WorldWideScience

Sample records for fungal endophyte infection1woa

  1. Entomopathogenic fungal endophytes

    Science.gov (United States)

    Fungal endophytes are quite common in nature and some of them have been shown to have adverse effects against insects, nematodes, and plant pathogens. An introduction to fungal endophytes will be presented, followed by a discussion of research aimed at introducing Beauveria bassiana as a fungal endo...

  2. Grass fungal endophytes and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  3. Fungal endophyte diversity in Sarracenia

    Science.gov (United States)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  4. Habitat filters in fungal endophyte community assembly

    Science.gov (United States)

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  5. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  6. 7 CFR 201.58d - Fungal endophyte test.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fungal endophyte test. 201.58d Section 201.58d... REGULATIONS Examinations in the Administration of the Act § 201.58d Fungal endophyte test. A fungal endophyte test may be used to determine the amount of fungal endophyte (Acremonium spp.) in certain grasses....

  7. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  8. Symbioses of grasses with seedborne fungal endophytes.

    Science.gov (United States)

    Schardl, Christopher L; Leuchtmann, Adrian; Spiering, Martin J

    2004-01-01

    Grasses (family Poaceae) and fungi of the family Clavicipitaceae have a long history of symbiosis ranging in a continuum from mutualisms to antagonisms. This continuum is particularly evident among symbioses involving the fungal genus Epichloe (asexual forms = Neotyphodium spp.). In the more mutualistic symbiota, the epichloe endophytes are vertically transmitted via host seeds, and in the more antagonistic symbiota they spread contagiously and suppress host seed set. The endophytes gain shelter, nutrition, and dissemination via host propagules, and can contribute an array of host fitness enhancements including protection against insect and vertebrate herbivores and root nematodes, enhancements of drought tolerance and nutrient status, and improved growth particularly of the root. In some systems, such as the tall fescue N. coenophialum symbioses, the plant may depend on the endophyte under many natural conditions. Recent advances in endophyte molecular biology promise to shed light on the mechanisms of the symbioses and host benefits.

  9. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...

  10. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes.

    Science.gov (United States)

    Weiss, Michael; Sýkorová, Zuzana; Garnica, Sigisfredo; Riess, Kai; Martos, Florent; Krause, Cornelia; Oberwinkler, Franz; Bauer, Robert; Redecker, Dirk

    2011-02-15

    Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae), which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as 'endophytes' have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems.

  11. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes.

    Directory of Open Access Journals (Sweden)

    Michael Weiss

    Full Text Available Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae, which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as 'endophytes' have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems.

  12. Acid protease production in fungal root endophytes.

    Science.gov (United States)

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates.

  13. Fungal endophytes: unique plant inhabitants with great promises.

    Science.gov (United States)

    Aly, Amal Hassan; Debbab, Abdessamad; Proksch, Peter

    2011-06-01

    Fungal endophytes residing in the internal tissues of living plants occur in almost every plant on earth from the arctic to the tropics. The endophyte-host relationship is described as a balanced symbiotic continuum ranging from mutualism through commensalism to parasitism. This overview will highlight selected aspects of endophyte diversity, host specificity, endophyte-host interaction and communication as well as regulation of secondary metabolite production with emphasis on advanced genomic methods and their role in improving our current knowledge of endophytic associations. Furthermore, the chemical potential of endophytic fungi for drug discovery will be discussed with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis. In addition, selected examples of bioactive metabolites reported in recent years (2008-2010) from fungal endophytes residing in terrestrial plants are presented grouped according to their reported biological activities.

  14. A novel method to scale up fungal endophyte isolations

    Science.gov (United States)

    Estimations of species diversity are influenced by sampling intensity which in turn is influenced by methodology. For fungal endophyte diversity studies, the methodology includes surface-sterilization prior to isolation of endophytes. Surface-sterilization is an essential component of fungal endophy...

  15. Chemical ecology mediated by fungal endophytes in grasses.

    Science.gov (United States)

    Saikkonen, Kari; Gundel, Pedro E; Helander, Marjo

    2013-07-01

    Defensive mutualism is widely accepted as providing the best framework for understanding how seed-transmitted, alkaloid producing fungal endophytes of grasses are maintained in many host populations. Here, we first briefly review current knowledge of bioactive alkaloids produced by systemic grass-endophytes. New findings suggest that chemotypic diversity of the endophyte-grass symbiotum is far more complex, involving multifaceted signaling and chemical cross-talk between endophyte and host cells (e.g., reactive oxygen species and antioxidants) or between plants, herbivores, and their natural enemies (e.g., volatile organic compounds, and salicylic acid and jasmonic acid pathways). Accumulating evidence also suggests that the tight relationship between the systemic endophyte and the host grass can lead to the loss of grass traits when the lost functions, such as plant defense to herbivores, are compensated for by an interactive endophytic fungal partner. Furthermore, chemotypic diversity of a symbiotum appears to depend on the endophyte and the host plant life histories, as well as on fungal and plant genotypes, abiotic and biotic environmental conditions, and their interactions. Thus, joint approaches of (bio)chemists, molecular biologists, plant physiologists, evolutionary biologists, and ecologists are urgently needed to fully understand the endophyte-grass symbiosis, its coevolutionary history, and ecological importance. We propose that endophyte-grass symbiosis provides an excellent model to study microbially mediated multirophic interactions from molecular mechanisms to ecology.

  16. Fungal endophyte increases the allelopathic effects of an invasive forb.

    Science.gov (United States)

    Aschehoug, Erik T; Callaway, Ragan M; Newcombe, George; Tharayil, Nishanth; Chen, Shuyan

    2014-05-01

    Endophytic plant symbionts can have powerful effects on the way their hosts interact with pathogens, competitors, and consumers. The presence of endophytes in plants can alter food webs, community composition and ecosystem processes, suggesting that endophyte-plant symbioses may represent unique forms of extended phenotypes. We tested the impact of the fungal endophyte Alternaria alternata (phylotype CID 120) on the allelopathic effect of the invasive forb Centaurea stoebe when in competition with the North American native bunchgrass Koeleria macrantha in a greenhouse competition experiment. The allelopathic effect of C. stoebe on K. macrantha when infected with the fungal endophyte was more than twice that of endophyte-free C. stoebe. However, this allelopathic effect was a small part of the very large competitive effect of C. stoebe on K. macrantha in all treatments, likely because of the priority effects in our experimental design. To our knowledge, these results are the first experimental evidence for a symbiotic relationship between plants and fungal endophytes affecting allelopathic interactions between competing plants, and thus provide insight into the mechanisms by which fungal endophytes may increase the competitive ability of their hosts.

  17. Fungal root endophytes of the carnivorous plant Drosera rotundifolia.

    Science.gov (United States)

    Quilliam, Richard S; Jones, David L

    2010-06-01

    As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot.

  18. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  19. Fungal endophytes - secret producers of bioactive plant metabolites.

    Science.gov (United States)

    Aly, A H; Debbab, A; Proksch, P

    2013-07-01

    The potential of endophytic fungi as promising sources of bioactive natural products continues to attract broad attention. Endophytic fungi are defined as fungi that live asymptomatically within the tissues of higher plants. This overview will highlight the uniqueness of endophytic fungi as alternative sources of pharmaceutically valuable compounds originally isolated from higher plants, e.g. paclitaxel, camptothecin and podophyllotoxin. In addition, it will shed light on the fungal biosynthesis of plant associated metabolites as well as new approaches developed to improve the production of commercially important plant derived compounds with the involvement of endophytic fungi.

  20. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  1. Symbiotic grasses: A review of basic biology of forage grass fungal endophytes

    Science.gov (United States)

    The fungal endophytes associated with grasses are the fundamental reason for the basic successes of several pasture grasses, notable tall fescues, and perennial ryegrass. Tall fescue and perennial ryegrass fungal endophytes, Neotyphodium coenophialum and N. lolii, respectively, and their relatives ...

  2. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica).

    Science.gov (United States)

    Santamaría, Johanna; Bayman, Paul

    2005-07-01

    Plants harbor diverse communities of fungi and other microorganisms. Fungi are known to occur both on plant surfaces (epiphytes) and inside plant tissues (endophytes), but the two communities have rarely been compared. We compared epiphytic and endophytic fungal communities associated with leaves of coffee (Coffea arabica) in Puerto Rico. We asked whether the dominant fungi are the same in both communities, whether endophyte and epiphyte communities are equally diverse, and whether epiphytes and endophytes exhibit similar patterns of spatial heterogeneity among sites. Leaves of naturalized coffee plants were collected from six sites in Puerto Rico. Epiphytic and endophytic fungi were isolated by placing leaf pieces on potato dextrose agar without and with surface sterilization, respectively. A total of 821 colonies were isolated and grouped into 131 morphospecies. The taxonomic affinities of the four most common nonsporulating fungi were determined by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region: two grouped with Xylaria and one each with Botryosphaeria and Guignardia. Of the most common genera, Pestalotia and Botryosphaeria were significantly more common as epiphytes; Colletotrichum, Xylaria, and Guignardia were significantly more common as endophytes. Suprisingly, more morphospecies occurred as endophytes than as epiphytes. Differences among sites in number of fungi per plant were significant. Thus epiphytic and endophytic communities differed greatly on a single leaf, despite living only millimeters apart, and both communities differed from site to site. Significant correlations between occurrence of fungal morphospecies suggested that fungi may have positive or negative effects on their neighbors. This is the first quantitative comparison of epiphytic and endophytic fungal floras in any plant, and the first to examine endophytic fungi or epiphytic fungi in leaves of coffee, one of the world's most valuable crops.

  3. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    OpenAIRE

    Ambrose, Karen V.; Zipeng Tian; Yifei Wang; Jordan Smith; Gerben Zylstra; Bingru Huang; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal sal...

  4. Bioactive alkaloids in vertically transmitted fungal endophytes

    Science.gov (United States)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  5. Leaf endophyte load and fungal garden development in leaf-cutting ants

    Science.gov (United States)

    Previous work has shown that leaf-cutting ants prefer to cut leaf material that is relatively low in fungal endophyte content. Such a preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in thei...

  6. Bioactive secondary metabolites with multiple activities from a fungal endophyte

    NARCIS (Netherlands)

    Bogner, C.W.; Kamdem, R.S.; Stichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.; Schouten, A.

    2017-01-01

    In order to replace particularly biohazardous nematocides, there is a strong drive to finding natural product-based alternatives with the aim of containing nematode pests in agriculture. The metabolites produced by the fungal endophyte Fusarium oxysporum 162 when cultivated on rice media were isolat

  7. TALL FESCUE AND ASSOCIATED MUTUALISTIC TOXIC FUNGAL ENDOPHYTES IN AGROECOSYSTEMS

    Science.gov (United States)

    Bacon et al. (1977) proposed and Hoveland et al. (1980, 1986) substantiated that impaired health and performance of livestock grazing tall fescue [Lolium arundinaceum S. J. Darbyshire, formerly Festuca arundinacea Schreb.] were associated with the fungal endophyte Neotyphodium coenophialum Glenn, Ha...

  8. Elucidating biotic factors that influence assembly of fungal endophyte communities

    Science.gov (United States)

    Most plants harbor a diverse assemblage of non-mycorrhizal fungal endophytes. These fungi can directly influence the host plant, and can instigate trophic cascades that affect surrounding communities of herbivores, plants, and animals. Despite this, biotic mechanisms that influence assembly of funga...

  9. Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands

    Science.gov (United States)

    Tall fescue (Schedonorus arundinaceous (Schreb.)) is often infected with a common toxic fungal endophyte (Neotyphodium coenophialum) capable of producing alkaloids that affect grazing animal health, insect herbivory, plant production, and litter decomposition. The strength of these endophyte-associa...

  10. Host associations between fungal root endophytes and boreal trees.

    Science.gov (United States)

    Kernaghan, Gavin; Patriquin, Glenn

    2011-08-01

    Fungal root endophytes colonize root tissue concomitantly with mycorrhizal fungi, but their identities and host preferences are largely unknown. We cultured fungal endophytes from surface-sterilized Cenococcum geophilum ectomycorrhizae of Betula papyrifera, Abies balsamea, and Picea glauca from two boreal sites in eastern Canada. Isolates were initially grouped on the basis of cultural morphology and then identified by internal transcribed spacer ribosomal DNA sequencing or by PCR restriction fragment length polymorphism. Phylogenetic analysis of the sequence data revealed 31 distinct phylotypes among the isolates, comprising mainly members of the ascomycete families Helotiaceae, Dermateaceae, Myxotrichaceae, and Hyaloscyphaceae, although other fungi were also isolated. Multivariate analyses indicate a clear separation among the endophyte communities colonizing each host tree species. Some phylotypes were evenly distributed across the roots of all three host species, some were found preferentially on particular hosts, and others were isolated from single hosts only. The results indicate that fungal root endophytes of boreal trees are not randomly distributed, but instead form relatively distinct assemblages on different host tree species.

  11. Isolation and identification of fungal endophytes from grasses on the Oregon coast

    Science.gov (United States)

    Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four gra...

  12. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae.

    Science.gov (United States)

    Ambrose, Karen V; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C

    2015-06-09

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte.

  13. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  14. Leaf endophyte load influences fungal garden development in leaf-cutting ants.

    Science.gov (United States)

    Van Bael, Sunshine A; Estrada, Catalina; Rehner, Stephen A; Santos, Janette Fabiola; Wcislo, William T

    2012-11-09

    Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants' defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  15. Mutualistic fungal endophytes in the Triticeae - survey and description.

    Science.gov (United States)

    Card, Stuart D; Faville, Marty J; Simpson, Wayne R; Johnson, Richard D; Voisey, Christine R; de Bonth, Anouck C M; Hume, David E

    2014-04-01

    Grasses of the tribe Triticeae were screened to determine the presence of mutualistic epichloae fungal endophytes. Over 1500 accessions, from more than 250 species, encompassing 22 genera within the Triticeae were screened using immunodetection and direct staining/microscopy techniques. Only two genera, Elymus and Hordeum, were identified as harbouring epichloae endophytes with accessions native to a range of countries including Canada, China, Iran, Kazakhstan, Kyrgyzstan, Mongolia, Russia and the USA. Genetic analysis based on simple sequence repeat data revealed that the majority of endophytes cluster according to geographical regions rather than to host species; many strains isolated from Hordeum grouped with those derived from Elymus, and amongst the Elymus-derived strains, there was no clear correspondence between clustering topology and host species. This is the first detailed survey demonstrating the genetic diversity of epichloae endophytes within the Triticeae and highlights the importance of germplasm centres for not only preserving the genetic diversity of plant species but also the beneficial microorganisms they may contain.

  16. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review.

    Science.gov (United States)

    Nisa, Humeera; Kamili, Azra N; Nawchoo, Irshad A; Shafi, Sana; Shameem, Nowsheen; Bandh, Suhaib A

    2015-05-01

    Endophytic fungi are those that live internally in apparently healthy and asymptomatic hosts. Endophytic fungi appear to be ubiquitous; indeed, no study has yet shown the existence of a plant species without endophytes. High species diversity is another characteristic of endophytic mycobiota which is depicted by the fact that it is quite common for endophyte surveys to find assemblages consisting of more than 30 fungal species per host plant species. Medicinal plants had been used to isolate and characterize directly the bioactive metabolites. However, the discovery of fungal endophytes inside these plants with capacity to produce the same compounds shifted the focus of new drug sources from plants to fungi. Bioactive natural products from endophytic fungi, isolated from different plant species, are attracting considerable attention from natural product chemists and biologists alike which is clearly depicted by the steady increase of publications devoted to this topic during the recent years. This review will highlight the chemical potential of endophytic fungi with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis. In addition, it will cover newly discovered endophytic fungi and also new bioactive metabolites reported in recent years from fungal endophytes. It summarizes the up-to-date and comprehensive information on bioactive compounds from endophytic fungi by having done a thorough survey of literature.

  17. Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico

    Science.gov (United States)

    A survey of fungal endophytes in coffee plants was conducted in Colombia, Hawaii, Mexico and Puerto Rico. Coffee plant sections were sterilized and fungal endophytes were isolated using standard techniques, followed by DNA extraction and sequencing of the internal transcribed spacer region (ITS) of...

  18. Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition.

    Science.gov (United States)

    Lemons, Alisha; Clay, Keith; Rudgers, Jennifer A

    2005-10-01

    Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant-microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant-endophyte mutualisms on ecosystem processes under field

  19. Symbiotically modified organisms: nontoxic fungal endophytes in grasses.

    Science.gov (United States)

    Gundel, Pedro E; Pérez, Luis I; Helander, Marjo; Saikkonen, Kari

    2013-08-01

    We propose that symbiotically modified organisms (SMOs) should be taken into account in sustainable agriculture. In this opinion article, we present the results of a meta-analysis of the literature, with a particular focus on the potential of SMOs in forage and turf grass production, to determine the impact of endophytes in grasses on livestock, the grassland ecosystems, and associated environments. SMOs can be incorporated into breeding programs to improve grass yield, resistance to pests and weeds, and forage quality for livestock by decreasing the level of toxic alkaloids. However, the benefits of these selected grass-endophyte symbiota appear to be highly dependent on grass cultivar, fungal strain, and environmental conditions, requiring a comprehensive understanding of the genetic bases and phenotypic plasticity of the traits of the plant-microbe unit in different environments.

  20. Culturable fungal endophytes in roots of Enkianthus campanulatus (Ericaceae).

    Science.gov (United States)

    Obase, Keisuke; Matsuda, Yosuke

    2014-11-01

    Roots of plants in the genus Enkianthus, which belongs to the earliest diverging lineage in the Ericaceae, are commonly colonized by arbuscular mycorrhizal (AM) fungi. We documented the community of fungal root endophytes associated with Enkianthus species using a culture-based method for better understanding the members of root-colonizing fungi, except for AM fungi. Fungal isolates were successfully obtained from 610 out of 3,599 (16.9 %) root segments. Molecular analysis of fungal cultures based on ribosomal internal transcribed spacer (ITS) sequences yielded 63 operational taxonomical units (OTUs: 97 % sequence similarity cutoff) from 315 representative isolates. Further phylogenetic analysis showed that most (296 isolates) belonged to Ascomycota and were either members of Helotiales (Dermataceae, Hyaloscyphaceae, Phialocephala and Rhizoscyphus ericae aggregate), Oidiodendron, or other Pezizomycotina. Twenty-three out of 63 OTUs, which mainly consisted of Leotiomycetes, showed high similarities with reference sequences derived from roots of other ericaceous plants such as Rhododendron. The results indicated that Enkianthus houses variable root mycobionts including putative endophytic and mycorrhizal fungi in addition to AM fungi.

  1. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    Science.gov (United States)

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest.

  2. The effects of fungal root endophytes on plant growth: a meta-analysis.

    Science.gov (United States)

    Mayerhofer, Michael S; Kernaghan, Gavin; Harper, Karen A

    2013-02-01

    Fungal root endophytes are plant associates that colonize root tissue internally without causing any obvious harm to their host. Although ubiquitous, this relationship is not well understood. Our objectives were to determine the effects of fungal root endophyte inoculation on plant biomass and nitrogen concentration by conducting an extensive meta-analysis. We also explored the effects of experimental conditions on the host-endophyte relationship. We performed analyses weighted with non-parametric variance on plant response to root endophytes from the Ascomycetes (excluding the Clavacipitaceae), including categorical analyses of 21 experimental factors, ranging from the identity of the host and the endophyte, to the composition of the growing medium. The response of total biomass to endophyte inoculation was 18% lower than non-inoculated controls, while individually, root biomass, shoot biomass, and nitrogen concentration responses to endophyte inoculation were neutral. The identities of both the host and the endophyte had an influence, as did the original source of the endophyte (whether or not the isolate used originated from the same host species). Experimental conditions also influenced the plant-endophyte relationship, with the most important being the availability and sources of carbon and organic nitrogen, particularly peat moss. Although our analysis demonstrates that overall plant biomass and nitrogen concentration responses to ascomycetous root endophyte inoculation is neutral to negative, these results are somewhat confounded by among-study differences in experimental conditions, which undoubtedly contribute to the high levels of variability in plant response seen in the literature.

  3. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape

    Science.gov (United States)

    Huang, Zhi-Yu; Yang, Wei-Xi; Zhang, Han-Bo; Huang, Li-Hua; Ren, An-Yun; Shan, Hui

    2016-01-01

    Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS), total flavonoids (TF), total phenols (TPh), trans-resveratrol (Res) and activities of phenylalanine ammonia-lyase (PAL), in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp.) and CXC-13 (Fusarium sp.) conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape. PMID:27656886

  4. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Science.gov (United States)

    Higginbotham, Sarah J; Arnold, A Elizabeth; Ibañez, Alicia; Spadafora, Carmenza; Coley, Phyllis D; Kursar, Thomas A

    2013-01-01

    Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns) collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG) against a human breast cancer cell line (MCF-7) and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  5. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  6. Short Communication: Antimycotic activity and phytochemical screening of fungal endophytes associated with Santalum album

    Directory of Open Access Journals (Sweden)

    ASHWANI TAPWAL

    2016-05-01

    Full Text Available Abstract. Tapwal A, Pradhan S, Chandra S, Rashmi. 2016. Antimycotic activity and phytochemical screening of fungal endophytes associated with Santalum album. Nusantara Bioscience 8: 14-17. The heartwood of Santalum album constitutes the central part of the tree is valued for its fragrance. The wood and oil are utilized in medicine. Sandalwood oil is extensively used in perfumery, cosmetics, aromatherapy and pharmaceutical industry. The endophytic microorganisms inhabiting the plant tissues are expected to mimic some of the metabolites of its host. This study was aimed to isolate and screen the fungal endophytes inhabiting the Santalum album for antimicrobial activity and for the presence of important phytochemicals. Five fungal endophytes isolated from different parts of S. album have exhibited antimicrobial potential against Fusarium oxysporum in the range of 5.0-40.4%. The isolated endophytic fungi also indicated the presence of alkaloids, phenolics and tannins, flavonoids, carbohydrates and glycosides, terpenoids, amino acids and proteins.

  7. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    Science.gov (United States)

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  8. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential

    NARCIS (Netherlands)

    Bogner, C.W.; Kariuki, George M.; Elashry, A.; Sichtermann, Gisela; Buch, Ann-Katrin; Mishra, Bagdevi; Thines, M.; Grundler, F.M.W.; Schouten, A.

    2016-01-01

    The significance of fungal endophytes in African agriculture, particularly Kenya, has not been well investigated. Therefore, the objective of the present work was isolation, multi-gene phylogenetic characterization and biocontrol assessment of endophytic fungi harbored in tomato roots for nematode i

  9. Molecular characterization of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri in Ecuador

    Science.gov (United States)

    Fungal endophytes were isolated from healthy stems and pods of Theobroma gileri, an alternative host of the frosty pod rot pathogen of cacao. Identification of sporulating isolates was undertaken; however, many of the endophytes isolated could not be identified morphologically as they were non-sporu...

  10. Composition of fungal communities in soil and endophytic in raspberry production systems

    Science.gov (United States)

    Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up comple...

  11. Draft Genome Sequence of Microdochium bolleyi, a Dark Septate Fungal Endophyte of Beach Grass

    OpenAIRE

    David, Aaron S; Haridas, Sajeet; LaButti, Kurt; Lim, Joanne; Lipzen, Anna; Wang, Mei; Barry, Kerrie; Grigoriev, Igor V.; Spatafora, Joseph W.; May, Georgiana

    2016-01-01

    Here, we present the genome sequence of the dark septate fungal endophyte Microdochium bolleyi (Ascomycota, Sordariomycetes, Xylariales). The assembled genome size was 38.84 Mbp and consisted of 173 scaffolds and 13,177 predicted genes.

  12. Draft Genome Sequence of Microdochium bolleyi, a Dark Septate Fungal Endophyte of Beach Grass.

    Science.gov (United States)

    David, Aaron S; Haridas, Sajeet; LaButti, Kurt; Lim, Joanne; Lipzen, Anna; Wang, Mei; Barry, Kerrie; Grigoriev, Igor V; Spatafora, Joseph W; May, Georgiana

    2016-04-28

    Here, we present the genome sequence of the dark septate fungal endophyte Microdochium bolleyi (Ascomycota, Sordariomycetes, Xylariales). The assembled genome size was 38.84 Mbp and consisted of 173 scaffolds and 13,177 predicted genes.

  13. A New Fungal Endophyte, Scolecobasidium humicola, Promotes Tomato Growth under Organic Nitrogen Conditions

    OpenAIRE

    Mahmoud, Rola S.; Kazuhiko Narisawa

    2013-01-01

    A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-...

  14. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  15. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies

    Science.gov (United States)

    Dirihan, Serdar; Helander, Marjo; Väre, Henry; Gundel, Pedro E.; Garibaldi, Lucas A.; Irisarri, J. Gonzalo N.; Saloniemi, Irma; Saikkonen, Kari

    2016-01-01

    Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42), and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28), whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56). Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation period, and local

  16. Characteristics of foliar fungal endophyte assemblages and host effective components in Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Sun, Jianjun; Xia, Fei; Cui, Langjun; Liang, Jian; Wang, Zhezhi; Wei, Yukun

    2014-04-01

    Salvia miltiorrhiza Bunge, a well-known medicinal plant, has more than 20 effective components. The aim of this study was to comprehensively investigate foliar fungal endophyte communities of S. miltiorrhiza and explore the inside relationship between host-specific fungal endophytes and effective components accumulation. Five plant samples were collected from four geological different provinces in China. Foliar fungal endophyte communities were determined by terminal restriction fragment length polymorphism (T-RFLP) of the ITS region. Effective components were analyzed with high-performance liquid chromatography. The results showed that S. miltiorrhiza foliage harbored a large diversity of fungal endophytes. Principal component analysis revealed similar T-RFLP profiles and the characteristics of the 24 effective components among the five samples, which could be clustered into three groups. In foliar T-RFLP profiles derived from the restriction digestion by CfoI, HaeIII, MspI, or TaqI, there were identical 45, 42, 38, and 34 terminal restriction fragments (T-RFs) from the five samples. We consider these T-RFs as host-specific fungal endophytes. Correlation analysis of these T-RFs' area and 24 effective components contents revealed a significant correlationship between some host-specific fungal endophytes and foliage or root effective components accumulation.

  17. Phytohormones in plant-endophyte interactions: investigating the role of these compounds in the recruitment of tomato root fungal endophytes

    DEFF Research Database (Denmark)

    Manzotti, Andrea; Jørgensen, Hans Jørgen Lyngs; Collinge, David B.

    (Solanum lycopersicum) mutants impaired in synthesis of specific phytohormones (specifically ethylene and jasmonic acid) was the first step taken to elucidate these complex mechanisms. The isolation of endophytes was performed from roots and it resulted in the selection of fungal isolates whose root...... in this interaction, but little is known about the specific way by which they influence the recruitment and the colonization of the host tissues. The aim of the current project is to go deeper into the role of these signalling compounds in plant-endophyte interactions. The isolation of endophytic fungi from tomato...... whose colonization rate is critically affected by the phytohormones of interest. A transcriptomic analysis of tomato plants inoculated with the isolates selected from the screening will provide further clues as to which physiological mechanisms, associated with endophyte recruitment, are influenced...

  18. High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne.

    Science.gov (United States)

    Rasmussen, Susanne; Parsons, Anthony J; Bassett, Shalome; Christensen, Michael J; Hume, David E; Johnson, Linda J; Johnson, Richard D; Simpson, Wayne R; Stacke, Christina; Voisey, Christine R; Xue, Hong; Newman, Jonathan A

    2007-01-01

    The relationship between cool-season grasses and fungal endophytes is widely regarded as mutualistic, but there is growing uncertainty about whether changes in resource supply and environment benefit both organisms to a similar extent. Here, we infected two perennial ryegrass (Lolium perenne) cultivars (AberDove, Fennema) that differ in carbohydrate content with three strains of Neotyphodium lolii (AR1, AR37, common strain) that differ intrinsically in alkaloid profile. We grew endophyte-free and infected plants under high and low nitrogen (N) supply and used quantitative PCR (qPCR) to estimate endophyte concentrations in harvested leaf tissues. Endophyte concentration was reduced by 40% under high N supply, and by 50% in the higher sugar cultivar. These two effects were additive (together resulting in 75% reduction). Alkaloid production was also reduced under both increased N supply and high sugar cultivar, and for three of the four alkaloids quantified, concentrations were linearly related to endophyte concentration. The results stress the need for wider quantification of fungal endophytes in the grassland-foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes or increasing N inputs affect the role of endophytes in grassland ecosystems.

  19. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  20. Do the costs and benefits of fungal endophyte symbiosis vary with light availability?

    Science.gov (United States)

    Davitt, Andrew J; Stansberry, Marcus; Rudgers, Jennifer A

    2010-11-01

    • Here, we examined whether fungal endophytes modulated host plant responses to light availability. First, we conducted a literature review to evaluate whether natural frequencies of endophyte symbiosis in grasses from shaded habitats were higher than frequencies in grasses occupying more diverse light environments. Then, in a glasshouse experiment, we assessed how four levels of light and the presence of endophyte symbioses affected the growth of six grass species. • In our literature survey, endophytes were more commonly present in grasses restricted to shaded habitats than in grasses from diverse light environments. • In the glasshouse, endophyte symbioses did not mediate plant growth in response to light availability. However, in the host grass, Agrostis perennans, symbiotic plants produced 53% more inflorescences than nonsymbiotic plants at the highest level of shade. In addition, under high shade, symbiotic Poa autumnalis invested more in specific leaf area than symbiont-free plants. Finally, shade increased the density of the endophyte in leaf tissues across all six grass species. • Our results highlight the potential for symbiosis to alter the plasticity of host physiological traits, demonstrate a novel benefit of endophyte symbiosis under shade stress for one host species, and show a positive association between shade-restricted grass species and fungal endophytes.

  1. Ecophysiological responses of tall fescue genotypes to fungal endophyte infection and elevated temperature and precipitation

    Science.gov (United States)

    Tall fescue (Schedonorus arundinaceus) can form a symbiosis with the fungal endophyte, Epichloë coenophiala, whose presence can benefit the plant, depending on plant and fungal genetics and prevailing environmental conditions. Despite this symbiosis having agricultural, economic and ecological impor...

  2. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  3. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ek-Ramos, María J; Zhou, Wenqing; Valencia, César U; Antwi, Josephine B; Kalns, Lauren L; Morgan, Gaylon D; Kerns, David L; Sword, Gregory A

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  4. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L. Millsp].

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    Full Text Available Five fungal endophytes (K4, K5, K6, K9, K14 producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid were isolated from the roots of pigeon pea [Cajanus cajan (L. Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  5. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp].

    Science.gov (United States)

    Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  6. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?

    Science.gov (United States)

    Young, C A; Hume, D E; McCulley, R L

    2013-05-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.] and perennial ryegrass (Lolium perenne L.) are important perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichloë/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock industries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated utilization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate.

  7. Soil Influences Colonization of Root-Associated Fungal Endophyte Communities of Maize, Wheat, and Their Progenitors

    Directory of Open Access Journals (Sweden)

    Deepak Bokati

    2016-01-01

    Full Text Available Root-associated fungal endophytes are vital component of root microbiome as some mitigate their host’s abiotic and biotic stress. We characterized root-associated fungal endophytes in cereal grains and their progenitors grown on two different soil-types. We aimed at determining how clay and desert soil affects the colonization of root fungal community. Both culture-dependent and culture-independent methods were employed to identify endophytes that successfully colonized greenhouse-grown host plants. The Internal Transcriber Spacer region of fungal ribosomal DNA was utilized for identification purposes. This study revealed soil as a prominent factor influencing the composition of microfungal communities inhabiting the roots of maize (Zea mays subsp. mays and its conspecific progenitor, teosinte (Zea mays subsp. parviglumis. Similar results were found in wheat (Triticum aestivum subsp. aestivum and its progenitor (Triticum monococcum subsp. monococcum. The multidimensional comparisons of Morisita-Horn similarity values of fungal colonists of various host plant taxa indicated that soil plays a primary role in shaping the root fungal community; a secondary effect was plant host identity, even when the plant host is a conspecific. Future studies focused on characterizing root endophytes in other cereal grains, and studying the effect of edaphic factors on fungal colonization, can ultimately contribute to crop productivity.

  8. Carbon constrains fungal endophyte assemblages along the timberline.

    Science.gov (United States)

    Yang, Teng; Weisenhorn, Pamela; Gilbert, Jack A; Ni, Yingying; Sun, Ruibo; Shi, Yu; Chu, Haiyan

    2016-09-01

    The alpha diversity of foliar fungal endophytes (FEs) in leaves of Betula ermanii in a subalpine timberline ecotone on Changbai Mountain, China increased with elevation. There were also significant differences in beta diversity along the elevation gradient. Among the environmental variables analysed, leaf carbon significantly increased with elevation, and was the most significant environmental factor that constrained the alpha and beta diversity in the FE communities. Tree height and the cellulose, lignin, and carbon/nitrogen ratio of the leaves also affected the FE assemblages. When controlled for the effects of elevation, leaf carbon was still the main driver of changes in evenness, Shannon diversity and FE community composition. The results offered clues of the carbon acquisition strategy of the foliar FEs across this cold terrain. There was strong multicollinearity between both annual precipitation and temperature, with elevation (|Pearson r| > 0.986), so the effects of these climatic variables were impossible to separate; however, they may play key roles, and the direct effects of both warrant further investigation. As pioneer decomposers of leaf litter, variations in diversity and community composition of FE measured here may feedback and influence carbon cycling and dynamics in these forest ecosystems.

  9. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition

    OpenAIRE

    Jingqi eGuo; Rebecca Lynne McCulley; McNear, David H.

    2015-01-01

    Tall fescue (Lolium arundinaceum (Schreb.)) is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce t...

  10. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition

    OpenAIRE

    Guo, Jingqi; Rebecca L. McCulley; McNear, David H.

    2015-01-01

    Tall fescue [Lolium arundinaceum (Schreb.)] is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce th...

  11. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition.

    Science.gov (United States)

    Guo, Jingqi; McCulley, Rebecca L; McNear, David H

    2015-01-01

    Tall fescue [Lolium arundinaceum (Schreb.)] is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-), infected with the common toxic endophyte (CTE+) strain or with one of two novel endophytes (AR542E+, AR584E+). Plants were grown sterile for 3 weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes.

  12. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition

    Directory of Open Access Journals (Sweden)

    Jingqi eGuo

    2015-04-01

    Full Text Available Tall fescue (Lolium arundinaceum (Schreb. is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-, infected with the common toxic endophyte (CTE+ strain or with one of two novel endophytes (AR542E+, AR584E+. Plants were grown sterile for three weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes.

  13. Geographical and temporal changes of foliar fungal endophytes associated with the invasive plant Ageratina adenophora.

    Science.gov (United States)

    Mei, Liang; Zhu, Ming; Zhang, De-Zhu; Wang, Yong-Zhou; Guo, Jing; Zhang, Han-Bo

    2014-02-01

    Endophytes may gradually accumulate in the new geographic range of a non-native plant, just as pathogens do. To test this hypothesis, the dynamics of colonization and diversity of foliar fungal endophytes of non-native Ageratina adenophora were investigated. Previous reports showed that the time since the initial introduction (1930s) of A. adenophora into China varied among populations. Endophytes were sampled in three provinces of Southwest China in 21 sites that varied from 20 to 70 years since the introduction of A. adenophora from its native Central America. Endophyte isolation frequencies varied from 1.87% to 60.23% overall in a total of 4,032 leaf fragments. Based on ITS sequence variations, 463 fungal endophytes were distinguished as 112 operational taxonomic units (OTUs) belonging to the Sordariomycetes (77 OTUs, 373 isolates), Dothideomycetes (18 OTUs, 38 isolates), and Agaricomycetes (17 OTUs, 52 strains) classes. Colletotrichum (28.51%), Nemania (14.90%), Phomopsis (13.17%), and Xylaria (4.97%) were the most abundant genera. Both endophyte diversity and overall isolation frequency increased with time since introduction. The genetic differentiation of the fungus Colletotrichum gloeosporioides indicated that the dispersal of endophytes was likely affected by a combination of geographic factors and the invasion history of the host A. adenophora.

  14. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure.

    Science.gov (United States)

    Sandberg, Dustin C; Battista, Lorna J; Arnold, A Elizabeth

    2014-05-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.

  15. Data on litter quality of host grass plants with and without fungal endophytes

    Directory of Open Access Journals (Sweden)

    P.E. Gundel

    2016-06-01

    Full Text Available Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively. Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin×endophyte]. This data can be potentially used in other studies which, by means of ‘data reanalyzing’ or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article “Role of foliar fungal endophytes on litter decomposition among species and population origins” (Gundel et al., In preparation [1].

  16. Data on litter quality of host grass plants with and without fungal endophytes

    Science.gov (United States)

    Gundel, P.E.; Helander, M.; Garibaldi, L.A.; Vázquez-de-Aldana, B.R.; Zabalgogeazcoa, I.; Saikkonen, K.

    2016-01-01

    Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis) affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively). Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin)×endophyte]. This data can be potentially used in other studies which, by means of ‘data reanalyzing’ or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article “Role of foliar fungal endophytes on litter decomposition among species and population origins” (Gundel et al., In preparation) [1]. PMID:27182541

  17. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.

    Science.gov (United States)

    Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir

    2016-10-01

    Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae.

    Science.gov (United States)

    Herre, Edward Allen; Mejía, Luis C; Kyllo, Damond A; Rojas, Enith; Maynard, Zuleyka; Butler, Andre; Van Bael, Sunshine A

    2007-03-01

    We discuss studies of foliar endophytic fungi (FEF) and arbuscular mycorrhizal fungi (AMF) associated with Theobroma cacao in Panama. Direct, experimentally controlled comparisons of endophyte free (E-) and endophyte containing (E+) plant tissues in T. cacao show that foliar endophytes (FEF) that commonly occur in healthy host leaves enhance host defenses against foliar damage due to the pathogen (Phytophthora palmivora). Similarly, root inoculations with commonly occurring AMF also reduce foliar damage due to the same pathogen. These results suggest that endophytic fungi can play a potentially important mutualistic role by augmenting host defensive responses against pathogens. There are two broad classes of potential mechanisms by which endophytes could contribute to host protection: (1) inducing or increasing the expression of intrinsic host defense mechanisms and (2) providing additional sources of defense, extrinsic to those of the host (e.g., endophyte-based chemical antibiosis). The degree to which either of these mechanisms predominates holds distinct consequences for the evolutionary ecology of host-endophyte-pathogen relationships. More generally, the growing recognition that plants are composed of a mosaic of plant and fungal tissues holds a series of implications for the study of plant defense, physiology, and genetics.

  19. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants.

    Science.gov (United States)

    Kia, Sevda Haghi; Glynou, Kyriaki; Nau, Thomas; Thines, Marco; Piepenbring, Meike; Maciá-Vicente, Jose G

    2017-03-01

    Plants associate through their roots with fungal assemblages that impact their abundance and productivity. Non-mycorrhizal endophytes constitute an important component of such fungal diversity, but their implication in ecosystem processes is little known. Using a selection of 128 root-endophytic strains, we defined functional groups based on their traits and plant interactions with potential to predict community assembly and symbiotic association processes. In vitro tests of the strains' interactions with Arabidopsis thaliana, Microthlaspi erraticum and Hordeum vulgare showed a net negative effect of fungal colonization on plant growth. The effects partly depended on the phylogenetic affiliation of strains, but also varied considerably depending on the plant-strain combination. The variation was partly explained by fungal traits shared by different lineages, like growth rates or melanization. The origin of strains also affected their symbioses, with endophytes isolated from Microthlaspi spp. populations being more detrimental to M. erraticum than strains from other sources. Our findings suggest that plant-endophyte associations are subject to local processes of selection, in which particular combinations of symbionts are favored across landscapes. We also show that different common endophytic taxa have differential sets of traits found to affect interactions, hinting to a functional complementarity that can explain their frequent co-existence in natural communities.

  20. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants.

    Science.gov (United States)

    Dembitsky, Valery M

    2014-10-15

    This article focuses on the occurrence and biological activities of cyclobutane-containing (CBC) alkaloids obtained from fungi, fungal endophytes, and plants. Naturally occurring CBC alkaloids are of particular interest because many of these compounds display important biological activities and possess antitumour, antibacterial, antimicrobial, antifungal, and immunosuppressive properties. Therefore, these compounds are of great interest in the fields of medicine, pharmacology, medicinal chemistry, and the pharmaceutical industry. Fermentation and production of CBC alkaloids by fungi and/or fungal endophytes is also discussed. This review presents the structures and describes the activities of 98 CBC alkaloids.

  1. Anti-colon cancer activity of endophytic fungal strains from Terminalia chebula Rezt

    Directory of Open Access Journals (Sweden)

    Mohammad Shoeb

    2012-03-01

    Full Text Available Endophytic microorganisms are fungi or bacteria that live inside the healthy tissues of the host plants causing no apparent symptoms of diseases. Five endophytic fungal strains labeled as IR-1, IR-2, IR-4, IR-6 and IR-7 (identified as Penicillium thiomii were isolated from the medicinal plant of Terminalia chebula Retz by culture and sub-culture. The ethyl acetate extract of fungal strains, IR-4, IR-6 and IR-7 inhibited the growth of CaCo-2 colon cancer cell lines in MTT assay with IC50 values of 55, 44 and 67 µg/mL, respectively.

  2. Geographic locality greatly influences fungal endophyte communities in Cephalotaxus harringtonia.

    Science.gov (United States)

    Langenfeld, Aude; Prado, Soizic; Nay, Bastien; Cruaud, Corine; Lacoste, Sandrine; Bury, Edith; Hachette, François; Hosoya, Tsuyoshi; Dupont, Joëlle

    2013-02-01

    Although endophytes of conifers have been extensively studied, few data are available on Cephalotaxaceae. We examined foliar and stem endophytes of Cephalotaxus harringtonia, within its natural range in Japan and outside its natural range in France to study the effect of geography on endophyte community composition. In Japan, rapidly growing endophytes were dominant and may have masked the real diversity, in comparison to France where most endophytes were growing slowly. Analyses of ITS rDNA revealed 104 different Blast Groups among 554 isolates. Almost no overlap between endophyte assemblages of C. harringtonia from the two countries was observed. It seems that Japanese C. harringtonia trees, which should be well adapted to their native site, would host a specific, endemic endophyte community, while trees that have been introduced recently to a foreign site, in France, should have captured existing cosmopolitan and more generalist taxa. In Japan the majority of xylariaceous taxa, which dominated the communities, were unknown and, although closely related to Asian taxa, may be new to science. Dothideomycetes were more prevalent in France. Locally, urban environment, particularly in Japan, may have introduced some perturbations in the native endophyte community of C. harringtonia, with an abundance of generalist fungi such as Nigrospora and Colletotrichum. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Fungal endophyte (Epichloe festucae alters the nutrient content of Festuca rubra regardless of water availability.

    Directory of Open Access Journals (Sweden)

    Beatriz R Vázquez-de-Aldana

    Full Text Available Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+ and non-infected (E- plants of two half-sib lines (PEN and RAB were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%, Zn (58% and N (19% than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands.

  4. Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism.

    Science.gov (United States)

    Wilkinson, H H; Siegel, M R; Blankenship, J D; Mallory, A C; Bush, L P; Schardl, C L

    2000-10-01

    Fungal endophytes provide grasses with enhanced protection from herbivory, drought, and pathogens. The loline alkaloids (saturated 1-aminopyrrolizidines with an oxygen bridge) are fungal metabolites often present in grasses with fungal endophytes of the genera Epichloë or Neotyphodium. We conducted a Mendelian genetic analysis to test for activity of lolines produced in plants against aphids feeding on those plants. Though most loline-producing endophytes are asexual, we found that a recently described sexual endophyte, Epichloë festucae, had heritable variation for loline alkaloid expression (Lol+) or nonexpression (Lol-). By analyzing segregation of these phenotypes and of linked DNA polymorphisms in crosses, we identified a single genetic locus controlling loline alkaloid expression in those E. festucae parents. We then tested segregating Lol+ and Lol- full-sibling fungal progeny for their ability to protect host plants from two aphid species, and observed that alkaloid expression cosegregated with activity against these insects. The in planta loline alkaloid levels correlated with levels of anti-aphid activity. These results suggested a key role of the loline alkaloids in protection of host plants from certain aphids, and represent, to our knowledge, the first Mendelian analysis demonstrating how a fungal factor contributes protection to plant-fungus mutualism.

  5. A fungal endophyte reinforces population adaptive differentiation in its host grass species.

    Science.gov (United States)

    Gibert, Anaïs; Volaire, Florence; Barre, Philippe; Hazard, Laurent

    2012-04-01

    Hereditary symbioses between fungal endophytes and grasses are relatively recent in the history of plant life. Given endophyte Neotyphodium lolii in the adaptive differentiation of its host species Lolium perenne. Endophyte frequency in 22 natural L. perenne populations was established across a water availability gradient. Adaptive differentiation among five populations, and between symbiotic (S) and nonsymbiotic (NS) plants, was examined in a glasshouse experiment under nonlimiting and limiting water conditions. Genetic differentiation was subsequently assessed among populations, and between S and NS individuals, using 14 simple sequence repeats (SSR). Symbiosis frequencies were positively correlated to water availability. Adaptive population differentiation occurred following a trade-off between biomass production under nonlimiting water conditions and survivorship under water stress. Endophytic symbiosis increased plant survival in xeric populations, and reinforced competitiveness in mesic populations. No genetic difference was detected between S and NS plants within populations. Therefore, we conclude that the endophyte relationship is responsible for these effects. Local adaptation of the host plant, appears to be supported by the fungal endophyte.

  6. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India.

    Science.gov (United States)

    Kaushik, Naveen Kumar; Murali, Thokur Sreepathy; Sahal, Dinkar; Suryanarayanan, T S

    2014-10-01

    Eighty four different fungal endophytes isolated from sea grasses (5), marine algae (36) and leaves or barks of forest trees (43) were grown in vitro and the secondary metabolites secreted by them were harvested by immobilizing them on XAD beads. These metabolites were eluted with methanol and screened using SYBR Green I assay for their antiplasmodial activity against blood stage Plasmodium falciparum in human red blood cell culture. Our results revealed that fungal endophytes belonging to diverse genera elaborate antiplasmodial metabolites. A Fusarium sp. (580, IC50: 1.94 μg ml(-1)) endophytic in a marine alga and a Nigrospora sp. (151, IC50: 2.88 μg ml(-1)) endophytic in a tree species were subjected to antiplasmodial activity-guided reversed phase high performance liquid chromatography separation. Purification led to potentiation as reflected in IC50 values of 0.12 μg ml(-1) and 0.15 μg ml(-1) for two of the fractions obtained from 580. Our study adds further credence to the notion that fungal endophytes are a potential storehouse for a variety of novel secondary metabolites vested with different bioactivities including some that can stall the growth of the malaria parasite.

  7. Fungal endophytes and their interactions with plants in phytoremediation: A review.

    Science.gov (United States)

    Deng, Zujun; Cao, Lixiang

    2017-02-01

    Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Interaction between the endophytic fungus Epichloe bromicola and the grass bromus erectus: effects of endophyte infection, fungal concentration and environment on grass growth and flowering

    Science.gov (United States)

    Groppe; Steinger; Sanders; Schmid; Wiemken; Boller

    1999-11-01

    Epichloe bromicola is an endophytic fungal species that systemically and perennially colonizes intercellular spaces of leaf blades, leaf sheaths and culms of Bromus grass species. E. bromicola causes choke disease in B. erectus, suppressing maturation of most, if not all, host inflorescences. In an investigation of the interaction between fungus and host, we used a quantitative polymerase chain reaction technique to estimate the amount of fungal DNA, and thereby fungal concentration, in host plants. Fungal concentration was directly correlated with vegetative vigour of the plant, as measured by longest leaf length, number of tillers and vegetative above-ground biomass, suggesting that, during vegetative growth, the endophytic fungus is most beneficial for the plant when present in high concentrations. In contrast, the reproduction of the plant, as measured by the number of functional inflorescences, was inversely correlated with fungal concentration: the majority of infected plants, and all that were associated with high concentrations of fungi, were diseased. Thus, the benefit of endophyte infection for the plant is coupled with the disadvantages of infertility. Fungal concentration was shown to be at least in part genetically determined because fungal concentration differed significantly in different plant-endophyte genotype combinations (symbiotum). In a field experiment with normal and CO2-enriched environments, elevated CO2 levels favoured fungal reproductive vigour over host reproductive vigour, suggesting that these plant endophytes would be at a selective advantage in a corresponding environmental-change scenario. We conclude that a dynamic and complex relationship between fungal endophyte infection, fungal concentration, genotype and environment affects growth and fecundity of B. erectus and should contribute to the evolution of these plant-fungal interactions.

  9. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay.

    Science.gov (United States)

    You, Young-Hyun; Yoon, Hyeokjun; Kang, Sang-Mo; Shin, Jae-Ho; Choo, Yeon-Sik; Lee, In-Jung; Lee, Jin-Man; Kim, Jong-Guk

    2012-11-01

    Endophytic fungi were isolated from roots of six halophytes in Suncheon Bay. The endophytic fungi of 35 species isolated from halophytes were identified by internal transcribed spacer (ITS) containing the ITS1, 5.8s, and ITS2 regions. All fungal strains were analyzed to diversity at the genus level. Fungal culture filtrates (FCF) of endophytic fungi were treated to Waito-c rice (WR) seedling for plant growth-promoting verification. It was confirmed that fungal strain Sj-2-2 provided plant growth promotion (PGP) to WR seedling. Then, PGP of Suaeda japonica was confirmed by treating culture filtrate of Sj-2-2. As a result, it was verified that culture filtrate of Sj-2-2 had more advanced PGP than positive control when treated to S. japonica. The secondary metabolites involved in culture filtrate of Sj-2-2 were identified by HPLC and GC-MS SIM analysis. The presence of physiologically bioactive gibberellins (GAs) and other inactive GAs in culture filtrate of Sj-2-2 was detected. The molecular analysis of sequences of Sj-2-2 showed the similarity to Penicillium sp. of 99% homology. The PGP of Sj-2-2 as well as symbiosis between endophytic fungi and halophytes growing naturally in salt marsh was confirmed. Sj-2-2 was identified as a new fungal strain producing GAs by molecular analysis of sequences. Consequently, the Sj-2-2 fungal strain was named as Penicillium sp. Sj-2-2. In this study, the diversity of endophytic fungi isolated from roots of halophytes in salt marsh and the PGP of a new gibberellin-producing fungal strain were confirmed.

  10. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions.

    Directory of Open Access Journals (Sweden)

    Rola S Mahmoud

    Full Text Available A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.

  11. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions.

    Science.gov (United States)

    Mahmoud, Rola S; Narisawa, Kazuhiko

    2013-01-01

    A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.

  12. Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in South Indian Aquatic and Wetland Macrophytes

    OpenAIRE

    Kumar Seerangan; Muthukumar Thangavelu

    2014-01-01

    Investigations on the prevalence of arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal symbioses are limited for plants growing in tropical aquatic and wetland habitats compared to those growing on terrestrial moist or dry habitats. Therefore, we assessed the incidence of AM and DSE symbiosis in 8 hydrophytes and 50 wetland plants from four sites in south India. Of the 58 plant species examined, we found AM and DSE fungal symbiosis in 21 and five species, respectively. We rep...

  13. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris

    Science.gov (United States)

    The common bean (Phaseolus vulgaris) is the most important food legume in the world, but its production is severely limited by several biotic and abiotic stressors. In search of a sustainable solution to this problem, we conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11...

  14. Biodegradation of Synthetic Dye by Endophytic Fungal Isolate in Calotropis procera Root

    Directory of Open Access Journals (Sweden)

    Shiv Kumar Verma

    2015-09-01

    Full Text Available In this study, based on colony morphology characteristics, a total of 19 fungal endophytes were isolated from root of Calotropis Procera a traditional Indian medicinal plant. All fungal isolates were screened for their dye degradation ability. The dyes used as test dyes were Rose Bengal (RB, azo dye Methyl Red (MR, Coomassie Brilliant Blue (CBB and Methylene Blue (MB and the concentration of each dye in the experiment was kept 100mg/L. Among the 19 fungal endophytic isolates (CPR1-CPR19, only one isolate CPR4 showed strong dye decolourization capability against all the four test dye. Dye decolourization ability by the isolate CPR4 was determined to be 97.4%, 87%, 65% and 45% for Rose Bengal (RB, Methyl Red (MR, Coomassie Brilliant Blue (CBB and Methylene Blue (MB respectively. Complete colour decolourization was observed with rose Bengal followed by Methyl Red. Glucose minimal medium was used for liquid and solid culture of fungal isolates. Fungal biomass production in the presence of four test dye was studied and compare with control culture of fungal endophytes. Effect of temperature, pH, stationary and agitation conditions on dye degradation was also studied.

  15. Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental?

    Science.gov (United States)

    Cheplick, Gregory P

    2004-12-01

    Perennial ryegrass (Lolium perenne) is a cool-season, perennial species widely used for forage and turf. It is often infected by a clandestine, endophytic fungus (Neotyphodium lolii) that has the potential to affect host growth responses to abiotically stressful conditions. In some species, the grass-endophyte symbiosis is mutualistic, but the relationship is reported to be contingent on environmental conditions and host genotype in L. perenne. The objective of this research was to determine the potential effects of endophyte infection on recovery from severe drought stress in variable genotypes of a perennial ryegrass cultivar. Sixteen infected (+E) and 16 uninfected (-E) ramets were planted in the greenhouse for each of 10 ryegrass genotypes. Eight +E and eight -E plants per genotype were exposed to three sequential droughts where water was withheld for 11-14 d, resulting in drought, and leaf area and dry mass of shoots and roots 7 wk after drought. In both control and drought, -E plants had more tillers, and greater leaf area and total mass, than +E plants, suggesting a detrimental effect of endophytic fungi. Fungal hyphae survived the drought and were abundant in post-drought, +E plants. The effects of endophytes were specific for particular host genotypes, as exemplified by significant genotype × endophyte interactions. Root : shoot ratio and percent of mass allocated to tiller bases (a rough measure of resource storage) showed genotype × endophyte × drought interactions. There was plasticity for root : shoot ratio and genetic variation in the ability to restore root growth during recovery from drought. For 7 of 10 genotypes, -E plants showed an equal or greater allocation to tiller bases than +E plants following drought recovery, illustrating a cost to endophyte infection for some genotypes. The symbiotic relationship between L. perenne and its endophyte primarily benefits the fungus, not the host, under many environmental conditions.

  16. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs. Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  17. Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability

    OpenAIRE

    Vázquez-de-Aldana, Beatriz R; Antonia García-Ciudad; Balbino García-Criado; Santiago Vicente-Tavera; Iñigo Zabalgogeazcoa

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E-) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. S...

  18. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  19. Enhancement of rutin production in Fagopyrum tataricum hairy root cultures with its endophytic fungal elicitors.

    Science.gov (United States)

    Zhao, Jianglin; Xiang, Dabing; Peng, Lianxin; Zou, Liang; Wang, Yuehua; Zhao, Gang

    2014-01-01

    Tartary buckwheat (Fagopyrum tataricum) is a potentially important source of rutin, a natural bioactive flavonoid with antihyperglycemic, antioxidative, antihypertensive, and anti-inflammatory properties. This study examines the effects of endophytic fungi on rutin production in the hairy root cultures of F. tataricum. Without obvious changes in the appearance of the hairy roots, the exogenous fungal mycelia elicitors efficiently stimulated the hairy root growth and rutin biosynthesis, and the stimulation effect was mainly dependent on the mycelia elicitor species, as well as its treatment dose. Two endophytic fungal isolates Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened as promising candidates for promoting F. tataricum hairy root growth and rutin production. With application of polysaccharide (PS) of endophyte Fat9 (200 mg/L), and PS of endophyte Fat15 (100 mg/L) to the hairy root cultures on day 25, the rutin yield was increased to 45.9 mg/L and 47.2 mg/L, respectively. That was about 3.1- to 3.2-fold in comparison with the control level of 14.6 mg/L. Moreover, the present study revealed that the accumulation of rutin resulted from the stimulation of the phenylpropanoid pathway by mycelia PS treatments. This may be an efficient strategy for enhancing rutin production in F. tataricum hairy root culture provided with its endophytic mycelia elicitors.

  20. Endophytes in the plant Huperzia serrata: fungal diversity and discovery of a new pentapeptide.

    Science.gov (United States)

    Xiong, Zhi-Qiang; Yang, Ying-Ying; Liu, Qiao-Xia; Sun, Cui-Cui; Jin, Yu; Wang, Yong

    2015-04-01

    Endophytic fungi are an underexploited resource of natural products and have a capacity to produce diverse classes of plant-derived secondary metabolites. Here, we investigated the diversity of endophytic fungi from Huperzia serrata and the potential for discovering novel fungal natural products. One hundred and fifty-five endophytic fungi isolates obtained from H. serrata, belonging to four classes Dothideomycetes (47.3 %), Sordariomycetes (36.8 %), Eurotiomycetes (10.6 %) and an undefined class (5.3 %, Mucoraceae), were grouped into nine genera based on morphological and molecular identification. Colletotrichum, Cladosporium, Sordariomycetes and Guignardia were the dominant genera, whereas the remaining genera were infrequent groups. To our knowledge, the fungal genera Mucor and Neurospora were first reported in Huperzia plant. Among these endophytic fungi isolates, strain B14, belonging to Penicillium oxalicum, gave a gray precipitate with Dragendorff's reagent. A new pentapeptide was isolated from the culture of strain B14, and its chemical structure was elucidated on the basis of spectroscopic data from (1)H NMR, (13)C NMR and ESI-MS/MS. Taken together, H. serrata has a significant diversity of endophytic fungi that could be a rich resource for the discovery of new natural products.

  1. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    Science.gov (United States)

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production.

  2. Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses.

    Science.gov (United States)

    Higgins, K Lindsay; Coley, Phyllis D; Kursar, Thomas A; Arnold, A Elizabeth

    2011-01-01

    Most studies examining endophytic fungi associated with grasses (Poaceae) have focused on agronomically important species in managed ecosystems or on wild grasses in subtropical, temperate and boreal grasslands. However grasses first arose in tropical forests, where they remain a significant and diverse component of understory and forest-edge communities. To provide a broader context for understanding grass-endophyte associations we characterized fungal endophyte communities inhabiting foliage of 11 species of phylogenetically diverse C(3) grasses in the understory of a lowland tropical forest at Barro Colorado Island, Panama. Our sample included members of early-arising subfamilies of Poaceae that are endemic to forests, as well as more recently arising subfamilies that transitioned to open environments. Isolation on culture media and direct PCR and cloning revealed that these grasses harbor species-rich and phylogenetically diverse communities that lack the endophytic Clavicipitaceae known from diverse woodland and pasture grasses in the temperate zone. Both the incidence and diversity of endophytes was consistent among grass species regardless of subfamily, clade affiliation or ancestral habitat use. Genotype and phylogenetic analyses suggest that these endophytic fungi are predominantly host generalists, shared not only among distinctive lineages of Poaceae but also with non-grass plants at the same site.

  3. Neighboring Deschampsia flexuosa and Trientalis europaea harbor contrasting root fungal endophytic communities.

    Science.gov (United States)

    Tejesvi, Mysore V; Sauvola, Tiina; Pirttilä, Anna Maria; Ruotsalainen, Anna Liisa

    2013-01-01

    Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.

  4. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance

    Science.gov (United States)

    The presence of seed-borne Epichloë/Neotyphodium (Ascomycota: Clavicipitaceae) fungal endophytes in temperate grasses can influence the outcome of grass–insect interactions. For example, the expression of endophyte-mediated resistance to insects depends on the insect species involved. The behavior...

  5. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris

    Science.gov (United States)

    The common bean is the most important food legume in the world. We examined the potential of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae applied as seed treatments for their endophytic establishment in the common bean. Endophytic colonization in sterile sand:peat average...

  6. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development.

    Science.gov (United States)

    Dupont, Pierre-Yves; Eaton, Carla J; Wargent, Jason J; Fechtner, Susanne; Solomon, Peter; Schmid, Jan; Day, Robert C; Scott, Barry; Cox, Murray P

    2015-12-01

    Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool-season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super-infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant-microbe associations behave the same in terms of their effects on the host.

  7. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques.

    Science.gov (United States)

    de Souza Leite, Tiago; Cnossen-Fassoni, Andréia; Pereira, Olinto Liparini; Mizubuti, Eduardo Seiti Gomide; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2013-02-01

    Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques - fragment plating and the innovative dilution-to-extinction culturing - to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill's index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies.

  8. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens.

    Science.gov (United States)

    Soltani, Jalal; Hosseyni Moghaddam, Mahdieh S

    2015-04-01

    Fungal endophytes were isolated from the Mediterranean cypress Cupressus sempervirens. Eleven taxa of fungi, all within the Ascomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. The endophytic fungi included Alternaria multiformis, Didymella sp., Phoma sp., Phoma herbarum, Pyrenochaeta sp. (Dothideomycetes), Penicillium brevicompactum, Talaromyces sp. (Eurotiomycetes), Ascorhizoctonia sp. (Pezizomycetes), Thielavia microspora, and Thielavia spp. (Sordariomycetes). Considering the former findings in US, this indicates that similar ascomycetous classes of fungi, all from Pezizomycotina, associate with the healthy Cupressaceous trees in Iran. The recovered endophytes produced antifungal and antiproliferative metabolites which may contribute to the protection and survival of the host. We speculate that endophyte-infected C. sempervirens may benefit from their fungal associates by their influence on the ecology and biotic stress tolerance of the host plant. Moreover, a novel niche for the identified fungal species is being introduced.

  9. Relationship between plant lipid bodies and fungal endophytes

    Science.gov (United States)

    Lipid bodies are universal components of plant cells and provide a mobilized carbon source for essential biological processes. Plant oils harvested for food and fuel often reside in these lipid bodies. Plants also host diverse populations of endophytic fungi, which easily escape microscopic detect...

  10. Non-mycorrhizal fungal endophytes in two orchids of Kaiga forest (Western Ghats), India

    Institute of Scientific and Technical Information of China (English)

    Naga M. Sudheep; Kandikere R. Sridhar

    2012-01-01

    We used standard isolation protocols to explore the endophytic fungal communities in three tissue types of two dominant orchids (Bulbophyllum neilgherrense and Vanda testacea) of the Kaiga forest of the Western Ghats.We surface sterilized and assessed 90 segments of each orchid for the occurrence and diversity of endophytic fungal taxa.The 118 fungal isolates were obtained from root,bulb and leaves of B.neilgherrense,consisting of 17 anamorphic taxa (range,10-15 taxa) with 1.3 fungal taxa per segment (range,1.2-1.4 taxa).Four taxa (Aspergillus flavus,A.niger,Penicillium sp.and morpho sp.1 ) belonged to the core group (11.1%-32.2%).The relative abundance ofA.flavus and morpho sp.1 was more than 10%.A total of 130 fungal isolates from roots,stems and leaves of V.testacea yielded 20 anamorphic taxa (range,11-15 taxa)with 1.4 fungal taxa per segment (range,1.4-1.5 taxa).Aspergillusflavus,A.niger,A.ochraceus,Gliocladium viride,Penicillium sp.and morpho sp.1 belonged to the core group.Relative abundance exceeded 10% for A.flavus,A.niger,and morpho sp.1.The Simpson and Shannon diversity indices were higher in leaf than root or bulb/stem of both orchids.Jaccard's similarity coefficient was higher between root and leaf in both orchids (56.3%-60%) than between other pairs.Our study revealed that the endophytic fungal assemblage and diversity ofB.neilgherrense and V.testacea of Kaiga forest of the Western Ghats were relatively similar between orchids and their tissues.

  11. Secondary Metabolites from Fungal Endophytes of Echinacea purpurea Suppress Cytokine Secretion by Macrophage-Type Cells.

    Science.gov (United States)

    Kaur, Amninder; Oberhofer, Martina; Juzumaite, Monika; Raja, Huzefa A; Gulledge, Travis V; Kao, Diana; Faeth, Stanley H; Laster, Scott M; Oberlies, Nicholas H; Cech, Nadja B

    2016-01-01

    Botanical extracts of Echinacea purpurea have been widely used for the treatment of upper respiratory infections. We sought to chemically examine fungal endophytes inhabiting E. purpurea, and to identify compounds produced by these endophytes with in vitro cytokine-suppressive activity. Twelve isolates from surface sterilized seeds of E. purpurea were subjected to fractionation and major components were isolated. Sixteen secondary metabolites belonging to different structural classes were identified from these isolates based on NMR and mass spectrometry data. The compounds were tested for their influence on cytokine secretion by murine macrophage-type cells. Alternariol (1), O-prenylporriolide (4), porritoxin (10) β-zearalenol (13), and (S)-zearalenone (14) inhibited production of TNF-α from RAW 264.7 macrophages stimulated with LPS in the absence of any significant cytotoxicity. This is the first report of a cytokine-suppressive effect for 4. The results of this study are particularly interesting given that they show the presence of compounds with cytokine-suppressive activity in endophytes from a botanical used to treat inflammation. Future investigations into the role of fungal endophytes in the biological activity of E. purpurea dietary supplements may be warranted.

  12. Sequence Analysis of SSR-Flanking Regions Identifies Genome Affinities between Pasture Grass Fungal Endophyte Taxa

    Directory of Open Access Journals (Sweden)

    Eline van Zijll de Jong

    2011-01-01

    Full Text Available Fungal species of the Neotyphodium and Epichloë genera are endophytes of pasture grasses showing complex differences of life-cycle and genetic architecture. Simple sequence repeat (SSR markers have been developed from endophyte-derived expressed sequence tag (EST collections. Although SSR array size polymorphisms are appropriate for phenetic analysis to distinguish between taxa, the capacity to resolve phylogenetic relationships is limited by both homoplasy and heteroploidy effects. In contrast, nonrepetitive sequence regions that flank SSRs have been effectively implemented in this study to demonstrate a common evolutionary origin of grass fungal endophytes. Consistent patterns of relationships between specific taxa were apparent across multiple target loci, confirming previous studies of genome evolution based on variation of individual genes. Evidence was obtained for the definition of endophyte taxa not only through genomic affinities but also by relative gene content. Results were compatible with the current view that some asexual Neotyphodium species arose following interspecific hybridisation between sexual Epichloë ancestors. Phylogenetic analysis of SSR-flanking regions, in combination with the results of previous studies with other EST-derived SSR markers, further permitted characterisation of Neotyphodium isolates that could not be assigned to known taxa on the basis of morphological characteristics.

  13. Wood decomposition and fungal community dynamics mediated by temperature and endophytes

    Science.gov (United States)

    Song, Z.; Schilling, J. S.

    2013-12-01

    Wood decomposition is primarily fulfilled by brown rot and white rot fungi in temperate and boreal forests. The competition balance between these fungi determines the patterns of wood decomposition and carbon cycle in forests. But this balance may shift in a warmer future, especially in high latitude forests. Additionally, endophytes may assert influence over the fungal competition through priority effect and interact with the effect of climate change. In this study, we use paper birch and two common fungi to answer two questions 1) How does increased temperature affect the competition between brown rot and white rot fungi? 2) How do endophytes interact with fungi from the soil and influence wood decomposition? A microcosm system was used to simulate competition between Piptoporus betulinus (brown rot fungi) and Fomes fomentarius (white rot fungi) on small birch stem on the effect of increased temperature and endophytes. Activity of P. betulinus was slower in higher temperature, but F. fomentarius was not affected. Character of residue showed that when both fungi were present, wood tend to have white rot in higher temperature. Presence of endophytes significantly reduced the decay rate when they were competing with external fungi, indicating that part of their energy was allocated to interspecies antagonism from metabolizing wood. In the absence of external fungus, endophytes alone caused significant amount of wood decay. Higher temperature also tends to shift the community of endophyte toward more white rot fungi. Our results highlighted the role of endophytes in wood decomposition. Major wood decomposers, not just plant pathogen, may remain dormant in live trees and regain their activity right after tree death. The endophytes could be an important part of assembly history in forming microbial community in dead wood and may have complex interactions with fungi and bacteria in soil. An increased temperature obviously favors white rot fungi, which is in accordance

  14. [Cellulase and xylanase activity of phytopathogenic and endophytic fungal strains of Alternaria alternata (Fr.) Keissler].

    Science.gov (United States)

    Kurchenko, I M; Sokolova, O V; Zhdanova, N M; Iarynchyn, A M; Iovenko, O M

    2008-01-01

    A comparative analysis of cellulase and xylanase activity of 25 fungal strains of phytopathogenic and endophytic Alternaria alternata had been realized for the first time using the qualitative reactions. The rate of their linear growth on the media with carboxymethylcellulose or xylane had been studied. The cellulase and xylanase activities clearly depended on the distinct strain. The absence of distinct dependence of cellulase and xylanase activities on the species and organs of host plants was demonstrated. The majority of investigated strains of A. alternata did not possess a cellulase activity or the latter was low, but as a whole the phytopathogenic strains were more active than endophytic ones. Xylanase activity was considerable for the fungal strains of all trophyc groups. It was shown that the level of xylanase activity cannot become a biochemical marker of the A. alternata isolate pathogenicity.

  15. Infection with a Shoot-Specific Fungal Endophyte (Epichloë) Alters Tall Fescue Soil Microbial Communities.

    Science.gov (United States)

    Rojas, Xavier; Guo, Jingqi; Leff, Jonathan W; McNear, David H; Fierer, Noah; McCulley, Rebecca L

    2016-07-01

    Tall fescue (Schedonorus arundinaceus) is a widespread grass that can form a symbiotic relationship with a shoot-specific fungal endophyte (Epichloë coenophiala). While the effects of fungal endophyte infection on fescue physiology and ecology have been relatively well studied, less attention has been given to how this relationship may impact the soil microbial community. We used high-throughput DNA sequencing and phospholipid fatty acid analysis to determine the structure and biomass of microbial communities in both bulk and rhizosphere soils from tall fescue stands that were either uninfected with E. coenophiala or were infected with the common toxic strain or one of several novel strains of the endophyte. We found that rhizosphere and bulk soils harbored distinct microbial communities. Endophyte presence, regardless of strain, significantly influenced soil fungal communities, but endophyte effects were less pronounced in prokaryotic communities. E. coenophiala presence did not change total fungal biomass but caused a shift in soil and rhizosphere fungal community composition, increasing the relative abundance of taxa within the Glomeromycota phylum and decreasing the relative abundance of genera in the Ascomycota phylum, including Lecanicillium, Volutella, Lipomyces, Pochonia, and Rhizoctonia. Our data suggests that tripartite interactions exist between the shoot endophyte E. coenophiala, tall fescue, and soil fungi that may have important implications for the functioning of soils, such as carbon storage, in fescue-dominated grasslands.

  16. Antifungal metabolites from fungal endophytes of Pinus strobus

    DEFF Research Database (Denmark)

    Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan;

    2011-01-01

    The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated and c...... by spectroscopic analyses including 2D NMR, HRMS and by comparison to literature data where available. The isolated compounds 1, 2, and 5 were antifungal against both the rust Microbotryum violaceum and Saccharomyces cerevisae....

  17. Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)

    OpenAIRE

    María J Ek-Ramos; Wenqing Zhou; Valencia, César U.; Antwi, Josephine B.; Kalns, Lauren L.; Gaylon D Morgan; David L. Kerns; Sword, Gregory A.

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in f...

  18. Aploneura lentisci (Homoptera: Aphididae) and Its Interactions with Fungal Endophytes in Perennial Ryegrass (Lolium perenne)

    Science.gov (United States)

    Popay, Alison J.; Cox, Neil R.

    2016-01-01

    Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2-year period between Pistacia and secondary hosts, principally species of Gramineae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp.) and tall fescue (Schedonorus phoenix) where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var. lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were similar to those on

  19. Aploneura lentisci (Homoptera: Aphididae and its interactions with fungal endophytes in perennial ryegrass (Lolium perenne

    Directory of Open Access Journals (Sweden)

    Alison Jean Popay

    2016-09-01

    Full Text Available Aploneura lentisci Pass. is endemic to the Mediterranean region where it is holocyclic, forming galls on its primary host, Pistacia lentiscus and alternating over a 2 year period between Pistacia and secondary hosts, principally species of Graminae. This aphid is widely distributed in Australia and New Zealand on the roots of the common forage grasses, ryegrass (Lolium spp. and tall fescue (Schedonorus phoenix where it exists as permanent, anholocyclic, parthenogenetic populations. Previous studies have indicated that infestations of A. lentisci significantly reduce plant growth and may account for differences in field performance of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var lolii. These obligate biotrophs protect their host grasses from herbivory via the production of alkaloids. To confirm the hypothesis that growth of L. perenne is associated with the effect of different endophyte strains on aphid populations, herbage and root growth were measured over time in two pot trials that compared three fungal endophyte strains with an endophyte-free control. In both pot trials, aphid numbers were lowest on plants infected with endophyte strain AR37 at all sampling times. In plants infected with a common toxic strain naturalized in New Zealand, aphid numbers overall were lower than on uninfected plants or those infected with strain AR1, but numbers did not always differ significantly from these treatments. Populations on AR1-infected plants were occasionally significantly higher than those on endophyte-free. Cumulative foliar growth was reduced in AR1 and Nil treatments relative to AR37 in association with population differences of A. lentisci in both trials and root dry weight was reduced in one trial. In four Petri dish experiments survival of A. lentisci on plants infected with AR37 declined to low levels after an initial phase of up to 19 days during which time aphids fed and populations were

  20. Fungal endophytes associated with three South American Myrtae (Myrtaceae) exhibit preferences in the colonization at leaf level.

    Science.gov (United States)

    Vaz, Aline B M; da Costa, Andre G F C; Raad, Lucélia V V; Góes-Neto, Aristóteles

    2014-03-01

    Fungal endophytes associated with Myrtaceae from Brazil and Argentina were isolated at three levels of nesting: leaf, individual host trees, and site collection. The alternating logistic regression (ALR) was used to model the data because it offers a computationally convenient method for fitting regression structures involving large clusters. The objectives of this study were to determine: (i) whether the colonization pattern is influenced by environmental variables, (ii) if there is some leaf part they prefer to colonize; (iii) if there is some fungal endophyte aggregation between hierarchical levels; (iv) what the distance effect is on the fungal association. The environmental variables were statistically significant only for Xylaria, i.e., when the elevation and water precipitation increase and the temperature decreases, the odds ratio of finding another fungal endophyte of that genus previously found increases. Sordariomycetes, Xylariales, and Xylaria exhibited leaf fragment preference to petiole and tip. Fungal endophytes showed association within leaf. The horizontal transmission mode and the dispersal limitation may explain this association at the leaf level. Moreover, our results suggest that when a fungal endophyte infects a leaf or host tree individual, the odds ratio of dispersal inside them is greater.

  1. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda).

    Science.gov (United States)

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-10-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts.

  2. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth

    Science.gov (United States)

    Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith

    2017-01-01

    Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.

  3. Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers.

    Science.gov (United States)

    Stierle, Andrea A; Stierle, Donald B

    2015-10-01

    This is a review of bioactive secondary metabolites isolated from conifer-associated endophytic fungi from 1990-2014. This includes compounds with antimicrobial, anti-inflammatory, anti-proliferative and cytotoxic activity towards human cancer cell lines, and activity against either plant pathogens or plant insect pests. Compounds that were originally reported without associated activity were included if other studies ascribed activity to these compounds. Compounds were not included if they were exclusively phytotoxic or if they were isolated from active extracts but were not determined to be the active component of that extract.

  4. Does fungal endophyte infection improve tall fescue's growth response to fire and water limitation?

    Directory of Open Access Journals (Sweden)

    Sarah L Hall

    Full Text Available Invasive species may owe some of their success in competing and co-existing with native species to microbial symbioses they are capable of forming. Tall fescue is a cool-season, non-native, invasive grass capable of co-existing with native warm-season grasses in North American grasslands that frequently experience fire, drought, and cold winters, conditions to which the native species should be better-adapted than tall fescue. We hypothesized that tall fescue's ability to form a symbiosis with Neotyphodium coenophialum, an aboveground fungal endophyte, may enhance its environmental stress tolerance and persistence in these environments. We used a greenhouse experiment to examine the effects of endophyte infection (E+ vs. E-, prescribed fire (1 burn vs. 2 burn vs. unburned control, and watering regime (dry vs. wet on tall fescue growth. We assessed treatment effects for growth rates and the following response variables: total tiller length, number of tillers recruited during the experiment, number of reproductive tillers, tiller biomass, root biomass, and total biomass. Water regime significantly affected all response variables, with less growth and lower growth rates observed under the dry water regime compared to the wet. The burn treatments significantly affected total tiller length, number of reproductive tillers, total tiller biomass, and total biomass, but treatment differences were not consistent across parameters. Overall, fire seemed to enhance growth. Endophyte status significantly affected total tiller length and tiller biomass, but the effect was opposite what we predicted (E->E+. The results from our experiment indicated that tall fescue was relatively tolerant of fire, even when combined with dry conditions, and that the fungal endophyte symbiosis was not important in governing this ecological ability. The persistence of tall fescue in native grassland ecosystems may be linked to other endophyte-conferred abilities not measured here

  5. Does fungal endophyte infection improve tall fescue's growth response to fire and water limitation?

    Science.gov (United States)

    Hall, Sarah L; McCulley, Rebecca L; Barney, Robert J; Phillips, Timothy D

    2014-01-01

    Invasive species may owe some of their success in competing and co-existing with native species to microbial symbioses they are capable of forming. Tall fescue is a cool-season, non-native, invasive grass capable of co-existing with native warm-season grasses in North American grasslands that frequently experience fire, drought, and cold winters, conditions to which the native species should be better-adapted than tall fescue. We hypothesized that tall fescue's ability to form a symbiosis with Neotyphodium coenophialum, an aboveground fungal endophyte, may enhance its environmental stress tolerance and persistence in these environments. We used a greenhouse experiment to examine the effects of endophyte infection (E+ vs. E-), prescribed fire (1 burn vs. 2 burn vs. unburned control), and watering regime (dry vs. wet) on tall fescue growth. We assessed treatment effects for growth rates and the following response variables: total tiller length, number of tillers recruited during the experiment, number of reproductive tillers, tiller biomass, root biomass, and total biomass. Water regime significantly affected all response variables, with less growth and lower growth rates observed under the dry water regime compared to the wet. The burn treatments significantly affected total tiller length, number of reproductive tillers, total tiller biomass, and total biomass, but treatment differences were not consistent across parameters. Overall, fire seemed to enhance growth. Endophyte status significantly affected total tiller length and tiller biomass, but the effect was opposite what we predicted (E->E+). The results from our experiment indicated that tall fescue was relatively tolerant of fire, even when combined with dry conditions, and that the fungal endophyte symbiosis was not important in governing this ecological ability. The persistence of tall fescue in native grassland ecosystems may be linked to other endophyte-conferred abilities not measured here (e

  6. Does Fungal Endophyte Infection Improve Tall Fescue’s Growth Response to Fire and Water Limitation?

    Science.gov (United States)

    Hall, Sarah L.; McCulley, Rebecca L.; Barney, Robert J.; Phillips, Timothy D.

    2014-01-01

    Invasive species may owe some of their success in competing and co-existing with native species to microbial symbioses they are capable of forming. Tall fescue is a cool-season, non-native, invasive grass capable of co-existing with native warm-season grasses in North American grasslands that frequently experience fire, drought, and cold winters, conditions to which the native species should be better-adapted than tall fescue. We hypothesized that tall fescue’s ability to form a symbiosis with Neotyphodium coenophialum, an aboveground fungal endophyte, may enhance its environmental stress tolerance and persistence in these environments. We used a greenhouse experiment to examine the effects of endophyte infection (E+ vs. E−), prescribed fire (1 burn vs. 2 burn vs. unburned control), and watering regime (dry vs. wet) on tall fescue growth. We assessed treatment effects for growth rates and the following response variables: total tiller length, number of tillers recruited during the experiment, number of reproductive tillers, tiller biomass, root biomass, and total biomass. Water regime significantly affected all response variables, with less growth and lower growth rates observed under the dry water regime compared to the wet. The burn treatments significantly affected total tiller length, number of reproductive tillers, total tiller biomass, and total biomass, but treatment differences were not consistent across parameters. Overall, fire seemed to enhance growth. Endophyte status significantly affected total tiller length and tiller biomass, but the effect was opposite what we predicted (E−>E+). The results from our experiment indicated that tall fescue was relatively tolerant of fire, even when combined with dry conditions, and that the fungal endophyte symbiosis was not important in governing this ecological ability. The persistence of tall fescue in native grassland ecosystems may be linked to other endophyte-conferred abilities not measured here (e

  7. Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China.

    Science.gov (United States)

    Jin, Hui; Yan, Zhiqiang; Liu, Quan; Yang, Xiaoyan; Chen, Jixiang; Qin, Bo

    2013-12-01

    This study was conducted to explore fungal endophyte communities inhabiting a toxic weed (Stellera chamaejasme L.) from meadows of northwestern China. The effects of plant tissue and growth stage on endophyte assemblages were characterized. Endophytes were recovered from 50 % of the samples, with a total of 714 isolates. 41 operational taxonomical units (OTUs) were identified, consisting of 40 OTUs belonging primarily to Ascomycota and 1 OTU belonging to Basidiomycota. Pleosporales and Hypocreales were the orders contributing the most species to the endophytic assemblages. The total colonization frequency and species richness of endophytic fungi were higher in roots than in leaves and stems. In addition, for the plant tissues, the structure of fungal communities differed significantly by growth stages of leaf emergence and dormancy; for the plant growth stages, the structure of fungal communities differed significantly by plant tissues. This study demonstrates that S. chamaejasme serves as a reservoir for a wide variety of fungal endophytes that can be isolated from various plant tissues.

  8. Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in South Indian Aquatic and Wetland Macrophytes

    Directory of Open Access Journals (Sweden)

    Kumar Seerangan

    2014-01-01

    Full Text Available Investigations on the prevalence of arbuscular mycorrhizal (AM and dark septate endophyte (DSE fungal symbioses are limited for plants growing in tropical aquatic and wetland habitats compared to those growing on terrestrial moist or dry habitats. Therefore, we assessed the incidence of AM and DSE symbiosis in 8 hydrophytes and 50 wetland plants from four sites in south India. Of the 58 plant species examined, we found AM and DSE fungal symbiosis in 21 and five species, respectively. We reported for the first time AM and DSE fungal symbiosis in seven and five species, respectively. Intermediate-type AM morphology was common, and AM morphology is reported for the first time in 16 plant species. Both AM and DSE fungal colonization varied significantly across plant species and sites. Intact and identifiable AM fungal spores occurred in root zones of nine plant species, but AM fungal species richness was low. Though no clear relationship between AM and DSE fungal colonization was recognized, a significant negative correlation between AM colonization and spore numbers was established. Our study suggests that the occurrence of AM and DSE fungal symbiosis in plants growing in hydrophytic and wetland habitats is not as common as in terrestrial habitats.

  9. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  10. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy

    Science.gov (United States)

    Redman, Regina S.; Henson, Joan M.; Rodriguez, Russell J.

    2005-01-01

    The fossil record indicates that fungal symbionts have been associated with plants since the Ordovician period (approximately 400 million years ago), when plants first became established on land (Pirozynski and Malloch, 1975; Redecker et al., 2000; Remy et al., 1994; Simon et al., 1993). Transitioning from aquatic to terrestrial habitats likely presented plants with new stresses, including periods of desiccation. Since symbiotic fungi are known to confer drought tolerance to plants (Bacon, 1993; Read and Camp, 1986), it has been suggested that fungal symbiosis was involved with or responsible for the establishment of land plants (Pirozynski and Malloch, 1975). Symbiosis was first defined by De Bary in 1879, and since that time, all plants in natural ecosystems have been found to be colonized with fungal and bacterial symbionts. It is clear that individual plants represent symbiotic communities with microorganisms associated in or on tissues below- and aboveground.There are two major classes of fungal symbionts associated with internal plant tissues: fungal endophytes that reside entirely within plants and may be associated with roots, stems leaves, or flowers; and mycorrhizal fungi that reside only in roots but extend out into the rhizosphere. In addition, fungal endophytes may be divided into two classes: (1) a relatively small number of fastidious species that are limited to a few monocot hosts (Clay and Schardl, 2002), and (2) a large number of tractable species with broad host ranges, including both monocots and eudicots (Stone et al., 2000). While significant resources and research have been invested in mycorrhizae and class 1 endophytes, comparatively little is known about class 2 endophytes, which may represent the largest group of fungal symbionts. This is partially because the symbiotic functionalities of class 2 endophytes have only recently been elucidated and shown to be responsible for the adaptation of some plants to high-stress environments (Redman

  11. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area.

    Science.gov (United States)

    Yokoya, Kazutomo; Postel, Sarah; Fang, Rui; Sarasan, Viswambharan

    2017-01-01

    Fungal endophytes are highly diverse ubiquitous asymptomatic microorganisms, some of which appear to be symbiotic. Depending on abiotic conditions and genotype of the plant, the diversity of endophytes may confer fitness benefits to plant communities. We studied a crop wild relative (CWR) of strawberry, along environmental gradients with a view to understand the cultivable root-derived endophytic fungi that can be evaluated for promoting growth and tolerating stress in selected plant groups. The main objectives were to understand whether: (a) suboptimal soil types are drivers for fungal distribution and diversity; (b) high pH and poor nutrient availability lead to fungal-plant associations that help deliver fitness benefits; and (c) novel fungi can be identified for their use in improving plant growth, and alleviate stress in diverse crops. The study revealed that habitats with high pH and low nutrient availability have higher fungal diversity, with more rare fungi isolated from locations with chalky soil. Plants from location G were the healthiest even though soil from this location was the poorest in nutrients. Study of environmental gradients, especially extreme habitat types, may help understand the root zone fungal diversity of different functional classes. Two small in vitro pilot studies conducted with two isolates showed that endophytic fungi from suboptimal habitats can promote plant growth and fitness benefits in selected plant groups. Targeting native plants and crop wild relatives for research offers opportunities to unearth diverse functional groups of root-derived endophytic fungi that are beneficial for crops.

  12. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter.

    Directory of Open Access Journals (Sweden)

    Zhilin Yuan

    Full Text Available The role of fungal endophytes (FEs as "pioneer" decomposers has recently been recognized; however, the extent to which FEs contribute to litter loss is less well understood. The genetic and enzymatic bases of FE-mediated decomposition have also rarely been addressed. The effects of populations and individuals (with an emphasis on two dominant Lophodermium taxa of FEs on needle-litter decomposition were assessed for Pinus massoniana, a ubiquitous pine in southern China. Data from in vivo (microcosm experiments indicated that the percentage of litter-mass loss triggered by FEs was linearly correlated with incubation time and approached 60% after seven months. In vitro decomposition tests also confirmed that endophytic Lophodermium isolates caused 14-22% mass loss within two months. Qualitative analysis of exoenzymes (cellulase and laccase, important for lignocellulose degradation revealed that almost all of the Lophodermium isolates showed moderate or strong positive reactions. Furthermore, partial sequences of β-glucosidase (glycoside hydrolase family 3, GH3, laccase, and cellobiohydrolase (GH7 genes were amplified from Lophodermium isolates as "functional markers" to evaluate their potential for lignocellulolytic activity. Three different genes were detected, suggesting a flexible and delicate decomposition system rich in FEs. Our work highlights the possibility that the saprophytism and endophytism of FEs may be prerequisites to initiating rapid decomposition and thus may be key in Fes' contribution to litter decomposition, at least in the early stage. Potential indicators of the presence of core fungal decomposers are also briefly discussed.

  13. Fungal Endophyte Diversity and Bioactivity in the Indian Medicinal Plant Ocimum sanctum Linn.

    Directory of Open Access Journals (Sweden)

    Kanika Chowdhary

    Full Text Available Endophytic mycopopulation isolated from India's Queen of herbs Tulsi (Ocimum sanctum were explored and investigated for their diversity and antiphytopathogenic activity against widespread plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani and Fusarium oxysporum. 90 fungal isolates, representing 17 genera were recovered from 313 disease-free and surface sterilised plant segments (leaf and stem tissues from three different geographic locations (Delhi, Hyderabad and Mukteshwar during distinct sampling times in consequent years 2010 and 2011 in India. Fungal endophytes were subjected to molecular identification based on rDNA ITS sequence analysis. Plant pathogens such as F. verticillioides, B. maydis, C. coarctatum, R. bataticola, Hypoxylon sp., Diaporthe phaseolorum, Alternaria tenuissima and A. alternata have occurred as endophyte only during second sampling (second sampling in 2011 in the present study. Bi-plot generated by principal component analysis suggested tissue specificity of certain fungal endophytes. Dendrogram revealed species abundance as a function of mean temperature of the location at the time of sampling. Shannon diversity in the first collection is highest in Hyderabad leaf tissues (H' = 1.907 whereas in second collection it was highest from leaf tissues of Delhi (H' = 1.846. Mukteshwar (altitude: 7500 feet reported least isolation rate in second collection. Nearly 23% of the total fungal isolates were considered as potent biocontrol agent. Hexane extract of M. phaseolina recovered from Hyderabad in first collection demonstrated highest activity against S. sclerotiorum with IC50 value of 0.38 mg/ml. Additionally, its components 2H-pyran-2-one, 5,6-dihydro-6-pentyl and palmitic acid, methyl ester as reported by GC-MS Chromatogram upon evaluation for their antiphytopathogenic activity exhibited IC50 value of 1.002 and 0.662 against respectively S. sclerotiorum indicating their significant role in

  14. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Khan, Abdul Latif; Lee, In-Jung

    2013-12-01

    In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.

  15. Forages and pastures symposium: managing the tall fescue-fungal endophyte symbiosis for optimum forage-animal production.

    Science.gov (United States)

    Aiken, G E; Strickland, J R

    2013-05-01

    Alkaloids produced by the fungal endophyte (Neotyphodium coenophialum) that infects tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] are a paradox to cattle production. Although certain alkaloids impart tall fescue with tolerances to environmental stresses, such as moisture, heat, and herbivory, ergot alkaloids produced by the endophyte can induce fescue toxicosis, a malady that adversely affects animal production and physiology. Hardiness and persistence of tall fescue under limited management can be attributed to the endophyte, but the trade-off is reduced cattle production from consumption of ergot alkaloids produced by the endophyte. Improved understanding and knowledge of this endophyte-grass complex has facilitated development of technologies and management systems that can either mitigate or completely alleviate fescue toxicosis. This review discusses the research results that have led to development of 5 management approaches to either reduce the severity of fescue toxicosis or alleviate it altogether. Three approaches manipulate the endophyte-tall fescue complex to reduce or alleviate ergot alkaloids: 1) use of heavy grazing intensities, 2) replacing the toxic endophyte with nonergot alkaloid-producing endophytes, and 3) chemical suppression of seed head emergence. The remaining 2 management options do not affect ergot alkaloid concentrations in fescue tissues but are used 1) to avoid grazing of tall fescue with increased ergot alkaloid concentrations in the late spring and summer by moving cattle to warm-season grass pasture and 2) to dilute dietary alkaloids by interseeding clovers or feeding supplements.

  16. Non-systemic fungal endophytes in Carex brevicollis may influence the toxicity of the sedge to livestock

    Directory of Open Access Journals (Sweden)

    Rosa M. Canals

    2014-07-01

    Full Text Available The sedge Carex brevicollis is a common component of semi-natural grasslands and forests in temperate mountains of Central and Southern Europe. The consumption of this species causes a severe toxicity to livestock, associated to high plant concentrations of the β-carbolic alkaloid brevicolline. This research was started to ascertain the origin of this toxicity. An exploratory survey of alkaloid content in plants growing in contrasting habitats (grasslands/forests did not contribute to find a pattern of the variable contents of brevicolline in plants, and led us to address other possibilities, such as a potential role of fungal endophytism. Systemic, vertically-transmitted endophytes producers of herbivore-deterrent alkaloids are known to infect many known forage grasses. We did not detect systemic endophytes in C. brevicollis, but the sedge harboured a rich community of non-systemic fungi. To test experimentally whether non-systemic endophytes influenced the synthesis of the alkaloid, 24 plants were submitted to a fungicide treatment to remove the fungal assemblage, and the offspring ramets were analysed for alkaloid content. Brevicolline was the major β-carbolic alkaloid detected, and the contents were at least five times lower in the new ramets that developed from fungicide-treated plants than in the untreated plants. This result, although not conclusive about the primary source of the alkaloid (a plant or a fungal product indicates that fungal endophytes may affect the contents of the toxic brevicolline in this sedge.

  17. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes.

    Science.gov (United States)

    González-Menéndez, Víctor; Pérez-Bonilla, Mercedes; Pérez-Victoria, Ignacio; Martín, Jesús; Muñoz, Francisca; Reyes, Fernando; Tormo, José R; Genilloud, Olga

    2016-02-18

    Small molecule histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs) involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  18. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes

    Directory of Open Access Journals (Sweden)

    Víctor González-Menéndez

    2016-02-01

    Full Text Available Small molecule histone deacetylase (HDAC and DNA methyltransferase (DNMT inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  19. Identification of two fungal endophytes associated with the endangered orchid Orchis militaris L.

    Science.gov (United States)

    Vendramin, Elena; Gastaldo, Andrea; Tondello, Alessandra; Baldan, Barbara; Villani, Mariacristina; Squartini, Andrea

    2010-03-01

    A survey of the endangered orchid Orchis militaris populations was carried out in north-eastern Italy. The occurrence of fungal root endophytes was investigated by light and electron microscopies and molecular techniques. Two main sites of presence were individuated in the Euganean Hills, differing as to the percentage of flowering individuals and of capsules completing maturity. Fluorescence microscopy revealed an intracellular cortical colonization by hyphal pelotons. Two ITS PCR products co-amplified. Sequencing revealed for the former an identity and a high similarity (99%) with a Tulasnellaceae (Basidiomycota) fungus found within tissues of the same host in independent studies in Hungary and Estonia, suggesting an interesting case of tight specificity throughout the Eurosiberian home range. The second amplicon had 99% similarity with Tetracladium species (Ascomycota) recently demonstrated as potential endophytes. TEM revealed two different hyphal structures. Double fungal colonization appears to occur in Orchis militaris and the possible requirement of a specific fungal partner throws light on the causes of this plant's rarity and threatened status.

  20. Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability.

    Science.gov (United States)

    Vázquez-de-Aldana, Beatriz R; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E-) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands.

  1. Effects of Tall Fescue and Its Fungal Endophyte on the Development and Survival of Tawny-Edged Skippers (Lepidoptera: Hesperiidae).

    Science.gov (United States)

    Jokela, Karin J; Debinski, Diane M; Mcculley, Rebecca L

    2016-02-01

    Invasive, exotic grasses are increasing in tallgrass prairie and their dominance may be contributing to the decline of grassland butterflies through alterations in forage quality. Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.), an exotic grass covering millions of acres in the United States, can host a fungal endophyte, Epichloë coenophiala (Morgan-Jones & Gams). Alkaloids produced by the endophyte are known to be toxic to some foliar-feeding pest insects. Endophyte-infected tall fescue is commonly planted in hayfields, pastures, lawns, and is invading natural areas, but effects of the endophyte on nonpest insects such as butterflies are relatively unknown. Our objective was to investigate the role that tall fescue and its endophyte might play in the decline of grass skippers (Hesperiidae). We examined growth and survival parameters of tawny-edged skippers (Polites themistocles (Latreille)) that were reared on endophyte-infected tall fescue (E+), endophyte-free tall fescue (E-), and Kentucky bluegrass (KBG). KBG was included as a comparison because it is a cool season grass known to be palatable to P. themistocles larvae. Interestingly, results showed that the endophyte did not affect growth and survival of larvae compared to uninfected tall fescue, even though significant amounts of loline alkaloids (average 740 ppm) were measured in endophyte-infected plant material. Larvae feeding on KBG grew faster with greater survival rates than larvae on both tall fescue treatments. These results confirm that tall fescue invasion and dominance may be deteriorating the quality of grassland habitats for native pollinators; however, this effect does not appear to be linked to endophyte infection.

  2. Characterization and Photoprotector Activity of Endophytic Fungal Pigments from Coatal Plant Sarang Semut (Hydnophytum formicarum

    Directory of Open Access Journals (Sweden)

    Mada Triandala Sabero

    2016-04-01

    Full Text Available Isolate endophytic fungal RS3 from smooth ant plants (Hydnophytum formicarum produced black pigment. The aims of this research were to obtain the pigment, to characterize and to determine the photoprotector activity. This research was consisted into several steps, there were determined the best precipitating agent, characterization using instrument and solubility analysis, and analysis of Sun Protection Factor (SPF. Results showed the pigment was precipitated using acid solvent with pH ≤ 2,5. Functional groups of pigment pellet were hydroxy, aromatic ring, phenol and amine. According to characteristic, black pigment produced by fungal RS3 proposed as melanin. The photoprotector analysis showed SPF the value was 11.33.

  3. Cytotoxic Potential and Molecular Characterization of Fungal Endophytes from Selected High Value Medicinal Plants of the Kashmir Valley - India.

    Science.gov (United States)

    Dar, R A; Qazi, P H; Saba, I; Rather, S A; Wani, Z A; Qazi, A K; Shiekh, A A; Manzoor, A; Hamid, A; Modae, D M

    2016-03-01

    The present study explores the fungal endophytes from selected high value medicinal plants to check their activities at in-vitro and in-vivo level. The in-vitro cytotoxicity of selected endophytes revealed potent growth inhibition against human cancer cell lines of leukemia (THP-1), lung (A549), prostate (PC-3), colon (Caco-2), neuroblastoma (IMR-32) and breast (MCF-7) at a concentration of 100 µg/ml. Among them the endophytic strains I. e., IIIM2, IIIM3, IIIM7 and IIIM8 showed most significant growth inhibition against colon (Caco-2), prostate (PC-3), lung (A549) and leukemia (THP-1) cancer cell lines. At the in-vivo level maximum (58.95%) tumor growth inhibition was documented with the extract of IIIM2 against Ehrlich Ascites Carcinoma mouse modal. All the potent fungal endophytic strains were characterized using ITS 4 and ITS 5 region sequencing and phylogenetic analysis was ascertained among them. This paper confirms the 2 elite endophytic fungal strains, IIIM2 and IIIM8, have the potential to act as a source of new anticancer compounds.

  4. Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and glycine max. L.

    Science.gov (United States)

    Khan, Abdul Latif; Hamayun, Muhammad; Ahmad, Nadeem; Hussain, Javid; Kang, Sang-Mo; Kim, Yoon-Ha; Adnan, Muhammad; Tang, Dong-Sheng; Waqas, Muhammad; Radhakrishnan, Ramalingam; Hwang, Young-Hyun; Lee, In-Jung

    2011-09-01

    Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive GA(4) and GA(7). In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.

  5. Nitric Oxide and Brassinosteroids Mediated Fungal Endophyte-Induced Volatile Oil Production Through Protein Phosphorylation Pathways in Atractylodes lancea Plantlets

    Institute of Scientific and Technical Information of China (English)

    Cheng-Gang Ren; Chuan-Chao Dai

    2013-01-01

    Fungal endophytes have been isolated from almost every plant, infecting their hosts without causing visible disease symptoms, and yet have still proved to be involved in plant secondary metabolites accumulation. To decipher the possible physiological mechanisms of the endophytic fungus-host interaction, the role of protein phosphorylation and the relationship between endophytic fungus-induced kinase activity and nitric oxide (NO) and brassinolide (BL) in endophyte-enhanced volatile oil accumulation in Atractylodes lancea plantlets were investigated using pharmacological and biochemical approaches. Inoculation with the endophytic fungus Gilmaniella sp. AL12 enhanced the activities of total protein phosphorylation, Ca2þ-dependent protein kinase, and volatile oil accumulation in A. lancea plantlets. The upregulation of protein kinase activity could be blocked by the BL inhibitor brassinazole. Furthermore, pretreatments with the NO-specific scavenger cPTIO significantly reduced the increased activities of protein kinases in A. lancea plantlets inoculated with endophytic fungus. Pretreatments with different protein kinase inhibitors also reduced fungus-induced NO production and volatile oil accumulation, but had barely no effect on the BL level. These data suggest that protein phosphorylation is required for endophyte-induced volatile oil production in A. lancea plantlets, and that crosstalk between protein phosphorylation and the NO pathway may occur and act as a downstream signaling event of the BL pathway.

  6. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands.

    Science.gov (United States)

    Barrow, J R

    2003-10-01

    Native grasses of semi-arid rangelands of the southwestern USA are more extensively colonized by dark septate endophytes (DSE) than by traditional mycorrhizal fungi. Roots of dominant grasses ( Bouteloua sp.) native to arid southwestern USA rangelands were prepared and stained using stains specific for fungi (trypan blue) and for lipids (sudan IV). This revealed extensive internal colonization of physiologically active roots by atypical fungal structures that appear to function as protoplasts, without a distinguishable wall or with very thin hyaline walls that escape detection by methods staining specifically for fungal chitin. These structures were presumed to be active fungal stages that progressed to form stained or melanized septate hyphae and microsclerotia characteristic of DSE fungi within dormant roots. The most conspicuous characteristic of these fungi were the unique associations that formed within sieve elements and the accumulation of massive quantities of lipids. This interface suggests a biologically significant location for carbon transfer between the plant and fungus. The continuous intimate association with all sieve elements, cortical and epidermal cells as well as external extension on the root surface and into the soil indicates that they are systemic and considerably more prevalent than previously thought. A fungal network associated with a mucilaginous complex observed on the root surface and its potential role in root function in dry soil is discussed. It is suggested that those fungi that non-pathogenically and totally colonize plant cells be classed as systemic endophytic fungi (SEF). This would refine the broad designation of DSE fungi. The potential mutualistic benefit of SEF for native plants in arid ecosystems based on the extent of lipid accumulation and its apparent distribution is discussed.

  7. An ecological role of fungal endophytes to ameliorate plants under biotic stress.

    Science.gov (United States)

    Chadha, Neha; Mishra, Manjita; Rajpal, Kartikeya; Bajaj, Ruchika; Choudhary, Devendra Kumar; Varma, Ajit

    2015-09-01

    It is our consensus that plants survive and flourish in stressed ecosystems because of endosymbiotic organisms that have co-evolved and were essential for their adaptation to changing environments. Some of these microbial components are noncultivable and vertically transmitted from generation to generation. They represent a vast reservoir of heritable DNA that can enhance plant performance in changing environments and add genetic flexibility to adaptation of long-lived plants. If such endophytes can be identified that not only persist in progeny of novel hosts, but can confer benefits in mechanized, agricultural systems, they would be increasingly important in agricultural production and lead to a rapid and economical method of providing novel germplasms of native and crop plants. In the present review, authors advocate the deployment of fungal diversity and its role to overcome the biotic stress in plants. Endophytic fungal association with plants helps it to protect from various pathogen and pests and adapt to survive in harsh biotic and abiotic stress condition.

  8. Antiherbivore defense mutualism under elevated carbon dioxide level: A fungal endophyte and grass

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Winthrop Univ., Rock Hill, SC (United States); Lincoln, D.E. [Univ. of South Carolina, Columbia, SC (United States)

    1996-06-01

    Previous studies have shown that insects commonly consume more when fed leaf tissue grown under CO{sub 2} enrichment, but with few negative effects on growth. However, lepidoteran larvae fed tissue infected with Balansiae fungal endophytes (which product toxic alkaloids) typically eat less but also suffer negative effects on growth and survival. This study was carried out to understand how these 2 factors may interact to affect larval consumption and growth in fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Infected and uninfected ramets of a single genotype of tall fescue, Festuca arundinacea Schreb., were grown under CO{sub 2} concentrations, but was not influenced by infection. As expected, larvae had significantly reduced efficiency of conversion of ingested food. These 2 factors also interacted so that the lowest efficiency of conversion of ingested food was seen when both infection and an enriched atmospheric CO{sub 2} environment were present. As global atmospheric CO{sub 2} levels continue to increase, it appears that fungal endophytes will continue to be important in turfgrasses as protection against insect herbivores and may lead to increased fitness for infected plant genotypes. 47 refs., 4 figs., 1 tab.

  9. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes

    Science.gov (United States)

    Rodriguez, R.J.; Redman, R.S.

    1997-01-01

    This chapter discusses various biochemical, genetic, ecological, and evolutionary aspects of fungi that express either symbiotic or saprophytic life-styles. An enormous pool of potential pathogens exists in both agricultural and natural ecosystems, and virtually all plant species are susceptible to one or more fungal pathogens. Fungal pathogens have the potential to impact on the genetic structure of populations of individual plant species, the composition of plant communities and the process of plant succession. Endophytic fungi exist for at least part of their life cycles within the tissues of a plant host. This group of fungi is distinguished from plant pathogens because they do not elicit significant disease symptoms. However, endophytes do maintain the genetic and biochemical mechanisms required for infection and colonization of plant hosts. Fungi that obtain chemical nutrients from dead organic matter are known as saprophytes and are critical to the dynamics and resilience of ecosystems. There are two modes of saprophytic growth: one in which biomolecules that are amenable to transport across cell walls and membranes are directly absorbed, and another in which fungi must actively convert complex biopolymers into subunit forms amenable to transportation into cells. Regardless of life-style, fungi employ similar biochemical mechanisms for the acquisition and conversion of nutrients into complex biomolecules that are necessary for vegetative growth, production and dissemination of progeny, organismal competition, and survival during periods of nutrient deprivation or environmental inclemency.

  10. Chromosome-End Knockoff Strategy to Reshape Alkaloid Profiles of a Fungal Endophyte.

    Science.gov (United States)

    Florea, Simona; Phillips, Timothy D; Panaccione, Daniel G; Farman, Mark L; Schardl, Christopher L

    2016-08-09

    Molecular genetic techniques to precisely eliminate genes in asexual filamentous fungi require the introduction of a marker gene into the target genome. We developed a novel strategy to eliminate genes or gene clusters located in subterminal regions of chromosomes, and then eliminate the marker gene and vector backbone used in the transformation procedure. Because many toxin gene clusters are subterminal, this method is particularly suited to generating nontoxic fungal strains. We tested this technique on Epichloë coenophiala, a seed-transmissible symbiotic fungus (endophyte) of the important forage grass, tall fescue (Lolium arundinaceum). The endophyte is necessary for maximal productivity and sustainability of this grass but can produce ergot alkaloids such as ergovaline, which are toxic to livestock. The genome sequence of E. coenophiala strain e19 revealed two paralogous ergot alkaloid biosynthesis gene clusters, designated EAS1 and EAS2. EAS1 was apparently subterminal, and the lpsB copy in EAS2 had a frame-shift mutation. We designed a vector with a fungal-active hygromycin phosphotransferase gene (hph), an lpsA1 gene fragment for homologous recombination at the telomere-distal end of EAS1, and a telomere repeat array positioned to drive spontaneous loss of hph and other vector sequences, and to stabilize the new chromosome end. We transformed E. coenophiala with this vector, then selected "knockoff" endophyte strains, confirmed by genome sequencing to lack 162 kb of a chromosome end including most of EAS1, and also to lack vector sequences. These ∆EAS1 knockoff strains produced no detectable ergovaline, whereas complementation with functional lpsB restored ergovaline production. Copyright © 2016 Florea et al.

  11. Chromosome-End Knockoff Strategy to Reshape Alkaloid Profiles of a Fungal Endophyte

    Directory of Open Access Journals (Sweden)

    Simona Florea

    2016-08-01

    Full Text Available Molecular genetic techniques to precisely eliminate genes in asexual filamentous fungi require the introduction of a marker gene into the target genome. We developed a novel strategy to eliminate genes or gene clusters located in subterminal regions of chromosomes, and then eliminate the marker gene and vector backbone used in the transformation procedure. Because many toxin gene clusters are subterminal, this method is particularly suited to generating nontoxic fungal strains. We tested this technique on Epichloë coenophiala, a seed-transmissible symbiotic fungus (endophyte of the important forage grass, tall fescue (Lolium arundinaceum. The endophyte is necessary for maximal productivity and sustainability of this grass but can produce ergot alkaloids such as ergovaline, which are toxic to livestock. The genome sequence of E. coenophiala strain e19 revealed two paralogous ergot alkaloid biosynthesis gene clusters, designated EAS1 and EAS2. EAS1 was apparently subterminal, and the lpsB copy in EAS2 had a frame-shift mutation. We designed a vector with a fungal-active hygromycin phosphotransferase gene (hph, an lpsA1 gene fragment for homologous recombination at the telomere-distal end of EAS1, and a telomere repeat array positioned to drive spontaneous loss of hph and other vector sequences, and to stabilize the new chromosome end. We transformed E. coenophiala with this vector, then selected “knockoff” endophyte strains, confirmed by genome sequencing to lack 162 kb of a chromosome end including most of EAS1, and also to lack vector sequences. These ∆EAS1 knockoff strains produced no detectable ergovaline, whereas complementation with functional lpsB restored ergovaline production.

  12. Enhanced nodulation of peanut when co-inoculated with fungal endophyte Phomopsis liquidambari and bradyrhizobium.

    Science.gov (United States)

    Zhang, Wei; Wang, Hong-Wei; Wang, Xing-Xiang; Xie, Xing-Guang; Siddikee, Md Ashaduzzaman; Xu, Ri-Sheng; Dai, Chuan-Chao

    2016-01-01

    In peanut continuous cropping soil, the application of fungal endophyte Phomopsis liquidambari B3 showed peanut pod yield promotion and root nodule number increase. P. liquidambari improved soil environment by degrading allelochemicals and thus promoted peanut pod yield. Furthermore, peanut yield promotion is in part due to the root nodule increase since nodular nitrogen fixation provides the largest source of nitrogen for peanut. However, it is unknown whether this nodule number increase is induced by fungal endophyte. We therefore conducted several pot experiments using vermiculite to investigate the effects of P. liquidambari on peanut-bradyrhizobium nodulation. Our results showed that P. liquidambari co-inoculated with bradyrhizobium increased root nodule number and shoot accumulated nitrogen by 28.25% and 29.71%, respectively. Nodulation dynamics analysis showed that P. liquidambari accelerated nodule initiation and subsequent nodule development. Meanwhile, P. liquidambari was able to colonize the peanut root as an endophyte. The dynamics of P. liquidambari and bradyrhizobial root colonization analysis showed that P. liquidambari inoculation significantly increased the rate of bradyrhizobial colonization. Furthermore, P. liquidambari inoculation significantly increased flavonoids synthesis-related enzymes activities, two common types of flavonoid (luteolin and quercetin-peanut rhizobial nod gene inducer) secretion and lateral root (peanut rhizobial infection site) formation, indicating that P. liquidambari altered the peanut nodulation-related physiological and metabolic activities. These obtained results confirmed the direct contribution of P. liquidambari in enhancing peanut-bradyrhizobium interaction, nodulation and yield. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana).

    Science.gov (United States)

    Qadri, Masroor; Rajput, Roopali; Abdin, Malik Z; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2014-05-01

    In this study, we investigated the diversity of fungal endophytes associated with Pinus wallichiana from the Western Himalayas, with emphasis on comparison of endophytic communities harbored by the stem and needle tissues of the host and their antimicrobial potential. A total number of 130 isolates, comprising of 38 different genera, were recovered from 210 fragments of the plant. Among the isolated fungi, only a single isolate, Tritirachium oryzae, belonged to the Phylum Basidiomycota whereas the rest belonged to Ascomycota. Dothideomycetes was the dominant class with the highest isolation frequency of 49.2 %. The most frequent colonizers of the host were Alternaria spp., Pestalotiopsis spp., Preussia spp., and Sclerostagonospora spp. The diversity and species richness were higher in needle tissues than in the stems. Antimicrobial activities were displayed by extracts from a total number of 22 endophytes against one or more pathogens. Endophytes designated as P1N13 (Coniothyrium carteri), P2N8 (Thielavia subthermophila), P4S6b (Truncatella betulae), P7N10 (Cochliobolus australiensis), and P8S4 (Tritirachium oryzae) were highly active against Candida albicans. Broad spectrum antimicrobial activities were obtained with the extracts of P8-S4 (Tritirachium oryzae) and P5-N26 (Coniochaeta gigantospora) that were potentially active against the Gram-positive and Gram-negative bacteria as well as the fungal pathogen, Candida albicans. The most prominent antagonistic activity against fungal pathogens was shown by P8-S4 (Tritirachium oryzae), P5-N31a (Truncatella spadicea), and P5-N20 (Fusarium larvarum). Our findings indicate that Pinus wallichiana harbors a rich endophytic fungal community with potential antimicrobial activities. Further studies are needed to understand the ecology and evolutionary context of the associations between the Himalayan pine and its endophytes.

  14. Identification of Volatile Metabolites from Fungal Endophytes with Biocontrol Potential towards Fusarium oxysporum F. sp. cubense Race 4

    Directory of Open Access Journals (Sweden)

    A. S. Y. Ting

    2010-01-01

    Full Text Available Problem statement: Fungal endophytes are widely studied for their potential as biocontrol agents towards fungal pathogens. In vitro assessments usually reveal their antibiosis and mycoparasitism nature, but little is understood regarding their production of volatile metabolites as mechanisms of antagonism. Approach: This study explored the potential of fungal endophytes in controlling the pathogen responsible for Fusarium wilt disease. Nine fungal endophytes were tested for their ability to inhibit the growth of the pathogenic Fusarium oxysporum F. sp. cubense race 4 (FocR4 via production of volatile inhibitory metabolites. The type of volatile metabolites produced were subsequently characterized and identified using the Gas-Chromatography Mass-Spectrophotometry (GCMS. Results: Eight of the isolates (BTF05, BTF07, BTF08, BTF15, BTF21, WAA03, WAA02, MIF01 showed positive results with percentages of inhibition varying from 1.43-31.43% while one isolate (ALF01, showed negative result (0% inhibition. Volatile profiles showed that these fungal endophytes produced between 15-47 volatile metabolites per isolate. However, the more volatile metabolites produced by a single endophyte does not indicate better biocontrol potential. Isolate BTF05 produced 47 different volatile metabolites, but has only 8.57% inhibition, compared to isolate BTF21 with 15 metabolites but a percentage of 11.43% inhibition. The potency of the volatile metabolites produced may also influenced the biocontrol potential of the fungal endophytes as some isolates such as BTF08 and MIF01 have only two to three known inhibitory metabolites but have higher PIDG values at 31.43 and 11.43%, respectively. Contrary, isolates WAA02 and WAA03 which has five to six metabolites but PIDG values of less than 3%. Conclusion: Fungal endophytes have the ability to produce several types of volatile metabolites to inhibit the growth of FocR4. These volatile inhibitory metabolites can be further

  15. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area

    Science.gov (United States)

    Yokoya, Kazutomo; Postel, Sarah; Fang, Rui

    2017-01-01

    Background Fungal endophytes are highly diverse ubiquitous asymptomatic microorganisms, some of which appear to be symbiotic. Depending on abiotic conditions and genotype of the plant, the diversity of endophytes may confer fitness benefits to plant communities. Methods We studied a crop wild relative (CWR) of strawberry, along environmental gradients with a view to understand the cultivable root-derived endophytic fungi that can be evaluated for promoting growth and tolerating stress in selected plant groups. The main objectives were to understand whether: (a) suboptimal soil types are drivers for fungal distribution and diversity; (b) high pH and poor nutrient availability lead to fungal-plant associations that help deliver fitness benefits; and (c) novel fungi can be identified for their use in improving plant growth, and alleviate stress in diverse crops. Results The study revealed that habitats with high pH and low nutrient availability have higher fungal diversity, with more rare fungi isolated from locations with chalky soil. Plants from location G were the healthiest even though soil from this location was the poorest in nutrients. Study of environmental gradients, especially extreme habitat types, may help understand the root zone fungal diversity of different functional classes. Two small in vitro pilot studies conducted with two isolates showed that endophytic fungi from suboptimal habitats can promote plant growth and fitness benefits in selected plant groups. Discussion Targeting native plants and crop wild relatives for research offers opportunities to unearth diverse functional groups of root-derived endophytic fungi that are beneficial for crops. PMID:28168102

  16. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes

    Science.gov (United States)

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto

    2015-01-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications. PMID:26190921

  17. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes.

    Science.gov (United States)

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto; Sjamsuridzal, Wellyzar

    2015-06-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications.

  18. Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain.

    Science.gov (United States)

    Sanz-Ros, Antonio V; Müller, Michael M; San Martín, Roberto; Diez, Julio J

    2015-10-01

    Most plant species harbour a diverse community of endophytic, but their role is still unknown in most cases, including ecologically and economically important tree species. This study describes the culturable fungal endophytic community of Pinus sylvestris L. twigs in northern Spain and its relationship with diametric growth of the host. In all, 360 twig samples were collected from 30 Scots pines in fifteen stands. Isolates were obtained from all twig samples and 43 fungal taxa were identified by morphogrouping and subsequent ITS rDNA sequencing. All isolates were Ascomycetes, being Dothideomycetes and Sordariomycetes the most abundant classes. Half of the species were host generalists while the others were conifer or pine specialists. We found three new endophytic species for the Pinaceae: Biscogniauxia mediterranea, Phaeomoniella effusa and Plectania milleri, and additional six new species for P. sylvestris: Daldinia fissa, Hypocrea viridescens, Nigrospora oryzae, Ophiostoma nigrocarpum, Penicillium melinii and Penicillium polonicum. The endophytic community of fast and slow growing trees showed differences in species composition, abundance and evenness, but not in diversity. Phoma herbarum was associated to fast growing trees and Hypocrea lixii to those growing slow. Our results support the hypothesis that some endophytic species may affect growth of P. sylvestris.

  19. Gene expression in grass ovaries infected with seed born fungal endophyte Neotyphodium occultans analyzed by a next-generation sequencing system

    Science.gov (United States)

    Fungal endophytes of the genus Neotyphodium form symbiotic associations with many grass species of the subfamily Pooideae, including some important forage and turf species such as Lolium grasses. The endophytes are maintained in host plant communities by seed transmission from maternal plants to off...

  20. 咖啡种子中的内生真菌%Fungal endophytes in green coffee seeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Green coffee seeds from Colombia, Guatemala, India, Kenya, Papua New Guinea, Puerto Rico and Vietnam were sampled for the presence of fungal endophytes. Stions of surface sterilized seeds were plated on yeast malt agar, and fungal growth was isolated for subsequent DNA extraction and sequencing. Several fungal genera were isolated, including Acremonium, Aspergillus, Eurotium, Fusarium, Gibberella, Penicillium,Pseudozyma and an undescribed clavicipitaceous species. The biological activities that these fungi might be playing in coffee seeds remain unknown, but in other plants some of the genera isolated have been reported to protect against plant pathogens.

  1. Impact of Domestication on the Endophytic Fungal Diversity Associated With Wild Zingiberaceae at Mount Halimun Salak National Park

    Directory of Open Access Journals (Sweden)

    Ivan Permana Putra

    2015-10-01

    Full Text Available Mount Halimun Salak National Park is one of the tropical forest remnants in Java island. The national park has been recognized with high diversity of wild Zingiberaceae. Of that Zingiberaceae, two species namely Alpinia malaccensis (AM and Horstendia conica (HC, were domesticated as garden plants in the surrounding area of the forest for medicinal use. The impact of domestication on the fungal endophytes associated with these two species of Zingiberaceae is reported here. Fungal endophyte diversity in the wild and domesticated AM and HC was analyzed based on the culturable fungi. Identification of species level used morphological and molecular approaches of ITS rDNA sequence. This study determined 19 species of fungal endophytes, namely Arthrinium malaysianum, Aspergillus flavipes, As. sydowii, Chaetomium globosum, Cladosporium oxysporum, Cladosporium sp., Colletotrichum boninense-complex, Co. cliviae-complex, Co. gloeosporioides-complex, Diaporthe sp., D. anacardii, D. gardenia, Exophiala sp., E. lecanii-corni, Guignardia mangiferae, Ochroconis gallopava, Penicillium citrinum, Pyricularia costina, and unsporulated Sydowiellaceae. Among them, A. malaysianum, C. globosum, Co. cliviae-complex, D. gardenia, and unsporulated Sydowiellaceae were only found in domesticated plants, while some others were absent. Colletotrichum boninense-complex was commonly found in both wild and domesticated plants. Domestication activity affected the diversity of endophytic fungi of AM and HC.

  2. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus.

    Science.gov (United States)

    Guesmi-Jouini, J; Garrido-Jurado, I; López-Díaz, C; Ben Halima-Kamel, M; Quesada-Moraga, E

    2014-06-01

    Entomopathogenic fungi (EPF) are commonly found in diverse habitats and are known to cause mycoses in many different taxa of arthropods. Various unexpected roles have been recently reported for fungal entomopathogens, including their presence as fungal endophytes, plant disease antagonists, rhizosphere colonizers and plant growth promoting fungi. In Tunisia, a wide range of indigenous EPF isolates from different species, such as Beauveria bassiana and Bionectria ochroleuca, were found to occur in the soil, and to be pathogenic against the artichoke aphid Capitophorus elaeagni (Hemiptera: Aphididae). Since endophytic fungi are recently regarded as plant-defending mutualists and their presence in internal plant tissue has been discussed as an adaptive protection against insects, we were interested on elucidating the possible endophytic behavior of B. bassiana and B. ochroleuca on artichoke, Cynara scolymus, after foliar spraying tehcnique. The leaf spray inoculation method was effective in introducing the inoculated fungi into the plant tissues and showed, then, an endophytic activity on artichoke even 10 days later. According S-N-K test, there was significant differences between the two fungal treatments, B. ochroleuca (84% a) and B. bassiana (78% a), and controls (0% b). Likewise, the inoculated entomopathogenic fungi were also isolated from new leaves even though with significant differences respectively between controls (0% c), B. bassiana (56% b) and B. ochroleuca (78% a). These results reveals significant new data on the interaction of inoculated fungi with artichoke plant as ecological roles that can be exploited for the protection of plants.

  3. Osmoregulatory and tegumental ultrastructural damages to protoscoleces of hydatid cysts Echinococcus granulosus induced by fungal endophytes.

    Science.gov (United States)

    Verma, Vijay C; Gangwar, Mayank; Nath, Gopal

    2014-12-01

    Characteristic ultrastructural changes were observed when protoscoleces of hydatid cysts Echinococcus granulosus was treated with extract of endophytic fungi Eupenicillium and Chaetomium sp. isolated from Azadirachta indica and Piper longum plants respectively. A sharp decrease in viability of protoscoleces was observed after 6 h of incubation with fungal extracts. The ultrastructural changes included rosteller disorganization, loss of hooks and shedding of the microtriches of scolex region. The formation of digitiform projections on tegument layer which, increased in size as prolong incubation with extract and get burst, leading to a osmoregulatory damage into tegumental layers of parasite. This osmoregulatory damages caused the loss of turgidity due to leakage of cell contents, which might be the major cause of the mortality in treated parasites. It is remarkable, since very similar type of ultrastructural changes were observed with some pyrazinoisoquinoline derivatives, as praziquantel. Our initial results indicate that extract of endophytic Eupenicillium and Chaetomium spp. are having significant anti-cestodal activity and have selective activity on tegument layer. Further chemical prospection is required through rigorous bioassay guided fractionation coupled with robust high resolution mass spectrometric analysis to get final stereo-structures responsible for the parasiticidal activity. This initial strain selection outcome will serve a platform for isolation and characterization of new drug lead that can be useful in tailoring novel, safe and effective anthelmintics.

  4. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.C. (Univ. of Georgia, Athens (USA)); Evans, J.J.; Bacon, C.W. (Department of Agriculture, Athens, GA (USA))

    1990-03-01

    Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +} concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.

  5. A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan.

    Science.gov (United States)

    Matsumura, Emi; Fukuda, Kenji

    2013-03-01

    To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate.

  6. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress.

    Science.gov (United States)

    Waqas, Muhammad; Khan, Abdul Latif; Shahzad, Raheem; Ullah, Ihsan; Khan, Abdur Rahim; Lee, In-Jung

    2015-12-01

    This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%-33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures.

  7. [Diversity and tissue distribution of fungal endophytes in Alpinia officinarum: an important south-China medicinal plant].

    Science.gov (United States)

    Zhou, Ren-Chao; Huang, Juan; Li, Ze-En; Li, Shu-Bin

    2014-08-01

    In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and 325 bp dominant T-RF linkage to Pestalotiopsis (P = 0, Pearson correlation coefficient ≥ 0.975). In conclusion, A. officinarum is colonized by diverse fungal endophytes communities. The diversity of the fungal endophytes was found in the A. officinarum varied with differences of the tissue types of the host plants and was closely correlated with the accumulation of main active components, total volatile oils and galangin contents in the host plant tissue.

  8. Fungal endophytes of Alpinia officinarum rhizomes: insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration.

    Science.gov (United States)

    Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin

    2014-01-01

    In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method.

  9. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Hai-Yan; Kowalski, Kurt P.; Bergen, Marshall; Torres, Monica S.; White, James F.

    2016-01-01

    Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

  10. The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit.

    Science.gov (United States)

    Tian, Yuan; Amand, Séverine; Buisson, Didier; Kunz, Caroline; Hachette, François; Dupont, Joëlle; Nay, Bastien; Prado, Soizic

    2014-12-01

    Fungal endophytes live inside plant tissues and some have been found to provide benefits to their host. Nevertheless, their ecological impact is not adequately understood. Considering the fact that endophytes are continuously interacting with their hosts, it is conceivable that both partners have substantial influence on each other's metabolic processes. In this context, we have investigated the action of the endophytic fungus Paraconiothyrium variabile, isolated from the leaves of Cephalotaxus harringtonia, on the secondary metabolome of the host-plant. The alteration of the leaf compounds by the fungus was monitored through metabolomic approaches followed by structural characterization of the altered products. Out of more than a thousand molecules present in the crude extract of the plant leaf, we have observed a specific biotransformation of glycosylated flavonoids by the endophyte. In all cases it led to the production of the corresponding aglycone via deglycosylation. The deglycosylated flavonoids turned out to display significant beneficial effects on the hyphal growth of germinated spores. Our finding, along with the known allelopathic role of flavonoids, illustrates the chemical cooperation underlying the mutualistic relationship between the plant and the endophyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales.

    Science.gov (United States)

    Afkhami, Michelle E; Strauss, Sharon Y

    2016-05-01

    Understanding community dynamics and processes, such as the factors that generate and maintain biodiversity, drive succession, and affect invasion susceptibility, is a central goal in ecology and evolution. While most studies of how species interactions affect communities have focused on highly visible macroorganisms, we show that mutualistic microfungal endophytes have community-level effects across their host plant's range and provide the first example of fungal endophytes enhancing plant diversity. A three-year field study in which we experimentally manipulated endophyte abundance in a native Californian grass showed that despite their minute biomass, endophytes dramatically increased plant community diversity (~110% greater increase with endophytes) by suppressing a dominant invasive grass, Bromus diandrus. This effect was also detectable, but smaller, across five additional common gardens spanning ecologically diverse habitats, different climates, and > 400 km of the host grass' range as well as at microspatial scales within gardens. Our study illustrates that mutualistic microbes, while often hidden players, can have unexpectedly large ecological impacts across a wide range of habitats and scales and may be important for promoting diverse communities and ecosystems.

  12. Metabolites from the Fungal Endophyte Aspergillus austroafricanus in Axenic Culture and in Fungal-Bacterial Mixed Cultures.

    Science.gov (United States)

    Ebrahim, Weaam; El-Neketi, Mona; Lewald, Laura-Isabell; Orfali, Raha S; Lin, Wenhan; Rehberg, Nidja; Kalscheuer, Rainer; Daletos, Georgios; Proksch, Peter

    2016-04-22

    The endophytic fungus Aspergillus austroafricanus isolated from leaves of the aquatic plant Eichhornia crassipes was fermented axenically on solid rice medium as well as in mixed cultures with Bacillus subtilis or with Streptomyces lividans. Chromatographic analysis of EtOAc extract of axenic cultures afforded two new metabolites, namely, the xanthone dimer austradixanthone (1) and the sesquiterpene (+)-austrosene (2), along with five known compounds (3-7). Austradixanthone (1) represents the first highly oxygenated heterodimeric xanthone derivative. When A. austroafricanus was grown in mixed cultures with B. subtilis or with S. lividans, several diphenyl ethers (8-11) including the new austramide (8) were induced up to 29-fold. The structures of new compounds were unambiguously elucidated using 1D- and 2D-NMR spectroscopy, HRESIMS, and chemical derivatization. Compound 7 exhibited weak cytotoxicity against the murine lymphoma L5178Y cell line (EC50 is 12.6 μM). In addition, compounds 9 and 10, which were enhanced in mixed fungal/bacterial cultures, proved to be active against Staphylococcus aureus (ATCC 700699) with minimal inhibitory concentrations (MICs) of 25 μM each (6.6 μg/mL), whereas compound 11 revealed moderate antibacterial activity against B. subtilis 168 trpC2 with an MIC value of 34.8 μM (8 μg/mL).

  13. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies.

    Science.gov (United States)

    Burgdorf, R J; Laing, M D; Morris, C D; Jamal-Ally, S F

    2014-01-01

    Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p sterilization techniques in DNA-based fungal endophyte studies.

  14. Taxol Determination from Pestalotiopsis pauciseta,a Fungal Endophyte of a Medicinal Plant

    Institute of Scientific and Technical Information of China (English)

    Gangadevi V; Murugan M; Muthumary J

    2008-01-01

    Taxol is the most effective antimmor agent developed in the past three decades.It has been used for effective treatment of a variety of cancers.A taxol-producing endophytie fungus Pestalotiopsis pauciseta (strain CHP-11) was isolated from the leaves of Cardiospermum helicacabum and screened for taxol production.The fungus was identified based on the morphology of the fungal culture and the characteristics of the spores and screened for taxol production.The amount of taxol produced by this endophytic fungus was quantified by HPLC and it produced 113.3 μg/L,thus the fungus can serve as a potential material for fungus engineering to improve taxol production.This fungal taxol also had strong anticancer activity against some cancer cells viz.,BT 220,H116,Int 407,HL 251 and HLK 210 tested by Apoptotic assay and it is indicated that with the increase of taxol concentration from 0.005-0.05 μmol/L,taxol induced increased cell death through apoptosis.

  15. Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia.

    Science.gov (United States)

    Zubek, Szymon; Nobis, Marcin; Błaszkowski, Janusz; Mleczko, Piotr; Nowak, Arkadiusz

    2011-06-01

    The fungal root endophyte associations of 16 species from 12 families of plants endemic to the Pamir Alay Mountains of Central Asia are presented. The plants and soil samples were collected in Zeravshan and Hissar ranges within the central Pamir Alay mountain system. Colonization by arbuscular mycorrhizal fungi (AMF) was found in 15 plant species; in 8 species it was of the Arum type and in 4 of the Paris type, while 3 taxa revealed intermediate arbuscular mycorrhiza (AM) morphology. AMF colonization was found to be absent only in Matthiola integrifolia, the representative of the Brassicaceae family. The AM status and morphology are reported for the first time for all the species analyzed and for the genera Asyneuma, Clementsia, and Eremostachys. Mycelia of dark septate endophytes (DSE) accompanied the AMF colonization in ten plant species. The frequency of DSE occurrence in the roots was low in all the plants, with the exception of Spiraea baldschuanica. However, in the case of both low and higher occurrence, the percentage of DSE root colonization was low. Moreover, the sporangia of Olpidium spp. were sporadically found inside the root epidermal cells of three plant species. Seven AMF species (Glomeromycota) found in the trap cultures established with soils surrounding roots of the plants being studied were reported for the first time from this region of Asia. Our results provide information that might well be of use to the conservation and restoration programmes of these valuable plant species. The potential application of beneficial root-inhabiting fungi in active plant protection projects of rare, endemic and endangered plants is discussed.

  16. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Science.gov (United States)

    Hoffman, Michele T; Gunatilaka, Malkanthi K; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  17. Genomic and metabolic characterisation of alkaloid biosynthesis by asexual Epichloë fungal endophytes of tall fescue pasture grasses.

    Science.gov (United States)

    Ekanayake, Piyumi N; Kaur, Jatinder; Tian, Pei; Rochfort, Simone J; Guthridge, Kathryn M; Sawbridge, Timothy I; Spangenberg, German C; Forster, John W

    2017-01-04

    Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.

  18. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    Science.gov (United States)

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.

  19. Is Quorum Signaling by Mycotoxins a New Risk-Mitigating Strategy for Bacterial Biocontrol of Fusarium verticillioides and Other Endophytic Fungal Species?

    Science.gov (United States)

    Bacon, Charles W; Hinton, Dorothy M; Mitchell, Trevor R

    2017-08-23

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. In this work, we hypothesize and review work that quorum sensing inhibitors are produced either by fungi or by pathogenic bacteria for competitive purposes, altering the efficiency of the biocontrol organisms. Recently, quorum sensing inhibitors have been isolated from several fungi, including Fusarium species, three of which are mycotoxins. Thus, we further postulate that other mycotoxins are inhibitors or quenching metabolites that prevent the protective abilities and activities of endophytic biocontrol bacteria within intercellular spaces. To test the aforementioned suppositions, we review work detailing the use of bioassay bacteria for several mycotoxins for quorum activity. We specifically focus on the quorum use of endophytic bacteria as biocontrols for mycotoxic fungal endophytes, such as the Fusarium species and the fumonisin mycotoxins.

  20. Vacuolar localization of phosphorus in hyphae of Phialocephala fortinii, a dark septate fungal root endophyte.

    Science.gov (United States)

    Saito, Katsuharu; Kuga-Uetake, Yukari; Saito, Masanori; Peterson, R Larry

    2006-07-01

    Phialocephala fortinii is a dark septate fungal endophyte that colonizes roots of many host species. Its effect on plant growth varies from being pathogenic to beneficial. The basic biology of this species has received little research, and thus the main objectives of this study were to determine cytological features of hyphae, including the nature of the vacuolar system, and whether polyphosphate was present in vacuoles. Both living hyphae and hyphae that had been rapidly frozen and freeze substituted before embedding were studied. A complex system of vacuoles, including a motile tubular vacuolar system, elongated vacuoles, and spherical vacuoles, was demonstrated in living hyphae by the fluorescent probe Oregon Green 488 carboxylic acid diacetate, using laser scanning confocal microscopy. The motile tubular vacuolar system was more prevalent at the hyphal tip than in more distal regions, whereas elongated vacuoles and spherical vacuoles were more abundant distal to the tip. All vacuoles contained polyphosphate as shown by labelling embedded samples with recombinant polyphosphate binding domain of Escherichia coli exopolyphosphatase, containing Xpress tag at the N-terminal end, followed by anti-Xpress antibody and a secondary antibody conjugated either to a fluorescent probe for laser scanning confocal microscopy or colloidal gold for transmission electron microscopy. The polyphosphate was dispersed in vacuoles. This was confirmed by staining embedded samples with 4',6-diamidino-2-phenylindole and viewing with UV light using epifluorescence microscopy. These cytological methods showed that the tubular vacuolar system had lower concentrations of polyphosphate than the spherical vacuoles. Lipid bodies were present around vacuoles.

  1. Decolourisation of Synthetic Dyes by Endophytic Fungal Flora Isolated from Senduduk Plant (Melastoma malabathricum).

    Science.gov (United States)

    Ngieng, Ngui Sing; Zulkharnain, Azham; Roslan, Hairul Azman; Husaini, Ahmad

    2013-01-01

    A total of twenty endophytic fungi successfully isolated from Melastoma malabathricum (Senduduk) were examined for their ability to decolourise azo dyes: Congo red, Orange G, and Methyl red and an anthraquinone dye, Remazol Brilliant Blue R. Initial screening on the glucose minimal media agar plates amended with 200 mg L(-1) of each respective dye showed that only isolate MS8 was able to decolourise all of the four dyes. The isolate decolourised completely both the RBBR and Orange G in the agar medium within 8 days. Further quantitative analysis of the dye decolourisation by isolate MS8 in aqueous minimal medium showed that isolate MS8 was able to decolourise all the tested dyes at varying levels. Dye decolourisation by the isolate MS8 was determined to be 97% for RBBR, 33% for Orange G, 48% for Congo red, and 56% for Methyl red, respectively, within a period of 16 days. Molecular identification of the fungal isolate MS8 using primer ITS1 and ITS4 showed that isolate MS8 shared 99% sequence similarity with Marasmius cladophyllus, a Basidiomycete. The ability to decolourise different types of dyes by isolate MS8 thus suggested a possible application of this fungus in the decolourisation of dyestuff effluents.

  2. Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum).

    Science.gov (United States)

    Likar, Matevz; Bukovnik, Urska; Kreft, Ivan; Chrungoo, Nikhil K; Regvar, Marjana

    2008-09-01

    To determine the mycorrhizal status and to identify the fungi colonising the roots of the plants, common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum) were inoculated with an indigenous fungal mixture from a buckwheat field. Root colonisation was characterised by the hyphae and distinct microsclerotia of dark septate endophytes, with occasional arbuscules and vesicles of arbuscular mycorrhizal fungi. Sequences of arbuscular mycorrhizal fungi colonising tartary buckwheat clustered close to the Glomus species group A. Sequences with similarity to the Ceratobasidium/Rhizoctonia complex, a putative dark septate endophyte fungus, were amplified from the roots of both common and tartary buckwheat. To the best of our knowledge, this is the first report of arbuscular mycorrhizal colonisation in tartary buckwheat and the first molecular characterisation of these fungi that can colonise both of these economically important plant species.

  3. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC.

    Science.gov (United States)

    Shehata, Hanan R; Ettinger, Cassandra L; Eisen, Jonathan A; Raizada, Manish N

    2016-01-01

    Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize) landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming toward its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defense for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.

  4. Genes Required for the Anti-Fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC

    Directory of Open Access Journals (Sweden)

    Hanan R Shehata

    2016-10-01

    Full Text Available Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming towards its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defence for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.

  5. Effects of the Epichloë fungal endophyte symbiosis with Schedonorus pratensis on host grass invasiveness

    OpenAIRE

    Shukla, Kruti; Hager, Heather A.; Yurkonis, Kathryn A.; Newman, Jonathan A.

    2015-01-01

    Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky-31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host-grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epi...

  6. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    OpenAIRE

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Kithsiri Wijeratne; Leslie Gunatilaka; A Elizabeth Arnold

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have ...

  7. Effects of the Epichloë fungal endophyte symbiosis with Schedonorus pratensis on host grass invasiveness.

    Science.gov (United States)

    Shukla, Kruti; Hager, Heather A; Yurkonis, Kathryn A; Newman, Jonathan A

    2015-07-01

    Initial studies of grass-endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky-31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host-grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus-E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë-associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high- or low-endophyte infection rate were broadcast seeded into 2 × 2-m plots in a tilled, old-field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co-occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high-endophyte S. pratensis increased plant richness relative to low-endophyte cultivars. However, as expected, high-endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass-Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass-endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co

  8. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds

    Science.gov (United States)

    Pan, Feng; Su, Tian-Jiao; Cai, Shi-Mei; Wu, Wei

    2017-01-01

    Diverse fungal endophytes are rich fungal resources for the production of an enormous quantity of natural products. In the present study, 53 fungal endophytes were isolated from the bulbs of Fritillaria unibracteata var. wabuensis (FUW). Of these, 49 strains were identified and grouped into 17 different taxa, and priority was conferred to the Fusarium genus. All fungal fermented filtrates displayed antioxidant activities. The DPPH activity, total antioxidant capacities (ABTS), reduction power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and total saponin content (TSC) were evaluated using petroleum ether, ethyl acetate, n-butyl alcohol and ethanol fractions extracted from five representative fungal cultures. The last three fractions showed more potent antioxidant activity than the first fraction. Significant positive correlations were found between the compositions (TPC, TFC and TSC) and antioxidant capacities (DPPH, ABTS and FRAP). In addition, multifarious natural antioxidant components were identified from the fungal extracts, including gallic acid, rutin, phlorizin, 2,4-di-tert-butylphenol and 2,6-di-tert-butyl hydroquinone; these were determined preliminarily by TLC-bioautography, HPLC and GC-MS analysis. This study showed abundant fungal resources in FUW. Phenolics, flavonoids and saponins are crucial bioactive constituents in these abundant fungal endophytes and can be viewed as new potential antioxidant resources. PMID:28165019

  9. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds.

    Science.gov (United States)

    Pan, Feng; Su, Tian-Jiao; Cai, Shi-Mei; Wu, Wei

    2017-02-06

    Diverse fungal endophytes are rich fungal resources for the production of an enormous quantity of natural products. In the present study, 53 fungal endophytes were isolated from the bulbs of Fritillaria unibracteata var. wabuensis (FUW). Of these, 49 strains were identified and grouped into 17 different taxa, and priority was conferred to the Fusarium genus. All fungal fermented filtrates displayed antioxidant activities. The DPPH activity, total antioxidant capacities (ABTS), reduction power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and total saponin content (TSC) were evaluated using petroleum ether, ethyl acetate, n-butyl alcohol and ethanol fractions extracted from five representative fungal cultures. The last three fractions showed more potent antioxidant activity than the first fraction. Significant positive correlations were found between the compositions (TPC, TFC and TSC) and antioxidant capacities (DPPH, ABTS and FRAP). In addition, multifarious natural antioxidant components were identified from the fungal extracts, including gallic acid, rutin, phlorizin, 2,4-di-tert-butylphenol and 2,6-di-tert-butyl hydroquinone; these were determined preliminarily by TLC-bioautography, HPLC and GC-MS analysis. This study showed abundant fungal resources in FUW. Phenolics, flavonoids and saponins are crucial bioactive constituents in these abundant fungal endophytes and can be viewed as new potential antioxidant resources.

  10. Leptin inhibitors from fungal endophytes (LIFEs): Will be novel therapeutic drugs for obesity and its associated immune mediated diseases.

    Science.gov (United States)

    Chandra Mouli, K; Pragathi, D; Naga Jyothi, U; Shanmuga Kumar, V; Himalaya Naik, M; Balananda, P; Suman, B; Seshadri Reddy, V; Vijaya, T

    2016-07-01

    Treatment of obesity and its associated immune mediated diseases is challenging due to impaired function of leptin system. Thus leptin is providing an interesting target for therapeutic intervention. Leptin, an adipose tissue-derived adipokine, displays a variety of immune functions, and regulate both innate and adaptive immune responses. The increased secretion of leptin (hyperleptinemia) and production of proinflammatory cytokines has been implicated in the pathogenesis of obesity-related immune diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer, systemic lupus erythematosus, rheumatoid arthritis, crohn's disease and multiple sclerosis. These disorders are managed through antibiotics and by cytokines replacement. However, the effectiveness of cytokines coupled to the complexity of the cytokine network leads to severe side-effects, which can still occur after careful preclinical evaluation. In addition, synthetic immunotherapeutics carries a degree of risk, is time-consuming and expensive. Hence, the complexity of existing therapy and adverse effects emphasizes the need of an alternative approach for the management of immune dysfunction associated with obesity and its related diseases. For the aforementioned diseases that are related to leptin overabundance, new drugs blocking leptin signaling need to be generated. The research on the discovery of clinically important novel compounds from natural source is expanding due to their safety and no side effect. The fungal endophytes are the microbes that colonize internal tissue of plants without causing negative effects to the host. They produce plethora of substances of potential use to modern medicinal and pharmaceutical industry. The increasing body of evidence associated with application of bioactive metabolites derived from fungal endophytes in diverse disease states merits its use as therapeutic drugs. In particular, the saponins have been extensively proved to modulate the immune system

  11. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water w

  12. Anti-Insect Properties of Grass Fungal Endophytes for Plant Resistance to Insects

    Science.gov (United States)

    Many temperate grass species host Epichloë and Neotyphodium endophytic fungi that produce alkaloids with anti-mammalian and anti-insect properties. Ergot and lolitrem alkaloid production by endophyte-infected (E+) grasses can have deleterious effects on grazing livestock, whereas insecticidal alkal...

  13. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins.

    Directory of Open Access Journals (Sweden)

    Karen V Ambrose

    Full Text Available One of the most important plant-fungal symbiotic relationships is that of cool season grasses with endophytic fungi of the genera Epichloë and Neotyphodium. These associations often confer benefits, such as resistance to herbivores and improved drought tolerance, to the hosts. One benefit that appears to be unique to fine fescue grasses is disease resistance. As a first step towards understanding the basis of the endophyte-mediated disease resistance in Festuca rubra we carried out a SOLiD-SAGE quantitative transcriptome comparison of endophyte-free and Epichloë festucae-infected F. rubra. Over 200 plant genes involved in a wide variety of physiological processes were statistically significantly differentially expressed between the two samples. Many of the endophyte expressed genes were surprisingly abundant, with the most abundant fungal tag representing over 10% of the fungal mapped tags. Many of the abundant fungal tags were for secreted proteins. The second most abundantly expressed fungal gene was for a secreted antifungal protein and is of particular interest regarding the endophyte-mediated disease resistance. Similar genes in Penicillium and Aspergillus spp. have been demonstrated to have antifungal activity. Of the 10 epichloae whole genome sequences available, only one isolate of E. festucae and Neotyphodium gansuense var inebrians have an antifungal protein gene. The uniqueness of this gene in E. festucae from F. rubra, its transcript abundance, and the secreted nature of the protein, all suggest it may be involved in the disease resistance conferred to the host, which is a unique feature of the fine fescue-endophyte symbiosis.

  14. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins.

    Science.gov (United States)

    Ambrose, Karen V; Belanger, Faith C

    2012-01-01

    One of the most important plant-fungal symbiotic relationships is that of cool season grasses with endophytic fungi of the genera Epichloë and Neotyphodium. These associations often confer benefits, such as resistance to herbivores and improved drought tolerance, to the hosts. One benefit that appears to be unique to fine fescue grasses is disease resistance. As a first step towards understanding the basis of the endophyte-mediated disease resistance in Festuca rubra we carried out a SOLiD-SAGE quantitative transcriptome comparison of endophyte-free and Epichloë festucae-infected F. rubra. Over 200 plant genes involved in a wide variety of physiological processes were statistically significantly differentially expressed between the two samples. Many of the endophyte expressed genes were surprisingly abundant, with the most abundant fungal tag representing over 10% of the fungal mapped tags. Many of the abundant fungal tags were for secreted proteins. The second most abundantly expressed fungal gene was for a secreted antifungal protein and is of particular interest regarding the endophyte-mediated disease resistance. Similar genes in Penicillium and Aspergillus spp. have been demonstrated to have antifungal activity. Of the 10 epichloae whole genome sequences available, only one isolate of E. festucae and Neotyphodium gansuense var inebrians have an antifungal protein gene. The uniqueness of this gene in E. festucae from F. rubra, its transcript abundance, and the secreted nature of the protein, all suggest it may be involved in the disease resistance conferred to the host, which is a unique feature of the fine fescue-endophyte symbiosis.

  15. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity.

    Science.gov (United States)

    Khan, Abdul Latif; Waqas, Muhammad; Khan, Abdur Rahim; Hussain, Javid; Kang, Sang-Mo; Gilani, Syed Abdullah; Hamayun, Muhammad; Shin, Jae-Ho; Kamran, Muhammad; Al-Harrasi, Ahmed; Yun, Byung-Wook; Adnan, Muhammad; Lee, In-Jung

    2013-11-01

    An endophytic fungus was isolated from the roots of tomato (Solanum lycopersicum Mill) and identified as Penicillium janthinellum LK5. The culture filtrate (CF) of P. janthinellum significantly increased the shoot length of gibberellins (GAs) deficient mutant waito-c and normal Dongjin-beyo rice seedlings as compared to control. The CF of P. janthinellum contained GAs (GA3, GA4, GA7 and GA12). To assess endophyte-growth promoting and stress-tolerance potential, the CF along with the propagules of endophyte was applied to tomato-host and abscisic acid (ABA)-deficient mutant Sitiens plants under sodium chloride (NaCl) induced salinity stress. Sitiens plants had retarded growth under normal and salinity stress however its growth was much improved during P. janthinellum-association. The endophyte inoculation reduced the membrane injury by decreasing lipid peroxidation as compared to non-inoculated control under salinity. Endophyte-associated Sitiens plants have significantly higher catalase, peroxidase and glutathione activities as compared to control. Endophyte-infected host and Sitiens plants had low level of sodium ion toxicity and high calcium contents in its root as compared to control. P. janthinellum LK5 helped the Sitiens plants to synthesis significantly higher ABA and reduced the level of jasmonic acid to modulate stress responses. The results suggest that endophytes-association can resist salinity stress by producing gibberellins and activating defensive mechanisms of host and Sitiens plants to achieve improved growth.

  16. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies

    Directory of Open Access Journals (Sweden)

    R.J. Burgdorf

    2014-09-01

    Full Text Available Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA and non-metric multidimensional scaling (NMDS were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM. Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05 from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05. The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.

  17. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease.

    Science.gov (United States)

    Hanada, Rogério Eiji; Pomella, Alan William V; Costa, Heron Salazar; Bezerra, José Luiz; Loguercio, Leandro L; Pereira, José O

    2010-01-01

    The endophytic niches of plants are a rich source of microbes that can directly and indirectly promote plant protection, growth and development. The diversity of culturable endophytic fungi from stems and branches of Theobroma cacao (cacao) and Theobroma grandiflorum (cupuaçu) trees growing in the Amazon region of Brazil was assessed. The collection of fungal endophytic isolates obtained was applied in field experiments to evaluate their potential as biocontrol agents against Phytophthora palmivora, the causal agent of the black-pod rot disease of cacao, one of the most important pathogens in cocoa-producing regions worldwide. The isolated endophytic fungi from 60 traditional, farmer-planted, healthy cacao and 10 cupuaçu plants were cultured in PDA under conditions inducing sporulation. Isolates were classified based upon the morphological characteristics of their cultures and reproductive structures. Spore suspensions from a total of 103 isolates that could be classified at least up to genus level were tested against P. palmivora in pods attached to cacao trees in the field. Results indicated that ∼70% of isolates showed biocontrol effects to a certain extent, suggesting that culturable endophytic fungal biodiversity in this system is of a mostly mutualistic type of interaction with the host. Eight isolates from genera Trichoderma (reference isolate), Pestalotiopsis, Curvularia, Tolypocladium and Fusarium showed the highest level of activity against the pathogen, and were further characterized. All demonstrated their endophytic nature by colonizing axenic cacao plantlets, and confirmed their biocontrol activity on attached pods trials by showing significant decrease in disease severity in relation to the positive control. None, however, showed detectable growth-promotion effects. Aspects related to endophytic biodiversity and host-pathogen-endophyte interactions in the environment of this study were discussed on the context of developing sustainable strategies

  18. Assessment of genetic diversity and distribution of endophytic fungal communities of Alternaria solani isolates associated with the dominant Karanja plants in Sanganer Region of Rajasthan.

    Science.gov (United States)

    Tiwari, Kartikeya; Chittora, Manish

    2013-12-01

    Higher plants are ubiquitously colonized with fungal endophytes that often lack readily detectable structures. Current study examines the distribution of endophytic fungal communities within Karanja plants and diversity of novel fungal endophyte Alternaria solani isolates collected from different locations of Sanganer region of Rajasthan. Results confirmed that A. solani is a major fungal endophyte consortium associated with Karanja plants. PCR Amplified fragments using random amplified polymorphic DNA (RAPD) primers were subjected to unweighted pair group method analysis (UPGMA), which clearly distinguished twelve ecologically diverse A. solani isolates. A total of 58 RAPD loci were amplified, out of which 35 (60.34%) were polymorphic and 23 were monomorphic (39.66%) in nature. These polymorphic loci were identified with an average of 2.92 bands per primer. The efficacy of RAPD markers proved as an efficient marker system with respect to detection of polymorphism and number of loci scored and can be used for the identification of a particular isolates, thereby defining core collections and strengthening their exploitation in acquiring novel products produced by them.

  19. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.

  20. Fungal-mediated multitrophic interactions--do grass endophytes in diet protect voles from predators?

    Directory of Open Access Journals (Sweden)

    Susanna Saari

    Full Text Available Plant-associated micro-organisms such as mycotoxin-producing endophytes commonly have direct negative effects on herbivores. These effects may be carried over to natural enemies of the herbivores, but this has been rarely explored. We examined how feeding on Neotyphodium endophyte infected (E+ and endophyte free (E- meadow ryegrass (Scherodonus pratensis affects body mass, population size and mobility of sibling voles (Microtus levis, and whether the diet mediates the vulnerability of voles to least weasel (Mustela nivalis nivalis predation. Because least weasels are known to be olfactory hunters, we also examined whether they are able to distinguish olfactory cues of voles fed on E+ and E- diets. Neither body mass of voles nor population size differed between diets. However, contrary to our prediction, least weasels preyed more often on voles fed with E- grass than on voles fed with E+ grass. The mobility of voles fed on E+ grass was reduced compared to voles fed on E- grass, but this effect was unrelated to risk of predation. Least weasels appeared unable to distinguish between excrement odours of voles between the two treatments. Our results suggest that consumption of endophytic grass is not directly deleterious to sibling voles. What's more, consumption of endophytes appears to be advantageous to voles by reducing risk of mammalian predation. Our study is thus the first to demonstrate an effect of plant-associated microbial symbionts on herbivore-predator interactions in vertebrate communities.

  1. Fungal-mediated multitrophic interactions--do grass endophytes in diet protect voles from predators?

    Science.gov (United States)

    Saari, Susanna; Sundell, Janne; Huitu, Otso; Helander, Marjo; Ketoja, Elise; Ylönen, Hannu; Saikkonen, Kari

    2010-03-24

    Plant-associated micro-organisms such as mycotoxin-producing endophytes commonly have direct negative effects on herbivores. These effects may be carried over to natural enemies of the herbivores, but this has been rarely explored. We examined how feeding on Neotyphodium endophyte infected (E+) and endophyte free (E-) meadow ryegrass (Scherodonus pratensis) affects body mass, population size and mobility of sibling voles (Microtus levis), and whether the diet mediates the vulnerability of voles to least weasel (Mustela nivalis nivalis) predation. Because least weasels are known to be olfactory hunters, we also examined whether they are able to distinguish olfactory cues of voles fed on E+ and E- diets. Neither body mass of voles nor population size differed between diets. However, contrary to our prediction, least weasels preyed more often on voles fed with E- grass than on voles fed with E+ grass. The mobility of voles fed on E+ grass was reduced compared to voles fed on E- grass, but this effect was unrelated to risk of predation. Least weasels appeared unable to distinguish between excrement odours of voles between the two treatments. Our results suggest that consumption of endophytic grass is not directly deleterious to sibling voles. What's more, consumption of endophytes appears to be advantageous to voles by reducing risk of mammalian predation. Our study is thus the first to demonstrate an effect of plant-associated microbial symbionts on herbivore-predator interactions in vertebrate communities.

  2. Insect pathology and fungal entomopathogens

    Science.gov (United States)

    Fungi that occur inside asymptomatic plant tissues are known as fungal endophytes. Different genera of fungal entomopathogens have been reported as naturally occurring fungal endophytes, and it has been shown that it is possible to inoculate plants with fungal entomopathogens, making them endophytic...

  3. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Brosi, Glade [University of Kentucky; McCulley, Rebecca L [University of Kentucky; Bush, L P [University of Kentucky; Nelson, Jim A [University of Kentucky; Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2011-01-01

    Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{sub 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.

  4. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin

    DEFF Research Database (Denmark)

    Jahn, Linda; Schafhauser, Thomas; Wibberg, Daniel

    2017-01-01

    of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthases iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so...... far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been...... cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite...

  5. Production, characterization and application of inulinase from fungal endophyte CCMB 328

    Directory of Open Access Journals (Sweden)

    Diego S. Nascimento

    2012-06-01

    Full Text Available Inulinase (β-2,1-D- fructan fructanohydrolase, EC 3.2.1.7, targets the β-2,1 linkage of inulin, a polyfructan consisting of linear β-2,1 linked fructose, and hydrolyzes it into fructose. This use provides an alternative to produce fructose syrup through the hydrolysis of inulin. The objective of this work was to study the production, characterization and applications of inulinases from the fungal endophyte CCMB 328 isolated from the Brazilian semi-arid region. Response Surface Methodology (RSM was employed to evaluate the effect of variables (concentration of glucose and yeast extract, on secreted inulinase activities detected in the culture medium and also in the inulin hydrolysis. The results showed that the best conditions for inulinase production by CCMB 328 are 9.89 g / L for glucose and 1.09 g / L for yeast extract. The concentration of 0.20 mol/L of NaCl and KCl increased the activity of inulinase from CCMB 328 by approximately 63% and 37%, respectively. The results also showed that the inulinase has potential for inulin hydrolysis, whose conversion yields roughly 72.48 % for an initial concentration of inulin at 1% (w/v.A enzima inulinase (EC 3.2.1.7, β-D-frutano frutanohidrolase atua sobre as ligações β-2,1 da inulina, um polifrutano consistindo de frutose unida por ligações β-2,1. A hidrólise de inulina através do uso de inulinase é uma alternativa viável para a obtenção de xarope de frutose. O objetivo deste trabalho foi estudar a produção, caracterização e aplicação de inulinase obtidas a partir do fungo endofítico CCMB 328, isolado do semi-árido brasileiro. A metodologia de Superfície de Resposta (MSR foi empregado para avaliar os efeitos das variáveis (concentração de glicose e extrato de levedura na atividade da enzima inulinase produzida em meio de cultura líquido e também para avaliar a atividade da enzima na hidrólise de inulina. Os resultados mostraram que as melhores condições para a produ

  6. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn.

    Science.gov (United States)

    Wani, Zahoor Ahmed; Mirza, Dania Nazir; Arora, Palak; Riyaz-Ul-Hassan, Syed

    2016-12-01

    A total of 294 fungal endophytes were isolated from the corms of Crocus sativus at two stages of crocus life cycle collected from 14 different saffron growing sites in Jammu and Kashmir (J & K) State, India. Molecular phylogeny assigned them into 36 distinct internal transcribed spacer (ITS) genotypes which spread over 19 genera. The diversity of endophytes was higher at the dormant than at the vegetative stage. The Saffron microbiome was dominated by Phialophora mustea and Cadophora malorum, both are dark septate endophytes (DSEs). Some endophytes were found to possess antimicrobial properties that could be helpful for the host in evading the pathogens. These endophytes generally produced significant quantities of indole acetic acid (IAA) as well. However, thirteen of the endophytic taxa were found to cause corm rot in the host with different levels of severity under in vitro as well as in vivo conditions. This is the first report of community structure and biological properties of fungal endophytes associated with C. sativus, which may eventually help us to develop agro-technologies, based on plant-endophyte interactions for sustainable cultivation of saffron. The endophytes preserved ex situ, in this study, may also yield bioactive natural products for pharmacological and industrial applications.

  7. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  8. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  9. Safety of Malaysian marine endophytic fungal extract S2 from a brown seaweed Turbinaria conoides

    OpenAIRE

    Siti Alwani Ariffin; Kalavathy Ramasamy; Paul Davis; Vasudevan Mani; Mahmood Ameen Abdulla

    2014-01-01

    Objective: To evaluate the in vivo acute toxicity and antioxidant activity of the marine endophytic fungus extract S2 isolated from Turbinaria conoides. Methods: Two doses (100 mg/kg and 400 mg/kg) of the S2 extract were administered to rats orally for acute toxicity and antioxidant test. The body weight, relative weight of six organs, haematological, biochemical and antioxidant properties were investigated on Day 14. Results: A single oral dose treatment did not cause any ...

  10. Detection and Isolation of Epichloë Species, Fungal Endophytes of Grasses.

    Science.gov (United States)

    Florea, Simona; Schardl, Christopher L; Hollin, Walter

    2015-08-03

    Epichloë species (including former Neotyphodium species) are endophytic fungi that significantly affect fitness of cool-season grass hosts, potentially by increasing nutrient uptake and resistance to drought, parasitism and herbivory. Epichloë species are obligately biotrophic, living in the intercellular spaces of their plant hosts, and spreading systemically throughout host aerial tissues. The reproduction of Epichloë species is versatile; some strains have both sexual and asexual modes of reproduction, but others are restricted to one or the other mode. The reproduction mode determines the dissemination mechanism, and the asexual species most important to agriculture are strictly seed-borne, cause no signs or symptoms, and are undetectable except by specialized microscopic, molecular or antigenic procedures. These procedures can be used to identify endophytes in a variety of plant tissues. Similar protocols can be modified to detect less common symbionts, such as the penicillate "p-endophytes," when they occur by themselves or together with Epichloë species.

  11. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background.

    Science.gov (United States)

    Gundel, Pedro E; Martínez-Ghersa, María A; Omacini, Marina; Cuyeu, Romina; Pagano, Elba; Ríos, Raúl; Ghersa, Claudio M

    2012-12-01

    Certain species of the Pooideae subfamily develop stress tolerance and herbivory resistance through symbiosis with vertically transmitted, asexual fungi. This symbiosis is specific, and genetic factors modulate the compatibility between partners. Although gene flow is clearly a fitness trait in allogamous grasses, because it injects hybrid vigor and raw material for evolution, it could reduce compatibility and thus mutualism effectiveness. To explore the importance of host genetic background in modulating the performance of symbiosis, Lolium multiflorum plants, infected and noninfected with Neotyphodium occultans, were crossed with genetically distant plants of isolines (susceptible and resistant to diclofop-methyl herbicide) bred from two cultivars and exposed to stress. The endophyte improved seedling survival in genotypes susceptible to herbicide, while it had a negative effect on one of the genetically resistant crosses. Mutualism provided resistance to herbivory independently of the host genotype, but this effect vanished under stress. While no endophyte effect was observed on host reproductive success, it was increased by interpopulation plant crosses. Neither gene flow nor herbicide had an important impact on endophyte transmission. Host fitness improvements attributable to gene flow do not appear to result in direct conflict with mutualism while this seems to be an important mechanism for the ecological and contemporary evolution of the symbiotum.

  12. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

    Science.gov (United States)

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.

  13. Diversity of Fungal Endophytes and Symbiosis with Plant%植物内生真菌多样性及其共生作用

    Institute of Scientific and Technical Information of China (English)

    孙辉

    2012-01-01

    植物内生真菌是生活在健康的植物体内不引起寄主植物任何病害的一类微生物。内生真菌具有丰富的多样性,在与寄主植物协同进化的过程中,通过不同方式为寄主提供有利保护。人们在对内生真菌的研究利用中,可根据研究的需要寻找特殊的内生真菌来源,为生产和研究提供最具研究价值和使用价值的资源。%Microbes living with interior tissues of healthy plants without causing disease symptoms are called fungal endophytes.Fungal endophytes possess high diversity.They like to play protective or mutualistic roles to the host plants they inhabit.So much research had been carried to focus on fungal endophytes.Researchers can find the more effective ways and resource to go on the next research following the clues provided by former.

  14. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    Full Text Available Abstract Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF on gibberellins (GAs deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24 and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20 contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic

  15. Pulvinulin A, graminin C, and cis-gregatin B--new natural furanones from Pulvinula sp. 11120, a fungal endophyte of Cupressus arizonica.

    Science.gov (United States)

    Wijeratne, E M Kithsiri; Xu, Yaming; Arnold, A Elizabeth; Gunatilaka, A A Leslie

    2015-01-01

    Three new natural furanones, pulvinulin A (1), graminin C (2), and cis-gregatin B (3), together with the known fungal metabolites, graminin B (4) and 10-norparvulenone (5), were isolated from Pulvinula sp. 11120, an endophytic fungal strain occurring in healthy foliage of Cupressus arizonica (Arizona cypress). The structures of 1 and 2 were elucidated by the analysis of their spectroscopic data and chemical interconversions, and that of 3 was determined by comparison with data for synthetic cis-gregatin B. Comparison of spectroscopic data of 4 and 5 with those reported identified them as graminin B and 10-norparvulenone, respectively. Metabolites 1-4 exhibited antibacterial activity against E. coli.

  16. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress

    Institute of Scientific and Technical Information of China (English)

    Muhammad WAQAS; Abdul Latif KHAN; Raheem SHAHZAD; Ihsan ULLAH; Abdur Rahim KHAN; In-Jung LEE

    2015-01-01

    题目:持续高温胁迫环境下内生菌产生植物激素和有机酸促进粳稻生长的研究  目的:研究在高温胁迫环境下内生菌( Paecilomyces formosus LWL1)对粳稻生长的影响。  创新点:首次探讨P. formosus LWL1产生的植物激素和有机酸在缓解粳稻热应激方面的作用。  方法:比较正常和高温胁迫两种环境下,P. formosus LWL1对 Dongjin粳稻植株的生长状况及内源性脱落酸、茉莉酸和总蛋白水平变化的作用。  结论:内生菌在正常和高温胁迫条件下均能显著提高植物生长情况,包括株高、鲜重、干重和叶绿素含量。内生菌组的植株具有更低的内源性胁迫信号化合物水平及提升的总蛋白量,表明其具有保护粳稻的作用。这种内生菌可能有利于作物在高温环境下生长的耐受性。%This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in control ed chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. for-mosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures.

  17. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration

    Science.gov (United States)

    Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species’ ability to tolerate the sites’ severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations. PMID:28030648

  18. 产萱草根素内生真菌的分离与鉴定%Isolation and Identification of Hemerocallin-Producing Fungal Endophyte

    Institute of Scientific and Technical Information of China (English)

    梁洁; 杨凯; 李勤凡; 姜振国; 孔祥雅; 杨国栋; 金意敏

    2012-01-01

    为探讨萱草(Hemerocallis)根中是否存在产生萱草根素的内生真菌,从北萱草(H.esculenta)根中分离得到4株内生真菌,在马铃薯(Solanum tuberosum)葡萄糖琼脂培养基(PDA)上培养20 d后收集菌丝,应用薄层色谱法和紫外分光光度法分别检测菌丝提取液中的萱草根素,筛选可产生萱草根素的内生真菌.结果表明:菌株XC-1A为产萱草根素内生真菌,含量达359.88μg·g-1,根据形态学观察和5.8S rDNA-ITS序列分析结果,确定XC-1A为Zalerion varium.北萱草中存在可产生萱草根素的内生真菌.%The study was to explore whether the hemerocallin-secret fungal endophyte exist in roots of Hemerocallis. Four strains of endophytic fungi were isolated and obtained from the H. esculenta. Four i-solates were detected by thin-layer chromatography and UV spectrophotometry after culture in potato dex-trose agar (PDA) for 20 days. Results showed that XC-1A, a strain of endophytic fungus producing hemerocallin was isolated and obtained from H. esculenta, and hemerocallin yield is 359. 88 μg ? g-1. Morphological evidence and rDNA-ITS sequence analsis indicated that the endophyte was closely related to Zalerion varium. The hemerocallin-producing fungal endophytes exist in the root of H. esculenta.

  19. Isolation and Characterization of Saponin-Producing Fungal Endophytes from Aralia elata in Northeast China

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2012-11-01

    Full Text Available The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres, and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL. According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC.

  20. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review.

    Science.gov (United States)

    Deepika, V B; Murali, T S; Satyamoorthy, K

    2016-01-01

    Novel drugs with unique and targeted mode of action are very much need of the hour to treat and manage severe multidrug infections and other life-threatening complications. Though natural molecules have proved to be effective and environmentally safe, the relative paucity of discovery of new drugs has forced us to lean towards synthetic chemistry for developing novel drug molecules. Plants and microbes are the major resources that we rely upon in our pursuit towards discovery of novel compounds of pharmacological importance with less toxicity. Endophytes, an eclectic group of microbes having the potential to chemically bridge the gap between plants and microbes, have attracted the most attention due to their relatively high metabolic versatility. Since continuous large scale supply of major metabolites from microfungi and especially endophytes is severely impeded by the phenomenon of attenuation in axenic cultures, the major challenge is to understand the regulatory mechanisms in operation that drive the expression of metabolic gene clusters of pharmaceutical importance. This review is focused on the major regulatory elements that operate in filamentous fungi and various combinatorial multi-disciplinary approaches involving bioinformatics, molecular biology, and metabolomics that could aid in large scale synthesis of important lead molecules.

  1. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China.

    Science.gov (United States)

    Wu, Hao; Yang, Hongyan; You, Xiangling; Li, Yuhua

    2012-11-30

    The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR) and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC) was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres), and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL). According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC.

  2. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    Directory of Open Access Journals (Sweden)

    Bo eYang

    2015-09-01

    Full Text Available The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N, but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics,the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea. Ammonia-oxidizing archaea (AOA, ammonia-oxidizing bacteria (AOB and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage. A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates (PNR, affected the abundance and community structure of AOA, AOB and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids

  3. Fungal endophytes – the hidden inducers of volatile terpene biosynthesis in tomato plants

    DEFF Research Database (Denmark)

    Ntana, Fani; Jensen, Birgit; Jørgensen, Hans Jørgen Lyngs

    and herbivores. Tomato (Solanum lycopersicum) is an important crop, often challenged by fungal pathogens and insect pests. The wide variety of secondary metabolites produced by the plant, and especially terpenes, play a crucial role in plant defence, helping in repelling possible enemies. This project is focused...... on establishing a balanced interaction between S. indica and tomato in vitro, as well as reliable detection methods that show fungal colonization of inoculated plant roots. The effect of root colonization by S. indica on host specialized metabolism is also determined, by comparing volatile terpene profiles of S....... indica-inoculated and S. indica-free tomato plants. Preliminary data suggest that fungal colonization results in increased production of specific volatile terpenes. A transcriptome analysis on fungus-associated and fungus-free plant tissues is currently ongoing to elucidate in depth the mechanisms...

  4. Characterization and Photoprotector Activity of Endophytic Fungal Pigments from Coastal Plant Sarang Semut (Hydnophytum formicarum

    Directory of Open Access Journals (Sweden)

    Mada Triandala Sibero

    2016-04-01

    Full Text Available Endophytic fungus RS3 isolated from coastal plant sarang semut (Hydnophytum formicarum produced extracellular black pigment. The aims of this research were to obtain the pigment, to characterize and to determine the photoprotector activity. This research was conducted into several steps, that were determination of the best precipitating agent, characterization using instrument and solubility analysis, and analysis of Sun Protection Factor (SPF. Results showed the pigment was precipitated using acid solvent with pH ≤ 2.5. Functional groups of pigment were hydroxyl, aromatic ring, phenol and amine. According to its characteristics, black pigment produced by RS3 isolate was proposed as melanin. The photoprotector analysis showed the SPF value was 11.33.

  5. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses

    CERN Document Server

    Schardl, Chris L; Lindstrom, Adam; Speakman, Skyler; Stromberg, Arnold; Yoshida, Ruriko

    2007-01-01

    Significant phylogenetic codivergence between plant or animal hosts ($H$) and their symbionts or parasites ($P$) indicate the importance of their interactions on evolutionary time scales. However, valid and realistic methods to test for codivergence are not fully developed. One of the systems where possible codivergence has been of interest involves the large subfamily of temperate grasses (Pooideae) and their endophytic fungi (epichloae). These widespread symbioses often help protect host plants from herbivory and stresses, and affect species diversity and food web structures. Here we introduce the MRCALink (most-recent-common-ancestor link) method and use it to investigate the possibility of grass-epichlo\\"e codivergence. MRCALink applied to ultrametric $H$ and $P$ trees identifies all corresponding nodes for pairwise comparisons of MRCA ages. The result is compared to the space of random $H$ and $P$ tree pairs estimated by a Monte Carlo method.

  6. Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution.

    Science.gov (United States)

    Herrera, José; Khidir, Hana H; Eudy, Douglas M; Porras-Alfaro, Andrea; Natvig, Donald O; Sinsabaugh, Robert L

    2010-01-01

    Communities of root-associated fungi (RAF) commonly have been studied under the auspices of arbuscular mycorrhizal fungi (AMF) or ectomycorrhizal fungi. However many studies now indicate that other groups of endophytic RAF, including dark septate endophytes (DSE) are more abundant in some plants and environments. The common forage grass, Bouteloua gracilis, was used as a model to examine whether RAF also colonize different organs within the same plant and to compare RAF communities from sites across North America, spanning the latitudinal range of B. gracilis (from Canada to Mexico). We compared the RAF communities of organs within individual plants at one site and within plant roots among six sites. With the possible exception of one group related to genus Paraphaeosphaeria there was little evidence that RAF colonized vertically beyond the crowns. Furthermore, although there was some variation in the constitution of rare members of the RAF communities, several taxonomically related groups dominated the RAF community at all sites. These dominant taxa included members in the Pleosporales (related to the DSE, Paraphaeosphaeria spp.), Agaricales (related to Moniliophthora spp., or Campanella spp.) and Hypocreales (related to Fusarium spp.). AMF were notable by their near absence. Similar phylotypes from the dominant groups clustered around adjacent sites so that similarity of the RAF communities was negatively correlated to site inter-distance and the RAF communities appeared to group by country. These results increase the possibility that at least some of these common and widely distributed core members of the RAF community form important, intimate and long lasting relationships with grasses.

  7. Safety of Malaysian marine endophytic fungal extract S2 from a brown seaweed Turbinaria conoides

    Directory of Open Access Journals (Sweden)

    Siti Alwani Ariffin

    2014-07-01

    Full Text Available Objective: To evaluate the in vivo acute toxicity and antioxidant activity of the marine endophytic fungus extract S2 isolated from Turbinaria conoides. Methods: Two doses (100 mg/kg and 400 mg/kg of the S2 extract were administered to rats orally for acute toxicity and antioxidant test. The body weight, relative weight of six organs, haematological, biochemical and antioxidant properties were investigated on Day 14. Results: A single oral dose treatment did not cause any mortality or observable adverse effects in rats. No significant variations in the body and organ weights between the control and the treated groups were observed. Heamatological analysis and clinical blood chemistry also did not reveal any toxic effects of the extract. The total white blood cell count and haemoglobin levels were increased. The levels of total serum cholesterol in males treated with 100 and 400 mg/kg were significantly (P<0.05 decreased (1.28 and 1.34 mmol/L respectively compared to control (1.55 mmol/L rats. Pathologically, neither gross abnormalities nor histopathological changes were observed. This study showed strong evidence of the non-toxic effects of S2 extract. Furthermore the extract exhibited significant (P<0.05 antioxidant activity through increased levels of superoxide dismutase and glutathione peroxidase enzymes in serum, liver and kidney. Conclusions: The research findings from the present study showed the potential of marine natural products particularly in Malaysia as a source of bioactive compounds. Marine endophytic fungi as a potential source of anticancer drugs with great potential as they are potent yet safe, thus deserving further extensive investigation.

  8. Safety of Malaysian marine endophytic fungal extract S2 from a brown seaweed Turbinaria conoides

    Institute of Scientific and Technical Information of China (English)

    Siti Alwani Ariffin; Kalavathy Ramasamy; Paul Davis; Vasudevan Mani; Mahmood Ameen Abdulla

    2014-01-01

    Objective: To evaluate the in vivo acute toxicity and antioxidant activity of the marine endophytic fungus extract S2 isolated from Turbinaria conoides.Methods:Two doses (100 mg/kg and 400 mg/kg) of the S2 extract were administered to rats orally for acute toxicity and antioxidant test. The body weight, relative weight of six organs, haematological, biochemical and antioxidant properties were investigated on Day 14.Results:A single oral dose treatment did not cause any mortality or observable adverse effects in rats. No significant variations in the body and organ weights between the control and the treated groups were observed. Heamatological analysis and clinical blood chemistry also did not reveal any toxic effects of the extract. The total white blood cell count and haemoglobin levels were increased. The levels of total serum cholesterol in males treated with 100 and 400 mg/kg were significantly (P<0.05) decreased (1.28 and 1.34 mmol/L respectively) compared to control (1.55 mmol/L rats. Pathologically, neither gross abnormalities nor histopathological changes were observed This study showed strong evidence of the non-toxic effects of S2 extract. Furthermore the extract exhibited significant (P<0.05) antioxidant activity through increased levels of superoxide dismutase and glutathione peroxidase enzymes in serum, liver and kidney.Conclusions:The research findings from the present study showed the potential of marine natural products particularly in Malaysia as a source of bioactive compounds. Marine endophytic fungi as a potential source of anticancer drugs with great potential as they are potent yet safe thus deserving further extensive investigation.

  9. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup;

    2012-01-01

    Cereal crops are an essential source of nutrition worldwide. The incidence and severity of fungal diseases, in particular foliar diseases such as leaf spots, mildews and rusts, is a serious challenge to cereal production, and this problem is likely to escalate with the changing global climate....... Traditional and current methods for controlling fungal pathogens include the use of fungicides, good farming practices, and increasing plant resistance through conventional breeding. While effective, these strategies also carry limitations, mainly due to fungicide-resistance, breakdown of plant resistance...

  10. Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants.

    Science.gov (United States)

    Lahlali, Rachid; Hijri, Mohamed

    2010-10-01

    Rhizoctonia solani is an important soilborne pathogen of potato plants whose control typically depends on chemicals. Here, we screened six fungal endophytes for the suppression of R. solani growth both in vitro and in a greenhouse. These isolates were identified using morphology and internal transcribed spacer regions of rDNA as Alternaria longipes, Epicoccum nigrum, Phomopsis sp., and Trichoderma atroviride. Both T. atroviride and E. nigrum showed significant in vitro inhibition of mycelial growth of R. solani, with the greatest inhibition zone observed for E. nigrum species in dual cultures. The highest inhibition was observed for T. atroviride. The inhibition rate was also significantly correlated with the culture filtrates of these isolates. Confocal microscopy showed that T. atroviride acts as a mycoparasite and competitor. However, E. nigrum and A. longipes produce secondary metabolites, while Phomospsis sp. competes for nutrients and space. Greenhouse experiments confirmed that T. atroviride and E. nigrum improved potato yield significantly and decreased the stem disease severity index of sensitive potato. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa)

    Science.gov (United States)

    J. A. Hoff; Ned B. Klopfenstein; Geral I. McDonald; Jonalea R. Tonn; Mee-Sook Kim; Paul J. Zambino; Paul F. Hessburg; J. D. Rodgers; T. L. Peever; L. M. Carris

    2004-01-01

    The fungal community inhabiting large woody roots of healthy conifers has not been well documented. To provide more information about such communities, a survey was conducted using increment cores from the woody roots of symptomless Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) growing in dry forests...

  12. Isolation and identification of fungal endophytes from Swainsona salsula grown in Ningxia%宁夏苦马豆内生真菌的分离与鉴定

    Institute of Scientific and Technical Information of China (English)

    赵清梅; 余永涛; 贝盏临

    2012-01-01

    为研究苦马豆(Swainsonasalsula)中内生真菌的种属分类,对采自宁夏的苦马豆内生真菌进行分离培养和形态观察,对分离菌株的ITS序列进行扩增、测序和系统发育分析。从宁夏苦马豆植株的叶和茎中共分离出4个真菌菌株。编号分别为SS_NXB1、SS_NXF1、SS_NXG2、SS_NXA1,因植株未表现出任何病害症状,故确定其为内生真菌。根据形态特征和ITS序列,确定前3株真菌为枝顶孢属(Acremonium)真菌。因菌株SS—NXA1未产生分生孢子及GenBank数据库中缺少同源菌株的分类信息而未确定其分类地位。%This study was performed to investigate the taxonomy of fungal endophytes from ST.vainsona salsula. The fungal endophytes were isolated from S. salsula collected from Ningxia and observed under the microscope. The ITS sequences of the fungal isolates were amplified and sequenced. Analysis of molecular phylogeny based on the fungal ITS sequences was conducted to help to determine the taxonomies of fungal isolates. Four strains, SS_NXB1, SS NXF1, SS_NXG2 and SS_NXA1, were isolated from S. salsula in this report. The isolates were considered as fungal endophytes of S. salsula with no disease observed on the surface of the plant samples. The first three isolates, SS_NXB1, SS_NXF1 and SS_NXG2, were classified as Acremonium sp. based on the fungal morphology and ITS sequences. However, SS_NXA1 could not be made a taxonomic placement due to the lack of natural conidia and sufficient sequences that repre- sented in GenBank sequence databases.

  13. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment.

    Science.gov (United States)

    Lugo, Mónica A; Reinhart, Kurt O; Menoyo, Eugenia; Crespo, Esteban M; Urcelay, Carlos

    2015-02-01

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here, the root endophytes were characterized of 42 plants from an arid region of Argentina. Colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs) was related to plant functional type (PFT), family, and phylogenetic relatedness. Overall, three main findings were observed. Firstly, only moderate levels of endophyte associations were found across all taxa (e.g., most Poaceae were not colonized by endophytes despite numerous accounts of colonization by AMF and DSEs). We determined 69% of plant taxa associated with some form of root endophyte but levels were lower than other regional studies. Secondly, comparisons by PFT and phylogeny were often qualitatively similar (e.g., succulents and Portulacineae consistently lacked AMF; variation occurred among terrestrial vs. epiphytic bromeliads) and often differed from comparisons based on plant family. Thirdly, comparisons by plant family often failed to account for important variation either within families (e.g., Bromeliaceae and Poaceae) or trait conservatism among related families (i.e., Rosidae consistently lacked DSEs and Portulacineae lacked AMF). This study indicates the value of comparing numerous taxa based on PFTs and phylogenetic similarity. Overall, the results suggest an uncertain benefit of endophytes in extremely arid environments where plant traits like succulence may obviate the need to establish associations.

  14. Quorum signaling mycotoxins: A new risk strategy for bacterial biocontrol of Fusarium verticillioides and other endophytic fungal species?

    Science.gov (United States)

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. All bacteria communicate via cell-dependent signals, which...

  15. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Olsrud, Maria; Michelsen, Anders

    2010-01-01

    During the last decade, culture-independent identification tools have widened our knowledge of fungi colonizing ericaceous roots including ericoid mycorrhizal fungi. One focal interest has been to identify fungi, which simultaneously can establish ericoid and ectomycorrhiza, while knowledge about......, was studied. From each of these plants, in each of five plots, clone libraries were established using fungal specific ITS-PCR followed by cloning, PCR–RFLP and sequencing. The clone libraries were dominated by potential ericoid mycorrhizal fungi, particularly Rhizoscyphus ericae, fungi belonging...

  16. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity.

    Directory of Open Access Journals (Sweden)

    Martin Kemler

    Full Text Available The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1 nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM. We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters. Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths.

  17. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity.

    Science.gov (United States)

    Kemler, Martin; Garnas, Jeff; Wingfield, Michael J; Gryzenhout, Marieka; Pillay, Kerry-Anne; Slippers, Bernard

    2013-01-01

    The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1) nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM). We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters). Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths.

  18. Diversity of endophytic fungal community of cacao (Theobroma cacao L. and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease

    Directory of Open Access Journals (Sweden)

    2005-02-01

    Full Text Available The basidiomycete fungus Crinipellis perniciosa (Stahel Singer is the causal agent of Witches' Broom Disease of Cacao (Theobroma cacao L. which is the main factor limiting cacao production in the Americas. Pod losses of up to 90% are experienced in affected areas as evidenced by the 50% drop in production in Bahia province, Brazil following the arrival of the C. perniciosa in the area in 1989. The disease has proven particularly difficult to control and many farmers in affected areas have given up cacao cultivation. In order to evaluate the potential of endophytes as a biological control agent of this phytopathogen, the endophytic fungal community of resistant and susceptible cacao plants as well as affected branches was studied between 2001 and 2002. The fungal community was identified by morphological traits and rDNA sequencing as belonging to the genera Acremonium, Blastomyces, Botryosphaeria, Cladosporium, Colletotrichum, Cordyceps, Diaporthe, Fusarium, Geotrichum, Gibberella, Gliocladium, Lasiodiplodia, Monilochoetes, Nectria, Pestalotiopsis, Phomopsis, Pleurotus, Pseudofusarium, Rhizopycnis, Syncephalastrum, Trichoderma, Verticillium and Xylaria. These fungi were evaluated both in vitro and in vivo by their ability to inhibit C. perniciosa. Among these, some were identified as potential antagonists, but only one fungus (Gliocladium catenulatum reduced the incidence of Witches' Broom Disease in cacao seedlings to 70%.

  19. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte.

    Science.gov (United States)

    Bartholdy; Berreck, M; Haselwandter, K

    2001-03-01

    The siderophore production of various isolates of Phialocephala fortinii was assessed quantitatively as well as qualitatively in batch assays under pure culture conditions at different pH values and iron(III) concentrations. We found a distinct effect of both of these parameters on siderophore synthesis and as well as on fungal growth. In comparative analyses of two of the isolates, maximum siderophore production was found at a pH in the range of pH 4.0 to 4.5 while, under the experimental conditions employed, the optimal concentration of ferric iron was determined to be between 20-40 microg iron (III) l(-1) (0.36-0.72 microM, respectively). HPLC analysis of the culture filtrate of most of the isolates of P. fortinii revealed the excretion of ferricrocin as main hydroxamate siderophore, followed by ferrirubin and ferrichrome C. The pattern of release of these three substances proved to be dependent on pH and iron(III) concentration of the culture medium, and to be specific for each isolate under investigation.

  20. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  1. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    Science.gov (United States)

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  2. Endophytic fungi associated with cacti in Arizona.

    Science.gov (United States)

    Suryanarayanan, Trichur S; Wittlinger, Sally K; Faeth, Stanley H

    2005-05-01

    21 cactus species occurring in various localities within Arizona were screened for the presence of fungal endophytes. 900 endophyte isolates belonging to 22 fungal species were isolated. Cylindropuntia fulgida had the maximum endophyte species diversity, while C. ramosissima harboured the maximum number of endophyte isolates. Alternaria sp., Aureobasidium pullulans, and Phoma spp. were isolated from several cactus species. The diversity of the endophyte assemblages was low and no host specificity among endophytes was observed. However, the frequencies of colonization of the few endophyte species recovered were high and comparable to those reported for tropical plant hosts. Species of Colletotrichum, Phomopsis, and Phyllosticta, which are commonly isolated as endophytes from plants of more mesic habitats, were absent from these cacti.

  3. Effects of Fertilizer, Fungal Endophytes and Plant Cultivar on Performance of Insect Herbivores and Their Natural Enemies

    Science.gov (United States)

    1. Endophytic fungi are associates of most species of plants and may modify insect community structures through the production of toxic alkaloids. Fertilization is known to increase food plant quality for herbivores, but it is also conceivable that additional nitrogen could increase the productio...

  4. 内生真菌对油樟悬浮细胞培养的影响%Effects of fungal endophytes on cell suspension culture of Cinnamomum longepaniculatum

    Institute of Scientific and Technical Information of China (English)

    魏琴; 谭韵雅; 李群; 游玲; 汪超; 王玉; 廖淋

    2016-01-01

    该文研究了内生真菌YG42、YG71、YY11和YY26发酵液,对油樟悬浮细胞的生长量及挥发性代谢产物积累量的影响。结果表明:4种内生真菌对油樟悬浮细胞的生长均有抑制作用,抑制强度随发酵液添加量的增加而加强。4种内生真菌对油樟悬浮细胞挥发性代谢产物积累总量及1,8-桉叶油素、γ-叶松油烯和α-油松油醇3种油樟油组分物质积累量的影响多表现为低浓度促进高浓度抑制的趋势。其中,1%添加量的YG42和YY26及0.25%添加量的YY11对悬浮细胞总挥发性代谢产物积累的促进作用相当且最强,其积累量分别是空白组的2.00、1.95、2.01倍;0.25%添加量的YG71对1,8-桉叶油素积累的促进作用最强,其积累量为空白组的11.03倍;0.25%添加量的YG71和YY26对α-松油醇积累的促进作用相当且最强,其积累量分别为空白组的1.72和1.81倍;对于γ-松油烯的积累,在空白组中未检测到其峰值,4种真菌诱导子对γ-松油烯的产生有诱导作用,诱导的最大峰面积为0.19,诱导菌是0.25%添加量的YG71。该研究结果为充实内生菌影响香料植物挥发性代谢产物合成理论奠定了基础,也为生产上内生真菌提高油樟油中有用物质组分含量措施的采用提供了依据。%We studied the effects of fungal endophytes YG42, YG72, YY11 and YY26 on cell growth and volatile of secondary metabolites accumulation in suspension cultures of Cinnamomum longepaniculatum. The results showed that four kinds of fungal endophytes had obvious inhibitory effects on C. longepaniculatum cell growth, and the denser the fer-mentation fluid was, the stronger inhibitory effects they had. The trend of the effects that the four kinds of endophytic fungi had on the total volatile of secondary metabolites accumulation and C. longepaniculatum oil component 1,8-cineoleγ-terpinene andα-terpineol accumulation in suspension cultures of C. longepaniculatum was

  5. Hidden fungi, emergent properties: endophytes and microbiomes.

    Science.gov (United States)

    Porras-Alfaro, Andrea; Bayman, Paul

    2011-01-01

    Endophytes are microorganisms that live within plant tissues without causing symptoms of disease. They are important components of plant microbiomes. Endophytes interact with, and overlap in function with, other core microbial groups that colonize plant tissues, e.g., mycorrhizal fungi, pathogens, epiphytes, and saprotrophs. Some fungal endophytes affect plant growth and plant responses to pathogens, herbivores, and environmental change; others produce useful or interesting secondary metabolites. Here, we focus on new techniques and approaches that can provide an integrative understanding of the role of fungal endophytes in the plant microbiome. Clavicipitaceous endophytes of grasses are not considered because they have unique properties distinct from other endophytes. Hidden from view and often overlooked, endophytes are emerging as their diversity, importance for plant growth and survival, and interactions with other organisms are revealed.

  6. 2个欧美杨品种树皮内生真菌多样性及优势种群动态变化%Predominant Species Dynamic and Diversity of Fungal Endophytes in Barks of Populus × euramericana

    Institute of Scientific and Technical Information of China (English)

    李永; 朴春根; 贺伟; 常聚普; 王海明; 郭立民; 谢守江; 郭民伟

    2013-01-01

    In order to understand predominant species,seasonal dynamic and diversity of fungal endophytes in barks of Populus × euramericana cv.‘74/76' and P.× euramericana cv.‘ Zhonglin46',fungal endophytes were isolated from the barks by tissue isolation method,and identified by sequence analysis of the internal transcribed spacer and by morphological characteristics of microscopic observation.A total of 1 252 fungal endophytes were isolated from 996 bark tissues.The fungal endophytes were classified into 32 different fungal taxa belonging to 17 genera of Ascomycota.The predominant species included Alternaria alternata,Botryosphaeria dothidea,Fusarium spp.,Diaporthe spp.,among which A.alternata and B.dothidea were the most common predominant species in the barks.The predominant fungal endophytes in the bark tissue varied in different seasons.%利用组织分离法从欧美杨2品种欧美杨107杨、中林46杨中(996块组织)分离内生真菌1 252株,107杨和中林46杨分别分离出645株和607株.利用形态特征和分子生物学方法鉴定为17个属、32个分类单元,包括担子菌2个分类单元,子囊菌30个分类单元均为子囊菌.在基于ITS构建的系统进代树上、2杨树品种内生菌均形成5个稳定的分支,包括在囊菌纲2个分支,包括散囊菌纲、类壳菌纲等.2个杨树品种内生真菌优势种群包括链格孢、葡萄座腔菌、镰孢菌、间座壳菌等,其中链格孢、葡萄座腔菌是最为常见的优势种群,2品种内生菌的优势种群会随季节变化而发生变化.

  7. The role of dark septate endophytic fungal isolates in the accumulation of cesium by chinese cabbage and tomato plants under contaminated environments.

    Directory of Open Access Journals (Sweden)

    Ousmane Diene

    Full Text Available Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, the preservation of the food chain from radionuclides contamination has become of crucial importance. The potential of Dark septate endophytic fungi in the management of Cs accumulation in plants under contaminated environments was investigated using Chinese cabbage and tomato plants. Four endophytic fungal isolates of different species, i.e. Pseudosigmoidea ibarakiensis I.4-2-1, Veronaeopsis simplex Y34, Helminthosporium velutinum 41-1, and as yet unidentified taxon 312-6 were tested In Vitro in two levels of Cs (5ppm and 10ppm. On the plant growth, the inoculation of the selected DSEs to both Chinese cabbage and tomato resulted in an increased biomass of up to 82% and 122%, respectively compared to control (non-inoculated plants. With regards to the Cs accumulation, it varied with the host plant considered. In Chinese cabbage, DSEs inoculation caused higher Cs accumulation in above ground plant parts, whereas in tomato, Cs accumulation decreased significantly with three of the isolates tested, i.e., V. simplex Y34, P. ibarakiensis I.4-2-1, and the as yet unidentified taxon 312-6 suggesting low-risk transfer on the above ground plants parts as a result of high and negative plant reactions rather than high and positive reactions as it is the case with Chinese cabbage. These results suggested that DSEs can be recommended for use with Chinese cabbage to enhance phytoremediation of Cs in surrounding contaminated areas. With tomato, DSEs can be recommended for decreasing the accumulation of Cs in plants under contaminated environments.

  8. The role of dark septate endophytic fungal isolates in the accumulation of cesium by chinese cabbage and tomato plants under contaminated environments.

    Science.gov (United States)

    Diene, Ousmane; Sakagami, Nobuo; Narisawa, Kazuhiko

    2014-01-01

    Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, the preservation of the food chain from radionuclides contamination has become of crucial importance. The potential of Dark septate endophytic fungi in the management of Cs accumulation in plants under contaminated environments was investigated using Chinese cabbage and tomato plants. Four endophytic fungal isolates of different species, i.e. Pseudosigmoidea ibarakiensis I.4-2-1, Veronaeopsis simplex Y34, Helminthosporium velutinum 41-1, and as yet unidentified taxon 312-6 were tested In Vitro in two levels of Cs (5ppm and 10ppm). On the plant growth, the inoculation of the selected DSEs to both Chinese cabbage and tomato resulted in an increased biomass of up to 82% and 122%, respectively compared to control (non-inoculated) plants. With regards to the Cs accumulation, it varied with the host plant considered. In Chinese cabbage, DSEs inoculation caused higher Cs accumulation in above ground plant parts, whereas in tomato, Cs accumulation decreased significantly with three of the isolates tested, i.e., V. simplex Y34, P. ibarakiensis I.4-2-1, and the as yet unidentified taxon 312-6 suggesting low-risk transfer on the above ground plants parts as a result of high and negative plant reactions rather than high and positive reactions as it is the case with Chinese cabbage. These results suggested that DSEs can be recommended for use with Chinese cabbage to enhance phytoremediation of Cs in surrounding contaminated areas. With tomato, DSEs can be recommended for decreasing the accumulation of Cs in plants under contaminated environments.

  9. Bioactive deoxypreussomerins and dimeric naphthoquinones from Diospyros ehretioides fruits: deoxypreussomerins may not be plant metabolites but may be from fungal epiphytes or endophytes.

    Science.gov (United States)

    Prajoubklang, Areerat; Sirithunyalug, Busaban; Charoenchai, Panarat; Suvannakad, Rapheephat; Sriubolmas, Nongluksna; Piyamongkol, Sirivipa; Kongsaeree, Palangpon; Kittakoop, Prasat

    2005-10-01

    Deoxypreussomerin derivatives, palmarumycins JC1 (1) and JC2 (2), and two dimeric naphthoquinones, isodiospyrin (3) and its new derivative isodiospyrol A (4), were isolated from dried fruits of Diospyros ehretioides. Structures of the isolated compounds were elucidated by spectroscopic analyses. Palmarumycins were not found in the extract of freshly collected fruits; however, they were present in dried fruit extract. The absence of palmarumycins in fresh fruits of D. ehretioides, together with the chemotaxonomic point of view, we proposed that palmarumycins JC1 (1) and JC2 (2) are more likely to be fungal metabolites, i.e., endophytes or epiphytes. The isolation of palmarumycins 1 and 2 from dried D. ehretioides fruits could be reproducible; both plant samples collected in the years 2002 and 2004 provided the same result, and, therefore, symbiont fungal strains should be specific to the plant host, D. ehretioides, and they can grow on the fruits during drying the sample. Palmarumycin JC1 (1) did not exhibit antimalarial, antifungal, antimycobacterial, and cytotoxic activities. Palmarumycin JC2 (2) exhibited antimalarial (IC50 4.5 microg/ml), antifungal (IC50 12.5 microg/ml), antimycobacterial (MIC 6.25 microg/ml), and cytotoxic (IC50 11.0 microg/ml for NCI-H187 cell line) activities. In our bioassay systems, isodiospyrin (3) did not exhibit antimycobacterial, antifungal, antimalarial, and cytotoxic activities. Isodiospyrol A (4) exhibited antimalarial (IC50 2.7 microg/ml) and antimycobacterial (MIC 50 microg/ml) activities, but was inactive towards Candida albicans. Compound 4 also exhibited cytotoxicity against BC cells (IC50 12.3 microg/ml), but not towards KB and Vero cell lines.

  10. Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis.

    Science.gov (United States)

    Hirose, Dai; Matsuoka, Shunsuke; Osono, Takashi

    2013-01-01

    Fungal assemblages in live, newly shed and partly decomposed leaves of Camellia japonica were investigated with a clone library analysis to assess the fungal diversity and succession in a subtropical forest in southern Japan. Partly decomposed leaves were divided into bleached and adjacent nonbleached portions to estimate the fungi functionally associated with lignin decomposition in the bleached portions, with an emphasis on Coccomyces sinensis (Rhytismataceae, Ascomycota). From 144 cloned 28S ribosomal DNA (rDNA) sequences, 48 operational taxonomic units (OTUs) were defined based on a sequence similarity threshold of 98%. Forty-one (85%) of the 48 OTUs belonged to the Ascomycota and seven OTUs (15%) to the Basidiomycota. Twenty-six OTUs (54%) were detected only once (singletons). The number of OTUs and the diversity indices of the fungal assemblages in the different leaves were in this order: live leaves > newly shed leaves > bleached portions > nonbleached portions of partly decomposed leaves. The fungal assemblages were similar in newly shed leaves and the bleached portions of partly decomposed leaves. Ligninolytic fungi of the genera Coccomyces, Lophodermium and Xylaria were frequently detected in the bleached portions. OTU3, identified as Coccomyces sinensis, was detected in live and newly shed leaves and the bleached portions of partly decomposed leaves, suggesting that this fungus latently infects live leaves, persists after leaf fall and takes part in lignin decomposition.

  11. Predominant Species Dynamic and Diversity of Fungal Endophytes in Barks of Two Populus Cultivars%两种杨树树皮内生真菌多样性及优势种群动态变化

    Institute of Scientific and Technical Information of China (English)

    李永; 朴春根; 郭利民; 常聚普; 王海明; 贺伟; 谢守江; 郭民伟

    2013-01-01

    In order to understand the predominant species dynamic and diversity of fungal endophytes in barks of Populus × euramericana cv.Robusta 94 and triploid of P.tomentosa,the fungal endophytes were isolated from barks of P.× euramericana cv.Robusta 94 and triploid of P.tomentosa by tissue isolation,and identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations.A total of 1 175 fungal endophytes were isolated from 996 bark tissues.The fungal endophytes were classified into 35fungal taxa belonging to 15 genera,including 1 species of Basidiomycota and 34 taxa of Ascomycota.And Alternaria alternata,Botryosphaeria dothidea,Fusarium spp.,and Diaporthe conorum were the predominant species of fungal endophytes in barks of P.× euramericana cv.Robusta 94 and triploid of P.tomentosa,while A.alternata and B.dothidea were the most common predominant species in the barks of the two cultivars.The variation of predominant fungal endophytes of two poplar species in different seasons was detected.%为了解健杨94(转基因抗虫杨94)、三倍体毛白杨2个杨树品种干部树皮内生真菌区系及其优势种群的季节变化情况,本研究利用组织分离法从2个杨树品种996块组织中分离内生真菌1 175株,健杨94和三倍体毛白杨分别分离612、563株.利用形态特征和分子生物学方法鉴定为15个属、35个分类单元,包括担子菌1个分类单元,子囊菌34个分类单元.2个杨树品种内生真菌优势种群包括链格孢、葡萄座腔菌、镰孢属真菌、间座壳属真菌等,其中,仅有链格孢、葡萄座腔菌和桑砖红镰孢是两品种共有的优势种群种类,而且优势种群会随季节变化而变化.在两品种的内生真菌中,链格孢、葡萄座腔菌是最为常见的优势种群.

  12. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol.

    Science.gov (United States)

    El-Bondkly, Ahmed M A; El-Gendy, Mervat M A

    2012-02-01

    Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 10(6) spores ml(-1), average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds(-1)) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l(-1)). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.

  13. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Science.gov (United States)

    The fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae were investigated to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stems using conidial suspensions resulted in endophytic colonization of ca...

  14. Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7, 12 dimethyl benz(a)anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague Dawley rats.

    Science.gov (United States)

    Pandi, M; Manikandan, R; Muthumary, J

    2010-01-01

    Breast cancer is the second most prevalent cancer worldwide and their incidence increases gradually. Taxol (paclitaxel), a potent anticancer drug, is naturally isolated from the bark of the Pacific yew. Taxol is widely used in the treatment of ovarian, lung and breast cancer. The increased demand for taxol, coupled with its limited availability from the protected Pacific yew, has had researchers scrambling for alternate sources. The purpose of the present study is to investigate chemopreventive effect of fungal taxol derived from a novel endophytic fungus Botryodiplodia theobromae Pat., isolated from a medicinal plant Morinda citrifolia Linn. The fungal taxol is found to be active against the 7, 12 dimethyl benz(a)anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague dawley rats. The enzymic and non-enzymic antioxidants i.e. superoxide dismutase (SOD), catalase (CAT), glutatione peroxidase (GPx), glutatione-S-transferase (GST), reduced glutathione (GSH), vitamin C and vitamin E were evaluated in control and experimental groups. Lipid peroxides levels (LPO) were also tested. Histological analysis of breast tissue was analyzed by haematoxylin and eosin staining to assess the cytoprotective role of fungal taxol active against breast cancer. Immunohistochemical analyses were also performed to evaluate the effect of fungal taxol on the inflammatory marker such as Cyclooxygenase-2 (COX-2) in control and experimental groups. The results showed that the fungal taxol significantly suppresses the DMBA-induced breast cancer in Sprague dawley rats.

  15. Mycorrhizal-like interaction between gametophytes and young sporophytes of the fern Dryopteris muenchii (Filicales) and its fungal endophyte.

    Science.gov (United States)

    Reyes-Jaramillo, Irma; Camargo-Ricalde, Sara Lucía; Aquiahuatl-Ramos, Ma de los Angeles

    2008-09-01

    The morphology of a Glomus-like fungus-host interaction in chlorophyllous gametophytes and young apogamic sporophytes of Dryopteris muenchii A.R. Sm. was studied from ferns cultivated in laboratory, using soil as substrate. An aseptate fungus colonized the gametophytes' tissue through the rhizoids, developing vesicles. The fungus penetrated the young sporophytes primary roots by developing appressoria. It spread forming inter- and intra-cellular hyphae through the epidermis and the outermost cortical cell layers, where it formed vesicles, hyphal coils-like and arbuscules. The fungus hyphae never colonized the gametophyte-sporophyte cellular junction. The fungal structures observed on D. muenchii during this study, are rather similar to those reported for the plant host-arbuscular mycorrhizal fungus (AMF) interaction, where the AMF described belonged to Phylum Glomeromycota. Therefore, this study is a contribution to the scarce knowledgement of the association between AMF and chlorophyllous gametophytes and young apogamic sporophytes of ferns.

  16. Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense)

    OpenAIRE

    Lehtonen, Päivi T; Helander, Marjo; Shahid A Siddiqui; Lehto, Kirsi; Saikkonen, Kari

    2006-01-01

    We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants ...

  17. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China.

    Science.gov (United States)

    Lingfei, Li; Anna, Yang; Zhiwei, Zhao

    2005-11-01

    Arbuscular mycorrhizal and dark septate endophytic fungal colonization in a grassland in Kunming, southwest China, was investigated monthly over one year. All plant roots surveyed were co-colonized by arbuscular mycorrhizal and dark septate endophytic fungi in this grassland. Both arbuscular mycorrhizal and dark septate endophytic fungal colonization fluctuated significantly throughout the year, and their seasonal patterns were different in each plant species. The relationships between environmental (climatic and edaphic) factors and fungal colonization were also studied. Correlation analysis demonstrated that arbuscular mycorrhizal colonization was significantly correlative with environmental factors (rainfall, sunlight hours, soil P, etc.), but dark septate endophytic fungal colonization was only correlative with relative humidity and sunlight hours.

  18. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  19. 小花棘豆(Oxytropis glabra)内生真菌固体培养条件优化研究%Optimization of Solid Culture Conditions of Fungal Endophytes Isolated from Oxytropis glabra

    Institute of Scientific and Technical Information of China (English)

    何珊; 卢萍; 包睿媛

    2012-01-01

    从采自内蒙古鄂尔多斯市的小花棘豆中分离得到内生真菌,研究菌株OW 5.3的优化固体培养条件.在不同碳源、初始pH条件下,检测内生真菌的生长速度,并利用气相色谱技术测定内生真菌菌丝体中苦马豆素的含量.结果显示:菌株OW 5.3最适起始pH为7.0;以葡萄糖为碳源时生长速度较快;以燕麦片为碳源时,菌丝体的苦马豆素含量最高.%Fungal endophytes isolated from Oxytropis glabra of Ordos,Inner Mongolia were cultured and optimizing culture conditions of the strain OW5. 3 in solid medium were studied. Detecting the growth speeds and determining the swainsonine producing levels of the fungal endophytes by gas chromatography at different culture conditions,such as different carbon sources and different initial pH values showed the following results:when the initial pH value was at 7. 0,the growth speed was the fastest and the content of swainsonine in hyphae was the highest;The growth speed was faster when the carbon source was glucose;The level of swainsonine in hyphae was highest when the medium was oatmeal.

  20. Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem.

    Science.gov (United States)

    Kusari, Parijat; Kusari, Souvik; Spiteller, Michael; Kayser, Oliver

    2014-10-01

    Radula marginata and Cannabis sativa L. are two phylogenetically unrelated plant species containing structurally similar secondary metabolites like cannabinoids. The major objective of our work was the isolation, identification, biocontrol efficacies, biofilm forming potential and anti-biofilm ability of endophytic microbial community of the liverwort R. marginata, as compared to bacterial endophytic isolates harbored in C. sativa plants. A total of 15 endophytic fungal and 4 endophytic bacterial isolates were identified, including the presence of a bacterial endosymbiont within an endophytic fungal isolate. The endosymbiont was visible only when the fungus containing it was challenged with two phytopathogens Botrytis cinerea and Trichothecium roseum, highlighting a tripartite microbe-microbe interaction and biocontrol potency of endophytes under biotic stress. We also observed sixteen types of endophytic fungal-pathogen and twelve types of endophytic bacterial-pathogen interactions coupled to varying degree of growth inhibitions of either the pathogen or endophyte or both. This showed the magnitude of biocontrol efficacies of endophytes in aiding plant fitness benefits under different media (environmental) conditions. Additionally, it was ecologically noteworthy to find the presence of similar endophytic bacterial genera in both Radula and Cannabis plants, which exhibited similar functional traits like biofilm formation and general anti-biofilm activities. Thus far, our work underlines the biocontrol potency and defensive functional traits (in terms of antagonism and biofilm formation) of endophytes harbored in liverwort R. marginata as compared to the endophytic community of phylogenetically unrelated but phytochemically similar plant C. sativa.

  1. 披针叶黄华中2株蠕形分生孢子内生真菌的鉴定%Identification of Two Helminthosporioid Fungal Endophytes from Thermopsis lanceolata

    Institute of Scientific and Technical Information of China (English)

    孙大林; 赵清梅; 余永涛; 罗永红; 朱海; 吴勇; 郭浩满; 吴秀枝; 李明月

    2015-01-01

    对披针叶黄华(Thermopsis lanceolata)中分离的编号为SP01﹑RM02的2株蠕形分生孢子内生真菌进行种属分类鉴定.观察真菌的形态,提取真菌DNA,扩增并测定其ITS﹑GA PDH序列,构建系统发育树,结合形态特征和遗传进化分析结果,并对其进行种属分类. 结果表明,SP01菌株的形态特征与凸脐孢属(Exserohilum)中的E.rostratum最为相似,与E.rostratum的遗传进化关系最为密切;RM02菌株的形态特征与弯孢属(Curvularia)中C.spicifera、C.australiensis最为相似,与C.spicifera的遗传进化关系最为密切. 确定披针叶黄华中分离的SP01﹑RM02分别为E.rostratum和C.spicifera.%This study was conducted to confirm the species of two helminthosporioid fungal endophytes, SP01 and RM02, isolated from wild Thermopsis lanceolata.The two isolates were observed under the light microscope respectively.The DNA of the fungi were extracted for amplifying the fungal ITS and GAPDH sequences that were sequenced subsequently.Homology comparison was conducted and NJ phylogenetic trees were established based on the sequences of the fungi.Two fungal endo-phytes were classified according to the fungal morphology and phylogenetic analysis.The results indicated that SP01 was simi-lar to Exserohilum rostratum.Homology and phylogenetic analyses also showed SP01 to be more closely related to E.rostra-tum.RM02 was more similar to some fungi of Curvularia genus, such as C.spicifera and C.australiensis.Homology and phylogenetic analyses also showed the isolate to be most closely related to C.spicifera.In addition to above results, the two isolates, SP01 and RM02, were classified as E.rostratum and C.spicifera respectively.

  2. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Science.gov (United States)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  3. Isolation and characterization of endophytic fungi from Camptotheca acuminata.

    Science.gov (United States)

    Ding, Xiaowei; Liu, Kaihui; Deng, Baiwan; Chen, Wenqiang; Li, Wenjun; Liu, Feihu

    2013-10-01

    In this study, a total of 161 endophytic fungal isolates from Camptotheca acuminata were obtained and classified to 16 taxa according to morphological and molecular analysis. These taxa were composed of 2 frequent genera (Botryosphaeria and Fusarium) and 14 infrequent groups such as Xylaria, Diaporthe, Rhizopus, Epicoccum, and Preussia, demonstrating that fungal endophytes in C. acuminata were highly abundant and diverse. Antimicrobial activity screening using filter-paper diffusion method showed that 47.6 % of the tested isolates had antimicrobial activity against at least one of the test microorganisms. Screening of fungal endophyte-derived camptothecin analogues by TLC and LC-MS/MS³ demonstrated that a strain Botryosphaeria dothidea, X-4 could produce 9-methoxycamptothecin (9-MCPT) when cultured in Sabouraud's dextrose broth for 12 days under shake flask and bench-scale fermention conditions. This work showed that the fungal endophytes from C. acuminata could be an alternative source for the production of 9-MCPT and other natural antimicrobial compounds.

  4. Muscodor yucatenensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba

    Science.gov (United States)

    During a study on the fungal endophytic associations with some trees of the dry tropical forest of El Eden Ecological Reserve located in the northeast of the Yucatan Peninsula of Mexico, a new fungal species was isolated as an endophyte of a tree named chakah, chachah or huk´up by indigenous mayas. ...

  5. Recent advances and issues on locoweed-fungal endophyte%疯草内生真菌研究现状与存在问题

    Institute of Scientific and Technical Information of China (English)

    周启武; 白松; 路浩; 赵宝玉; 陈基萍

    2012-01-01

    Locoweed is the most seriously poisonous plant which threats the sustainable development of pasture husbandry throughout the world. As has been confirmed, the main constituent of the locoweed which causes livestock poisoning is the indolizidine alkaloid-swainsonine. Swainsonine has significant phar- macological activity of antibacterial, antiviral, anti-tumor, and improves immune system in addition to its toxicity. Most of the attentions of the research on SW concentrates on the producing mechanisms, toxicol- ogy and pharmacological activities of the SW. Rresearchers domestic and foreign has started to focus on the locoweed endophyte biodiversity, the relationship between the locoweed endophytic fungi and its produc- tion of swainsonine, as well as the mechanism of stress resistance since the end of 20th century to revealing the production mechanism of the toxic substances, the relationship between the endophytic fungi and the stress resistance, especially the interaction between the toxic substances and the endophytic fungi. Swain- sonine-producing endophytic fungus has been isolated from a variety of locoweeds. And it has been found that there existed a close relationship between locoweed endophytic fungi and locoweed. This paper reviewed the main content and the present situation of the researches about locoweed endophytic fungi and made discussion about a number of issues in the field.%疯草是世界范围内危害草原畜牧业可持续发展最严重的毒草。引起家畜疯草中毒的主要成分是吲哚里西啶生物碱——苦马豆素,苦马豆素除具有毒性外,还具有显著的抗菌、抗病毒、抗肿瘤、增强免疫等药理活性,有关苦马豆素产生机制、毒理和药理活性研究已成为人们研究的热点。为了揭示疯草毒性物质产生机制、疯草内生真菌与疯草抗逆性,特别是疯草毒性物质与疯草内生真菌互作关系等诸多问题,国内外科技工作者从20世纪末就开始致力于

  6. 产自两株海洋真菌的三种鞘脂类的结构测定%Structural Determination of Three Sphingolipids from Two Marine-derived Mangrove Endophytic Fungal Strains

    Institute of Scientific and Technical Information of China (English)

    朱峰; 陈光英; 林永成

    2007-01-01

    A set of three sphingolipids, N-2'-hydroxypalmitoyl-1-O-β-D-glucopyranosyl-9-methyl-4E, 8E-sphingadiene (A), N-2'-hydroxyl-3'E-octadecenoyl-1-O-β-D-glucopyranosyl-9-methyl-4E, 8E- sphingadiene (B) and N-palmitoyldihydrosphingosine (C), were isolated from two marine-derived mangrove endophytic fungal strains (strains No. 1924 and 3893) from the South China Sea. Their structures were elucidated by 2D NMR and FABMS methods. It is the first time that these sphingolipids were separated and obtained from marine-derived mangrove endophytic fungus from the South China Sea.%3种鞘脂类代谢产物N-2'-羟基十六碳酰基-1-O-β-D-吡喃葡萄糖基-9-甲基-4E,8E-十八碳二烯-1-醇(A)、N-2'-羟基-3'E-十八碳烯酰基-1-O-β-D-吡喃葡萄糖基-9-甲基-4E, 8E-十八碳二烯-1-醇(B)和N-十六碳酰基二氢鞘氨醇(C)分别产生于来源于中国南海的 2 株海洋真菌(菌株编号为1924和3893),通过2D NMR、MS 等方法测定了它们的结构.这是首次从南海红树内生真菌分离得到的 3 种鞘脂类代谢产物.

  7. Further investigation of equine fescue oedema induced by Mediterranean tall fescue (Lolium arundinaceum) infected with selected fungal endophytes (Epichloë coenophiala).

    Science.gov (United States)

    Finch, S C; Munday, J S; Sutherland, B L; Vlaming, J B; Fletcher, L R

    2017-11-01

    AIMS To determine if equine fescue oedema (EFO) induced by grazing Mediterranean-type tall fescue (Lolium arundinaceum) infected with selected endophytes (Epichloë coenophiala) could be prevented by treatment with the corticosteroid, methylprednisolone, and anti-histamine, cetirizine, and to determine concentrations of lolines, specifically N-acetyl norloline (NANL), in grasses grazed by horses that did and did not develop EFO. METHODS Four horses were grazed on AR542-infected Mediterranean tall fescue pasture (from Day 0) for 7 days prior to being subjected to euthanasia. Two of these horses were treated with 250 mg methylprednisolone and 300 mg cetirizine hydrochloride every 12 hours orally from Days 0-7. Two more horses grazed meadow fescue (Festuca pratensis) infected with the naturally-occurring, common endophyte (Epichloë uncinata) for 21 days before euthanasia. All horses were observed closely for signs of EFO, and blood samples were taken daily for measurement of concentrations of total protein (TP) in serum. Following euthanasia post-mortem examinations were conducted on all horses. Pasture samples of meadow fescue and Mediterranean tall fescue from the current study, and endophyte-infected Mediterranean tall fescue from a previous study that were associated with EFO, were analysed for concentrations of lolines using gas chromatography. RESULTS By Day 7, the treated and untreated horses grazing AR542-infected Mediterranean tall fescue all developed signs of EFO, and concentrations of TP in serum of all horses were Mediterranean tall fescue. In the sample of meadow fescue, concentrations of total lolines and N-acetyl norloline (NANL) were 2,402 and 543 mg/kg, respectively. In the three samples of Mediterranean tall fescue associated with EFO, concentrations of total lolines were 308, 629 and 679 mg/kg, and concentrations of NANL were 308, 614 and 305 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE In horses grazing Mediterranean tall fescue infected

  8. Endophytes: exploitation as a tool in plant protection

    Directory of Open Access Journals (Sweden)

    Devanushi Dutta

    2014-10-01

    Full Text Available Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. They are the plant-associated microbes that form symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop performance. Many fungal endophytes produce secondary metabolites such as auxin, gibberellin etc that helps in growth and development of the host plant. Some of these compounds are antibiotics having antifungal, antibacterial and insecticidal properties, which strongly inhibit the growth of other microorganisms, including plant pathogens. This article reviews the endophyte isolated from different plants, mode of endophytic infection and benefits derived by the host plant as a result of endophytism.

  9. Alfalfa endophytes as novel sources of antimicrobial compounds that inhibit the growth of human and plant pathogens

    Science.gov (United States)

    Fungal endophytes may contribute to plant health and disease protection, yet little is known about their various roles in alfalfa. Also, endophytes from several plant species produce novel antimicrobial compounds that may be useful clinically. We isolated endophytic fungi from over 50 samples from s...

  10. Herbicidal activity of fungal endophyte HL-1 against weeds and its safety to crops%内生真菌HL-1的除草活性及对作物的安全性

    Institute of Scientific and Technical Information of China (English)

    程亮; 郭青云

    2015-01-01

    Strain HL-1 isolated from diseased Cirsium setosum ( Willd. ) MB. leaves in Hualong, Qinghai province, was evaluated for its herbicidal activity to target weeds and its safety to crops. The disease incidences of Galium aparine L. , Chenopodium album L. , Malva crispa L. , and Polygonum lapathifolium L. applied with HL-1 filtrate were 98. 10%, 90. 20%, 56. 67%, and 66. 67%, the disease indexes were 98. 01, 88. 33, 56. 71, and 47. 46, and the fresh weight re-ductions were 69. 31%, 71. 83%, 65. 54%, 56. 10%, respectively. The filtrate was safe to wheat and broad bean and slightly pathogenic to rapeseed, pea and highland barly. The strain was identified as fungal endophyte by cultural character-istic and 16SrDNA sequencing. These results indicated that fungal endophyte HL-1 could be a potential microbial herbicide for the control of G. aparine L. and C. album L. dominating in wheat and broad bean fields.%从青海省化隆县发病刺儿菜叶片上分离获得菌株HL-1,其发酵滤液对供试阔叶杂草猪殃殃、藜、冬葵、酸模叶蓼的发病率分别为98.10%、90.20%、56.67%和66.67%,病情指数为98.01、88.33、56.71和47.46;鲜质量防效达到69.31%、71.83%、65.54%和56.10%,表现出较好的除草活性。作物安全性试验结果显示,其发酵滤液对小麦、蚕豆安全,对油菜、豌豆和青稞有轻微影响。对该菌株的培养特性和16S rDNA基因序列进行分析,确定其为内生真菌。内生真菌菌株HL-1可以在以猪殃殃和藜为优势杂草的春小麦和蚕豆田中作为微生物源除草剂使用。

  11. Highly specific separation for antitumor Spiropreussione A from endophytic fungal [Preussia sp.] fermentation broth by one-step macroporous resins AB-8 treatment.

    Science.gov (United States)

    Li, Bing; Wang, Chunlan; Chen, Xiaomei; Lyu, Jing; Guo, Shunxing

    2013-11-01

    It is attractive to pharmaceutical works to seek useful material from endophytic fungi. Spiropreussione A (SA) which is isolated from endophytic fungus Preussia sp. is a novel anti-tumor product. Since previous preparation method cannot provide enough SA, and considering the large volume of broth and low concentration of the target product, macroporous resins were introduced to separate SA in our study. Four kinds of macroporous resins ADS-8, H103, X-5 and AB-8 were applied for separating SA, and AB-8 was selected as the optimal resin according to its performances through static and dynamic measurements. HPLC was used to analyze SA in all samples. Under optimal conditions, the specific SA adsorption capacity of AB-8 resin was 15.23mg/g, and the purity increased by 2.5-fold from 35.0% in broth to 90.0% in eluent with 70.0% recovery yield by a one-step treatment. Conclusively, our study achieved the goal of separating and purifying SA in high efficiency, and offered references for further fermentation works. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Plants and endophytes: equal partners in secondary metabolite production?

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2015-07-01

    Well known plant production systems should be re-evaluated due to findings that the interesting metabolite might actually be produced by microbes intimately associated with the plant, so-called endophytes. Endophytes can be bacteria or fungi and they are characterized usually by the feature that they do not cause any harm to the host. Indeed, in some cases, such as mycorrhizal fungi or other growth promoting endophytes, they can be beneficial for the plant. Here some examples are reviewed where the host plant and/or endophyte metabolism can be induced by the other partner. Also, partial or complete biosynthesis pathways for plant secondary metabolites can be attributed to such endophytes. In other cases the host plant is able to metabolize substances from fungal origin. The question of the natural role of such metabolic changes for the endophyte will be briefly touched. Finally, the consequences for the use of plant cultures for secondary metabolite production is discussed.

  13. Micofilas, endófitos fúngicos y alcaloides en poblaciones de Melica stuckertii (Poaceae del Centro de Argentina Mycophyllas, fungal endophytes and alkaloids in populations of Melica stuckertii (Poaceae from central Argentina

    Directory of Open Access Journals (Sweden)

    Cecilia A. Benavente

    2008-12-01

    Full Text Available Los vástagos de Poaceae pueden establecer con Ascomycetes (Balansieae asociaciones simbióticas endofíticas denominadas micofilas. Las gramíneas no pueden sintetizar alcaloides en ausencia del endófito fúngico. Melica stuckertii Hack. es una Poaceae nativa de amplia distribución en el país. El objetivo de este trabajo fue estudiar tres poblaciones de M. stuckertii de San Luis (Argentina, considerando: la presencia y frecuencia de endófitos, la producción de alcaloides en la asociación y el simbionte fúngico. A partir de cariopsis se obtuvieron plántulas axénicas de las que se aisló el simbionte fúngico en medio sólido, siendo cultivado para su determinación taxonómica. Además, las plántulas axénicas se utilizaron para la determinación de alcaloides in planta y el aislamiento de endófito en medio líquido para la posterior detección de alcaloides in fungus. También se examinó la producción de alcaloides «en plantas a campo». Melica stuckertii resultó asociada formando micofilas con una frecuencia de colonización del 100 % en las tres poblaciones estudiadas. Las colonias obtenidas fueron blancoalgodonosas y de crecimiento lento, y el endófito aislado se determinó como Neotyphodium sp. Los alcaloides fueron detectados sólo en la simbiosis (plántulas axénicas y plantas a campo; así, su biosíntesis en M. stuckertii podría ser sinérgica.Poaceae stems are usually associated with Ascomycetes (Balansieae forming symbiotic associations named mycophyllas. Grasses can not produce alkaloids by itself instead they have to be associated to fungal symbiont to yield them. Melica stuckertii is a native and widespread grass. The aims of this work were to study three M. stuckertii population from San Luis province (Argentina taking into account frequency of colonization and alkaloids production. Fungal endophytes were isolated from axenic plantlets obtained from cariopses, and then they were cultured in solid potatoe glucose

  14. Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants.

    Science.gov (United States)

    González-Teuber, Marcia; Jiménez-Alemán, Guillermo H; Boland, Wilhelm

    2014-10-01

    In defensive ant-plant interactions myrmecophytic plants express reduced chemical defense in their leaves to protect themselves from pathogens, and it seems that mutualistic partners are required to make up for this lack of defensive function. Previously, we reported that mutualistic ants confer plants of Acacia hindsii protection from pathogens, and that the protection is given by the ant-associated bacteria. Here, we examined whether foliar endophytic fungi may potentially act as a new partner, in addition to mutualistic ants and their bacteria inhabitants, involved in the protection from pathogens in myrmecophytic Acacia plants. Fungal endophytes were isolated from the asymptomatic leaves of A. hindsii plants for further molecular identification of 18S rRNA gene. Inhibitory effects of fungal endophytes were tested against Pseudomonas plant pathogens. Our findings support a potential role of fungal endophytes in pathogen the protection mechanisms against pathogens in myrmecophytic plants and provide the evidence of novel fungal endophytes capable of biosynthesizing bioactive metabolites.

  15. Alkaloid toxins in endophyte-infected grasses.

    Science.gov (United States)

    Powell, R G; Petroski, R J

    1992-01-01

    Grasses infected with clavicipitaceous fungi have been associated with a variety of diseases including classical ergotism in humans and animals, fescue foot and summer syndrome in cattle, and rye-grass staggers in sheep. During the last decade it has been recognized that many of these fungal infections are endophytic; a fungal endophyte is a fungus that grows entirely within the host plant. Inspection of field collections and herbarium specimens has revealed that such infections are widespread in grasses. The chemistry associated with these grass-fungal interactions has proved to be interesting and complex, as each grass-fungal pair results in a unique "fingerprint" of various alkaloids, of which some are highly toxic to herbivores. In many cases the presence of an endophyte appears to benefit the plant by increasing drought resistance, or by increasing resistance to attack by insects, thus improving the overall survivability of the grass. This review will focus on alkaloids that have been reported in endophyte-infected grasses.

  16. A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography%高效薄层色谱法快速测定由药用植物内生真菌产生的紫杉醇

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Taxol is an important anticancer drug used widely in the clinical field. In this study, some endophytic fungi were isolated from selected medicinal plants, and were screened for their potential in the production of taxol, using a rapid separation technique of high performance thin layer chromatography ( HPTLC ). Of the 20 screened fungi, only 13 fungal species produced taxol in the artificial culture medium.The results of HPTLC showed that the 13 fungal species had identical ultraviolet (UV) characteristics, positive reactivity with a spray reagent, yielding a blue spot, which turned to dark gray after 24 hours, and had Rf values identical to that of the authentic taxol. The amount of taxol was also quantified by comparing the peak area and the peak height of the fungal samples with those of authentic taxol.

  17. Fungal symbionts of grasses: evolutionary insights and agricultural potential.

    Science.gov (United States)

    Scott, B; Schardl, C

    1993-08-01

    Some filamentous fungal endophytes confer on their grass hosts important biological properties including resistance to grazing herbivores and resistance to nematodes and some fungal pathogens, as well as drought tolerance and greater field persistence. The production of alkaloids toxic to grazing animals is an undesirable aspect of the association in agronomic situations. Consequently, genetic strategies are being pursued to manipulate fungal endophytes and their hosts for agricultural benefit.

  18. Molecular phylogeny, diversity and bioprospecting of endophytic fungi associated with wild ethnomedicinal North American plant Echinacea purpurea (Asteraceae)

    Science.gov (United States)

    The endophytic fungal community associated with the wild ethnomedicinal North American plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 ...

  19. 内生真菌对羽茅抗病性的影响%Effect of different species of endophytes on fungal disease resistance of Achnatherum si-biricum

    Institute of Scientific and Technical Information of China (English)

    牛毅; 高远; 李隔萍; 任安芝; 高玉葆

    2016-01-01

    为探讨不同种类内生真菌对宿主植物羽茅(Achnatherum sibiricum)抗病性的影响,以感染不同内生真菌的天然禾草羽茅为实验材料,进行了体外纯培养的内生真菌、感染内生真菌的离体叶片和在体叶片对3种植物病原真菌的抑菌实验。结果表明:体外纯培养条件下,分离自羽茅的内生真菌Neotyphodium sibiricum、Neotyphodium gansuensis和Epichloë gansuensis对新月弯孢霉(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)等3种病原真菌都具有抑制作用,其中N. sibiricum的抑制作用最强,对新月弯孢霉、根腐离蠕孢和枝孢霉的抑菌率分别为47.8%、40.1%、39.4%;内生真菌培养滤液也可以有效抑制这3种病原真菌的孢子萌发,其中N. gansuensis的抑制作用最强,新月弯孢、根腐离蠕孢和枝孢霉的孢子萌发率分别为9.8%、8.7%、8.5%。对于离体叶片, N. sibiricum和N. gansuensis感染可以有效降低叶片受3种病原真菌侵染后的病斑数和孢子浓度,其中N. sibiricum对根腐离蠕孢的抑制作用显著高于N. gansuensis,而E. gansuensis只降低新月弯孢和枝孢霉侵染的病斑数以及枝孢霉侵染的孢子浓度。在体条件下,内生真菌均可以显著降低病原真菌侵染羽茅后的病斑数、病斑长度和孢子浓度,其中E. gansuensis的抑菌作用趋于最弱,而N. sibiricum的抑菌作用趋于最强。%Aims Achnatherum sibiricum, a native grass species, is widely distributed in the steppe of Nei Mongol, China. In this study, three endophytic fungi, i.e., Neotyphodium sibiricum, N. gansuensis and Epichloë gansuensis, were isolated from A. sibiricum and examined the effect of the endophytes on the resistance of A. sibiricum to fungal disease. Methods Three fungi: Curvularia lunata, Bipolaris sorokiniana and Cladosporium sp. were chosen as the target pathogens. Three experiments were carried out to evaluate the effects of endophytic

  20. The community of needle endophytes reflects the current physiological state of Norway spruce.

    Science.gov (United States)

    Rajala, Tiina; Velmala, Sannakajsa M; Vesala, Risto; Smolander, Aino; Pennanen, Taina

    2014-03-01

    This study investigated fungal endophytes in the needles of Norway spruce (Picea abies) cuttings in relation to host tree growth. We also determined the prevalence of endophytes in needles incubated for six months. The cuttings originated from clonal origins showing slow- and fast-growth in long-term field trials but the heritable differences in growth rate were not yet detected among the studied cutting. Endophytes were isolated from surface-sterilized needles with culture-free DNA techniques. No significant differences were observed between endophyte communities of slow- and fast-growing clonal origins. However, the endophyte community correlated with the current growth rate of cuttings suggesting that endophytes reflect short- rather than long-term performance of a host. The concentration of condensed tannins was similar in slow- and fast-growing clonal origins but it showed a negative relationship with endophyte species richness, implying that these secondary compounds may play an important role in spruce tolerance against fungal infections. More than a third of endophyte species were detected in both fresh and decomposing needles, indicating that many needle endophytes are facultative saprotrophs. Several potentially pathogenic fungal species were also found within the community of saprotrophic endophytes.

  1. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile.

    Science.gov (United States)

    González-Teuber, M; Vilo, C; Bascuñán-Godoy, L

    2017-03-01

    Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants (Chenopodium quinoa) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium, Phoma and Fusarium, which are common endophytes reported in plant roots. This study shows that roots of C. quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  3. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni)

    OpenAIRE

    Yougen Wu; Sisay Girmay; Vitor Martins da Silva; Brian Perry; Xinwen Hu; Tan, Ghee T.

    2015-01-01

    We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and i...

  4. Population Variance and Diversity of Endophytic Fungi in Soybean (Glycine max (L) Merril)/

    OpenAIRE

    JM Dalal; NS Kulkarni

    2014-01-01

    Present investigation was carried out to study variation in endophytic fungal population colonizing soybean. Endophytic population was assessed at different growth stages of soybean (C.V. JS-335) viz., vegetative and reproductive stages. A 182 (28.88 %) isolates were obtained from vegetative growth stages (V1-V5) and 448 (71.11 %) from reproductive growth stages. As plant grows the endophytic population increases progressively however, at the onset of reproductive stages viz., R1-R8 the endop...

  5. Endophytic fungi in Scots pine needles: Spatial variation and consequences of simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Helander, M.L.; Neuvonen, S. (Turku Univ., Turku (F)); Sieber, T.N.; Petrini, O. (Swiss Federal Inst. of Technology, Zurich (Switzerland))

    1994-01-01

    Within- and among-tree variation in assemblages of endophytic fungi in Scots pine (Pinus sylvestris) needles were studied in a subarctic area where background pollution values are low; the effects of tree density and prolonged simulated acid rain on the occurrence of endophytic fungi were investigated. The needle endophyte most frequently isolated was Cenangium ferruginosum, accounting for 64% of all fungal individuals, followed by Cyclaneusma minus (12% of all individuals). Old needles were colonized more frequently by endophytes than young ones. In young needles the colonization by endophytes increased during the summer, whereas in old ones no seasonal variation was detected. Endophyte colonization was positively correlated with stand density and was reduced on pines treated with spring water acidified with either sulphuric acid alone or in combination with nitric acid. In contrast, nitric acid alone did not affect endophyte colonization. 37 refs., 2 figs., 5 tabs.

  6. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica.

    Science.gov (United States)

    Zhang, Tao; Zhang, Yu-Qin; Liu, Hong-Yu; Wei, Yu-Zhen; Li, Hai-Long; Su, Jing; Zhao, Li-Xun; Yu, Li-Yan

    2013-04-01

    Endophytic fungi associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica, that is, the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata, were studied by culture-dependent method. A total of 128 endophytic fungi were isolated from 1329 tissue segments of 14 samples. The colonization rate of endophytic fungi in three bryophytes species were 12.3%, 12.1%, and 8.7%, respectively. These isolates were identified to 21 taxa, with 15 Ascomycota, 5 Basidiomycota, and 1 unidentified fungus, based on morphological characteristics and sequence analyses of ITS region and D1/D2 domain. The dominant fungal endophyte was Hyaloscyphaceae sp. in B. hatcheri, Rhizoscyphus sp. in C. aciphyllum, and one unidentified fungus in S. uncinata; and their relative frequencies were 33.3%, 32.1%, and 80.0%, respectively. Furthermore, different Shannon-Weiner diversity indices (0.91-1.99) for endophytic fungi and low endophytic fungal composition similarities (0.19-0.40) were found in three bryophyte species. Growth temperature tests indicated that 21 taxa belong to psychrophiles (9), psychrotrophs (11), and mesophile (1). The results herein demonstrate that the Antarctic bryophytes are an interesting source of fungal endophytes and the endophytic fungal composition is different among the bryophyte species, and suggest that these fungal endophytes are adapted to cold stress in Antarctica.

  7. Phosphate Solubilizing and Antifungal Activity of Root Endophyte Isolated from Shorea leprosula Miq. and Shoreal selanica (DC Blume

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2015-12-01

    Full Text Available Fungal endophytes are fungi that lives within plant tissues without causing apparent disease. It is also suggested that these fungi have ability to enhance plant growth and plant resistancy against pest and disease. This research is a preliminary study about root fungal endophytes in dipterocarp since there are lack research concerning about this study focus. We examined root fungal endophyte isolated from seedling of Shorea leprosula and Shorea selanica taken from Dramaga Experimental Forest, Bogor. Furthermore, we also tried to find out the fungal potential ability to solubilize phosphate and suppres fungal pathogen by in vitro assay. Surface sterilization method was used to isolated fungal endophytes from root tissues. Trichoderma spirale, Velsalceae sp., Melanconiela ellisii, Chaetosphaeria callimorpha, and Trichoderma asperellum were isolated during this study. These fungi appear to have specific association between fungal species and host plant, but no evidence of fungal order-level specificiation in S. leprosula and S. selanica. In vitro test also suggested that root fungal endophyte Trichoderma spirale and Melanconiella elisii have potential ability to solubilize inorganic phosphate. In addition, this result also present that root fungal endophyte T. spirale and T. asperellum have the potential to inhibit pathogen fungi Fusarium sp.

  8. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  9. Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds

    Directory of Open Access Journals (Sweden)

    Meenu Katoch

    2014-10-01

    Full Text Available This study aimed to screen the endophytic fungal species of ethano-medicinal plant Bacopa monnieri (L. Pennell for their ability to produce antimicrobial substances against Bacillus subtilis, Pseudomonas aeroginosa, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Candida albicans. Endophytes were also screened for their ability to produce amylase, cellulase, protease and lipase to evaluate their ecological role within the host plant. Twenty-six endophytes were isolated and seventeen were identified. All the isolated endophytes exhibited amylolytic activity. Lipolytic, cellulolytic, proteolytic activity was shown by 98, 28 and 31% isolates, respectively. Similarly, all the endophytes (100% exhibited significant antimicrobial activity against K. pneumonia, while seventeen endophytes (89.5% were active against S. aureus. Fourteen endophytes (78.9% showed significant antimicrobial activity against B. subtilis and C. albicans. Eleven (57.8%, nine (50%, four (21% endophytes were active against S. typhimurium, E. coli and P. aeruginosa, respectively.

  10. Biosynthesis of archetypal plant self-defensive oxylipins by an endophytic fungus residing in mangrove embryos.

    Science.gov (United States)

    Ding, Ling; Peschel, Gundela; Hertweck, Christian

    2012-12-21

    A tree's travel companion: a fungal endophyte (Fusarium incarnatum) isolated from a viviparous propagule (embryo) of a mangrove tree produces typical plant defense oxylipins. Stable-isotope labeling experiments revealed that the endophyte biosynthesizes coriolic acid, didehydrocoriolic acid, and an epoxy fatty acid derived from linoleic acid by a process involving Δ(15)-desaturation and 13-lipoxygenation.

  11. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves.

    Science.gov (United States)

    Khan, Abdur Rahim; Ullah, Ihsan; Waqas, Muhammad; Shahzad, Raheem; Hong, Sung-Jun; Park, Gun-Seok; Jung, Byung Kwon; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    Fungal endophytes have been characterized as producers of phytohormones and potent promoters of plant growth. In this study, two fungal endophytes, Fusarium tricinctum RSF-4L and Alternaria alternata RSF-6L, were isolated from the leaves of Solanum nigrum. Culture filtrates (CFs) from each isolate were initially screened for indole compounds, and assayed for their ability to promote the growth of Dongjin rice plants. Nearly all plant growth attributes examined (i.e., chlorophyll content, root-shoot length, and biomass production) were significantly enhanced upon treatment with fungal CFs. Subsequently, gas chromatography/mass spectrometry analyses were utilized to confirm the presence of phytohormones in the CF of each fungal endophytic isolate. These analyses revealed that RSF-4L and RSF-6L produced 54 and 30 µg/mL indole acetic acid, respectively, within their respective cultures. These findings suggest that the endophytes isolated in this study synthesize bioactive compounds that could play important roles in promoting plant growth.

  12. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  13. Terpenoids from Endophytic Fungi

    OpenAIRE

    Jucimar Jorgeane de Souza; Ivo José Curcino Vieira; Edson Rodrigues-Filho; Raimundo Braz-Filho

    2011-01-01

    This work reviews the production of terpenoids by endophytic fungi and their biological activities, in period of 2006 to 2010. Sixty five sesquiterpenes, 45 diterpenes, five meroterpenes and 12 other terpenes, amounting to 127 terpenoids were isolated from endophytic fungi.

  14. Terpenoids from endophytic fungi.

    Science.gov (United States)

    de Souza, Jucimar Jorgeane; Vieira, Ivo José Curcino; Rodrigues-Filho, Edson; Braz-Filho, Raimundo

    2011-12-19

    This work reviews the production of terpenoids by endophytic fungi and their biological activities, in period of 2006 to 2010. Sixty five sesquiterpenes, 45 diterpenes, five meroterpenes and 12 other terpenes, amounting to 127 terpenoids were isolated from endophytic fungi.

  15. 内生真菌-禾草共生体内生物碱的种类及其生理生态作用%TYPES OF ALKALOIDS IN FUNGAL ENDOPHYTE-GRASS SYMBIONT AND THEIR ECOPHYSIOLOGICAL ROLE

    Institute of Scientific and Technical Information of China (English)

    周芳; 高玉葆

    2003-01-01

    In this review, we summarized recent studies on alkaloids in endophyte - grass symbiont, including detection and classification, effects of environmental factors on concentration of the alkaloids, and their ecophysiological role to the plant host. Tab 1, Ref 49

  16. Endophyte communities vary in the needles of Norway spruce clones.

    Science.gov (United States)

    Rajala, Tiina; Velmala, Sannakajsa M; Tuomivirta, Tero; Haapanen, Matti; Müller, Michael; Pennanen, Taina

    2013-03-01

    Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33% of samples. The most frequently observed fungus (66%) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.

  17. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Kandalepas, Demetra; Blum, Michael J; Van Bael, Sunshine A

    2015-01-01

    Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora - the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.

  18. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill.

    Directory of Open Access Journals (Sweden)

    Demetra Kandalepas

    Full Text Available Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH oil spill on endophyte diversity and abundance in Spartina alterniflora - the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.

  19. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes.

    Science.gov (United States)

    Hardoim, Pablo R; van Overbeek, Leonard S; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-09-01

    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

  20. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    Science.gov (United States)

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  1. Study on Secondary Metabolites of Endophytic Fungal Strain Botryosphaeria sp.MHF of Maytenus hookeri%云南美登木内生真菌Botryosphaeria sp. MHF次生代谢产物研究

    Institute of Scientific and Technical Information of China (English)

    袁琳; 沈放; 马银海; 陈晓妮; 黄兴南; 顾雪竹; 康文艺

    2012-01-01

    目的:对云南美登木内生真菌Botryosphaeria sp.MHF的化学成分进行研究.方法:采用反相、正相等多种柱色谱法进行分离;应用波谱技术进行结构鉴定.结果:从云南美登木内生真菌B.sp.MHF的发酵物中分离得到8个化合物:分别是麦角甾-5-烯-3-醇(1)、麦角甾-4,6,8,22-四烯-3-酮(2)、麦角甾-3β,5α,9α-三羟基-7,22-二烯-6-酮(3)、麦角甾-7,22-二烯-3β,5α,6β-三醇(4)、麦角甾-5α,8α-环二氧-6,22-二烯-3-醇(5)、fusaproliferin (6)、脑苷脂C(7)和3,4,5-三羟基-四氢萘酮(8).结论:所有化合物均为首次从以Murashige-Skoog培养基培养的该菌株中分离得到.%Objective: To study the secondary metabolites of endophytic fungal strain Botryosphaeria sp. MHF of Maytenus hookeri. Method; The chemical constituents were isolated by column chromatography such as normal phase or reverse phase etc. The structures were identified by spectroscopic analysis. Result; Eight compounds were obtained and elucidated as 22E, 24R-ergosta-5-en-3β-ol (1) , 22E, 24R-ergosta-4, 6, 8, 22-tetraen-3-one (2) , 22E, 24R-3B, 5a, 9α-trihydroxy-ergosta-7, 22-diene-6-one (3) , 22E, 24R-ergosta-7, 22-diene-3β, 5a, 6β-triol (4), 22E, 24R-5α, 8α-epidioxyergosta-6, 22-dien-3β-ol (5), fusaproliferin (6), cerebroside C (7) and 3, 4, 5-trihydroxyl-tetralone (8). Conclusion; All these compounds were isolated from this strain cultivated on Murashige-Skoog culture medium for the first time.

  2. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses.

    Science.gov (United States)

    Clay, Keith; Schardl, Christopher

    2002-10-01

    Over the past 20 yr much has been learned about a unique symbiotic interaction between fungal endophytes and grasses. The fungi (Clavicipitaceae, Ascomycota) grow intercellularly and systemically in aboveground plant parts. Vertically transmitted asexual endophytes forming asymptomatic infections of cool-season grasses have been repeatedly derived from sexual species that abort host inflorescences. The phylogenetic distribution of seed-transmitted endophytes is strongly suggestive of cocladogenesis with their hosts. Molecular evidence indicates that many seed-transmitted endophytes are interspecific hybrids. Superinfection may result in hyphal fusion and parasexual recombination. Most endophytes produce one or more alkaloid classes that likely play some role in defending the host plant against pests. Hybridization may have led to the proliferation of alkaloid-production genes among asexual endophytes, favoring hybrids. The ergot alkaloid ergovaline, lolitrems, and lolines are produced by only a single sexual species, Epichloë festucae, but they are common in seed-transmitted endophytes, suggesting that E. festucae contributed genes for their synthesis. Asexual hybrids may also be favored by the counteracting of the accumulation of deleterious mutations (Muller's rachet). Endophyte infection can provide other benefits, such as enhanced drought tolerance, photosynthetic rate, and growth. Estimates of infection frequency have revealed variable levels of infection with especially high prevalence in the subfamily Pooideae. Longitudinal studies suggest that the prevalence of seed-transmitted endophytes can increase rapidly over time. In field experiments, infected tall fescue suppressed other grasses and forbs relative to uninfected fescue and supported lower consumer populations. Unlike other widespread plant/microbial symbioses based on the acquisition of mineral resources, grass/endophyte associations are based primarily on protection of the host from biotic and

  3. Antimicrobial drimane sesquiterpenes and their effect on endophyte communities in the medical tree Warburgia ugandensis

    Directory of Open Access Journals (Sweden)

    Sigrid eDrage

    2014-02-01

    Full Text Available Metabolite profiles (GC–MS, drimane sesquiterpenes, sugars and sugar alcohols, were compared with bacterial and fungal endophyte communities (T-RFLP, DNA clones, qPCR in leaves and roots of the pepper bark tree, Warburgia ugandensis (Canellaceae. Ten individuals each were assessed from two locations east and west of the Great Rift Valley, Kenya, Africa, which differed in humidity and vegetation, closed forest versus open savannah. Despite organ- and partially site-specific variation of drimane sesquiterpenes, no clear effects on bacterial and fungal endophyte communities could be detected. The former were dominated by gram-negative Gammaproteobacteria, Pseudomonadaceae and Enterobacteriaceae, as well as gram-positive Firmicutes; the fungal endophyte communities were more diverse but no specific groups dominated. Despite initial expectations, the endophyte community of the pepper bark tree did not differ from other trees that much.

  4. Seed and Root Endophytic Fungi in a Range Expanding and a Related Plant Species

    Directory of Open Access Journals (Sweden)

    Stefan Geisen

    2017-08-01

    Full Text Available Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic microbes. We collected seeds and soil of the range-expanding Centaurea stoebe and the congeneric Centaurea jacea from three populations growing in Slovenia (native range of both Centaurea species and the Netherlands (expanded range of C. stoebe, native range of C. jacea. We isolated and identified endophytic fungi directly from seeds, as well as from roots of the plants grown in Slovenian, Dutch or sterilized soil to compare fungal endophyte composition. Furthermore, we investigated whether C. stoebe hosts a reduced community composition of endophytes in the expanded range due to release from plant-species specific fungi while endophyte communities in C. jacea in both ranges are similar. We cultivated 46 unique and phylogenetically diverse endophytes. A majority of the seed endophytes resembled potential pathogens, while most root endophytes were not likely to be pathogenic. Only one endophyte was found in both roots and seeds, but was isolated from different plant species. Unexpectedly, seed endophyte diversity of southern C. stoebe populations was lower than of populations from the north, while the seed endophyte community composition of northern C. stoebe populations was significantly different southern C. stoebe as well as northern and southern C. jacea populations. Root endophyte diversity was considerably lower in C. stoebe than in C. jacea independent of plant and soil origin, but this difference disappeared when plants were grown in sterile soils. We conclude that the community composition of fungal endophytes not only differs between related plant species but also between populations of plants that expand their range compared to their native

  5. Mycoleptodiscus terrestris: An Endophyte Turned Latent Pathogen of Eurasian Watermilfoil

    Science.gov (United States)

    2009-03-01

    toxins, climate, competition , repeated mechanical har- vesting, and insect herbivory, but none have adequately explained these declines (Smith and Barko...80:374–380. Faeth, S. H., and K. E. Hammon. 1997a. Fungal endophytes in oak trees: Experimental analyses of interactions with leafminers. Ecology 78... Pinus taeda seedling. In Proceedings of the Arkansas Fescue Toxicosis Conference 140:29–34. Rodriguez, R. J., and R. S. Redman. 1997. Fungal life-styles

  6. Functional and molecular characterization of genes involved in antagonisms between two maize endophytes, Fusarium verticillioides and Sarocladium zeae

    Science.gov (United States)

    Fusarium verticillioides (Fv) is a prevalent seed-borne maize endophyte capable of causing severe kernel rot and fumonisin mycotoxin contamination. Within maize kernels, Fv is primarily confined to the pedicel, while another seed-borne fungal endophyte, Sarocladium zeae (Sz), is observed in embryos....

  7. A Battle in a Kernel: Molecular Exploration of Antagonisms between Two Maize Endophytes, Fusarium verticillioides and Acremonium zeae

    Science.gov (United States)

    Fusarium verticillioides (Fv) is a prevalent seed-borne maize endophyte capable of causing severe kernel rot and fumonisin mycotoxin contamination. Within maize kernels, Fv is primarily confined to the pedicel, while another seed-borne fungal endophyte, Acremonium zeae (Az), is observed in embryos. ...

  8. Cytosporones O, P and Q from an endophytic Cytospora sp

    DEFF Research Database (Denmark)

    Abreu, L.M.; Phipps, Richard Kerry; Pfenning, L.H.;

    2010-01-01

    Cytosporones O, P and Q, together with the known compounds cytosporones B, C, D, E and dothiorelones A, 13, C. and H were isolated from the ascomycete fungus Cytospora sp. during a chemotaxonomic study Of fungal endophytes belonging to the related genera Cytospora and Phomopsis from Brazil...

  9. Dark septate endophytic pleosporalean genera from semiarid areas

    NARCIS (Netherlands)

    Knapp, D.G.; Kovács, G.M.; Zajta, E.; Groenwald, J.Z.; Crous, P.W.

    2015-01-01

    Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages b

  10. Dark septate endophytic pleosporalean genera from semiarid areas

    NARCIS (Netherlands)

    Knapp, D G; Kovács, G M; Zajta, E; Groenewald, J Z; Crous, P W

    2015-01-01

    Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages

  11. Fungal symbionts alter plant drought response.

    Science.gov (United States)

    Worchel, Elise R; Giauque, Hannah E; Kivlin, Stephanie N

    2013-04-01

    Grassland productivity is often primarily limited by water availability, and therefore, grasslands may be especially sensitive to climate change. Fungal symbionts can mediate plant drought response by enhancing drought tolerance and avoidance, but these effects have not been quantified across grass species. We performed a factorial meta-analysis of previously published studies to determine how arbuscular mycorrhizal (AM) fungi and endophytic fungal symbionts affect growth of grasses under drought. We then examined how the effect of fungal symbionts on plant growth was influenced by biotic (plant photosynthetic pathway) and abiotic (level of drought) factors. We also measured the phylogenetic signal of fungal symbionts on grass growth under control and drought conditions. Under drought conditions, grasses colonized by AM fungi grew larger than those without mycorrhizal symbionts. The increased growth of grasses conferred from fungal symbionts was greatest at the lowest soil moisture levels. Furthermore, under both drought and control conditions, C3 grasses colonized by AM fungi grew larger than C3 grasses without symbionts, but the biomass of C4 grasses was not affected by AM fungi. Endophytes did not increase plant biomass overall under any treatment. However, there was a phylogenetically conserved increase in plant biomass in grasses colonized by endophytes. Grasses and their fungal symbionts seem to interact within a context-dependent symbiosis, varying with biotic and abiotic conditions. Because plant-fungal symbioses significantly alter plant drought response, including these responses could improve our ability to predict grassland functioning under global change.

  12. Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation.

    Science.gov (United States)

    Adame-Álvarez, Rosa-María; Mendiola-Soto, Jaime; Heil, Martin

    2014-06-01

    Endophytic fungi colonize plants without causing symptoms of disease and can enhance the resistance of their host to pathogens. We cultivated 53 fungal strains from wild lima bean (Phaseolus lunatus) and investigated their effects on pathogens using in vitro assays and experiments in planta. Most strains were annotated as Rhizopus, Fusarium, Penicillium, Cochliobolus, and Artomyces spp. by the sequence of their 18S rRNA gene. In vitro confrontation assays between endophytes and three pathogens (the bacteria Pseudomonas syringae pv. syringae and Enterobacter sp. strain FCB1, and the fungus Colletotrichum lindemuthianum) revealed strong and mainly symmetric reciprocal effects: endophyte and pathogen either mutually inhibited (mainly Enterobacter FCB1 and Colletotrichum) or facilitated (P. syringae) the growth of each other. In planta, the endophytes had a strong inhibitory effect on P. syringae when they colonized the plant before the bacterium, whereas infection was facilitated when P. syringae colonized the plant before the endophyte. Infection with Enterobacter FCB1 was facilitated when the bacterium colonized the plant before or on the same day with the endophyte, but not when the endophyte was present before the bacterium. The order of arrival determines whether fungal endophytes enhance plant resistance to bacterial pathogens or facilitate disease.

  13. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  14. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  15. New endophytic Toxicocladosporium species from cacti in Brazil, and description of Neocladosporium gen. nov.

    NARCIS (Netherlands)

    Bezerra, Jadson D.P.; Sandoval-Denis, Marcelo; Paiva, Laura M.; Silva, Gladstone A.; Groenewald, Johannes Z.; Souza-Motta, Cristina M.; Crous, Pedro W.

    2017-01-01

    Brazil harbours a unique ecosystem, the Caatinga, which belongs to the tropical dry forest biome. This region has an important diversity of organisms, and recently several new fungal species have been described from different hosts and substrates within it. During a survey of fungal endophyte

  16. ANTIMICROBIAL ACTIVITY AND BIODEGRADING ENZYMES OF ENDOPHYTIC FUNGI FROM EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    K. Ananda et al

    2012-08-01

    Full Text Available A total of thirty endophytic fungi were isolated from leaves and twigs of Eucalyptus globulus and Eucalyptus citriodora. Among thirty endophytic fungal isolates, four (P3MT1, P3MT2, OP4MT2 and P7ML2 are consistently producing compounds which are inhibiting Pseudomonas aeroginosa, Mycobacterium smegmatis and Candida albicans even after 10 generations tested under dual culture, well diffusion and disc diffusion methods. P3MT1 and OP4MT2 are inhibiting even a filamentous fungi Penicillium chrysogenum. The fungal isolate OP4MT2 showed highest zone of inhibition (20 mm against Penicillium chrysogenum among two test fungi. The crude ethyl acetate extract of P3MT1 isolate showed highest zone of inhibition against Candida albicans (19 mm by both well and disc diffusion method when compared to other fungal isolates. Another four fungal isolates (P3ML1, P6MT1, P5MT1 and P2MT1 from the same set of thirty isolates showed positive for the secretion of amylase, protease and laccase enzymes in agar plate method. Two endophytic fungal isolates (P6MT1 & P2MT1 among thirty are able to oxidize guaiacol indicating the presence of Lignin degrading enzymes. Four fungal isolates indicated presence of laccase enzymes by qualitative test were able to decolorize both methylene blue and aniline blue (synthetic dyes in solid and liquid media. The quantitative estimation of percent decolorization of synthetic dyes by spectrophotometric method confirmed more than 90 % reduction in color is made possible by the endophytic fungi. All these fungal strains with good bioactivity are of worth studying in detail for the purification and characterization of the active compounds and enzymes.

  17. Bioprospecting Endophytic Fungi and Their Metabolites from Medicinal Tree Aegle marmelos in Western Ghats, India.

    Science.gov (United States)

    Mani, Vellingiri Manon; Soundari, Arockiamjeyasundar Parimala Gnana; Karthiyaini, Damodharan; Preeth, Kathirvel

    2015-09-01

    The increasing emergence of lead drugs for the resistance produced by the pathogenic strains and arrival of new diseases have initiated the need for searching novel metabolites with best anticancer and antimicrobial properties than the existing one. With this view, the investigation was conducted for the isolation, identification, and biological evaluation of potential endophytic fungi of Aegle marmelos, a medicinal tree used for more than three decades, for curing various disorders. A total of 169 endophytic fungal strains obtained from sampling and among those 67 were pigmented strains. Upon antagonistic screening, five endophytic fungal strains exhibited antagonistic potentiality by inhibiting the pathogens. These five potent strains were characterized at molecular level by sequencing the amplified internal transcribed spacer (ITS) 1 and ITS 4 regions of rDNA and they were grouped under order Pleosporales, Eurotiales, and Capnodiales. The metabolites from the respective strains were produced in fungal culturing media and extracted using polar solvents. Further, the extracts of five endophytes manifested antimicrobial activity against tested clinical pathogens and Alternaria alternata (FC39BY), Al. citrimacularis (FC8ABr), and Curvularia australiensis (FC2AP) exhibited significant antimicrobial profile against 9 of 12 tested pathogens, showing broad spectrum activity. The antioxidant levels of all the five endophytes revealed the highest activity at least concentrations, and major activity was unveiled by the members of order Pleosporales FC2AP and FC8ABr. This research explains the value of endophytic fungal extracts and its significance of antimicrobial and antioxidant properties.

  18. Endophyte-mediated interactions between cauliflower, the herbivore Spodoptera litura, and the ectoparasitoid Bracon hebetor.

    Science.gov (United States)

    Kaur, Tamanreet; Singh, Bahaderjeet; Kaur, Amarjeet; Kaur, Sanehdeep

    2015-10-01

    Fungal endosymbionts in plants may influence interactions among plants, herbivores and their parasitoids through the production of secondary metabolites. We used a lepidopteran pest and its generalist parasitoid to test the effect of endophyte-infected plants on a third trophic level. Endophytic fungi, Aspergillus flavus and Aspergillus niger, isolated from Acacia arabica, were used to infect cauliflower plants. We found that the presence of the endophyte in the plants significantly extended the development period of Spodoptera litura (Fab.) larvae. Feeding of the host on endophyte-infected plants further adversely affected the development and performance of its parasitoid, Bracon hebetor (Say). A negative impact was also recorded for longevity and fecundity of endophyte-naive parasitoid females due to the parasitization of host larvae fed on endophyte-infected plants. The presence of endophytes in the diet of the host larvae significantly prolonged the development of the parasitoid. A strong detrimental effect was also recorded for larval survival and emergence of parasitoid adults. The longevity and parasitism rate of female wasps were reduced significantly due to the ingestion of endophyte-infected cauliflower plants by S. litura larvae. Overall, we found that both endophytic fungi had a negative impact on the parasitoid.

  19. Terpenoids from Endophytic Fungi

    Directory of Open Access Journals (Sweden)

    Jucimar Jorgeane de Souza

    2011-12-01

    Full Text Available This work reviews the production of terpenoids by endophytic fungi and their biological activities, in period of 2006 to 2010. Sixty five sesquiterpenes, 45 diterpenes, five meroterpenes and 12 other terpenes, amounting to 127 terpenoids were isolated from endophytic fungi.

  20. Endophytic fungi reduce leaf-cutting ant damage to seedlings.

    Science.gov (United States)

    Bittleston, L S; Brockmann, F; Wcislo, W; Van Bael, S A

    2011-02-23

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (E(high)) or low (E(low)) densities of endophytes. The E(high) seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the E(low) treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from E(low) relative to E(high) seedlings and had a tendency to recruit more ants to E(low) plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities.

  1. Ungulate saliva inhibits a grass-endophyte mutualism.

    Science.gov (United States)

    Tanentzap, Andrew J; Vicari, Mark; Bazely, Dawn R

    2014-07-01

    Fungal endophytes modify plant-herbivore interactions by producing toxic alkaloids that deter herbivory. However, studies have neglected the direct effects herbivores may have on endophytes. Antifungal properties and signalling effectors in herbivore saliva suggest that evolutionary pressures may select for animals that mitigate the effects of endophyte-produced alkaloids. Here, we tested whether saliva of moose (Alces alces) and European reindeer (Rangifer tarandus) reduced hyphal elongation and production of ergot alkaloids by the foliar endophyte Epichloë festucae associated with the globally distributed red fescue Festuca rubra. Both moose and reindeer saliva reduced the growth of isolated endophyte hyphae when compared with a treatment of distilled water. Induction of the highly toxic alkaloid ergovaline was also inhibited in plants from the core of F. rubra's distribution when treated with moose saliva following simulated grazing. In genotypes from the southern limit of the species' distribution, ergovaline was constitutively expressed, as predicted where growth is environmentally limited. Our results now present the first evidence, to our knowledge, that ungulate saliva can combat plant defences produced by a grass-endophyte mutualism.

  2. ENDOPHYTIC FUNGI FROM JATROPHA CURCUS: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2013-04-01

    Full Text Available Fungal endophytes are ubiquitously reported from the living tissues of healthy plant parts from every host studied so far. These microbes attributed significantly in upraising the caliber of the host to counteract against the different stresses and herbivores, and also some times to improve the host fitness. This study presenting here the endophytic mycoflora of Jatropha curcus, which remain less explored. A total of eighteen species of fungi were isolated from leaf, stem, and roots of Jatropha curcus. The root was heavily colonized by the genera like Alternaria, Cladosporium, and Aspergillus spp. The leaf tissues however showed somewhat greater diversity of endophytic colonization. Drechslera, Curvularia, Bipolaris, Alternaria, and Aspergillus sp. were dominant in to the leaf tissues with strong presence of an unidentified genus. The species richness as well as frequency of colonization of endophytic fungi was more pronounced in the leaf tissues rather than the root and stem. This study reaffirms the fact that endophytes are host and tissues specific. In this regard, the endophytic fungi received in this study, may represent a unique source of one or more of the interesting and useful bioactive compounds similar to those of vinca alkaloid group.

  3. Characterization of an endophytic bacterial community associated with Eucalyptus spp.

    Science.gov (United States)

    Procópio, R E L; Araújo, W L; Maccheroni, W; Azevedo, J L

    2009-11-24

    Endophytic bacteria were isolated from stems of Eucalyptus spp (Eucalyptus citriodora, E. grandis, E. urophylla, E. camaldulensis, E. torelliana, E. pellita, and a hybrid of E. grandis and E. urophylla) cultivated at two sites; they were characterized by RAPD and amplified rDNA restriction analysis (ARDRA). Endophytic bacteria were more frequently isolated from E. grandis and E. pellita. The 76 isolates were identified by 16S rDNA sequencing as Erwinia/Pantoea (45%), Agrobacterium sp (21%), Curtobacterium sp (9%), Brevibacillus sp (8%), Pseudomonas sp (8%), Acinetobacter sp (4%), Burkholderia cepacia (2.6%), and Lactococcus lactis (2.6%). Genetic characterization of these endophytic bacteria isolates showed at least eight ARDRA haplotypes. The genetic diversity of 32 Erwinia/Pantoea and 16 Agrobacterium sp isolates was assessed with the RAPD technique. There was a high level of genetic polymorphism among all the isolates and there was positive correlation between the clusters and the geographic origin of the strains. These endophytic bacteria were further analyzed for in vitro interaction with endophytic fungi from Eucalyptus spp. We found that metabolites secreted by Erwinia/Pantoea and B. cepacia isolates had an inhibitory growth effect on some endophytic fungi, suggesting that these metabolites play a role in bacterial-fungal interactions inside the host plant. Apparently, these bacteria could have an important role in plant development; in the future they may be useful for biological control of diseases and plant growth promotion, as well as for the production of new metabolites and enzymes.

  4. Fungal Sinusitis

    Science.gov (United States)

    ... Marketplace Find an ENT Doctor Near You Fungal Sinusitis Fungal Sinusitis Patient Health Information News media interested ... sinusitis results. There Are Four Types Of Fungal Sinusitis: Mycetoma Fungal Sinusitis produces clumps of spores, a " ...

  5. Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis Li.

    Science.gov (United States)

    Liu, Y-H; Hu, X-P; Li, W; Cao, X-Y; Yang, H-R; Lin, S-T; Xu, C-B; Liu, S-X; Li, C-F

    2016-05-13

    Endophytes from Cephalotaxus hainanensis Li, an important source of anti-leukemia drugs, have not been widely explored. In this study, 265 endophytic fungal isolates from C. hainanensis Li were screened for antimicrobial activities against tilapia, banana, rice, and rape and for antitumor activities against human leukemia cell lines (K562, NB4, and HL-60). Diversity was also analyzed. The results showed that 17.7% of the endophytic fungi had antimicrobial activities against at least three different test microbes, and activity against Fusarium oxysporum RKY102 was the highest at 15.8%. Cytotoxicity against at least one tumor cell line tested was observed in 18.5% of the endophytic fungi; with the highest value of 10.6% against K562. The endophytic fungal strains also showed relatively high activities against K562, NB4, and HL-60 while relatively fewer strains were cytotoxic against the human hepatic Hep-G2 and colon LoVo cancer cell lines. Thirty endophytic fungal strains showed both high antimicrobial and antitumor activities. Moreover, the analyses of the diversity of the 30 highly active strains showed they belonged to 20 species from 14 genera, and this is the first report of endophytic fungi Albonectria rigidiuscula, Colletotrichum magnisporum, and Nemania diffusa being isolated from Cephalotaxus plants. These findings suggest that natural antibacterial products for humans and tilapia; antifungal compounds for rice, rape, and banana; and antitumor compounds for leukemia therapy could be isolated from fungal strains derived from C. hainanensis Li.

  6. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays

    Directory of Open Access Journals (Sweden)

    ASHWINI KEDAR

    2014-11-01

    Full Text Available Kedar A, Rathod D, Yadav A, Agarkar G, Rai M. 2014. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience 6: 132-139. Fungal endophytes are reported as rich sources of valuable secondary metabolites and could be used as bio-fertilizers. In the present study, we report growth promotion potential of two Phoma species isolated from Tinospora cordifolia and Calotropis procera on maize. The fungal endophytes enhanced growth in inoculated maize plants compared to non-inoculated plants. The main aim of this work was to assess the growth promotion activity of endophytic Phoma species on maize isolated from T. cordifolia and C. procera.

  7. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn.

    Science.gov (United States)

    Zhang, Huawei; Ying, Chen; Tang, Yifei

    2014-09-01

    Anti-microbial properties of 21 endophytic fungal strains from Hypericum perforatum Linn. were evaluated against three human pathogens, Staphyloccocus aureus, Escherichia coli and Rhodotorula glutinis, and two phytopathogens, Rhizoctonia cerealis and Pyricularia grisea. The results indicated that the ethyl acetate extracts of endophytic fermentation broth had stronger anti-microbial activities than their fermentation broth. And the inhibitory effect of the endophytic extracts on human pathogens was better than those on phytopathogens. Among these endophytic fungi, strains GYLQ-10, GYLQ-24 and GYLQ-22 respectively showed the strongest activities against S. aureu, E. coli, R. glutinis. GYLQ-14 and GYLQ-22 exhibited the most pronounced effect on P. Grisea while both GYLQ-06 and GYLQ-08 had the strongest anti-microbial activities against R. cerealis. Till now, this study is the first report on the isolation of endophytic fungi from H. perforatum Linn. and their anti-microbial evaluation.

  8. Evaluation of antimicrobial activities of extracts of endophytic fungi from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2012-06-01

    Full Text Available The endophytic extracts of 11 fungi associated with asympomatic Artemisia annua Linn., were evaluated for antimicrobial activity against three human pathogenic microbes, Escherichia coli, Staphylococcus aureus and Trichophyton rubrum, and two plant pathogens, Rhizoctonia cerealis and Magnaporthe grisea. The results showed that these endophytic extracts had different inhibitory effects on microbial pathogens at 100 mg/mL. Among these fungal endophytes, three strains Aspergillus spp. SPS-02, SPS-04 and SPS-01 respectively showed the strongest antimicrobial activities against E. coli, S. aureu, T. rubrum. An endophytic Mucor sp. SPS-11 had the most pronounced effect on R. cerealis. Two strains Aspergillus sp. SPS-02 and Cephalosporium sp. SPS-08 exhibited the strongest antimicrobial activities against M. grisea. These anti-pathogenic endophytes could be applied as new sources of antibiotics in agriculture and pharmaceutical industry.

  9. Production of Gentisyl Alcohol from Phoma herbarum Endophytic in Curcuma longa L. and Its Antagonistic Activity Towards Leaf Spot Pathogen Colletotrichum gloeosporioides.

    Science.gov (United States)

    Gupta, Suruchi; Kaul, Sanjana; Singh, Baljinder; Vishwakarma, Ram A; Dhar, Manoj K

    2016-11-01

    Endophytes from medicinal plants represent a potential source of bioactive compounds. During the present investigation, fungal endophytes were isolated from turmeric (Curcuma longa), an important medicinal plant. A total of 207 endophytic fungal isolates were obtained from the rhizome of C. longa L. They were grouped into seven genera based on morphological and molecular data. The fungal endophytes of C. longa were evaluated for antifungal activity against Colletotrichum gloeosporioides, the causal organism of leaf spot of turmeric. The disease is a major cause for economic loss in turmeric cultivation. Endophytic Phoma herbarum showed significant activity against C. gloeosporioides and was therefore selected for further studies. A compound gentisyl alcohol was isolated from P. herbarum which showed effective antagonism against C. gloeosporioides. The organism could therefore be used as a biocontrol agent against C. gloeosporioides.

  10. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  11. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana)

    OpenAIRE

    Walaa Kamel Mousa; Schwan, Adrian L.; Raizada, Manish N

    2016-01-01

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the maj...

  12. Endophytic fungi associated with endogenous Boswellia sacra

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI1,♥,

    2014-11-01

    Full Text Available Endophytic fungi associated with leaves and stem tissues of Boswellia sacra growing in Dhofar Mountains of Oman were investigated from May 2008 through October 2011. The biological diversity, tissue-preference and seasonal variations of fungi were evaluated. Forty-three species and 3 varieties of fungi were recovered as new records from this plant. Of these isolates, 35 species are new reports to the mycoflora of Oman, whereas 12 species were added to the list of fungal flora of the Arabian Peninsula. The genus Alternaria (12 species is the most prevalent genus recovered from 12.5-83.3% of the screened leaves and stem samples, followed by Aspergillus (5 species, 3 varieties, 6.9-86.1%, Mycelia sterilia (76.4%, Rhizopus stolonifer (62.5%, Drechslera (3 species, 40.3-54.2%, Cladosporium (3 species, 20.8-52.8%, Curvularia lunata (38.8%, Chaetomium (2 species, 15.3-26.3%, Penicillim spp. (9.8-27.8%, Fusarium (9 species, 6.9-27.8%, Ulocladium consortiale (27.8%, Mucor hiemalis (19.5%, and the remaining species (Scytalidium thermophilum, Phoma solani, Taeniolella exilis, and Botryodiplodia theobromae exhibited very low levels of incidence (4.2-11.1%. Endophytic colonization of the leaf tissues was greater (43 species, 3 varieties comparable to stem tissues (25 species. This indicates heterogeneity and tissue-preference, with no evidence of seasonal variation. Therefore, the isolation of many fungal species and sterile mycelia supports the biodiversity of the endophytic fungi invading B. sacra and the high possibility of isolating more fungal species using advanced molecular techniques.

  13. Isolation and bioassay screening of medicinal plant endophytes from eastern Canada.

    Science.gov (United States)

    Ellsworth, Katelyn T; Clark, Trevor N; Gray, Christopher A; Johnson, John A

    2013-11-01

    Eighty-one distinct fungal endophytes were isolated from 12 traditionally used medicinal plants from New Brunswick, Canada. This is the first report of endophytes from 8 of the 12 host plants. One hundred and sixty-two crude extracts derived from the mycelia and spent fermentation broths of liquid cultures of each endophyte were screened for antibacterial and antifungal activity. Twenty-two extracts were active against Staphylococcus aureus while 30 were active against Pseudomonas aeruginosa. Twelve crude extracts were found to be active against Candida albicans.

  14. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    Science.gov (United States)

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys.

  15. A cultured endophyte community is associated with the plant Clerodendrum inerme and antifungal activity.

    Science.gov (United States)

    Gong, B; Yao, X H; Zhang, Y Q; Fang, H Y; Pang, T C; Dong, Q L

    2015-06-10

    Fungal endophytes live in the inner tissues of Clerodendrum inerme and may be significant resources for new chemicals in drug discovery. A total of 242 endophytic fungi were recovered from 602 sample segments of C. inerme; 66 were purified. The 66 fungi belonging to 16 taxa and 11 genera (Alternaria, Nigrospora, Bartalinia, Pestalotiopsis, Fusarium, Mycoleptodiscus, Trichoderma, Phomopsis, Diaporthe, Lasiodiplodia, and Curvularia) were identified by morphological characteristics and fungal internal transcribed spacer sequences. The most abundant genera were Alternaria and Lasiodiplodia. Some of the endophytes exhibited tissue specificity. The colonization frequencies of endophytes in the stems were evidently higher than those in the roots and leaves. The crude ethyl acetate extracts were tested against 6 endophytes isolated from C. inerme. Three of 10 (33.3%) endophytes, which were identified as Phomopsis sp, Curvularia sp, and Mycoleptodiscus sp, displayed distinct antifungal activity against ≥3 tested fungi. To our knowledge, this is the first report of an endophytic community associated with C. inerme in China and its antifungal activity in vitro.

  16. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement.

    Science.gov (United States)

    Mei, Chuansheng; Flinn, Barry S

    2010-01-01

    Endophytes are microorganisms that live within host plants for at least part of their life and do not cause apparent symptoms of diseases. In general, beneficial endophytes promote host plant growth, increase plant nutrient uptake, inhibit plant pathogen growth, reduce disease severity, and enhance tolerance to environmental stresses. As sustainable and renewable agricultural production (including current biofuel and bioenergy crops) increases in prominence, endophytic microorganisms will play important roles and offer environmentally-friendly methods to increase productivity while reducing chemical inputs. This review discusses various aspects of beneficial fungal and bacterial endophyte interactions with plants, including the physiological and molecular mechanisms by which they benefit plant performance. We also discuss the potential for genetic modification of endophytes with useful genes, which could be used to impart additional traits following inoculation with the genetically engineered endophytes. Finally, we review US-issued patents over the past decade which relate to the use of fungal and bacterial endophytes for plant growth and stress tolerance improvement.

  17. GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.

    Science.gov (United States)

    Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

    2010-02-01

    Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals.

  18. Colonización radical por endófitos fúngicos en Trithrinax campestris (Arecaceae de ecosistemas semiáridos del centro de Argentina Root colonization by fungal endophytes in Trithrinax campestris (Arecaceae from semiarid ecosystems from Central Argentine

    Directory of Open Access Journals (Sweden)

    Mónica A Lugo

    2011-12-01

    Full Text Available En ecosistemas áridos y semiáridos las raíces de las plantas suelen formar simbiosis con hongos, los que les proporcionan nutrientes y agua. Poco se conoce sobre los hongos asociados a palmeras nativas y cómo éstos podrían estar relacionados entre ellos. Se describe y cuantifica la colonización radical de los simbiontes de Trithrinax campestris en poblaciones leve y fuertemente afectadas por el fuego. T. campestris fue colonizada por hongos micorrícico-arbusculares (HMA y endófitos septados oscuros (ESO. La colonización por HMA fue del tipo intermedio entre los tipos Arum y Paris. La colonización por HMA y ESO y la producción de pelos radicales, presentó diferencias entre las poblaciones estudiadas. Los resultados sugieren que en T. campestris la relación entre hongos simbiontes/producción de pelos radicales podrían estar relacionada con su alta tolerancia al fuego y la aridez.In arid and semiarid ecosystems, roots frequently form symbiosis with fungi that provides access to nutrients and water. Knowledge regarding the study of fungal symbionts colonizing native palms roots is still scarce. We described, quantified and compared fungal colonization in roots of Trithrinax campestris from two environmental situations: population with weak-burning-signs and population with strong-burning-signs. T. campestris was colonized by arbuscular-mycorrhizal-fungi (AMF and dark-septate-endophytes (DSE. AMF colonization was an intermediate type between Arum and Paris. The AMF and DSE colonization and root hair production differed between populations. Our results suggest that in T. campestris the relation between fungal-symbionts and root-hair-production might be related to tolerance to burning and aridity.

  19. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    Science.gov (United States)

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  20. Interactions between co-habitating fungi elicit synthesis of Taxol from an endophytic fungus in host Taxus plants

    Directory of Open Access Journals (Sweden)

    Sameh S.M. Soliman

    2013-01-01

    Full Text Available Within a plant, there can exist an ecosystem of pathogens and endophytes, the latter described as bacteria and fungal inhabitants that thrive without causing disease to the host. Interactions between microbial inhabitants represent a novel area of study for natural products research. Here we analyzed the interactions between the fungal endophytes of Taxus (yew trees. Fungal endophytes of Taxus have been proposed to produce the terpenoid secondary metabolite, Taxol, an anti-cancer drug. It is widely reported that plant extracts stimulate endophytic fungal Taxol production, but the underlying mechanism is not understood. Here, Taxus bark extracts stimulated fungal Taxol production 30-fold compared to a 10-fold induction with wood extracts. However, candidate plant-derived defence compounds (i.e. salicylic acid, benzoic acid were found to act only as modest elicitors of fungal Taxol production from the endophytic fungus Paraconiothyrium SSM001, consistent with previous studies. We hypothesized the Taxus plant extracts may contain elicitors derived from other microbes inhabiting these tissues. We investigated the effects of co-culturing SSM001 with other fungi observed to inhabit Taxus bark, but not wood. Surprisingly, co-culture of SSM001 with a bark fungus (Alternaria caused a ~3-fold increase in Taxol production. When SSM001 was pyramided with both the Alternaria endophyte along with another fungus (Phomopsis observed to inhabit Taxus, there was an ~eight-fold increase in fungal Taxol production from SSM001. These results suggest that resident fungi within a host plant interact with one another to stimulate Taxol biosynthesis, either directly or through their metabolites. More generally, our results suggest that endophyte secondary metabolism should be studied in the context of its native ecosystem.

  1. Interactions between Co-Habitating fungi Elicit Synthesis of Taxol from an Endophytic Fungus in Host Taxus Plants.

    Science.gov (United States)

    Soliman, Sameh S M; Raizada, Manish N

    2013-01-01

    Within a plant, there can exist an ecosystem of pathogens and endophytes, the latter described as bacterial and fungal inhabitants that thrive without causing disease to the host. Interactions between microbial inhabitants represent a novel area of study for natural products research. Here we analyzed the interactions between the fungal endophytes of Taxus (yew) trees. Fungal endophytes of Taxus have been proposed to produce the terpenoid secondary metabolite, Taxol, an anti-cancer drug. It is widely reported that plant extracts stimulate endophytic fungal Taxol production, but the underlying mechanism is not understood. Here, Taxus bark extracts stimulated fungal Taxol production 30-fold compared to a 10-fold induction with wood extracts. However, candidate plant-derived defense compounds (i.e., salicylic acid, benzoic acid) were found to act only as modest elicitors of fungal Taxol production from the endophytic fungus Paraconiothyrium SSM001, consistent with previous studies. We hypothesized the Taxus plant extracts may contain elicitors derived from other microbes inhabiting these tissues. We investigated the effects of co-culturing SSM001 with other fungi observed to inhabit Taxus bark, but not wood. Surprisingly, co-culture of SSM001 with a bark fungus (Alternaria) caused a ∼threefold increase in Taxol production. When SSM001 was pyramided with both the Alternaria endophyte along with another fungus (Phomopsis) observed to inhabit Taxus, there was an ∼eightfold increase in fungal Taxol production from SSM001. These results suggest that resident fungi within a host plant interact with one another to stimulate Taxol biosynthesis, either directly or through their metabolites. More generally, our results suggest that endophyte secondary metabolism should be studied in the context of its native ecosystem.

  2. Endophytic fungus-vascular plant-insect interactions.

    Science.gov (United States)

    Raman, A; Wheatley, W; Popay, A

    2012-06-01

    Insect association with fungi has a long history. Theories dealing with the evolution of insect herbivory indicate that insects used microbes including fungi as their principal food materials before flowering plants evolved. Subtlety and the level of intricacy in the interactions between insects and fungi indicate symbiosis as the predominant ecological pattern. The nature of the symbiotic interaction that occurs between two organisms (the insect and the fungus), may be either mutualistic or parasitic, or between these two extremes. However, the triangular relationship involving three organisms, viz., an insect, a fungus, and a vascular plant is a relationship that is more complicated than what can be described as either mutualism or parasitism, and may represent facets of both. Recent research has revealed such a complex relationship in the vertically transmitted type-I endophytes living within agriculturally important grasses and the pestiferous insects that attack them. The intricacy of the association depends on the endophytic fungus-grass association and the insect present. Secondary compounds produced in the endophytic fungus-grass association can provide grasses with resistance to herbivores resulting in mutualistic relationship between the fungus and the plant that has negative consequences for herbivorous insects. The horizontally transmitted nongrass type-II endophytes are far less well studied and as such their ecological roles are not fully understood. This forum article explores the intricacy of dependence in such complex triangular relationships drawing from well-established examples from the fungi that live as endophytes in vascular plants and how they impact on the biology and evolution of free-living as well as concealed (e.g., gall-inducing, gall-inhabiting) insects. Recent developments with the inoculation of strains of type-I fungal endophytes into grasses and their commercialization are discussed, along with the possible roles the endophytic

  3. Inherited fungal symbionts enhance establishment of an invasive annual grass across successional habitats.

    Science.gov (United States)

    Uchitel, Andrea; Omacini, Marina; Chaneton, Enrique J

    2011-02-01

    Plants infected with vertically transmitted fungal endophytes carry their microbial symbionts with them during dispersal into new areas. Yet, whether seed-borne endophytes enhance the host plant's ability to overcome colonisation barriers and to regenerate within invaded sites remains poorly understood. We examined how symbiosis with asexual endophytic fungi (Neotyphodium) affected establishment and seed loss to predators in the invasive annual grass Lolium multiflorum (Italian ryegrass) across contrasting successional plots. Italian ryegrass seeds with high and low endophyte incidence were sown into three communities: a 1-year-old fallow field, a 15-year-old grassland, and a 24-year-old forest, which conformed to an old-field chronosequence in the eastern Inland Pampa, Argentina. We found that endophyte infection consistently increased host population recruitment and reproductive output. Endophyte presence also enhanced aerial biomass production of ryegrass in a low recruitment year but not in a high recruitment year, suggesting that symbiotic effects on growth performance are density dependent. Endophyte presence reduced seed removal by rodents, although differential predation may not account for the increased success of infected grass populations. Overall, there was no statistical evidence for an endophyte-by-site interaction, indicating that the fungal endosymbiont benefitted host establishment regardless of large differences in biotic and abiotic environment among communities. Our results imply that hereditary endophytes may increase the chances for host grass species to pass various ecological filters associated with invasion resistance across a broad range of successional habitats.

  4. Effects of dark septate endophytes on tomato plant performance.

    Science.gov (United States)

    Andrade-Linares, Diana Rocio; Grosch, Rita; Restrepo, Silvia; Krumbein, Angelika; Franken, Philipp

    2011-07-01

    Non-mycorrhizal fungal root endophytes can be found in all natural and cultivated ecosystems, but little is known about their impact on plant performance. The impact of three mitosporic dark septate endophytes (DSE48, DSE49 and Leptodontidium orchidicola) on tomato plant characteristics was studied. Their effects on root and shoot growth, their influence on fruit yield and fruit quality parameters and their ability to diminish the impact of the pathogen Verticillium dahliae were investigated. While shoot biomass of young plants was enhanced between 10% and 20% by the endophytes DSE48 and L. orchidicola in one of two experiments and by DSE49 in both experiments, vegetative growth parameters of 24-week-old plants were not affected except a reproducible increase of root diameter by the isolate DSE49. Concerning fruit yield and quality, L. orchidicola could double the biomass of tomatoes and increased glucose content by 17%, but this was dependent on date of harvest and on root colonisation density. Additionally, the endophytes DSE49 and L. orchidicola decreased the negative effect of V. dahliae on tomato, but only at a low dosage of the pathogen. This indicates that the three dark septate endophytes can have a significant impact on tomato characters, but that the effects are only obvious at early stages of vegetative and generative development and currently too inconsistent to recommend the application of these DSEs in horticultural practice.

  5. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae

    Directory of Open Access Journals (Sweden)

    Liang Hanqiao

    2012-11-01

    Full Text Available Abstract Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC and fermentation broth (FB were tested for antimicrobial activity using peptide deformylase (PDF inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC and 33.33% of the fermentation broths (FB displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  6. Two new compounds from an endophytic fungus Alternaria solani.

    Science.gov (United States)

    Ai, Hong-Lian; Zhang, Li-Mei; Chen, Yan-Ping; Zi, Shu-Hui; Xiang, Hong; Zhao, Da-Ke; Shen, Yong

    2012-01-01

    Two new secondary metabolites, named 7-dehydroxyl-zinniol (1) and 20-hydroxyl-ergosta-4,6,8(14),22-tetraen-3-one (2), were isolated from the culture of Alternaria solani, an endophytic fungal strain residing in the roots of Aconitum transsectum. Their structures were elucidated on the basis of comprehensive spectroscopic analyses including IR, ESI-MS, HR-ESI-MS, 1D and 2D NMR. Biological activity tests indicated that compound 1 showed moderate anti-HBV activity.

  7. Effect of endophytic fungal elicitors on growth and atractylodin accumulation of cell suspension cultures of Atractylodes lancea%内生真菌诱导子对茅苍术细胞生长及苍术素积累的影响

    Institute of Scientific and Technical Information of China (English)

    陶金华; 濮雪莲; 江曙

    2011-01-01

    目的:研究内生真菌诱导子对茅苍术细胞生长以及苍术素积累的影响.方法:采用细胞悬浮培养方法研究内生真菌诱导子不同浓度、不同加入时间对茅苍术细胞生长、苍术素合成以及相关酶活性的影响.结果:低浓度诱导子对细胞生长没有明显的影响,但高浓度诱导子显著抑制细胞生长,当诱导子质量浓度达到100 mg·L-1时,细胞生长抑制率达到46.7%;此外,从茅苍术内生真菌中筛选获得6株具有较强诱导作用的内生真菌,其中Rhizoctonia SP1诱导子的作用较强,20~60 mg·L-1 Rhizoctonia SP1诱导子显著促进苍术素的生物合成.在细胞培养至12 d时,添加40 mg·L-1 Rhizoctonia SP1诱导子,苍术素的含量在第21天达到最大值28.06μg·L-1,比对照提高了48.3%;且细胞多酚氧化酶(PPO)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性出现了显著提高.结论:内生真菌诱导子能有效提高茅苍术细胞悬浮培养体系中苍术素的产量.%Objective: To investigate the effects of endophytic fungal elicitors on the growth and atractylodin accumulation of cell suspension cultures of Atractylodes lancea. Method: The endophytic fungal elicitors were added to the medium with different concentrations and culture period. Their effects on biomass, atractylodin content and relevant enzyme activities in suspension cultured cells were studied. Result: The cell growth was not affected by elicitors at low concentration and obviously inhibited at high concentration.Inhibition rate reached 46.7% by 100 mg· L-1 elicitor. In addition, six strains from A. lancea, among which Rhizoctonia SP1 activity was higher, had distinctly promoted the accumulation of atractylodin. Atractylodin biosynthesis was notably promoted by 20-60 mg·L-1 Rhizoctonia SP1 elicitor. When 40 mg · L-1 Rhizoctonia SP1 elicitor was added in the medium at the 12 day, the maximum content of atractylodin was 28.06 μg · L-1 at the 21 day with 48.3

  8. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.

    Science.gov (United States)

    Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

    2014-06-01

    Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01).

  9. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea.

    Science.gov (United States)

    You, Young-Hyun; Park, Jong Myong; Park, Jong-Han; Kim, Jong-Guk

    2015-09-01

    A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands.

  10. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni)

    Science.gov (United States)

    Wu, Yougen; Girmay, Sisay; da Silva, Vitor Martins; Perry, Brian; Hu, Xinwen; Tan, Ghee T.

    2015-01-01

    We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS). Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C), in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung), PC-3 (prostate), and MCF-7 (breast) with IC50 values of ≤10 μg/mL. PMID:26783408

  11. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni

    Directory of Open Access Journals (Sweden)

    Yougen Wu

    2015-01-01

    Full Text Available We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS. Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C, in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung, PC-3 (prostate, and MCF-7 (breast with IC50 values of ≤10 μg/mL.

  12. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni).

    Science.gov (United States)

    Wu, Yougen; Girmay, Sisay; da Silva, Vitor Martins; Perry, Brian; Hu, Xinwen; Tan, Ghee T

    2015-01-01

    We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS). Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C), in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung), PC-3 (prostate), and MCF-7 (breast) with IC50 values of ≤10 μg/mL.

  13. Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp..

    Directory of Open Access Journals (Sweden)

    Juan A Martín

    Full Text Available Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp. trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

  14. A Bilobalide-Producing Endophytic Fungus, Pestalotiopsis uvicola from Medicinal Plant Ginkgo biloba.

    Science.gov (United States)

    Qian, Yi-Xin; Kang, Ji-Chuan; Luo, Yi-Kai; Zhao, Jun-Jie; He, Jun; Geng, Kun

    2016-08-01

    For screening bilobalide (BB)-producing endophytic fungi from medicinal plant Ginkgo biloba, a total of 57 fungal isolates were isolated from the internal stem, root, leaf, and bark of the plant G. biloba. Fermentation processes using BB-producing fungi other than G. biloba may become a novel way to produce BB, which is a terpene trilactones exhibiting neuroprotective effects. In this study, a BB-producing endophytic fungal strain GZUYX13 was isolated from the leaves of G. biloba grown in the campus of Guizhou University, Guiyang city, Guizhou province, China. The strain produced BB when grown in potato dextrose liquid medium. The amount of BB produced by this endophytic fungus was quantified to be 106 μg/L via high-performance liquid chromatography (HPLC), substantially lower than that produced by the host tissue. The fungal BB which was analyzed by thin layer chromatography (TLC) and HPLC was proven to be identical to authentic BB. The strain GZUYX13 was identified as Pestalotiopsis uvicola via morphology and ITS rDNA phylogeny. To the best of our knowledge, this is the first report concerning the isolation and identification of endophytic BB-producing Pestalotiopsis spp. from the host plant, which further proved that endophytic fungi have the potential to produce bioactive compounds.

  15. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2015-06-01

    Full Text Available Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  16. Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?

    Directory of Open Access Journals (Sweden)

    Andrew J. Flewelling

    2013-12-01

    Full Text Available As the need for new and more effective antibiotics increases, untapped sources of biodiversity are being explored in an effort to provide lead structures for drug discovery. Endophytic fungi from marine macroalgae have been identified as a potential source of biologically active natural products, although data to support this is limited. To assess the antibiotic potential of temperate macroalgal endophytes we isolated endophytic fungi from algae collected in the Bay of Fundy, Canada and screened fungal extracts for the presence of antimicrobial compounds. A total of 79 endophytes were isolated from 7 species of red, 4 species of brown, and 3 species of green algae. Twenty of the endophytes were identified to the genus or species level, with the remaining isolates designated codes according to their morphology. Bioactivity screening assays performed on extracts of the fermentation broths and mycelia of the isolates revealed that 43 endophytes exhibited antibacterial activity, with 32 displaying antifungal activity. Endophytic fungi from Bay of Fundy macroalgae therefore represent a significant source of antibiotic natural products and warrant further detailed investigation.

  17. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw.

    Science.gov (United States)

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-06-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  18. Indole-Diterpene Biosynthetic Capability of Epichloë Endophytes as Predicted by ltm Gene Analysis▿

    Science.gov (United States)

    Young, Carolyn A.; Tapper, Brian A.; May, Kimberley; Moon, Christina D.; Schardl, Christopher L.; Scott, Barry

    2009-01-01

    Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement. PMID:19181837

  19. Preliminary study of endophytic fungi in timothy (Phleum pratense in Estonia

    Directory of Open Access Journals (Sweden)

    Triin Varvas

    2013-12-01

    Full Text Available Timothy (Phleum pratense L. is an important agricultural grass in Europe and North America, but there is little research into the occurrence and abundance of fungal endophyte species associated with this grass. The aim of this study was to identify fungal endophytes living within P. pratense and to determine if additional moisture applied during the growing season increases the diversity of endophytic fungi. We studied 58 isolates obtained from surface-sterilised blades of 60 P. pratense plants collected from Rõka Free Air Humidity Manipulation experimental plots (FAHM, Estonia. Morphological and molecular methods were used for isolate identification. As a result, 45 strains from 10 different taxa were identified, all belonging to Ascomycota. Five species were found to be new to P. pratense.

  20. Molecular and functional characterization of endophytic fungi from traditional medicinal plants.

    Science.gov (United States)

    Bhagat, Jyoti; Kaur, Amarjeet; Sharma, Madhunika; Saxena, A K; Chadha, B S

    2012-03-01

    This study reports the isolation of 63 endophytic fungal isolates from two traditional medicinal plants, Ocimum sanctum and Sapindus detergens from different locations of Amritsar, India. The functional characterization of the fungi for their ability to produce anti bacterial and anti cancer agent was carried out. Sixteen strains were characterized at molecular level by sequencing the amplified ITSI-5.8-ITSII region of rDNA. The phylogenetic tree resolved the endophytic fungi into different clades. The fungal endophytes belonging to order Pleosporales (Alternaria sp., Phoma sojicola and Exserohilum sp.) were functionally versatile as they produced diverse biomolecules including antibacterial agent active against Mycobacterium smegmatis, as well as cytotoxic activity against different human cancer cell lines of lung, ovary, breast, prostrate, neuroblastoma and colon.

  1. Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia steppe of China.

    Science.gov (United States)

    Zhu, Min-Jie; Ren, An-Zhi; Wen, Wei; Gao, Yu-Bao

    2013-03-01

    Epichloë species and their anamorphic relatives in genus Neotyphodium are fungal symbionts of grasses ubiquitously existing in temperate regions all over the world. To date, 13 Epichloë species and 22 Neotyphodium species have been formally described, based on morphological characters and phylogenetic analyses. Leymus chinensis (Poaceae) is a dominant grass native to the Inner Mongolia steppe of China. Previously, it was reported to harbor endophytes, but little was known about these endophytes. To investigate their diversity and taxonomy, 96 fungal isolates were obtained from three field populations of L. chinensis. The isolates were classified into three morphotypes based on morphological characters and phylogenetic analyses of sequences of genes for β-tubulin (tubB), translation elongation factor 1-α (tefA), and actin (actG). The dominant morphotype, morphotype I, was identified as a choke disease endophyte, Epichloë bromicola. This broadened the host range and phylogenetic definition of E. bromicola.

  2. Interactive effects of root endophytes and arbuscular mycorrhizal fungi on an experimental plant community.

    Science.gov (United States)

    Rillig, Matthias C; Wendt, Stefanie; Antonovics, Janis; Hempel, Stefan; Kohler, Josef; Wehner, Jeannine; Caruso, Tancredi

    2014-01-01

    Plant-soil microbial interactions have moved into focus as an important mechanism for understanding plant coexistence and composition of communities. Both arbuscular mycorrhizal (AM) as well as other root endophytic fungi co-occur in plant roots, and therefore have the potential to influence relative abundances of plant species in local assemblages. However, no study has experimentally examined how these key root endosymbiont groups might interact and affect plant community composition. Here, using an assemblage of five plant species in mesocosms in a fully factorial experiment, we added an assemblage of AM fungi and/or a mixture of root endophytic fungal isolates, all obtained from the same grassland field site. The results demonstrate that the AM fungi and root endophytes interact to affect plant community composition by changing relative species abundance, and consequently aboveground productivity. Our study highlights the need to explicitly consider interactions of root-inhabiting fungal groups in studies of plant assemblages.

  3. Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis.

    Science.gov (United States)

    Zhou, Sheng-Liang; Yan, Shu-Zhen; Liu, Qi-Sha; Chen, Shuang-Lin

    2015-01-01

    Foliar fungal endophytes are an important plant-associated fungal group. However, little is known about these fungi in hemi-parasitic plants, a unique plant group which derive nutrients from living plants of its hosts by haustoria while are photosynthetic to some degree. In this paper, the endophytic fungi in the leaves of a species of hemi-parasitic plant, Macrosolen cochinchinensis, were studied by both culture-dependent and culture-independent methods. By culture-dependent method, a total of 511 isolates were recovered from 452 of 600 leaf fragments (colonization rate = 75.3 %) and were identified to be 51 taxa. Valsa sp. was the most abundant (relative abundance = 38.4 %), followed by Cladosporium sp. 1 (13.5 %), Ulocladium sp. (4.3 %), Phomopsis sp. 2 (3.7 %), Hendersonia sp. (3.5 %), and Diaporthe sp. 4 (3.5 %). The Shannon index (H') of the isolated endophytic fungi was 2.628, indicating a moderate diversity. By culture-independent method, Aspergillus spp., Cladosporium sp., Mycosphaerella sp., Acremonium strictum, and Tremella sp. were detected. To our knowledge, the Tremella species have never been detected as endophytes so far. In addition, a cloned sequence was not similar with any current sequence in the Genbank, which may represent a novel species. Altogether, this study documented endophytic fungal assemble in the leaves of M. cochinchinensis which was worthy of our attention, and may expand our knowledge about endophytic fungi within the photosynthetic tissues of plants.

  4. The Metabolites of Endophytic Fungal Cryphonectria radicalis Isolated from Cardamine multijuga%多裂碎米荠内生真菌隐孢丛赤壳菌C2代谢产物研究

    Institute of Scientific and Technical Information of China (English)

    张昌飞; 任晓光; 赵春安; 刘亚君; 李海燕; 魏大巧

    2013-01-01

    从多裂碎米荠(Cardamine multijuga)内生真菌隐孢丛赤壳菌Cryphonectria radicalis C2的代谢产物中分离得到两个化合物,经NMR、MS等现代谱学方法分别鉴定为蒽茜素(skyrin)(1)和大黄素(emodin)(2).活性测定结果表明,两个化合物对秀丽隐杆线虫没有杀虫活性.但蒽茜素对小麦根腐病菌禾旋孢腔菌和稻恶苗藤仓赤霉菌具有良好的抗真菌活性,而大黄素对禾旋孢腔菌、藤仓赤霉菌和魔芋镰刀菌等7株植物病原菌均具有良好的抗菌效果.%Two compounds were isolated from the endophytic fungus Cryphonectria radicalis, which was isolated from Cardamine multijuga. Their structures were elucidated on the basis of spectral data. Compound 1 were identified as skyrin and 2 were emodin. Nematicidal activity test indicated that skyrin and emodin have no nematicidal activity against Caenorhabditis elegans. However, skyrin showed antifungal activities against Cochliobolus sativus and Gibberella fujikuroi, and emodin showed antifungal activities against all 7 tested pathogenic fungi.

  5. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2016-09-01

    Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  6. The Occurrence of Balansioid Endophytes in Georgia, Florida, and Southern Grasses

    Science.gov (United States)

    A collection of toxic fungal endophytes of grasses were detailed in terms of their morphology and taxonomy in detailed slides useful for identification of the little know species of Balansia or clavicipitalean fungi that are found on southern pasture and weed grass species. We have established as ...

  7. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-09-03

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  8. A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines

    DEFF Research Database (Denmark)

    Polizzotto, Rachele; Andersen, Birgitte; Martini, Marta

    2012-01-01

    A polyphasic approach was set up and applied to characterize 20 fungal endophytes belonging to the genus Alternaria, recovered from grapevine in different Italian regions.Morphological, microscopical, molecular and chemical investigations were performed and the obtained results were combined in a...

  9. Fungal-Fungal Interactions in Leaf-Cutting Ant Agriculture

    Directory of Open Access Journals (Sweden)

    Sunshine A. Van Bael

    2011-01-01

    Full Text Available Many organisms participate in symbiotic relationships with other organisms, yet studies of symbioses typically have focused on the reciprocal costs and benefits within a particular host-symbiont pair. Recent studies indicate that many ecological interactions involve alliances of symbionts acting together as mutualistic consortia against other consortia. Such interacting consortia are likely to be widespread in nature, even if the interactions often occur in a cryptic fashion. Little theory and empirical data exist concerning how these complex interactions shape ecological outcomes in nature. Here, we review recent work on fungal-fungal interactions between two consortia: (i leaf-cutting ants and their symbiotic fungi (the latter grown as a food crop by the former and (ii tropical plants and their foliar endophytes (the cryptic symbiotic fungi within leaves of the former. Plant characteristics (e.g., secondary compounds or leaf physical properties of leaves are involved in leaf-cutting ant preferences, and a synthesis of published information suggests that these plant traits could be modified by fungal presence. We discuss potential mechanisms for how fungal-fungal interactions proceed in the leaf-cutting ant agriculture and suggest themes for future research.

  10. Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico

    Science.gov (United States)

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  11. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    Science.gov (United States)

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  12. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta.

    Science.gov (United States)

    Wang, Wen-Xuan; Kusari, Souvik; Sezgin, Selahaddin; Lamshöft, Marc; Kusari, Parijat; Kayser, Oliver; Spiteller, Michael

    2015-09-01

    The basis of chemical crosstalk in plants and associated endophytes lies in certain so-called communication molecules that are responsible for plant-microbe and microbe-microbe interactions. Consequently, elucidating the factors that affect the nature, distribution, and amount of these molecules and how they impact the interaction among endophytes and associated organisms is essential to understand the true potential of endophytes. In the present study, we report the discovery of nine hexacyclopeptides from an endophytic fungus, Fusarium solani, isolated from the bulb of Narcissus tazetta, and their selective accumulation by an endophytic bacterium, Achromobacter xylosoxidans isolated from the same tissue. We used matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to firstly identify and visualize the spatial distribution of the hexacyclopeptides produced by endophytic F. solani. After culture condition optimization, their sequence was identified to be cyclo((Hyp or Dhp)-Xle-Xle-(Ala or Val)-Thr-Xle) (Dhp: dehydroproline) by the characteristic a, b, or y ions using liquid chromatography tandem mass spectrometry (LC-HRMS(n)). These hexacyclopeptides were confirmed to be fungal biosynthetic products by deuterium labeling experiments. Finally, in order to understand the plausible ecological relevance of one or more of the discovered hexacyclopeptides within the contexts of microbial "neighbor communication," we devised a dual-culture setup to visualize using MALDI-imaging-HRMS how the hexacyclopeptides released by the endophytic fungus are accumulated by another endophytic bacterium, A. xylosoxidans, isolated from the same bulb tissue. This work exemplifies the relevance of cyclopeptides in endophyte-endophyte interspecies neighbor communication occurring in nature. Such communication strategies are evolved by coexisting endophytes to survive and function in their distinct ecological niches.

  13. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    Directory of Open Access Journals (Sweden)

    Aurora Saucedo-García

    Full Text Available Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some

  14. Genetic diversity in epichloid endophytes of Hordelymus europaeus suggests repeated host jumps and interspecific hybridizations.

    Science.gov (United States)

    Oberhofer, Martina; Leuchtmann, Adrian

    2012-06-01

    Epichloid fungal endophytes (Epichloë and Neotyphodium spp.) are excellent model systems for studying speciation processes because of their variable life history traits that are linked to host grass fitness. Presumed jumps to new hosts and subsequent somatic hybridizations appear to be common among epichloid endophytes resulting in increased genetic variation upon which selection can act and speciation be initiated. In this study, we explored the endophyte diversity of a rare European native woodland grass species, Hordelymus europaeus, along a latitudinal transect covering the entire distribution range of H. europaeus. From 28 populations in six countries, isolates were sampled and molecularly characterized. Based on the sequences of tubB and tefA, six distinct epichloid taxa (interspecific hybrid or cryptic haploid species) were found, of which four were novel and two have been previously reported from this host. Of the novel endophytes, two were presumed to be interspecific hybrids and two of nonhybrid origin. While previously known endophytes of H. europaeus are seed-born and strictly asexual, one of the novel nonhybrid endophytes found in the glacial refugium of the Apennine peninsula reproduced sexually in cultured plants. This is the first case of a seed-borne, but sexually reproducing endophyte of this host. We discuss the origin, and possible ancestral species, of the six epichloid taxa using phylogenetic analyses. Repeated host jumps and somatic hybridizations characterize the diversity of the endophytes. To date, no other grass species is known to host a larger diversity of endophytes than H. europaeus.

  15. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea.

    Science.gov (United States)

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-12-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.

  16. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  17. Fungal arthritis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000444.htm Fungal arthritis To use the sharing features on this page, please enable JavaScript. Fungal arthritis is swelling and irritation (inflammation) of a joint ...

  18. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Español (Spanish) Recommend on Facebook Tweet ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  19. Characterization of community structure of culturable endophytic fungi in sweet cherry composite trees and their growth-retarding effect against pathogens.

    Science.gov (United States)

    Haddadderafshi, Neda; Pósa, Tímea Borbála; Péter, Gábor; Gáspár, László; Ladányi, Márta; Hrotkó, Károly; Lukács, Noémi; Halász, Krisztián

    2016-09-01

    Endophytic fungi have the potential to protect their host plants in stress situations. Characterizing the ecology and complex interaction between these endophytes and their host plants is therefore of great practical importance, particularly in horticultural plants. Among horticultural plants, fruit trees form a special category because of their longevity and because they are composites of rootstock and scion, which often belong to different plant species. Here we present the first characterization of culturable endophytic fungal community of sweet cherry. Samples from the Hungarian cultivar 'Petrus' grafted on 11 different rootstocks were collected in autumn and in spring in a bearing orchard and the dependence of colonization rate and endophyte diversity on rootstock, organ and season was analysed. On the basis of their ITS sequences 26 fungal operational taxonomic units were identified at least down to the genus level. The dominant genus, comprising more than 50% of all isolates, was Alternaria, followed by different Fusarium and Epicoccum species. We observed some organ-specificity amongst endophytes, and organs showed more sizeable differences in colonization rates and endophyte diversity than rootstocks. Most dynamic endophyte populations, strongly influenced by environmental conditions and crop management, were observed in leaves. The potential of selected endophytes to confer protection against Monilinia laxa was also analysed and 7 isolates were found to inhibit the growth of this pathogen in vitro.

  20. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse

    Science.gov (United States)

    Fungal endophytes associated with leaves, lateral shoots, and roots of Echinacea purpurea, a medicinal plant used by Native Americans, were evaluated for antifungal activity as well as larvicidal, adulticidal, and repellent activities against Aedes aegypti. A total of 39 fungal isolates were identif...

  1. Unraveling the role of fungal symbionts in plant abiotic stress tolerance.

    Science.gov (United States)

    Singh, Lamabam Peter; Gill, Sarvajeet Singh; Tuteja, Narendra

    2011-02-01

    Fungal symbionts have been found associated with every plant studied in natural ecosystem, where they colonize and reside entirely in the internal tissues of their host plant or partially. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress, heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.

  2. Tall fescue endophyte effects on tolerance to water-deficit stress

    Science.gov (United States)

    2013-01-01

    Background The endophytic fungus, Neotyphodium coenophialum, can enhance drought tolerance of its host grass, tall fescue. To investigate endophyte effects on plant responses to acute water deficit stress, we did comprehensive profiling of plant metabolite levels in both shoot and root tissues of genetically identical clone pairs of tall fescue with endophyte (E+) and without endophyte (E-) in response to direct water deficit stress. The E- clones were generated by treating E+ plants with fungicide and selectively propagating single tillers. In time course studies on the E+ and E- clones, water was withheld from 0 to 5 days, during which levels of free sugars, sugar alcohols, and amino acids were determined, as were levels of some major fungal metabolites. Results After 2–3 days of withholding water, survival and tillering of re-watered plants was significantly greater for E+ than E- clones. Within two to three days of withholding water, significant endophyte effects on metabolites manifested as higher levels of free glucose, fructose, trehalose, sugar alcohols, proline and glutamic acid in shoots and roots. The fungal metabolites, mannitol and loline alkaloids, also significantly increased with water deficit. Conclusions Our results suggest that symbiotic N. coenophialum aids in survival and recovery of tall fescue plants from water deficit, and acts in part by inducing rapid accumulation of these compatible solutes soon after imposition of stress. PMID:24015904

  3. ISOLATION AND IDENTIFICATION OF AN ENDOPHYTIC FUNGUS PRODUCING PACLITAXEL FROM TAXUS WALLICHIANA VAR MAIREI.

    Science.gov (United States)

    Zaiyou, Jian; Hongsheng, Wang; Ning, Wang; Li, Meng; Guifang, Xu

    2015-12-01

    The objective of this study was to isolate endophytic fungi producing paclitaxel from yew for the purpose of paclitaxel manufacture. Surface sterilized bark of Taxus wallichiana var. mairei was used as source material and potato dextrose agar culture medium was used in isolation of endophytic fungi. Fungal cultures were extracted with a mixture of chloroform / methanol (1:1, v/v) and the paclitaxel in the extracts was determined and authenticated with LC-MS. An endophytic fungus that produced paclitaxel was identified by ITS rDNA and 26S D1/D2 rDNA sequencing. The results showed that a total of 435 endophytic fungal strains were isolated from T. wallichiana var. mairei and purified. Only one of these strains produced paclitaxel and it belongs to Fusarium. The paclitaxel productivity in whole PDB culture and that in spent culture medium from this strain is 0.0153 mg/L and 0.0119 mg/L respectively. The paclitaxel content in dry mycelium is 0.27 mg/kg. This isolated endophytic fungus produced paclitaxel at a considerable level and shows potentiality as a producing strain for paclitaxel manufacture after strain improvement.

  4. Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs.

    Directory of Open Access Journals (Sweden)

    Kristin I Miller

    Full Text Available Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS and polyketide synthase (PKS genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies.

  5. Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus isolated from seaweed (Sargassum wightii

    Directory of Open Access Journals (Sweden)

    Manjunath M. Hulikere

    2016-10-01

    Full Text Available Endophytic fungi from marine seaweeds are the less studied group of organisms with vast medical applications. The aim of the present study was to evaluate antioxidant, antiangiogenic as well as wound healing potential of the endophytic fungus isolated from the seaweed Sargassum wightii. The morphological characters and the rDNA internal transcribed spacer sequence analysis (BLAST search in Gen Bank database was used for the identification of endophytic fungus. The antioxidant potential of the ethyl acetate extract of endophytic fungus was assessed by, 1,1-diphenyl-2-picryl-hydrazyl radical scavenging method. The fungal extract was also analysed for reducing power, total phenolic and flavonoid content. Antiangiogenic activity of the fungal extract was studied in vitro by inhibition of wound healing scratch assay and in vivo by Chick chorioallantoic membrane assay. The endophytic fungus was identified as Cladosporium cladosporioides (Gen Bank ID – KT384175. The ethyl acetate extract of C. cladosporioides showed a significant antioxidant and angiosuppressive activity. The ESI-LC-MS analysis of the extract revealed the presence of wide range of secondary metabolites. Results suggest that C. cladosporioides extract could be exploited as a potential source for angiogenic modulators.

  6. Phenotype Microarrays as a complementary tool to next generation sequencing for characterization of tree endophytes

    Directory of Open Access Journals (Sweden)

    Kathrin eBlumenstein

    2015-09-01

    Full Text Available There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype Microarray (PM techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees.

  7. Beauveria bassiana as an endophyte

    DEFF Research Database (Denmark)

    McKinnon, Aimee C.; Saari, Susanna; Moran-Diez, Maria E.;

    2017-01-01

    In the last decade there has been increased focus on the potential of endophytic Beauveria bassiana for the biocontrol of insect herbivores. Generally, detection of endophytes is acknowledged to be problematic and recovery method-dependent. Herein, we critically analyse the methodology reported...

  8. Swainsonine-containing plants and their relationship to endophytic fungi.

    Science.gov (United States)

    Cook, Daniel; Gardner, Dale R; Pfister, James A

    2014-07-30

    Swainsonine, an indolizidine alkaloid with significant physiological activity, is an α-mannosidase and mannosidase II inhibitor that alters glycoprotein processing and causes lysosomal storage disease. Swainsonine is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. Consumption of these plants by grazing animals leads to a chronic wasting disease characterized by weight loss, depression, altered behavior, decreased libido, infertility, and death. This review focuses on the three plant families and the associated taxa that contain swainsonine; the fungi that produce swainsonine, specifically the fungal endophytes associated with swainsonine-containing taxa; studies investigating the plant, endophyte, and swainsonine relationship; the influence of environmental factors on swainsonine concentrations in planta; and areas of future research.

  9. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Directory of Open Access Journals (Sweden)

    Laurent Calcul

    2013-12-01

    Full Text Available We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18 were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14, which was found to display the most favorable bioactivity profile.

  10. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    Science.gov (United States)

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests.

    Science.gov (United States)

    Knapp, Dániel G; Kovács, Gábor M

    2016-12-01

    Although dark septate endophytes (DSE) represent a worldwide dispersed form group of root-colonizing endophytic fungi, our knowledge on their role in ecosystem functioning is far limited. In this study, we aimed to test if functional diversity exists among DSE fungi representing different lineages of root endophytic fungal community of semiarid sandy grasslands. To address this question and to gain general information on function of DSE fungi, we adopted api-ZYM and BioLog FF assays to study those non-sporulating filamentous fungi and characterized the metabolic activity of 15 different DSE species. Although there were striking differences among the species, all of the substrates tested were utilized by the DSE fungi. When endophytes characteristic to grasses and non-grass host plants were separately considered, we found that the whole substrate repertoire was used by both groups. This might illustrate the complementary functional diversity of the communities root endophytic plant-associated fungi. The broad spectra of substrates utilized by these root endophytes illustrate the functional importance of their diversity, which can play role not only in nutrient mobilization and uptake of plants from with nutrient poor soils, but also in general plant performance and ecosystem functioning.

  12. Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species.

    Science.gov (United States)

    Alberto, R N; Costa, A T; Polonio, J C; Santos, M S; Rhoden, S A; Azevedo, J L; Pamphile, J A

    2016-11-03

    Plants of medicinal and economic importance have been studied to investigate the presence of enzyme-producing endophytic fungi. The characterization of isolates with distinct enzyme production potential may identify suitable alternatives for specialized industry. At Universidade Estadual de Maringá Laboratory of Microbial Biotechnology, approximately 500 isolates of endophytic fungi have been studied over the last decade from various host plants, including medicinally and economically important species, such as Luehea divaricata (Martius et Zuccarini), Trichilia elegans A. Juss, Sapindus saponaria L., Piper hispidum Swartz, and Saccharum spp. However, only a fraction of these endophytes have been identified and evaluated for their biotechnological application, having been initially grouped by morphological characteristics, with at least one representative of each morphogroup tested. In the current study, several fungal strains from four plants (L. divaricata, T. elegans, S. saponaria, and Saccharum spp) were identified by ribosomal DNA typing and evaluated semi-quantitatively for their enzymatic properties, including amylase, cellulase, pectinase, and protease activity. Phylogenetic analysis revealed the presence of four genera of endophytic fungi (Diaporthe, Saccharicola, Bipolaris, and Phoma) in the plants examined. According to enzymatic tests, 62% of the isolates exhibited amylase, approximately 93% cellulase, 50% pectinase, and 64% protease activity. Our results verified that the composition and abundance of endophytic fungi differed between the plants tested, and that these endophytes are a potential enzyme production resource of commercial and biotechnological value.

  13. Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides.

    Directory of Open Access Journals (Sweden)

    Tara A Gianoulis

    Full Text Available The microbial conversion of solid cellulosic biomass to liquid biofuels may provide a renewable energy source for transportation fuels. Endophytes represent a promising group of organisms, as they are a mostly untapped reservoir of metabolic diversity. They are often able to degrade cellulose, and they can produce an extraordinary diversity of metabolites. The filamentous fungal endophyte Ascocoryne sarcoides was shown to produce potential-biofuel metabolites when grown on a cellulose-based medium; however, the genetic pathways needed for this production are unknown and the lack of genetic tools makes traditional reverse genetics difficult. We present the genomic characterization of A. sarcoides and use transcriptomic and metabolomic data to describe the genes involved in cellulose degradation and to provide hypotheses for the biofuel production pathways. In total, almost 80 biosynthetic clusters were identified, including several previously found only in plants. Additionally, many transcriptionally active regions outside of genes showed condition-specific expression, offering more evidence for the role of long non-coding RNA in gene regulation. This is one of the highest quality fungal genomes and, to our knowledge, the only thoroughly annotated and transcriptionally profiled fungal endophyte genome currently available. The analyses and datasets contribute to the study of cellulose degradation and biofuel production and provide the genomic foundation for the study of a model endophyte system.

  14. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay

    Directory of Open Access Journals (Sweden)

    Yiing Yng Chow

    2017-01-01

    Full Text Available This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb introduced into oil palm ramets (host model. The endophytes selected were Diaporthe phaseolorum (WAA02, Trichoderma asperellum (T2, and Penicillium citrinum (BTF08. Ramets were first inoculated with 100 mL of fungal cells (106 cfu mL−1 via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta. Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR detected and identified the isolates from the plant tissues. The ergosterol assay (via high-performance liquid chromatography, HPLC confirmed the presence of endophytes and Gb in planta. The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta. This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  15. Seasonal and Tissue Age Influences on Endophytic Fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains,Beijing

    Institute of Scientific and Technical Information of China (English)

    Liang-Dong Guo; Guo-Rui Huang; Yu Wang

    2008-01-01

    Endophytic fungi associated with Pinus tabulaeformis Carr.were investigated in the Dongling Mountains of Beijing.A total of 16200 tissue segments of P.tabulaeformis from four sample collections were processed,and 10659 fungal isolates were recovered.The overall colonization and isolation rates of endophytic fungi from high to low were spring>winter>autumn>summer and in different tissues were bark>needle>xylem,irrespective of sampling seasons.The colonization rates of endophytic fungi of needles increased with age in the four sample collections.There were no significant differences of the colonization rates of endophytic fungi among 1-,2-,and 3-year-old bark and xylem,except for significantly lower colonization rates in 1-year-old bark than in 2- and 3-year-old bark in summer.A similar trend of the isolation rates of endophytic fungi occurred.A total of 24 fungal taxa were recorded,of these five taxa Alternaria alternata,Leptostroma sp.,Pestalotiopsis besseyi,Phoma lingam,and Phomopsis archeri,were consistently isolated as the common fungi in each sample collection.Our results suggest that some fungi show a certain degree of tissue recurrence or specificity,and the composition of endophytic assemblages is not conspicuously influenced by the seasonal factor.

  16. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host.

    Science.gov (United States)

    Rodriguez Estrada, Alma E; Jonkers, Wilfried; Kistler, H Corby; May, Georgiana

    2012-07-01

    Highly diverse communities of microbial symbionts occupy eukaryotic organisms, including plants. While many well-studied symbionts may be characterized as either parasites or as mutualists, the prevalent but cryptic endophytic fungi are less easily qualified because they do not cause observable symptoms of their presence within their host. Here, we investigate the interactions of an endophytic fungus, Fusarium verticillioides with a pathogen, Ustilago maydis, as they occur within maize (Zea mays). We used experimental inoculations to evaluate metabolic mechanisms by which these three organisms might interact. We assessed the impacts of fungal-fungal interactions on endophyte and pathogen growth within the plant, and on plant growth. We find that F. verticillioides modulates the growth of U. maydis and thus decreases the pathogen's aggressiveness toward the plant. With co-inoculation of the endophyte with the pathogen, plant growth is similar to that which would be gained without the pathogen present. However, the endophyte may also break down plant compounds that limit U. maydis growth, and obtains a growth benefit from the presence of the pathogen. Thus, an endophyte such as F. verticillioides may function as both a defensive mutualist and a parasite, and express nutritional modes that depend on ecological context. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Influence of host tree species on isolation and communities of mycorrhizal and endophytic fungi from roots of a tropical epiphytic orchid, Dendrobium sinense (Orchidaceae).

    Science.gov (United States)

    Wang, Xiaoming; Li, Yijia; Song, Xiqiang; Meng, Qianwan; Zhu, Jie; Zhao, Ying; Yu, Wengang

    2017-07-06

    Most studies on the host preference of orchids have focused on the association between orchids and host characteristics, but little is known about the differences of mycorrhizal and endophytic fungal communities in epiphytic orchids growing on different host tree species. We selected Dendrobium sinense, a tropical epiphytic orchid, to determine if fungal endophytes from the roots of D. sinense were preferentially correlated with host tree species. Fifty-six fungal operational taxonomic units (OTUs) from 36 host trees were identified. The results indicated that the species richness and diversity of mycorrhizal and endophytic fungal communities isolated from D. sinense roots were strongly influenced by host tree species. Both species richness and diversity indices showed that D. sinense roots on Syzygium buxifolium harbored the most diverse and abundant endophytic fungi. Species of Tulasnellaceae were dominant on S. buxifolium and Rhododendron moulmainense but infrequent on Cyclobalanopsis disciformis and Podocarpus neriifolius. Our results provide evidence for distinct mycorrhizal and endophytic fungal communities on different host tree species. Further research focusing on fungi-orchid-host preference could be conducted to increase our understanding for the in situ conservation of epiphytic orchids.

  18. Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots

    DEFF Research Database (Denmark)

    Louarn, Sébastien; Nawrocki, Arkadiusz; Thorup-Kristensen, Kristian;

    2013-01-01

    quality. The changes observed were similar in the two cropping systems. Using both biological isolation and a fungal PCR targeting the ITS region, we identified several endophytic species belonging to the Ascomycota. The most frequently encountered taxa were Tetracladium, Leptodontidium, Nectriaceae...... and Phoma which are known to occur as root endophytes or as root-associated fungi. As for the proteomics data, no consistent statistically significant differences in micromycota were observed between the two cropping systems. We conclude that cropping system did not have an influence on the postharvest...

  19. Mycorrhizal Formation and Diversity of Endophytic Fungi in Hair Roots of Vaccinium oldhamii Miq. in Japan.

    Science.gov (United States)

    Baba, Takashi; Hirose, Dai; Sasaki, Nobumitsu; Watanabe, Naoaki; Kobayashi, Nobuo; Kurashige, Yuji; Karimi, Fraidoon; Ban, Takuya

    2016-06-25

    The root diameters as well as colonization and diversity of the root-associating fungi of Vaccinium oldhamii Miq. were investigated in order to obtain information on their mycorrhizal properties. The distal regions of roots had typical hair roots with diameters of less than 100 μm. Ericoid mycorrhizal fungi (ErMF) and dark septate endophytes (DSE) were frequently observed in the roots. Ascomycetes, particularly helotialean fungi, appeared to be dominant among the endophytic fungi of V. oldhamii roots. Furthermore, Rhizoscyphus ericae (Read) Zhuang & Korf and Oidiodendron maius Barron known as ErMF were detected more frequently than other fungal species.

  20. Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br.

    Science.gov (United States)

    Parthasarathy, Ramalingam; Sathiyabama, Muthukrishnan

    2014-03-01

    Gymnema sylvestre is a plant containing the triterpenoid gymnemagenin, which is used in the pharmaceutical industry as an antidiabetic agent. The objective of this study was to determine whether endophytic fungi, isolated from G. sylvestre, produce gymnemagenin. We isolated an endophytic fungal strain from the leaves of G. sylvestre which produces gymnemagenin in the medium. The fungus was identified as Penicillium oxalicum based on morphological and molecular methods. The strain had a component with the same TLC Rf value and HPLC retention time as authentic gymnemagenin. The presence of gymnemagenin was further confirmed by FTIR, UV, and (1)H NMR analyses.

  1. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth.

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    Full Text Available BACKGROUND: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. METHODOLOGY/PRINCIPAL FINDINGS: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this

  2. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Blanco, Fernando; Becerril, José M; Garbisu, Carlos

    2017-04-15

    Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control).

  3. [Fungal keratitis].

    Science.gov (United States)

    Bourcier, T; Sauer, A; Letscher-Bru, V; Candolfi, E

    2011-10-01

    Fungal keratitis (keratomycosis) is a rare but severe cause of infectious keratitis. Its incidence is constant, due to steroids or immunosuppressive treatments and contact lenses. Pathogens often invade corneas with chronic diseases of the ocular surface but fungal keratitis is also observed following injuries with plant foreign objects. The poor prognosis of these infections is related both to fungal virulence, decreased host defense, as well as delays in diagnosis. However, new antimycotic treatments allow better management and prognosis.

  4. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales, a pantropical insecticide-producing endophyte.

    Directory of Open Access Journals (Sweden)

    Gerald F Bills

    Full Text Available BACKGROUND: Nodulisporic acids (NAs are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. METHODS AND RESULTS: Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. CONCLUSIONS AND SIGNIFICANCE: Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a

  5. Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    N Saleem Basha

    2012-01-01

    Full Text Available Plants formed the basis of sophisticated traditional medicine systems that have been in existence for thousands of years. But, the advent of drug resistance in human pathogenic bacteria and others has prompted a search for more and better antibiotics. This has led to the identification of a new promising source of antimicrobials known as endophytes. Hence, our study was aimed to investigate the ability of endophytic fungi isolated from T. brownii to produce secondary metabolites, which can act as antimicrobial agents. In this preliminary investigation, the leaves were used for isolation of endophytic fungi and fermented, and the cell free ferment broth was subjected to antimicrobial screening against six human pathogens; Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans by using standard protocol of agar well diffusion method. The results of the endophyte isolation gave three fungal isolates named TBF1, TBF2 and TBF3. According to morphological and microscopical characterizations, the isolates were found to be similar to Rhizophus oryzae (TBF1, Aspergillus niger (TBF2 and Aspergillus flavus (TBF3. Two of the three isolated endophytes i.e., TBF2 and TBF3 showed potential antimicrobial activity against S. aureus and no inhibition was found against other tested pathogens. The present study has proven that T. brownii may be a rich source of endophytic fungi with antimicrobial potential and our findings may form a basis for further studies on endophytic fungi from medicinal plants for antimicrobial activities.

  6. Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order - Phaeomoniellales.

    Science.gov (United States)

    Chen, Ko-Hsuan; Miadlikowska, Jolanta; Molnár, Katalin; Arnold, A Elizabeth; U'Ren, Jana M; Gaya, Ester; Gueidan, Cécile; Lutzoni, François

    2015-04-01

    Symbiotic fungi living in plants as endophytes, and in lichens as endolichenic fungi, cause no apparent symptoms to their hosts. They are ubiquitous, ecologically important, hyperdiverse, and represent a rich source of secondary compounds for new pharmaceutical and biocontrol products. Due in part to the lack of visible reproductive structures and other distinctive phenotypic traits for many species, the diversity and phylogenetic affiliations of these cryptic fungi are often poorly known. The goal of this study was to determine the phylogenetic placement of representative endophytes within the Eurotiomycetes (Pezizomycotina, Ascomycota), one of the most diverse and evolutionarily dynamic fungal classes, and to use that information to infer processes of macroevolution in trophic modes. Sequences of a single locus marker spanning the nuclear ribosomal internal transcribed spacer region (nrITS) and 600 base pairs at the 5' end of the nuclear ribosomal large subunit (nrLSU) were obtained from previous studies of >6000 endophytic and endolichenic fungi from diverse biogeographic locations and hosts. We conducted phylum-wide phylogenetic searches using this marker to determine which fungal strains belonged to Eurotiomycetes and the results were used as the basis for a class-wide, seven-locus phylogenetic study focusing on endophytic and endolichenic Eurotiomycetes. Our cumulative supermatrix-based analyses revealed that representative endophytes within Eurotiomycetes are distributed in three main clades: Eurotiales, Chaetothyriales and Phaeomoniellales ord. nov., a clade that had not yet been described formally. This new order, described herein, is sister to the clade including Verrucariales and Chaetothyriales. It appears to consist mainly of endophytes and plant pathogens. Morphological characters of endophytic Phaeomoniellales resemble those of the pathogenic genus Phaeomoniella. This study highlights the capacity of endophytic and endolichenic fungi to expand our

  7. LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum.

    Science.gov (United States)

    Chithra, S; Jasim, B; Anisha, C; Mathew, Jyothis; Radhakrishnan, E K

    2014-05-01

    Piper nigrum is very remarkable for its medicinal properties due to the presence of metabolites like piperine. Emerging understanding on the biosynthetic potential of endophytic fungi suggests the possibility to have piperine producing fungi in P. nigrum. In the current study, endophytic fungi isolated from P. nigrum were screened for the presence of piperine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This resulted in the identification of a Mycosphaerella sp. with the ability to produce piperine extracellularly. The biosynthesis of piperine (C17H19NO3) by the endophytic fungal isolate was confirmed by the presence of m/z 286.1 (M + H(+)) in the LC-MS/MS analysis using positive mode ionization. This was further supported by the presence of specific fragment ions with masses 135, 143, 171 and 201 formed due to the fragmentation of piperine present in the fungal extract.

  8. Isolation of bacterial endophytes from germinated maize kernels.

    Science.gov (United States)

    Rijavec, Tomaz; Lapanje, Ales; Dermastia, Marina; Rupnik, Maja

    2007-06-01

    The germination of surface-sterilized maize kernels under aseptic conditions proved to be a suitable method for isolation of kernel-associated bacterial endophytes. Bacterial strains identified by partial 16S rRNA gene sequencing as Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., and Sphingomonas sp. were isolated from kernels of 4 different maize cultivars. Genus Pantoea was associated with a specific maize cultivar. The kernels of this cultivar were often overgrown with the fungus Lecanicillium aphanocladii; however, those exhibiting Pantoea growth were never colonized with it. Furthermore, the isolated bacterium strain inhibited fungal growth in vitro.

  9. EPICHLOE SPECIES: fungal symbionts of grasses.

    Science.gov (United States)

    Schardl, C L

    1996-01-01

    Epichloë species and their asexual descendants (Acremonium endophytes) are fungal symbionts of C3 grasses that span the symbiotic continuum from antagonism to mutualism depending on the relative importance, respectively, of horizontal transmission of sexual spores versus vertical clonal transmission in healthy grass seeds. At least seven sexual Epichloë species are identifiable by mating tests, and many asexual genotypes are interspecific hybrids. Benefits conferred by the symbionts on host plants include protection from biotic factors and abiotic stresses such as drought. Four classes of beneficial alkaloids are associated with the symbionts: ergot alkaloids, indolediterpenes (lolitrems), peramine, and saturated aminopyrrolizidines (lolines). These alkaloids protect host plants from insect and vertebrate herbivores, including livestock. Genetic engineering of the fungal symbionts as more suitable biological protectants for forage grasses requires identification of fungal genes for alkaloid biosynthesis, and DNA-mediated transformation of the fungi.

  10. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    OpenAIRE

    Ratnaweera, Pamoda B.; de Silva, E. Dilip; Williams, David E.; Andersen, Raymond J

    2015-01-01

    Background Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the an...

  11. Carbon translocation from a plant to an insect-pathogenic endophytic fungus

    Science.gov (United States)

    Behie, Scott W.; Moreira, Camila C.; Sementchoukova, Irina; Barelli, Larissa; Zelisko, Paul M.; Bidochka, Michael J.

    2017-01-01

    Metarhizium robertsii is a common soil fungus that occupies a specialized ecological niche as an endophyte and an insect pathogen. Previously, we showed that the endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to a host plant via fungal mycelia. We speculated that in exchange for this insect-derived nitrogen, the plant would provide photosynthate to the fungus. By using 13CO2, we show the incorporation of 13C into photosynthate and the subsequent translocation of 13C into fungal-specific carbohydrates (trehalose and chitin) in the root/endophyte complex. We determined the amount of 13C present in root-associated fungal biomass over a 21-day period by extracting fungal carbohydrates and analysing their composition using nuclear magnetic resonance (NMR) spectroscopy. These findings are evidence that the host plant is providing photosynthate to the fungus, likely in exchange for insect-derived nitrogen in a tripartite, and symbiotic, interaction. PMID:28098142

  12. Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana.

    Science.gov (United States)

    Li, Yongchao; Yang, Jing; Zhou, Xiuren; Zhao, Wenen; Jian, Zaiyou

    2015-02-01

    Endophytic fungi of inner root bark of Taxus wallichiana var. mairei were investigated in order to find endophytes producing 10-DABIII (10-deacetyl baccatin III). Purified colonies were cultured in potato dextrose broth (PDB), and then the organic extracts from fungi were analyzed with HPLC, LC-MS, and (1)H NMR. Of 102 fungal endophytes isolated from the inner root bark, only one strain named IRB54 can yield 10-DABIII but no taxol and baccatin III. In PDB culture medium, its productivity was 187.564 ug/l. Based on its morphological characteristics and molecular data, the IRB54 strain was identified as Trichoderma sp. The isolation of the fungus IRB54 yielding 10-DABIII will provide an alternative resource to manufacture taxol/taxotere via semi-synthesis and some useful clues for improving the understanding of taxane synthesis evolution.

  13. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro microplants

    Directory of Open Access Journals (Sweden)

    Luciana Cristina Vitorino

    2013-01-01

    Full Text Available Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro microplants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in microplants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were overexpressed only when the microplant was treated with endophytic fungi.

  14. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  15. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah.

    Science.gov (United States)

    Vieira, Mariana L A; Johann, Susana; Hughes, Frederic M; Rosa, Carlos A; Rosa, Luiz H

    2014-12-01

    The fungal endophyte community associated with Baccharis trimera, a Brazilian medicinal plant, was characterized and screened for its ability to present antimicrobial activity. By using molecular methods, we identified and classified the endophytic fungi obtained into 25 different taxa from the phyla Ascomycota and Basidiomycota. The most abundant species were closely related to Diaporthe phaseolorum, Pestalotiopsis sp. 1, and Preussia pseudominima. The differences observed in endophytic assemblages from different B. trimera specimens might be associated with their crude extract activities. Plants that had higher α-biodiversity were also those that contributed more to the regional (γ) diversity. All fungal isolates were cultured and their crude extracts screened to examine the antimicrobial activities. Twenty-three extracts (12.8%) displayed antimicrobial activities against at least one target microorganism. Among these extracts, those obtained from Epicoccum sp., Pestalotiopsis sp. 1, Cochliobolus lunatus, and Nigrospora sp. presented the best minimum inhibitory concentration values. Our results show that the endophytic fungal community associated with the medicinal plant B. trimera included few dominant bioactive taxa, which may represent sources of compounds with antifungal activity. Additionally, the discovery of these bioactive fungi in association with B. trimera suggests that Brazilian plants used as folk medicine may shelter a rich fungal diversity as well as taxa able to produce bioactive metabolites with antimicrobial activities.

  16. Complete Genome Sequences of the Endophytic Streptomyces Strains EN16, EN23, and EN27, Isolated from Wheat Plants

    Science.gov (United States)

    Araujo, Ricardo; Adetutu, Eric; Tobe, Shanan S.; Mallya, Sandeep; Paul, Bobby; Satyamoorthy, Kapaettu

    2016-01-01

    The complete genome sequences of three endophytic Streptomyces species were compared. Strains EN16, EN23, and EN27 were isolated from surface-sterilized roots of wheat plants from South Australia. In field trials, these strains are effective in suppressing fungal root diseases of wheat when added as spore coatings to wheat seed. PMID:27932645

  17. Fungal symbionts alter plant responses to global change.

    Science.gov (United States)

    Kivlin, Stephanie N; Emery, Sarah M; Rudgers, Jennifer A

    2013-07-01

    While direct plant responses to global change have been well characterized, indirect plant responses to global change, via altered species interactions, have received less attention. Here, we examined how plants associated with four classes of fungal symbionts (class I leaf endophytes [EF], arbuscular mycorrhizal fungi [AMF], ectomycorrhizal fungi [ECM], and dark septate endophytes [DSE]) responded to four global change factors (enriched CO2, drought, N deposition, and warming). We performed a meta-analysis of 434 studies spanning 174 publications to search for generalizable trends in responses of plant-fungal symbioses to future environments. Specifically, we addressed the following questions: (1) Can fungal symbionts ameliorate responses of plants to global change? (2) Do fungal symbiont groups differ in the degree to which they modify plant response to global change? (3) Do particular global change factors affect plant-fungal symbioses more than others? In all global change scenarios, except elevated CO2, fungal symbionts significantly altered plant responses to global change. In most cases, fungal symbionts increased plant biomass in response to global change. However, increased N deposition reduced the benefits of symbiosis. Of the global change factors we considered, drought and N deposition resulted in the strongest fungal mediation of plant responses. Our analysis highlighted gaps in current knowledge for responses of particular fungal groups and revealed the importance of considering not only the nonadditive effects of multiple global change factors, but also the interactive effects of multiple fungal symbioses. Our results show that considering plant-fungal symbioses is critical to predicting ecosystem response to global change.

  18. Existence of entomopathogen fungi, Beauveria bassiana as an endophyte in cacao seedlings

    Directory of Open Access Journals (Sweden)

    Endang Sulistyowati

    2015-12-01

    Full Text Available Beauveria bassiana is one of the entomopathogen fungi which is known as biological control agent of cocoa pod borer and cocoa mirids (Helopeltis spp.. Because of its effectiveness in the fields is still not consistent, so we conduct a research with the objective to know the possibility of Beauveria bassiana to be established as a endophyte. Various fungal entomopathogens have already been reported as endophytes and the various methods used to inoculate the plants with B. bassiana were partially effective. The research has been conducted in laboratory of Plant Protection, Indonesian Coffee and Cocoa Research Institute by inoculating of cocoa seeds and cocoa nursery with B. bassiana suspension.  The trial was arranged  by randomized complete block design with a factorial arrangement. The factor were spore concentration of B. bassiana (0; 2; and 4 g/ 10 l and cocoa varieties (family of ICS 60, TSH858, and hybrid. The trial were use  four replications. The results showed that the fungal entomopathogen B. bassiana was established as an endophyte in cocoa seedling, both from cocoa seeds and nursery application. Percentage of existence of B. bassiana colonies as endophytes one month after seeds application were ICS 60 amounted to 93.3 % both on concentration treatments, while the families of TSH 858 by 80 % and 86.67 % respectively in 2 g and 4 g per 10 l of B. bassiana spores concentration treament.. The lowest percentage was in hybrids, which amounted to 66.67% and 50%. B. bassiana colonies was exixtence as an endophyte in culture from root, stem and leaves of cocoa seedling up to 5 months post inoculation. While the application on nursery by soil drenshing, leaf spraying, and stem injection , it was known that B. bassiana colonies were found in the tissues of leaves, stems, and roots until two months after application. Colonies of B. bassiana as endophytes still exsist until six weeks after nursery was planted in the field. 

  19. Fungal rhinosinusitis.

    Science.gov (United States)

    Netkovski, J; Shirgoska, B

    2012-01-01

    Fungi are a major part of the ecosystem. In fact, over 250 fungal species have been reported to produce human infections. More than ever, fungal diseases have emerged as major challenges for physicians and clinical microbiologists. The aim of this study was to summarize the diagnostic procedures and endoscopic surgical treatment of patients with fungal rhinosinusitis. Eleven patients, i.e. 10% of all cases with chronic inflammation of paranasal sinuses, were diagnosed with fungal rhinosinusitis. Ten of them were patients with a noninvasive form, fungus ball, while only one patient was classified in the group of chronic invasive fungal rhinosinusitis which was accompanied with diabetes mellitus. All patients underwent nasal endoscopic examination, skin allergy test and had preoperative computed tomography (CT) scans of the sinuses in axial and coronal plane. Functional endoscopic sinus surgery was performed in 10 patients with fungus ball, while a combined approach, endoscopic and external, was done in the immunocompromised patient with the chronic invasive form of fungal rhinosinusitis. Most cases (9/11) had unilateral infection. In 9 cases infection was restricted to a single sinus, and here the maxillary sinus was most commonly affected (8/9) with infections in other patients being restricted to the sphenoid sinus (1/9). Two patients had infections affecting two or more sinuses. In patients with an invasive form of the fungal disease there was involvement of the periorbital and orbital tissues. In patients with fungus ball the mycelia masses were completely removed from the sinus cavities. Long-term outcome was positive in all the operated patients and no recurrence was detected. The most frequent fungal agent that caused rhinosinusitis was Aspergillus. Mucor was identified in the patient with the invasive form. Endoscopic examination of the nasal cavity and CT scanning of paranasal sinuses followed by endoscopic sinus surgery were represented as valuable

  20. Endophyte isolate and host grass effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) feeding.

    Science.gov (United States)

    Ball, Olivier J P; Gwinn, Kimberly D; Pless, Charles D; Popay, Alison J

    2011-04-01

    Endophytic fungi belonging to the genus Neotyphodium, confer resistance to infected host grasses against insect pests. The effect of host species, and endophtye species and strain, on feeding and survival of the corn flea beetle, Chaetocnema pulicaria Melsheimer (Coleoptera: Chrysomelidae) was investigated. The grass-endophyte associations included natural and artificially derived associations producing varying arrays of common endophyte-related alkaloids or alkaloid groups, peramine, lolitrem B, ergovaline, and the lolines. Preference and nonpreference tests showed that C. pulicaria feeding and survival were reduced by infection of tall fescue with the wild-type strain of N. coenophialum, the likely mechanism being antixenosis rather than antibiosis. In the preference tests, endophyte and host species effects were observed. Of the 10 different Neotyphodium strains tested in artificially derived tall fescue associations, eight strongly deterred feeding by C. pulicaria, whereas the remaining two strains had little or no effect on feeding. Infection of tall fescue with another fungal symbiont, p-endophyte, had no effect. Perennial ryegrass, Lolium perenne L., infected with six strains of endophyte, was moderately resistant to C. pulicaria compared with endophyte-free grass, but four additional strains were relatively inactive. Six Neotyphodium-meadow fescue, Festuca pratensis Huds., associations, including the wild-type N. uncinatum-meadow fescue combination, were resistant, whereas three associations were not effective. Loline alkaloids seemed to play a role in antixenosis to C. pulicaria. Effects not attributable to the lolines or any other of the alkaloids examined also were observed. This phenomenon also has been reported in tests with other insects, and indicates the presence of additional insect-active factors.

  1. Endophytes from an Australian native plant are a promising source of industrially useful enzymes.

    Science.gov (United States)

    Zaferanloo, Bita; Virkar, Aditya; Mahon, Peter J; Palombo, Enzo A

    2013-02-01

    Endophytes are microorganisms that live within plant tissues that are potential sources of novel bioactive compounds, including enzymes. We have identified endophytes of the Australian native plant Eremophilia longifolia which were screened for the production of industrially useful enzymes. Seventeen fungal endophytes were isolated from the leaves of E. longifolia and enzyme production was investigated within a range of pH (3.5, 5.5, 7 and 9) and temperatures (9, 25, 37 and 50 °C). Amylase was the most common enzyme encountered with numerous isolates showing production throughout the temperature and pH ranges. Protease production was also seen over the conditions tested but was more dominant at lower pH and temperature. Activity was not observed for other enzymes including ligninase, xylanase and cellobiohydrolase. Enzymes from isolates of Preussia minima, Alternaria sp. and an unclassified fungus, which showed highest activity in screening assays, were investigated further. Enzyme production was verified by zymography and the amylase activity of P. minima was found to be significantly greater than that of Aspergillus oryzae particularly in alkaline conditions and low temperature which are desirable properties for the detergent industry. This work shows that enzymes with potential use in industry can be readily identified in fungal endophytes.

  2. Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Alvarez, P.; Martin-Garcia, J.; Rodriguez-Ceinos, S.; Diez, J. J.

    2012-07-01

    The replacement of native forest with plantations of other species may have important impacts on ecosystems. Some of these impacts have been widely studied, but very little is known about the effects on fungal communities and specifically endo phytic fungi. In this study, endophyte assemblages in pine plantations (Pinus sylvestris, P. nigra and P. pinaster) and native oak forests (Quercus pyrenaica) in the north of the province of Palencia (Spain) were analyzed. For this purpose, samples of needles/leaves and twigs were collected from three trees in each of three plots sampled per host species. The samples were later processed in the laboratory to identify all of the endo phytic species present. In addition, an exhaustive survey was carried out of the twelve sites to collect data on the environmental, crown condition, dendrometric and soil variables that may affect the distribution of the fungi. The endophyte assemblages isolated from P. sylvestris and P. nigra were closely related to each other, but were different from those isolated from P. pinaster. The endophytes isolated from Q. pyrenaica were less closely related to those from the other hosts, and therefore preservation of oak stands is important to prevent the loss of fungal diversity. Finally, the distribution of the endophyte communities was related to some of the environmental variables considered. (Author) 42 refs.

  3. Anticestodal Activity of Endophytic Pestalotiopsis sp. on Protoscoleces of Hydatid Cyst Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Vijay C. Verma

    2013-01-01

    Full Text Available Surgery is still the main treatment in hydatidosis caused by Echinococcus, which is a global health problem in human and animals. So, there is need for some natural protoscolicidal agents for instillation to prevent their reoccurrence at therapeutic doses. In this present investigation, anticestodal activity of one of the endophytic fungi Pestalotiopsis sp. from Neem plant was observed on protoscoleces of hydatid cysts of Echinococcus granulosus. Viability of protoscoleces was confirmed by 0.1% aqueous eosin red stain method, where mortality was observed at different concentrations with respect to time. An average anticestodal activity was observed with different endophytic fungal strains, that is, Nigrospora (479 ± 2.9, Colletotrichum (469 ± 25.8, Fusarium (355 ± 14.5, and Chaetomium (332 ± 28.3 showing 64 to 70% protoscolicidal activity, except Pestalotiopsis sp. (581 ± 15.0, which showed promising scolicidal activity up to 97% mortality just within 30 min of incubation. These species showed significant reduction in viability of protoscoleces. This is the first report on the scolicidal activity of endophytic Pestalotiopsis sp. We conclude that ultrastructural changes in protoscoleces were due to endophytic extract suggesting that there may be some bioactive compounds that have selective action on the tegument layer of protoscoleces. As compared with that of standard drug used, endophytic species of Neem plant shows significant anticestodal activity.

  4. BIODIVERSITY OF THE ENDOPHYTIC FUNGI ISOLATED FROM MORINGA OLEIFERA OF YERCAUD HILLS

    Directory of Open Access Journals (Sweden)

    R. Dhanalakshmi, S. Umamaheswari, P. Sugandhi and D. Arvind Prasanth*

    2013-03-01

    Full Text Available ABSTRACT: Endophytic fungi residing inside the medicinal plants are of gaining importance for their bioactive compounds. This present study is undertaken to isolate and identify the potential endophytic fungi from Moringa oleifera, a traditional medicinal plant. A total of 24 segments each 12 from leaf and stem were collected, surface sterilized and was inoculated on to Sabouraud Dextrose Agar (SDA plates. Based on the macroscopic & microscopic features the fungal isolates were identified as Alternaria spp., Aspergillus spp. Bipolaris spp., Exosphiala spp., Nigrospora spp., and Penicillium spp. Many unidentified sterile mycelia forms were also found which were grouped under the class mycelia sterilia. The Colonization Frequency (CF and Endophytic Infection Rate (EIR were observed as 91.66% and 45.83% respectively. The results of this study suggest that traditional medicinal plants are a rich and reliable source of novel endophytic fungi. Further studies are required with regard to the screening of these endophytic fungi for the production of novel bioactive compounds which are medically important in the treatment of diseases.

  5. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin.

    Science.gov (United States)

    Yan, Jvfen; Qi, Ningbo; Wang, Suping; Gadhave, Kiran; Yang, Shulin

    2014-11-01

    Endophytic fungi are ubiquitous in the plant kingdom and they produce a variety of secondary metabolites to protect plant communities and to show some potential for human use. However, secondary metabolites produced by endophytic fungi in the medicinal plant Curcuma wenyujin are sparsely explored and characterized. The aim of this study was to characterize the secondary metabolites of an active endophytic fungus. M7226, the mutant counterpart of endophytic fungus EZG0807 previously isolated from the root of C. wenyujin, was as a target strain. After fermentation, the secondary metabolites were purified using a series of purification methods including thin layer chromatography, column chromatography with silica, ODS-C18, Sephadex LH-20, and macroporous resin, and were analyzed using multiple pieces of data (UV, IR, MS, and NMR). Five compounds were isolated and identified as curcumin, cinnamic acid, 1,4-dihydroxyanthraquinone, gibberellic acid, and kaempferol. Interestingly, curcumin, one of the main active ingredients of C. wenyujin, was isolated as a secondary metabolite from a fungal endophyte for the first time.

  6. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    Science.gov (United States)

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  7. Fungal allergens.

    OpenAIRE

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immuno...

  8. Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco

    Directory of Open Access Journals (Sweden)

    Ebel R.

    2009-01-01

    Full Text Available This study reports the chemical investigation and cytotoxic activity of the secondary metabolites produced by the endophytic fungus Chaetomium sp. isolated from Salvia officinalis growing in Morocco. This plant was collected from the Beni-Mellal Mountain in Morocco and belongs to the Lamiaceae family and is named in Morocco “Salmia”. The endophytic fungus Chaetomium sp. was isolated from the tissues of the stem of this plant. The fungal strain was identified by PCR. The crude organic extract of the fungal strain was proven to be active when tested for cytotoxicity against L5178Y mouse lymphoma cells. Chemical investigation of the secondary metabolites showed that cochliodinol is the main component beside isocochliodinol. The structures of the isolated compounds were determined on the basis of NMR analysis (1H, 13C, COSY and HMBC as well as by mass spectrometry using ESI (Electron Spray Ionisation as source.

  9. Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana.

    Science.gov (United States)

    Artanti, N; Tachibana, S; Kardono, L B S; Sukiman, H

    2011-11-15

    Endophytic microbes are considered as an important source of natural products. They show antibiotic, anticancer, antioxidative and antidiabetic activities. Therefore, there are many reports on the isolation and bioactivity screening of endophytic fungi from various plants including Taxus species. Taxus sumatrana (Miq.) de Laub is found in Indonesia. The objective of this study is to conduct an in vitro screening of 14 endophytic fungi isolated from Taxus sumatrana having antioxidative and alpha-glucosidase inhibitor activities. Each endophytic fungus was cultured for 7 days and the fungal mycelium and medium were extracted with methanol and ethyl acetate, respectively, to produce each extract. The antioxidative activity of each extract was tested by DPPH free radical scavenging activity and beta-carotene bleaching assays, whereas antidiabetic activity was tested based on alpha-glucosidase inhibitor activity. The screening results showed that fungal mycelia of TSC 13 had the best alpha-glucosidase inhibitor activity and TSC 24 had the best antioxidative activity. Isolation of bioactive compounds from TSC 13 and TSC 24 is being conducted. This is the first report that endophytic fungi isolated from T. sumatrana exhibited anti alpha-glucosidase inhibitory and anti oxidative activities.

  10. Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes.

    Science.gov (United States)

    Blumenstein, Kathrin; Macaya-Sanz, David; Martín, Juan A; Albrectsen, Benedicte R; Witzell, Johanna

    2015-01-01

    There is an increasing need to calibrate microbial community profiles obtained through next generation sequencing (NGS) with relevant taxonomic identities of the microbes, and to further associate these identities with phenotypic attributes. Phenotype MicroArray (PM) techniques provide a semi-high throughput assay for characterization and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions of two different PM protocols used in our recent studies on fungal endophytes of forest trees, and highlight the benefits and limitations of this technique. We found that the PM approach enables effective screening of substrate utilization by endophytes. However, the technical limitations are multifaceted and the interpretation of the PM data challenging. For the best result, we recommend that the growth conditions for the fungi are carefully standardized. In addition, rigorous replication and control strategies should be employed whether using pre-configured, commercial microwell-plates or in-house designed PM plates for targeted substrate analyses. With these precautions, the PM technique is a valuable tool to characterize the metabolic capabilities of individual endophyte isolates, or successional endophyte communities identified by NGS, allowing a functional interpretation of the taxonomic data. Thus, PM approaches can provide valuable complementary information for NGS studies of fungal endophytes in forest trees.

  11. Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Paris polyphylla var. yunnanensis is an important medicinal plant with abundant saponins that are widely used in the pharmaceuticals industry. It is unclear why the levels of active ingredients increase as these plants age. We speculated that the concentrations of those components in the rhizomes are mediated by fungal endophytes. To test this hypothesis, we took both culture-dependent and -independent (metagenomics approaches to analyze the communities of endophytic fungi that inhabit those rhizomes in plants of different age classes (four, six, and eight years old. In all, 147 isolates representing 18 fungal taxa were obtained from 270 segments (90 per age class. Based on morphological and genetic characteristics, Fusarium oxysporum (46.55% frequency of occurrence was the predominant endophyte, followed by Leptodontidium sp. (8.66% and Trichoderma viride (6.81%. Colonization of endophytic fungi was maximized in the eight-year-old rhizomes (33.33% when compared with four-year-old (21.21% and six-year-old (15.15% rhizomes. Certain fungal species were present only at particular ages. For example, Alternaria sp., Cylindrocarpon sp., Chaetomium sp., Paraphaeosphaeria sporulosa, Pyrenochaeta sp., Penicillium swiecickii, T. viride, and Truncatella angustata were found only in the oldest plants. Analysis of (metagenomics community DNA extracted from different-aged samples revealed that, at the class level, the majority of fungi had the highest sequence similarity to members of Sordariomycetes, followed by Eurotiomycetes and Saccharomycetes. These results were mostly in accord with those we obtained using culture methods. Fungal diversity and richness also changed over time. Our investigation is the first to show that the diversity of fungi in rhizomes of P. polyphylla var. yunnanensis is altered as plants age, and our findings provide a foundation for future examinations of useful compounds.

  12. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy.

    Science.gov (United States)

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-04-17

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata.

  13. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    Directory of Open Access Journals (Sweden)

    Yan-Hua Zhu

    2009-04-01

    Full Text Available In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata.

  14. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    OpenAIRE

    2009-01-01

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata.

  15. Biodiversity, Antimicrobial Potential, and Phylogenetic Placement of an Endophytic Fusarium oxysporum NFX 06 Isolated from Nothapodytes foetida

    Directory of Open Access Journals (Sweden)

    Sogra Fathima Musavi

    2013-01-01

    Full Text Available Biodiversity of endophytic fungi associated with the medicinal plant Nothapodytes foetida of Agumbe forest was determined and evaluated for its microbial activity. A total of 170 endophytic isolates were obtained from leaf, stem, seed, and fruit tissues of Nothapodytes foetida. The dominant endophytic fungi belong to genera Fusarium, Penicillium, Aspergillus, and Colletotrichum. Maximum endophytic isolates were obtained from leaves segments followed by fruit, stem, and seed tissues. Hyphomycetes were the dominant group found with 75.29% over other fungal groups. Shannon-Weiner and Simpson indexes showed rich diversity of endophytic fungi suggesting even and uniform occurrence of various species. 88.57%, 74.28%, 62.85%, and 65.71% of isolates have shown activity against Staphylococcus aureus (ATCC 25923, Pseudomonas aeruginosa (ATCC 27853, Escherichia coli (ATCC 25922, and Candida albicans (ATCC 69548, respectively. One of the isolate NFX 06 isolated from leaf has showed considerable antimicrobial activity against all the test pathogens. It was identified as Fusarium oxysporum by ITS sequence analysis; the nucleotide sequence was submitted in the GenBank with an accession number KC914432. Phylogenetic relationship confirmed that the strain F. oxysporum NFX 06 has evolved from an endophytic ancestor.

  16. Influence of nitrogen fertilizer and endophyte infection on ecophysiological parameters and mineral element content of perennial ryegrass.

    Science.gov (United States)

    Ren, An-Zhi; Gao, Yu-Bao; Wang, Wei; Wang, Jin-Long; Zhao, Nian-Xi

    2009-01-01

    An experiment was designed to determine the effect of the fungal endophyte Neotyphodium lolii on the growth, physiological parameters and mineral element content of perennial ryegrass (Lolium perennel L.), when growing at two N supply levels. Endophyte infection had a significant positive effect on both shoot and root growth of ryegrass, but this difference was only significant in the high N supply treatment. At high N supply, endophyte-infected (EI) plants accumulated more soluble sugar in the sheath and the root than endophyte-free (EF) plants. Endophyte infection affected mineral element concentrations in the root more than in the shoot. We found a significant effect of endophyte infection on B, Mn and Mg in the root, but significant effect was only found on B in the shoot. EI plants tended to accumulate less B in the shoot at both N levels, but accumulated more B, Mn and Mg in the root at low N levels. The difference of growth parameters in different periods was significant. The content of soluble sugar and crude protein in the sheath were also dependent on the growth stages of both EI and EF plants.

  17. Biological Evaluation of Endophytic Fungus Chaetomium sp. NF15 of Justicia adhatoda L.: A Potential Candidate for Drug Discovery.

    Science.gov (United States)

    Fatima, Nighat; Mukhtar, Usman; Ihsan-Ul-Haq; Ahmed Qazi, Muneer; Jadoon, Muniba; Ahmed, Safia

    2016-06-01

    The endophytes of medicinal plants, such as Justicia adhatoda L., represent a promising and largely underexplored domain that is considered as a repository of biologically active compounds. The aim of present study was isolation, identification, and biological evaluation of endophytic fungi associated with the J. adhatoda L. plant for the production of antimicrobial, antioxidant, and cytotoxic compounds. Endophytic fungi associated with the J. adhatoda L. plant were isolated from healthy plant parts and taxonomically characterized through morphological, microscopic, and 18S rDNA sequencing methods. The screening for bioactive metabolite production was achieved using ethyl acetate extracts, followed by the optimization of different parameters for maximum production of bioactive metabolites. Crude and partially purified extracts were used to determine the antimicrobial, antioxidant, and cytotoxic potential. Out of six endophytic fungal isolates, Chaetomium sp. NF15 showed the most promising biological activity and was selected for detailed study. The crude ethyl acetate extract of NF15 isolate after cultivation under optimized culture conditions showed promising antimicrobial activity, with significant inhibition of the clinical isolates of Staphylococcus aureus (87%, n=42), Pseudomonas aeruginosa (> 85%, n = 41), and Candida albicans (62%, n = 24). The present study confirms the notion of selecting endophytic fungi of medicinal plant Justicia for the bioassay-guided isolation of its bioactive compounds, and demonstrates that endophytic fungus Chaetomium sp. NF15 could be a potential source of bioactive metabolites.

  18. Fungal nail infection

    Science.gov (United States)

    Nails - fungal infection; Onychomycosis; Infection - fungal - nails; Tinea unguium ... hair, nails, and outer skin layers. Common fungal infections include: Athlete's foot Jock itch Ringworm on the ...

  19. Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    HENY HERNAWATI

    2011-10-01

    Full Text Available Hernawati H, Wiyono S, Santoso S (2011 Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae. Biodiversitas 12: 187-191. The objectives of the research were to study the diversity of leaf endophytic fungi of chili, and investigate its potency in protecting host plants against Aphis gossypii Glov. Endophytic fungi were isolated from chili leaves with two categories: aphid infested plants and aphid-free plants, collected from farmer’s field in Bogor, West Java. Abundance of each fungal species from leave samples was determined by calculating frequency of isolation. The isolated fungi were tested on population growth of A. gossypii. The fungal isolates showed suppressing effect in population growth test, was further tested on biology attributes i.e. life cycle, fecundity and body length. Five species of leaf endophytic fungi of chili were found i.e. Aspergillus flavus, Nigrospora sp., Coniothyrium sp., and SH1 (sterile hypha 1, SH2 (sterile hypha 2. Eventhough the number of endophytic fungi species in aphid-free and aphid-infested plant was same, the abundance of each species was different. Nigrospora sp., sterile hyphae 1 and sterile hyphae 2 was more abundant in aphid-free plants, but there was no difference in dominance of Aspergillus flavus and Coniothyrium sp. Nigrospora sp., SH1 and SH2 treatment reduced significantly fecundity of A. gossypii. Only SH2 treatment significantly prolonged life cycle and suppress body length, therefore the fungus had the strongest suppressing effect on population growth among fungi tested. The abundance and dominance of endophytic fungal species has relation with the infestation of A. gossypii in the field.

  20. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew.

    Science.gov (United States)

    Garyali, Sanjog; Kumar, Anil; Reddy, M Sudhakara

    2013-10-28

    Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing 66 μg/l of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation.

  1. Plant growth-promoting bacterial endophytes.

    Science.gov (United States)

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.

  2. Biodiversity of endophytic fungi from seven herbaceous medicinal plants of Malnad region, Western Ghats, southern India

    Institute of Scientific and Technical Information of China (English)

    B. Shankar Naik; M. Krishnappa; Y. L. Krishnamurthy

    2014-01-01

    A total of 3611 fungal isolates were recovered from 4200 leaf segments incubated from 7 medicinal herbs during monsoon, winter and summer seasons. These fungal isolates belonged to teleomorphic Asco-mycota (23.5%), anamorphic Ascomycota producing conidiomata (17.4%), anamorphic Ascomycota without conidiomata (46.9%), Zygo-mycota (1.42%) and sterile forms (10.6%). Chaetomium globosum, As-pergillus niger, Aureobasidium pullulans, Curvularia lunata, Fusarium spp., Penicillium spp., Pestalotiopsis spp., Trichoderma viridae, Cladosporium cladosporioides, were frequently isolated from more than one host plant. The number of endophytic isolates was higher in winter than in monsoon and summer seasons.

  3. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    Science.gov (United States)

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests.

  4. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse.

    Science.gov (United States)

    Rosa, Luiz H; Tabanca, Nurhayat; Techen, Natascha; Pan, Zhiqiang; Wedge, David E; Moraes, Rita M

    2012-10-01

    The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.

  5. Fungal keratitis

    Directory of Open Access Journals (Sweden)

    Sonal S Tuli

    2011-02-01

    Full Text Available Sonal S TuliUniversity of Florida, Gainesville, FL, USA  Clinical question: What is the most appropriate management of fungal keratitis?Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea.Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary.Keywords: fungal keratitis, keratomycosis, antifungal medications, debridement

  6. Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass.

    Science.gov (United States)

    Torta, L; Lo Piccolo, S; Piazza, G; Burruano, S; Colombo, P; Ottonello, D; Perrone, R; Di Maida, G; Pirrotta, M; Tomasello, A; Calvo, S

    2015-03-01

    Posidonia oceanica is the most common, widespread and important monocotyledon seagrass in the Mediterranean Basin, and hosts a large biodiversity of species, including microorganisms with key roles in the marine environment. In this study, we ascertain the presence of a fungal endophyte in the roots of P. oceanica growing on different substrata (rock, sand and matte) in two Sicilian marine meadows. Staining techniques on root fragments and sections, in combination with microscope observations, were used to visualise the fungal presence and determine the percentage of fungal colonisation (FC) in this tissue. In root fragments, statistical analysis of the FC showed a higher mean in roots anchored on rock than on matte and sand. In root sections, an inter- and intracellular septate mycelium, producing intracellular microsclerotia, was detected from the rhizodermis to the vascular cylinder. Using isolation techniques, we obtained, from both sampling sites, sterile, slow-growing fungal colonies, dark in colour, with septate mycelium, belonging to the dark septate endophytes (DSEs). DNA sequencing of the internal transcribed spacer (ITS) region identified these colonies as Lulwoana sp. To our knowledge, this is the first report of Lulwoana sp. as DSE in roots of P. oceanica. Moreover, the highest fungal colonisation, detected in P. oceanica roots growing on rock, suggests that the presence of the DSE may help the host in several ways, particularly in capturing mineral nutrients through lytic activity.

  7. Metabolic potential of endophytic bacteria.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Mitter, Birgit; Trognitz, Friederike; Sessitsch, Angela

    2014-06-01

    The bacterial endophytic microbiome promotes plant growth and health and beneficial effects are in many cases mediated and characterized by metabolic interactions. Recent advances have been made in regard to metabolite production by plant microsymbionts showing that they may produce a range of different types of metabolites. These substances play a role in defense and competition, but may also be needed for specific interaction and communication with the plant host. Furthermore, few examples of bilateral metabolite production are known and endophytes may modulate plant metabolite synthesis as well. We have just started to understand such metabolic interactions between plants and endophytes, however, further research is needed to more efficiently make use of beneficial plant-microbe interactions and to reduce pathogen infestation as well as to reveal novel bioactive substances of commercial interest. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Impact of Bacterial-Fungal Interactions on the Colonization of the Endosphere

    NARCIS (Netherlands)

    Overbeek, van L.S.; Saikkonen, Kari

    2016-01-01

    Research on different endophyte taxa and the related scientific disciplines have largely developed separately, and comprehensive community-level studies on bacterial and fungal interactions and their importance are lacking. Here, we discuss the transmission modes of bacteria and fungi and the nat

  9. [Effects of agarwood formation induced by Fusarium sp. A2 on distribution and community composition of endophytic fungi in leaves of Aquilaria sinensis].

    Science.gov (United States)

    Gao, Xiao-Xia; Zhou, Wei-Ping; Wang, Lei; Zhang, Wei-Min; Yan, Han-Jing

    2014-01-01

    The aim of the paper is to observe the distribution of the endophytic fungi in leaves of Aquilaria sinensis by using permanent paraffin-cut section, optical microscope photography and histochemistry. Total DNA was extracted with modified CTAB method and rDNA ITS regions of plant and endophytic fungi were amplified with eukaryotic universal primers. The rDNA ITS amplicon was characterized by RFLP analysis, sequencing of rDNA ITS library and phylogenetic analyses using PAUP by maximum parsimony. Fusarium sp. A2 was used to induce the formation of resinous in A. sinensis trees. As a result, endophytic fungi mainly distributed in spongy and phloem in leaf. Endophytic fungi distributed in the phloem in agarwood-producing tree and had a relatively high abundance. Phoma sp. and Collectrotrichum sp. were the absolute advantage species in the leaf tissues of non-resinous and agarwood-producing tree, respectively. Collectrotrichum sp. was the only fungal species detected both in the two types of A. sinensis with different levels of abundance. The culture-independent molecular method can be used to identify fungal species directly and rapidly from the plant tissues. Endophytic fungal communities in non-resinous and agarwood-producing A. sinensis leaf tissues were quite different.

  10. Culture Medium and Conditions for Laccase-producing Endophytic Fungal Strain CSN-4 from Tea Tree(Camellia sinensis)%茶树内生真菌 CSN-4产漆酶培养基及培养条件研究

    Institute of Scientific and Technical Information of China (English)

    巫婷玉; 张婉蓉; 杨民和

    2015-01-01

    从茶树内生真菌筛选产漆酶的菌株,分析不同营养因素和培养条件对菌株漆酶酶活力的影响。采用6种显色底物的平板初筛和酶活测定的复筛方法,从15株茶树内生真菌菌株中筛选获得1株产漆酶酶活较高的菌株 CSN-4。单因素分析结果显示,液态发酵条件下菌株 CSN-4适宜的主要培养基成分是麸皮和蛋白胨;菌株 CSN-4分别在麸皮30 g / L、蛋白胨2.5 g / L、CuSO4·5H2 O 0.015 g / L 和茶水6 g / L 时发酵产漆酶酶活最高。发酵条件试验结果表明,菌株 CSN-4分别在接种量为6个菌饼(直径6 mm)、装液量60 mL /250 mL、pH 4.8、摇床转速120 r / min,培养温度为28℃时产漆酶酶活较高。在培养基中添加麸皮和茶水对菌株 CSN-4产漆酶有明显的促进作用。经过培养基成分及培养条件优化后,菌株 CSN-4产漆酶酶活显著升高,达到2417 U / L。%A laccase-producing fungal strain CSN-4 was screened from 15 endophytic fungi isolated from healthy tea (Camellia sinensis)leaves with PDA medium plate amended with six coloration substrates for initial screening and re-screening by checking their laccase activity,and the effects of different nutritional factors and cultural condition on laccase activity of the strain were analyzed. The results of single factor analysis showed that the main medium compo-nents under liquid fermentation suitable for strain were wheat bran and peptone;laccase activity of strain CSN-4 reached the peak when fermented with 30 g/ L of wheat bran,2. 5 g/ L of peptone,0. 015 g/ L of CuSO4 ·5H2 O and 6 g/ L of tea infusion,respectively. The results of the experiments on fermentation conditions showed that when the fermentation was inoculated with six strain agar plugs(6 mm in diameter),liquid filling amount at 60 mL/ 250 mL, pH 4. 8,shaking at 120 r/ min,and culture temperature at 28 ℃,the laccase activity produced by the strain reached a fairly high. The addition of wheat

  11. Fungal prions.

    Science.gov (United States)

    Staniforth, Gemma L; Tuite, Mick F

    2012-01-01

    For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.

  12. Fungal Entomopathogens

    Science.gov (United States)

    Fungal entomopathogens are important biological control agents worldwide and have been the subject of intense research for more than100 years. They exhibit both sexual and asexual reproduction and produce different types of infective propagules. Their mode of action against insects involves attachme...

  13. Antioxidants in mangrove plants and endophytic fungal associations

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.; Rajasabapathy, R.; Meena, R.M.

    candel (L.) Druce, Excoecaria agallocha L., Rhizophora mucronata Lam., which are medicinally important, were collected in sterile plastic bags from Chorao, Goa, India. The leaf samples were washed in running tap water and immediately processed. About... segments were cut equally with a sterilized cork borer from the mid portions of healthy leaves to include the midrib; roots were cut into pieces of similar size. The cut leaves and roots were surface sterilized (Kumaresan et al. 2002; Ravindran et al...

  14. INVESTMENT ANALYSIS OF REPLACING ENDOPHYTE-INFECTED WITH ENDOPHYTE-FREE TALL FESCUE PASTURES

    OpenAIRE

    Marchant, Mary A.; Murrell, Courtney Paige; Zhuang, Jun

    2004-01-01

    Cattle consuming tall fescue pastures infected with the endophyte Neotyphodium coenophialum often suffer physiological disorders that reduce animal performance. One solution is to replace endophyte-infected tall fescue pastures with an endophyte-free mixture. A benefit-cost analysis was conducted to determine the profitability of pasture restoration. The profitability of this action depends on the percentage of endophyte in existing pastures, the discount rate, and the stand life of the endop...

  15. Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

    Directory of Open Access Journals (Sweden)

    Carolina Santiago

    2012-01-01

    Full Text Available An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC50 1.56 μg/mL and was cytotoxic against murine leukemia cells (IC50 2.10 μg/mL. 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine.

  16. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers

    Institute of Scientific and Technical Information of China (English)

    Shutong WANG; Tongle HU; Yanling JIAO; Jianjian WEI; Keqiang CAO

    2009-01-01

    The fungal pathogen Botrytis cinerea Pers. causes severe rotting on tomato fruits during storage and shelf life. As a biological control agent, endophytic bacterium was regarded as an effective alternative to chemical control. Out of 238 endophytic bacterial isolates, three strains (EB-15, EB-28, and EB-122) isolated from Lycopersicum esculentum Mill., Speranskia tuberculata (Bge.) Baill, and Dictamnus dasycarpus Turcz. respectively were found to be strongly antagonistic to the pathogen in vitro and were selected for further in vivo tests. One endophytic bacterium strain, encoded EB-28, was selected from the three in vivo tested isolates. The inhibitive rate of EB-28 reached 71.1% in vitro and 52.4% in vivo. EB-28 was identified as Bacillus subtilis according to its morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis.

  17. Root fungal associations in some non-orchidaceous vascular lithophytes

    Directory of Open Access Journals (Sweden)

    Thangavelu Muthukumar

    2016-01-01

    Full Text Available ABSTRACT Plant roots in natural ecosystems are colonized by a diverse group of fungi among which the most common and widespread are arbuscular mycorrhizal (AM and dark septate endophyte (DSE fungi. Though AM and DSE fungal associations are well reported for terricolous plant species, they are rather poorly known for lithophytic plant species. In this study, we examined AM and DSE fungal association in 72 non-orchidaceous vascular plant species growing as lithophytes in Siruvani Hills, Western Ghats of Tamilnadu, India. Sixty-nine plant species had AM and 58 species had DSE fungal associations. To our knowledge, we report AM fungal association in 42 and DSE fungal association in 53 plant species for the first time. There were significant differences in total root length colonization and root length colonized by different AM and DSE fungal structures among plant species. In contrast, the differences in AM and DSE fungal colonization among plants in various life-forms and lifecycles were not significant. AM morphology reported for the first time in 56 plant species was dominated by intermediate type AM morphology. A significant negative relationship existed between total root length colonized by AM and DSE fungi. These results clearly suggest that AM and DSE fungal associations are widespread in lithophytes.

  18. Plant-endophyte symbiosis, an ecological perspective.

    Science.gov (United States)

    Wani, Zahoor Ahmed; Ashraf, Nasheeman; Mohiuddin, Tabasum; Riyaz-Ul-Hassan, Syed

    2015-04-01

    Endophytism is the phenomenon of mutualistic association of a plant with a microorganism wherein the microbe lives within the tissues of the plant without causing any symptoms of disease. In addition to being a treasured biological resource, endophytes play diverse indispensable functions in nature for plant growth, development, stress tolerance, and adaptation. Our understanding of endophytism and its ecological aspects are overtly limited, and we have only recently started to appreciate its essence. Endophytes may impact plant biology through the production of diverse chemical entities including, but not limited to, plant growth hormones and by modulating the gene expression of defense and other secondary metabolic pathways of the host. Studies have shown differential recruitment of endophytes in endophytic populations of plants growing in the same locations, indicating host specificity and that endophytes evolve in a coordinated fashion with the host plants. Endophytic technology can be employed for the efficient production of agricultural and economically important plants and plant products. The rational application of endophytes to manipulate the microbiota, intimately associated with plants, can help in enhancement of production of agricultural produce, increased production of key metabolites in medicinal and aromatic plants, as well as adaption to new bio-geographic regions through tolerance to various biotic and abiotic conditions. However, the potential of endophytic biology can be judiciously harnessed only when we obtain insight into the molecular mechanism of this unique mutualistic relationship. In this paper, we present a discussion on endophytes, endophytism, their significance, and diverse functions in nature as unraveled by the latest research to understand this universal natural phenomenon.

  19. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  20. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  1. Alkaloids produced by endophytic fungi: a review.

    Science.gov (United States)

    Zhang, Yanyan; Han, Ting; Ming, Qianliang; Wu, Lingshang; Rahman, Khalid; Qin, Luping

    2012-07-01

    In recent years, a number of alkaloids have been discovered from endophytic fungi in plants, which exhibited excellent biological properties such as antimicrobial, insecticidal, cytotoxic, and anticancer activities. This review mainly deals with the research progress on endophytic fungi for producing bioactive alkaloids such as quinoline and isoquinoline, amines and amides, indole derivatives, pyridines, and quinazolines. The biological activities and action mechanisms of these alkaloids from endophytic fungi are also introduced. Furthermore, the relationships between alkaloid-producing endophytes and their host plants, as well as their potential applications in the future are discussed.

  2. Endophytic fungi from medicinal plant Bauhinia forficata : Diversity and biotechnological potential

    Science.gov (United States)

    Bezerra, Jadson D.P.; Nascimento, Carlos C.F.; Barbosa, Renan do N.; da Silva, Dianny C.V.; Svedese, Virgínia M.; Silva-Nogueira, Eliane B.; Gomes, Bruno S.; Paiva, Laura M.; Souza-Motta, Cristina M.

    2015-01-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential. PMID:26221088

  3. Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica.

    Science.gov (United States)

    Del Olmo-Ruiz, Mariana; Arnold, A Elizabeth

    2014-01-01

    Ferns are an ancient and diverse lineage of vascular plants that differ morphologically, chemically and in growth habits from the angiosperms with which they co-occur. We used a culture-based approach coupled with phylogenetic analyses to characterize the incidence, diversity and composition of fungal endophyte assemblages in ferns, with a focus on healthy aboveground tissues of seven species of eupolypods at La Selva, Costa Rica. Endophytes were isolated from every individual plant and were similarly abundant and diverse in frond blades and stalks, in different vegetation types, in epiphytic vs. terrestrial species, and between sampling years. However, abundance, diversity and community structure differed significantly among fern species, and composition differed markedly between sampling years. Phylogenetic classification using separate and combined datasets revealed that as for many Neotropical angiosperms, the majority (95%) of endophyte taxa were Ascomycota, with particular dominance by Sordariomycetes, Eurotiomycetes and Dothideomycetes. However, our data suggest higher phylogenetic richness and stronger host affinities in fern associated endophytes relative to those studied in angiosperms thus far.

  4. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae.

    Directory of Open Access Journals (Sweden)

    Juan Chen

    Full Text Available Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS, large subunit of ribosomal DNA (LSU, and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs. The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  5. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential.

    Science.gov (United States)

    Bezerra, Jadson D P; Nascimento, Carlos C F; Barbosa, Renan do N; da Silva, Dianny C V; Svedese, Virgínia M; Silva-Nogueira, Eliane B; Gomes, Bruno S; Paiva, Laura M; Souza-Motta, Cristina M

    2015-03-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen's index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  6. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential

    Directory of Open Access Journals (Sweden)

    Jadson D.P. Bezerra

    2015-03-01

    Full Text Available Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds, comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%, Aspergillus ochraceus (7.37%, Gibberella fujikuroi (10.53%, Myrothecium verrucaria (10.53% and Trichoderma piluliferum(7.37%. Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus, Gibberella baccata, Penicillium commune, and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes. Thirteen species showed proteolytic activity, particularly Phoma putaminum. Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri. All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum. It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  7. Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    Elfita

    2014-03-01

    Full Text Available Endophytic fungi is a rich source of novel organic compounds with interesting biological activities and a high level of structural diversity. As a part of our systematic search for new bioactive lead structures and specific profiles from endophytic fungi, an endophytic fungus was isolated from roots of brotowali (Tinaspora crispa, an important medicinal plant. Colonial morphological trait and microscopic observation revealed that the endophytic fungus was Trichoderma sp. The pure fungal strain was cultivated on 7 L Potatos Dextose Broth (PDB medium under room temperature (no shaking for 8 weeks. The ethyl acetate were added to cultur medium and left overnight to stop cell growth. The culture filtrates were collected and extracted with EtOAc and then taken to evaporation. Two new lactone derivatives, 5-hydroxy-4-hydroxymethyl-2H-pyran-2-one (1 and (5-hydroxy-2-oxo-2H pyran-4-yl methyl acetate (2 were obtained from the EtOAc extracts of Trichoderma sp. Their structures were determined on the basic of spectroscopic methods including UV, IR, 1H-NMR, 13C-NMR, HMQC, and HMBC.

  8. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  9. Novel Endophytic Trichoderma spp. Isolated from Healthy Coffea arabica Roots are Capable of Controlling Coffee Tracheomycosis

    Directory of Open Access Journals (Sweden)

    Temesgen Belayneh Mulaw

    2013-10-01

    Full Text Available One of the biggest threats to coffee growers in East Africa are emerging vascular wilt diseases (tracheomycosis caused by Fusarium spp. Many Trichoderma species are known to be natural antagonists of these pathogens and are widely used in biological control of fungal plant diseases. More recently, several Trichoderma spp., which exhibited high antifungal activity have been isolated as endophytes. Consequently, we have investigated the presence and the antagonistic activity of endophytic Trichoderma isolated from roots of healthy coffee plants (Coffea arabica from the major coffee growing regions of Ethiopia. Our results showed that community of Trichoderma spp. in roots of C. arabica contains fungi from coffee rhizosphere, as well as putatively obligate endophytic fungi. The putatively “true” endophytic species, until now, isolated only from coffee plant ecosystems in Ethiopia and recently described as T. flagellatum and novel T. sp. C.P.K. 1812 were able to antagonize Fusarium spp., which cause coffee tracheomycosis. Moreover, we found that strains of these species are also highly antagonistic against other phytopathogenic fungi, such as Alternaria alternata, Botryotinia fuckeliana (anamorph: Botrytis cinerea, and Sclerotinia sclerotiorum.

  10. Production of secondary metabolite E2.2 from Phaleria macrocarpa endophytic fungus

    Institute of Scientific and Technical Information of China (English)

    Beatrix Trikurnia Gasong; Raymond Rubianto Tjandrawinata

    2016-01-01

    Objective: To isolate new endophytic fungus from Phaleria macrocarpa (P. macrocarpa) that is able to produce E2.2 compound. Methods: Endophytic fungi were isolated from P. macrocarpa. Morphological and molecular identification was done to determine the species of the endophytic fungus. High performance liquid chromatography was used to determine the ability of this fungus to produce E2.2 compound and to quantify the total yield of E2.2 from fungal fermen-tation. Fermentation process was optimized by observing suitable medium, pH and length of fermentation process. Phloroglucinol and gallic acid addition were examined to determine the effect of each compound on E2.2 production. Results: One endophytic fungus was successfully isolated from P. macrocarpa plant. Morphological and molecular identification showed that it was a Colletotrichum gloeo-sporioides which belonged to Glomerellaceae family. This fungus showed highest pro-duction of E2.2 when incubated in potato dextrose broth with initial pH value of the medium at 5, and was incubated for 15 days. Phloroglucinol was found to better enhance E2.2 production. Conclusions: Colletotrichum gloeosporioides found in P. macrocarpa plant is prom-ising as a potential alternative source of E2.2.

  11. Long-term ungulate exclusion reduces fungal symbiont prevalence in native grasslands.

    Science.gov (United States)

    Rudgers, Jennifer A; Fletcher, Rebecca A; Olivas, Eric; Young, Carolyn A; Charlton, Nikki D; Pearson, Dean E; Maron, John L

    2016-08-01

    When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly endophytes can improve resistance to herbivory, growth under drought, and competitive ability. We evaluated whether native ungulate herbivory increased the prevalence of a fungal endophyte in the common, native bunchgrass, Festuca campestris (rough fescue, Poaceae). We used large-scale (1 ha) and long-term (7-10 year) fencing treatments to exclude native ungulates and recorded shifts in endophyte prevalence at the scale of plant populations and for individual plants. We characterized the fungal endophyte in F. campestris, Epichloë species FcaTG-1 (F. campestris taxonomic group 1) for the first time. Under ungulate exclusion, endophyte prevalence was 19 % lower in plant populations, 25 % lower within plant individuals, and 39 % lower in offspring (seeds) than in ungulate-exposed controls. Population-level endophyte frequencies were also negatively correlated with soil moisture across geographic sites. Observations of high within-plant variability in symbiont prevalence are novel for the Epichloë species, and contribute to a small, but growing, literature that documents phenotypic plasticity in plant-endophyte symbiota. Altogether, we show that native ungulates can be an important driver of symbiont prevalence in native plant populations, even in the absence of evidence for direct mechanisms of mammal deterrence. Understanding the ecological controls on symbiont prevalence could help to predict future shifts in grasslands that are dominated by Epichloë host plants.

  12. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants

    Directory of Open Access Journals (Sweden)

    Chirlei Glienke-Blanco

    2002-01-01

    Full Text Available During some phases of of their life-cycle endophytic fungi colonize plants asymptomatically being found most frequently inside the aerial part of plant tissues. After surface disinfection of apparently healthy leaves from three varieties of mandarin orange and one tangor, and after incubation on appropriate culture medium, 407 fungal isolates were obtained, giving a total infection frequency of 81%. No fungal growth was observed from disinfected seeds, indicating that fungi are probably not transmitted via seeds. Of the fungal isolates, 27% belonged to the genus Guignardia, with 12 isolates being identified as Guignardia citricarpa Kiely, which is described as a citrus pathogen. The isolates were variable in respect to the presence of sexual structures and growth rates. Most of the isolates produces mature asci, supporting the hypothesis that they are nonpathogenic endophytes, which recently were identified as G. mangiferae. High intraspecific genetic variability (an average similarity coefficient of 0.6 was detected using random amplified polymorphic DNA (RAPD markers generated by seven different primers. The highest similarity coefficient (0.9 was between isolates P15 and M86 and the smallest (0.22 between isolates P15 and C145. These results did not allow us to establish an association between genetic similarity of the fungal isolates and the citrus varieties from which they were obtained.

  13. Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum.

    Science.gov (United States)

    Ryan, Geraldine D; Rasmussen, Susanne; Xue, Hong; Parsons, Anthony J; Newman, Jonathan A

    2014-01-01

    Atmospheric CO2 is expected to increase to between 550 ppm and 1000 ppm in the next century. CO2-induced changes in plant physiology can have ecosystem-wide implications and may alter plant-plant, plant-herbivore and plant-symbiont interactions. We examined the effects of three concentrations of CO2 (390, 800 and 1000 ppm) and two concentrations of nitrogen fertilizer (0.004 g N/week versus 0.2 g N/week) on the physiological response of Neotyphodium fungal endophyte-infected and uninfected tall fescue plants. We used quantitative PCR to estimate the concentration of endophyte under altered CO2 and N conditions. We found that elevated CO2 increased the concentration of water-soluble carbohydrates and decreased the concentration of plant total amino acids in plants. Fungal-derived alkaloids decreased in response to elevated CO2 and increased in response to nitrogen fertilization. Endophyte concentration (expressed as the number of copies of an endophyte-specific gene per total genomic DNA) increased under elevated CO2 and nitrogen fertilization. The correlation between endophyte concentration and alkaloid production observed at ambient conditions was not observed under elevated CO2. These results suggest that nutrient exchange dynamics important for maintaining the symbiotic relationship between fungal endophytes and their grass hosts may be altered by changes in environmental variables such as CO2 and nitrogen fertilization.

  14. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom.

    Directory of Open Access Journals (Sweden)

    Peter R Atsatt

    Full Text Available Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline "what, where, when and how", opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that

  15. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom.

    Science.gov (United States)

    Atsatt, Peter R; Whiteside, Matthew D

    2014-01-01

    Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs) that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline "what, where, when and how", opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that provide a robust