenic fungus Mycosphaerella graminicola (Fuckel) J. Schröt. in Cohn (asexual stage: Zymoseptoria tritici (Desm.) Quaedvlieg & Crous) causes septoria tritici leaf blotch (STB) in wheat and is one of the most important diseases of this crop worldwide. However, STB control, mainly

  18. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins.

    Science.gov (United States)

    Sun, Jin-Yue; Gaudet, Denis A; Lu, Zhen-Xiang; Frick, Michele; Puchalski, Byron; Laroche, André

    2008-03-01

    This study simultaneously considered the phylogeny, fatty acid binding ability, and fungal toxicity of a large number of monocot nonspecific lipid transfer proteins (ns-LTP). Nine novel full-length wheat ns-LTP1 clones, all possessing coding sequences of 348 bp, isolated from abiotic- and biotic-stressed cDNA libraries from aerial tissues, exhibited highly conserved coding regions with 78 to 99 and 71 to 100% identity at the nucleotide and amino acid levels, respectively. Phylogenetic analyses revealed two major ns-LTP families in wheat. Eight wheat ns-LTP genes from different clades were cloned into the expression vector pPICZalpha and transformed into Pichia pastoris. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and in vitro lipid binding activity assay confirmed that the eight ns-LTP were all successfully expressed and capable of in vitro binding fatty acid molecules. A comparative in vitro study on the toxicity of eight wheat ns-LTP to mycelium growth or spore germination of eight wheat pathogens and three nonwheat pathogens revealed differential toxicities among different ns-LTP. Values indicating 50% inhibition of fungal growth or spore germination of three selected ns-LTP against six fungi ranged from 1 to 7 microM. In vitro lipid-binding activity of ns-LTP was not correlated with their antifungal activity. Using the fluorescent probe SYTOX Green as an indicator of fungal membrane integrity, the in vitro toxicity of wheat ns-LTP was associated with alteration in permeability of fungal membranes.

  19. Host pathogen relations: exploring animal models for fungal pathogens.

    Science.gov (United States)

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  20. Seed-borne mycoflora of local and improved wheat ( Triticum ...

    African Journals Online (AJOL)

    Three varieties each of local and improved wheat (Triticum sativum) cultivars were investigated for seed-borne pathogenic mycoflora using the plate technique and laid on completely randomized design. A total 99 fungal isolate grouped into five fungal species namely; Rhizopus nigricans, Mucor spp, Penillium jenseni, ...

  1. Evaluation of induced mutants of wheat for resistance to fungal diseases

    International Nuclear Information System (INIS)

    Barriga B, P.; Fuentes P, R.; Andrade S, N.; Seeman F, P.

    1990-01-01

    Evaluation of induced mutants of wheat for resistance to fungal diseases. Seeds of spring wheat cultivars Austral and Huenufen were exposed to gamma radiation in doses of 0.10 and 0.25 KGy with the objective of producing genotypes resistant to the main fungal diseases, with a high protein content and grain yield, for the southern region of Chile (39 sup(o)-44 sup(o) Latitude south). The selection process and evaluation up to the generation M sub(8) has made possible to identify mutants with a higher protein content and grain yield. Progress made in improving resistance to Puccinia striiformis and tolerance to Septoria spp., has also been important. Some selected mutants, conditioned to their future performance, could be directly used as commercial varieties and other mutants, on crosses with regionally adapted cultivars. (author)

  2. Host Pathogen Relations: Exploring Animal Models for Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Catherine G. Harwood

    2014-06-01

    Full Text Available Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  3. Clinical characteristics and distribution of pathogens in fungal keratitis

    Directory of Open Access Journals (Sweden)

    Tian Tian

    2016-01-01

    Full Text Available AIM:To investigate the clinical characteristics and distribution of pathogens in patients with fungal keratitis and to provide evidence for diagnosis and treatment of this disease.METHODS:The clinical data of 98 cases(98 eyeswith fungal keratitis from January 2012 to July 2015 in the First Affiliated Hospital of Yangtze University were retrospectively reviewed.RESULTS:The main cause for fungal keratitis was corneal injury by plants. The inappropriate use of contact lenses and glucocorticoids therapy were the next cause. Almost all of the patients had hyphae moss, pseudopodia, immune ring, and satellite signs. A few of patients had endothelial plaque and anterior chamber empyema. The majority pathogens of fungal keratitis was Fusarium spp(73.5%,followed by Aspergillus spp(13.2%,Candida spp(9.2%and others(4.1%.Sixty-five patients(65 eyestreated with 5% natamycin were cured. The condition of 15 patients was improved. Eighteen patients were invalid, in which 13 patients became better and 5 patients became worse after voriconazole was added into the therapy, leading to amniotic membrance cover in 3 patients and eyeball removal in 2 patients at last.CONCLUSION:Fusarium genus is the predominant pathogen for fungal keratitis in Jingzhou. Natamycin can be used as the preferred drug for the prevention and treatment for fungal keratitis. The clinicians should pay attention to the fungal keratitis, in order to early diagnosis and timely treatment.

  4. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  5. A mutagenesis-derived broad-spectrum disease resistance locus in wheat

    Science.gov (United States)

    Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. The most effective and widely uti...

  6. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis.

    Science.gov (United States)

    Zhu, Xiuliang; Lu, Chungui; Du, Lipu; Ye, Xingguo; Liu, Xin; Coules, Anne; Zhang, Zengyan

    2017-06-01

    The necrotrophic fungus Rhizoctonia cerealis is the major pathogen causing sharp eyespot disease in wheat (Triticum aestivum). Nucleotide-binding leucine-rich repeat (NB-LRR) proteins often mediate plant disease resistance to biotrophic pathogens. Little is known about the role of NB-LRR genes involved in wheat response to R. cerealis. In this study, a wheat NB-LRR gene, named TaRCR1, was identified in response to R. cerealis infection using Artificial Neural Network analysis based on comparative transcriptomics and its defence role was characterized. The transcriptional level of TaRCR1 was enhanced after R. cerealis inoculation and associated with the resistance level of wheat. TaRCR1 was located on wheat chromosome 3BS and encoded an NB-LRR protein that was consisting of a coiled-coil domain, an NB-ARC domain and 13 imperfect leucine-rich repeats. TaRCR1 was localized in both the cytoplasm and the nucleus. Silencing of TaRCR1 impaired wheat resistance to R. cerealis, whereas TaRCR1 overexpression significantly increased the resistance in transgenic wheat. TaRCR1 regulated certain reactive oxygen species (ROS)-scavenging and production, and defence-related genes, and peroxidase activity. Furthermore, H 2 O 2 pretreatment for 12-h elevated expression levels of TaRCR1 and the above defence-related genes, whereas treatment with a peroxidase inhibitor for 12 h reduced the resistance of TaRCR1-overexpressing transgenic plants and expression levels of these defence-related genes. Taken together, TaRCR1 positively contributes to defence response to R. cerealis through maintaining ROS homoeostasis and regulating the expression of defence-related genes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  8. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  9. Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.

    Science.gov (United States)

    Chakraborty, Sukumar; Obanor, Friday; Westecott, Rhyannyn; Abeywickrama, Krishanthi

    2010-10-01

    This article reports a lack of pathogenic specialization among Australian Fusarium graminearum and F. pseudograminearum causing crown rot (CR) of wheat using analysis of variance (ANOVA), principal component and biplot analysis, Kendall's coefficient of concordance (W), and κ statistics. Overall, F. pseudograminearum was more aggressive than F. graminearum, supporting earlier delineation of the crown-infecting group as a new species. Although significant wheat line-pathogen isolate interaction in ANOVA suggested putative specialization when seedlings of 60 wheat lines were inoculated with 4 pathogen isolates or 26 wheat lines were inoculated with 10 isolates, significant W and κ showed agreement in rank order of wheat lines, indicating a lack of specialization. The first principal component representing nondifferential aggressiveness explained a large part (up to 65%) of the variation in CR severity. The differential components were small and more pronounced in seedlings than in adult plants. By maximizing variance on the first two principal components, biplots were useful for highlighting the association between isolates and wheat lines. A key finding of this work is that a range of analytical tools are needed to explore pathogenic specialization, and a statistically significant interaction in an ANOVA cannot be taken as conclusive evidence of specialization. With no highly resistant wheat cultivars, Fusarium isolates mostly differ in aggressiveness; however, specialization may appear as more resistant cultivars become widespread.

  10. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants.

    Science.gov (United States)

    Quijano, Carolina Diaz; Wichmann, Fabienne; Schlaich, Thomas; Fammartino, Alessandro; Huckauf, Jana; Schmidt, Kerstin; Unger, Christoph; Broer, Inge; Sautter, Christof

    2016-09-01

    Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  11. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants

    Directory of Open Access Journals (Sweden)

    Carolina Diaz Quijano

    2016-09-01

    Full Text Available Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4 is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  12. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  13. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Science.gov (United States)

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  14. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  15. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international

  16. Diversifying Selection in the Wheat Stem Rust Fungus Acts Predominantly on Pathogen-Associated Gene Families and Reveals Candidate Effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2014-09-01

    Full Text Available Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defence proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialised gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

  17. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice.

    Science.gov (United States)

    Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan

    2012-01-01

    Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.

  18. Community composition of target vs. non-target fungi in fungicide treated wheat

    DEFF Research Database (Denmark)

    Knorr, Kamilla; Jørgensen, Lise Nistrup; Justesen, Annemarie Fejer

    2012-01-01

    disease in wheat and within the last decade, new aggressive strains of yellow rust has caused severe epidemics that lead to substantial yield losses. This study explored the community composition of target versus non-target fungi in yellow rust infected wheat as affected by treatment timing and dose......Fungicide treatments are common control strategies used to manage fungal pathogens in agricultural fields, however, effects of treatments on the composition of total fungal communities, including non-target fungi, in the phyllosphere is not well known. Yellow rust (Puccinia striiformis) is a common...

  19. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Powell, Jonathan J; Carere, Jason; Fitzgerald, Timothy L; Stiller, Jiri; Covarelli, Lorenzo; Xu, Qian; Gubler, Frank; Colgrave, Michelle L; Gardiner, Donald M; Manners, John M; Henry, Robert J; Kazan, Kemal

    2017-03-01

    Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host

  20. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    Science.gov (United States)

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  1. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  2. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  3. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  4. Fungal diversity and potential tree pathogens in decaying logs and stumps

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Hollander, de Mattias; Boer, de Wietse

    2017-01-01

    Different types of dead wood in forest ecosystems contribute to an increase of habitats for decomposer fungi. This may have a positive effect on fungal diversity but may also increase habitats for tree pathogens. In this study we investigate the fungal diversity and composition via high-throughput

  5. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    Science.gov (United States)

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Signaling pathways involved in pathogenicity and development of the fungal wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Mehrabi, R.

    2006-01-01

    Mycosphaerella graminicola(Fuckel) J. Schröt is the causal agent of septoria tritici leaf blotch, which is the major foliar wheat disease in most temperate areas.Direct losses and the cost of control strategies contribute to the huge economical

  7. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum

    Directory of Open Access Journals (Sweden)

    Gummer Joel P A

    2012-07-01

    Full Text Available Abstract Background It has been well established that the Gα subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Gγ and Gβ subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. Results G-protein Gγ and Gβ subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Gα subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4°C was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. Conclusion This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.

  8. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  9. Economical effectiveness of fungal diseases control of winter wheat in 2000-2008

    Directory of Open Access Journals (Sweden)

    Anna Jaczewska-Kalicka

    2009-01-01

    Full Text Available Winter wheat is a very susceptible species to infection by pathogenic fungi requires the application of plant protection products. Their effectiveness and profitability of application depend on numerous factors. The most important of them are: weather and environmental conditions, managing and organisation of production, the intensity of oc-currence and harmfulness of occurring pathogenes, the amount of obtained yield, costs of protection and grain selling prices. Presented research results are derived from plot ex-periments conducted in the Field Experimental Station IOR-PIB Grodzisk Mazowiecki, on the fields of Agricultural Experimental Station SGGW Chylice, mazowieckie voivode-ship, in 2000-2008 on winter wheat. A high differentiation was stated in profitability of applying particular fungicides, as well as considerable differences between particular vegetative seasons of winter wheat cultivation. In each year, except 2000, protection treatments were profitable, in spite of high costs being on average 10% of the value of protected crop.

  10. Seed treatments to control seedborne fungal pathogens of vegetable crops.

    Science.gov (United States)

    Mancini, Valeria; Romanazzi, Gianfranco

    2014-06-01

    Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.

  11. Functional analysis of LysM effectors secreted by fungal plant pathogens

    NARCIS (Netherlands)

    Kombrink, A.

    2014-01-01

    Chitin is a homopolymer of N-acetyl-d-glucosamine (GlcNAc)that is abundantly present in nature and found as a major structural component in the fungal cell wall. In Chapter 1,the role of chitin as an important factor in the interaction between fungal pathogens

  12. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen.

    Science.gov (United States)

    Zhang, Tao; Zhao, Yun-Long; Zhao, Jian-Hua; Wang, Sheng; Jin, Yun; Chen, Zhong-Qi; Fang, Yuan-Yuan; Hua, Chen-Lei; Ding, Shou-Wei; Guo, Hui-Shan

    2016-09-26

    Plant pathogenic fungi represent the largest group of disease-causing agents on crop plants, and are a constant and major threat to agriculture worldwide. Recent studies have shown that engineered production of RNA interference (RNAi)-inducing dsRNA in host plants can trigger specific fungal gene silencing and confer resistance to fungal pathogens 1-7 . Although these findings illustrate efficient uptake of host RNAi triggers by pathogenic fungi, it is unknown whether or not such an uptake mechanism has been evolved for a natural biological function in fungus-host interactions. Here, we show that in response to infection with Verticillium dahliae (a vascular fungal pathogen responsible for devastating wilt diseases in many crops) cotton plants increase production of microRNA 166 (miR166) and miR159 and export both to the fungal hyphae for specific silencing. We found that two V. dahliae genes encoding a Ca 2+ -dependent cysteine protease (Clp-1) and an isotrichodermin C-15 hydroxylase (HiC-15), and targeted by miR166 and miR159, respectively, are both essential for fungal virulence. Notably, V. dahliae strains expressing either Clp-1 or HiC-15 rendered resistant to the respective miRNA exhibited drastically enhanced virulence in cotton plants. Together, our findings identify a novel defence strategy of host plants by exporting specific miRNAs to induce cross-kingdom gene silencing in pathogenic fungi and confer disease resistance.

  13. The Top 10 fungal pathogens in molecular plant pathology.

    Science.gov (United States)

    Dean, Ralph; Van Kan, Jan A L; Pretorius, Zacharias A; Hammond-Kosack, Kim E; Di Pietro, Antonio; Spanu, Pietro D; Rudd, Jason J; Dickman, Marty; Kahmann, Regine; Ellis, Jeff; Foster, Gary D

    2012-05-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  14. Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth

    Directory of Open Access Journals (Sweden)

    Jonathan P. Anderson

    2016-09-01

    Full Text Available Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806. Keywords: Fungal pathogenesis, Wheat, Rhizoctonia solani, Basidiomycete

  15. Relationship between fungal contamination and ergosterol content and control of wheat grain spoilage by gamma rays

    International Nuclear Information System (INIS)

    Shahin, A.M.; Mahrous, S.R.; Aziz, N.H.; El-Zeany, S.M.

    2003-01-01

    The fungal flora and the ergosterol content of wheat grains were determined and the effect of gamma-irradiation on some important grain fungi to control mould spoilage of wheat grains was also investigated. At the start of storage, the ergosterol content and the number of moulds of wheat grains were 3.3μg/g and 3x10 3 /g, respectively and the technological values as germinative capacity and fat acidity were wholly satisfactory. After 50 days of storage, the ergosterol content and the number of moulds of the grains were 45.5 μg/g and 80x10 5 /g, respectively and all the germinative capacity and fat acidity values were not satisfactory. The ergosterol content of wheat grains irradiated at a dose level 3 kGy was 0.5 μg/g and the number of moulds were 8x10 2 /g. After 50 days of storage, the ergosterol content of the 3 kGy irradiated grains was 0.90 μg/g and the number of moulds were 15x10 2 /g and all the technological values were satisfactory. The fungal biomass and the ergosterol content of some grains fungi were decreased by increasing the irradiation dose levels. At irradiation dose level 4 kGy, there was no ergosterol in wheat grains and the moulds were completely inhibited and the technological values are wholly satisfactory over 50 days of storage

  16. Anti-fungal activity of some medicinal plants on different pathogenic fungi

    International Nuclear Information System (INIS)

    Hussain, F.; Abid, M.; Farzana, A.; Shaukat, S.; Akbar, M.

    2015-01-01

    The antifungal activity of different medicinal and locally available plants extracts (leaves, fruit, seeds) which are usually found in the surrounding of fields or in the fields on some fungi were tested in lab conditions. Six different plants were selected for testing these plants were Acacia nilotica (Lamk.) Willd. Azadirachta indica (A.) Juss. Crotalaria juncea L. Eucalyptus camaldulensis Dehnh. Ocimum basilicum L. and Prosopis juliflora (Sw.) Dc. These plants showed antifungal activity against the Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. These plants crude extracts of leaves showed inhibition activity against the fungi and suppressed the myclial growth. Over all selected plants exhibited moderate type of inhibition against these above mentioned pathogens. Among these plants, Azadirachta indica, Ocimum basilicum and Crotalaria juncea showed the most effective results against the Aspergillus, Fusarium and Rhizoctonia sp. of fungal pathogens. Whereas, Acacia nilotica, Eucalyptus camaldulensis and Prosopis juliflora showed least potential of inhibition against all above mentioned fungal pathogens. It is investigated in present studies that Azadirachta indica, Ocimum basilicum and Crotalaria juncea can be utilized against the management of fungal diseases particularly Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. (author)

  17. The use of plants to protect plants and food against fungal pathogens

    African Journals Online (AJOL)

    Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal ...

  18. A rapid genotyping method for an obligate fungal pathogen, Puccinia striiformis f.sp. tritici, based on DNA extraction from infected leaf and Multiplex PCR genotyping

    Directory of Open Access Journals (Sweden)

    Enjalbert Jérôme

    2011-07-01

    Full Text Available Abstract Background Puccinia striiformis f.sp. tritici (PST, an obligate fungal pathogen causing wheat yellow/stripe rust, a serious disease, has been used to understand the evolution of crop pathogen using molecular markers. However, numerous questions regarding its evolutionary history and recent migration routes still remains to be addressed, which need the genotyping of a large number of isolates, a process that is limited by both DNA extraction and genotyping methods. To address the two issues, we developed here a method for direct DNA extraction from infected leaves combined with optimized SSR multiplexing. Findings We report here an efficient protocol for direct fungal DNA extraction from infected leaves, avoiding the costly and time consuming step of spore multiplication. The genotyping strategy we propose, amplified a total of 20 SSRs in three Multiplex PCR reactions, which were highly polymorphic and were able to differentiate different PST populations with high efficiency and accuracy. Conclusion These two developments enabled a genotyping strategy that could contribute to the development of molecular epidemiology of yellow rust disease, both at a regional or worldwide scale.

  19. Modelling soil borne fungal pathogens of arable crops under climate change.

    Science.gov (United States)

    Manici, L M; Bregaglio, S; Fumagalli, D; Donatelli, M

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

  20. Effects of Varying Levels of Fungal ( sp. Treated Wheat Straw as an Ingredient of Total Mixed Ration on Growth Performance and Nutrient Digestibility in Nili Ravi Buffalo Calves

    Directory of Open Access Journals (Sweden)

    F. Shahzad

    2016-03-01

    Full Text Available The study was carried out to explore the effects of replacing wheat straw with fungal treated wheat straw as an ingredient of total mixed ration (TMR on the growth performance and nutrient digestibility in Nili Ravi buffalo male calves. Fungal treated wheat straw was prepared using Arachniotus sp. Four TMRs were formulated where wheat straw was replaced with 0 (TMR1, 33 (TMR2, 67 (TMR3, and 100% (TMR4 fungal treated wheat straw in TMR. All TMRs were iso-caloric and iso-nitrogenous. The experimental TMRs were randomly assigned to four groups of male calves (n = 6 according to completely randomized design and the experiment continued for four months. The calves fed TMR2 exhibited a significant improve in dry matter intake, average daily weight gain, feed conversion ratio and feed economics compared to other groups. The same group also showed higher digestibility of dry matter, crude protein, neutral-, and acid detergent fibers than those fed on other TMRs. It is concluded that TMR with 33% fungal-treated wheat straw replacement has a potential to give an enhanced growth performance and nutrient digestibility in male Nili Ravi buffalo calves.

  1. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    Science.gov (United States)

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The impact of Septoria tritici Blotch disease on wheat: An EU perspective.

    Science.gov (United States)

    Fones, Helen; Gurr, Sarah

    2015-06-01

    Zymoseptoria tritici is the causal agent of one of the European Union's most devastating foliar diseases of wheat: Septoria tritici Blotch (STB). It is also a notable pathogen of wheat grown in temperate climates throughout the world. In this commentary, we highlight the importance of STB on wheat in the EU. To better understand STB, it is necessary to consider the host crop, the fungal pathogen and their shared environment. Here, we consider the fungus per se and its interaction with its host and then focus on a more agricultural overview of the impact STB on wheat. We consider the climatic and weather factors which influence its spread and severity, allude to the agricultural practices which may mitigate or enhance its impact on crop yields, and evaluate the economic importance of wheat as a food and animal feed crop in the UK and EU. Finally, we estimate the cost of STB disease to EU agriculture. Copyright © 2015. Published by Elsevier Inc.

  3. Study on Prevalence of Mycoflora in Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Pratishtha Adhikari

    2016-01-01

    Full Text Available Forty seed sample of wheat (Triticum aestivum were collected from four locations viz. Chitwan, Kaski, Banke and Lalitpur and tested by blotter method at laboratory during 2013 for determining fungal pathogens associated with wheat seeds in Nepal. Eighteen species representing thirteen genera of fungi were recovered from the seed. Alternaria alternata and Bipolaris sorokiniana were predominant in all the varieties/genotypes from all the locations, where B. sorokiniana was strongly pathogenic in wheat crop. Percentage frequency and type of fungi detected varied with variety and locations. Bipolaris sorokiniana was highest (64.40% in Banke than remaining three locations. Seeds of Chitwan had lowest percentage (5.50% of seed infection as compared to other locations. Relative abundance of Alternaria alternata (55.10% was highest as it was the most prevalent component of seed borne mycoflora, followed by Bipolaris sorokiniana (34.69% and Cladosporium herbarum (7.19%. Differences in quantity of precipitation and relative humidity might be the possible reason for variation in frequency and type of fungi detected in wheat seeds of four locations.

  4. Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat

    Science.gov (United States)

    Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby

    2016-01-01

    ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to

  5. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    Science.gov (United States)

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. Imaging O2 changes induced in tomato roots by fungal pathogen

    Science.gov (United States)

    Rubol, S.; Turco, E.; Rodeghiero, M.; Bellin, A.

    2014-12-01

    In the last decade, planar optodes have demonstrated to be a useful non-invasive tool to monitor real time oxygen concentrations in a wide range of applications. However, only limited investigations have been carried out to explore the use of optodes in plant respiration studies. In particular, their use to study plant-pathogen interactions has been not deeply investigated. Here, we present for the first time an in vitro experimental setup capable to depict the dynamical effects of the fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol) on tomato roots by the use of a recently developed optical non-invasive optode oxygen sensor (Visisens, Presens, Germany). Fol is a soil-borne pathogen and the causal agent of wilt in tomato plants, a destructive worldwide disease. The interaction Fol-tomato is widely accepted as a model system in plant pathology. In this work, oxygen concentrations are monitored continuously in time and considered a proxy for root respiration and metabolic activity. The experimental procedure reveals three different dynamic stages: 1) a uniform oxygen consumption in tomato roots earlier before pathogen colonization, 2) a progressive decrease in the oxygen concentration indicating a high metabolic activity as soon as the roots were surrounded and colonized by the fungal mycelium, and 3) absence of root respiration, as a consequence of root death. Our results suggest the ability of the fungal mycelium to move preferentially towards and along the root as a consequence of the recognition event.

  7. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    Science.gov (United States)

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  8. De novo genome assembly of the fungal plant pathogen Pyrenophora semeniperda

    Science.gov (United States)

    Marcus M. Soliai; Susan E. Meyer; Joshua A. Udall; David E. Elzinga; Russell A. Hermansen; Paul M. Bodily; Aaron A. Hart; Craig E. Coleman

    2014-01-01

    Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a...

  9. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.

  10. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field

    OpenAIRE

    Al-Sheikh, Hashem

    2010-01-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in...

  12. Variability of Pathogenicity of Fusarium spp. Originating from Maize and Wheat Grains

    Directory of Open Access Journals (Sweden)

    Sonja Tančić

    2009-01-01

    Full Text Available Differences in the pathogenicity of 93 isolates of seven species belonging to the genus Fusarium (F. graminearum, F. verticillioides, F. proliferatum, F. subglutinans, F. sporotrichioides, F. semitectum and F. equiseti, originating from maize kernels (61 and wheat grains (32, were examined based on the germination percentage of inoculated seeds. The studied species demonstrated inter- and intraspecies variability regarding the effects on maize seed germination. On the average, the greatest germination reduction was found in seeds inoculated with the spore suspensions of F. sporotrichioides and F. graminearum. A similar reduction was detected in seeds inoculated with F. proliferatum and F. subglutinans. The effect of F. subglutinans on seed germination reduction was higher compared to the two latter species, while the effects of F. semitectum and F. equiseti were smallest. The majority of isolates were of moderate pathogenicity, while the lowest number of isolates was either very pathogenic (7 or apathogenic (10. Pathogenicity of the isolates originating from wheat grains was generally lower than the pathogenicity of isolates originating from maize kernels, with the exception of F. sporotrichioides.

  13. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    Directory of Open Access Journals (Sweden)

    Zhen-Jian Chu

    Full Text Available Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI and of control (hptC for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.

  14. Detection of Seed-Borne Fungal pathogens on Soya beans

    International Nuclear Information System (INIS)

    Wanyera, R

    2002-01-01

    Soya beans (Glycine max max L.) are propagated by seed and are vulnerable to devastating seed-borne diseases where the importance of each disease varies greatly. Seed-borne diseases cause significant losses in seed, food production and quality of seed and grain. Studies on seed borne diseases in Kenya have not been given emphasis on very important seed crops among the soya beans. The identification and rejection of the seed crop is mainly based on visual appraisal in the field with little or no laboratory work undertaken. Three methods were used to analyse the health status of fifty two soyabean seed samples collected from the National Plant Breeding Research Centre-Njoro and farmers' fields in Bahati division of Nakuru district. The analysis was carried out in the laboratory. The objective of the analysis was to identify and inventory seed-borne fungal pathogens of soya beans grown in Kenya. The normal blotter, herbicide and germination test methods were used. The tests revealed the presence of several important fungal pathogens on soyabean seed samples. Among the pathogens recorded Phoma sp, phomopsis sp, fusarium sp, Hainesia lyhri and Cercospora kikuchii were frequently recorded on the seed samples. Results of the germination test between paper method showed low germination (0-6.7%) on the normal sedlings in all the test samples. Hainesia lyhri was a new record on the soyabean seeds

  15. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Yang, Fen; Braga, Marcella Nunes de Melo; Larsen, Martin Røssel

    2013-01-01

    The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection...... in resistant and susceptible wheat using quantitative proteomics and phosphoproteomics, with special emphasis on the initial biotrophic phase of interactions. Our study revealed an accumulation of defense and stress-related proteins, suppression of photosynthesis, and changes in sugar metabolism during...... compatible and incompatible interactions. However, differential regulation of the phosphorylation status of signaling proteins, transcription and translation regulators, and membrane-associated proteins was observed between two interactions. The proteomic data were correlated with a more rapid or stronger...

  16. Plant Pathogenicity in Spaceflight Environments

    OpenAIRE

    Bishop, Deborah L.; Levine, Howard G.; Anderson, Anne J.

    1996-01-01

    Plants grown in microgravity are subject to many environmental stresses, which may promote microbial growth and result in pathogenicity to the plant. Recent plant experiments with super dwarf wheat aboard the NASA Space Shuttle and NASA/Russian Mir Space Station returned from the mission with severe degrees of fungal contamination. Understanding the cause of such microbial contamination and methods to eliminate it are necessary prerequisites for continued plant growth and development studies ...

  17. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    Science.gov (United States)

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  18. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models

    Science.gov (United States)

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...

  19. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF Fusarium SPECIES AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jelena Poštić

    2012-12-01

    Full Text Available From the root and lower stem parts of weeds and plant debris of maize, wheat, oat and sunflower we isolated 300 isolates of Fusarium spp. and performed morphological and molecular identification. With molecular identification using AFLP method we determined 14 Fusarium species: F. acuminatum, F. avenaceum, F. concolor, F. crookwellense, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. sporotrichioides, F. subglutinans, F. venenatum and F. verticillioides.By comparing results of morphological and molecular identification we found out that determination of 16,7% isolates was incorrect. Out of 300 isolates identified with molecular methods, 50 did not belong to the species determined with morphological determination.With pathogenicity tests of 30 chosen Fusarium isolates we determined that many of them were pathogenic to wheat and maize seedlings and to wheat heads. The most pathogenic were isolates of F. graminearum from A. retroflexus, A. theophrasti and C. album, F. venenatum from maize debris and and A. theophrasti, F. crookwellense from A. lappa. Antifungal influence of 11 essential oils on mycelia growth and sporulation of chosen Fusarium isolates determined that essential oils of T. vulgaris, P. anisum and E. caryophyllus had the strongest effect on mycelial growth. Influence of essential oils on sporulation was not statistically significant.

  20. 3-D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat

    DEFF Research Database (Denmark)

    Sørensen, Chris Khadgi; Justesen, Annemarie Fejer; Hovmøller, Mogens Støvring

    2012-01-01

    Differentiation of haustoria on primary infection hyphae of the fungal pathogen Puccinia striiformis was studied in wheat seedlings with two-photon microscopy in combination with a classical staining technique. Our results showed a significant increase in the average haustorium size 22, 44, 68, 92...

  1. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field.

    Science.gov (United States)

    Al-Sheikh, Hashem

    2010-10-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions.

  2. Community ecology of fungal pathogens on Bromus tectorum [Chapter 7

    Science.gov (United States)

    Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

    2016-01-01

    Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact...

  3. Comparative genomics allowed the identification of drug targets against human fungal pathogens

    Directory of Open Access Journals (Sweden)

    Martins Natalia F

    2011-01-01

    Full Text Available Abstract Background The prevalence of invasive fungal infections (IFIs has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. Results In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6 relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum. Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24-sterol C-methyltransferase. Conclusions Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of

  4. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Tundo, Silvio; Janni, Michela; Sella, Luca; Gazzetti, Katia; Tauzin, Alexandra; Giardina, Thierry; Masci, Stefania; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.

  5. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  6. Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-10-01

    Full Text Available Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptome of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNP in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.

  7. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Sonia Chadha

    Full Text Available A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens.

  8. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Christopher A Desjardins

    2011-10-01

    Full Text Available Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18 and one strain of Paracoccidioides lutzii (Pb01. These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic

  9. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    Science.gov (United States)

    Foley, Rhonda C; Kidd, Brendan N; Hane, James K; Anderson, Jonathan P; Singh, Karam B

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.

  10. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    Directory of Open Access Journals (Sweden)

    Rhonda C Foley

    Full Text Available Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT, 3,3'-diaminobenzidine (DAB and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.

  11. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Cone, John W.

    2016-01-01

    Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g

  12. Integrating large-scale data and RNA technology to protect crops from fungal pathogens

    Directory of Open Access Journals (Sweden)

    Ian Joseph Girard

    2016-05-01

    Full Text Available With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.

  13. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat.

    Science.gov (United States)

    Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus

    2018-05-01

    Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens.

    Science.gov (United States)

    Gabriel, K T; Joseph Sexton, D; Cornelison, C T

    2018-05-01

    Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens. © 2017 The Society for Applied Microbiology.

  15. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats

    Science.gov (United States)

    Jonathan M. Palmer; Kevin P. Drees; Jeffrey T. Foster; Daniel L. Lindner

    2018-01-01

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species....

  16. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat.

    Science.gov (United States)

    Hýsek, Josef; Vavera, Radek; Růžek, Pavel

    2017-06-01

    In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).

  17. Take-all of Wheat and Natural Disease Suppression: A Review

    Directory of Open Access Journals (Sweden)

    Youn-Sig Kwak

    2013-06-01

    Full Text Available In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that have the ability to protect either by direct inhibition of the pathogen or by inducing resistance mechanisms in the plant. One of the best examples of protection of plant roots by antagonistic microbes occurs in soils that are suppressive to take-all disease of wheat. Take-all, caused by Gaeumannomyces graminis var. tritici, is the most economically important root disease of wheat worldwide. Take-all decline (TAD is the spontaneous decline in incidence and severity of disease after a severe outbreak of take-all during continuous wheat or barley monoculture. TAD occurs worldwide, and in the United States and The Netherlands it results from a build-up of populations of 2,4-diacetylphloroglucinol (2,4-DAPG-producing fluorescent Pseudomonas spp. during wheat monoculture. The antibiotic 2,4-DAPG has a broad spectrum of activity and is especially active against the take-all pathogen. Based on genotype analysis by repetitive sequence-based-PCR analysis and restriction fragment length polymorphism of phlD, a key 2,4-DAPG biosynthesis gene, at least 22 genotypes of 2,4-DAPG producing fluorescent Pseudomonas spp. have been described worldwide. In this review, we provide an overview of G. graminis var. tritici, the take-all disease, Pseudomonas biocontrol agents, and mechanism of disease suppression.

  18. Fumonisin B1 and beauvericin accumulation in wheat kernels after seed-borne infection with Fusarium proliferatum

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    2016-08-01

    Full Text Available Fusarium proliferatum is a fungal pathogen causing ear rot of maize. The fungus infects a range of other plants but the economic impact of these diseases has not been established. Recently, F. proliferatum and its mycotoxin fumonisin were found in wheat grains. Here we report that seed-borne infection of wheat with F. proliferatum resulted in systemic colonization of wheat plants and contamination of wheat grains with fumonisins and beauvericin. F. proliferatum strains originating from different hosts were able to infect wheat via seeds. Colonization of wheat plants with the fungus was highest in the stems, followed by leaves; one third of the strains reached kernels, causing accumulation of fumonisins and beauvericin to 15–55 µg kg-1. The results show that seed-borne infection of wheat with F. proliferatum can lead to contamination of wheat kernels with mycotoxins fumonisins and beauvericin.  

  19. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    Science.gov (United States)

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. Fungal Diversity in Field Mold-Damaged Soybean Fruits and Pathogenicity Identification Based on High-Throughput rDNA Sequencing

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2017-05-01

    Full Text Available Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM, which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean.

  1. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.

    Science.gov (United States)

    Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan

    2015-05-01

    Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.

  2. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline

    Science.gov (United States)

    Jonah Piovia-Scott; Karen Pope; S. Joy Worth; Erica Bree Rosenblum; Dean Simon; Gordon Warburton; Louise A. Rollins-Smith; Laura K. Reinert; Heather L. Wells; Dan Rejmanek; Sharon Lawler; Janet Foley

    2015-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We...

  3. Specific recognition of fungal pathogens by plants

    International Nuclear Information System (INIS)

    Knogge, W.; Gierlich, A.; Max-Planck-Institute for Plant Breeding,; Van't Slot, K.A.E.; Papavoine, T.

    2001-01-01

    Full text: Induction of plant defence reactions and, hence, genotype-specific disease resistance results from the interaction of highly specific plant resistance (R) genes with matching pathogen avirulence (Avr) genes (gene-for-gene interactions). More than thirty R genes acting against different types of pathogens (viruses, bacteria, fungi, oomycetes, nematodes) have been isolated from various plants species. However, with few exceptions it remains to be shown how their products recognise the complementary Avr gene products. To date, Avr genes and their products have been characterised from only three fungal species. These include the NIP1 gene from Rhynchosporium secalis, the causal agent of barley leaf scald. It encodes a small, secreted protein, NIP1, that triggers defence reactions exclusively in barley cultivars expressing the R gene Rrs1. NIP1 also non-specifically stimulates the H + -ATPase activity in barley plasma membranes, suggesting that the host recognition system targets a putative fungal virulence factor. Virulent fungal strains lack the gene or carry an allele encoding a non-functional product. Four NIP1 iso-forms have been characterised; NIP1-I and NIP1-II although both elicitor-active display different levels of activity, whereas the isoforms NIP1-III and NIP1-IV are inactive. After establishing a heterologous expression system, the single amino acids specifying NIP1-III and NIP1-IV were integrated into the NIP1-I sequence and yielded the inactive mutant proteins NIP1-III* and NIP1-IV*. The elicitor-inactive isoforms were also unable to stimulate the H + -ATPase, suggesting that both functions of NIP1 are mediated by a single plant receptor. The 3D structure of NIP1-I has been elucidated by 1 H- and 15 N-NMR spectroscopy. Binding studies using 125 I-NIP1-I revealed a single class of high-affinity binding sites on membranes from both Rrs1- and rrs1-cultivars, suggesting that NIP1-binding is not sufficient for defence triggering and that an

  4. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations

    Science.gov (United States)

    Paul W. Bradley; Stephanie S. Gervasi; Jessica Hua; Rickey D. Cothran; Rick A. Relyea; Deanna H. Olson; Andrew R. Blaustein

    2015-01-01

    Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However,...

  5. Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Lauren A. Du Fall

    2011-12-01

    Full Text Available Cereal crops such as wheat, rice and barley underpin the staple diet for human consumption globally. A multitude of threats to stable and secure yields of these crops exist including from losses caused by pathogens, particularly fungal. Plants have evolved complex mechanisms to resist pathogens including programmed cell death responses, the release of pathogenicity-related proteins and oxidative bursts. Another such mechanism is the synthesis and release of secondary metabolites toxic to potential pathogens. Several classes of these compounds have been identified and their anti-fungal properties demonstrated. However the lack of suitable analytical techniques has hampered the progress of identifying and exploiting more of these novel metabolites. In this review, we summarise the role of the secondary metabolites in cereal crop diseases and briefly touch on the analytical techniques that hold the key to unlocking their potential in reducing yield losses.

  6. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential

    DEFF Research Database (Denmark)

    Sultan, Abida; Frisvad, Jens Christian; Andersen, Birgit

    2017-01-01

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface......-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown...... on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases...

  7. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat.

    Science.gov (United States)

    Keyser, Chad A; Jensen, Birgit; Meyling, Nicolai V

    2016-03-01

    Crops are often prone to both insect herbivory and disease, which necessitate multiple control measures. Ideally, an efficacious biological control agent must adequately control the target organism and not be inhibited by other biological control agents when applied simultaneously. Wheat seeds infected with the plant pathogen Fusarium culmorum were treated with Metarhizium brunneum or M. flavoviride and Clonostachys rosea individually and in combination, with the expectation to control both root-feeding insects and the pathogen. Emerging roots were evaluated for disease and then placed with Tenebrio molitor larvae, which were monitored for infection. Plant disease symptoms were nearly absent for seeds treated with C. rosea, both individually and in combination with Metarhizium spp. Furthermore, roots grown from seeds treated with Metarhizium spp. caused significant levels of fungal infection in larvae when used individually or combined with C. rosea. However, cotreated seeds showed reduced virulence towards T. molitor when compared with treatments using Metarhizium spp. only. This study clearly shows that seed treatments with both the entomopathogenic fungus M. brunneum and the mycoparasitic fungus C. rosea can protect plant roots from insects and disease. The dual-treatment approach to biological control presented here is consistent with the ideals of IPM strategies. © 2015 Society of Chemical Industry.

  8. Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example

    Science.gov (United States)

    Heitefuss, Rudolf

    2001-06-01

    Diseases of crop plants may lead to considerable yield losses. To control fungal diseases, fungicides are used extensively in present-day agricultural production. In order to reduce such external inputs, cultivars with natural resistance to important fungal pathogens are recommended in systems of integrated plant protection. Basic research, including genetics and molecular methods, is required to elucidate the mechanisms by which plants react to an attack by fungal pathogens and successfully defend themselves. This review examines our knowledge with respect to the multicomponent systems of resistance in plants, using powdery mildew on barley as an example. In addition, the question is adressed whether systemic acquired resistance and plants with transgenic resistance may be utilized in future plant protection strategies.

  9. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

    Science.gov (United States)

    Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia

    2018-03-01

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

  10. Determinants of wheat antigen and fungal alpha-amylase exposure in bakeries.

    Science.gov (United States)

    Burstyn, I; Teschke, K; Bartlett, K; Kennedy, S M

    1998-05-01

    The study's objectives were to measure flour antigen exposure in bakeries and define the determinants of exposure. Ninety-six bakery workers, employed in seven different bakeries, participated in the study. Two side-by-side full-shift inhalable dust samples were obtained from each study participant on a single occasion. The flour antigen exposure was measured as wheat antigen and fungal alpha-amylase content of the water-soluble fraction of inhalable dust, assayed via enzyme-linked immunosorbent assays. During the entire sampling period bakers were observed and information on 14 different tasks was recorded at 15-minute intervals. Other production characteristics were also recorded for each sampling day and used in statistical modeling to identify significant predictors of exposure. The mean alpha-amylase antigen exposure was 22.0 ng/m3 (ranging from below the limit of detection of 0.1 ng/m3 to 307.1 ng/m3) and the mean wheat antigen exposure was 109 micrograms/m3 (ranging from below the limit of detection of 1 microgram/m3 to 1018 micrograms/m3). Regression models that explained 74% of variability in wheat antigen and alpha-amylase antigen exposures were constructed. The models indicated that tasks such as weighing, pouring, and operating dough-brakers increased flour antigen exposure, while packing and decorating resulted in lower exposures. Croissant, puff-pastry, and bread/bun production lines were associated with increased exposure, while cake production and substitution of dusting with the use of divider oil were associated with decreased exposure. Exposure levels can be reduced by the automation of forming tasks, alteration of tasks requiring pouring of flour, and changes to the types of products manufactured.

  11. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  12. Temporal Gene Expression Profiling of the Wheat Leaf Rust Pathosystem Using cDNA Microarray Reveals Differences in Compatible and Incompatible Defence Pathways

    OpenAIRE

    Fofana, Bourlaye; Banks, Travis W.; McCallum, Brent; Strelkov, Stephen E.; Cloutier, Sylvie

    2007-01-01

    In this study, we detail the construction of a custom cDNA spotted microarray containing 7728 wheat ESTs and the use of the array to identify host genes that are differentially expressed upon challenges with leaf rust fungal pathogens. Wheat cultivar RL6003 (Thatcher Lr1) was inoculated with Puccinia triticina virulence phenotypes BBB (incompatible) or TJB (7-2) (compatible) and sampled at four different time points (3, 6, 12, and 24 hours) after inoculation. Transcript expression levels rela...

  13. Study on the Biocontrol Activities of Trichoderma species in Greengram with Infected Fungal Pathogens

    International Nuclear Information System (INIS)

    May Waine Wityi Htun; Myat Thu; Saw Sandar Maw

    2011-12-01

    Seven species of Trichoderma were isolated from rhizospheric soil sources and studied by cultural morphology and microscopic examinations. In dual plate assay, antifungal effects of seven Trichoderma strains were screened against three plant pathogenic fungi (Fusarium oxysporum, Rhizoctonia solani and Pythium sp.) on PDA medium and T-5 isolate showed a wide percentage of inhibitory effects on target pathogens with PIRG value. All Trichoderma strains exhibited a clear zone formation on minimal synthetic medium supplemented with 1% colloidal chitin. T-2 and T-5 were the best chitinase producer strains. In vitro screening for protease activity, the highest protease producing activity of Trichoderma isolate (T-2) were observed in pH indicator medium after 7 days incubation. In pot trial experiment, only T-5 strain exhibited more fungal suppression efficiency on green gram plant than commercial fungicide, Trisan and the other strains. So, it can be said that the effective strain was T-5 strain only which have been more antifungal producing power on three fungal pathogens than Trisan and the resting strains.

  14. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes.

    Directory of Open Access Journals (Sweden)

    Stefan Boedi

    2016-07-01

    Full Text Available Fusarium graminearum is an opportunistic pathogen of cereals where it causes severe yield losses and concomitant mycotoxin contamination of the grains. The pathogen has mixed biotrophic and necrotrophic (saprophytic growth phases during infection and the regulatory networks associated with these phases have so far always been analyzed together. In this study we compared the transcriptomes of fungal cells infecting a living, actively defending plant representing the mixed live style (pathogenic growth on living flowering wheat heads to the response of the fungus infecting identical, but dead plant tissues (cold-killed flowering wheat heads representing strictly saprophytic conditions. We found that the living plant actively suppressed fungal growth and promoted much higher toxin production in comparison to the identical plant tissue without metabolism suggesting that molecules signaling secondary metabolite induction are not pre-existing or not stable in the plant in sufficient amounts before infection. Differential gene expression analysis was used to define gene sets responding to the active or the passive plant as main impact factor and driver for gene expression. We correlated our results to the published F. graminearum transcriptomes, proteomes and secretomes and found that only a limited number of in planta- expressed genes require the living plant for induction but the majority uses simply the plant tissue as signal. Many secondary metabolite (SM gene clusters show a heterogeneous expression pattern within the cluster indicating that different genetic or epigenetic signals govern the expression of individual genes within a physically linked cluster. Our bioinformatic approach also identified fungal genes which were actively repressed by signals derived from the active plant and may thus represent direct targets of the plant defense against the invading pathogen.

  15. Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles

    OpenAIRE

    Sarmiento-Ramírez, Jullie M.; Abella-Pérez, Elena; Phillott, Andrea D.; Sim, Jolene; van West, Pieter; Martín, María P.; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are i...

  16. Surfactin Protects Wheat against Zymoseptoria tritici and Activates Both Salicylic Acid- and Jasmonic Acid-Dependent Defense Responses

    Directory of Open Access Journals (Sweden)

    Geraldine Le Mire

    2018-01-01

    Full Text Available Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Surfactin protected wheat by 70% against Z. tritici, similarly to the chemical reference elicitor Bion®50WG. In vitro biocidal assays revealed no antifungal activities of surfactin towards the pathogen. A biomolecular RT-qPCR based low-density microarray tool was used to study the relative expression of 23 wheat defense genes. Surfactin significantly induced wheat natural defenses by stimulating both salicylic acid- and jasmonic acid-dependent signaling pathways. Surfactin was successfully tested as an elicitor on the pathosystem wheat–Z. tritici. These results promote further sustainable agricultural practices and the reduction of chemical inputs.

  17. Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens.

    Science.gov (United States)

    López-García, B; Hernández, M; Segundo, B S

    2012-07-01

    This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0.3 μmol l(-1) of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  18. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    International Nuclear Information System (INIS)

    Lamont-Friedrich, Stephanie J; Michl, Thomas D; Giles, Carla; Griesser, Hans J; Coad, Bryan R

    2016-01-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata . Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others. (paper)

  19. Present status of Zymoseptoria tritici (Mycospharella graminicola /Fuckel/ Schroter of the wheat cultures in the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    I. Karov

    2017-09-01

    Full Text Available Abstract. In the Republic of Macedonia, wheat is a very important crop and it is grown on an area of around 250.000 ha. The most important regions for wheat growing are: Bitola, Kumanovo, Sveti Nikole, Skopje, Probistip, Kocani, Veles and Stip. The most important deseases on wheat are: Tapesia yallundae Wallwork and Spooner with its anamorphic stage Pseudocercosporella herpotrichoides (Fron Deighton causer of the desease „eyespot“ on barley and wheat; Puccinia graminis f. spp. tritici; Puccinia racondita f. spp. tritici; Gaeumannomyces graminis var. tritici; Bipolaris sorokiniana (Sacc. Shoemaker; Blumeria graminis var. tritici and Zymoseptoria tritici (Mycospharella graminicola (Fuckel Schroter. Many new diseases on wheat causing significant economic damage to producers are observed in Macedonia. The main aim of this article is to present the symptoms, morphology and protective measures of Zymoseptoria tritici (Mycospharella graminicola, the most widely spread fungal pathogens on wheat in the Republic of Macedonia. In the period between 2014 and 2016, the pathogen fungi on wheat with the highest intensity were: Zymoseptoria tritici, Tapesia yallundae, Puccinia graminis, Puccinia recondita, Gaeumannomyces graminis, Bipolaris sorokiniana, Blumeria graminis. The intensity of the diseases and the damages – yield losses of wheat, differed from year to year and between regions, depended on the sensitivity of the wheat varieties. The smallest yield loss was identified in wheat producers who treated the wheat with pesticides at least twice for vegetation season.

  20. Ga and Gß Proteins Regulate the Cyclic AMP Pathway That Is Required for Development and Pathogenicity of the Phytopathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Mehrabi, A.; M'Barek, Ben S.; Lee, van der T.A.J.; Waalwijk, C.; Wit, de P.J.G.M.; Kema, G.H.J.

    2009-01-01

    We identified and functionally characterized genes encoding three G alpha proteins and one G beta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed

  1. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia

    OpenAIRE

    Muñoz, José F.; Gauthier, Gregory M.; Desjardins, Christopher A.; Gallo, Juan E.; Holder, Jason; Sullivan, Thomas D.; Marty, Amber J.; Carmen, John C.; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret

    2015-01-01

    Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated...

  2. Characterization of the Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) Fungal Effector Candidate PEC6 and Its Corresponding Host Targets

    DEFF Research Database (Denmark)

    Liu, Changhai

    Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases on wheat worldwide and a serious threat to wheat production. Understanding the plant-microbe interaction mechanism is the basic step to assist future plant breeding aiming at increasing...... factor. By using the yeast two-hybrid system, the adenosine kinase (ADK) was identified as a host target of PEC6. Virus-induced gene silencing (VIGS) of ADK enhanced wheat susceptibility to stripe rust indicates that ADK is a positive regulator in plant defense. Based on EtHAn-mediated effector delivery......, seventy-two wheat landraces were screened to search for the presence of potential resistance (R) genes. Three landraces showed strong hypersensitive response (HR) when PEC6 was expressed in the cells, suggesting the presence of certain R gene(s) recognizing PEC6. However, these landraces did not show...

  3. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Science.gov (United States)

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  4. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  5. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  6. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2011-09-01

    Full Text Available A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  7. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2015-11-01

    Full Text Available There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM. Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.

  8. Exploration of Fungal Association From Hard Coral Against Pathogen MDR Staphylococcus haemolyticus

    Science.gov (United States)

    Cristianawati, O.; Radjasa, O. K.; Sabdono, A.; Trianto, A.; Sabdaningsih, A.; Sibero, M. T.; Nuryadi, H.

    2017-02-01

    Staphylococcus haemolyticus are opportunistic bacteria and as the second leading cause of nosocomial infections. It is a disease causing septicemia, peritonitis, otitis, and urinary tract infections and infections of the eye. It also a phenotype resistant to multiple antibiotics commercial. There is now an urgency to find an alternative antibiotics to combat this bacteria. It has been widely reported that many bioactive marine natural products from marine invertebrate have striking similarities to metabolites of their associated microorganisms including fungi. Hard coral associated microorganisms are among of the most interesting and promising marine natural product sources, which produce with various biological activities. The proposed work focused on the discovery of bioactive compounds and also estimated the phylogenetic diversity from fungal association of hard coral against pathogen MDR Staphylococcus haemolyticus. A total of 32 fungal association, FHP 7 which were isolated from Favia sp. capable of inhibiting the growth MDR. Molecular identification based on 18S rRNA gene sequences revealed that the active fungal association belonged 100% to the members from one of the genera Trichoderma longibrachiatum. Accession Number LC185084.1.

  9. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification.

    Science.gov (United States)

    Volpi, Chiara; Raiola, Alessandro; Janni, Michela; Gordon, Anna; O'Sullivan, Donal M; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Malick eMbengue

    2016-03-01

    Full Text Available Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum , the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.

  11. Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses

    OpenAIRE

    Le Mire, Géraldine; Siah, Ali; Brisset, Marie-Noëlle; Gaucher, Matthieu; Deleu, Magali; Jijakli, Haissam

    2018-01-01

    Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Su...

  12. Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N; Kanwar, S S

    2017-02-01

    In the present study, different transcripts of Trichoderma harzianum ThHP-3 were evaluated for their response against four fungal pathogens Fusarium oxysporum, Colletotrichum capsici, Colletotrichum truncatum and Gloesercospora sorghi using RT-qPCR. The time course study of T. harzianum transcripts related to signal transduction, lytic enzymes, secondary metabolites and various transporters revealed variation in expression against four fungal pathogens. In a broader term, the transcripts were upregulated at various time intervals but the optimum expression of cyp3, abc, nrp, tga1, pmk, ech42 and glh20 varied with respect to host fungi. Additionally, the expression of transcripts related to transporters/cytochromes was also observed against Fusarium oxysporum after 96h whereas transcripts related to secondary metabolites and lytic enzymes showed significant difference in expression against Colletotrichum spp. from 72 to 96h. This is first study on transcriptomic response of T. harzianum against pathogenic fungi which shows their host specific response. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1.

    Directory of Open Access Journals (Sweden)

    Zhaohui Liu

    2012-01-01

    Full Text Available The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular

  14. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata

    Directory of Open Access Journals (Sweden)

    Mayra Cuéllar-Cruz

    2009-07-01

    Full Text Available Candida glabrata is an opportunistic fungal pathogen that can cause severe invasive infections and can evade phagocytic cell clearance. We are interested in understanding the virulence of this fungal pathogen, in particular its oxidative stress response. Here we investigated C. glabrata, Saccharomyces cerevisiae and Candida albicans responses to two different oxidants: menadione and cumene hydroperoxide (CHP. In log-phase, in the presence of menadione, C. glabrata requires Cta1p (catalase, while in a stationary phase (SP, Cta1p is dispensable. In addition, C. glabrata is less resistant to menadione than C. albicans in SP. The S. cerevisiae laboratory reference strain is less resistant to menadione than C. glabrata and C. albicans; however S. cerevisiaeclinical isolates (CIs are more resistant than the lab reference strain. Furthermore, S. cerevisiae CIs showed an increased catalase activity. Interestingly, in SP C. glabrata and S. cerevisiae are more resistant to CHP than C. albicans and Cta1p plays no apparent role in detoxifying this oxidant.

  15. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici.

    Directory of Open Access Journals (Sweden)

    Lirong Yang

    Full Text Available Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt, is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs were identified with 2,107 (65% being 2-fold up-regulated and 1,151 (35% being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.

  16. Fungal communities in wheat grain show significant co-existence patterns among species

    DEFF Research Database (Denmark)

    Nicolaisen, M.; Justesen, A. F.; Knorr, K.

    2014-01-01

    identified as ‘core’ OTUs as they were found in all or almost all samples and accounted for almost 99 % of all sequences. The remaining OTUs were only sporadically found and only in small amounts. Cluster and factor analyses showed patterns of co-existence among the core species. Cluster analysis grouped...... the 21 core OTUs into three clusters: cluster 1 consisting of saprotrophs, cluster 2 consisting mainly of yeasts and saprotrophs and cluster 3 consisting of wheat pathogens. Principal component extraction showed that the Fusarium graminearum group was inversely related to OTUs of clusters 1 and 2....

  17. Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt.

    Science.gov (United States)

    Lee, Soo Chan; Billmyre, R Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C; Cuomo, Christina A; Heitman, Joseph

    2014-07-08

    Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (-) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. Importance: The U.S. FDA reported that yogurt products were contaminated with M

  18. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Soledad R. Ordonez

    2017-10-01

    Full Text Available Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.

  19. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Science.gov (United States)

    Ordonez, Soledad R.; Veldhuizen, Edwin J. A.; van Eijk, Martin; Haagsman, Henk P.

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung. PMID:29163395

  20. Physicochemical Properties of Fungal Detoxified Cassava Mash and ...

    African Journals Online (AJOL)

    The physicochemical properties of fungal detoxified cassava mash and sensory characteristics of wheat-detoxified cassava composite doughnuts were investigated. Fungal isolates from soils collected at cassava processing sites were isolated, quantified and identified. Cassava mash from grated tuber was partially ...

  1. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fungal pathogens of Miconia calvescens (Melastomataceae) from Brazil, with reference to classical biological control.

    Science.gov (United States)

    Seixas, Claudine D S; Barreto, Robert W; Killgore, Eloise

    2007-01-01

    A survey of fungal pathogens of Miconia calvescens was carried out in Brazil aimed at finding potential classical biocontrol agents for management of this invasive alien weed in Hawaii. Coccodiella miconiae, Glomerella cingulata (= Colletotrichum gloeosporioides f. sp. miconiae) and the new species Guignardia miconiae and Korunomyces prostratus were found associated with foliar diseases and are described herein. Two previously undescribed spore stages of Coccodiella miconiae also were obtained allowing a complete description of this species. Pseudocercospora tamonae associated with leaf spots of other species of Miconia also was collected and also was proven to be pathogenic to M. calvescens.

  3. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.

    Science.gov (United States)

    Lu, Shunwen; Edwards, Michael C

    2018-04-01

    The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.

  4. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.

    Science.gov (United States)

    Langwig, Kate E; Frick, Winifred F; Reynolds, Rick; Parise, Katy L; Drees, Kevin P; Hoyt, Joseph R; Cheng, Tina L; Kunz, Thomas H; Foster, Jeffrey T; Kilpatrick, A Marm

    2015-01-22

    Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Human Fungal Pathogens of Mucorales and Entomophthorales.

    Science.gov (United States)

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2014-11-06

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    Directory of Open Access Journals (Sweden)

    Olivier Roux

    Full Text Available In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes, that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth.

  7. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    Science.gov (United States)

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  8. Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation.

    Science.gov (United States)

    Ost, Kyla S; Esher, Shannon K; Leopold Wager, Chrissy M; Walker, Louise; Wagener, Jeanette; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2017-01-31

    Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to

  9. Antifungal activity and fungal metabolism of steroidal glycosides of Easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.

    Science.gov (United States)

    Munafo, John P; Gianfagna, Thomas J

    2011-06-08

    Botrytis cinerea Pers. Fr. is a plant pathogenic fungus and the causal organism of blossom blight of Easter lily (Lilium longiflorum Thunb.). Easter lily is a rich source of steroidal glycosides, compounds which may play a role in the plant-pathogen interaction of Easter lily. Five steroidal glycosides, including two steroidal glycoalkaloids and three furostanol saponins, were isolated from L. longiflorum and evaluated for fungal growth inhibition activity against B. cinerea, using an in vitro plate assay. All of the compounds showed fungal growth inhibition activity; however, the natural acetylation of C-6''' of the terminal glucose in the steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (2), increased antifungal activity by inhibiting the rate of metabolism of the compound by B. cinerea. Acetylation of the glycoalkaloid may be a plant defense response to the evolution of detoxifying mechanisms by the pathogen. The biotransformation of the steroidal glycoalkaloids by B. cinerea led to the isolation and characterization of several fungal metabolites. The fungal metabolites that were generated in the model system were also identified in Easter lily tissues infected with the fungus by LC-MS. In addition, a steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (6), was identified as both a fungal metabolite of the steroidal glycoalkaloids and as a natural product in L. longiflorum for the first time.

  10. INFLUENCE OF CULTIVARS AND SEED THERMAL TREATMENT ON THE DEVELOPMENT OF FUNGAL PATHOGENS IN CARROT AND ONION PLANTS

    Czech Academy of Sciences Publication Activity Database

    Koudela, M.; Novotný, Čeněk

    2016-01-01

    Roč. 64, č. 4 (2016), s. 1181-1189 ISSN 1211-8516 R&D Projects: GA MZe QJ1210165 Institutional support: RVO:61388971 Keywords : carrot * onion * fungal pathogens * plants infection Subject RIV: EE - Microbiology, Virology

  11. Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns.

    Science.gov (United States)

    Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten

    2015-08-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

  12. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India.

    Science.gov (United States)

    Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay

    2015-09-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

  13. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

    Directory of Open Access Journals (Sweden)

    A. Naglot

    2015-09-01

    Full Text Available Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s in the inhibitory activity.

  14. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    Science.gov (United States)

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Science.gov (United States)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  16. Examining the Transcriptional Response in Wheat Fhb1 Near-Isogenic Lines to Fusarium graminearum Infection and Deoxynivalenol Treatment

    Directory of Open Access Journals (Sweden)

    Anna N. Hofstad

    2016-03-01

    Full Text Available head blight (FHB is a disease caused predominantly by the fungal pathogen that affects wheat and other small-grain cereals and can lead to severe yield loss and reduction in grain quality. Trichothecene mycotoxins, such as deoxynivalenol (DON, accumulate during infection and increase pathogen virulence and decrease grain quality. The locus on wheat chromosome 3BS confers Type II resistance to FHB and resistance to the spread of infection on the spike and has been associated with resistance to DON accumulation. To gain a better genetic understanding of the functional role of and resistance or susceptibility to FHB, we examined DON and ergosterol accumulation, FHB resistance, and the whole-genome transcriptomic response using RNA-seq in a near-isogenic line (NIL pair carrying the resistant and susceptible alleles for during infection and DON treatment. Our results provide a gene expression atlas for the resistant and susceptible wheat– interaction. The DON concentration and transcriptomic results show that the rachis is a key location for conferring Type II resistance. In addition, the wheat transcriptome analysis revealed a set of -responsive genes that may play a role in resistance and a set of DON-responsive genes that may play a role in trichothecene resistance. Transcriptomic results from the pathogen show that the genome responds differently to the host level of resistance. The results of this study extend our understanding of host and pathogen responses in the wheat– interaction.

  17. Potential of fungal antagonists for biocontrol of toxigenic Fusarium spp. in wheat and maize through competition in crop debris

    NARCIS (Netherlands)

    Luongo, L.; Galli, M.; Corazza, L.; Meekes, E.T.M.; Haas, de B.H.; Lombaers-van der Plas, C.H.; Köhl, J.

    2005-01-01

    Pathogenic Fusarium spp. cause head blight in wheat or ear rot in maize leading to yield losses and also a reduction in quality due to mycotoxin contamination of the grain. Infected crop residues are the main inoculum source for epidemics. Saprophytic fungi, obtained from cereal tissues or necrotic

  18. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    NARCIS (Netherlands)

    Jonge, de R.; Esse, van H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Keykha Saber, M.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V.; Thomma, B.

    2012-01-01

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and

  19. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif

    Directory of Open Access Journals (Sweden)

    Emmersen Jeppe

    2010-05-01

    Full Text Available Abstract Background Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. Results In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented ~3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. Conclusion In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.

  20. New insights into the in vitro development and virulence of Culicinomyces spp. as fungal pathogens of Aedes aegypti

    Science.gov (United States)

    Culicinomyces spp. (Hypocreales: Cordycipitaceae) are facultative fungal pathogens affecting the larval stages from a range of mosquito species and are especially notable in their ability to infect hosts through the digestive tract after conidial ingestion. While Culicinomyces spp. were studied main...

  1. Insight into tradeoff between wood decay and parasitism from the genome of a fungal forest pathogen

    Science.gov (United States)

    Ake Olson; Andrea Aerts; Fred Asiegbu; Lassaad Belbahri; Ourdia Bouzid; Anders Broberg; Bjorn Canback; Pedro M. Coutinho; Dan Cullen; Kerstin Dalman; Giuliana Deflorio; Linda T.A. van Diepen; Christophe Dunand; Sebastien Duplessis; Mikael Durling; Paolo Gonthier; Jane Grimwood; Carl Gunnar Fossdal; David Hansson; Bernard Henrissat; Ari Hietala; Kajsa Himmelsrand; Dirk Hoffmeister; Nils Hogberg; Timothy Y. James; Magnus Karlsson; Annegret Kohler; Ursula Kues; Yong-Hwan Lee; Yao-Cheng Lin; Marten Lind; Erika Lindquist; Vincent Lombard; Susan Lucas; Karl Lunden; Emmanuelle Morin; Claude Murat; Jongsun Park; Tommaso Raffaello; Pierre Rouze; Asaf Salamov; Jeremy Schmutz; Halvor Solheim; Jerry Stahlberg; Heriberto Velez; Ronald P. deVries; Ad Wiebenga; Steve Woodward; Igor Yakovlev; Matteo Garbelotto; Francis Martin; Igor V. Grigoriev; Jan. Stenlid

    2012-01-01

    • Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. • We report the annotated genome sequence and transcript...

  2. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Science.gov (United States)

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  3. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Directory of Open Access Journals (Sweden)

    Jullie M Sarmiento-Ramírez

    Full Text Available Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  4. Response change in winter-wheat types to the pathogen complex under chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Budanov, V.E.; Lysenkov, V.I.; Shcherbakov, V.K.

    1975-01-01

    Disease reactions in plants that have been gamma-irradiated are discussed. Damage to different types of soft winter wheat, due to pathogenic fungi, is evaluated. The Mironovski Jubilee variety showed high resistance to the leaf form of powdery mildew, along with the opposite phenomenon of a high susceptibility to the stem form of this disease. Chronic gamma irradiation of plants of this variety increased the susceptibility to this disease

  5. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Science.gov (United States)

    Wu, Jirong; Yu, Mingzheng; Xu, Jianhong; Du, Juan; Ji, Fang; Dong, Fei; Li, Xinhai; Shi, Jianrong

    2014-01-01

    The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is

  6. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Jirong Wu

    Full Text Available The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage. We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages. Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the

  7. Fungal trunk pathogens associated with wood decay of pistachio trees in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, H.; Sarcheshmehpour, M.; Mafi, E.

    2015-07-01

    Over the growing seasons of 2011–2013, various pistachio (Pistacia vera L.) cv. Fandoghi, and wild pistachio (P. atlantica Desf. subsp. mutica) trees were inspected in Iran to determine the aetiology of trunk diseases with specific reference to species of Phaeoacremonium and Botryosphaeriaceae spp. Samples were collected from branches of trees exhibiting yellowing, defoliation, canker and dieback, as well as wood discoloration in cross sections. Fungal trunk pathogens were identified using morphological and cultural characteristics as well as comparisons of DNA sequence data of the ITS and TEF-1α (for Botryosphaeriaceae species) and β-tubulin gene (for Phaeoacremonium species) regions. Phaeoacremonium parasiticum was the dominant species followed by Phaeoacremonium aleophilum, Botryosphaeria dothidea, Neofusicoccum parvum, Phaeoacremonium cinereum, Phaeoacremonium viticola and Dothiorella viticola. Pathogenicity tests were undertaken to determine the role of these species on pistachio under field conditions. Neofusicoccum parvum and Pm. aleophilum caused the longest and smallest lesions respectively. This study represents the first report on the occurrence and pathogenicity of Phaeoacremonium species on P. vera cv. Fandoghi. This also represents the first report of Pleurostomophora sp. on pistachio and Pm. parasiticum and D. viticola on wild pistachio. (Author)

  8. PITHOMYCES CHARTARUM AS A PATHOGEN OF WHEAT

    NARCIS (Netherlands)

    Tóth, B; Csösz, M; Dijksterhuis, J; Frisvad, J C; Varga, J

    2007-01-01

    During routine surveys of wheat-growing (Triticum aestivum L.) areas of Hungary, symptomatic leaf samples were collected from different wheat cultivars. Macro- and micromorphological examinations of singlespore isolates showed some of them to belong to Pithomyces chartarum (teleomorph:

  9. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat

    NARCIS (Netherlands)

    Shetty, N.P.; Mehrabi, R.; Lütken, H.; Haldrup, A.; Kema, G.H.J.

    2007-01-01

    Hydrogen peroxide (H2O2) is reported to inhibit biotrophic but benefit necrotrophic pathogens. Infection by necrotrophs can result in a massive accumulation of H2O2 in hosts. Little is known of how pathogens with both growth types are affected (hemibiotrophs). The hemibiotroph, Septoria tritici,

  10. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  11. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes

    Science.gov (United States)

    Franklinos, Lydia H. V.; Lorch, Jeffrey M.; Bohuski, Elizabeth A.; Rodriguez-Ramos Fernandez, Julia; Wright, Owen; Fitzpatrick, Liam; Petrovan, Silviu; Durrant, Chris; Linton, Chris; Baláž, Vojtech; Cunningham, Andrew A; Lawson, Becki

    2017-01-01

    Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010–2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola. Further work is required to understand the individual and population level impact of this pathogen in Europe.

  12. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Directory of Open Access Journals (Sweden)

    Cornman R

    2012-06-01

    Full Text Available Abstract Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.

  13. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Science.gov (United States)

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  14. A plant pathology perspective of fungal genome sequencing.

    Science.gov (United States)

    Aylward, Janneke; Steenkamp, Emma T; Dreyer, Léanne L; Roets, Francois; Wingfield, Brenda D; Wingfield, Michael J

    2017-06-01

    The majority of plant pathogens are fungi and many of these adversely affect food security. This mini-review aims to provide an analysis of the plant pathogenic fungi for which genome sequences are publically available, to assess their general genome characteristics, and to consider how genomics has impacted plant pathology. A list of sequenced fungal species was assembled, the taxonomy of all species verified, and the potential reason for sequencing each of the species considered. The genomes of 1090 fungal species are currently (October 2016) in the public domain and this number is rapidly rising. Pathogenic species comprised the largest category (35.5 %) and, amongst these, plant pathogens are predominant. Of the 191 plant pathogenic fungal species with available genomes, 61.3 % cause diseases on food crops, more than half of which are staple crops. The genomes of plant pathogens are slightly larger than those of other fungal species sequenced to date and they contain fewer coding sequences in relation to their genome size. Both of these factors can be attributed to the expansion of repeat elements. Sequenced genomes of plant pathogens provide blueprints from which potential virulence factors were identified and from which genes associated with different pathogenic strategies could be predicted. Genome sequences have also made it possible to evaluate adaptability of pathogen genomes and genomic regions that experience selection pressures. Some genomic patterns, however, remain poorly understood and plant pathogen genomes alone are not sufficient to unravel complex pathogen-host interactions. Genomes, therefore, cannot replace experimental studies that can be complex and tedious. Ultimately, the most promising application lies in using fungal plant pathogen genomics to inform disease management and risk assessment strategies. This will ultimately minimize the risks of future disease outbreaks and assist in preparation for emerging pathogen outbreaks.

  15. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  16. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Huang Lili

    2009-06-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2% displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40% had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%, signal transduction (5.4%, disease/defence (5.9% and metabolism (5% of the sequenced TDFs. BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5% genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the

  17. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yangrae; Ohm, Robin A. [US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA; Grigoriev, Igor V. [US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA; Srivastava, Akhil [Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St John 317, Honolulu, HI, 96822, USA

    2013-05-24

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2 gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.

  18. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?

    Directory of Open Access Journals (Sweden)

    Choong-Min eRyu

    2016-02-01

    Full Text Available Biological control (biocontrol agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR. Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 hours post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen

  20. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    Science.gov (United States)

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  1. Induction of MAP Kinase Homologues during Growth and Morphogenetic Development of Karnal Bunt (Tilletia indica) under the Influence of Host Factor(s) from Wheat Spikes

    Science.gov (United States)

    Gupta, Atul K.; Seneviratne, J. M.; Joshi, G. K.; Kumar, Anil

    2012-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes in Tilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development under in vitro culture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development of T. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity. PMID:22547988

  2. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    Science.gov (United States)

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. Copyright © 2015 by the Genetics Society of America.

  3. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  4. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  5. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    Science.gov (United States)

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  6. Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Sajad Ali

    2017-10-01

    Full Text Available Brassica juncea (Indian mustard is a commercially important oil seed crop, which is highly affected by many biotic stresses. Among them, Alternaria leaf blight and powdery mildew are the most devastating diseases leading to huge yield losses in B. juncea around the world. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the B. juncea disease resistance against these pathogens. NPR1 (non-expressor of pathogen-related gene 1 is a bonafide receptor of salicylic acid (SA which modulates multiple immune responses in plants especially activation of induced and systemic acquired resistance (SAR. Here, we report the isolation and characterization of new NPR1 homolog (BjNPR1 from B. juncea. The phylogenetic tree constructed based on the deduced sequence of BjNPR1 with homologs from other species revealed that BjNPR1 grouped together with other known NPR1 proteins of Cruciferae family, and was nearest to B. napus. Furthermore, expression analysis showed that BjNPR1 was upregulated after SA treatment and fungal infection but not by jasmonic acid or abscisic acid. To understand the defensive role of this gene, we generated B. juncea transgenic lines overexpressing BjNPR1, and further confirmed by PCR and Southern blotting. The transgenic lines showed no phenotypic abnormalities, and constitutive expression of BjNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, BjNPR1 transgenic lines showed enhanced resistance to Alternaria brassicae and Erysiphe cruciferarum as there was delay in symptoms and reduced disease severity than non-transgenic plants. In addition, the rate of disease spreading to uninfected or distal parts was also delayed in transgenic plants thus suggesting the activation of SAR. Altogether, the present study suggests that BjNPR1 is involved in broad spectrum of disease resistance against fungal pathogens.

  7. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Barhoom Sima

    2008-02-01

    Full Text Available Abstract Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable

  8. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  9. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed

    Science.gov (United States)

    Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander

    2014-01-01

    Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here “Biotech Feed” was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was also observed to be significantly enriched with essential amino acids and fungal protein by fungal fermentation, eventually increasing its nutritional value. The Biotech Feed upon in vitro analysis showed potential to replace 50% grain from concentrate mixture. Further, the calves fed on Biotech Feed based diets exhibited significantly higher (pintake (DMI: 3.74 Kg/d), dry matter digestibility (DMD: 57.82%), total digestible nutrients (TDN: 54.76%) and comparatively gained 50 g more daily body weight. PMID:25269679

  10. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    Science.gov (United States)

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  11. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  12. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  13. The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment

    Directory of Open Access Journals (Sweden)

    Sandra Granzow

    2017-05-01

    Full Text Available Many bacteria and fungi in the plant rhizosphere and endosphere are beneficial to plant nutrient acquisition, health, and growth. Although playing essential roles in ecosystem functioning, our knowledge about the effects of multiple cropping regimes on the plant microbiome and their interactions is still limited. Here, we designed a pot experiment simulating different cropping regimes. For this purpose, wheat and faba bean plants were grown under controlled greenhouse conditions in monocultures and in two intercropping regimes: row and mixed intercropping. Bacterial and fungal communities in bulk and rhizosphere soils as well as in the roots and aerial plant parts were analyzed using large-scale metabarcoding. We detected differences in microbial richness and diversity between the cropping regimes. Generally, observed effects were attributed to differences between mixed and row intercropping or mixed intercropping and monoculture. Bacterial and fungal diversity were significantly higher in bulk soil samples of wheat and faba bean grown in mixed compared to row intercropping. Moreover, microbial communities varied between crop species and plant compartments resulting in different responses of these communities toward cropping regimes. Leaf endophytes were not affected by cropping regime but bacterial and fungal community structures in bulk and rhizosphere soil as well as fungal community structures in roots. We further recorded highly complex changes in microbial interactions. The number of negative inter-domain correlations between fungi and bacteria decreased in bulk and rhizosphere soil in intercropping regimes compared to monocultures due to beneficial effects. In addition, we observed plant species-dependent differences indicating that intra- and interspecific competition between plants had different effects on the plant species and thus on their associated microbial communities. To our knowledge, this is the first study investigating

  14. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  15. Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Qing-Song Yuan

    2018-04-01

    Full Text Available Contamination by fungal and bacterial species and their metabolites can affect grain quality and health of wheat consumers. In this study, sequence analyses of conserved DNA regions of fungi and bacteria combined with determination of trichothecenes and aflatoxins revealed the microbiome and mycotoxins of wheat from different silo positions (top, middle, and bottom and storage times (3, 6, 9, and 12 months. The fungal community in wheat on the first day of storage (T0 included 105 classified species (81 genera and 41 unclassified species. Four species had over 10% of the relative abundance: Alternaria alternata (12%, Filobasidium floriforme (27%, Fusarium graminearum (12%, and Wallemia sebi (12%. Fungal diversity and relative abundance of Fusarium in wheat from top silo positions were significantly lower than at other silo positions during storage. Nivalenol and deoxynivalenol in wheat were 13–34% higher in all positions at 3 months compared to T0, and mycotoxins in wheat from middle and bottom positions at 6 to 12 months were 24–57% higher than at T0. The relative abundance of toxigenic Aspergillus and aflatoxins were low at T0 and during storage. This study provides information on implementation and design of fungus and mycotoxin management strategies as well as prediction models.

  16. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor.

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    Full Text Available Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin

  17. Effect of Fungal Colonization of Wheat Grains with Fusarium spp. on Food Choice, Weight Gain and Mortality of Meal Beetle Larvae (Tenebrio molitor)

    Science.gov (United States)

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  18. Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor).

    Science.gov (United States)

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F

  19. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  20. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    Science.gov (United States)

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  1. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  2. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight

    Directory of Open Access Journals (Sweden)

    Lidiane Viera MACHADO

    Full Text Available Abstract Fusarium head blight is an important disease occurring in wheat, caused mainly by the fungus Fusarium graminearum. In addition to direct damage to crops, reduced quality and yield losses, the infected grains can accumulate mycotoxins (toxic metabolites originating from prior fungal growth, especially deoxynivalenol (DON. Wheat crops harvested in 2014/2015 in southern Brazil were affected by high levels of Fusarium head blight. In this context, the aim of this study was evaluate the mycotoxicological quality of Brazilian wheat grains and wheat products (wheat flour and wheat bran for DON. DON contamination was evaluated in 1,504 wheat and wheat product samples produced in Brazil during 2014. It was determined by high performance liquid chromatograph fitted to a mass spectrometer (LC-MS / MS. The results showed that 1,000 (66.5% out of the total samples tested were positive for DON. The mean level of sample contamination was 1047 µg.kg-1, but only 242 samples (16.1% had contamination levels above the maximum permissible levels (MPL - the maximum content allowed by current Brazilian regulation. As of 2017, MPL will be stricter. Thus, research should be conducted on DON contamination of wheat and wheat products, since wheat is a raw material widely used in the food industry, and DON can cause serious harm to public health.

  3. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  4. Global food and fibre security threatened by current inefficiencies in fungal identification

    Science.gov (United States)

    2016-01-01

    Fungal pathogens severely impact global food and fibre crop security. Fungal species that cause plant diseases have mostly been recognized based on their morphology. In general, morphological descriptions remain disconnected from crucially important knowledge such as mating types, host specificity, life cycle stages and population structures. The majority of current fungal species descriptions lack even the most basic genetic data that could address at least some of these issues. Such information is essential for accurate fungal identifications, to link critical metadata and to understand the real and potential impact of fungal pathogens on production and natural ecosystems. Because international trade in plant products and introduction of pathogens to new areas is likely to continue, the manner in which fungal pathogens are identified should urgently be reconsidered. The technologies that would provide appropriate information for biosecurity and quarantine already exist, yet the scientific community and the regulatory authorities are slow to embrace them. International agreements are urgently needed to enforce new guidelines for describing plant pathogenic fungi (including key DNA information), to ensure availability of relevant data and to modernize the phytosanitary systems that must deal with the risks relating to trade-associated plant pathogens. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080994

  5. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    Science.gov (United States)

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  6. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity.

    Science.gov (United States)

    Yue, Jieyu; Sun, Hong; Zhang, Wei; Pei, Dan; He, Yang; Wang, Huazhong

    2015-04-01

    Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are

  7. Identification of a New Fungal Pathogen Causing White Villous Disease on the Fruiting Body of the Culinary-Medicinal Mushroom Auricularia auricula-judae (Agaricomycetes) in China.

    Science.gov (United States)

    Zhang, Jie-Chi; Kong, Xiang-Hui; Zhang, Pi-Qi; Liu, Jia-Ning; Ma, Yin-Peng; Dai, Xiao-Dong; Han, Zeng-Hua; Ma, Qing-Fang; Wang, Xiao-Yong; Yu, Li-Ping

    2017-01-01

    Auricularia auricula-judae is an edible and medicinal fungus ranking fourth in production among the edible fungi cultivated worldwide. White villous disease is rampant in Northeast China; it infects the fruiting bodies of A. auricula-judae by forming a white mycelial layer on its ventral side. The disease not only causes an unacceptable morphological appearance and a poor-quality product, but it also significantly reduces the yield. In this study, based on fungal morphology, ribosomal DNA internal transcribed spacer sequences, identification of species-specific primers, and the pathogenicity of the mycelia and spores, 2 fungal pathogens were isolated and identified as Fusarium equiseti and F. sporotrichioides.

  8. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    Science.gov (United States)

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  9. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    Science.gov (United States)

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. New spring wheat varieties ‘Panianka’ and ‘Diana’

    Directory of Open Access Journals (Sweden)

    О. А. Демидов

    2016-12-01

    Full Text Available Purpose. To create new competitive spring wheat varieties. Methods. Field study, laboratory test. Results. Based on the competitive variety trial, bread spring wheat line ‘Lutescens 07-26’ has been selected due to high values of such traits as resistance to fungal diseases, grain qua­lity(protein content accounted for 15.0%, 1000 kernel weight (44.6 g productivity (3.92 t/ha and lodging resistance (9 points. In 2011, it was submitted to the State variety testing as ‘Panianka’ variety. Durum spring wheat line ‘Leukurum 08-11’ was characterized by a number of positive traits: quite a high productivity (3.05 t/ha, short stem (79 cm, resistance to fungal diseases and lodging(9 points, and in 2011 it was submitted to the State variety testing as ‘Diana’ variety. According to the results of the State variety testing in 2012–2014, spring wheat varieties ‘Panianka’ and ‘Diana’ in 2015 were put on the State Register of plant varieties suitable for dissemination in Ukraine. Conclusions. For farms in Forest-Steppe and Polissia zones of Ukraine, bread and durum spring wheat varieties were bred by V. M.Remeslo Myronivka Institute of Wheat of NAAS of Ukraine that demonstrated rather high potential of productivity and adaptability to stress conditions. This goes to prove that cultivation of domestic spring wheat varieties will promote formation of high and quality grain yields.

  11. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline.

    Science.gov (United States)

    Piovia-Scott, Jonah; Pope, Karen; Worth, S Joy; Rosenblum, Erica Bree; Poorten, Thomas; Refsnider, Jeanine; Rollins-Smith, Louise A; Reinert, Laura K; Wells, Heather L; Rejmanek, Dan; Lawler, Sharon; Foley, Janet

    2015-07-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.

  12. Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates

    Directory of Open Access Journals (Sweden)

    Marco eGiovannetti

    2015-06-01

    Full Text Available The objective of this study is to evaluate Lotus japonicus transcriptomic responses to arbuscular mycorrhizal (AM germinated spore exudates (GSE, responsible for activating nuclear Ca2+ spiking in plant root epidermis. A microarray experiment was performed comparing gene expression in Lotus rootlets treated with GSE or water after 24 h and 48 h. The transcriptional pattern of selected genes that resulted to be regulated in the array was further evaluated upon different treatments and timings. In particular, Lotus rootlets were treated with: GSE from the pathogenic fungus Colletotrichum trifolii; short chitin oligomers (acknowledged AM fungal signals and long chitin oligomers (as activators of pathogenic responses. This experimental set up has revealed that AM GSE generates a strong transcriptomic response in Lotus roots with an extensive defense-related response after 24 hours and a subsequent downregulation after 48 hours. A similar subset of defense-related genes resulted to be upregulated also upon treatment with C. trifolii GSE, although with an opposite trend. Surprisingly, long chitin oligomers activated both defense-like and symbiosis-related genes. Among the genes regulated in the microarray, promoter-GUS assay showed that LjMATE1 activates in epidermal cells and root hairs.

  13. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  14. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    Science.gov (United States)

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  15. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    Directory of Open Access Journals (Sweden)

    Jim Nygren

    Full Text Available We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp. and domesticated wheat (Triticum spp. and Wheat dwarf virus (WDV. The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i continuous reduction in growth over time, ii weak response at an early stage of plant development but a much stronger response at a later stage, and iii remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in

  16. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici.

    Science.gov (United States)

    Fones, Helen N; Eyles, Chris J; Kay, William; Cowper, Josh; Gurr, Sarah J

    2017-09-01

    Zymoseptoria tritici causes Septoria leaf blotch of wheat. The prevailing paradigm of the Z. tritici-wheat interaction assumes fungal ingress through stomata within 24-48h, followed by days of symptomless infection. This is extrapolated from studies testing the mode of fungal ingress under optimal infection conditions. Here, we explicitly assess the timing of entry, using GFP-tagged Z. tritici. We show that early entry is comparatively rare, and extended epiphytic growth possible. We test the hypotheses that our data diverge from earlier studies due to: i. random ingress of Z. tritici into the leaf, with some early entry events; ii. previous reliance upon fungal stains, combined with poor attachment of Z. tritici to the leaf, leading to increased likelihood of observing internal versus external growth, compared to using GFP; iii. use of exceptionally high humidity to promote entry in previous studies. We combine computer simulation of leaf-surface growth with thousands of in planta observations to demonstrate that while spores germinate rapidly on the leaf, over 95% of fungi remain epiphytic, growing randomly over the leaf for ten days or more. We show that epiphytic fungi are easily detached from leaves by rinsing and that humidity promotes epiphytic growth, increasing infection rates. Together, these results explain why epiphytic growth has been dismissed and early ingress assumed. The prolonged epiphytic phase should inform studies of pathogenicity and virulence mutants, disease control strategies, and interpretation of the observed low in planta growth, metabolic quiescence and evasion of plant defences by Zymoseptoria during symptomless infection. Copyright © 2017. Published by Elsevier Inc.

  17. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.

    Science.gov (United States)

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-11-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Data set of Aspergillus flavus induced alterations in tear proteome: Understanding the pathogen-induced host response to fungal infection

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi Kandhavelu

    2016-12-01

    Full Text Available Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled “Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]” (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.

  19. Survey of fungal counts and natural occurrence of aflatoxins in Malaysian starch-based foods.

    Science.gov (United States)

    Abdullah, N; Nawawi, A; Othman, I

    1998-01-01

    In a survey of starch-based foods sampled from retail outlets in Malaysia, fungal colonies were mostly detected in wheat flour (100%), followed by rice flour (74%), glutinous rice grains (72%), ordinary rice grains (60%), glutinous rice flour (48%) and corn flour (26%). All positive samples of ordinary rice and glutinous rice grains had total fungal counts below 10(3) cfu/g sample, while among the positive rice flour, glutinous rice flour and corn flour samples, the highest total fungal count was more than 10(3) but less than 10(4) cfu/g sample respectively. However, in wheat flour samples total fungal count ranged from 10(2) cfu/g sample to slightly more than 10(4) cfu/g sample. Aflatoxigenic colonies were mostly detected in wheat flour (20%), followed by ordinary rice grains (4%), glutinous rice grains (4%) and glutinous rice flour (2%). No aflatoxigenic colonies were isolated from rice flour and corn flour samples. Screening of aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 using reversed-phase HPLC were carried out on 84 samples of ordinary rice grains and 83 samples of wheat flour. Two point four percent (2.4%) of ordinary rice grains were positive for aflatoxin G1 and 3.6% were positive for aflatoxin G2. All the positive samples were collected from private homes at concentrations ranging from 3.69-77.50 micrograms/kg. One point two percent (1.2%) of wheat flour samples were positive for aflatoxin B1 at a concentration of 25.62 micrograms/kg, 4.8% were positive for aflatoxin B2 at concentrations ranging from 11.25-252.50 micrograms/kg, 3.6% were positive for aflatoxin G1 at concentrations ranging from 25.00-289.38 micrograms/kg and 13.25% were positive for aflatoxin G2 at concentrations ranging from 16.25-436.25 micrograms/kg. Similarly, positive wheat flour samples were mostly collected from private homes.

  20. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    International Nuclear Information System (INIS)

    Hasan, Nor’Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-01-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management

  1. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    Science.gov (United States)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  2. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Joelle Amselem

    2011-08-01

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these

  3. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    Science.gov (United States)

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  4. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  5. Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria

    Directory of Open Access Journals (Sweden)

    Carly R. Muletz-Wolz

    2017-08-01

    Full Text Available Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C. We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423. We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (μ = 46–53%, but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (μ = 5–71%. Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (μ = 5–100%. Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (μ = 57–100%. All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together

  6. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product.

    Science.gov (United States)

    Hafidh, Rand R; Abdulamir, Ahmed S; Vern, Law Se; Abu Bakar, Fatimah; Abas, Faridah; Jahanshiri, Fatemeh; Sekawi, Zamberi

    2011-01-01

    The continuous escalation of resistant bacteria against a wide range of antibiotics necessitates discovering novel unconventional sources of antibiotics. B. oleracea L (red cabbage) is health-promoting food with proven anticancer and anti-inflammatory activities. However, it has not been researched adequately for its antimicrobial activity on potential resistant pathogens. The methanol crude extract of B. oleracea L. was investigated for a possible anti-microbial activity. The screening method was conducted using disc diffusion assay against 22 pathogenic bacteria and fungi. It was followed by evaluation of the minimum inhibitory concentration (MIC). Moreover, the antibacterial and the antifungal activities were confirmed using the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC), respectively. Remarkable, antibacterial activity was evident particularly against highly infectious microorganisms such as Methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Salmonella enterica serovar Typhimurium as well as against human fungal pathogens, Trichophyton rubrum and Aspergillus terreus. Red cabbage is a rich source of phenolic compounds, anthocyanins being the most abundant class, which might explain its potent antimicrobial action. This extract is potentially novel for future antimicrobials, inexpensive, and readily available at a large scale for pharmaceutical companies for further investigation and processing.

  7. Extracellular peptidases of the cereal pathogen Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Rohan George Thomas Lowe

    2015-11-01

    Full Text Available The plant pathogenic fungus Fusarium graminearum (Fgr creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.

  8. Oyster mushroom cultivation with rice and wheat straw.

    Science.gov (United States)

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  9. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Ake; Aerts, Andrea; Asiegbu, Fred; Belbahri, Lassaad; Bouzid, Ourdia; Broberg, Anders; Canback, Bjorn; Coutinho, Pedro M.; Cullen, Dan; Dalman, Kerstin; Deflorio, Giuliana; van Diepen, Linda T. A.; Dunand, Christophe; Duplessis, Sebastien; Durling, Mikael; Gonthier, Paolo; Grimwood, Jane; Fossdal, Carl Gunnar; Hansson, David; Henrissat, Bernard; Hietala, Ari; Himmelstrand, Kajsa; Hoffmeister, Dirk; Hogberg, Nils; James, Timothy Y.; Karlsson, Magnus; Kohler, Annegret; Lucas, Susan; Lunden, Karl; Morin, Emmanuelle; Murat, Claude; Park, Jongsun; Raffaello, Tommaso; Rouze, Pierre; Salamov, Asaf; Schmutz, Jeremy; Solheim, Halvor; Stahlberg, Jerry; Velez, Heriberto; de Vries, Ronald P.; Wiebenga, Ad; Woodward, Steve; Yakovlev, Igor; Garbelotto, Matteo; Martin, Francis; Grigoriev, Igor V.; Stenlid, Jan

    2012-01-01

    Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

  10. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  11. Compatibility study of Trichoderma harzianum Rifai and rice fungicides, and effects on three fungal plant pathogens

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Rodríguez Saldaña

    2017-04-01

    Full Text Available This research took place at the Provincial Plant Sanitation Laboratory, in Camaguey, Cuba, between September 2013 and September 2015. The in vitro compatibility and antagonistic capacity of Trichoderma harzianum Rifai (strain A-34 on rice pathogens (Bipolaris oryzae Breda de Haan, Sarocladium oryzae (Sawada w., Gams and D. Hawksworth and Magnaporthe grisea (Hebert Barr, was determined against pesticides used on rice. Assessment using traditional methods of microbiological isolation of mycelial growth, sporulation and conidial germination of the antagonist, to determine if the action mechanisms (antibiosis, competence, parasitism against fungal pathogens, was made between 24 and 216 hours of application. A bifactorial design in dual culture was used for statistical analysis, along with scales for determination of microbial antagonistic capacity. Active ingredients tebuconazol + procloraz, trifloxistrobin+ ciproconazole, and epoxiconazole + kresoxim-methyl, affected mycelial growth of the antagonist. Moreover, the antagonist against active ingredients carbendazim, copper oxychloride, azoxystrobin and tebuconazo + triadimenol showed mycelial growth, sporulation and pathogen interaction, affecting their growth by means of coiling, penetration, granulation, and cell lysis, between 96 and 216 hours.

  12. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  13. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Directory of Open Access Journals (Sweden)

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  14. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    Science.gov (United States)

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  15. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil.

    Science.gov (United States)

    Zhang, Kaoping; Adams, Jonathan M; Shi, Yu; Yang, Teng; Sun, Ruibo; He, Dan; Ni, Yingying; Chu, Haiyan

    2017-09-01

    Rhizospheric fungi play major roles in both natural and agricultural ecosystems. However, little is known about the determinants of their diversity and biogeographic patterns. Here, we compared fungal communities in rhizosphere and bulk soils of wheat fields in the North China Plain. The rhizosphere had a lower fungal diversity (observed OTUs and Chao1) than bulk soil, and a distinct fungal community structure in rhizosphere compared with bulk soil. The relative importance of environmental factors and geographic distance for fungal distribution differed between rhizosphere and bulk soil. Environmental factors were the primary cause of variations in total fungal community and major fungal phyla in bulk soil. By contrast, fungal communities in soils loosely attached to roots were predictable from both environmental factors and influences of geographic distance. Communities in soils tightly attached to roots were mainly determined by geographic distance. Our results suggest that both contemporary environment processes (present-day abiotic and biotic environment characters) and historical processes (spatial isolation, dispersal limitation occurred in the past) dominate variations of fungal communities in wheat fields, but their relative importance of all these processes depends on the proximity of fungal community to the plant roots. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Genome-wide Association Analysis of Powdery Mildew Resistance in U.S. Winter Wheat

    Science.gov (United States)

    Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is a major fungal disease of wheat worldwide. It can cause considerable yield losses when epidemics occur. Use of genetic resistance is the most effective approach to control the disease. To determine the genomic regions responsi...

  17. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  18. A comparative genome analysis of Cercospora sojina with other members of the pathogen genus Mycosphaerella on different plant hosts

    Directory of Open Access Journals (Sweden)

    Fanchang Zeng

    2017-09-01

    Full Text Available Fungi are the causal agents of many of the world's most serious plant diseases causing disastrous consequences for large-scale agricultural production. Pathogenicity genomic basis is complex in fungi as multicellular eukaryotic pathogens. Here, we report the genome sequence of C. sojina, and comparative genome analysis with plant pathogen members of the genus Mycosphaerella (Zymoseptoria. tritici (synonyms M. graminicola, M. pini, M. populorum and M. fijiensis - pathogens of wheat, pine, poplar and banana, respectively. Synteny or collinearity was limited between genomes of major Mycosphaerella pathogens. Comparative analysis with these related pathogen genomes indicated distinct genome-wide repeat organization features. It suggests repetitive elements might be responsible for considerable evolutionary genomic changes. These results reveal the background of genomic differences and similarities between Dothideomycete species. Wide diversity as well as conservation on genome features forms the potential genomic basis of the pathogen specialization, such as pathogenicity to woody vs. herbaceous hosts. Through comparative genome analysis among five Dothideomycete species, our results have shed light on the genome features of these related fungi species. It provides insight for understanding the genomic basis of fungal pathogenicity and disease resistance in the crop hosts.

  19. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum.

    Directory of Open Access Journals (Sweden)

    Stefan Czemmel

    Full Text Available Some pathogenic species of the Botryosphaeriaceae have a latent phase, colonizing woody tissues while perennial hosts show no apparent symptoms until conditions for disease development become favorable. Detection of these pathogens is often limited to the later pathogenic phase. The latent phase is poorly characterized, despite the need for non-destructive detection tools and effective quarantine strategies, which would benefit from identification of host-based markers in leaves. Neofusicoccum parvum infects the wood of grapevines and other horticultural crops, killing the fruit-bearing shoots. We used light microscopy and high-resolution computed tomography (HRCT to examine the spatio-temporal relationship between pathogen colonization and anatomical changes in stem sections. To identify differentially-expressed grape genes, leaves from inoculated and non-inoculated plants were examined using RNA-Seq. The latent phase occurred between 0 and 1.5 months post-inoculation (MPI, during which time the pathogen did not spread significantly beyond the inoculation site nor were there differences in lesion lengths between inoculated and non-inoculated plants. The pathogenic phase occurred between 1.5 and 2 MPI, when recovery beyond the inoculation site increased and lesion lengths of inoculated plants tripled. By 2 MPI, inoculated plants also had decreased starch content in xylem fibers and rays, and increased levels of gel-occluded xylem vessels, the latter of which HRCT revealed at a higher frequency than microscopy. RNA-Seq and screening of 21 grape expression datasets identified 20 candidate genes that were transcriptionally-activated by infection during the latent phase, and confirmed that the four best candidates (galactinol synthase, abscisic acid-induced wheat plasma membrane polypeptide-19 ortholog, embryonic cell protein 63, BURP domain-containing protein were not affected by a range of common foliar and wood pathogens or abiotic stresses

  20. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens

    Science.gov (United States)

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C.

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  1. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  2. Transcriptomic insight into pathogenicity-associated factors of Conidiobolus obscurus, an obligate aphid-pathogenic fungus belonging to Entomopthoromycota.

    Science.gov (United States)

    Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian

    2018-01-16

    Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen

    Directory of Open Access Journals (Sweden)

    Cheng Yulin

    2012-06-01

    Full Text Available Abstract Background Non-host resistance (NHR confers plant species immunity against the majority of microbial pathogens and represents the most robust and durable form of plant resistance in nature. As one of the main genera of rust fungi with economic and biological importance, Puccinia infects almost all cereals but is unable to cause diseases on legumes. Little is known about the mechanism of this kind of effective defense in legumes to these non-host pathogens. Results In this study, the basis of NHR in broad bean (Vicia faba L. against the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst, was characterized. No visible symptoms were observed on broad bean leaves inoculated with Pst. Microscopic observations showed that successful location of stomata and haustoria formation were significantly reduced in Pst infection of broad bean. Attempted infection induced the formation of papillae, cell wall thickening, production of reactive oxygen species, callose deposition and accumulation of phenolic compounds in plant cell walls. The few Pst haustoria that did form in broad bean cells were encased in reactive oxygen and callose materials and those cells elicited cell death. Furthermore, a total of seven defense-related genes were identified and found to be up-regulated during the Pst infection. Conclusions The results indicate that NHR in broad bean against Pst results from a continuum of layered defenses, including basic incompatibility, structural and chemical strengthening of cell wall, posthaustorial hypersensitive response and induction of several defense-related genes, demonstrating the multi-layered feature of NHR. This work also provides useful information for further determination of resistance mechanisms in broad bean to rust fungi, especially the adapted important broad bean rust pathogen, Uromyces viciae-fabae, because of strong similarity and association between NHR of plants to unadapted pathogens and basal

  4. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  5. Analysis of the genome sequence of Phomopsis longicolla: a fungal pathogen causing Phomopsis seed decay in soybean.

    Science.gov (United States)

    Li, Shuxian; Darwish, Omar; Alkharouf, Nadim W; Musungu, Bryan; Matthews, Benjamin F

    2017-09-05

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understand the mechanism of the disease development, the genome of an isolate, MSPL10-6, from Mississippi, USA was sequenced, de novo assembled, and analyzed. The genome of MSPL 10-6 was estimated to be approximately 62 Mb in size with an overall G + C content of 48.6%. Of 16,597 predicted genes, 9866 genes (59.45%) had significant matches to genes in the NCBI nr database, while 18.01% of them did not link to any gene ontology classification, and 9.64% of genes did not significantly match any known genes. Analysis of the 1221 putative genes that encoded carbohydrate-activated enzymes (CAZys) indicated that 715 genes belong to three classes of CAZy that have a direct role in degrading plant cell walls. A novel fungal ulvan lyase (PL24; EC 4.2.2.-) was identified. Approximately 12.7% of the P. longicolla genome consists of repetitive elements. A total of 510 potentially horizontally transferred genes were identified. They appeared to originate from 22 other fungi, 26 eubacteria and 5 archaebacteria. The genome of the P. longicolla isolate MSPL10-6 represented the first reported genome sequence in the fungal Diaporthe-Phomopsis complex causing soybean diseases. The genome contained a number of Pfams not described previously. Information obtained from this study enhances our knowledge about this seed-borne pathogen and will facilitate further research on the genomic basis and pathogenicity mechanism of P. longicolla and aids in development of improved strategies for efficient management of Phomopsis seed decay in soybean.

  6. Bat white-nose syndrome: An emerging fungal pathogen?

    Science.gov (United States)

    Blehert, D.S.; Hicks, A.C.; Behr, M.; Meteyer, C.U.; Berlowski-Zier, B. M.; Buckles, E.L.; Coleman, J.T.H.; Darling, S.R.; Gargas, A.; Niver, R.; Okoniewski, J.C.; Rudd, R.J.; Stone, W.B.

    2009-01-01

    White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychro-philic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS.

  7. Factors related to the distribution and prevalence of the fungal pathogen Batrachochytrium dentrobatidis in Rana cascadae and other amphibians in the Klamath Mountains

    Science.gov (United States)

    Jonah Piovia-Scott; Karen L. Pope; Sharon P. Lawler; Esther M. Cole; Janet E. Foley

    2011-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis, has been associated with declines and extinctions of montane amphibians worldwide. To gain insight into factors affecting its distribution and prevalence we focus on the amphibian community of the Klamath Mountains in northwest...

  8. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  9. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  10. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    Full Text Available WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1 in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.

  11. Identification of QoI fungicide-resistant genotypes of the wheat pathogen Zymoseptoria tritici in Algeria

    Directory of Open Access Journals (Sweden)

    Nora ALLIOUI

    2016-05-01

    Full Text Available Septoria tritici blotch caused by Zymoseptoria tritici is currently one of the most damaging diseases on bread and durum wheat crops worldwide. A total of 120 monoconidial isolates of this fungus were sampled in 2012 from five distinct geographical locations of Algeria (Guelma, Annaba, Constantine, Skikda and Oran and assessed for resistance to Quinone outside Inhibitors (QoI, a widely used class of fungicides for the control of fungal diseases of wheat. Resistance was screened using a mismatch PCR assay that identified the G143A mitochondrial cytochrome b substitution associated with QoI resistance. The isolates were QoI-sensitive, since all possessed the G143 wild-type allele, except for three isolates (two from Guelma and one from Annaba, which had fungicide resistance and possessed the A143 resistant allele. QoI resistance was confirmed phenotypically using a microplate bioassay in which the resistant isolates displayed high levels of half-maximal inhibitory azoxystrobin concentrations (IC50s when compared to sensitive reference isolates. Genetic fingerprinting of all isolates with microsatellite markers revealed that the three resistant isolates were distinct haplotypes, and were are not genetically distinguishable from the sensitive isolates. This study highlights QoI-resistant genotypes of Z. tritici in Algeria for the first time, and proposes a management strategy for QoI fungicide application to prevent further spread of resistance across the country or to other areas of Northern Africa.

  12. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    Science.gov (United States)

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  13. The defence?associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias

    OpenAIRE

    Powell, Jonathan J.; Fitzgerald, Timothy L.; Stiller, Jiri; Berkman, Paul J.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal

    2016-01-01

    Summary Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA?seq approach to analyse homoeolog?specific global gene expression patterns in wheat during infection by the fungal pa...

  14. Contamination of wheat grain with microscopic fungi and their metabolites in Poland in 2006-2009.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Perkowski, Juliusz

    2014-01-01

    Microscopic fungi are microorganisms commonly found in cereal products. Pathogens of cereals colonising kernels are responsible, among other things, for deterioration of the technological value of grain. However, the greatest threat is posed by mycotoxins produced by toxin-forming strains of these microorganisms. The aim of the present study was to determine the level of contamination with microscopic fungi and mycotoxins from the group of trichothecenes in wheat grain from Poland in a 4-year cycle. In the period 2006-2009, studies were conducted on the content of fungal metabolites (ergosterol [ERG] and type A and B trichothecenes) and the content of microscopic fungi expressed in colony-forming units (CFU) in wheat grain. A total of 129 grain samples were examined. Analysed wheat samples had similar contents of both the investigated fungal metabolites and levels of microscopic fungi. Contents of microscopic fungi were low. Concentration of ERG, on average, was 2.64 mg/kg, while in colony forming units this value ranged from 10(1) CFU/g to over 10(3) CFU/g. The total concentration of type A and B trichothecenes was also low and within the 4 years of the investigation did not exceed 0.062 mg/kg. Concentration of DON did not exceed 1,250 µg/kg, established as safe in grain for human consumption, in any of the tested samples. For the results collected in the years 2006-2009 and presented in this paper, correlations were calculated between the amount of mycoflora and analysed metabolites in 3 possible combinations: 0.7096 for ERG/total toxin concentration, 0.6086 for ERG/log CFU/g, and 0.4016 for the concentration of total toxins/log CFU/g. Highly significant correlations between the content of trichothecenes and the concentration of ERG indicate that the level of this metabolite is closely related to the content of mycotoxins in grain.

  15. Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen Mycosphaerella fijiensis.

    Science.gov (United States)

    Robert, S; Ravigne, V; Zapater, M-F; Abadie, C; Carlier, J

    2012-03-01

    Reconstructing and characterizing introduction routes is a key step towards understanding the ecological and evolutionary factors underlying successful invasions and disease emergence. Here, we aimed to decipher scenarios of introduction and stochastic demographic events associated with the global spread of an emerging disease of bananas caused by the destructive fungal pathogen Mycosphaerella fijiensis. We analysed the worldwide population structure of this fungus using 21 microsatellites and 8 sequence-based markers on 735 individuals from 37 countries. Our analyses designated South-East Asia as the source of the global invasion and supported the location of the centre of origin of M. fijiensis within this area. We confirmed the occurrence of bottlenecks upon introduction into other continents followed by widespread founder events within continents. Furthermore, this study suggested contrasting introduction scenarios of the pathogen between the African and American continents. While potential signatures of admixture resulting from multiple introductions were detected in America, all the African samples examined seem to descend from a single successful founder event. In combination with historical information, our study reveals an original and unprecedented global scenario of invasion for this recently emerging disease caused by a wind-dispersed pathogen. © 2012 Blackwell Publishing Ltd.

  16. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    Science.gov (United States)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.

  17. Molecular cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum, and their relation to increased resistance to two fungal pathogens

    Science.gov (United States)

    Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). Inhibiting by PGIPs directly reduces potential PG activity in specific plant pathogenic fungi, reducing their aggressiveness. Here, we isolated and functionally chara...

  18. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    Science.gov (United States)

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2011-01-01

    Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis.

  20. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  1. Friends or foes? Emerging insights from fungal interactions with plants.

    Science.gov (United States)

    Zeilinger, Susanne; Gupta, Vijai K; Dahms, Tanya E S; Silva, Roberto N; Singh, Harikesh B; Upadhyay, Ram S; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak S, Chandra

    2016-03-01

    Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant-fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant-fungal interactions. © FEMS 2015.

  2. Pharmaceutical Properties of Marine Macroalgal Communities from Gulf of Mannar against Human Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    R. Lavanya

    2012-05-01

    Full Text Available Objective: To evaluate the antifungal activity of seaweed extracts against human fungal pathogens. Methods: Antifungal activity of six species of marine macro algae Codium decorticatum, Caulerpa scalpelliformis, Gracilaria crassa, Acanthophora spicifera, Sargassum wightii and Turbinaria conoides using different solvents acetone, methanol, chloroform, diethyl ether, ethyl acetate, hexane and aqueous were evaluated against Fusarium oxysporum, Fusarium udum, Fusarium solani, Rhizoctonia solani, Alternaria alternat, Botrytis cinerea, Candida albicans, Candida krusei, Aspergillus niger and Aspergillus flavus. Results: From the investigation, the maximum activity was recorded from Phaeophyceae, Chlorophyceae and Rhodophyceae respectively. The maximum inhibition zone was noted in acetone extract of T. conoides against F. udum. Conclusions: From these findings, it is concluded that brown seaweed Turbinaria conoides is more effective than the green and red seaweeds.

  3. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  4. Characterising the role of GABA and its metabolism in the wheat pathogen Stagonospora nodorum.

    Directory of Open Access Journals (Sweden)

    Oliver Mead

    Full Text Available A reverse genetics approach was used to investigate the role of γ-aminobutyric acid metabolism in the wheat pathogenic fungus Stagonospora nodorum. The creation of mutants lacking Sdh1, the gene encoding succinic semialdehyde dehydrogenase, resulted in strains that grew poorly on γ-aminobutyric acid as a nitrogen source. The sdh1 mutants were more susceptible to reactive oxygen stress but were less affected by increased growth temperatures. Pathogenicity assays revealed that the metabolism of γ-aminobutyric acid is required for complete pathogenicity. Growth assays of the wild-type and mutant strains showed that the inclusion of γ-aminobutyric acid as a supplement in minimal media (i.e., not as a nitrogen or carbon source resulted in restricted growth but increased sporulation. The addition of glutamate, the precursor to GABA, had no effect on either growth or sporulation. The γ-aminobutyric acid effect on sporulation was found to be dose dependent and not restricted to Stagonospora nodorum with a similar effect observed in the dothideomycete Botryosphaeria sp. The positive effect on sporulation was assayed using isomers of γ-aminobutyric acid and other metabolites known to influence asexual development in Stagonospora nodorum but no effect was observed. These data demonstrate that γ-aminobutyric acid plays an important role in Stagonospora nodorum in responding to environmental stresses while also having a positive effect on asexual development.

  5. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici.

    Directory of Open Access Journals (Sweden)

    Alexander Yemelin

    Full Text Available A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.

  6. Predicting invasive fungal pathogens using invasive pest assemblages: testing model predictions in a virtual world.

    Directory of Open Access Journals (Sweden)

    Dean R Paini

    Full Text Available Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM, a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96-98% success rate (depending on the virtual world parameters. We also found that regions with fewer species present (i.e. 1-10 species were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84-98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk.

  7. Predicting invasive fungal pathogens using invasive pest assemblages: testing model predictions in a virtual world.

    Science.gov (United States)

    Paini, Dean R; Bianchi, Felix J J A; Northfield, Tobin D; De Barro, Paul J

    2011-01-01

    Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM), a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96-98% success rate (depending on the virtual world parameters). We also found that regions with fewer species present (i.e. 1-10 species) were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84-98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk.

  8. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

  9. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

    Science.gov (United States)

    Douglas, Lois M.; Konopka, James. B.

    2017-01-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  10. Fungal infections in neutropenic cancer patients

    International Nuclear Information System (INIS)

    Parvez, T.

    2003-01-01

    Invasive fungal infections are important causes of morbidity and mortality in cancer patients with prolonged neutropenia following chemotherapy. Recent trends indicate a change toward infections by Aspergillus species, non-albicans species of Candida, and previously uncommon fungal pathogens. These have decreased susceptibility to current antifungal agents. In the last decade there has been much effort to find solutions for these changing trends. This article reviews current approaches to prevention and treatment of opportunistic fungal infections in postchemotherapy neutropenic patients and discussion future antifungal approaches and supportive methods. (author)

  11. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Chenfang Wang

    2011-12-01

    Full Text Available As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were

  12. [Organization and preservation of the collection of pathogenic and fungal symbionts of insects and other arthropods from CEPAVE (CONICET-UNLP), La Plata, Argentina].

    Science.gov (United States)

    Gutierrez, Alejandra Concepción; Tornesello-Galván, Julieta; Manfrino, Romina Guadalupe; Hipperdinger, Marcela; Falvo, Marianel; D'Alessandro, Celeste; López Lastra, Claudia Cristina

    The collection of fungal pathogens and symbionts of insects and other arthropods of the Centro de Estudios Parasitológicos y de Vectores, La Plata, Argentina, is unique because it preserves in vivo and in vitro cultures of fungal pathogens. This culture collection is open for research, teaching, consulting services, and strain deposit. It contains 421 strains belonging to 23 genera (16 Ascomycota, 4 Entomophthoromycotina, 2 Glomeromycota and 1 Oomycota), and the cultures are preserved by different methods such as cryopreservation in freezer at -20°C and -70°C, paper, distilled water and lyophilization. Fungi were isolated from insects, other arthropods, and soil (by using insect baits and selective media). Species were identified by morphological features and in a few strains by molecular taxonomy (PCR of rDNA). This collection is a reference center for species identification/certifications, research and teaching purposes, strain deposit, transference and consultancy services, and its overall goal is to preserve the fungal germplasm and ex situ diversity. Most of the strains are native of Argentina. The collection was originated in 1988 and is registered in the Latin American Federation for Culture Collections and in the World Federation of Culture Collections. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. CT differential diagnosis of fungal ball in paranasal sinus caused by different mycotic pathogenic agents

    International Nuclear Information System (INIS)

    Chen Xiaoli; Wang Zhenchang; Lu Xinxin; Xian Junfang; Li Jing; Geng Jiajing

    2012-01-01

    Objective: To evaluate CT characteristics of fungal ball in paranasal sinus caused by different fungi and to enhance differential diagnosis. Methods: CT results and clinical data of 74 patients with fungal ball arising from the paranasal sinuses proved by histopathology from 2007 to 2009 were analyzed retrospectively. The CT characteristics of fungal ball in paranasal sinus caused by different fungi were compared using χ 2 test with P<0.05 considered statistically significant. Results: Among 74 mycotic pathogenic agents,aspergillus was found in 58 cases (including 36 cases with aspergillus flavus, 15 cases with aspergillus fumigatus and 7 with aspergillus versicolor), the others including 5 cases with penicillium, 6 cases with schizophyllum commune, and 5 cases with scedosporium apiospermum. There were significant differences in the number of sinus involved (single sinus involvement was seen in 29 cases caused by aspergillus group and 2 cases caused by non-aspergillus-group, respectively, with χ 2 =7.245, P=0.007), the incidence of fungus ball in ethmoid sinus [39.7% (23/58) of cases caused by aspergillus group and 81.3% (13/16) of cases caused by non-aspergillus-group, respectively, with χ2=8.685, P=0.003] and calcification (40 of 58 cases caused by aspergillus group and 5 of 16 cases caused by non-aspergillus-group, respectively, with χ 2 =7.485, P=0.006), the location of calcification (26 of 40 cases with central calcification and 14 of 40 cases with peripheral calcification in cases caused by aspergillus group, while all of 5 cases caused by non-aspergillus-group with peripheral calcification, χ 2 =7.697, P=0.006). However, there was no significant difference in the incidence of bilateral lesions (χ 2 =1.002, P=0.317), maxillary sinus involvement (χ 2 =0.020, P=0.888), sphenoidal sinus involvement (χ 2 =0.704, P=0.401), frontal sinus involvement (χ 2 =0.126, P=0.723), bony sclerosis (χ 2 =2.024, P=0.155), lamellar calcification (χ 2 =2.045, P=0

  14. Experimental and theoretical basis of agricultural plant immunostimulation with regard to pathogenic fungi by magnetic field and He-Ne laser irradiation

    Science.gov (United States)

    Belski, Alexey I.; Chivanov, Vadym D.

    1996-09-01

    Spring barley, winter wheat and maize seeds were subjected to the action of He-Ne laser irradiation having a low intensity in the visible region of the spectrum (628-640 nm) in conjunction with magnetic fields. The following results were obtained: laser irradiation with magnetic fields induced activation of the natural plant defence/immune systems gave the harvest crop level increased to about 50- 300 percent; a correlation was established between the rate of the fungal pathogens growth and the stimulation of plant immunity after the seeds had been treated with laser irradiation and magnetic field.

  15. The Potential of Different Fungal Isolates for Production of Lovostatin Under Solid State Fermentation (SSF)

    International Nuclear Information System (INIS)

    Ezzat, S.M.; Ahmed, A.S.; Auda, S.M.; Younis, N.A.; Yousef, S.A.

    2015-01-01

    Eleven fungal isolates were grown on different agricultural wastes (maize stalks, rice husk, wheat straw and sugarcane bagasse) at a concentration of 30% to detect their ability for the production of lovastatin. The highest yield on maize stalks was obtained by Aspergillus flavus 11 while for rice husk, Aspergillus niger 12 exhibited the highest yield of lovastatin. Also Aspergillus flavus 11, Aspergillus niger 12 and A. terreus 18 were found to produce the highest lovastatin production with wheat straw and the highest yield on bagasse was obtained by A. terreus 18. Different concentrations of the best agricultural wastes (maize stalks, rice husk and wheat straw) were used as solid substrates to study their effects on lovastatin yield by the selected fungal isolates. The highest yield of lovastatin for the tested fungal isolates was obtained at 10% concentration for the three substrates and the highest yield was obtained by A. niger 14 and A. terreus 18. The influence of mutagenic agents (UV light and gamma rays) on these two potent fungal isolates in relation to lovastatin production showed that UV exposure for 120 min was the best in case of A. niger 14 while it was 30 min in case of A. terreus 18. On the other hand, gamma rays exhibited the highest lovastatin yield at exposure dose of 0.5 kGy for A. niger 14 and 0.25 kGy for A. terreus 18.

  16. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry

    Science.gov (United States)

    We sequenced and compared the genomes of Dothideomycete fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum that are related phylogenetically, but have different lifestyles and infect different hosts. C. fulvum is a biotroph that infects tomato, while D. septosporum is a hemibiotr...

  17. Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-11-01

    Full Text Available Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.

  18. Investigations into the fungal flora of forest stands under severe stress from immissions

    International Nuclear Information System (INIS)

    Butin, H.

    1992-01-01

    This finalized research project on the fungal flora of forest stands under severe stress form immissions looked into the question of the contribution of fungi to the triggering of topical forest damage and investigated whether correlations between certain symptoms and needle yellowing or root damage can be established. The main tree species selected were spruce and pine; but spot sample checks were also carried out on other tree species. Fungal flora was determined both qualitatively and quantitatively, and the pathogenic significance of the individual species was determined. Further, it was investigated whether fungal species are correlated to certain symptoms of damage, and which fungal species are. For selected fungal species, their pathogenicity was investigated by infection experiments. (RHE) [de

  19. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    Science.gov (United States)

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  20. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Science.gov (United States)

    Leal, Sixto M; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S; Di Pietro, Antonio; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  1. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Sixto M Leal

    Full Text Available Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  2. Mixed infections reveal virulence differences between host-specific bee pathogens.

    Science.gov (United States)

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  3. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    Science.gov (United States)

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  4. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera

    Directory of Open Access Journals (Sweden)

    Robertson Gordon

    2010-10-01

    Full Text Available Abstract Background Grosmannia clavigera is a bark beetle-vectored fungal pathogen of pines that causes wood discoloration and may kill trees by disrupting nutrient and water transport. Trees respond to attacks from beetles and associated fungi by releasing terpenoid and phenolic defense compounds. It is unclear which genes are important for G. clavigera's ability to overcome antifungal pine terpenoids and phenolics. Results We constructed seven cDNA libraries from eight G. clavigera isolates grown under various culture conditions, and Sanger sequenced the 5' and 3' ends of 25,000 cDNA clones, resulting in 44,288 high quality ESTs. The assembled dataset of unique transcripts (unigenes consists of 6,265 contigs and 2,459 singletons that mapped to 6,467 locations on the G. clavigera reference genome, representing ~70% of the predicted G. clavigera genes. Although only 54% of the unigenes matched characterized proteins at the NCBI database, this dataset extensively covers major metabolic pathways, cellular processes, and genes necessary for response to environmental stimuli and genetic information processing. Furthermore, we identified genes expressed in spores prior to germination, and genes involved in response to treatment with lodgepole pine phloem extract (LPPE. Conclusions We provide a comprehensively annotated EST dataset for G. clavigera that represents a rich resource for gene characterization in this and other ophiostomatoid fungi. Genes expressed in response to LPPE treatment are indicative of fungal oxidative stress response. We identified two clusters of potentially functionally related genes responsive to LPPE treatment. Furthermore, we report a simple method for identifying contig misassemblies in de novo assembled EST collections caused by gene overlap on the genome.

  5. Spatiotemporal Variation and Networks in the Mycobiome of the Wheat Canopy

    Directory of Open Access Journals (Sweden)

    Rumakanta Sapkota

    2017-08-01

    Full Text Available The phyllosphere is an important habitat for a diverse microbiome and an important entry point for many pathogens. Factors that shape the phyllosphere microbiome and also the co-existence among members and how they affect disease development are largely understudied. In this study we examined the wheat mycobiome by using metabarcoding of the fungal ITS1 region. Leaf samples were taken from four cultivars grown at two locations in Denmark. Samples were taken from the three uppermost leaves and at three growth stages to better understand spatiotemporal variation of the mycobiome. Analysis of read abundances showed that geographical location had a major effect in shaping the mycobiome in the total dataset, but also leaf position, growth stage and cultivar were important drivers of fungal communities. Cultivar was most important in explaining variation in older leaves whereas location better explained the variation in younger leaves, suggesting that communities are shaped over time by the leaf environment. Network analysis revealed negative co-existence between Zymoseptoria tritici and the yeasts Sporobolomyces, Dioszegia, and Cystofilobasidiaceae. The relative abundance of Z. tritici and the yeasts was relatively constant between individual samples, suggesting that fast growing fungi rapidly occupy empty space in the phyllosphere.

  6. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  7. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism

    Science.gov (United States)

    Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.

    1987-01-01

    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  8. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces.

    Directory of Open Access Journals (Sweden)

    Robert King

    2017-10-01

    Full Text Available Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2. Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2 suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.

  9. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces

    Science.gov (United States)

    Plummer, Amy; Halsey, Kirstie; Lovegrove, Alison; Hammond-Kosack, Kim

    2017-01-01

    Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast “yeast-like” growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices. PMID:29020037

  10. Quantitative Simulations Predict Treatment Strategies Against Fungal Infections in Virtual Neutropenic Patients.

    Science.gov (United States)

    Timme, Sandra; Lehnert, Teresa; Prauße, Maria T E; Hünniger, Kerstin; Leonhardt, Ines; Kurzai, Oliver; Figge, Marc Thilo

    2018-01-01

    The condition of neutropenia, i.e., a reduced absolute neutrophil count in blood, constitutes a major risk factor for severe infections in the affected patients. Candida albicans and Candida glabrata are opportunistic pathogens and the most prevalent fungal species in the human microbiota. In immunocompromised patients, they can become pathogenic and cause infections with high mortality rates. In this study, we use a previously established approach that combines experiments and computational models to investigate the innate immune response during blood stream infections with the two fungal pathogens C. albicans and C. glabrata . First, we determine immune-reaction rates and migration parameters under healthy conditions. Based on these findings, we simulate virtual patients and investigate the impact of neutropenic conditions on the infection outcome with the respective pathogen. Furthermore, we perform in silico treatments of these virtual patients by simulating a medical treatment that enhances neutrophil activity in terms of phagocytosis and migration. We quantify the infection outcome by comparing the response to the two fungal pathogens relative to non-neutropenic individuals. The analysis reveals that these fungal infections in neutropenic patients can be successfully cleared by cytokine treatment of the remaining neutrophils; and that this treatment is more effective for C. glabrata than for C. albicans .

  11. Identification of Biocontrol Agents to Control the Fungal Pathogen, Geomyces destructans, in Bats

    Science.gov (United States)

    Braunstein, S.; Cheng, T.

    2013-12-01

    The fungal pathogen Geomyces destructans (Gd) causes the disease White-nose Syndrome (WNS) in bats and is estimated to have killed millions of bats since its emergence in North America in 2006. Gd is predicted to cause the local extinction of at least three bat species if rates of decline continue unabated. Given the devastating impacts of Gd to bat populations, identifying a viable method for controlling the pathogen is pertinent for conservation of affected bat species. Our work focuses on identifying naturally-occurring skin bacteria on bats that are antagonistic to Gd that could potentially be used as a biocontrol. We cultured bacteria from skin swabs taken from wild bats (Myotis lucifugus, Eptesicus fuscus, Myotis sodalis, Perimyotis subflavus). We conducted challenge experiments to identify bacterial strains that inhibited Gd growth. Bacteria that exhibited antifungal properties were identified using 16S and gyrB markers. Our methods identified several bacteria in the Pseudomonas fluorescens complex as potential biocontrol agents. Future work will continue to test the viability of these bacteria as biocontrol agents via experimental treatments with live captive bats. The failure of previous non-biocontrol methods highlights the importance of developing these bacteria as a biologically-friendly method for controlling Gd. A bat infected with Geomyces destructans. Photo by West Virginia Division of Natural Resources Bacterial culture from the swab of a bat's wings

  12. Influence of wheat type and pretreatment on fungal growth in solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.; Zhu, Y.; As, H. van; Tramper, J.; Rinzema, A.

    2001-01-01

    The respiration kinetics of Aspergillus oryzae on different varieties of whole wheat kernels were studied. Six wheat varieties were pretreated in two different ways. Five of the six substrates fermented similarly and independently of the pretreatment method. However, pretreatment affected

  13. Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.

    Science.gov (United States)

    el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

    1996-01-01

    Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.

  14. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  15. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    Science.gov (United States)

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  16. A Gene-for-Gene Relationship Between Wheat and Mycosphaerella graminicola, the Septoria Tritici Blotch Pathogen.

    Science.gov (United States)

    Brading, Penny A; Verstappen, Els C P; Kema, Gert H J; Brown, James K M

    2002-04-01

    ABSTRACT Specific resistances to isolates of the ascomycete fungus Mycosphaerella graminicola, which causes Septoria tritici blotch of wheat, have been detected in many cultivars. Cvs. Flame and Hereward, which have specific resistance to the isolate IPO323, were crossed with the susceptible cv. Longbow. The results of tests on F1 and F2 progeny indicated that a single semidominant gene controls resistance to IPO323 in each of the resistant cultivars. This was confirmed in F3 families of Flame x Longbow, which were either homozygous resistant, homozygous susceptible, or segregating in tests with IPO323 but were uniformly susceptible to another isolate, IPO94269. None of 100 F2 progeny of Flame x Hereward were susceptible to IPO323, indicating that the resistance genes in these two cultivars are the same, closely linked, or allelic. The resistance gene in cv. Flame was mapped to the short arm of chromosome 3A using microsatellite markers and was named Stb6. Fifty-nine progeny of a cross between IPO323 and IPO94269 were used in complementary genetic analysis of the pathogen to test a gene-for-gene relationship between Stb6 and the avirulence gene in IPO323. Avirulence to cvs. Flame, Hereward, Shafir, Bezostaya 1, and Vivant and the breeding line NSL92-5719 cosegregated, and the ratio of virulent to avirulent was close to 1:1, suggesting that these wheat lines may all recognize the same avirulence gene and may all have Stb6. Together, these data provide the first demonstration that isolate-specific resistance of wheat to Septoria tritici blotch follows a gene-for-gene relationship.

  17. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  18. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    Science.gov (United States)

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  19. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  20. Drought Impact on the Soilborne Fungal Pathogen of Tomato: Fusarium Oxysporum f. sp. Lycopersici Race 3

    Science.gov (United States)

    Raju, T.

    2016-12-01

    This paper reviews the drought impact on fungal pathogen of tomato. It presents the 11 Main Procedures used to conduct the experiments and discusses materials used. The 11 procedures are: Gather All the Soils, Sterilize the Soils Using Auto-Clave, Water Retention Test Using Auto-Clave, Cultivate Pathogen, Grow Tomato Plant, Count Pathogenic Cells, Inoculate the Pathogen, Conduct Root Dip, Grow Positive and Negative Samples, Test for Fusarium, and the Soil Separation Experiment with Pathogenic Soil. Experiments conducted on 6 Main Soils used in farming throughout California. The Yolo Series, Whiterock Series, Euic Soil, Potting Soil, Blacklock Series, and Henneke Series. The 6 Soils include amounts of clay, silt, sand, loam, and humus. It was crucial that these soils include these properties because deriving from last year's research I found that these particles in the soil has a role in the growth of the plant. Next, I tested the dry/wet weight of the soils, as this gave me a good estimate of how much water the soils can retain. This is very important because I found a direct correlation between the soil that retained the most amount of water and the soil that had the least harms done. Next, the other labs were completed to cultivate, inoculate, and test the pathogens in the soil, now these steps must be carried out with accuracy and precision because pathogens are a biological agent that causes disease or illness to its host, and if even 0.100 mL is changed in the pathogenic level it can make a large difference. Later, after I finished conducting the root dip, and raising the tomato plants. I counted the Fusarium count in the soil and plated the samples, where I was able to find the results on how much harm the pathogen had on the plant. In each of the 90 reps. the Fusarium (soilborne pathogen) decreased a little, which factors in the transfer from Potato Dextrose Agar Petri Dish to the Soils. After, this transfer the pathogen decreased and never increased, but

  1. A Fungus-Inducible Pepper Carboxylesterase Exhibits Antifungal Activity by Decomposing the Outer Layer of Fungal Cell Walls.

    Science.gov (United States)

    Seo, Hyo-Hyoun; Park, Ae Ran; Lee, Hyun-Hwa; Park, Sangkyu; Han, Yun-Jeong; Hoang, Quyen T N; Choi, Gyung Ja; Kim, Jin-Cheol; Kim, Young Soon; Kim, Jeong-Il

    2018-05-01

    Colletotrichum species are major fungal pathogens that cause devastating anthracnose diseases in many economically important crops. In this study, we observed the hydrolyzing activity of a fungus-inducible pepper carboxylesterase (PepEST) on cell walls of C. gloeosporioides, causing growth retardation of the fungus by blocking appressorium formation. To determine the cellular basis for the growth inhibition, we observed the localization of PepEST on the fungus and found the attachment of the protein on surfaces of conidia and germination tubes. Moreover, we examined the decomposition of cell-wall materials from the fungal surface after reaction with PepEST, which led to the identification of 1,2-dithiane-4,5-diol (DTD) by gas chromatography mass spectrometry analysis. Exogenous DTD treatment did not elicit expression of defense-related genes in the host plant but did trigger the necrosis of C. gloeosporioides. Furthermore, the DTD compound displayed protective effects on pepper fruits and plants against C. gloeosporioides and C. coccodes, respectively. In addition, DTD was also effective in preventing other diseases, such as rice blast, tomato late blight, and wheat leaf rust. Therefore, our results provide evidence that PepEST is involved in hydrolysis of the outmost layer of the fungal cell walls and that DTD has antifungal activity, suggesting an alternative strategy to control agronomically important phytopathogens.

  2. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    Science.gov (United States)

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  3. Genomic analysis of a novel gene conferring resistance to Ug99 stem rust in Triticum turgidum ssp. dicoccum

    Science.gov (United States)

    Wheat production is threatened by the disease stem rust, which is caused by the biotrophic fungal pathogen Puccinia graminis Pers.:Pers. f. sp. tritici (Pgt). Among all known Pgt races, TTKSK (Ug99) and TRTTF are significant threats to North American wheat production due to their virulence against f...

  4. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Cheryl D Chun

    2007-02-01

    Full Text Available Fungal pathogens of humans require molecular oxygen for several essential biochemical reactions, yet virtually nothing is known about how they adapt to the relatively hypoxic environment of infected tissues. We isolated mutants defective in growth under hypoxic conditions, but normal for growth in normoxic conditions, in Cryptococcus neoformans, the most common cause of fungal meningitis. Two regulatory pathways were identified: one homologous to the mammalian sterol-response element binding protein (SREBP cholesterol biosynthesis regulatory pathway, and the other a two-component-like pathway involving a fungal-specific hybrid histidine kinase family member, Tco1. We show that cleavage of the SREBP precursor homolog Sre1-which is predicted to release its DNA-binding domain from the membrane-occurs in response to hypoxia, and that Sre1 is required for hypoxic induction of genes encoding for oxygen-dependent enzymes involved in ergosterol synthesis. Importantly, mutants in either the SREBP pathway or the Tco1 pathway display defects in their ability to proliferate in host tissues and to cause disease in infected mice, linking for the first time to our knowledge hypoxic adaptation and pathogenesis by a eukaryotic aerobe. SREBP pathway mutants were found to be a hundred times more sensitive than wild-type to fluconazole, a widely used antifungal agent that inhibits ergosterol synthesis, suggesting that inhibitors of SREBP processing could substantially enhance the potency of current therapies.

  5. Biocontrol evaluation of wheat take-all disease by Trichoderma ...

    African Journals Online (AJOL)

    Wheat take-all disease, caused by Gaeumannomyces graminis var tritici (Ggt), has been observed in different areas of Iran in recent years. Current biocontrol studies have confirmed the effectiveness of the. Trichoderma species against many fungal phytopathogens. In this study, biocontrol effects of Trichoderma isolates ...

  6. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates

    Science.gov (United States)

    2014-01-01

    Background Mesembryanthemum edule is a medicinal plant which has been indicated by Xhosa traditional healers in the treatment HIV associated diseases such as tuberculosis, dysentery, diabetic mellitus, laryngitis, mouth infections, ringworm eczema and vaginal infections. The investigation of the essential oil of this plant could help to verify the rationale behind the use of the plant as a cure for these illnesses. Methods The essential oil from M. edule was analysed by GC/MS. Concentration ranging from 0.005 - 5 mg/ml of the hydro-distilled essential oil was tested against some fungal strains, using micro-dilution method. The plant minimum inhibitory activity on the fungal strains was determined. Result GC/MS analysis of the essential oil resulted in the identification of 28 compounds representing 99.99% of the total essential oil. A total amount of 10.6 and 36.61% constituents were obtained as monoterpenes and oxygenated monoterpenes. The amount of sesquiterpene hydrocarbons (3.58%) was low compared to the oxygenated sesquiterpenes with pick area of 9.28%. Total oil content of diterpenes and oxygenated diterpenes detected from the essential oil were 1.43% and 19.24%. The fatty acids and their methyl esters content present in the essential oil extract were found to be 19.25%. Antifungal activity of the essential oil extract tested against the pathogenic fungal, inhibited C. albican, C. krusei, C. rugosa, C. glabrata and C. neoformans with MICs range of 0.02-0.31 mg/ml. the activity of the essential oil was found competing with nystatin and amphotericin B used as control. Conclusion Having accounted the profile chemical constituent found in M. edule oil and its important antifungal properties, we consider that its essential oil might be useful in pharmaceutical and food industry as natural antibiotic and food preservative. PMID:24885234

  7. Nonhost resistance to rust pathogens - a continuation of continua.

    Science.gov (United States)

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.

  8. Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi.

    Science.gov (United States)

    Roman-Reyna, Veronica; Rathjen, John P

    2017-01-01

    Biotrophic fungi such as rusts modify the nutrient status of their hosts by extracting sugars. Hemibiotrophic and biotrophic fungi obtain nutrients from the cytoplasm of host cells and/or the apoplastic spaces. Uptake of nutrients from the cytoplasm is via intracellular hyphae or more complex structures such as haustoria. Apoplastic nutrients are taken up by intercellular hyphae. Overall the infection creates a sink causing remobilization of nutrients from local and distal tissues. The main mobile sugar in plants is sucrose which is absorbed via plant or fungal transporters once unloaded into the cytoplasm or the apoplast. Infection by fungal pathogens alters the apoplastic sugar contents and stimulates the influx of nutrients towards the site of infection as the host tissue transitions to sink. Quantification of solutes in the apoplast can help to understand the allocation of nutrients during infection. However, separation of apoplastic fluids from whole tissue is not straightforward and leakage from damaged cells can alter the results of the extraction. Here, we describe how variation in cytoplasmic contamination and infiltrated leaf volumes must be controlled when extracting apoplastic fluids from healthy and rust-infected wheat leaves. We show the importance of correcting the data for these parameters to measure sugar concentrations accurately.

  9. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  10. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  11. Superficial fungal infections.

    Science.gov (United States)

    Schwartz, Robert A

    Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.

  12. Toward the molecular cloning of the Septoria nodorum blotch susceptibility gene Snn2 in wheat

    Science.gov (United States)

    Septoria nodorum blotch is a disease of wheat caused by the necrotrophic fungus Parastagonospora nodorum. In the wheat-P. nodorum pathosystem, recognition of pathogen-produced necrotrophic effectors (NEs) by dominant host genes leads to host cell death, which allows the pathogen to gain nutrients an...

  13. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    Science.gov (United States)

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  14. Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage.

    Science.gov (United States)

    de Oliveira, Carlos Eduardo Vasconcelos; Magnani, Marciane; de Sales, Camila Veríssimo; Pontes, Alline Lima de Souza; Campos-Takaki, Galba Maria; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite

    2014-12-01

    The aim of this study was to extract chitosan (CHI) from Mucor circinelloides UCP 050 grown in a corn steep liquor (CSL)-based medium under optimized conditions and to assess the efficacy of the obtained CHI to inhibit the post-harvest pathogenic fungi Aspergillus niger URM 5162 and Rhizopus stolonifer URM 3482 in laboratory media and as a coating on table grapes (Vitis labrusca L.). The effect of CHI coating on some physical, physicochemical and sensory characteristics of the fruits during storage was assessed. The greatest amount of CHI was extracted from M. circinelloides UCP 050 grown in medium containing 7 g of CSL per 100 mL at pH 5.5 with rotation at 180 rpm. CHI from M. circinelloides UCP 050 caused morphological changes in the spores of the fungal strains tested and inhibited mycelial growth and spore germination. CHI coating delayed the growth of the assayed fungal strains in artificially infected grapes, as well as autochthonous mycoflora during storage. CHI coating preserved the quality of grapes during storage, as measured by their physical, physicochemical and sensory attributes. These results demonstrate that edible coatings derived from M. circinelloides CHI could be a useful alternative for controlling pathogenic fungi and maintaining the post-harvest quality of table grapes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era

    OpenAIRE

    Fen eYang; Fen eYang; Susanne eJacobsen; Hans J. L. Jørgensen; David B. Collinge; Birte eSvensson; Christine eFinnie

    2013-01-01

    The ascomycete fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB) in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has ...

  16. Duplications and losses in gene families of rust pathogens highlight putative effectors

    Directory of Open Access Journals (Sweden)

    Amanda L. Pendleton

    2014-06-01

    Full Text Available Rust fungi are a group of fungal pathogens that cause some of the world’s most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host’s cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of sixteen diverse fungal species, which include fifteen basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: i arose or expanded in rust pathogens relative to other fungi, or ii contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  17. Ectomycorrhizal fungal diversity: seperating the wheat from the chaff

    NARCIS (Netherlands)

    Rinaldi, A.C.; Comandini, O.; Kuyper, T.W.

    2008-01-01

    Thousands of ectomycorrhizal (ECM) fungal species exist, but estimates of global species richness of ECM fungi differ widely. Many genera have been proposed as being ECM, but ill a number of studies evidence for the hypothesized ECM habit is lacking. Progress in estimating ECM species richness is

  18. Population genomics of fungal and oomycete pathogens

    Science.gov (United States)

    We are entering a new era in plant pathology where whole-genome sequences of many individuals of a pathogen species are becoming readily available. This era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. Population gen...

  19. The Legitimate Name of a Fungal Plant Pathogen and the Ethics of Publication in the Era of Traceability.

    Science.gov (United States)

    Gonthier, Paolo; Visentin, Ivan; Valentino, Danila; Tamietti, Giacomo; Cardinale, Francesca

    2017-04-01

    When more scientists describe independently the same species under different valid Latin names, a case of synonymy occurs. In such a case, the international nomenclature rules stipulate that the first name to appear on a peer-reviewed publication has priority over the others. Based on a recent episode involving priority determination between two competing names of the same fungal plant pathogen, this letter wishes to open a discussion on the ethics of scientific publications and points out the necessity of a correct management of the information provided through personal communications, whose traceability would prevent their fraudulent or accidental manipulation.

  20. Mechanical Vectors Enhance Fungal Entomopathogen Reduction of the Grasshopper Pest Camnula pellucida (Orthoptera: Acrididae).

    Science.gov (United States)

    Kistner, Erica J; Saums, Marielle; Belovsky, Gary E

    2015-02-01

    Mounting scientific evidence indicates that pathogens can regulate insect populations. However, limited dispersal and sensitivity to abiotic conditions often restricts pathogen regulation of host populations. While it is well established that arthropod biological vectors increase pathogen incidence in host populations, few studies have examined whether arthropod mechanical vectors (an organism that transmits pathogens but is not essential to the life cycle of the pathogen) influence host-pathogen dynamics. The importance of mechanical dispersal by ant scavengers, Formica fusca (L.), in a grasshopper-fungal entomopathogen system was investigated. We examined the ability of ants to mechanically disperse and transmit the pathogen, Entomophaga grylli (Fresenius) pathotype 1, to its host, the pest grasshopper Camnula pellucida (Scudder), in a series of laboratory experiments. Fungal spores were dispersed either externally on the ant's body surface or internally through fecal deposition. In addition, a third of all grasshoppers housed with fungal-inoculated ants became infected, indicating that ants can act as mechanical vectors of E. grylli. The effect of ant mechanical vectors on E. grylli incidence was also examined in a field experiment. Ant access to pathogen-exposed experimental grasshopper populations was restricted using organic ant repellent, thereby allowing us to directly compare mechanical and natural transmission. Ants increased grasshopper pathogen mortality by 58%, which led to greater pathogen reductions of grasshopper survival than natural transmission. Taken together, our results indicate that ants enhance E. grylli reduction of grasshopper pest numbers. Therefore, mechanical transmission of pathogens may be an important overlooking component of this grasshopper-fungal pathogen system. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  2. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production

    Directory of Open Access Journals (Sweden)

    Rusu Anca

    2010-12-01

    Full Text Available Abstract Background The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine and amino acids (e.g. arginine and ornithine are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. Results Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC and arginine decarboxylase (ADC, two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. Conclusions The activation of the polyamine biosynthetic

  3. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    Science.gov (United States)

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-01-29

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (cicer arietinum l.) field and their in-vitro evaluation against fungal root pathogens

    International Nuclear Information System (INIS)

    Shahzaman, S.; Haq, I.U.; Mukhtar, T.; Naeem, M.

    2015-01-01

    Plant growth promoting rhizobacteria (PGPR), are associated with roots, found in the rhizosphere and can directly or indirectly enhance the plant growth. In this study soil was collected from rhizosphere of chickpea fields of different areas of Rawalpindi division of Pakistan. PGPR were isolated, screened and characterized. Eight isolates of rhizobacteria (RHA, RPG, RFJ, RC, RTR, RT and RK) were isolated from Rawalpindi division and were characterized. The antagonistic activity of these PGPR isolates against root infecting fungi (Fusarium oxysporum and Verticillium spp.,) was done and production of indole acetic acid (IAA), siderophore and P-solubilization was evaluated. The isolates RHA, RPG, RFJ, RC, RRD and RT were found to be positive in producing siderophore, IAA and P-solubilization. Furthermore, most of the isolates showed antifungal activity against Fusarium oxysporum, and Verticillium spp. The rhizobacterial isolates RHA, RPG, RFJ, RC, RRD, RTR, RT and RK were used as bio-inoculants that might be beneficial for chickpea cultivation as the rhizobacterial isolates possessed the plant growth promoting characters i.e. siderophore, IAA production, phosphate solubilization. In in vitro tests, Pseudomonas sp. and Bacillus spp. inhibited the mycelial growth of the fungal root pathogens. The isolates (RHA and RPG) also significantly increased (60-70%) seed germination, shoot length, root length of the chickpea. The incidence of fungi was reduced by the colonization of RHA and RPG which enhanced the seedling vigor index and seed germination. The observations revealed that isolates RHA and RPG is quite effective to reduce the fungal root infection in greenhouse, and also increases seed yields significantly. These rhizobacterial isolates appear to be efficient yield increasing as well as effective biocontrol agent against fungal root pathogen. (author)

  5. Nonhost resistance to rust pathogens – a continuation of continua

    Directory of Open Access Journals (Sweden)

    Jan eBettgenhaeuser

    2014-12-01

    Full Text Available The rust fungi (order: Pucciniales are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina, which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1 the majority of accessions of a species being resistant to the rust or (2 the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host to complete immunity within a species (nonhost. In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.

  6. Nonhost resistance to rust pathogens – a continuation of continua

    Science.gov (United States)

    Bettgenhaeuser, Jan; Gilbert, Brian; Ayliffe, Michael; Moscou, Matthew J.

    2014-01-01

    The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant–pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens. PMID:25566270

  7. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.

    Science.gov (United States)

    Croll, Daniel; McDonald, Bruce A

    2017-04-01

    Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.

  8. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  9. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens.

    Directory of Open Access Journals (Sweden)

    Jerneja Zupančič

    Full Text Available We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium. Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within

  10. Persistence and drug tolerance in pathogenic yeast

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2017-01-01

    In this review, we briefly summarize the current understanding of how fungal pathogens can persist antifungal treatment without heritable resistance mutations by forming tolerant persister cells. Fungal infections tolerant to antifungal treatment have become a major medical problem. One mechanism...

  11. Drinking yerba mate infusion: a potential risk factor for invasive fungal diseases?

    Science.gov (United States)

    Vieira, N O; Peres, A; Aquino, V R; Pasqualotto, A C

    2010-12-01

    Yerba mate (Ilex paraguariensis) infusion is a very popular drink in South America. Although several studies have evaluated the potential for fungal contamination in foodstuff, very few investigations have been conducted with yerba mate samples. In order to evaluate for the presence of potentially pathogenic fungi, here we studied 8 brands of yerba mate commercially available in Southern Brazil. Fungal survival in adverse conditions such as gastric pH was determined by incubating samples at pH 1.5. Because hot water is generally used to prepare yerba mate infusion, the effect of several temperatures on fungal growth was also investigated. All but 1 yerba mate brand showed substantial fungal growth, in the range of <10–4900 colony-forming units per gram. Some of these fungi were able to survive extreme variations in pH and temperature. Because of the potential for yerba mate to carry pathogenic fungi, immunocompromised patients may be at risk of acquiring invasive fungal diseases by drinking yerba mate infusion.

  12. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions

    NARCIS (Netherlands)

    Gool, van M.P.; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.

    2012-01-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and

  13. Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff.

    Science.gov (United States)

    Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann

    2014-11-01

    Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.

  14. Process design and optimization of novel wheat-based continuous bioethanol production system.

    Science.gov (United States)

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.

  15. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum.

    Science.gov (United States)

    Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg

    2015-12-01

    The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.

  16. Mycological assessment of sediments in Ligurian beaches in the Northwestern Mediterranean: pathogens and opportunistic pathogens.

    Science.gov (United States)

    Salvo, Vanessa-Sarah; Fabiano, Mauro

    2007-05-01

    Sediments of five Ligurian beaches in compliance with European Union bathing water regulations were studied based on the characteristics of the fungal assemblage during the tourism season. Among the 179 taxa of filamentous fungi isolated, 120 were opportunistic pathogens, such as Acremonium sp., and the genus Penicillium was also present as the pathogenic species P. citrinum. Furthermore, 5% of the total filamentous fungi belonged to the dermatophyte genus Microsporum, whose species can cause mycoses. Beach sediments showed elevated densities of opportunistic pathogens, of pathogenic filamentous fungi, and of yeasts during the tourism season. Although monitoring of beach sediments for microbiological contamination is not mandatory, and disease transmission from sediments has not yet been demonstrated, our study suggests that beach sediments may act as a reservoir of potential pathogens, including fungi. In addition, the mycoflora displayed high sensitivity to critical environmental situations in the beaches studied. Therefore, the fungal community can be a useful tool for assessing the quality of sandy beaches in terms of sanitary and environmental quality.

  17. Identification of genomic associations for adult plant resistance in the background of popular South Asian wheat cultivar, PBW343

    Directory of Open Access Journals (Sweden)

    Huihui Li

    2016-11-01

    Full Text Available Rusts, a fungal disease as old as its host plant wheat, an enemy as old as wheat, has caused havoc for over 8,000 years. As the rust pathogens can evolve into new virulent races which quickly defeat to qualitative or vertical the resistance that primarily rely on race specificity over time, adult plant resistance (APR has often been found to be race non-specific and hence is considered have been proven to be a more to be a more reliable and durable strategy to combat this malady. Over decades sets of donor lines have been identified at International Maize and Wheat Improvement Center (CIMMYT representing a wide range of APR sources in wheat. In this study, using nine donors and a common parent ‘PBW343’, a popular Green Revolution variety at CIMMYT, the nested association mapping (NAM population of 1122 lines was constructed to understand the APR genetics underlying these founder lines. Thirty-four QTL were associated with APR to rusts, and 20 of 34 QTL had pleiotropic effects on SR, YR and LR resistance. Three chromosomal regions, associated with known APR genes (Sr58/Yr29/Lr46, Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34, were also identified, 13 previously reported QTL regions were validated. Of the 18 QTL first detected in this study, 7 were pleiotropic QTL, distributing on chromosomes 3A, 3B, 6B, 3D, and 6D. The present investigation revealed the genetic relationship of historical APR donor lines, the novel knowledge on APR, as well as the new analytical methodologies to facilitate the applications of NAM design in crop genetics. Results shown in this study will aid the parental selection for hybridization in wheat breeding, and envision the future rust management breeding for addressing potential threat to wheat production and food security.

  18. Fungal Production and Manipulation of Plant Hormones.

    Science.gov (United States)

    Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea

    2018-01-01

    Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A fungal metallo-beta-lactamase necessary for biotransformation of maize phytoprotectant compounds

    Science.gov (United States)

    Xenobiotic compounds such as phytochemicals, microbial metabolites, and agrochemicals can impact the diversity and frequency of fungal species occurring in agricultural environments. Resistance to xenobiotics may allow plant pathogenic fungi to dominate the overall fungal community, with potential ...

  20. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models

    Directory of Open Access Journals (Sweden)

    Lucky eMehra

    2016-03-01

    Full Text Available Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB, caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum. The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early

  1. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    Science.gov (United States)

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  2. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations.

    Science.gov (United States)

    Bradley, Paul W; Gervasi, Stephanie S; Hua, Jessica; Cothran, Rickey D; Relyea, Rick A; Olson, Deanna H; Blaustein, Andrew R

    2015-10-01

    Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd-infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post-metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population-level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events. © 2015 Society for Conservation Biology.

  3. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R.P.; Aulicino, M.B.; Mónaco, C.I.; Kripelz, N.; Cordo, C.A.

    2015-07-01

    Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT) and conventional tillage (CT) with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina). Soil samples (at 0-10 cm depth) were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/gof soil). The diversity of the fungal population was studied by Shannon´s index (H). The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices. (Author)

  4. Nutrition acquisition strategies during fungal infection of plants.

    Science.gov (United States)

    Divon, Hege H; Fluhr, Robert

    2007-01-01

    In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.

  5. Antimicrobial mechanism of copper (II 1,10-phenanthroline and 2,2′-bipyridyl complex on bacterial and fungal pathogens

    Directory of Open Access Journals (Sweden)

    S. Chandraleka

    2014-12-01

    Full Text Available Copper based metallo drugs were prepared and their antibacterial, antifungal, molecular mechanism of [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O complexes were investigated. The [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O were derived from the Schiff base alanine salicylaldehyde. [Cu(SAlaPhen]·H2O showed noteworthy antibacterial and antifungal activity than the [Cu(SAlabpy]·H2O and ligand alanine, salicylaldehyde. The [Cu(SAlaPhen]·H2O complex showed significant antibacterial activity against Salmonella typhi, Staphylococcus aureus, Salmonella paratyphi and the antifungal activity against Candida albicans and Cryptococcus neoformans in well diffusion assay. The mode of action of copper (II complex was analyzed by DNA cleavage activity and in silico molecular docking. The present findings provide important insight into the molecular mechanism of copper (II complexes in susceptible bacterial and fungal pathogens. These results collectively support the use of [Cu(SAlaPhen]·H2O complex as a suitable drug to treat bacterial and fungal infections.

  6. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

    Science.gov (United States)

    Rutter, William B; Salcedo, Andres; Akhunova, Alina; He, Fei; Wang, Shichen; Liang, Hanquan; Bowden, Robert L; Akhunov, Eduard

    2017-04-12

    Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen

  7. A Survey of Bacterial and Fungal Oppurtunistic Infections among ...

    African Journals Online (AJOL)

    The bacterial pathogens were isolated using Blood and Chocolate agar plates and identified biochemically except the Acid Fast Bacilli (AFB) which was tested in all the HIV positive samples by Ziehl Neelson staining technique. The fungal pathogens were isolated using Sabouraud Dextrose Agar (SDA) with antibiotics and ...

  8. Plant Extract Control of the Fungi Associated with Different Egyptian Wheat Cultivars Grains

    Directory of Open Access Journals (Sweden)

    Mohamed Baka Zakaria Awad

    2014-07-01

    Full Text Available Grain samples of 14 Egyptian wheat cultivars were tested for seed-borne fungi. The deep freezing method was used. Five seed-borne fungi viz., Aspergillus flavus, A. niger, Curvularia lunata, Fusarium moniliforme and Penicillium chrysogenum were isolated from the wheat cultivars viz., Bani Suef 4, Bani Suef 5, Gemmiza 7, Gemmiza 9, Gemmiza 10, Giza 168, Misr 1, Misr 2, Sakha 93, Sakha 94, Shandaweel 1, Sids 1, Sids 2 and Sids 3. A. flavus, A. niger and F. moniliforme were the most prevalent fungal species. Their incidence ranged from 21.0-53.5%, 16.0-37.5%, and 12.0-31.0%, respectively. The antifungal potential of water extracts from aerial parts of five wild medicinal plants (Asclepias sinaica, Farsetia aegyptia, Hypericum sinaicum, Phagnalon sinaicum, and Salvia aegyptiaca were collected from the Sinai Peninsula, Egypt. The antifungal potential of water extracts from the aerial parts of these five plants were tested in the laboratory against the dominant fungi isolated from the wheat cultivars. All the aqueous plant extracts significantly (p ≤ 0.05 reduced the incidence of the tested seed-borne fungi. But the extract of Asclepias sinaica exhibited the most antifungal activity on tested fungi at all concentrations used when compared with other plant extracts. Maximum infested grain germination was observed in Giza 168 and minimum in Bani Suef 5. Treating grains with plant extract of A. sinaica (10% enhanced the percentage of grain germination of all cultivars in both laboratory and pot experiments. Maximum root and shoot length of seedlings was recorded in Bani Suef 4 during fungal infestation or treatment by plant extract. For one hour before sowing or storage, the aqueous extract of A. sinaica can be used to treat wheat grains, to reduce the fungal incidence. Aqueous extracts of the aerial parts of selected medicinal plants, particularly A. sinaica, are promising for protecting Egyptian wheat grain cultivars against major seed-borne fungi

  9. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem.

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Weinert, Joachim; Brunotte, Joachim

    2017-08-01

    In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species

  10. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    Science.gov (United States)

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  11. Global food and fibre security threatened by current inefficiencies in fungal identification

    NARCIS (Netherlands)

    Crous, Pedro W.; Groenewald, Johannes Z.; Slippers, Bernard; Wingfield, Michael J.

    2016-01-01

    Fungal pathogens severely impact global food and fibre crop security. Fungal species that cause plant diseases have mostly been recognized based on their morphology. In general, morphological descriptions remain disconnected from crucially important knowledge such as mating types, host specificity,

  12. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat.

    Science.gov (United States)

    Kaur, Jagdeep; Fellers, John; Adholeya, Alok; Velivelli, Siva L S; El-Mounadi, Kaoutar; Nersesian, Natalya; Clemente, Thomas; Shah, Dilip

    2017-02-01

    Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.

  13. Evaluation of Simultaneous Exposure to Flour Dust and Airborne Fungal Spores in Milling Plant

    Directory of Open Access Journals (Sweden)

    Alireza Dehdashti

    2016-01-01

    Full Text Available Background and Objectives: Wheat flour as an organic allergen particle has an extensive respiratory exposure in milling industry and related industries. Simultaneous exposure to flour dust and fungal spores causes infectious disease, cancers, and impaired pulmonary function tests. This research was carried out with the aim of assessing the concentration of respirable flour particles, determining the type, and concentration of fungal spores in breathing air of workers in milling industries. Methods: In this descriptive cross-sectional study, 42 area samples were collected on filter and analyzed gravimetrically. Using a specific sampling pump, sampling of bioaerosols and sabro dextrose agar medium of fungal spores, was performed. Microscopic analysis was applied to detect and quantify microorganisms as colony per cubic meter. Results: The mean and standard deviation of total respirable particles in the breathing air of workers was 6/57±1/69mg/m3, which exceeded occupational exposure limit. The concentration of fungal spores in workers’ breathing air ranged from 42 to 310 colony per cubic meter. The percentage of respirable to total dust particles produced in sieve vibration, bagging, and milling sections, were determined 67.83%, 32%, and 62.2%, respectively. Conclusion: The results of this study revealed that the concentration of respirable particles in wheat milling process exceeded the recommended level and the concentration of fungal spores was at the average level of occupational exposure according to ACGIH recommendation. Therefore, engineering controls are required in flour milling process to reduce the exposure of workers.

  14. Host genotype is an important determinant of the cereal phyllosphere mycobiome

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2015-01-01

    The phyllosphere mycobiome in cereals is an important determinant of crop health. However, an understanding of the factors shaping this community is lacking. Fungal diversity in leaves from a range of cultivars of winter wheat (Triticum aestivum), winter and spring barley (Hordeum vulgare...... and location have minor effects. We found many host-specific fungal pathogens, but also a large diversity of fungi that were relatively insensitive to host genetic background, indicating that host-specific pathogens live in a 'sea' of nonspecific fungi....

  15. Phylogenetic analysis of fungal ABC transporters.

    Science.gov (United States)

    Kovalchuk, Andriy; Driessen, Arnold J M

    2010-03-16

    The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.

  16. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  18. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Junjuan Wang

    Full Text Available WRKY transcription factors (TFs play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst, is a destructive disease of wheat (Triticum aestivum worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistance to Pst (HTSP resistance in wheat cultivar Xiaoyan 6 by RNA-seq. Interestingly, the expression levels of TaWRKY49 and TaWRKY62 were down- and up-regulated, respectively, during HTSP resistance in response to Pst. Silencing of TaWRKY49 enhanced whereas silencing TaWRKY62 reduced HTSP resistance. The enhanced resistance observed on leaves following the silencing of TaWRKY49 was coupled with increased expression of salicylic acid (SA- and jasmonic acid (JA-responsive genes TaPR1.1 and TaAOS, as well as reactive oxygen species (ROS-associated genes TaCAT and TaPOD; whereas the ethylene (ET-responsive gene TaPIE1 was suppressed. The decreased resistance observed on leaves following TaWRKY62 silencing was associated with increased expression of TaPR1.1 and TaPOD, and suppression of TaAOS and TaPIE1. Furthermore, SA, ET, MeJA (methyl jasmonate, hydrogen peroxide (H2O2 and abscisic acid (ABA treatments increased TaWRKY62 expression. On the other hand, MeJA did not affect the expression of TaWRKY49, and H2O2 reduced TaWRKY49 expression. In conclusion, TaWRKY49 negatively regulates while TaWRKY62 positively regulates wheat HTSP resistance to Pst by differential regulation of SA-, JA-, ET and ROS-mediated signaling.

  19. Mixtures of genetically modified wheat lines outperform monocultures

    OpenAIRE

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-01-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical....

  20. Wheat powdery mildew in Central China : pathogen population structure and host resistance

    NARCIS (Netherlands)

    Yu, D.

    2000-01-01

    Wheat powdery mildew, causal agent Erysiphe graminis f. sp. tritici , has been a serious disease in central China since the late 1970s.

    The wheat growing area in central China can be divided into three zones defined by altitude.

  1. Mites as selective fungal carriers in stored grain habitats.

    Science.gov (United States)

    Hubert, Jan; Stejskal, Václav; Kubátová, Alena; Munzbergová, Zuzana; Vánová, Marie; Zd'árková, Eva

    2003-01-01

    Mites are well documented as vectors of micromycetes in stored products. Since their vectoring capacity is low due to their small size, they can be serious vectors only where there is selective transfer of a high load of specific fungal species. Therefore the aim of our work was to find out whether the transfer of fungi is selective. Four kinds of stored seeds (wheat, poppy, lettuce, mustard) infested by storage mites were subjected to mycological analysis. We compared the spectrum of micromycete species isolated from different species of mites (Acarus siro, Lepidoglyphus destructor, Tyrophagus putrescentiae, Caloglyphus rhizoglyphoides and Cheyletus malaccensis) and various kinds of stored seeds. Fungi were separately isolated from (a) the surface of mites, (b) the mites' digestive tract (= faeces), and (c) stored seeds and were then cultivated and determined. The fungal transport via mites is selective. This conclusion is supported by (i) lower numbers of isolated fungal species from mites than from seeds; (ii) lower Shannon-Weaver diversity index in the fungal communities isolated from mites than from seeds; (iii) significant effect of mites/seeds as environmental variables on fungal presence in a redundancy analysis (RDA); (iv) differences in composition of isolated fungi between mite species shown by RDA. The results of our work support the hypothesis that mite-fungal interactions are dependent on mite species. The fungi attractive to mites seem to be dispersed more than others. The selectivity of fungal transport via mites enhances their pest importance.

  2. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  3. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  4. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

  5. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  6. Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Londono, Jorge E. G.; Ambye-Jensen, Morten

    2016-01-01

    Background: Utilization of lignocellulosic feedstocks for bioenergy production in developing countries demands competitive but low-tech conversion routes. White-rot fungi (WRF) inoculation and ensiling are two methods previously investigated for low-tech pretreatment of biomasses such as wheat...

  7. Genetic analysis of rust resistance genes in global wheat cultivars: an overview

    International Nuclear Information System (INIS)

    Aktar-Uz-Zaman, Md; Tuhina-Khatun, Mst; Hanafi, Mohamed Musa; Sahebi, Mahbod

    2017-01-01

    Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding

  8. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Science.gov (United States)

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar

  9. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  10. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae.

    Science.gov (United States)

    Islam, M Tofazzal; Croll, Daniel; Gladieux, Pierre; Soanes, Darren M; Persoons, Antoine; Bhattacharjee, Pallab; Hossain, Md Shaid; Gupta, Dipali Rani; Rahman, Md Mahbubur; Mahboob, M Golam; Cook, Nicola; Salam, Moin U; Surovy, Musrat Zahan; Sancho, Vanessa Bueno; Maciel, João Leodato Nunes; NhaniJúnior, Antonio; Castroagudín, Vanina Lilián; Reges, Juliana T de Assis; Ceresini, Paulo Cezar; Ravel, Sebastien; Kellner, Ronny; Fournier, Elisabeth; Tharreau, Didier; Lebrun, Marc-Henri; McDonald, Bruce A; Stitt, Timothy; Swan, Daniel; Talbot, Nicholas J; Saunders, Diane G O; Win, Joe; Kamoun, Sophien

    2016-10-03

    In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.

  11. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides.

    Science.gov (United States)

    Gu, Qin; Ji, Tiantian; Sun, Xiao; Huang, Hai; Zhang, Hao; Lu, Xi; Wu, Liming; Huo, Rong; Wu, Huijun; Gao, Xuewen

    2017-10-16

    Histone methylation plays important biological roles in eukaryotic cells. Methylation of lysine 9 at histone H3 (H3K9me) is critical for regulating chromatin structure and gene transcription. Dim5 is a lysine histone methyltransferase (KHMTase) enzyme, which is responsible for the methylation of H3K9 in eukaryotes. In the current study, we identified a single ortholog of Neurospora crassa Dim5 in Fusarium verticillioides. In this study, we report that FvDim5 regulates the trimethylation of H3K9 (H3K9me3). The FvDIM5 deletion mutant (ΔFvDim5) showed significant defects in conidiation, perithecium production and fungal virulence. Unexpectedly, we found that deletion of FvDIM5 resulted in increased tolerance to osmotic stresses and upregulated FvHog1 phosphorylation. These results indicate the importance of FvDim5 for the regulation of fungal development, pathogenicity and osmotic stress responses in F. verticillioides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.

    Science.gov (United States)

    Kettle, Andrew J; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M

    2015-12-01

    Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  13. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress

    DEFF Research Database (Denmark)

    Cabral, Carmina; Ravnskov, Sabine; Tringovska, Ivanka

    2016-01-01

    - and micronutrient concentrations in aboveground biomass; evaluation of AM fungal structures in roots and assessment of light-use efficiency of plants. Results AM increased grain number in wheat under heat-stress, and altered nutrient allocation and tiller nutrient composition. Heat increased number of arbuscules...... in wheat root, whereas number of vesicles and total colonization were unaffected. Heat increased photosystem II yield and the electron transfer rate, whereas non-photochemical quenching decreased during the first 2 days of heat-stress. Conclusions Nutrient allocation and –composition in wheat grown under...

  14. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes

    NARCIS (Netherlands)

    Kuijk, van Sandra J.A.; Sonnenberg, Anton S.M.; Baars, Johan J.P.; Hendriks, Wouter H.; Río, del José C.; Rencoret, Jorge; Gutiérrez, Ana; Ruijter, de Norbert C.A.; Cone, John W.

    2017-01-01

    Wheat straw and oak wood chips were incubated with Ceriporiopsis subvermispora and Lentinula edodes for 8 weeks. Samples from the fungal treated substrates were collected every week for chemical characterization. L. edodes continuously grew during the 8 weeks on both wheat straw and oak wood chips,

  15. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N

    2016-09-26

    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

  16. How Did Host Domestication Modify Life History Traits of Its Pathogens?

    Directory of Open Access Journals (Sweden)

    Marie De Gracia

    Full Text Available Understanding evolutionary dynamics of pathogens during domestication of their hosts and rise of agro-ecosystems is essential for durable disease management. Here, we investigated changes in life-history traits of the fungal pathogen Venturia inaequalis during domestication of the apple. Life traits linked to fungal dispersal were compared between 60 strains that were sampled in domestic and wild habitats in Kazakhstan, the center of origin of both host and pathogen. Our two main findings are that transition from wild to agro-ecosystems was associated with an increase of both spore size and sporulation capacity; and that distribution of quantitative traits of the domestic population mostly overlapped with those of the wild population. Our results suggest that apple domestication had a considerable impact on fungal characters linked to its dispersal through selection from standing phenotypic diversity. We showed that pestification of V. inaequalis in orchards led to an enhanced allocation in colonization ability from standing variation in the wild area. This study emphasizes the potential threat that pathogenic fungal populations living in wild environments represent for durability of resistance in agro-ecosystems.

  17. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces destructans.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available Current investigations of bat White Nose Syndrome (WNS and the causative fungus Pseudogymnoascus (Geomyces destructans (Pd are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD and culture-independent (CI methods to catalogue all fungi ('mycobiome'. CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS. The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS.

  18. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans.

    Science.gov (United States)

    Zhang, Tao; Victor, Tanya R; Rajkumar, Sunanda S; Li, Xiaojiang; Okoniewski, Joseph C; Hicks, Alan C; Davis, April D; Broussard, Kelly; LaDeau, Shannon L; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi ('mycobiome'). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS.

  19. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  20. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    Science.gov (United States)

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  1. Influence of Cultivars and Seed Thermal Treatment on the Development of Fungal Pathogens in Carrot and Onion Plants

    Directory of Open Access Journals (Sweden)

    Martin Koudela

    2016-01-01

    Full Text Available Carrot and onion are vegetables representing an important segment of fresh market. They suffer from serious fungal diseases that can inflict great damage on crops, i.e. alternaria leaf blight, peronospora downy mildew, and botrytis neck rot. The resistance of selected carrot and onion cultivars important for the production of vegetables in the Czech Republic was tested by exposure to targeted infection by the above fungal pathogens. The exposure of eleven carrot cultivars to spores of Alternaria dauci showed that the most resistant and sensitive cultivars were Katrin, Cortina F1, Afalon F1 and Favorit, Tinga, Berlika F1, respectively. A targeted infection of onion cultivars with Botrytis aclada clustered them into three groups: Amfora F1, Bolero, Tosca, Triumf F1 (strong resistance, Avalon, Grenada (medium resistance, Alice, Karmen, Všetana (low resistance. Similar groups were distinguished also after the infection with Peronospora destructor: Avalon, Bolero, Tosca (strong resistance, Alice, Amfora F1, Grenada, Karmen, Triumf F1 (medium resistance,Všetana (low resistance. Hot water treatment of carrot seeds applied after the inoculation with A. dauci decreased the development of the infection 1.3-2.3-fold, whereas the protective effect observed with onion seeds against the infection by P. destructor and B. aclada was lower.

  2. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jeffrey Tomalka

    2011-12-01

    Full Text Available Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1β production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection.

  3. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  4. Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast

    NARCIS (Netherlands)

    Castroagudín, V.L.; Moreira, S.I.; Pereira, D.A.S.; Moreira, S.S.; Brunner, P.C.; Maciel, J.L.N.; Crous, P.W.; McDonald, B.A.; Alves, E.; Ceresini, P.C.

    2016-01-01

    Pyricularia oryzae is a species complex that causes blast disease on more than 50 species of poaceous plants. Pyricularia oryzae has a worldwide distribution as a rice pathogen and in the last 30 years emerged as an important wheat pathogen in southern Brazil. We conducted phylogenetic analyses

  5. Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus Mycosphaerella graminicola Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat1[W][OA

    Science.gov (United States)

    Marshall, Rosalind; Kombrink, Anja; Motteram, Juliet; Loza-Reyes, Elisa; Lucas, John; Hammond-Kosack, Kim E.; Thomma, Bart P.H.J.; Rudd, Jason J.

    2011-01-01

    Secreted effector proteins enable plant pathogenic fungi to manipulate host defenses for successful infection. Mycosphaerella graminicola causes Septoria tritici blotch disease of wheat (Triticum aestivum) leaves. Leaf infection involves a long (approximately 7 d) period of symptomless intercellular colonization prior to the appearance of necrotic disease lesions. Therefore, M. graminicola is considered as a hemibiotrophic (or necrotrophic) pathogen. Here, we describe the molecular and functional characterization of M. graminicola homologs of Ecp6 (for extracellular protein 6), the Lysin (LysM) domain-containing effector from the biotrophic tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum, which interferes with chitin-triggered immunity in plants. Three LysM effector homologs are present in the M. graminicola genome, referred to as Mg3LysM, Mg1LysM, and MgxLysM. Mg3LysM and Mg1LysM genes were strongly transcriptionally up-regulated specifically during symptomless leaf infection. Both proteins bind chitin; however, only Mg3LysM blocked the elicitation of chitin-induced plant defenses. In contrast to C. fulvum Ecp6, both Mg1LysM and Mg3LysM also protected fungal hyphae against plant-derived hydrolytic enzymes, and both genes show significantly more nucleotide polymorphism giving rise to nonsynonymous amino acid changes. While Mg1LysM deletion mutant strains of M. graminicola were fully pathogenic toward wheat leaves, Mg3LysM mutant strains were severely impaired in leaf colonization, did not trigger lesion formation, and were unable to undergo asexual sporulation. This virulence defect correlated with more rapid and pronounced expression of wheat defense genes during the symptomless phase of leaf colonization. These data highlight different functions for MgLysM effector homologs during plant infection, including novel activities that distinguish these proteins from C. fulvum Ecp6. PMID:21467214

  6. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    Science.gov (United States)

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value. Copyright © 2016. Published by Elsevier B.V.

  7. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies

    Directory of Open Access Journals (Sweden)

    Maria N. Gamaletsou

    2018-02-01

    Full Text Available Invasive fungal infections caused by drug-resistant organisms are an emerging threat to heavily immunosuppressed patients with hematological malignancies. Modern early antifungal treatment strategies, such as prophylaxis and empirical and preemptive therapy, result in long-term exposure to antifungal agents, which is a major driving force for the development of resistance. The extended use of central venous catheters, the nonlinear pharmacokinetics of certain antifungal agents, neutropenia, other forms of intense immunosuppression, and drug toxicities are other contributing factors. The widespread use of agricultural and industrial fungicides with similar chemical structures and mechanisms of action has resulted in the development of environmental reservoirs for some drug-resistant fungi, especially azole-resistant Aspergillus species, which have been reported from four continents. The majority of resistant strains have the mutation TR34/L98H, a finding suggesting that the source of resistance is the environment. The global emergence of new fungal pathogens with inherent resistance, such as Candida auris, is a new public health threat. The most common mechanism of antifungal drug resistance is the induction of efflux pumps, which decrease intracellular drug concentrations. Overexpression, depletion, and alteration of the drug target are other mechanisms of resistance. Mutations in the ERG11 gene alter the protein structure of C-demethylase, reducing the efficacy of antifungal triazoles. Candida species become echinocandin-resistant by mutations in FKS genes. A shift in the epidemiology of Candida towards resistant non-albicans Candida spp. has emerged among patients with hematological malignancies. There is no definite association between antifungal resistance, as defined by elevated minimum inhibitory concentrations, and clinical outcomes in this population. Detection of genes or mutations conferring resistance with the use of molecular methods

  8. Biodegradation of wheat straw by different isolates of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    A.R. Astaraei

    2016-04-01

    Full Text Available Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber ADF and NDF (Neutral Detergent Fiber reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

  9. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards.

    Science.gov (United States)

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-02-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total of 111 fungal genera belonging to 4 phyla were identified, showing remarkable fungal diversity on the apple surface. Comparative analysis of rural samples harboured higher fungal diversity than those from peri-urban orchards. In addition, fungal composition varied significantly across apple samples. At the genus level, the protective genera Coniothyrium, Paraphaeosphaeria and Periconia were enriched in rural samples. The pathogenic genera Acremonium, Aspergillus, Penicillium and Tilletiposis were enriched in peri-urban samples. Our findings indicate that rural samples maintained more diverse fungal communities on apple surfaces, whereas peri-urban-planted apple carried potential pathogenic risks. This study sheds light on ways to improve fruit cultivation and disease prevention practices.

  10. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  11. Fungal infections in animals: a patchwork of different situations

    DEFF Research Database (Denmark)

    Seyedmousavi, Seyedmojtaba; Bosco, Sandra De M G; De Hoog, Sybren

    2018-01-01

    The importance of fungal infections in both human and animals has increased over the last decades. This article represents an overview of the different categories of fungal infections that can be encountered in animals originating from environmental sources without transmission to humans....... In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed....... Opportunistic mycoses are responsible for a wide range of diseases from localized infections to fatal disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis and infections caused by melanized fungi. The amphibian fungal disease chytridiomycosis and the Bat White-nose syndrome...

  12. Mycoflora study in a wheat flour mill of Argentina

    Science.gov (United States)

    Aringoli, E.E.; Cambiagno, D.E.; Chiericatti, C.A.; Basilico, J.C.; Basilico, M.L.Z.

    2012-01-01

    The mycoflora of the environment: wheat conditioning, milling and screening, and filling zone, as well as, raw material -wheat-, intermediate product -grits- and end product -flour- on day 1, and after cleaning improvements -days 45 and 90- were studied in an Argentine wheat mill. Samples were incubated at 28°C for 5–7 days on Malt Extract Agar with chloramphenicol (100 mg L-1) and the results were expressed in colony forming units per cubic meter of air (CFU m-3) or per gram of sample (CFU g-1), respectively. Fungal genera and species were isolated and identified and the potential toxicogenic capacity of the Aspergillus flavus and Fusarium graminearum isolated was studied. Time-Place and Time-Product multifactorial ANOVA were carried out. After cleaning improvements, CFU m-3 of air decreased as a function of time. Cladosporium and Alternaria were abundant in every zone, Aspergillus predominated in the wheat conditioning zone and Penicillium and Eurotium decreased with time. Wheat was more contaminated than grits and flour; Aspergillus, Eurotium and Mucoraceae family were the most abundant. Deoxynivalenol was above the levels allowed in wheat, being acceptable in grits and flour. Aflatoxin and Zearalenone showed acceptable levels. When studied in vitro, 53% of Aspergillus flavus and 100% of Fusarium graminearum isolates, produced Total Aflatoxins, and Deoxynivalenol and Zearalenone, respectively. PMID:24031975

  13. Mycoflora study in a wheat flour mill of Argentina

    Directory of Open Access Journals (Sweden)

    E.E. Aringoli

    2012-12-01

    Full Text Available The mycoflora of the environment: wheat conditioning, milling and screening, and filling zone, as well as, raw material -wheat-, intermediate product -grits- and end product -flour- on day 1, and after cleaning improvements -days 45 and 90- were studied in an Argentine wheat mill. Samples were incubated at 28°C for 5-7 days on Malt Extract Agar with chloramphenicol (100 mg L-1 and the results were expressed in colony forming units per cubic meter of air (CFU m-3 or per gram of sample (CFU g-1, respectively. Fungal genera and species were isolated and identified and the potential toxicogenic capacity of the Aspergillus flavus and Fusarium graminearum isolated was studied. Time-Place and Time-Product multifactorial ANOVA were carried out. After cleaning improvements, CFU m-3 of air decreased as a function of time. Cladosporium and Alternaria were abundant in every zone, Aspergillus predominated in the wheat conditioning zone and Penicillium and Eurotium decreased with time. Wheat was more contaminated than grits and flour; Aspergillus, Eurotium and Mucoraceae family were the most abundant. Deoxynivalenol was above the levels allowed in wheat, being acceptable in grits and flour. Aflatoxin and Zearalenone showed acceptable levels. When studied in vitro, 53% of Aspergillus flavus and 100% of Fusarium graminearum isolates, produced Total Aflatoxins, and Deoxynivalenol and Zearalenone, respectively.

  14. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  15. The virulence of human pathogenic fungi: notes from the South of France.

    Science.gov (United States)

    Reedy, Jennifer L; Bastidas, Robert J; Heitman, Joseph

    2007-08-16

    The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.

  16. Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2009-08-01

    Full Text Available Abstract Background Whole genome transcriptomics analysis is a very powerful approach because it gives an overview of the activity of genes in certain cells or tissue types. However, biological interpretation of such results can be rather tedious. MapMan is a software tool that displays large datasets (e.g. gene expression data onto diagrams of metabolic pathways or other processes and thus enables easier interpretation of results. The grapevine (Vitis vinifera genome sequence has recently become available bringing a new dimension into associated research. Two microarray platforms were designed based on the TIGR Gene Index database and used in several physiological studies. Results To enable easy and effective visualization of those and further experiments, annotation of Vitis vinifera Gene Index (VvGI version 5 to MapMan ontology was set up. Due to specificities of grape physiology, we have created new pictorial representations focusing on three selected pathways: carotenoid pathway, terpenoid pathway and phenylpropanoid pathway, the products of these pathways being important for wine aroma, flavour and colour, as well as plant defence against pathogens. This new tool was validated on Affymetrix microarrays data obtained during berry ripening and it allowed the discovery of new aspects in process regulation. We here also present results on transcriptional profiling of grape plantlets after exposal to the fungal pathogen Eutypa lata using Operon microarrays including visualization of results with MapMan. The data show that the genes induced in infected plants, encode pathogenesis related proteins and enzymes of the flavonoid metabolism, which are well known as being responsive to fungal infection. Conclusion The extension of MapMan ontology to grapevine together with the newly constructed pictorial representations for carotenoid, terpenoid and phenylpropanoid metabolism provide an alternative approach to the analysis of grapevine gene expression

  17. Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota.

    Science.gov (United States)

    Adhikari, Tika B; Gurung, Suraj; Hansen, Jana M; Bonman, J Michael

    2012-04-01

    Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become more prevalent recently in North Dakota and neighboring states. From five locations in North Dakota, 226 strains of X. translucens pv. undulosa were collected and evaluated for pathogenicity and then selected strains were inoculated on a set of 12 wheat cultivars and other cereal hosts. The genetic diversity of all strains was determined using repetitive sequence-based polymerase chain reaction (rep-PCR) and insertion sequence-based (IS)-PCR. Bacterial strains were pathogenic on wheat and barley but symptom severity was greatest on wheat. Strains varied greatly in aggressiveness, and wheat cultivars also showed differential responses to several strains. The 16S ribosomal DNA sequences of the strains were identical, and distinct from those of the other Xanthomonas pathovars. Combined rep-PCR and IS-PCR data produced 213 haplotypes. Similar haplotypes were detected in more than one location. Although diversity was greatest (≈92%) among individuals within a location, statistically significant (P ≤ 0.001 or 0.05) genetic differentiation among locations was estimated, indicating geographic differentiation between pathogen populations. The results of this study provide information on the pathogen diversity in North Dakota, which will be useful to better identify and characterize resistant germplasm.

  18. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Science.gov (United States)

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  19. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Directory of Open Access Journals (Sweden)

    Penny F Langhammer

    Full Text Available Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39, and one recently thawed from cryopreserved stock (JEL427-P9. In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  20. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection.

    Science.gov (United States)

    Kandhavelu, Jeyalakshmi; Demonte, Naveen Luke; Namperumalsamy, Venkatesh Prajna; Prajna, Lalitha; Thangavel, Chitra; Jayapal, Jeya Maheshwari; Kuppamuthu, Dharmalingam

    2017-01-30

    in the patient tear. Negative regulators of these defense pathways were also found in patient tear indicating a fine balance between pathogen clearance and host tissue destruction during fungal infection depending upon the individual specific host - pathogen interaction. This understanding could be used to predict the progression and outcome of infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Genomic dissection of nonhost resistance to wheat stem rust in Brachypodium distachyon

    Science.gov (United States)

    Wheat stem rust caused by the fungus Puccinia graminis f.sp. tritici (Pgt) is a devastating disease that has largely been controlled for decades by the deployment of resistance genes. However, new races of this pathogen have emerged that overcome many important wheat stem rust resistance genes used ...

  2. ENHANCEMENT IN IN VITRO DIGESTIBILITY OF WHEAT STRAW OBTAINED FROM DIFFERENT GEOGRAPHICAL REGIONS DURING SOLID STATE FERMENTATION BY WHITE ROT FUNGI

    OpenAIRE

    Rakesh K. Sharma; Daljit S. Arora

    2009-01-01

    The study was carried out to find out the differences in the chemical composition of wheat straw obtained from three different regions of India, to compare their susceptibility to fungal degradation, and subsequently to evaluate the correlation between lignin loss and improvement in in vitro digestibility. Four Phlebia species were used to degrade different wheat straw samples during 30 days of incubation. In wheat straw obtained from central zone of India, most of the fungi were more selecti...

  3. Functional analysis of a Wheat Homeodomain protein, TaR1, reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus Zymoseptoria tritici.

    Science.gov (United States)

    Lee, Jack; Orosa, Beatriz; Millyard, Linda; Edwards, Martin; Kanyuka, Kostya; Gatehouse, Angharad; Rudd, Jason; Hammond-Kosack, Kim; Pain, Naomi; Sadanandom, Ari

    2015-04-01

    A distinguishing feature of Septoria leaf blotch disease in wheat is the long symptomless growth of the fungus amongst host cells followed by a rapid transition to necrotrophic growth resulting in disease lesions. Global reprogramming of host transcription marks this switch to necrotrophic growth. However no information exists on the components that bring about host transcriptional reprogramming. Gene-silencing, confocal-imaging and protein-protein interaction assays where employed to identify a plant homeodomain (PHD) protein, TaR1 in wheat that plays a critical role during the transition from symptomless to necrotrophic growth of Septoria. TaR1-silenced wheat show earlier symptom development upon Septoria infection but reduced fungal sporulation indicating that TaR1 is key for prolonging the symptomless phase and facilitating Septoria asexual reproduction. TaR1 is localized to the nucleus and binds to wheat Histone 3. Trimethylation of Histone 3 at lysine 4 (H3K4) and lysine 36 (H3K36) are found on open chromatin with actively transcribed genes, whereas methylation of H3K27 and H3K9 are associated with repressed loci. TaR1 specifically recognizes dimethylated and trimethylated H3K4 peptides suggesting that it regulates transcriptional activation at open chromatin. We conclude that TaR1 is an important component for the pathogen life cycle in wheat that promotes successful colonization by Septoria. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    Science.gov (United States)

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions

    NARCIS (Netherlands)

    Mao, Lei; Sonnenberg, Anton S.M.; Hendriks, Wouter H.; Cone, John W.

    2018-01-01

    BACKGROUND: No attention has been paid so far to the preservation of fungal-treated lignocellulose for longer periods. In the present study, we treated wheat straw (WS) with the white-rot fungi Ceriporiopsis subvermispora and Lentinula edodes for 8weeks and assessed changes in pH, chemical

  6. Airborne hyperspectral imaging for the detection of powdery mildew in wheat

    Science.gov (United States)

    Franke, Jonas; Mewes, Thorsten; Menz, Gunter

    2008-08-01

    Plant stresses, in particular fungal diseases, show a high variability in spatial and temporal dimension with respect to their impact on the host. Recent "Precision Agriculture"-techniques allow for a spatially and temporally adjusted pest control that might reduce the amount of cost-intensive and ecologically harmful agrochemicals. Conventional stressdetection techniques such as random monitoring do not meet demands of such optimally placed management actions. The prerequisite is an accurate sensor-based detection of stress symptoms. The present study focuses on a remotely sensed detection of the fungal disease powdery mildew (Blumeria graminis) in wheat, Europe's main crop. In a field experiment, the potential of hyperspectral data for an early detection of stress symptoms was tested. A sophisticated endmember selection procedure was used and, additionally, a linear spectral mixture model was applied to a pixel spectrum with known characteristics, in order to derive an endmember representing 100% powdery mildew-infected wheat. Regression analyses of matched fraction estimates of this endmember and in-field-observed powdery mildew severities showed promising results (r=0.82 and r2=0.67).

  7. Phenotypic and molecular characterization of the causal agent of chafer beetle mortality in the wheat fields of the Kurdistan province, Iran

    Directory of Open Access Journals (Sweden)

    Karimi Keivan

    2015-07-01

    Full Text Available We report the first case of chafer beetle [Anisoplia austriaca (Herbst 1783] mortality caused by Actinomucor elegans var. elegans in wheat fields of the Kurdistan province, Iran. For three years, dead larvae of Anisoplia austriaca were collected from wheat fields of the Kurdistan province. Similar isolates of a fast-growing fungus were recovered from all samples. The fungal isolates were identified as A. elegans var. elegans based on morphological and cultural characteristics. The identity of the species was further confirmed using sequence data of the ITS (Internal Transcribed Spacer region of ribosomal DNA. Koch’s postulates were fulfilled by the inoculation of the larvae of A. austriaca and Galleria mellonella (Linnaeus, 1758 (as the model insect using the spore suspension of A. elegans var. elegans. The viability of sporangiospores was evaluated using a spore dilution technique on germination medium. The results on the pathogenicity (100% mortality in A. austriaca larvae and viability tests (germination: 95.45% demonstrated that A. elegans var. elegans can be considered as a potential biocontrol agent against the chafer beetle. Field experiments are still required to evaluate the capacity of A. elegans as a biological control agent.

  8. Identification of fungal plant pathogens associated with oak (Quercus humboldtii Bonpl.), In the municipalities of Encino (Santander), Arcabuco, and Tipacoque (Boyaca)

    International Nuclear Information System (INIS)

    Monroy Castro, Leidi Yunari; Lizarazo Forero, Luz Marina

    2010-01-01

    The objectives of this study were to isolate and determine the presence of the pathogen Phytophthora ramorum and other potential pathogens of Quercus humboldtii, and evaluate the possibility of using the antagonistic capacity of bacteria isolated from rhizosphere and phyllosphere against them. The study was conducted in the conservation corridor Guantiva - La Rusia - Iguaque, in the municipalities of Encino (Santander), Arcabuco and Tipacoque (Boyaca). The phytopathogenic fungi were isolated using direct seeding of leaves with symptoms of fungal infection in OGY, Sabouraud, and PDA + Lactic acid at 0.2%. We used the plate counting technique for the isolation of bacteria from rhizospheric and bulk soil. Phytophthora ramorum was not isolated, but phytopathogenic fungi of the genus Fusarium spp., and Pestalotia spp., were obtained in the isolates. Microbial populations of rhizospheric and bulk soil were scarce, exhibited low diversity, and were dominated by few morphotypes. We identified four species of bacteria: Pseudomonas fluorescens, Bacillus macerans, Pinus sylvestris and Staphylococcus epidermidis. The phyllosphere community was dominated by Pseudomonas fluorescens. The species Pseudomonas fluorescens and Pinus sylvestris did not exhibited antagonistic properties against Pestalotia spp. Further studies are required to confirm Fusarium spp., and Pestalotia spp., pathogenic activity against Quercus humboldtii.

  9. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    Science.gov (United States)

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  10. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    . Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:24422981

  11. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges; Langin, Thierry

    2015-02-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains.

  12. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    Science.gov (United States)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  13. Identification of some human pathogenic fungi using four DNA ...

    African Journals Online (AJOL)

    Stocks from pathogenic fungi isolated from infected areas on different patients, around Lagos-Nigeria were analysed using molecular methods (DNA extraction, PCR-RFLP and DNA sequencing). Four DNA extraction protocols were employed in the identification of the fungal isolates. Sixteen different fungal isolates were ...

  14. Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis

    NARCIS (Netherlands)

    Poietti, S.; Bertini, L.; Ent, S. van der; Leon Reyes, H.A.; Pieterse, C.M.J.; Tucci, M.; Caporale, C.; Caruso, C.

    2011-01-01

    WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and

  15. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  16. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  17. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.

    Science.gov (United States)

    Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S

    2015-03-01

    Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.

  18. Fungal cell gigantism during mammalian infection.

    Directory of Open Access Journals (Sweden)

    Oscar Zaragoza

    2010-06-01

    Full Text Available The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  19. Fungal cell gigantism during mammalian infection.

    Science.gov (United States)

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  20. Occurrence of root parsley pathogens inhabiting seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available The studies on root parsley pathogens inhabiting seeds were conducted during 1981-1988 and in 1993. Filter paper method with prefreezing and keeping under light was used. Each test sample comprised 500 seeds. Pathogenicity of collected fungal isolates was tested following two laboratory methods. 238 seed samples were studied. 18 fungal species were found but only 7 proved to be important pathogens of root parsley. The most common inhabitants of root parsley seeds were Alternaria spp. A.allernata occurred on 74,8% of seeds but only a few isolates showed to be slightly pathogenic while A.petroselini and A.radicina were higly pathogenic and inhabited 11,4 and 4,2% of seeds, respectively. The second group of important pathogens were species of Fusarium found on 3,9% of seeds. F.avenaceum dominated as it comprised 48% of Fusarium isolates, the next were as follow: F.culmorum - 20%, F.equiseti - 15%, F.solani - 8%, F.oxysporum - 7% and F.dimerum -2%. Some fungi like Botrytis cinerea, Septoria petroselini and Phoma spp. inhabited low number of seeds, respectively O,4; 0,5 and 0,8%, but they were highly pathogenic to root parsley. The fungi: Bipolaris sorokiniana, Drechslera biseptata, Stemphylium botryosum and Ulocludium consortiale showed slight pathogenicity. They were isolated from 3,8% of seeds.

  1. Fungal pathogens and antagonists in root-soil zone in organic and integrated systems of potato production

    Directory of Open Access Journals (Sweden)

    Lenc Leszek

    2016-04-01

    Full Text Available Occurrence of culturable Fungi and Oomycota in root-soil habitat of potato cv. Owacja in organic and integrated production systems at Osiny (northern Poland was compared in 2008-2010. The densities of both pathogens were significantly greater in the organic system. The eudominant fungal taxa (with frequency > 10% in at least one habitat included species of Fusarium + Gibberella + Haematonectria, Penicillium, Phoma and Trichoderma. The dominant taxa (with frequency 5-10% included species from 13 genera. In the rhizoplane, rhizosphere and non-rhizosphere soil, the total density of potential pathogens was greater in the integrated system, and of potential antagonists in the organic system. Among eudominant and dominant pathogens, Fusarium oxysporum and Gibellulopsis nigrescens occurred at greater density in the integrated system and Haematonectria haematococca and Phoma spp. in the organic system. Among eudominant antagonists, Trichoderma species occurred at greater density in the organic system. The organic system provided more disease suppressive habitat than the integrated system. The occurrence of brown leaf spot and potato blight was however similar in both systems. The mean yield of organic potatoes (24.9 t · ha-1 was higher than the mean organic potato yield in Poland (21.0 t · ha-1 and similar to the mean in other European countries (Germany 25.1 t · ha-1, Great Britain 25.0 t · ha-1. The organic system, based on a 5-year rotation, with narrow-leafed lupin, white mustard and buckwheat as a cover crop, inorganic fertilization based on ground rock phosphate + potassium sulphate, and biological and chemical control of insects and diseases (Bacillus thuringiensis ssp. tenebrionis + copper hydroxide + copper oxychloride, may be recommended for use in central Europe.

  2. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions.

    Science.gov (United States)

    Kidane, Yared H; Lawrence, Christopher; Murali, T M

    2013-10-07

    Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host's tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Our computational approaches and methodologies described here can now be applied to

  3. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico.

    Science.gov (United States)

    Cerón-Bustamante, Minely; Ward, Todd J; Kelly, Amy; Vaughan, Martha M; McCormick, Susan P; Cowger, Christina; Leyva-Mir, Santos G; Villaseñor-Mir, Héctor E; Ayala-Escobar, Victoria; Nava-Díaz, Cristian

    2018-05-20

    Fusarium Head Blight (FHB) is a destructive disease of small grain cereals and a major food safety concern. Epidemics result in substantial yield losses, reduction in crop quality, and contamination of grains with trichothecenes and other mycotoxins. A number of different fusaria can cause FHB, and there are significant regional differences in the occurrence and prevalence of FHB pathogen species and their associated mycotoxins. Information on FHB pathogen and mycotoxin diversity in Mexico has been extremely limited, but is needed to improve disease and mycotoxin control efforts. To address this, we used a combination of DNA sequence-based methods and in-vitro toxin analyses to characterize FHB isolates collected from symptomatic wheat in Mexico during the 2013 and 2014 growing seasons. Among 116 Fusarium isolates, we identified five species complexes including nine named Fusarium species and 30 isolates representing unnamed or potentially novel species. Significant regional differences (P 90% of isolates from the Mixteca region in southern Mexico, whereas F. avenaceum and related members of the F. tricinctum species complex (FTSC) accounted for nearly 75% of isolates from the Highlands region in Central Mexico. F. graminearum, which is the dominant FHB pathogen in other parts of North America, was not present among the isolates from Mexico. F. boothii isolates had the 15-acetyldeoxynivalenol toxin type, and some of the minor FHB species produced trichothecenes, such as nivalenol, T-2 toxin and diacetoxyscirpenol. None of the FTSC isolates tested was able to produce trichothecenes, but many produced chlamydosporol and enniatin B. Published by Elsevier B.V.

  4. [Animals as a potential source of human fungal infections].

    Science.gov (United States)

    Dworecka-Kaszak, Bozena

    2008-01-01

    Changing environment is a reason, that many saprotrophic fungi became opportunists and in the end also maybe a pathogenic. Host specific adaptation is not so strong among fungi, so there are many common fungal pathogens for people and for animals. Animals suffering from dermatomycosis are well recognize as source of human superficial mycoses. Breeding of different exotic animals such as parrots, various Reptiles and Amphibians, miniature Rodents and keeping them as a pets in the peoples houses, have become more and more popular in the recent years. This article is shortly presenting which animals maybe a potential source of fungal infections for humans. Looking for the other mycoses as systemic mycoses, especially candidiasis or aspergilosis there are no data, which allow excluding sick animals as a source of infection for human, even if those deep mycoses have endogenic reactivation mechanism. Immunocompromised people are in high-risk group when they take care of animals. Another important source of potentially pathogenic, mostly air-born fungi may be animal use in experimental laboratory work. During the experiments is possible that laboratory workers maybe hurt and these animals and their environment, food and house boxes could be the possible source of microorganisms, pathogenic for humans or other animals. Unusual way to inoculate these potentially pathogens into the skin of laboratory personnel may cause granulomatous, local lesions on their hands.

  5. The genomic organization of plant pathogenicity in Fusarium species

    NARCIS (Netherlands)

    Rep, M.; Kistler, H.C.

    2010-01-01

    Comparative genomics is a powerful tool to infer the molecular basis of fungal pathogenicity and its evolution by identifying differences in gene content and genomic organization between fungi with different hosts or modes of infection. Through comparative analysis, pathogenicity-related chromosomes

  6. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi

    Science.gov (United States)

    Swainsonine, a cytotoxic fungal alkaloid and a potential cancer therapy drug, is produced by the insect pathogen and plant symbiont, Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glo...

  7. Phylogenetics of a fungal invasion: origins and widespread dispersal of white-nose syndrome

    Science.gov (United States)

    Kevin P. Drees; Jeffrey M. Lorch; Sebastien J. Puechmaille; Katy L. Parise; Gudrun Wibbelt; Joseph R. Hoyt; Keping Sun; Ariunbold Jargalsaikhan; Munkhnast Dalannast; Jonathan M. Palmer; Daniel L. Lindner; A. Marm Kilpatrick; Talima Pearson; Paul S. Keim; David S. Blehert; Jeffrey T. Foster; Joseph. Heitman

    2017-01-01

    Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has...

  8. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Mansoor eKarimi Jashni

    2015-08-01

    Full Text Available Upon host penetration, fungal pathogens secrete a plethora of effectors to promote disease, including proteases that degrade plant antimicrobial proteins, and protease inhibitors (PIs that inhibit plant proteases with antimicrobial activity. Conversely, plants secrete proteases and PIs to protect themselves against pathogens or to mediate recognition of pathogen proteases and PIs, which leads to induction of defense responses. Many examples of proteases and PIs mediating effector-triggered immunity in host plants have been reported in the literature, but little is known about their role in compromising basal defense responses induced by microbe-associated molecular patterns. Recently, several reports appeared in literature on secreted fungal proteases that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs that compromise their activities. This prompted us to review the recent advances on proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from plants and their fungal pathogens play an important role in the arms race between plants and pathogens, which has resulted in co-evolutionary diversification and adaptation shaping pathogen lifestyles.

  9. Pathogenicity gene variations within the order Entomophthorales

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Lange, Lene

    Fungi within the order Entomophthorales (subphylum Entomophthoromycotina) are obligate biotrophic pathogens of arthropods with a remarkable narrow host range. Infection takes place through the cuticle when conidia hit a susceptible host, facilitated by enzymatic and mechanical mechanisms. In the ...... pathogenicity genes within genera Entomophthora and Pandora, using fungal genomic DNA originating from field-collected, infected insect host species of dipteran (flies, mosquitoes) or hemipteran (aphid) origin.......Fungi within the order Entomophthorales (subphylum Entomophthoromycotina) are obligate biotrophic pathogens of arthropods with a remarkable narrow host range. Infection takes place through the cuticle when conidia hit a susceptible host, facilitated by enzymatic and mechanical mechanisms......, conidia are produced and discharged when humidity gets high—usually during night. In an earlier secretome study of field-collected grain aphids (Sitobion avenae) infected with entomophthoralean fungi, a number of pathogenesis-related, secreted enzymes were discovered (Fungal Genetics and Biology 2011, vol...

  10. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  11. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    Science.gov (United States)

    While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exp...

  12. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum

    Science.gov (United States)

    The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the TTKSK (Ug99) race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat ...

  13. In vitro inhibition of pathogenic Verticillium dahliae, causal agent of ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... In addition, plant pathogens directly affected through antibiosis and ... Trichoderma strains for antagonistic activity on the fungal pathogen V. ... Five soil sub samples were taken from the area around the healthy potato roots ...

  14. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    Science.gov (United States)

    Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M

    2007-07-27

    Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  16. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Doehlemann, Gunther

    2013-01-01

    While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.

  17. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    I Russel Lee

    Full Text Available Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase, URO2 (HIU hydrolase, URO3 (OHCU decarboxylase, DAL1 (allantoinase, DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein, and URE1 (urease. All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.

  18. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.

    Science.gov (United States)

    Pradhan, Arnab; Herrero-de-Dios, Carmen; Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Kolmogorova, Aljona; Lee, Keunsook K; Martin, Brennan D; Ribeiro, Antonio; Bebes, Attila; Yuecel, Raif; Gow, Neil A R; Munro, Carol A; MacCallum, Donna M; Quinn, Janet; Brown, Alistair J P

    2017-05-01

    Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand

  19. Pathogen avoidance by insect predators

    OpenAIRE

    Meyling, Nicolai V.; Ormond, Emma; Roy, Helen E.; Pell, Judith K.

    2008-01-01

    Insects can detect cues related to the risk of attack by their natural enemies. Pathogens are among the natural enemies of insects and entomopathogenic fungi attack a wide array of host species. Evidence documents that social insects in particular have adapted behavioural mechanisms to avoid infection by fungal pathogens. These mechanisms are referred to as 'behavioural resistance'. However, there is little evidence for similar adaptations in non-social insects. We have conducted experime...

  20. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  1. The Hv-SGT1 gene from Haynaldia villosa contributes to resistances towards both biotrophic and hemi-biotrophic pathogens in common wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liping Xing

    Full Text Available The SGT1 protein is essential for R protein-mediated and PAMPs-triggered resistance in many plant species. Here we reported the isolation and characterization of the Hv-SGT1 gene from Haynaldiavillosa (2n = 14, VV. Analysis of the subcellular location of Hv-SGT1 by transient expression of a fusion to GFP indicated its presence in the cytoplasm and nucleus. Levels of Hv-SGT1 transcripts were increased by inoculation with either the biotrophic pathogen Blumeriagraminis DC. f. Sp. tritici (Bgt or the hemi-biotrophic pathogen Fusariumgraminearum (Fg. Levels of Hv-SGT1 showed substantial increase following treatment with H2O2 and methyl jasmonate (MeJA, only slightly induced following exposure to ethephon or abscisic acid, but not changed following exposure to salicylic acid. The demonstration that silencing of Hv-SGT1 substantially reduced resistance to Bgt indicated that Hv-SGT1 was an essential component of disease resistance in H. villosa. The over-expression of Hv-SGT1 in Yangmai 158 enhanced resistance to powdery mildew, and this correlated with increased levels of whole-cell reactive oxygen intermediates at the sites of penetration by the pathogens. Compared with wild-type plants, the expression levels of genes related to the H2O2 and JA signaling pathways were lower in the Hv-SGT1 silenced plants and higher in the Hv-SGT1 over-expressing plants. Therefore, the involvement of Hv-SGT1 in H2O2 production correlates with the hypersensitive response and jasmonic acid signaling. Our novel demonstration that wheat with over-expressed Hv-SGT1 showed enhanced resistance to both powdery mildew and FHB suggests that it could served as a transgenic genetic resource in wheat breeding for multiple disease resistance.

  2. Transcriptional control of drug resistance, virulence and immune system evasion in pathogenic fungi: a cross-species comparison.

    Directory of Open Access Journals (Sweden)

    Pedro Pais

    2016-10-01

    Full Text Available Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  3. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison.

    Science.gov (United States)

    Pais, Pedro; Costa, Catarina; Cavalheiro, Mafalda; Romão, Daniela; Teixeira, Miguel C

    2016-01-01

    Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis , and Candida tropicalis . Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.

  4. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  5. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections.

    Science.gov (United States)

    de Souza, Patrícia Canteri; Morey, Alexandre Tadachi; Castanheira, Gabriel Marcondes; Bocate, Karla Paiva; Panagio, Luciano Aparecido; Ito, Fabio Augusto; Furlaneto, Márcia Cristina; Yamada-Ogatta, Sueli Fumie; Costa, Idessânia Nazareth; Mora-Montes, Hector Manuel; Almeida, Ricardo Sergio

    2015-11-01

    Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.

  6. Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, P.K.; Kaur, J.; Saini, H.S.

    2015-07-01

    The cash crops grown in an agro-climatic region are prone to infection by various fungal pathogens. The use of chemical fungicides over the years has resulted in emergence of resistant fungal strains, thereby necessitating the development of effective and environmental friendly alternatives. The natural antagonistic interactions among different microbial populations have been exploited as an eco-friendly approach for controlling fungal pathogens resistant to synthetic chemicals. Morphologically distinct bacterial cultures (150), isolated from rhizospheric soils of wheat, rice, onion and tomato plants were screened for their antifungal potential against seven phytopathogenic fungi prevalent in the State of Punjab (India). The bacterial isolate R2, identified as Bacillus vallismortis, supported more than 50% inhibition of different phytopathogenic fungi (Alternaria alternata, Rhizoctonia oryzae, Fusarium oxysporum, Fusarium moniliforme, Colletotrichum sp, Helminthosporium sp and Magnaporthe grisea) in dual culture plate assay. The thin layer chromatography based bio-autography of acid-precipitated biomolecules (APB) indicated the presence of more than one type of antifungal molecule, as evidenced from zones of inhibition against the respective fungal pathogen. The initial analytical studies indicated the presence of surfactin, iturin A and fengycin-like compounds in APB. The antifungal activity of whole cells and APB of isolate R2 was evaluated by light and scanning electron microscopy. The wheat grains treated with APB and exposed to spores of A. alternata showed resistance to the development of black point disease, thereby indicating the potential application of R2 and its biomolecules at field scale level. (Author)

  7. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens.

    Science.gov (United States)

    Navaud, Olivier; Barbacci, Adelin; Taylor, Andrew; Clarkson, John P; Raffaele, Sylvain

    2018-03-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  8. Spatiotemporal Variation and Networks in the Mycobiome of the Wheat Canopy

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Jørgensen, Lise Nistrup; Nicolaisen, Mogens

    2017-01-01

    the wheat mycobiome by using metabarcoding of the fungal ITS1 region. Leaf samples were taken from four cultivars grown at two locations in Denmark. Samples were taken from the three uppermost leaves and at three growth stages to better understand spatiotemporal variation of the mycobiome. Analysis of read...... was relatively constant between individual samples, suggesting that fast growing fungi rapidly occupy empty space in the phyllosphere....

  9. Fungal melanin: what do we know about structure?

    Directory of Open Access Journals (Sweden)

    Joshua D Nosanchuk

    2015-12-01

    Full Text Available The production of melanin significantly enhances the virulence of many important human pathogenic fungi. Despite fungal melanin’s importance in human disease, as well as melanin’s contribution to the ability of fungi to survive in diverse hostile environments, the structure of melanin remains unsolved. Nevertheless, ongoing research efforts have progressively revealed several notable structural characteristics of this enigmatic pigment, which will be the focus of this review. These compositional and organizational insights could further our ability to develop novel therapeutic approaches to combat fungal disease and enhance our understanding of how melanin is inserted into the cell wall.

  10. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    OpenAIRE

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to C. fulvum in tomato plants follows the ge...

  11. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco

    Science.gov (United States)

    Deb, Debasish; Shrestha, Ankita; Maiti, Indu B.; Dey, Nrisingha

    2018-01-01

    Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter ‘MUASCsV8CP’ through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral ‘Killer protein KP4’ (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering “in-built” fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach. PMID:29556246

  12. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  13. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.

    Science.gov (United States)

    Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta

    2017-03-03

    During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae , a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly 6 -Gln 7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp 1 -Cys 2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    Science.gov (United States)

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  15. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Eleftherios Mylonakis

    2007-07-01

    Full Text Available Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  16. Production of aflatexin B1 in wheat grains under different environmental storage conditions

    International Nuclear Information System (INIS)

    Mahrous, S.R.; Shahin, A.A.M.; Bothaina, M.Y.

    2000-01-01

    Fungal flora of stored wheat grains and the production of aflatoxin B 1 by Aflavus in wheat grains under different environmental conditions were examined. Aspergillus, Penicillium,. Fusarium, Cladosporium, Curvularia, Epicouccum, Verticilium, Rhizopus, Mucor and Altenaria were the predominant fungi isolated from the collected non-disinfected grains. Aspergillus spp, were only isolated from surface disinfected grains. Of 223 aspergillus spp, isolates only 128 found to aflatoxin producing and all aflatoxin producing-fungi belonged to the Aflavus group. Results demonstrate that Aflavus could produce maximum concentration of aflatoxin B 1 in grains at 20% moisture (163.5 MOU g/kg). The highest concentration of aflatoxin B 1 was produced by Aflavus (10 5 spores/g) in wheat grains with 20% moisture after 20 days at 30 degree and 92.40 % R.H. The aflatoxin production did not increase monotonously as a function of inoculum density

  17. Control of Passion Fruit Fungal Diseases Using Essential Oils Extracted from Rosemary (Rosmarinus officinalis) and Eucalyptus (Eucalyptus agglomerata) in Egerton University Main Campus Njoro, Kenya.

    Science.gov (United States)

    Waithaka, Paul Njenga; Gathuru, Eliud Mugu; Githaiga, Benson Muriuki; Kimani, Salome Nduta

    2017-01-01

    Growth of fruits which form an important part of human diet has been jeopardized by the many fungal diseases that are present today. This study was conceived to isolate the most common fungal pathogens in passion fruits. Fungi were isolated using potato dextrose agar in addition to characterization using morphological, cultural, and biochemical means. Extraction of essential oils from rosemary ( Rosmarinus officinalis ) and eucalyptus ( Eucalyptus agglomerata ) was done. Before carrying the sensitivity test of essential oils to the fungal isolates, constituents of the essential oils were determined. The most common fungal pathogens isolated from passion fruits were Alternaria spp. (45%), Fusarium spp. (22%), Colletotrichum spp. (17%), and Penicillium spp. (16%). There was a relationship between heating time and yield of essential oils in rosemary ( r = 0.99) and eucalyptus ( r = 0.99). Conversely, there was no significant difference in the amount of essential oils produced by rosemary and eucalyptus ( P = 0.08). Furthermore, there was a significant difference in growth inhibition of the fungal pathogens between essential oils from rosemary and eucalyptus ( P = 0.000438). Fungal pathogens isolated from passion fruits can be controlled using essential oils from rosemary and eucalyptus. The oils need to be produced in large scale.

  18. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  19. Foliar treatments with Gaultheria procumbens essential oil induce defence responses and resistance against a fungal pathogen in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sophie eVergnes

    2014-09-01

    Full Text Available Essential oil from Gaultheria procumbens is mainly composed of methylsalicylate (>96%, a compound which can be metabolized in plant tissues to salicylic acid, a phytohormone inducing plant immunity against microbial pathogens. The potential use of G. procumbens essential oil as a biocontrol agent was evaluated on the model plant Arabidopsis thaliana. Expression of a selection of defence genes was detected 1, 6 and 24 hours after essential oil treatment (0.1 ml/L using a high-throughput qPCR-based microfluidic technology. Control treatments included methyl jasmonate and a commercialized salicylic acid analog, benzo(1,2,3-thiadiazole-7carbothiolic acid (BTH. Strong induction of defence markers known to be regulated by the salicylic acid pathway was observed after the treatment with G. procumbens essential oil. Treatment induced the accumulation of total salicylic acid in the wild -type Arabidopsis line Col-0 and analysis of the Arabidopsis line sid2, mutated in a salicylic acid biosynthetic gene, revealed that approximately 30% of methylsalicylate sprayed on the leaves penetrated inside plant tissues and was demethylated by endogenous esterases. Induction of plant resistance by G. procumbens essential oil was tested following inoculation with a GFP-expressing strain of the Arabidopsis fungal pathogen Colletotrichum higginsianum. Flurorescence measurement of infected tissues revealed that treatments led to a strong reduction (60% of pathogen development and that the efficacy of the G. procumbens essential oil was similar to the commercial product BION®. Together, these results show that the G. procubens essential oil is a natural source of methylsalicylate which can be formulated to develop new biocontrol products.

  20. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hearty, Stephen

    2007-01-01

    The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine mAb-produci...

  1. [Modes of action of agrochemicals against plant pathogenic organisms].

    Science.gov (United States)

    Leroux, Pierre

    2003-01-01

    The chemical control of plant pathogens concerns mainly fungal diseases of crops. Most of the available fungicides act directly on essential fungal functions such as respiration, sterol biosynthesis or cell division. Consequently, these compounds can exhibit undesirable toxicological and environmental effects and sometimes select fungal resistant strains. Plant activators are expected to provide sustainable disease management in several crops because the development of resistance is not expected. Considering the future, the discovery of novel antifungal molecules will reap advantage from throughput screening methodologies and functional genomics.

  2. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids

    Science.gov (United States)

    Mor, Visesato; Rella, Antonella; Farnoud, Amir M.; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B.; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J.; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B.; Wiederhold, Nathan P.; Fothergill, Annette W.; Kirkpatrick, William R.; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L.; Luberto, Chiara; Nimrichter, Leonardo

    2015-01-01

    ABSTRACT Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. PMID:26106079

  3. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    Science.gov (United States)

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  4. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    Directory of Open Access Journals (Sweden)

    Peipei Zhang

    2017-09-01

    Full Text Available To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV (most likely pathogens using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV. The full genome of WLYaV corresponds to 5,772 nucleotides (nt, with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV, but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90% in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  5. Fungi species and red flour beetle in stored wheat flour under Jazan region conditions.

    Science.gov (United States)

    Bosly, Hanan AbuAlQasem; Kawanna, Maha Adel

    2014-05-01

    Infection of stored wheat flour with insects and toxic fungi can be an extremely serious problem. This study was conducted to isolate and identify the fungal species and insects in different stages, which infested and contaminated the stored flour under Jazan region conditions and changed its color and flavor. The obtained results revealed that the isolated insect was the red flour beetle Tribolium castaneum. Live adult, larvae and cast skin were isolated. Four Aspergillus species were isolated from stored wheat flour; the isolated species prevalence being A. flavus > A. niveus > A. terreus > A. niger by rate 44.5%, 37.8%, 10.9% and 6.7%, respectively. The same fungal species isolated from flour were also isolated from different insect stages. A. flavus was the most common fungus and A. niger was isolated with a lower rate. The results about the isolated fungi either from the suspension of adult insects, larvae or cast skins may confirm the role of T. castaneum to carry and distribute fungi in different parts of the stored flour.

  6. Expression of cytokines in aqueous humor from fungal keratitis patients.

    Science.gov (United States)

    Zhang, Yingnan; Liang, Qingfeng; Liu, Yang; Pan, Zhiqiang; Baudouin, Christophe; Labbé, Antoine; Lu, Qingxian

    2018-04-19

    Although a series of reports on corneal fungal infection have been published, studies on pathogenic mechanisms and inflammation-associated cytokines remain limited. In this study, aqueous humor samples from fungal keratitis patients were collected to examine cytokine patterns and cellular profile for the pathogenesis of fungal keratitis. The aqueous humor samples were collected from ten patients with advanced stage fungal keratitis. Eight aqueous humor samples from patients with keratoconus or corneal dystrophy were taken as control. Approximately 100 μl to 300 μl of aqueous humor in each case were obtained for examination. The aqueous humor samples were centrifuged and the cells were stained and examined under optical microscope. Bacterial and fungal cultures were performed on the aqueous humor and corneal buttons of all patients. Cytokines related to inflammation including IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFN-γ were examined using multiplex bead-based Luminex liquid protein array systems. Fungus infection was confirmed in these ten patients by smear stains and/or fungal cultures. Bacterial and fungal cultures revealed negative results in all aqueous humor specimens. Polymorphonuclear leukocytes were the predominant infiltrating cells in the aqueous humor of fungal keratitis. At the advanced stages of fungal keratitis, the levels of IL-1β, IL-6, IL-8, and IFN-γ in the aqueous humor were significantly increased when compared with control (phumor was associated with fungal keratitis.

  7. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro.

    Science.gov (United States)

    Sule, Abubakar; Ahmed, Qamar Uddin; Latip, Jalifah; Samah, Othman Abd; Omar, Muhammad Nor; Umar, Abdulrashid; Dogarai, Bashar Bello S

    2012-07-01

    Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners. Antifungal activity of the whole plant extracts and isolation of active principles from A. paniculata were investigated. Dichloromethane (DCM) and methanol (MEOH) extracts of A. paniculata whole plant were screened for their antifungal potential using broth microdilution method in vitro against seven pathogenic fungal species responsible for skin infections. Active principles were detected through bioguided assays and isolated using chromatography techniques. Structures of compounds were elucidated through spectroscopy techniques and comparisons were made with previously reported data for similar compounds. DCM extract revealed lowest minimum inhibitory concentration (MIC) value (100 μg/mL) against Microsporum canis, Candida albicans, and Candida tropicalis, whereas MEOH extract revealed lowest MIC (150 µg/mL) against C. tropicalis and Aspergillus niger. DCM extract showed lowest minimum fungicidal concentration (MFC) value (250 µg/mL) against M. canis, C. albicans, C. tropicalis and A. niger, whereas MEOH extract showed lowest MFC (250 µg/mL) against Trichophyton mentagrophytes, Trichophyton rubrum, M. canis, C. albicans, C. tropicalis and A. niger. Bioassay guided isolation from DCM and MEOH extract afforded 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide, and 14-deoxy-11,12-didehydroandrographolide as antifungal compounds. The lowest MIC (50 µg/mL) and MFC (50 µg/mL) was exerted by 14-deoxyandrographolide on M. canis. This is first report on the isolation of antifungal substances through bioassay-guided assay from A. paniculata. Our finding justifies the use of A. paniculata in folk medicines for the treatment of fungal skin infections.

  8. Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life

    Directory of Open Access Journals (Sweden)

    Mu eLi

    2016-02-01

    Full Text Available Chitin synthases (CHSs are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene

  9. Colletotrichum fungal pathogens and symbionts of ornamental nursery and landscape plants

    Science.gov (United States)

    Fungi in the ascomycete genus Colletotrichum are ranked by the plant pathology community as one of the ten most economically and scientifically important fungal phytopathogens. Major losses due to Colletotrichum are experienced in almost every crop worldwide, including nursery and landscape plants ...

  10. Targeted introgression of stem rust Ug99 resistance from wheatgrasses into pasta and bread wheat

    Science.gov (United States)

    In the past 50 years, a number of stem rust resistance (Sr) genes have been transferred from several wheat-related grasses into durum (i.e. pasta) and bread wheat through chromosome translocations and additions. To utilize these genes for controlling the Ug99 races of the stem rust pathogen, we ini...

  11. Changes in structure and function of fungal community in cow manure composting.

    Science.gov (United States)

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa.

    Science.gov (United States)

    Teixeira, Paulo José Pereira Lima; Thomazella, Daniela Paula de Toledo; Reis, Osvaldo; do Prado, Paula Favoretti Vital; do Rio, Maria Carolina Scatolin; Fiorin, Gabriel Lorencini; José, Juliana; Costa, Gustavo Gilson Lacerda; Negri, Victor Augusti; Mondego, Jorge Maurício Costa; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães

    2014-11-01

    Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii

    OpenAIRE

    Duvaux, Ludovic; Shiller, Jason; Vandeputte, Patrick; Dug? de Bernonville, Thomas; Thornton, Christopher; Papon, Nicolas; Le Cam, Bruno; Bouchara, Jean-Philippe; Gastebois, Amandine

    2017-01-01

    ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S.?boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species.

  14. Trichosporon inkin, an unusual agent of fungal sinusitis: A report from south India

    Directory of Open Access Journals (Sweden)

    Anand Janagond

    2012-01-01

    Full Text Available The aetiology of fungal sinusitis is diverse and changing. Aspergillus species has been the most common cause for fungal sinusitis, especially in dry and hot regions like India. Trichosporon species as a cause for fungal sinusitis has been very rarely reported the world over. Here, we report a rare case of allergic fungal sinusitis caused by Trichosporon inkin in a 28-year-old immunocompetent woman. Bilateral nasal obstruction, nasal discharge and loss of smell were her presenting complaints. Diagnostic nasal endoscopy showed bilateral multiple polyps. Functional endoscopic sinus surgery was performed and many polyps were removed. Based on mycological and histopathological studies, the pathogen was identified as T. inkin.

  15. [Invasive fungal disease due to Scedosporium, Fusarium and mucorales].

    Science.gov (United States)

    Pemán, Javier; Salavert, Miguel

    2014-01-01

    The number of emerging organisms causing invasive fungal infections has increased in the last decades. These etiological agents include Scedosporium, Fusarium and mucorales. All of them can cause disseminated, virulent, and difficult-to treat infections in immunosuppressed patients, the most affected, due to their resistance to most available antifungal agents. Current trends in transplantation including the use of new immunosuppressive treatments, the common prescription of antifungal agents for prophylaxis, and new ecological niches could explain the emergence of these fungal pathogens. These pathogens can also affect immunocompetent individuals, especially after natural disasters (earthquakes, floods, tsunamis), combat wounds or near drowning. All the invasive infections caused by Scedosporium, Fusarium, and mucorales are potentially lethal and a favourable outcome is associated with rapid diagnosis by direct microscopic examination of the involved tissue, wide debridement of infected material, early use of antifungal agents including combination therapy, and an improvement in host defenses, especially neutropenia. Copyright © 2014. Published by Elsevier Espana.

  16. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Science.gov (United States)

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  17. Mycopopulations of grain and flour of wheat, corn and buckwheat

    Directory of Open Access Journals (Sweden)

    Plavšić Dragana V.

    2017-01-01

    Full Text Available According to the nutritive characteristics, whole grain flour is a high quality product, due to its high vitamin, mineral, and dietary fiber content. However, the cereal grains are susceptible to the series of contamination during the ripening, harvesting, processing and storage. The aim of this work was to determine mold presence in grains and flour of wheat, corn and buckwheat. The determination of total number and identification of isolated genera and species of molds were the subject of this research. All samples were contaminated with the molds. The total number of molds per 100 cereal grains was between 60 cfu (wheat and 120 cfu (buckwheat. The total number of molds in the samples of flour ranged from 6.0x101 cfu/g in white wheat flour to 5.0 x102 cfu/g in buckwheat whole grain flour (DG18 medium. Eight fungal genera (Alternaria, Aspergillus, Cladosporium, Chrysonilia, Fusarium, Penicillium, Rhizopus and Scopulariopsis and fifteen species were isolated. The largest number of species of molds was isolated from the genus Aspergillus. About 66.7% of isolated fungi belonged to potentially toxigenic species. The results pointed out the necessity of grain surface treatment, preceding the milling of grains in wheat, corn and whole grain buckwheat flour production.

  18. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  19. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  20. Plant host range of Verticillium longisporum and microsclerotia density in Swedisch soils

    NARCIS (Netherlands)

    Johansson, A.; Goud, J.C.; Dixelius, C.

    2006-01-01

    Verticillium longisporum is a soil-borne fungal pathogen causing vascular wilt of Brassica crops. This study was conducted to enhance our knowledge on the host range of V. longisporum. Seven crop species (barley, oat, oilseed rape, pea, red clover, sugar beet and wheat) and five weed species (barren